
Products

Digital TechnicalJournal
Digital Equipment Corporation

Number 3

September I 986

Cover Design
This issue features networking products. Our cover depicts

the veins of a leaf as a visual metaphor for the connections

in a network. As the leaf grows to support the flow of nutri

ents, so the local area network expands with extended LANs,

gateways, and terminal servers to support the flow of infor

mation. The image was created using the Lightspeed system.

1 he cover was designed by Deborah Falck and Eddie Lee of

the Graphic Design Department.

Editorial Staff
Editor - Richard W. Beane
Production Staff
Production Editor - Jane C. Blake
Designer - Charlotte Bell
Interactive Page Makeup - Terry Reed

Advisory Board
Samuel H. Fuller, Chairman
Robert M. Glorioso
John W. McCredie
John F. Mucci
Mahendra R. Patel
F. Grant Saviers
William D. Strecker

The Digital Technical journal is published by Digital
Equipment Corporation, 77 Reed Road, Hudson,
Massachusetts 0 1 749.
Changes of address should be sent to Digital
Equipment Corporation, attention: Media Response
Manager, 200 Baker Ave. , CFO I - l /M94 , Concord, MA
0 1 74 2 .
Comments on the content of any paper are welcomed.
Write to the editor at Mail Stop HL02-3/Kl l at the
published-by address. Comments can also be sent on
the ENET to RDVAX::BEANE or on the ARPANET to
BEANE%RDV AX.DEC@DECWRL.
Copyright © 1 986 Digital Equipment Corporation.
Copying without fee is permitted provided that such
copies are made for use in educational institutions by
faculry members and are not distributed for commer
cial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted.
Requests for other copies for a fee may be made to the
Digital Press of Digital Equipment Corporation. All
rights reserved.
The information in this journal is subject to change
without notice and should not be construed as a com
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibiliry for
any errors that may appear in this document.

ISBN 1 - 5 5 5 58-000-9
Documentation Number EY-67 1 5 E-DP
The following are trademarks of Digital Equipment
Corporation: ALL-IN- I , DATATRIEVE, DDCMP, DEC,
DECconnect, DEChealth, DECnet, DECnet-DOS,
DECnet Router, DECnet RouterjX.25 Gateway,
DECnet-RSX, DECserver, DECnetjSNA Gateway,
DECnet-ULTRIX, DECnet-VAX, DEQNA, DEUNA, Digital
Network Architecture (DNA) , lAS, LANBridge, the
Digital logo, MicroRSX, MicroVAX, MicroVMS, NMCC,
NMCCjDECnet Monitor, PDP-8, PDP- 1 1 , PjFM,
PROjDECnet, Q-bus, Rainbow, ReGIS, RSTS, RSX,
RSX- I IM, RSX- I I M-PLUS, RSX- I IS, RX0 2 , TELEPRO,
ThinWire, TOPS-1 0, TOPS-20, ULTRIX, ULTRIX-3 2 ,
ULTRIX-32m, VAX, VAX- 1 1/730, VAX- 1 1/780,
VAXcluster, VMS, VT, VT1 0 0 , VTI 0 3 , VT240, VT24 1 ,
UNIBUS
AT&T and UNIX are trademarks of American Tele
phone & Telegraph Company.
IBM is a registered trademark of International Business
Machines, Inc.
Intel is a trademark of Intel Corporation.
Lightspeed is a trademark of Lightspeed Computers,
Inc.
Motorola is a registered trademark of Motorola, Inc.
MS is a trademark of Microsoft Corporation.
Xerox is a registered trademark of Xerox Corporation.
3COM is a trademark of 3COM Corporation.
68000 is a trademark of Motorola, Inc.
Book production was done by Educational Services
Media Communications Group in Bedford, MA.

Contents

8 Foreword
William R. Johnson, Jr.

10 Digital Network Architecture Overvi,ew
Anthony G. Lauck, David R. Oran, and RadiaJ. Perlman

25 Performance Analysis and Modeling of Digital's
Networking Architecture
Raj Jain and William R. Hawe

35 The DECnet/ SNA Gateway Product- A Case Study
in Cross Vendor Networking
John P. Morency, David Poner, Richard P. Pitkin, and David R. Oran

54 The Extended Local Area Network Architecture
and LANBridge 100
William R. Hawe, Mark F. Kempf, and Alan). Kirby

73 Tenn,inal Servers on Ethernet Local Area Networks
Bruce E. Mann, Colin Strutt, and Mark F. Kempf

88 The DECnet-VAX Product-An Integrated Approach
to Networking
Paul R. Beck and James A. Krycka

100 The DECnet-ULTRIX Software
John Forecast, James L. Jackson, and Jeffrey A. Schriesheim

108 The DECnet-DOS System
Peter 0. Mierswa, David). Mitton, and Manha L. Spence

117 The Evolution of Network Management Products
Nancy R. La Pelle, Mark). Seger, and Mark W. Sylor

129 The NMCC/ DECnet Monitor Design
Mark W. Sylor

New Products

1

Editor's Introduction

Richard W. Beane
Editor

This third issue features papers about Digital's net·
working products. Digital was an early advocate of
distributed interactive computing, a concept
allowing systems resources to be shared among
many users over a network. Just as two persons
from different cultures have problems communi
cating, however, so do computers with different
designs. Some standard set of rules is needed to
allow successful interaction.

The Digital Network Architecture (DNA) is the
set of rules that defines how Digital's products
communicate over a network. Being flexible, this
architecture allows many ways for design groups to
implement the DNA rules into various DECnet
products.

The first paper discusses the DNA structure and
how it has evolved. Tony Lauck, Dave Oran, and
Radia Perlman describe DNA's design goals and the
new functions supported in its four development
phases. The tasks performed by the eight DNA lay
ers are explained, with particular emphasis on the
network management and routing layers.

To achieve high performance, models and simu
lations were used to test the DNA structure. The
paper by Raj Jain and Bill Hawe relates some case
studies, one for each layer, that resulted in faster
communication. These models helped to optimize
how data packets are handled by simulating differ
ent traffic patterns.

Although the DNA and SNA architectures are
quite different, they can communicate through the
DECnet/SNA Gateway product. John Morency,
Dave Porter , Richard Pitkin , and Dave Oran
describe how the gateway's design accomplishes
this commu n ication . The authors describe the
components in each architecture and how mes
sages are structured.

2

The paper by Bill Hawe, Mark Kempf, and Al
Kirby reports how studies of potential new broad·
band products led to the development of the
Extended LAN Architectu re . The design of the
LANBridge I 00, the first product incorporating
that arch itecture, is described, along with the
trade-offs made to achieve high performance.

The speed of communication between terminals
and systems depends on how they are connected.
Bruce Mann, Colin Strutt, and Mark Kempf explain
how they developed the LAT protocol to connect
terminals to hosts on an Ethernet. The Ethernet
Terminal Server , the DECserver I 00, and the
DECserver 200 all use this new protocol .

The next three papers describe how DNA was
incorporated into three different operating sys
tems. The first paper, by Paul Beck and Jim Krycka,
explains how the DNA principles were built into
the VAX/VMS system. The authors describe how
transparency was achieved by a tight coupling
between the VMS software and the DECnet struc
ture. The ULTRIX software is Digital's second oper
ating system for its VAX computers. In the second
paper, John Forecast , Jim Jackson , and Jeff
Schriesheim describe how they blended DNA into
the ULTRIX software . Several unique tools were
developed to avoid changes to existing DNA imple
mentations. The DNA architecture has also been
incorporated into the MS-DOS system in the
DECnet-DOS product . The third paper, by Peter
Mierswa, Dave Mitton, and Marty Spence, describes
how they built communication services into
MS-DOS's background by writing new code and
borrowing existing code from the DECnet-ULTRIX
software.

The final two papers discuss an important aspect
of any network: its management. Nancy La Pelle ,
Mark Seger, and Mark Sylor discuss how network
management is built into many diverse DECnet
products. They describe Digital 's common man
agement architecture and the need to meld the
management of voice and data networks . The
NMCC/ DECnet Monitor controls a DECnet network
from a central location. Mark Sylor relates how this
monitor functions, describing its database struc
ture and reports for the network manager. The
monitor's analysis techniques to identify real-time
problems are especially interesting.

I thank John Adams, Andrea Finger, and Walt
Ronsicki for their help in preparing this issue.

Biographies

Paul R. Beck As a consulting software engineer, Paul Beck is currently the
architect and was project leader for the DECnet-VAX product. He designed
recovery mechanisms for high-availability software in the VMS group and
was the network software architect for the DECdataway product. Before
coming to Digital in 1977, he worked as a senior systems analyst at Applied
Data Research, Inc. Paul earned a B.E.S. degree (1969) fromJohns Hopkins
University and an M.S.E.E. degree (1970) from Stanford University. He is a
member of Tau Beta Pi and Eta Kappa Nu.

John Forecast John Forecast received his B.A. degree from the University
of Lancaster in 1971 and his Ph.D. degree from the University of Essex
in 1975. Joining Digital in the United Kingdom in 1974, he later moved
to the United States to join the newly formed group that developed the
DECnet-RSX Phase 2 products. John held various positions within this group
through the development of DECnet Phase IV, then worked on the DECnet
ULTRIX project. He is currently a consulting software engineer in the Local
Area Systems Group.

William R. Hawe A consulting engineer, Bill Hawe manages the Dis
tributed Systems Architecture Group. He is designing new LAN interconnect
system architectures and integrating ISO standards into DNA. Bill helped to
develop the Extended LAN Architecture. For Corporate Research, he worked
on the Ethernet design with Xerox and Intel Corporations and analyzed the
performances of new communications technologies. Before joining Digital
in 1980, Bill taught networking and electrical engineering at Southeastern
Massachusetts University, where he earned his B.S.E.E. and M.S.E.E. degrees.
Bill is a member of the IEEE 802 Local Networks Standards Committee.

James L. Jackson In 1976, Jim Jackson came to Digital after receiving a
B.A.Sc. (E.E.) degree (1973) from the University of Waterloo and an
M.Eng.Sc. (E.E./C.S.) degree (1976) from the University of Queensland. He
contributed to several projects since DECnet Phase II was conceived. Jim
was project leader/manager for DECnet-ULTRIX VI .0 and was developer
and project leader for multiple versions of DECnet-RSX and DECnet-IAS. He
also supervised a release of the DECnet Router and some advanced develop
ment work. Currently, Jim is a software development manager working on
distributed systems services projects. He is a member of the IEEE.

3

- - ------ Biographies

4

Raj Jain Raj Jain graduated from A.P.S. University (B.E., 1972), the Indian
Institute of Science (M.E., 1974), and Harvard University (Ph.D., 1978).
Joining Digital in 1978, he worked on performance modeling ofVAXcluster
systems, and Ethernet and other DNA protocols. During a one-year sabbatical
at M.I .T., Raj taught a graduate course on modeling techniques. As a consult
ing engineer, he is now engaged in performance modeling for distributed
systems and networking architectures. A member of ACM and senior member
of IEEE, Raj has written over 15 papers on performan~e analyses and is writ·
ing a textbook on performance analysis techniques.

Mark F. Kempf Mark Kempf is currently involved in planning Digital's
next generation of interconnect products. A consulting engineer, he was the
project manager for advanced development of the LANBridge 100 and
DECserver 100. Coming to Digital in 1979, Mark worked on software for a
DECnet front end and one of Digital's first implementations of Ethernet. Ear
lier, he worked at Standard Oil of Indiana on real-time process control sys
tems. Mark earned a B.S. degree from Nonhwestern University in 1972. He
holds three patents, including one in bridge technology.

AlanJ. Kirby As the manager of the Communications and Distributed Sys
tems Advanced Development Group, Alan Kirby has managed and partici
pated in the development of products such as the DECserver 100 and the
IANBridge 100. Before joining Digital in 1981 , Alan was the manager of net
work development at National CSS, Inc., where he helped to design a large
scale packet switching network. He received a B.S. degree (1974) in com
puter science from Worcester Polytechnic Institute and an M.S. degree
(1979) at the Polytechnic Institute of New York. Alan is a member of the
IEEE.

James A. Krycka A principal software engineer, Jim Krycka is a supervi
sor in the VMS Development Group and project leader of the VMS Batch/
Print facility. Joining Digital in 1972 as a software specialist, he provided
technical suppon for PDP-11 and PDP-8 systems. In the VMS group, Jim
designed and implemented the remote file access ponion of the DECnet
VAX software. He also helped to design the data access protocol and repre
sented Digital on the ANSI committee working on ISO networking standards.
Jim earned a B.S. degree (1970) in computer science from Michigan State
University.

Nancy R. La Pelle As a software engineering manager, Nancy La Pelle
oversees the development of management software for network products.
She chaired the task force to specify preliminary network management
requirements for DNA Phase V. Joining Digital in 1977 as a senior software
engineer, Nancy later worked in Software Services and Customer Services
Systems Engineering. Earlier, she performed systems analysis and program
ming for several companies. She earned a B.A. degree (1966) in French from
the University of Pennsylvania and an M.A. degree (1968) in linguistics from
Cornell University and studied for a Ph.D. degree at M.I.T.

Anthony G. Lauck Tony Lauck is a corporate consulting engineer and
group manager for architecture and advanced development of distributed
systems. He headed the development of Phases II, III, and IV of the DNA
architecture. A member of the task force that led to the development of
Ethernet, Tony also led the effon to standardize it. His group developed con
cepts and built prototypes for the lANBridge 100 and DECserver products.
Before joining Digital in 1974, Tony worked for Autex, Inc., and the Smith
sonian Astrophysical Observatory. He earned a B.A. degree (1964) in math
ematics from Harvard University.

Bruce E. Mann A consulting engineer, Bruce Mann is now studying the
application of Digital architectures to commercial on-line transaction pro
cessing. He wrote the I.AT architecture, creating its first prototypes and
products. An early contributor to Ethernet projects, Bruce helped to design
the system interfaces. In 1978 he used networking to automate engine tests
at the Volkswagon Research Laboratories. Before joining Digital in 1976, he
designed medical computer systems at the Harvard Medical School. Bruce
earned a B.S.E.E. degree in 1971 from Cornell University and with three
other engineers has applied for a patent on the I.AT protocol.

Peter 0. Mierswa A consulting engineer, Peter Mierswa is project leader
for the DECnet-DOS and DECnet-Rainbow products. He is currently studying
the integration of OSI protocols into DECnet implementations. With Digital
since 1977, Peter was a software specialist supponing sales, then a networks
consultant in the Large Computer Group. He was the project leader for the
DATATRIEVE-20 system. Peter received a B.S.C.S. degree (Cum Laude) from
S.U.N.Y. at Stony Brook, where his faculty named him its best graduating stu
dent. He worked for S.U.N.Y. as a systems programmer after graduation.

David J. Mitton Educated at the University of Michigan (B.S. Computer
Engineering, 1977) , Dave Mitton joined Digital after graduation. He first
worked as a software engineer on communications microcode, developing
firmware for microprocessors. Later, on the DECnet-RSX development team,
Dave designed file access and transfer utilities. He was also the corporate
architect for the data access protocol. After organizing the DECnet-DOS pro
ject, Dave was that product's principal designer and developer of the inter
nals architecture and implementation. He is currently a principal engineer.

John P. Morency John Morency is a consulting engineer currently defin
ing future communication server architectures and developing simulation
models for IBM interconnect products. He was a principal contributor to
the DECnet/SNA Gateway. In other positions John performed worldwide
technical suppon for DECnet, IBM, and X.25 products and supponed sales
of networking products to the banking and insurance industries. Prior to
joining Digital in 1978 , John worked at IBM Corporation and at General
Electric Company. He earned a B.S. degree (Magna Cum Laude) in mathe
matics and computer science from the University of New Hampshire in
1974.

5

Biographies

6

David R. Oran Dave Oran is a network architect working on the DNA
naming service. He also worked on the SNA Gateway architecture and
supported customers with large networks. Dave represents Digital on the
ANSI and ISO committees for the OSI network layer. Before coming to
Digital in 1976, he designed a nationwide network for the largest bank in
Mexico and programmed at NASA. Earning a B.A. degree (1970) in
English and physics from Haverford College, Dave is a member of ACM
and was vice chairman of the Ninth Data Communications Symposium in
1985.

Radia J. Perlman Radia Perlman is a consulting engineer responsible
for the specification of the protocols and algorithms in DNA's routing
layer. On the LANBridge 100 project, she designed the spanning-tree
algorithm. Before joining Digital in 1980, Radia was the network archi
tect on the ARPA Packet Radio Network at BB&N, Inc. She earned her S.B.
(1973) and S.M. (1976) degrees from M.I.T. , both in mathematics. Radia
is on the editorial board of Computer Networks and ISDN Systems and
has published numerous papers on networks.

Richard P. Pitkin As a principal engineer and project leader, Richard
Pitkin was a senior contributor to the DECnet/SNA Gateway and VMS/SNA
projects. His major work was in product development, testing, and per
formance analysis. Currently, Richard is assessing the IEEE 802.5 token
ring standard. In previous work, he was a principal software specialist
involved in worldwide technical support for IBM interconnect products.
Before coming to Digital in 1979, Richard supported large timesharing
systems for the State of Massachusetts. He earned his B.S. degree in math
ematics from the University of Massachusetts, Boston.

David Porter Dave Porter joined Digital after earning his B.Sc. (Hons)
degree with first-class honours in 1977 from Leeds University.
In the U.K., he designed X.25 interconnect products, and on U.S. assign
ment, he worked on the SNA Gateway VI.0. Returning to the U.K.,
Dave developed a product connecting to IBM's DISOSS system. Currently,
back in the U.S., he is a principal software engineer working on IBM inter
connect products. Dave specified the architecture for the SNA Gateway
Access Protocol V2.0 and worked on gateway management and security.

Jeffrey A. Schriesheim Educated at S.U.N.Y. at Binghamton, Jeff
Schriesheim came to Digital in 1976 after earning B.A. (Fine Arts, 1970)
and M.S. (Systems Design, 1975) degrees. He worked as a design engi
neer, supervisor, and consultant on DECnet Phases II, III, and IV on soft
ware supporting the RSX, IAS, PRO, and ULTRIX systems. Jeff also con
tributed to the design of Ethernet products, including the DECnet Router
and various terminal servers. Currently a consulting engineer, Jeff is
working on extending DECnet services. He is a member of the DECnet
Review Group.

Mark J. Seger In 1975, Mark Seger joined Digital after receiving a
B.S.Ch.E. degree in 1972 and an M.S. degree in computer science in 1975
from the University of Connecticut. He first worked on software applica
tions for internal systems, including one that became the DEChealth sys
tem. Moving to the Telecommunications Industries Group, Mark helped
to develop P /FM, a PBX and facilities management application. He is cur
rently working on concepts for managing networks, defining the next
generation of network management products in the Networks and Com
munications Group.

Martha L. Spence Marty Spence is the software manager of the group
that developed the DECnet-DOS, DECnet-RSX, and DECnet-ULTRIX prod
ucts. She was a project leader on the DECnet-DOS, DECnet/E (RSTS) , and
PRO/DECnet products. Marty was also a supervisor in Distributed Systems
Computer Services. Prior to joining Digital in 1977, she worked at GTE
Sylvania and IBM Corporation and taught mathematics at the University of
Notre Dame. Marty received her B.S. degree (1965) from the University
of Illinois and her M.S. degree (1968) from Notre Dame, both in mathe
matics. She is a member of ACM.

Colin Strutt Joining Digital in 1980, Colin Strutt was project leader on
several communications products, including DECnet-lAS and the Ethernet
Terminal Server. He is currently a consulting engineer responsible for
product strategy of the terminal server family. Colin is the IAT architect
and a member of the DECnet Review Group. Formerly, he worked for
British Airways, specializing in network support and operating systems.
Colin received his B.A. (Hons) degree in 1972 and his Ph.D. degree in
1978, both from Essex University. He is a member of the British Com
puter Society and the ACM.

Mark W. Sylor Mark Sylor is a principal software engineer currently
working on the management architecture for a distributed computing sys
tem. He was the principal designer and a development supervisor for the
NMCC/DECnet Monitor project. Mark also worked on analyzing perfor
mance on the TOPS-20 system and on DECnet networks. He worked at
GTE-AE for four years before joining Digital in 1979. Mark earned a B.A.
degree at S.U.N.Yat Geneseo in 1971 and an M.S. degree at the University
of Notre Dame in 1975, both in mathematics.

I

7

William R. Johnson, Jr.
Vice President,
Distributed Sy stems

During the 1970s, the concept of the minicom
puter changed from a small computing engine
with minimal software to an effective, efficient
general-purpose computer. While this change
occurred, the need to exchange information
among these computers became progres
sively greater. In most cases information was
exchanged using magnetic tape or, in the case of
many DEC computers, DECtape. In the early sev
enties, data communications was in its infancy;
the only widely used communications protocol
was 2780 BISYNC from IBM Corporation, a pro
tocol for remote job entry. At this time, Digital
was becoming very successful at a new kind of
computing, called interactive computing. It
became clear that we needed a flexible way to
interconnect Digital's systems, giving our cus
tomers the ability to share resources among these
machines.

As a result of this realization, a small group of
people was asked to specify a network architec
ture . That architecture was intended to work
across multiple operating systems and to sup
port multiple functions - file transfer, remote
resource access, and virtual terminals - and
multiple communication technologies - leased
lines, X.25, and dial-up networks. As it turned
out, that task was well beyond Digital's ability
to complete; for that matter, it was well beyond
the existing state of the art. Therefore, DECnet
Phase I fell far short of the ambitious goals set for
it. The reality of DECnet Phase I proved to be a

8

set of products confined to the RSX family of
operating systems, having limited functionality,
and poor performance and maintainability.

Although creating serious problems in the
field, DECnet Phase I also forced us to make a
complete reappraisal of what it meant to be in
the network business. As a result of this painful,
yet valuable, Phase I experience, network spe
cialists with direct communication to Engineer
ing were placed in the field. And a strong archi
tectural process , managed by Tony Lauck, and
a certification and verification process were
forged to ensure that products conformed to
the DECnet architecture. The result was DECnet
Phase II, the first set of DECnet products that ran
on multiple operating systems. DECnet Phase II
provided more user functionality, much better
maintainability, and a much more robust net
work architecture than DECnet Phase I. How
ever, DECnet Phase II was still only useful for
small networks since it did not support routing.
And performance remained a problem, so that
Digital was still not viewed in the industry as a
networking leader.

That recognition came with DECnet Phase III.
Phase III provided adaptive routing, making pos
sible the building of networks with over 200
nodes. Additional user functionality was pro
vided with the virtual terminal capability and the
release of the first SNA-interconnect product .
Although difficult to accept now, a network of
over 200 nodes was considered very large in
1980; there were severe reservations about its
ability to be managed. Yet DECnet Phase III was
a major achievement. It was supported on seven
operating systems and three hardware families :
the 36-bit , 32-bit, and 16-bit CPUs. DECnet
Phase III was also quite reliable. Our experience
with the Phase III family of products was so good
that many of the field controls erected to deal
with Phase I and Phase II problems were
removed.

All our problems, however, were not solved
yet. The cost of the network links with DECnet
Phase III was still excessive . Thus the major
objective of DECnet Phase IV was to reduce this
cost by supporting a low-cost, high-performance
multipoint interconnect: the Ethernet . Since
reducing the cost of networking was likely to

increase the sizes of networks, we thought it was
also important to eliminate the Phase III restric
tion of 256 nodes. Therefore, the architectural
restriction for Phase IV was increased to 64,000
nodes, although the practical limit was about
half that number. At that time, there were serious
debates about whether anyone would ever build
such a large network. We now know that Digi
tal's own internal network will be that large by
the end of June 1987.

Using the Ethernet concept was a major under
taking for Digital. The only way to get an inter
connect that had both low cost and high speed
was to use a standard. Since no such standard
existed, we had to create one. As a company, we
had little experience in generating standards;
many people confidently predicted that such an
effort would fail. Through hard work and persis
tence, however, we succeeded in that Ethernet
standardization effort. Today, Ethernet is both
the accepted market leader and, as IEEE 802 .3,
the only approved standard for local area
networks.

Shipments of DECnet Phase IV began in 1983.
Almost immediately, customers started to
migrate from their old point-to-point networks to
the new multipoint Ethernet. By this time, an
installed base of over 10,000 DECnet nodes
existed in the field. Digital was adding to that
base at the rate of 3 ,000 per year. Since the
announcement of DECnet Phase IV, the growth
in DECnet systems has been extremely rapid.
From July 1986 to June 1987, Digital will ship
over 30,000 DECnet licenses. By the end of that
period, there will be over 100,000 computers
running the DECnet system. Clearly, the DECnet
concept has been both a technical and commer
cial success. From a difficult and problem-filled
start, it has evolved to become the standard by
which other peer-to-peer networking products
are measured. The concepts embodied in the
DECnet architecture have been incorporated in
many international standards. Much of that stan
dards work has been done by Digital's DECnet
architects and implementers.

Digital has played a major role in the develop
ment of the OSI protocols, which will over time
become the international standard for network
ing. Small working groups performed much of
the technical work to develop these protocols. In

many cases DECnet architects and developers
played a very significant part in ensuring that the
standard was technically excellent. Today, Digi
tal is recognized as a leader in OSI because of our
work in standards and the OSI products we are
currently shipping. Had it not been for the expe
rience we gained from DECnet development, it is
quite likely that the OSI activity would be much
further behind.

By the standards of the computer industry, ten
years is a very long time. Yet many of the people
working on the DECnet products today were
working on them ten years ago. Most of the
authors who wrote the papers in this issue of
the Digital Technical Journal were involved
with DECnet Phase III; all of them were involved
with Ethernet. The DECnet architecture, as we
know it today, is the result of many people work
ing together, trying to solve a problem that for
many years was imperfectly understood. Even
today, it seems barely credible. The papers con
tained within represent the work of many peo
ple, not just these authors. These papers describe
an environment that continues to evolve at a
rapid rate. That environment is now fundamen
tally altering the way people use computers.

9

Anthony G. Lauck I
David R. Oran

Radia J. Perlman

A Digital Network
Architecture Overview

The Digital Network Architecture (DNA) defines the junctions, structure,
interfaces, and protocols used in DECnet computer networks. These net
works can be constructed from both local area and wide area communi
cation technologies. Although evolving through four phases in ten years,
the DNA design goals have remained constant. Each phase bas supported
new technologies and applications, yet bas retained backward compati
bility. Phase IV contains the latest architectural design. The DNA Junc
tions are described with emphasis placed on the relationships between
layers and bow Ibey cooperate to eliminate duplicate tasks. DNA 's future
evolution is discussed, showing Digital's commitment to the open archi
tecture principle.

Design Goals of the Architecture
A small number of design goals have guided the
evolution of the DNA architecture through its
initial version, Phase I, to its current version ,
Phase IV. These goals are described below.

Common User Interface
A single interface to a computer network should
suppon a broad range of applications, isolating
them from the details of network configuration
and communications technology. This isolation
allows a network to accommodate new applica
tions as they are developed, sharing communica
tions facilities with existing applications. Thus
networks can expand to adapt to new communi
cations technologies without adversely affecting
those existing applications.

Wide Range of Comm unications
Facilities
To be cost effective, computer networks must
suppon a wide range of communications facili
ties with a variety of cost, performance, and dis
tance trade-offs. For example, an Ethernet local
area network (LAN) can economically suppon
data communication in a building or on a cam
pus at a data rate of 1 O million bits per second.
Leased lines, on the other hand, are currently
economical at a data rate of 9600 bits per second
but over thousands of miles. Since communica
tion resources should be shared among users,

10

these trade-offs point out the need to use differ
ing facilities in tandem.

Wide Range of Topologies
Cost-effective computer networks have many dif
ferent configurations. Those differences reflect
the location of computer systems, the availability
of communications facilities , the application
traffic patterns, and the performance require
ments. These configurations usually change as a
network grows, yet the results may not always be
optimum for changing traffic patterns. The
actual network configuration may differ from the
intended configuration due to failures . A net
work must accommodate these changing config
urations, or topologies, to provide a uniform ser
vice to its users.

Available Service
A computer network must provide an avail
able communications service that its users
can depend on to run their applications. This
requirement implies that networks must detect
and recover from failures and isolate and bypass
faults. Single failures should minimally affect the
network's operation.

Extensible
A computer network must be able to evolve to
adapt to new technologies. Older and newer
computer systems and communications facilities

Digital TecbmcalJournal
No. 3 September 1986

must be able to coexist in the same network.
Thus the network architecture must adjust to
new technologies, some of which were not envi
sioned when the architecture was originally
developed.

Easily Implemented
The network architecture must be implemented
on a range of computer systems, from small per
sonal computers to superminicomputer or
mainframe systems. The architecture must be
implemented over a range of communication
hardware and be cost effective so that either
small or large networks can be constructed. This
need implies that the architecture must permit
simple implementations as well as more com
plex ones to conform to the needs of individual
computer systems and network configurations.

Cost Effective
Implementations of the DNA architecture should
be cost effective compared to the alternative of
an application-specific network architecture.
This attribute will encourage the use of a com
mon network architecture, with the resulting
economies of scale.

Design Principles
In addition to the goals described above, the
development of DNA has been guided by a
number of important design principles. We
chose these principles in concert with the
goals and with the benefit of experience in
research networks . Such networks include
the ARPA, National Physical Laboratory, and
Cyclades networks. These design principles are
described below. Of course, several general
design principles, such as simplicity and modu
larity, also guided the development of the DNA
architecture.

Distribute Functions
Functions should be distributed among the
computer systems in a network to avoid
single points of failure and encourage parallel
operation.

Use a Hierarchically Layered Structure
Functions should be divided into layers to factor
architecture complexity into easily understood
pieces and to facilitate the architecture's evolu
tion. Lower layers should provide their defined
services without concerning themselves with

Digital Tecbntca/Journal
No. 3 September 1986

upper layers. Upper layers should rely on the ser
vices provided by lower layers without having
the detailed knowledge of how they actually
provide those services.

Address Computer Systems Uniformly
It should be possible to communicate between
computer systems no matter where they are
located in the network. This communication
can be done if nodes are assigned addresses that
can be used anywhere in the network to specify
the node as either a source or destination of
messages.

Implement Functions at the Highest
Practical Level
When a function is implemented at a high level,
it gains the use of lower-level functions, thus
simplifying the implementation of the higher
level function. If a function were implemented
at a low level, it might have to duplicate func
tions already provided at some intermediate
level.

Use Dynamic Adaptation
The configuration of a computer network will
constantly change as the network expands and as
its components fail and are restored to service. It
is highly desirable for the network to adapt to its
current configuration without manual interven
tion. This adaptability makes the network easier
to install, easier to operate, and more resistant to
failures.

Use Stable, Robust Algorithms
A computer network is a large, complex system.
Like any such system, a network may exhibit
unanticipated and undesirable behavior. When
designing critical algorithms, network relia
bility and availability must not be compromised
in favor of small improvements in average
performance.

Evolution of DNA and DECnet
Products
In the ten years since it was first announced, DNA
has had four major phases, each bringing new
capabilities to the DECnet family. These capabil
ities have increased the range of computer sys
tems implementing the architecture, the number
of applications and communications technolo
gies supported, and the size and complexity of
network topologies. In addition to functional

11

New Products

.....------- · A Digital Network Architecture Overview

improvements, the DNA protocols have been
enhanced to improve network performance and
robustness.

Phase I
Phase I was the initial phase of DECnet products.
First announced in 1975 and delivered in 1976,
they supported only the RSX family of operating
systems for the PDP-11 computers. Phase I prod
ucts supported program-to-program communica
tions and file transfer between directly con
nected computer systems. Synchronous, asyn
chronous, and parallel communications devices
were all supported.

Phase II
Phase II was announced in 1977 and the first
products were delivered in 1978. Phase II
extended the capabilities of Phase I to a wider
range of computer systems, including all the
operating systems for the PDP-11 , TOPS-IO,
TOPS-20, and VAXjVMS operating systems. The
communication capabilities were the same as
Phase I: point-to-point communication using
synchronous, asynchronous, and parallel com
munications devices.

The architecture needed several changes to
adapt to a heterogeneous collection of computer
systems. The most significant change was made
to the user interface. While retaining process-to
process communication, user-interface functions
had to be modified to conform to the diverse
needs of timesharing and real-time operating sys
tems implemented on three different computer
architectures. These modifications included
accommodating systems that worked on both a
stream and a message model of 1/0. Algorithms
for controlling message flows between computer
systems were also revised . These revisions
corresponded with the differing needs of real
time computer systems, with their statically
assigned buffer memories, and time-sharing
systems, with their more dynamic memory
management policies. Finally, the file transfer
protocol was extended to accommodate the
needs of differing file systems. This extension
provided the translation between dissimilar
systems so that files could be moved between
them.

In Phase II , the user interface had to be
changed to adjust to a wider range of computer
systems. Since Phase II , however, there have
been no incompatible changes to the user inter-

12

face on any DECnet products. Implementations
of Phase III and Phase IV still support applica
tions programs written and debugged on Phase
II. Upward compatibility of the user interface
became another DNA goal.

Phase III
Phase III was announced and the first products
were delivered in 1980. Phase III added the
capability of " route-through" to DECnet
networks. Two systems could communicate
if there was a path between them consisting
of communications links and zero or more
intermediate " routing" systems. Initially,
Phase III networks were artificially restricted
to 32 nodes and a maximum network path
length between any two systems of 6 " hops. "
These restrictions were quickly lifted,
however, and network sizes of up to 255 nodes
became practical. Buffer size limits and
routing message formats imposed this 255-node
limit.

Phase III also added the capability to distribute
network management. The installation, configu
ration, operation, and maintenance of a network
could now be done from one or more systems
serving as management nodes in the network.
Thus network usage trends could be gathered for
planning network expansions and reconfigura
tions. Moreover, systems without mass storage
could be loaded or dumped over the network,
and loopback tests could be run to exercise the
network and isolate faults.

Phase IV
Phase IV was announced in 1982 and the first
products were delivered in 1984. Phase IV
expanded the range of communications facilities
to include Ethernet LANs and X.25-based packet
networks. Addressing was expanded to 16 bits
and structured hierarchically. A large network
could be divided into separate "areas" to sim
plify routing calculation. An area is a contiguous
portion of a network. A network could now con
sist ofup to 62 areas with up to 1,023 nodes per
area. Networks of thousands of nodes were now
practical for the first time. A vinual terminal
capability was also provided, making possible
remote terminal access across the network. Gate
way functions were defined to map between SNA
and DNA networks and to provide transparent
access of X.25 networks through a DECnet
network.

Digital TecbnkalJournal
No. 3 September J 986

Overview of the Phase IV DNA
Architecture
The DNA structure, being hierarchically layered,
supports communication between adjacent lay
ers within a single system by using architec
turally defined interfaces.• In addition, commu
nication takes place between computer systems
by exchanging messages following architec
turally defined protocols. A protocol specifica
tion defines the messages to be exchanged and
the procedures for sending and receiving those
messages.

From an architecture perspective, a computer
network is divided into a set of computer sys
tems, each system being divided into layers. Each
layer contains one or more protocol modules.
Figure 1 illustrates the case of a two-node
network in which communication between
modules takes place vertically, using interfaces.
In other systems, communication between
modules can take place horizontally, using
protocols.

The DNA architecture specifies the functional
interfaces between layers . These interfaces
define the services each layer provides to higher
layers and thus firmly partitions the architecture
into layers. The interfaces defined by the stan
dard are abstract specifications, concentrating on
the functions to be provided, not on the form of
the interface implementation. The details of
interface realization are left to the implementers
of each DECnet product. These details typically
depend on the structure and conventions estab
lished in each operating system.

MODULES I · PROTOCOLS

I
l
I INTERFACES

PROTOCOLS

INTERFACES

PROTOCOLS

INTERFACES

.. , MODULES I LAYER n
I
I I INTERFACES

LAYER 3

INTERFACES

LAYER 2

tlNTERFACES

PROTOCOLS
MODULES t---'--':....:...::..=..=-i MODULES LAYER 1

NODE A NODE B

Figure 1 Basic DNA Structure

Digital TecbnicalJournal
No. 3 September 1986

DNA provides a precise specification of the
protocols between layers. This precision is nec
essary to ensure that separate DNA implementa
tions can interoperate. In some cases the details
of protocol operation are left to the imple
menters. If incompatible choices are possible,
the standard specifies rules for negotiation to
select compatible options. The DNA specifica
tions include model protocol implementations
with which all valid implementations must com
municate correctly.

Protocols in the DNA architecture are strictly
layered. These are peer protocols that define the
relationships between modules in the same layer
of two computer systems. The protocols in each
layer operate independently, with communica
tion between layers taking place only across the
defined interfaces. This structure allows the
independent replacement or addition of proto
cols in each layer as the architecture evolves. It
should be pointed out that strict layering is an
architectural, not necessarily an implementa
tion , concept. Experience in implementing
DNA has shown that significant performance
improvements are possible by collapsing the
implementation of several layers. However, this
performance improvement is obtained at the cost
of reduced modularity and flexibility of that par
ticular implementation.

Figure 2 defines the DNA layers and the inter
faces between them. Each layer is discussed
below in terms of its functions, interfaces, and
protocols.

The user layer contains user-defined functions,
such as applications programs. Only one func
tion is specified by DNA for this layer: the net
work control program, or NCP. This is a network
management module that implements the
network command language specified by
DNA network management, thus providing a
user interface to DNA network management
functions.

Three interfaces to lower DNA layers are
also provided. Application programs in the user
layer can . directly access the session layer for
program-to-program communication . They
can also use the application layer to gain access
to common network services, such as remote
file access. Finally, they can access the network
management layer. That access allows pro
grammers to write applications that enhance the
basic network management capabilities provided
by NCP.

13

I New Products

A Digital Network Architecture Overview

USER MODULES

NETWORK MANAGEMENT MODULES

NETWORK APPLICATION MODULES

SESSION CONTROL MODULES

END COMMUNICATION MODULES

ROUTING MODULES

DATA LINK MODULES

PHYSICAL LINK MODULES

- CLIENT
=- NETWORK MANAGEMENT

Figure 2 DNA Layers and Interfaces

Network Management Layer
The network management layer provides decen
tralized management for a DECnet computer net
work. 2 The network management modules
within a node are responsible for two functions.
First, they coordinate the management of that
particular node; second, they communicate with
peer management modules in remote nodes as
needed to accomplish decentralized manage
ment. The network management module uses the
services of three lower layers to provide its func
tions. The network applications layer is used to
provide common network services, such as
remote file access. The session control layer is
used to communicate with peer entities as
needed for decentralized management. The mod
ule has a special interface to the data link layer so
that simple management functions can be pro
vided between adjacent nodes. These functions
include remote restarting, down-line and up-line
loading, and loopback testing. Intermediate pro
tocol layers are bypassed for these functions;
such layers can be economically implemented in
ROMs.

14

Three protocols are defined for the network
management layer: the network information and
control exchange (NICE), the event logger, and
the maintenance operations protocols.

NICE sends commands and responses between
peer network management modules in two
nodes. The functions controlled include the fol
lowing:

• Loading and dumping remote systems

• Changing and examining network parameters

• Examining network counters and events that
indicate how the network is performing

• Testing links at both the data link and session
control levels

• Setting and displaying the states of nodes and
lines

NICE is a simple request-response protocol that
uses the session control interface to permit net
work-wide management control.

The event logger protocol sends significant
events from the nodes in which they are detected
to nodes in which these events can be logged.
Examples of such events include lines coming up
or going down, error counters reaching thresh
old values, and nodes becoming unreachable.
Events can be filtered at the source node, making
it possible to control the amount of network traf
fic generated by event logging. Like other net
work management functions, this filtering can be
controlled remotely using the NICE protocol.
Event logging uses the session control interface
to permit network-wide event logging. Events
are sent to "logging sinks," which can be con
sole printers, disk files, or special applications
programs.

The maintenance operations protocol (MOP)
performs loopback tests at the data link level,
controls unattended systems remotely, and
down-line loads or up-line dumps computer sys
tems having no mass storage.3 Like most data link
protocols, MOP uses sequence numbers, timers,
and acknowledgements to detect and recover
from data link failures. Unlike other DNA proto
cols, however, MOP is designed for extreme sim
plicity rather than performance. This design
makes it possible to implement MOP in small
ROMs. MOP has also been implemented in com
munications devices and bootstrap ROMs in
computer systems. Because MOP uses the data

~gllal TecbnicalJournal
No. 3 September 1986

link layer directly, its operation is restricted to
adjacent nodes. A system to be down-line loaded
must be directly connected to its load server.
That load server might be controlled by an NCP
located elsewhere in a network (using NICE) .
Moreover, the server might be reading the file
containing the load image from yet another
node (using the data access protocol, or DAP, in
the application layer) .

In examining Figure 2, note the arrows on the
left side that connect the network management
layer with each lower layer. Each arrow is a con
trol path used by network management to coor
dinate the activity of each layer in a node. Each
lower layer of the DNA structure specifies a net
work management interface that defines the net
work management functions provided by that
layer.

A basic principle followed in designing DNA
network management was to perform manage
ment functions at the highest level possible. For
example, management functions use the regular
applications layer service for accessing files
containing management information . These
functions can also communicate using the nor
mal services of the session layer. The alternative
to this principle would have been to use some
special-purpose mechanism to achieve the man
agement functions, thus adding unwarranted
complexity to the architecture and to its imple
mentations. Out of practical necessity, however,
the direct use of the data link layer by DNA man
agement represents a partial deviation from this
design principle. Implementing all the lower
layers of DNA in ROM microcode was deemed to
be uneconomical. Although the sizes of low-cost
ROM memories have expanded in the last ten
years, fixing all the DECnet layers into ROM
remains undesirable. Changes to add new func
tions or correct implementation or architectural
bugs would simply require too many costly
hardware updates.

Another basic design principle followed in
designing DNA network management was to first
specify primitive functions, then make them
available to network managers or to specialized
applications programs. The goal was to have a
simple, flexible structure implemented in all
DECnet nodes while still providing the opponu
nity for dedicating computing resources to the
management of large networks. 4

Digital Tec:bnlcalJournal
No. 3 September 1986

Network Applications Layer
The network application layer provides generic
services to the user and network management
layers .5 These services include remote file
access and transfer, remote interactive terminal
access, and gateway access to non-DNA systems.6

Modules in this layer operate independently and
asynchronously. A single DECnet node may sup
pon many different network applications mod
ules, which communicate using many different
protocols. This layer supports modules supplied
by both Digital and users. As new network appli
cations are developed, they can easily be added
to this layer. One application layer protocol is
described below to illustrate a typical operation
of the applications layer.1

DAP provides remote file access and transfer.
Two cooperating application layer modules
exchange DAP messages using the DNA session
control service: the user module at the node
requests the file operation, and the server mod
ule acts on the user's behalf at the remote node.
Figure 3 depicts those services.

These applications layer modules operate
under the control of either a utility program or a
user program residing in the user layer. For
example, a file transfer operation might be ini
tiated by a utility program. In some DECnet
implementations, such as the DECnet-VMS sys
tem, remote file operations are initiated by nor
mal VMS user programs using VMS file system
calls. File naming conventions will determine
whether or not a local or remote file operation
is implemented. 7

In a typical DAP protocol dialogue, the first
message exchange involves configuration mes
sages providing information about the operating
and file systems. Those messages are followed
by attribute messages that supply information
about the file. An access-request message typi
cally follows to open a panicular file. A control
message then sets up the data stream. After
file transfer has completed, access-complete
messages will terminate the data stream. With
these messages, either an entire file can be
transferred at one time or ponions of a file can
be transferred, either randomly, sequentially, or
indexed.

15

New Products

LOCAL NODE

@i USER LAYER

THE ACCESSING PROGRAM:
• NFi' UTILITY
•A VAX/VMS COMMAND
•A USER-WRITIEN PROGRAM

NETWORK APPLICATION LAYER
-c-

OAP • SPEAKING ROUTINES:
•NFARs, OR ROUTINES IN THE

LOCAL FILE SYSTEM (E.G.,RMS)

SESSION CONTROL LAYER

END COMMUNICATION LAYER

ROUTING LAYER

LOCAL FILE DATA LINK LAYER
SYSTEM

PHYSICAL LINK LAYER
(E.G.,FCS OR
RMS)

OAP • DATA ACCESS PROTOCOL
FCS • FILE CONTROL SYSTEM
RMS • RECORD MANAGEMENT SERVICES
NFARs • NETWORK FILE ACCESS ROUTINES
NFT • NETWORK FILE TRANSFER UTILITY

REMOTE NODE

NETWORK APPLICATION LAYER
-----

OAP • SPEAKING SERVER:
• FILE ACCESS LISTENER

SESSION CONTROL LAYER

END COMMUNICATION LAYER

ROUTING LAYER

DATA LINK LAYER REMOTE FILE
SYSTEM

PHYSICAL LINK LAYER
(E.G.,FCS OR
RMS)

Figure 3 File Transfer across a Network

DAP's principal design problem was accom
modating the needs of diverse file systems. It was
necessary to define a mapping between the fea
tures and functions of each different system. This
definition was not always easy to make. Some sys
tems had differing capabilities (for example,
some supported index files); others had differing
means of providing similar capabilities (for
example, stream or record structures for text
files) . Moreover, it was very important for file
transfers between like systems to operate at max
imum efficiency and to be completely transpar
ent. For example, it should be possible to copy a
file from one VMS system to another and still
retain exactly the same bit patterns in the copy.
Two design approaches were studied to achieve
these capabilities: using a common, or canoni
cal, file format in protocol messages; and per
forming needed translations. The canonical for
mat was rejected because it was not transparent
or efficient enough in the homogeneous case .
The second approach, in which translation is
performed at the client DAP protocol module,
was adopted.

16

Session Control Layer
The session control layer resides directly above
the end communications layer.8 The session con
trol layer provides system-dependent, process-to
process communication functions for processes
residing in the user, network management, and
network application layers . These functions
bridge the gap between the pure communication
functions provided by the end communications
layer and the functions required by processes
running under an operating system. The commu
nication service provided by the session control
layer is connection oriented: an initiating pro
cess requests a connection to a destination pro
cess. The session control layer manages these
connections. Once a connection is established,
data flows between the processes without further
intervention by the session control layer, using
the facilities provided by the end communica
tions layer.

When establishing a connection, the higher
layer specifies the destination process in two
parts: first, by destination node, then, by process
within destination node. Destination nodes are

Digital TecbnlcalJournal
No. 3 September 1986

specified by a six-character node name. Each ses
sion control module contains a local copy of a
node database that maps between the node
names and the 16-bit node addresses used in the
end communications and routing layers . This
node database is set up under the control of net
work management and can be updated in a
decentralized fashion .

Different operating systems employ different
conventions to identify their processes. There
fore, selecting a specific process in the destina
tion system depends on the particular operating
system being used. However, the DNA session
control layer provides a mechanism for specify
ing processes generically by their function, using
an object-type field. Thus the session control
architecture specifies a mapping between
reserved object-type field values and specific
upper-layer protocol modules. For example, a
specific object-type code is reserved to designate
the process or processes implementing the
server end of the OAP file access protocol. This
code frees most network usage from having to
know the details of process addressing by the
operating system.

The session control module at the destination
system will either map an incoming connection
request onto an existing active process, activate a
process, or create a new process, whichever is
appropriate. For example, consider two possible
implementations of the OAP server process. One
implementation is multithreaded and supports
multiple simultaneous connections. When the
first connection is requested, the process would
be activated. Subsequent requests would map
onto the existing process. The second implemen
tation is not multithreaded and supports only a
single simultaneous connection. Each time a
connection request is received, the connection
must be mapped onto a new process, which may
need to be activated or created. Whether pro
cesses are activiated or created depends on oper
ating system conventions and reflects the costs
of creating processes and keeping processes
dormant.

The session control layer provides one other
function : it validates incoming connecting
requests using access control information pro
vided by the requesting session control module.
The details of this validation information depend
on the access control mechanisms provided by
the destination operating system. This informa-

Digital TecbnlcalJournal
No. 3 September 1986

tion typically identifies the requesting user or
requested account and, optionally, a password.

End Communications Layer
The end communications layer, residing immedi
ately above the routing layer, provides a stan
dardized communication service used by the
higher layers of the DNAsoftware.9 The end com
munications layer provides a reliable, sequen
tial, connection-oriented service to the session
control layer. The former layer isolates the
higher layers from any transient errors or
reordering of data introduced by lower layers. It
also provides a multiplexing function, enabling
multiple connections to be established between
pairs of nodes or between a node and multiple
nodes. These connections are called logical
links.

The network services protocol (NSP) provides
the logical link service to the session layer,
exchanging protocol messages using the routing
layer. The originating session control module
asks the local NSP module to set up a logical link
to a remote session control module. If the remote
node is accessible via the routing layer and has
resources to suppon an additional connection,
the remote NSP module will indicate its desire to
connect to the remote session layer. The NSP
module will transfer session control protocol
data, such as user identifiers, passwords, and the
DECnet object type. The remote session control
module can either accept or reject the link. Only
when the logical link is finally established can it
suppon the flow of data.

The connection management algorithms and
protocol mechanisms of NSP are designed to
ensure that data on each logical link flows inde
pendently from data on every other logical link.
This independence takes two forms. First, data
received on each connection will never be
mixed with data from any other connection, even
one between the same two nodes and processes.
This restriction enables higher-layer protocols to
establish initial synchronization and to reestab
lish synchronization if one computer has
crashed. Second, if data flow must be blocked on
one connection (for example, because there is
nothing to send or no buffers are available to
receive), data can still flow on other connec
tions. This data flow takes place even if memory,
processing, and communications resources are
shared between the two connections.

17

A Digital Network Architecture Overoiew

Data flow on a logical link can be modeled by
a pair of message queues in each direction. One
queue in each direction handles the transmission
of "normal data" between higher-layer protocol
modules; that pair is used by all higher-level pro
tocols . The other queue pair handles transmis
sion of occasional short " interrupt" messages;
this pair is used by some higher-level protocols.
For example, the virtual terminal protocol uses
interrupt messages to transmit interrupt com
mands, such as those generated when a user
enters the command CTRL-Y to a VMS system. On
each queue, data flows on each queue indepen
dently of the other queue. Data is transferred
when the requesting session control module pro
vides a message to be transmitted and the receiv
ing session control module indicates its willing
ness to receive , by providing a buffer for
example. NSP uses protocol messages and flow
control algorithms to ensure an orderly data flow
on logical links. An orderly flow takes place even
if limited by the ability of the sources to provide
data, the network to transmit data, or the destina
tion to receive data.

In providing the reliable logical link service,
NSP must exist in a hostile environment. In par
ticular, NSP must operate correctly when the
routing layer occasionally loses, reorders , or
duplicates messages. Moreover, NSP must deal
with potential confusion created by computers '
crashing at one or both ends of the logical link;
this is the problem of " half-open connec
tions. "10·11 NSP deals with these problems by
assigning logical link identifiers to each logical
link and by assigning sequence numbers to
each data or flow-control message sent on each
link. Timers are used to detect errors and initiate
retries of operations. Should excessive retries
appear to be required, NSP will report this prob
lem to the session control layer , which
can decide to break the connection or continue
retrying.9

NSP has evolved with each phase of DNA. In
Phase II, the NSP protocol was revised to allow
dynamic sharing of message buffers between log
ical links. This capability, called optimistic flow
control, must deal with the delay between the
time that data is requested and the time that data
arrives. For example , during this delay on one
logical link, data on other links might arrive ,
thus consuming all the available NSP buffers.
The NSP protocol was designed to handle this
case correctly without deadlock.

18

The Phase II version of NSP ran right on top of
a data link protocol, the Digital Data Communi
cations Message Protocol (DDCMP) . The DDCMP
protocol provided a reliable point-to-point com
munications service , rendering unnecessary
NSP's use of timers to detect lower layer failures .
The Phase III version of NSP was designed to run
on top of the routing layer. This version included
a timer capability to detect and recover from
routing layer failures, such as the loss of a mes
sage when an alternate route must be selected
following a node or link failure .

Only minor changes were made to NSP in
Phase IV. Two changes improved the protocol
performance by reducing the number of control
messages exchanged to perform flow-control and
error-recovery functions. First, the protocol mes
sage formats and procedures were allowed to
combine control messages with each other and
with data messages. Second, provision was made
for selectively delaying acknowledgement mes
sages, making it possible to send many data mes
sages for each acknowledgement. In a typical
implementation of NSP, these changes make it
possible for more than 90 percent of the mes
sages transmitted by NSP to be data messages.
Reducing the number of messages exchanged
improves the throuhput of DECnet implementa
tions on Ethernet IANs by reducing the CPU time
needed to generate , transmit, receive , and
decode control messages. Reducing the number
of messages decreases the common-carrier
charges when running NSP over X.25 public data
networks, which charge for each packet.

Routing Layer
The routing layer provides a network-wide mes
sage delivery service.12 This layer accepts mes
sages from the end communications layer in a
source node and forwards the packets, possibly
through intermediate nodes, to a destination
node. The routing layer implements a datagram
service, which delivers packets on a best-effort
basis. 13 The routing layer makes no absolute
guarantees against packets being lost, dupli- ·
cated, or delivered out of order. Such guarantees
are made by the end communications layer. To
provide this network-wide service, the routing
layer calculates routes, using them to forward
packets. In the forwarding process, the routing
layer must attempt to avoid or at least control any
congestion that results from overloading the net
work with excessive traffic . The routing layer

Digital Tecbnlcal Journal
No. 3 September 1986

also ensures that packets do not wander around
for too long before being delivered. Such "old"
packets might confuse the end communications
layer.

The routing layer determines routes by using
an adaptive, distributed algorithm that responds
to changing network configurations. Routes
between all sources and destinations are auto
matically calculated or recalculated by the rout
ing layer whenever new nodes or links are added
to or removed from the network. These changes
to the network topology can either be planned
by the network operators or result from the
unplanned failures and recoveries of network
nodes and links.

Routes are calculated on the basis of link costs,
which typically are inversely proportional to link
speed. The route to each destination node is
along a path having the minimum total path cost,
which is the sum of the link costs along the path.
Link costs can be set either by network managers,
if desired, or by using default values. This fea
ture, called adaptive routing, is a key aspect of
the DNA software, making it very easy to operate
large DECnet networks. Without adaptive rout
ing, network operators and users would have to
calculate paths between all pairs of data sources

and destinations, including alternative paths to
handle failures . These calculations rapidly
become impractical as networks grow beyond a
few nodes. Figure 4, depicting a small DECnet
network, illustrates how routes are chosen using
link costs.

The routing layer forwards packets based on
a uniform addressing scheme. Each node in a
DECnet network is assigned a unique address,
used by the routing algorithms to calculate
routes. These addresses indicate each packet's
source and destination and guide the forwarding
decision. A uniform addressing scheme allows
the higher layers and network applications to
treat the network as a uniform resource . In
Phase IV, addresses are 16 bits long and have two
components: a 6-bit area field and a 10-bit node
address. As mentioned above, a network can be
divided into a maximum of 62 areas of up to
1 ,023 nodes . Routes are calculated at two
levels for each area: Level I routes carry traffic
within the area; Level II routes carry traffic
between areas. This hierarchical scheme makes it
possible to build very large DECnet networks
yet minimizes the memory, communications,
and processing requirements of the routing
algorithm.

@, @ ... (!) = CIRCUIT COSTS IN INCREASING ORDER

NODE A WANTS TO SEND A PACKET TO NODE D. THERE ARE THREE POSSIBLE PATHS.

PATH PATH COST PATH LENGTH ,___
A to B, B to C, C to D @ + @ + @ = 7• 3 HOPS

t---
A to B, B to D @ + (!) - 9 2 HOPS

t------A to B, B to F, F to E, E to D @+ @+@+@ ~ 13 4 HOPS

•7 IS THE LOWEST PATH COST; NODE A THEREFORE ROUTES THE PACKET TO NODE D VIA THIS PATH.

Figure 4 Routing Paths and Costs

Digital Tecbnlcal]ournal 19
No. 3 September 1986

New Products

·------- A Digital Network Architecture Overview

Route calculation is done in a distributed
fashion. Two types of nodes are defined in DNA:
end nodes, and routing nodes. End nodes have
only a single attachment to a network; there
fore, they do not need to calculate routes or for
ward packets on behalf of other nodes. On the
other hand, routing nodes support multiple links
and forward traffic on behalf of other nodes;
therefore, routing nodes must calculate routes.
Route calculation is performed using three major
components:

• An initialization sublayer that determines
which links interconnect with which nodes

• A decision process at each routing node that
calculates routes to all destinations (within
one area for Level I routing or to each area
for Level II routing)

• An update process at each routing node by
which routing nodes exchange information
about their routes

The routing algorithm runs whenever the ini
tialization sublayer at a routing node detects a
local topology change. It also runs periodically
to ensure that routes throughout the network are
correct. This routing algorithm, robust and self
stabilizing, recovers automatically from corrup
tion occurring in routing databases stored in
routing nodes or from any number of simulta
neous topological changes. 12

The routing layer supports a variety of commu
nications facilities for communicating between
adjacent nodes. A complete path from a source
node to a destination node can use a mixture of
link types. Three main types are supported: ded
icated links using the DDCMP protocol, X.25
packet-switched networks, and Ethernet LANs.
X.25 packet-switched networks are treated by
the routing layer as a collection of point-to-point
virtual circuits; hence, these networks function
similarly to DDCMP point-to-point links. End
nodes have a particularly simple task on these
types of links since end nodes make no decision
when sending a packet out; they simply send it
on the link to the adjacent node.

End node routing is somewhat more complex
on Ethernet LANs since each station can send
to any other station on the Ethernet; therefore,
the end nodes attached to an Ethernet must make
a routing decision. When sending to nodes
remote from their Ethernet, the end nodes must
send to a router. When sending to nodes on their

20

Ethernet, the end nodes send directly to the des
tination node. End nodes follow a simple proce
dure to determine which path to follow. If a
router is present and the end nodes do not know
about a particular destination, they forward their
packets to the router. If no router exists or if they
know a particular destination is on the Ethernet,
they send their packets directly to the destina
tion address, using 48-bit Ethernet addresses
derived from the 16-bit destination node
address.

End nodes learn that particular nodes are on
their Ethernet by receiving packets directly from
those nodes or by being informed by a router.
This approach was chosen to reduce the memory
and overhead in end nodes while still permitting
multiple Ethernet LANs to reside in one DNA
area. The alternate approach was to limit each
DNA area to a single Ethernet, which would have
limited the size of Phase IV networks.

A DECnet network, like a complex network of
roads, is subject to congestion should it be over
loaded. The routing layer incorporates several
design decisions to reduce the potential for con
gestion, to prevent local congestion from spread
ing globally, and to minimize the impact of con
gestion on network performance. To minimize
congestion, traffic should be kept out of con
gested portions of the network. To accomplish
that, each node restricts the number of buffers
available to traffic originating at a node, thereby
giving priority to traffic transiting the node.

Two design decisions help to prevent the
global spread of local congestion. The first deci
sion was to keep routing as a function of the net
work topology, not of the network load. The sec
ond decision was to handle congestion by
allowing packets to be discarded at a node when
an output queue has filled, instead of slowing
down input to the node. This second decision
minimizes the impact of traffic flowing through
the node that does not need the congested link.
The discard policy also prevents buffer deadlock,
which occurred in early research networks, by
preventing circular buffer waiting conditions.
·Toe performance impact of congestion is mini
mized by this policy for limited buffer sharing
between congested links. 14

Perhaps the most important decision made in
designing the DNA routing layer was to provide a
"best-effort" delivery service instead of a "reli
able" service. This decision was made for a vari
ety of reasons. First, implementing functions at

Digilal TecbnlcaiJournal
No. 3 September 1986

the highest practical level suggested that deliv
ery guarantees should be provided by the end
communications layer. In that way, reliable com
munication could be provided to user-written
programs. As we have seen, reliable delivery is
easily performed by the NSP protocol, involving
only the cooperation of the two communicating
nodes.

Second, providing reliable delivery in the
routing layer would have been quite difficult
since it would require synchronizing state infor
mation at many nodes. These nodes include all
those on the path between the communicating
systems and possibly others that might be or
might have been used, since routes must change
when the network topology changes. Further
complicating this problem is the fact that any
state information in intermediate nodes would
be lost following a crash.

Third, providing reliable delivery would have
complicated the congestion control problem and
required complex algorithms to avoid buffer
deadlock. Fourth, a best-effort delivery service
was a "least common denominator" among data
link protocols then in use or being developed.
Ethernet provides such a data link service. When
Ethernet was added to the DNA architecture in
Phase IV, its best-effort delivery service was a
perfect match to the DNA routing layer.

Data Link Layer
The data link layer creates a communications
path between adjacent nodes. This layer frames
messages for transmission on the channel con
necting the nodes, checks the integrity of
received messages, manages the use of channel
resources, and, when required, ensures the
integrity and proper sequence of transmitted
data. Currently, there are three protocols resid
ing in the DNA data link layer: DDCMP, X.25 ,
and Ethernet.

DDCMP operates over synchronous or asyn
chronous communications links.1s It can operate
in point-to-point configurations or in multipoint
configurations in which communication takes
place between a control station and each of sev
eral tributary stations. DDCMP messages are
framed as sequences of bytes, beginning with a
single control byte indicating the message's start
ing point and type (e.g., data or control) . While
DDCMP control messages have a fixed length,
data messages have variable lengths, indicated by
the length field. On reception, this encoding

Digital TecbnlcalJournal
No. 3 September 1986

: I New Products

allows the receiver to determine the beginnings
and ends of messages. Incoming bits are assem
bled into bytes by the communications hard
ware, using start/stop bits for asynchronous links
and synchronization characters for synchronous
links.

The DDCMP protocol uses a 16-bit cyclic
redundancy check (CRC-16) to detect errors in
headers or user data. On half-duplex or multi
point channels, DDCMP executes link allocation
procedures to ensure that two or more stations
do not conflict in their use of the channel. These
techniques are based on polling in which one
station extends permission to the other to trans

mit. DDCMP uses timers and sequence numbers
to detect and recover from lost messages; it also
prevents the process of error recovety from cre
ating duplicates. The routing layer uses the error
detection-and-retry capability of DDCMP to
verify that links between nodes are operational
and to synchronize the operation of the routing
protocols.

The X.25 specification developed by the
International Telegraph and Telephone Consul
tative Committee (CCITI) defines an interface
between a packet-switched network, such as a
public data network provided by a common
carrier, and data terminal equipment, such as a
DECnet node. 16 •17 The service provided by
packet-switched networks is a virtual circuit
service in which connections, called virtual
circuits, are established between pairs of nodes.
DNA supports these virtual circuits for use
by two functions: the DNA routing layer, and
special applications, such as communicating
with communication services built on top of
X.25 and offered by the common carriers .
DNA defines procedures for allocating X. 2 5
virtual circuits between these two functions
and for providing access to X.25 networks by
DNA nodes not directly connected to an X.25
interface.

Routing uses X.25 virtual circuits in much the
same way it uses point-to-point links. A single
X.25 virtual circuit can carry data between many
different nodes, and virtual circuits are used in
tandem with DDCMP links and Ethernet IANs.

The Ethernet IAN provides a communications
facility for high-speed communication among
computers located within a moderately sized
geographic area, such as a building or a campus.
This IAN includes a data link layer and a physical
layer, which can send data at a rate of 10 million

21

bits per second. The Ethernet has a maximum sta
tion separation of 2.5 kilometers with a maxi
mum of 1024 stations. A shielded coaxial cable
is used as the physical medium. Ethernet also
uses a branching, nonrooted tree topology. The
Ethernet IAN technology was jointly developed
by Digital Equipment Corporation, Intel Corpo
ration, and Xerox Corporation.18 The Ethernet
specification, with minimal changes, has subse
quently been standardized by the IEEE 802 Local
Area Networks Committee as IEEE Standard
802.3.19

The Ethernet data link protocol provides a
best-effort delivery service. Messages, called
frames, are transmitted over the physical channel
in a broadcast fashion . Stations are assigned
48-bit addresses, and each frame contains a
source address and a destination address. A frame
can be addressed to an individual station or to a
group of stations, using a 48-bit group address
(called a multicast address in Ethernet terminol
ogy) . A special multicast address, consisting of
1 's, is used to denote the set of all stations on an
Ethernet and is typically used for maintenance
purposes. In the DNA architecture, the multicast
capability is used for network configuration pur
poses by the routing and network management
layers. For example, a multicast address, speci
fied by the architecture, is defined in the routing
layer specification as the set of all routing nodes
on an Ethernet IAN.

End nodes advertise their availability to rout
ing nodes by periodically broadcasting " hello"
messages to the multicast address. The large
48-bit address space permits a unique address to
be assigned to each Ethernet station when it is
manufactured. That address space permits sta
tions to be plugged in to a IAN and operate with
out having addresses assigned manually. MOP
uses this address when down-line loading com
puter systems, such as server systems with no
mass storage. The 48-bit address can be used to
select the correct program and parameters to be
loaded into the node, such as the 16-bit DECnet
node address.

The Ethernet data link protocol frames mes
sages using the properties of the Manchester cod
ing scheme employed by the physical channel to
mark the beginning and end of each frame. In
addition to source and destination addresses,
frames employ a 16-bit protocol type field to
identify the higher-level protocol carried in
the frame. The protocol type field values are

22

assigned in blocks to all vendors who manufac
ture Ethernets, thus permitting different propri
etary and public protocols to coexist in a single
Ethernet station. Ethernet frames also contain a
32-bit CRC to ensure that frames received in
error are detected and discarded.

Since the Ethernet physical channel can trans
mit data only from one station at a time, the Eth
ernet data link protocol must allocate the single
channel among all the stations. This allocation is
accomplished by the technique of CSMA/CD
(carrier sense multiple access with collision
detection) . In this contention-based protocol,
stations "listen" before transmitting (carrier
sense) and defer their transmissions to other sta
tions already transmitting.

Should several stations begin transmitting
simultaneously, a collision will occur, prevent
ing correct reception of any transmission. In this
case the physical channel hardware in each col
liding station will detect the collision (collision
detection) and each station will reschedule
transmission after a randomly selected delay. To
ensure efficient, stable operation of the network
under both low- and high-load conditions, this
random delay is adjusted on subsequent colli
sions by the back-off algorithm. This causes each
station to reduce the load presented to the net
work under overload conditions. Studies have
shown that this procedure provides good perfor
mance (low delay and high throughput) over a
range of Ethernet configurations and loads.20,2 1

These studies have also shown that the proce
dure allocates resources fairly between compet
ing stations and operates stably under high-load
and overload conditions.

Digital recently introduced the concept of
bridges and extended IANs as a means to extend
the physical extent, number of stations, and
throughput capabilities of a single LAN .22

Extended IANs operate transparently to higher
level protocols, such as the DNA protocols. Thus,
although not a pan of the DNA architecture,
extended LANs - such as those built from
Ethernets and LANBridge 100s (Ethernet-to
Ethernet) - can be components of a DECnet
network.

Physical Link Layer
The physical link layer transmits bits of informa
tion between adjacent nodes. The functions in
this layer include encoding and decoding signals
on the connecting channel, performing clock

Digital TeclmlcalJournal
No. 3 September 1986

recovery of received signals, and interfacing
the communications channel to any processor
and memory used to implement higher-level
protocol functions. Implementations of this
layer encompass hardware interface devices
and device drivers in operating systems, as
well as communications hardware such as
modems, transceivers, and the physical channels
themselves.

Protocols for the physical layer are rudimen
tary, emphasizing the specification of electrical
interfacing parameters. No special physical layer
specifications have been developed for DNA.
Instead, it relies on industry standards for the
physical layer, thereby ensuring that DECnet
products can operate over available communica
tions technologies and infrastructures. Physical
layer standards supported by DNA for wide area
networks include the EIA RS-232C and RS-423
specifications, and the CCITI V.24 and X.25
Level 1 specifications. Physical layer stan
dards supported by the DNA architecture for
LANs include two baseband implementations
of ThinWire Ethernet , the original18 and the
thinwire23 specifications, and a broadband24

implementation.

Future Dfrections for the DNA
Architecture
For ten years, DNA has evolved in four main
dimensions: network applications, communica
tions technologies, network size and scale, and
diversity of supported computer systems. This
ability to evolve independently along four
dimensions has proven to be one of the principal
benefits of the architecture. It is reasonable to
assume that evolution along these lines will con
tinue. Local area and wide area communications
technologies continue to evolve, typically result
ing in higher communications data rates. New
applications for computer networks and new
applications protocols will also continue to
evolve. The DNA architecture will continue to
accommodate these trends.

The 16-bit node addresses used by DNA Phase
IV currently limit the size of DECnet networks.
Digital 'sown internal DECnet network is nearing
the limits of this address space; over 10,000
nodes are currently registered. Clearly, the archi
tecture must be extended to support more
nodes. From our experience with this network,
there are two separate reasons why networks
continue to grow rapidly. First, the availability of

Digital TeclmkalJournal
No. 3 September 1986

low-cost computer systems allows individuals to
own network nodes rather than sharing a single
timesharing system. Second, certain applica
tions, such as network mail, need to operate
across whole organizations. This breadth makes a
single company-wide network, rather than sepa
rate independent networks, highly desirable.
Indeed, there is even a need for networks that
span multiple organizations, adding further to
the problems of scale, complicating network
management requirements, and creating new
problems of network security. DNA will have to
evolve to adapt to much larger and more diverse
networks.

As computer networks have become larger,
users have developed increasing requirements
for networks that interconnect computer systems
from multiple vendors. The International Stan
dards Organization (ISO) has been developing
standards for such networks through their Open
Systems Interconnection program (OSI) . The OSI
reference model defines a network architecture
similar in many respects to that of DNA. 2s Most
major computer vendors, including Digital, have
announced their support for OSI and are begin
ning to deliver OSI network products. Digital has
announced its strategy to incorporate OSI proto
cols into its networking products, integrating
them into the DNA architecture. Future versions
of the DNA architecture will correspond
to a mixture of standardized and proprietary
protocols.

References

1. DECnet Digital Network Architecture
(Phase IV) General Description (Bed
ford: Digital Equipment Corporation,
Order No. AA-149A-TC, 1982) .

2 . DECnet Digital Network Architecture
(Phase IV) Network Management Func
tional Specification (Bedford: Digital
Equipment Corporation, Order No .
AA-X437A-TK, 1983) .

3. DECnet Digital Network Architecture
(Phase IV) Maintenance Operations
Functional Specification (Bedford: Digi
tal Equipment Corporation, Order No.
AA-X436A-TK, 1983) .

4. N. La Pelle, M. Seger, and M. Sylor, "The
Evolution of Network Management Prod
ucts," Digital Technical Journal (Sep
tember 1986, this issue) : 117-128.

23

New Products

A Digital Network Architecture Overview

5 . DECnet Digital Network Architecture
Data Access Protocol (DAP) Functional
Specification (Bedford: Digital Equipment
Corporation, Order No. AA-K177A-TK,
1983).

6. J . Morency, D. Porter, R. Pitkin, and D.
Oran , " The DECnet/SNA Gateway
Product -A Case Study in Cross Vendor
Networking, ' ' Digital Technical Journal
(September 1986, this issue): 35-53.

7 . P. Beck and J. Krycka, "The DECnet-VAX
Product -An Integrated Approach to Net-
working," Digital Technical Journal (Sep-
tember 1986, this issue) : 88-99.

8. DECnet Digital Network Architecture Ses-
sion Control Layer Functional Speciflca-
tton (Bedford: Digital Equipment Corpora-
tion, Order No. AA-K182A-TK, 1980).

9 . DECnet Digital Network Architecture
(Phase IV) NSP Functional Specification
(Bedford: Digital Equipment Corporation,
Order No. AA-X439A-TK, 1983).

10. C. Sunshine and Y. Dalal, "Connection
Management in Transport Protocols,"
Computer Networks , vol. 2 (December
1978): 454-473.

11. W. Lai, "Protocol Traps in Computer Net-
works - A Catalog," IEEE Transactions
on Communication , vol. COM-30, no. 6
Oune 1982): 1434-1449.

12. DECnet Digital Network Architecture
(Phase IV) Routing Layer Functional
Specification (Bedford: Digital Equipment
Corporation, Order No. AA-X435A-TK,
1983).

13. L. Pouzin, " Presentation and Major Design
Aspects of the Cyclades Computer Net-
work," Third IEEE/ACM Data Communl-
cation Symposium (November 197 3) :
80-87.

14. R. Jain and W. Hawe, " Performance Analy-
sis and Modeling of Digital 's Networking
Architecture," Digital Technical Journal
(September 1986, this issue) : 25- 34.

15 . DECnet Digital Network Architecture
Digital Data Communications Message
Protocol (DDCMP) Functional Specifl·
cation, Version 4. 1. 0 (Bedford: Digital

24

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Equipment Corporation , Order No .
AA-Kl 75A-TK, 1984) .

CC/TT Recommendation X.25, CC/TT
Yellow Book, vol. VIIl.2 (Geneva: Interna-
tional Telecommunications Union, 1981) .

Standard ISO 8208 for Information Pro-
cesslng Systems , "X.25 Packet Level Proto-
col for Data Terminal Equipment," Inter-
national Standards Organization (1985).

The Ethernet: A Local Area Network, Data
Link Layer and Physical Layer Specifica-
tlons, Version 2. 0 (Digital Equipment Cor-
poration, Intel Corporation, and Xerox
Corporation, Order No. AA-K759B-TK,
1982).

IEEE Project 802 Local Area Net-
work Standards, " IEEE Standard 802.3
CSMA/CD Access Method and Physical
Layer Specifications," Approved IEEE Stan-
dard 802.3-1985, ISO/DIS 8802/3 Ouly
1983).

J. Schoch and J. Hupp, "Measured Perfor-
mance of an Ethernet Local Area Network,"
Communications of the ACM, vol. 23 ,
no. 12 (December 1980): 711-721.

F. Tobagi and B. Hunt, "Performance Analy-
sis of Carrier Sense Multiple Access with
Collision Detection, " Computer Net-
works , vol. 4, no. 5 (October/November
1980): 245-259.

W. Hawe, M. Kempf, and A. Kirby, "The
Extended Local Area Network Architecture
and LANBridge 100," Digital Technical
Journal (September 1986, this issue) :
54-72.

IEEE Project 802 Local Area Networks ,
"Medium Attachment Unit and Baseband
Medium Specifications, 1 OBASE2 ," IEEE
P802.3/83/0.21E, Section 10.

IEEE Project 802 Local Area Networks ,
"Broadband Medium Attachment Unit and
Broadband Medium Specifications," IEEEw
P802.3/84/0.46B, Section 11 .

Standard /SC 7498 for Information Pro-
cesslng Systems , " Open International Stan-
dards Organization (1982) .

DtgUal TeclmlcalJournal
No. 3 September 1986

RajJain I
William R. Hawe

PerformanceAnalys~
and Modeling of Digital,s
Networking Architecture

Digital bas some of the highest performing networking products in the
industry today. Transfer rates of 3.2 megabits per second and higher
have been measured on an Ethernet. These high speeds result from care
ful performance analyses and planning at all stages of the development
cycle. A set of case studies illustrates these analyses. These studies include
performance modeling/or adapter placement in the physical layer;
bu.ff ering in the data link layer; path splitting in the network layer; cross
cbannel piggybacking, timeout and congestion algorithms in the
transport layer; and file transfer and terminal communications in the
application layer. Completing the paper are studies on network tra.ffic
measurements and workload characterization.

Performance analysis is an integral part of the
architectural design and implementation of net
works at Digital Equipment Corporation. This
deliberate strategy has helped to make us the
industry leader in networking products. Some of
these products have the highest performance
available today. Task-to-task transfer rates of
more than 3.2 megabits (Mb) per second have
been measured on an Ethernet local area network
(LAN) connecting two MicroVAX II systems.1

This paper describes a number of case studies
that illustrate the analyses done to improve the
performance of Digital's network products .
These analyses are ongoing; they are planned for
every stage in the life cycles of products. The
design life cycle of a product consists of the fol
lowing stages: conceptualization, prototyping,
marketing research, development, sale, and field
support. Each stage takes place in a different
organization within Digital. A research organiza
tion usually conceives an idea for a new product.
An advanced development team then develops
the architectural specification and builds a pro
totype to demonstrate the feasibility of the idea.
In tum, the marketing organization decides if the
product can be sold and how competitive it will
be. If they decide that the idea should become a
product, the development organization will per
form that task.

Digital TecbntcalJournal
No. 3 September 1986

Each of those organizations has a team of
performance analysts who ensure that the best
alternatives are chosen at each stage. The sales
organization also measures product performance
and develops capacity planning and perfor
mance-tuning tools. The field support organiza
tions monitor performance at customer sites and
feed the information back to the development
organizations. They then improve the product
through revisions, field changes, and updated
models.

To conduct performance studies, we use ana
lytical modeling, simulation, and the taking of
appropriate measurements. Which of those tech
niques to use depends upon the product devel
opment stage and the time available to do the
study. Queuing theory, including operational
analysis, is extensively used in analytical model
ing. 2,3 Simulation models are usually developed
to solve specific problems 4,5,6 or often they are
solved via queuing network solvers. Measure
ments of operational characteristics are taken of
the system as well as the workload, using both
software and hardware monitors. Traffic mea
surements are taken on Digital's own networks,
as well as on those at customers' sites.1•7 Tools
for capacity planning, monitoring, and model
ing are also used by the teams doing these per
formance analyses . 8 •9 Sometimes we have to

25

Performance Analysis and Modeling of Digital's Networking Architecture

develop new performance metrics10 or statistical
computation algorithms. 11

This paper presents the diversity of the perfor
mance analysis techniques used to ensure that
our networking products operate at high effi
ciencies. Many performance studies of our prod
ucts have been published; we do not intend to
reproduce them here. We have selected a repre
sentative group of unpublished case studies to
illustrate the diversity of our approach to perfor
mance improvement. One typical problem from
each of the key layers of the networking architec
ture will be discussed. A discussion of workload
characterization and traffic analysis will close
the paper.

Physical Layer Pet:formance
We conducted many performance studies within
Digital to help set the parameters of the 10 Mb
per-second Ethernet I.AN. This is the same Ether
net that, with certain modifications, we pro
posed for standardization and was later adopted
as the IEEE 802.3 standard. The two most inter
esting problems in the physical layer design are
clock synchronization (phase lock loop versus
counter) and the placement of adapters on the
Ethernet cable. We describe the latter problem
and the proposed solution below.

At each adapter, some fraction of the incoming
signal is reflected back along the cable. If
adapters are placed in close proximity, their
reflections may reinforce each other and inter
fere with the signal.

The adapter designers had specified that a total
noise level of 25 percent of the true signal level
was an acceptable limit. Since half of this noise
normally comes from other noise sources
(sparks, radiation, etc.) , the reflected voltage
must be less than 12. 5 percent of the signal
level.

The cumulative reflection is actually strongest
at the transmitter itself because of the attenua
tion of the signal and its reflection as they propa
gate through the cable. Since the transmitter is
not adversely affected by the reflection, how
ever, adapters placed next to the transmitter are
the most sensitive to reflection problems. There
fore, those adapters were the best candidates for
analyzing problems caused by reflections.

It is essential to maintain some minimum
separation between adapters. To assist network
installers , the Ethernet cable is marked at
2.5-meter intervals; the specifications state that

26

the adapters should be placed only at those
marks. That spacing was determined from a
model that simulated many different random
placements of a given number of adapters on the
cable and determined the worst-case reflection.
The simulation model showed that the worst
case occurs when approximately 100 adapters
are placed on the marked cable. With 100 nodes,
the reflected voltage exceeded 10 percent of the
true signal in only 24 of the 10,000 configura
tions that were simulated. In fact, the maximum
reflection observed for any placement was 12.1
percent , well below the 25 percent noise
allowance.

It is easy to see why the 100-adapters case
performs worse than other cases with both
more and fewer adapters. With the cable marked
at 2 . 5-meter intervals, a single Ethernet seg
ment (500 meters) can accommodate up to
200 adapters. When the number of adapters is
small, their reflections will be too small to cause
any problem. On the other hand, if the number
of adapters is close to the maximum of 200, the
reflections from neighboring adapters will tend
to cancel each other out.

The cable marking alone is no guarantee
against experiencing reflection problems. Given
this or any other marking guideline, it is still pos
sible to position adapters so that the reflections
reinforce . This happens if the adapters are
placed X/2 apart, X being the wavelength at
which transmissions are taking place. For exam
ple, for a 10-MHz signal traveling at a speed of
234 meters per microsecond, Xis 23.4 meters,
the speed divided by the frequency. Hence, if the
adapters are placed approximately 11 . 7 meters
apart, their reflections will reinforce.

Data Link Layer Pet:{ormance
A number of our studies about the performance
of the data link layer in Ethernet have already
been published.12·13 M. Marathe compared five
back-off algorithms and concluded that none was
significantly better than the binary exponential
back-off algorithm. 12 This simulation-based anal
ysis also showed that the number of retries
should be increased from the original 8 to 16.

Response times at the user level have also been
studied. Such studies show that a 10 Mb-per-sec
ond Ethernet can suppon up to several thousand
timesharing users.14 A capacity planning tool was
developed to study the system-level performance
for any given configuration.6 The performance

Digital TeclmkalJournal
No. 3 September 1986

studies of extended LANs are discussed in this
issue of the Digital Tecbnical]ournal .15,t6

The case study described here uses a very sim
ple analytical model to assist in designing an
Ethernet adapter.

Three common approaches used for interfac
ing machines to a LAN are depicted in Figure I .
Case A represents the approach used in the
Digital UNIBUS Ethernet Adapter (DEUNA)
product. Case B represents the approach used in
the Ethernet adapters made by 3COM Corpora
tion for UNIBUS and Q-bus systems. Case C rep
resents the approach used in adapters like the
Digital Q-bus Ethernet Adapter (DEQNA) pro
duct. Each approach has certain advantages and
disadvantages.

In Case A the packets received are first buff
ered on the adapter, then moved via direct mem
ory access to buffers in the host's memory. Pack
ets to be transmitted follow the same path,
except in reverse. The throughput limit of the
device is limited by how quickly it can move
packets between the adapter and the host's
buffers.

In Case B the packets received are also buff
ered on the adapter. In this case, however, the
packet buffer memory is dual ported, with the
host side being mapped into the address space of
the host. This scheme allows the host to examine

LAN

A

B

c

Figure 1

ADAPTER

•• ••

BACKPLANE HOST
BUS MEMORY

L _r;-;1
~

PACKET
BUFFERS

r------ ED,
:• • I :. . :
L- - - - -- _ ___ .,

II]
DI

COMMON ADDRESS SPACE

FIFOs

Three Ways of Organizing Buffers

Digital TecbnlcalJournal
No. 3 September 1986

packets in the buffers on the adapter, without
using any backplane bus bandwidth to receive
them. However, to receive the packets, the host
must copy them to buffers elsewhere in memory
with a programmed move.

In Case C the packets flow in real-time into
buffers in the host memory. The backplane is iso
lated from the channel with a first-in, first-out
(FIFO) control point. This approach reduces the
overhead on the host, as well as that on the
adapter processors. In this case, however, exces
sive OMA-request latencies may cause overflow
in the FIFO control; hence a packet may be lost
when received. When packets are transmitted,
these latencies may cause an underflow in the
FIFO control; hence a packet may be aborted.

The performance of the DEUNA adapter is sen
sitive to two factors : the number of receive
buffers in the adapter, and the number of words
to be transferred per UNIBUS capture. The num
ber of receive buffers chosen affects the packet
loss rate in the adapter. The number of words
transferred affects the response to disks and other
devices on the UNIBUS system. Transferring too
many words per UNIBUS capture may cause a
disk to experience "data lates," indicating that
the disk could not get the bus for data transfer
within the required time.

We wanted to know if the number of buffers
chosen by the designers of the DEUNA adapter
would cause these problems to occur.

We used a simple analytical model to deter
mine the packet loss rate and a simulation model
to determine the words per UNIBUS capture. The
simulations showed that the DEUNA adapter
should transfer only one word per UNIBUS cap
ture. The analytical model is described here.

The packet-arrival process is assumed to fol
low a "bulk Poisson" distribution in which
bursts of packets arrive at a rate of A bursts per
second. The number of packets per burst is
assumed to be geometrically distributed with a
mean B . The burst size is thus described by the
formula

Pr(k packets in burst)=(l -1/B) X B<•- 1>, k ~ 1

For mathematical convenience we assume that
all service times are exponentially distributed:
this assumes that packet lengths are exponen
tially distributed, with a mean of L words per
packet. The UNIBUS bandwidth is approximately
800,000 words per second. A fraction of that
bandwidth, µ words per second, is available for

27

New Products

the transfers between the DEUNA buffer and
memory. The rest of the bandwidth is used up by
transfers between the disk and memory, and by
other devices on the UNIBUS system.

If the DEUNA buffer has a capacity for not
more than N packets, then any packet arriving at
a full buffer will be lost. Let us first calculate the
probability P (n) , 0 < n < N, that there are n
packets (including the one, if any, in service)
queued at the DEUNA adapter. The distribution
of the number of packets in the queue has a rela
tively simple form:

P(n) = (I - p)/(l - p X aN) for n = 0

and

P(n) = P(O) X (p/B) X a<11
-

1> for 1 < n < N

in which

p= XXB XL/µ

and

a= 1 - (1 - p)/B

If B = 1, the distribution of the arrival process
reduces to an ordinary Poisson distribution, and
P(n) reduces to the classical solution of a space
limited M/M/1 queue.

The packet loss probability is

P(loss) = P(N) X (B - 1 + p)/p

Here, P(N) is the probability that the DEUNA
adapter is totally full. Notice that the loss proba
bility exceeds P(N) because of burstiness.

Figure 2 shows the loss probability as a func
tion of the number of buffers. This case assumes
an arrival rate of 300 packets per second and a
UNIBUS bandwidth of 22,000 words per second
(40 percent of the UNIBUS width) available
for transfers between the DEUNA adapter and
memory. Curves for other arrival rates and avail
able bandwidths can be similarly plotted. The
curves show clearly that the designers' choice of
13 receive buffers will result in a loss rate of less
than one percent, even with a UNIBUS system
that is relatively heavily loaded.

Network Layer Performance
The concept of path splitting was introduced in
Phase IV of the Digital Network Architecture
(DNA) . In earlier DNA versions, the routers main
tained only one path to each destination even if
several paths of equal cost existed. The follow-

28

0.04

B = BURST SIZE

~ 0.03
:J
in
<
ID
~ 0.02
Q.
(/)
(/)

0
....1 0.01

0.00
0 4 8 12 16 20

NUMBER OF BUFFERS

Figure 2 Loss Probability with Burst Traffic

ing case study illustrates how simple analytical
models were used to demonstrate that path split
ting can significantly improve a network's per
formance.

Assume there are M packet sources in a net
work and that the Ith source has a rate of L X X,
packets per second . for 1 .$ i < M and some
real constant L. (We increase or decrease all traf
fic by varying L) . Assume further that there
are N paths in the network and that the jth
path has a speed of µ1 packets per second, for
1 <J .$ N . The stochastic behavior of packet
arrival and transmission is otherwise arbitrary.
Assume that the set of paths usable by source
i is s, k {1 , 2 , .. . , N}. Now we compare two
strategies:

1. No Splitting - For each source i , select a
path j E S, with probability P,1 > 0. In this
case all source i packets are sent on path j.

2. Equiprobable Splitting - For each packet
from source i , select a path} E s,with proba
bility 1/IS,1. In this case the packet is sent on
path j and successive paths are chosen inde
pendently.

For a large enough overall load factor L , the
mean waiting time per packet under equiproba
ble splitting will be much less than it would be
under no splitting. This can be proven by show
ing that, with no splitting, there exists a possible
set of path assignments in which at least one path
will saturate before any path saturates under

Digtral TecbnlcalJournal
No. 3 September 1986

equiprobable splitting. Since the mean waiting
time on a saturated path is infinite, the average
waiting time of all sources over all paths will
include an infinite term and therefore will also
be infinite.

The performance impact of path splitting can
be seen from the following example. ~ume the
simple configuration of two senders and three
lines shown in Figure 3 . Sender 1 has access
to paths 1 and 2 ; sender 2 to paths 2 and 3 .
Each sender selects either accessible path with
equal probability. Without path splitting, both
sources might select the same path (path 2) with
probability 1/4, or select separate paths with
probability 3/4. The mean waiting time (assum
ing M/M/1 servers) is

Wn = 3/4 X (1/(µ ->.)) + 1/4 X (1/(µ - 2 X >.))

IIO-;;-- PA TH 1

~

I[D-;;-- PATH 2
~ I'

~~I[D-;;-- PATH3

(a) Two Sources and Three Paths

~ JID-;-j~JID-;-
~ TITh-!~ I'

I
I

PROBABILITY 3/4 : PROBABILITY 1/4

(b) No Splitting

(c) Equiprobable Splitting

Figure 3 Two Senders Transmitting on
Three Lines

Digital TecbnicalJournal
No. 3 September 1986

8
SERVICE RATE - 1

O'--~---'~~--'-~~-'-~~_._~~~
0.0 0.1 0.2 0.3 0.4

ARRIVAL RATE

NOTE: ALL TIMES ARE NORMALIZED BY
THE PACKET SERVICE TIME

Figure 4 Mean Waiting Time

0.5

With equiprobable path splitting, the input rate
to paths 1 and 3 is >./2 and the rate to path 2 is >..
The probability of a packet following path 1, 2,
or 3 is 1/4, 1/2, and 1/4 respectively. The mean
waiting time is

W, = (1/4 + 1/4) X (l/(µ-X/2)) + 1/2 X (1/(µ-X))

The values of the mean waiting time both with
and without splitting, W, and Wn respectively,
are illustrated in Figure 4. Observe that satura
tion occurs much earlier when there is no
splitting.

Another advantage of path splitting is that it
makes traffic less bursty. Bursty traffic presents a
serious problem in performance control, both in
average performance and in predictability. With
bursts , the mean waiting time can greatly
increase; in fact, if there is an average B packets
per burst, then the mean waiting time will be
about B times that value predicted by an identi
cally loaded M/M/1 queue.17 The waiting time
variance will similarly increase, since the first
and last packets in a burst will experience mark
edly different waiting times. The overall perfor
mance is very difficult to control or guarantee in
such a situation.

Path splitting has a major advantage in this sit
uation because it breaks up the bursts, sending
each packet over a different path. The perfor
mance of a network with bursty traffic is thus
appreciably improved. In fact, if there are more

29

New Products

paths usable by a source than there are packets
per burst, then burstiness will have little effect
on either the mean or the variance of waiting
time. On the other hand, only two or three alter
native equiprobable paths are enough to
decrease the bursty-packet waiting time from
one-half to two-thirds for the first hop. The
packet bursts will tend to spread apan as they
propagate, so that the improvement in subse
quent hops will be somewhat less.

Transport Layer Performance
Several studies have been published on the per
formance of the transpon layer in the DNA struc
ture.18· 19·20·21 One of the published studies is on
timeout algorithms. We found that under sus
tained loss, all adaptive timeout algorithms
either diverge or converge to values lower than
the actual round-trip delay.18 If an algorithm
converges to a low value, it may cause frequent
unnecessary retransmissions, sometimes leading
to network congestion. Therefore, divergence is
preferable in the sense that the retransmissions
are delayed.

HOST
NOOE

TERMINAL
NOOE

APPLICATION TRANSPORT TRANSPORT APPLICATION
LAYER LAYER LAYER LAYER

CREDIT = 1

CREDIT - 1

Figure 5 Eight Transport Level Packets

30

One key lesson we learned from the timeout
algorithm research was that a timeout is also an
indicator of congestion in the network. There
fore, not only should the source retransmit the
packet on a timeout, but it should also take
action to reduce future input into the network.
There is a timeout-based congestion control pol
icy called CUTE (congestion control using time
outs at the end-to-end layer) that manages these
actions.19

Among the new features of DNA Phase IV are
cross-channel piggybacking, acknowledgment
withholding, and larger flow-control windows.
These features were introduced as the result of a
smdy that concluded that straightforward termi
nal communication over a DECnet network
would be slow. This conclusion lead eventually
to the development of a new local area transpon
protocol, called LAT, for terminal commun
ications. These enhancements were also added
to the DNA transport protocol. This study is
described below.

In the DNA structure, each transpon connec
tion has two subchannels: one for the user, and
one for control. The user subchannel carries user
data and their acknowledgments, called acks.
The control subchannel is used for flow-control
packets and their acks. Protocol verification can
be easily achieved if the two subchannels are
independent so that information on one channel
is not sent on the other. In studying terminal
communications over a LAN, we discovered that
each terminal read took eight transpon protocol
data units (TPDUs), as shown in Figure 5. Each
unit consists of two application level packets: a
read request, and a data response. Each packet
requires a link service packet from the respective
receiver; this service packet permits the sender
to send one packet. The remaining four units are
transpon level acks for these four packets.

Given the CPU time required per packet, we
computed that communication for remote termi
nals takes four times as much CPU time as that for
local terminals. Therefore, our goal was to
improve performance by a factor of four. We pro
ceeded in three ways to solve this problem. First,
we modified application programs to utilize
larger flow-control windows; second , we
searched for ways to reduce the number of pack
ets per 1/0 operation; third, we tried to reduce
the CPU time required per packet. The first goal
was achieved by multibuffering, discussed later
in the section "Application Layer Performance."

Dlgual TecbnJcalJournal
No. 3 September 1986

The second goal was achieved by

• Cross-channel piggybacking - This tech
nique allows transpon control acks to be pig
gybacked on normal data packets or acks.

• Delayed acks - The receiver can delay an ack
for a small interval. This delay increases the
probability of the ack being piggybacked on
the next data packet.

• Ack withholding - The receiver does not
acknowledge every packet, particularly if
expecting more packets from the source. The
source can explicitly tell the destination to
withhold sending an ack by setting a "No Ack
Required" bit in a packet.

• No flow control - This option allows flow
control to be disabled for those applications
operating in request-response mode and thus
having a flow-control mechanism at the appli
cation level.

• Multiple credits per link service packet -
Credits are not sent as soon as each buffer
becomes available. Unless the outstanding
credits are very low, a link service packet is
sent only when a reasonable number of buffers
becomes available.

To achieve the third goal, reducing the CPU
time per packet, we used a hardware monitor to
measure the time spent in various routines. We
found that in a single-hop loopback experiment,
only one third of the CPU time at the source was
attributable to DECnet protocol routines. The
remainder was associated with the driver for the
line adapter; operating system functions, such as
buffer handling and scheduling; and miscella
neous overheads associated with periodic events,
such as timers, status updates. Of the time spent
in the DECnet protocol, 30 percent was spent in
counter updates and statistics collection. Simi
larly, 21 percent of the time spent in the link
driver was used in a two-instruction loop that
implemented a small delay. The net result of
modifying these routines and implementing the
architectural changes mentioned above is that
we achieved our target of improving the perfor
mance by a factor of four.

Application Layer Peiformance
The three key network applications are file trans
fer, mail, and remote terminal communications.
Earlier, we discussed some of the terminal com-

Digital Tecbnlcaljournal
No. 3 September 1986

munication performance issues. The new LAT
protocol has been designed to provide efficient
terminal communication. This protocol and its
performance are described in this issue of the
Digital Technical Journal . 22 In this section, we
will describe some performance issues in file
transfer.

File transfer in DNA takes place via a network
object called a file access listener (FAL), which
in tum uses an application level protocol called
the disk access protocol (DAP). Measurements of
an initial version of FAL revealed that the remote
file transfer took an excessively long elapsed
time. A subsequent analysis showed that the sin
gle-block "send-and-wait" protocol used by FAL
was responsible for that excessive time . The
local FAL waited for the remote write operation
to finish before sending the next block. Thus the
advantage of larger flow-control windows
offered by the transpon protocols were ignored
by the application software. The suggested reme
dies were to allow multiblocking and multi
buffering.

Multibuffering consists of allowing several
buffer writes to proceed simultaneously, an
action similar to the window mechanism used at
the transpon layer. Multibuffering allows paral
lel operations at the source and destination
nodes and at the link, thus considerably reducing
the elapsed time and enhancing throughput.
Experiments have shown that there is consider
able gain in throughput as the buffering level
increases from one to two. Funher increases do
result in better performance, but the amount of
gain is smaller.

Multiblocking consists of sending more than
one block per FAL write, which decreases CPU
time and the disk rotational latency (the time
spent in waiting for the disk to come under the
heads at the start of each write). As with multi
buffering, the elapsed time is considerably
reduced and the throughput is enhanced.

Workload Characterizat/,on and
Traffic Analysis
The results of a performance analysis study
depend very heavily on the workload used. To
keep up with continuously changing load char
acteristics, we regularly conduct system and net
work workload measurements. Workload charac
terization studies enable us not only to use the
correct workload for our analysis but also to
implement our products more efficiently.

31

New Products

A study of the system usage behavior at six dif
ferent universities showed that a significant por
tion (about 30 percent) of the user's time is
spent in editing. 23 This conclusion led us to use
our text editor (EDT) as the key user level bench
mark for network performance studies. The study
results also led to the transport layer perfor
mance improvements discussed earlier.

A study of network traffic at M.I.T. showed that
the packets exhibit a "source locality."7 That is,
given a packet going from A to B, the probability
is very high that the next packet on the link will
be going either from A to B or from B to A. These
observations helped us improve our packet-for
warding algorithm in bridges. The forwarding
decision is cached for use with the packets arriv
ing next. A two-entry cache has been found to
produce a hit rate of 60 percent, resulting in sig
nificant savings in table lookup.

The principal cause of source locality is the
increasing size of data objects being transponed
over computer networks . The sizes of data
objects have grown faster than packet sizes have.
Packet sizes have generally been limited by the
buffer sizes and by the need to be compatible
with older versions of network protocols. Trans
fer of a graphic screen could involve data trans
fers of around two million bits. This increase in
information size means that most communica
tions involve a train of packets, not just one
packet. The commonly used Poisson arrival
model is a special case of the train model.7

The two major components of a networking
workload are the packet size distribution and
the interarrival time distribution. J. Shoch and
J. Hupp made the classic measurements of these
components for Ethernet traffic. 24 Their tests
have been repeated many times at many places,
including Digital. The bimodal nature of the
packet size distribution and the bursty nature of
the arrivals are now well accepted facts; we will
not elaborate funher on them.

The utilization of networks is generally very
low. Measurements of Ethernet traffic at one of
our software engineering facilities with 50 to 60
active VAX nodes during normal working hours
showed that the maximum utilization during any
I 5-minute period was only 4 percent. Although
higher momentary peaks are cenainly possible,
the key observation, confirmed by other studies
as well , is that the network utilization is nor
mally very low. While comparing two alterna
tives, say H and L in Figure 6 , some analysts

32

would choose alternative H, which performs bet
ter than L under heavy load but worse under light
load. Our view of this choice is quite different.
We feel that, while high performance at heavy
load is important, it should not be obtained at
the cost of significantly lower performance at
normal, light load levels. Therefore, the choice
between L and H would also depend upon the
performance of H at low loads.

UJ
u z
<
::E
a:
0
u.. a:
UJ
fl.

H (HEAVY)

LOAD

Figure 6 Preferred Alternatives

Traffic monitoring is also used to study
the performance of networking architectures.
Table I shows a breakdown of the DECnet traffic
during the normal working hours at the same
engineering facility. All values represent the
average of several I 5-minute sampling intervals.
The maximum and minimum values observed
during the monitoring period give an idea of the
large variability. The DECnet traffic typically
accounts for 86 percent of the total packets
at this facility. The routing overhead is very low
(5 percent) . The protocol overhead comes
mostly from the end communication layer (ECL) ,
which provides error control (acks), flow con
trol, sequencing, and connection management.
Fony-four percent of DECnet packets and 39 per
cent of DECnet bytes are user-transmitted data.
Thus the ECL overhead is approximately one
packet per user packet, which is low considering
that most ECL connections are of shon duration
(one file transfer of a few blocks) . Funhermore,
the results of this study confirm that we actually
did reduce the transpon packets per application
level packet by 50 percent.

Digluil Teclmlca/Journal
No. 3 September 1986

Table 1 DECnet Packet Statistics

DECnet packets (percent of total packets)

DECnet bytes (percent of total bytes)

Routing packets
Percent of DECnet packets
Percent of DECnet bytes

Transport (ECL) packets
Percent of DECnet packets
Percent of DECnet bytes

ECL data packets
Percent of DECnet packets
Percent of DECnet bytes

User transmitted data
Percent of DECnet bytes
Percent of ECL data bytes

lntraEthernet ECL data packets
Percent of DECnet gackets
Percent of DECnet ytes

The table also shows that, typically, 80 per
cent of all packets and bytes are used in intranet
work communication. That is, only 20 percent of
the observed traffic originated from or was des
tined for a node not in the facility.

Summary
Performance analysis is an integral part of the
design and implementation of network architec
tures at Digital. Analytical, simulation, and mea
surement techniques are used at every stage of a
network product's life cycle . This conscious
effort has made Digital the industry leader in net
working.

Over the past decade, the link speeds have
increased by two orders of magnitude; however,
the performance at the user application level has
not increased in proportion, mainly because of
high protocol processing overhead. The key to
producing high performance networks in the
future , therefore, lies in reducing the processor
overhead.

We have described a number of case studies
that have resulted in higher performance for the
Digital Networking Architecture . This perfor
mance increase has come about by reducing the
number of packets, simplifying the packet pro
cessing, and implementing protocols efficiently.

Dig«al TecbnkalJournal
No. 3 September 1986

Average Maximum Minimum

86

68

4
5

96
95

44
60

39
65

79
79

99 60

99 32

52 1
66 2

99 48
98 34

51 3
81 4

68 2
84 50

91 34
93 24

Acknowledgments
The studies reported in this paper were done
over a period of time by many different people,
some of whom are no longer with Digital. We
would also like to acknowledge Dab-Ming Chiu
(DEUNA buffers) and Stan Amway (traffic mea
surements) . We would like to express our grati
tude to them and other analysts for allowing us to
include their results in this paper.

References
1. W. Hawe, "Technology Implications in

LAN Workload Characterization, " Pro
ceedings of the 1985 International
Workshop on Workload Characteriza
tion of Computer Systems and Com
puter Networks (October 1985) : 111-
130.

2. K. Ramakrishnan and W. Hawe, "Perfor
mance of an Extended LAN for Image
Applications," Proceedings of the Fifth
International Phoenix Conference on
Computer Communications (March
1986): 314-320.

3 . M. Marathe and S. Kumar, " Analytical
Models for an Ethernet-like Local Area
Network Link," Proceedings of SIGMET
RICS'81 (1981): 205-215.

33

New Products

Petformance Analysis and Modeling of Digital's Networking Architecture

4. I. Chlamtac and R. Jain, "Building a Simula- tion Users Group Eighteenth Meeting
tion Model for Efficient Design and Perfor- (CPEUG'82) (October 1982): 375-389.
mance Analysis of Local Area Networks,"

15 . W. Hawe, M. Kempf, and A. Kirby " The
Simulation (February 1984): 55-66. Extended Local Area Network Architecture

5. R. Jain, " Using Simulation to Design a Com- and LANBridge 100," Digital Technical
puter Network Congestion Control Proto- Journal (September 1986, this issue):
col, " Proceedings of the Sixteenth Annual 54-72 .
Modeling and Simulation Conference 16. W. Hawe, A. Kirby, and B. Stewart, " Trans-
(April 1985) : 987-993 . parent Interconnection of Local Networks

6 . J. Spiro , J . Chien, and W. Hawe, " Bursty with Bridges," Journal of Telecommunica-
Traffic Local Area Network Modeling," tions Networks , vol. 2, no. 2 (September
IEEE Journal on Selected Areas in Commu- 1984) : 117-130.

nications , vol. SAC-2 , no . 1 (January 17. J . Spiro, " Network Modeling with Bursty
1984) : 250-258. Traffic and Finite Buffer Space," Proceed-

7 . R. Jain and S. Routhier , " Packet Trains: ings of tbe ACM Computer Network Petfor-

Measurements and a New Model for Com- mance Symposium (April 1982) : 21-28.

puter Network Traffic," IEEE Journal on 18. R.Jain, " Divergence of Timeout Algorithms
Special Areas in Communications (Forth· for Packet Retransmissions, " Proceedings
coming, September 1986) . of the Fifth International Phoenix Confer-

8. N. La Pelle, M. Segar, and M. Sylor, "The ence on Computer Communications

Evolution of Network Management Prod- (March 1986): 174-179.

ucts, '' Digital Technical Journal (Septem- 19. R. Jain, "A Timeout Based Congestion Con-
ber 1986, this issue): 117-128. trol Scheme for Window Flow Controlled

9 . M. Sylor, " The NMCC/DECnet Monitor
Networks," IEEE Journal on Special Areas
in Communications (Forthcoming, Octo-

Design," Digital Technical Journal (Sep-
ber 1986) .

tember 1986, this issue) : 129-1 4 1.

10. R. Jain, D. Chiu, and W. Hawe, "A Quantita·
20 . K. Ramakrishnan, "Analysis of a Dynamic

Window Congestion Control Protocol in
tive Measure of Fairness and Discrimination Heterogeneous Environments Including
for Resource Allocation in Shared Com- Satellite Links, " Proceedings of the Com-
puter Systems," Digital Equipment Corpo- puter Networking Symposium (Forthcom-
ration Internal Research Report , TR-301 ing, November 1986) .
(1984) .

R. Jain and I. Chlamtac, "The P2 Algorithm
21. D. Chiu, "Simple Models of Packet Arrival

11. Control, " Digital Equipment Corporation
for Dynamic Calculation of Quantiles and Internal Technical Report, TR-326 (1984) .
Histograms without Storing Observations,"

22. B. Mann, C. Strutt, and M. Kempf, "Termi-Communications of the ACM, vol. 28 ,
no. 10 (October 1985) : 1076-1085. nal Servers on Ethernet Local Area Net-

works ,'' Digital Technical Journal (Sep-
12. M. Marathe , " Design Analysis of a Local tember 1986, this issue) : 73-87.

Area Network," Proceedings of the Com-
23. R. Jain and R. Turner, "Workload Charac· puter Networking Symposium (December

1980): 67-81. terization Using Image Accounting,'' Pro-
ceedings of the Computer Performance

13. W. Hawe and M. Marathe, "Performance of Evaluation Users Group Eighteenth
a Simulated Programming Environment," Meeting (CPEUG'82) (October 1982) :
Proceedings of Electro '82 (1982) : 111-120.
21/4/1-8.

24 . J. Shoch and J. Hupp, "Performance of the
14 . M. Marathe and W. Hawe, "Predicting Eth- Ethernet Local Network," Communica-

ernet Capacity-A Case Study," Proceed- tions of the ACM, vol. 23, no. 12 (Decem-
ings of the Computer Petformance Evalua- ber 1980): 711-721.

34 Diglral TecbnlcalJournal
No. 3 September 1986

The DECnet/SNA
Gateway Product

John P. Morency
David Porter

Richard P. Pitkin
David R. Oran

A Case Study i n Cross Vendor Networking

Connecting Digital's network products with those from IBM Corporation
bas been a problem, since the network architectures differ. SNA bas a
hierarchical node structure and a subset architecture supporting logical
unit types. In contrast, the DNA architecture bas a symmetric peer-to
peer structure, with all nodes free to communicate. The DECnet/ SNA
Gateway product allows components from both networks to communi
cate. Its architecture enables cross-network connections and specifies
bow messages will be structured. A significant feature is network man
agement to measure the performances of components. The software bas
three servers that facilitate the flow of data across the gateway.

Recent technological trends in the computer
industry have rapidly brought networks to be the
equivalent of systems. It is true that computer
networks have long been used to realize dis
tributed applications. Until recently, however,
such networks generally represented isolated
pockets of comp uting power within organiza
tions. Now, increased pressures to both reduce
costs and achieve greater organizational produc
tivity have st imulated the drive for more effec
tive network integration. In the future, compa
nies will be establishing single information
"utilities" that will allow end users to access
needed resources without regard to their physi
cal locations.

Many issues must be resolved to create this sin
gle, integrated structure. One of the most signifi
cant, addressed in this paper, is how to deal with
multi-vendor computing equipment within a sin
gle organization . Here, the problem is not only
one of establishing common communications
protocols, but also integrating that support into
end-user computing to minimize the disruption
of existing services. Clearly, the scope of this
problem increases as a function of the number of
incumbent vendors.

Network Interconnection Issues
The interconnection of systems into a network
has been the subject of many studies. The goals

Digital TecbnlcalJoln'ffQJ
No. 3 September 1986

of these studies have tended to vary based upon
organizational need; however, the following
common questions can be identified1:

• What functions will be provided to the end
users?

• Should those functions be equally accessible
by users in all the interconnected subnet
works?

• What security constraints must be in effect to
prevent network resources from being com
promised?

• What level of transparency can be provided to
end users so that access to new network
resources is accomplished via existing mecha
nisms?

• What level of network protocol compati
bility will be required to allow effective inter
working between any two arbitrary subnet
works?

• What levels of performance capability will be
required?

• What " political" considerations have to be
taken into account when interconnecting sub
networks?

• How can the combined network be most
effectively managed?

35

The DECnet/SNA Gateway Product

• How effecsively can component fault isolation
be acco19Plished?

• How will resou rce utilization be cross
charged?

• How effectively can the combined network
migrate to new technologies?

The most important prerequisite for answering
these questions is a clear understanding of end
user needs at all times. Failure to understand
those needs can result in a significant expendi
ture of effon to solve the wrong problem, usually
at the wrong time.

Possible Solutions to These
Questions
Two primary approaches to answering these
questions are possible . First, an organization
could take upon itself the effon of building cus
tom hardware, software, and procedures to effect
the desired solution. Unfortunately , this
approach is usually an enormous task with draw
backs in terms of cost, time, maintainability, and
system migration, to name but a few. Some orga
nizations have done it, however, with varying
degrees of success.

The second approach is to use standard prod
ucts as the means to the desired end. This
approach that can take several forms:

1. An organization could acquire computing
equipment from only one vendor. While cer
tainly limiting the intercommunication risk,
this approach has potential drawbacks in
terms of flexibility and cost-effectiveness.
Funhermore, it creates the risky situation of
a business's having only a single supplier for
a key organizational resource.

2 . An organization could limit purchases of
equipment to several vendors. While offer
ing better flexibility and cost control, this
approach can complicate an interworking
strategy unless the ability of the equipment
from different vendors to operate together is
carefully scrutinized.

Neither approach, however, is satisfactory for the
organization that owns equipment from more
than three or four vendors and does not wish to
incur the risk and expense of building custom
solutions. This organization must depend on
some external communications standard that is
supponed by all the equipment that it intends to
acquire.

36

The Advent of Open Systems
Fonunately for this organization (and many of
the world's major corporations fit into this cate
gory) , the international standards process is
beginning to provide a framework to solve this
problem. Substantive definition is now under
way of the services and protocols at each layer of
the Open Systems Interconnect (OSI) model,
shown in Figure 1. Common services spanning a
multitude of vendor equipment will begin to be
realized by the end of the present decade. In
some cases, subsets of OSI services are being uti
lized much now by major users to bring about
standards in panicular application areas. Two
prominent examples are General Motors with its
Manufacturing Automation Protocol (MAP) for
factory applications, and Boeing Computer Ser
vices with its Technical Office Protocol (TOP)
for the office environment.

These effons are significant and over time are
certain to create a much more open environ
ment. However, what types of solutions are
available now for organizations whose applica
tions do not fit these examples and who cannot
wait for full OSI implementations? Such organi
zations are generally faced with either building
a custom solution or making use of vendor-sup
plied solutions. Two prominent examples of
the second approach are the Systems Network
Architecture (SNA) from IBM Corporation and
the Digital Network Architecture (DNA) from
Digital Equipment Corporation. The next few
sections introduce the key propenies of these

APPLICATION (LAYER 7)

PRESENTATION (LAYER 6)

SESSION (LAYER 5)

TRANSPORT (LAYER 4)

NETWORK (LAYER 3)

DATA LINK (LAYER 2)

PHYSICAL (LAYER 1)

Figure 1 Open Systems Interconnect Model

Digital TecbnlcalJournal
No. 3 September 1986

architectures and discuss some key consider
ations to be addressed when interconnecting the
two.

Systems Network Architecture -
An Overview
SNA has been in existence since 197 4. It is
defined by IBM Corporation as " ... a total
description of the logical structure, formats, pro
tocols and operational sequences for transmit
ting information units through and controlling
the configuration and operation of networks. " 2

As such, SNA is an all-embracing network
architecture, implemented in products from
mainframes to personal computers. Current esti
mates are that from 30,000 to 40,000 network
nodes in the world today operate some form of
SNA interface.

The layered structure of SNA is shown in Fig
ure 2. One property of SNA that makes it differ
ent from most existing network architectures is
its hierarchical node structure and subset archi
tecture. It is also unique in that it accommodates
particular function types (known as logical unit
types). ·

SNA Node Types
Shown in Figure 3 are both a sample SNA topol
ogy and an illustration of all possible node types
that can logically coexist within the network.
The physical unit type 5 (PU_T5) , or host node,
is the functionally richest node. It is typically
based on System-370 architecture and contains a
component known as the system services control
point (SSCP). SSCP is responsible for much of
the control and management of up to all of an
SNA network and usually contains the primary
application subsystems.

Application subsystems are usually complex
application programs which support both inter
active terminal access along with value-added
functions, such as transaction processing or gen
eral timesharing. These subsystems include the
Customer Information Control System (CICS) ,
the Information Management System (IMS), and
the Time Sharing Option (TSO) program prod
ucts, all of which network users usually need to
access. The implementation of SNA on a host
node is typically split between the primary appli
cation subsystems and the Advanced Communi
cation Function/Virtual Telecommunications
Access Method (ACFfVTAM) program, which
implements the SSCP function .

Digital TecbnlcalJournal
No. 3 September 1986

TRANSACTION LAYER

PRESENTATION SERVICES LAYER

DATA FLOW CONTROL LAYER

TRANSMISSION CONTROL LAYER

PATH CONTROL LAYER

DATA LINK LAYER

PHYSICAL LA YER

Figure 2 Layers of SNA

SNA also makes heavy use of communica
tions front-end processors that typically are
either IBM 3705- or 3725-class machines .
These processors are classed as physical unit
type 4 (PU_T4). They typically perform all the
classic front-end tasks, such as line polling, data
link handling, message unit routing, flow con
trol, and error recovery and notification . The
PU_T4 function is generally implemented in the
Advanced Communication Function/Network
Control Program (ACF/NCP) software . Given
current SNA definitions, it is not possible to sup
port an SSCP function on a PU-T4.

CLUSTER
CONTROLLER
NODE
(PU_T2)

I

HOST
NODE
(PU_T5)

FRONT END
NODE
(PU_T4)

I
TERMINAL
NODE
(PU_T1)

CLUSTER
CONTROLLER
NODE
(PU_T2)

Figure 3 SNA Node Types

37

I
I New Products

The DECnet/SNA Gateway Product

From an architecture standpoint, both the
PU_TS and PU_T4 nodes have a fairly high
degree of intelligence and possibly some mass
storage. Thus their associated SNA definitions are
fairly rich in function and rather complex in defi
nition. On the other hand, such devices as the
IBM 3274 information-display control unit and
the 3 776 remote job entry workstation are
assumed to be limited in both intelligence and
storage. These operations are detailed in the
physical unit type 2 definition. The SNA node
definition for this class of device is more limited
in that both node and end-user communications
operate in the slave mode of a master/slave rela
tionship.

The final node type in SNA terminology is
typically associated with single-unit, limited
function terminals, such as the 3 767 communi
cations terminal and the 3271 model-I I display
unit. This type is known as physical unit type 1.
It was much more prominent in the early days of
SNA when the architecture was more oriented
toward terminal-mainframe communication than
is the case today. Given current technology
trends, it is likely that this particular node type
will become increasingly de-emphasized, except
perhaps as a migration mechanism for the inter
connection of pre-SNA devices or non-IBM
equipment.

Program-to-Program Communication
within an SNA Network
Interprogram communications within an SNA
network are realized via an architectural compo
nent known as a logical unit (LU) . The LU can be
envisioned as a port from which an application
program can obtain the services of an SNA net
work. SNA communications through a logical
unit are managed via an entity known as a logical
unit services manager. This entity is responsible
for interfacing end-user communications
requests into the SNA network.

Logical units are further classified by the type
of layered function the application programs
choose to realize. There are specific logical unit
types that are predefined by IBM Corporation to
correspond to particular layered functions that
"standardize" the use of SNA capabilities in real
izing mainstream usages. Most logical unit types
predefine terminal- and printer-to-host program
functions; these LUs are called types l , 2, 3, 4
and 7 . The exception to this classification is in
the definitions of logical unit types O and 6 .2.

38

Logical unit type O is unique by virtue of its
" nondefinition" (that is, it can be defined by a
user to implement any form of desired program
to-program function) . Logical-unit type 6.2 is
significantly different from the other LU types.
Its definition changes the semantics of an LU
from that of a network port to that of a dis
tributed operating system. LU6.2 is used mainly
for transaction processing; it is a primary indica
tion of the future direction of SNA. 3

An Example of LU-to-LU
Communication
This section discusses briefly the LU-to-LU com
munication within an SNA network.' Stan with
the simple SNA topology as shown in Figure 4 .
Assume that an end user attached to a 3270 dis
play station cluster controller node B wishes to
enter into an SNA session, or communication dia
logue, with a CICS subsystem executing on host
node A. For this session to begin, one side must
initiate the request. Typically, that is done at the
display station via either an unformatted log-on
or a formatted SNA initiate-self message . This
message is issued by the logical unit services
manager at the cluster controller in response to

HOST SYSTEM

3270
CLUSTER
CONTROLLER

DISPLAYS

CICS
SUBSYSTEM

FRONT END
PROCESSOR

3270
CLUSTER
CONTROLLER

DISPLAYS

t
SNA
SESSION

i

Figure 4 Sample SNA Topology

Digital TecbnlcalJournal
No. 3 September 1986

some display-specific user action. Such an action
could be pressing the system request (SYSREQ)
key and typing some log-on text. The request
action is then directed to the SSCP in the host
node, which in this example is the controlling
SSCP for both the cluster controller and the CICS
subsystem.

After receiving the log-on request , SSCP
informs the CICS subsystem that a user at a par
ticular LU in the network wishes to communi
cate. If the subsystem chooses to accept the con
nection, it does so via a request that causes an
SNA message unit, known as a "bind," to flow
over the network to the destination LU. A bind
indicates the willingness of the subsystem to
communicate with the terminal and includes a
list of session parameters to which both sides are
expected to conform. If these parameters are
acceptable to the display management logic in
the cluster controller, this logic then requests
the logical unit services manager to transmit an
SNA "positive" response to the bind message. At
this point both sides are ready to begin exchang
ing useful data.

Useful data is exchanged by both partners
using protocol sequences defined by the logical
unit type 2 definitions (the SNA logical unit type
defined for 3270-to-host program communica
tion) . The exchange continues until one partner
(typically the user at the display) decides toter
minate communication. Termination is generally
accomplished via the transmission of either an
unformatted log-off or a formatted terminate-self
message from the control unit to the SSCP. Upon
receiving this request, the SSCP logic informs
CICS that the user wishes to terminate communi
cations. At that point CICS requests that an SNA
unbind message be sent to the control unit to ter
minate the session properly and to deallocate all
associated resources. This generic protocol
exchange is illustrated in Figure 5 .

Digital Network Architecture -
An Overview
DNA (announced in 1975) has been in existence
almost as long as SNA and is implemented on
approximately the same number of network
nodes. DNA was originally conceived as a means
to facilitate DEC-to-DEC communication in
applications areas such as program-to-program
communication, remote file transfer and access,
remote terminal access, and down-line loading
of diskless systems. DNA's scope has been

Digital TecbnkalJournal
No. 3 September 1986

expanded to include areas such as DEC-to-non
DEC communications, particularly terminal-host
access, access to non-Digital systems over X.25-
based public data networks (PDN) , and access to
the resources of SNA-based hosts. The structure
of the DNA architecture is illustrated in Figure 6.

Unlike the somewhat hierarchical SNA struc
ture, the DNA structure is symmetric ~d peer
to-peer, with any two processes being free to

CICS

BIND

UNBIND

CLUSTER CONTROLLER

UNFORMATTED LOGON/
INITIATE-SELF

-DATA EXCHANGE-

UNFORMATTED LOGOFF/
TERMINATE-SELF

Figure 5 CICS-Cluster Controller Session
Exchange

USER LAYER

NETWORK MANAGEMENT LAYER

NETWORK APPLICATION LAYER

SESSION CONTROL LA YER

END COMMUNICATION LAYER

ROUTING LAYER

DATA LINK LAYER

PHYSICAL LA YER

Figure 6 Layers of DNA

39

New Products

The DECnet/SNA Gateway Product

communicate, provided that naming and security
constraints have been satisfied. DNA has only
two node types: end and routing. The nature of
application process communication is deter
mined by using either Digital-defined protocols
at the network application layer or protocols
defined by end users. A communication instance
between two partners is called a logical link,
with partners being identified via a network
node name (associated with a network-unique
node address) and a particular object type
identifier. 5

Interconnection Issues between
DNA and SNA Networks
An interconnection between DNA and SNA net
works involves a number of the questions raised
earlier in this paper about network interconnec
tion. Some effective answers to these questions
are provided by a product called the DECnet/
SNA Gateway. This product was developed by
Digital Equipment Corporation to address these
many issues. Other issues, such as the nature of
hardware interconnection used, the extent to
which common services are shared, the architec
tural interface of each network (and its associ
ated users) to the other, the cross-network certi
fication of products, and installation factors ,
were all addressed as part of the development of
this product.6•7

The remaining sections of this paper address
the DECnet/SNA Gateway from two perspectives.
The first examines the architectural philosophy
and protocols upon which the gateway is based.
The second examines the actual components of
the gateway in terms of both the hardware pack
aging and software modules used to give the
desired degree of interconnection. In both sec
tions attention is given to the question of how
effectively the design approach addressed many
of the aforesaid issues.

The Need for a DNA/SNA Gateway
A fundamental decision in attempting to bridge
the gap between two different network architec
tures is whether to simply incorporate one archi
tecture into the other or to employ some form of
gateway. In the case of a DNA/SNA bridge, repro
ducing all of SNA into each DNA implementation
was not feasible , given SNA's size and complex
ity. On the other hand, implementing the DNA
architecture into the confines of an SNA node
was an attractive technical alternative. This con-

40

cept was rejected, however, due to daunting
maintenance and support considerations. Based
on these factors , we adopted the gateway
approach.

Building this gateway was a tricky business
because the two architectures differ not only in
their detailed protocol specifications but also in
the services provided at layer boundaries .
Despite superficial similarities (both architec
tures have seven layers, both support mesh
topologies, and so forth) , SNA and DNA are about
as dissimilar as can be.

For example, at the network layer, DNA rout
ing provides a connectionless service using an
adaptive routing algorithm; conversely, SNA
path control provides a connection-oriented ser
vice using quasi-fixed routing. At the transport
layer, the DNA structure uses a standard, symmet
ric, three-way handshake to establish connec
tion; whereas SNA uses an asymmetric, three
party negotiation. At the session layer, the DNA
architecture provides simple process-binding
and access-control functions; whereas SNA
provides complex data-phase services, such
as chains, brackets, and multiple acknowledg
ment schemes. At the application layer, the dif
ferences are even more pronounced. A central
DNA application service is file transfer and
access, which SNA does not support at all.
Conversely, a widely used SNA application ser
vice is remote job entry, for which DNA has no
counterpart.

Possible Gateway Architectures
There were three possible architectural
approaches to bridging this gap. First, a protocol
translation gateway could be used to find a suffi
ciently similar pair (or pairs) of protocols and
provide a deterministic mapping between their
messages. Second, a one-way encapsulation gate
way could be used to select one protocol of one
architecture and encapsulate all higher-layer
protocols of the other architecture. Third, a two
way, or mutual , encapsulation gateway could be
used to operate as two one-way gateways to carry
the higher-layer protocols of each architecture
over the lower-layer protocols of the other.

Now, protocol translation gateways have the
(at least theoretical) advantage of providing
transparent communication between two incom
patible network architectures. They do that by
hiding the differences inside the gateway box.
Our initial attempts at designing an SNA gateway

Digital TecbnlcalJounuu
No. 3 September 1986

centered around this model. We abandoned it,
however, because the two architectures pro
vided such different services that, even if the
protocols could be mapped, both user interfaces
would have to be altered, perhaps radically. The
third alternative, a mutual-encapsulation gate
way, suffered from these same maintenance and
support difficulties, since DNA higher-layer pro
tocols would have to be built to run on SNA
nodes.

Therefore, we chose a one-way encapsulation
gateway because it appeared relatively easy to
implement the SNA higher-level protocols
within a DNA network. Moreover, this solution
did not require any DECnet-specific software or
hardware components to be introduced into the
SNA environment.

One-way encapsulation operates at the trans
port layer. The SNA notion of a " session" is
mapped onto the DNA notion of a logical link.
This mapping is accomplished by carrying all
SNA session data, including the connection estab
lishment messages, over to the data phase of the
DNA logical link. Choosing this mapping meant
that SNA-oriented applications on DNA nodes
could be written as though they used directly the
services of the transmission control layer of SNA.
This has worked quite well in practice since we
have implemented many mainstream SNA appli
cation protocols successfully through the gate
way, including 3270 data-stream and DISOSS
access. The main disadvantage is that each new
SNA application protocol requires a complete
implementation on the end-user's DNA node
before an application can be run in the DNA
universe.

In some cases the need to have application
specific code on the same node can be avoided
by building a " server," an approach described
later in this paper. In an architectural sense, the
server is just one user of the encapsulation gate
way mechanism described above.

Digital's SNA Product Architecture
The SNA product architecture has been devel
oped by Digital to provide a framework within
which our network products can be designed.
The most important objectives for this architec
ture are

• To promote and support the idea of the
DECnet/SNA product set as a family of prod
ucts, with each product being a part that fits
well into the whole

Digital Tecbnical]ournal
No. 3 September 1986

• To allow for the easy incorporation of
DECnet/SNA functions into other Digital prod
ucts, thus providing our customers with inte
grated solutions

• To enable the modular development of func
tional pieces so they can be re-used in several
different products

• To provide an architectural base that is com
mon between the network interconnect (gate
way box) and single-system interconnect
products

• To provide a structure that can accommodate
future developments in both hardware and
software , without negating existing invest
ments

None of the preceding objectives are surprising;
the architecture defines a workable segmenta
tion of the SNA function that we can and do use
in product development. The SNA product archi- ·
tecture is the master architecture; we have also
developed other architectural specifications that
prescribe specific aspects of individual prod
ucts. The SNA gateway-access and gateway-man
agement architectures are described later in this
paper.

Layered Structure of the Architecture
The SNA product architecture distinguishes five
separate layers in a product. In descending
order, these layers are as follows:

• The functional layer

• The SNA interface layer

• The common network layer

• The data link layer

• The physical layer

The layers are shown in Figure 7.

In a particular product, the layers of the archi
tecture can be physically distributed in a number
of different ways. Currently, we use two distinct
distributions, called the gateway access model
and the server model. The important difference
between the two models is how much of a
product's function is physically located in the
gateway node.

In the gateway access model , the functional
and SNA interface layers are contained in a
process that executes in the end-user's node,
whereas the common network layer and lower

4 1

New Products

The DECnet/SNA Gateway Product

USER 3270 DIA/
PROG T.E. DCA

LUO I LU2 I LUS.2 I
EXTENDED MODE

BASIC MODE

! l
STANDARD COMMON NET INTERFACE

GATEWAY I SINGLE SYSTEM
ACCESS METHOD ACCESS METHOD

COMMON SESSION CONTROL AND
PATH CONTROL FUNCTIONS

l
STANDARD DATA LINK INTERFACE

SDLC ETC.

1-1
STANDARD DRIVER INTERFACE

X.21 ETC.

TO SNA NETWORK (3725 FRONT END)

FUNCTIONAL
LAYER

SNA
INTERFACE
LAYER

COMMON
NETWORK
LAYER

DATA LINK
LAYER

PHYSICAL
LAYER

Figure 7 Layers of Digital's SNA Product
Architecture

layers execute in the gateway node. The trans
port mechanism by which the SNA interface
layer communicates with the common network
layer is defined in the section SNA Gateway
Access Architecture.

In the server model , all five layers execute in
the gateway node (more properly called a server
node in this role) . The way in which the end
user gains access to the server depends on the
server itself; the SNA product architecture does
not specify that way. Existing DNA protocols are
used where appropriate.

Functional Layer
The functional layer is the highest in the SNA
product architecture and implements the actual

42

end-user function. The translation from SNA pre
sentation protocols to DECnet presentation
media and formats takes place in this layer. The
functional layer can contain programs supplied
either by customers or by Digital's application
software groups, as well as entities that are part
of DECnet/SNA products. Two such products
are described later: the DECnet/SNA VMS
DISOSS document exchange facility (DDXF) ,
and the DECnet/SNA VMS remote job entry
(RJE) .

SNA Interface Layer
The SNA interface layer provides access into the
SNA network. Three different access levels of
interface are offered: a basic interface, which is
very close to that offered by the common net
work layer ; a so-called extended interface ,
which offers generic suppon for the data flow
control and transmission control protocols; and
several LU-mode interfaces , each of which
implements a particular logical unit type (ses
sion type) .

The reason for the existence of three different
levels of access is to some extent historical. That
is, we first gained design experience using the
basic level of interface and then were able to
abstract and isolate the functions comprising the
higher levels.

The boundary between the functional and the
SNA interface layers is somewhat indistinct due
to the different levels of interface offered by the
latter. Nevertheless, in any particular case
the structural distinction is a useful one, provid
ing as it does a standard model for program
structure.

The choice of which interface level to use
involves a compromise between ease of use and
flexibility in manipulating the SNA protocol.
It is analogous in some ways to the choice of
whether to program in assembly language or in
a higher-level language. The LU-mode interfaces
offer specialized, easier-to-use interfaces ;
the lower-level interfaces allow greater control
over protocol operation at the cost of additional
programming.

The SNA interface layer is the lowest that is
publicly accessible. Several programming inter
face products (basic mode , LUO , LU6 .2 and
3270 data stream) are available and form part of
this layer. In fact, the definition of these prod
ucts was derived from the definition of the SNA
product architecture.

Digital TecbnlcalJournal
No. 3 September 1986

Common Network Layer

The common network layer provides routing and
multiplexing functions between the data link
layer below and the SNA interface layer above.
Data units received are routed to the entity (in
the SNA interface layer) that owns the SNA ses
sion to which the data units belong. Data units
sent are routed to the appropriate data link layer.
This layer implements the SNA path-control
protocols and some - but not all - of the
transmission-control protocols, including the
common session control. The PU and LU ser
vices management functions are also part of this
layer.

Data Link Layer

The data link layer provides error-free transmis
sion of data units over a physical link. Current
implementations of the data link layer support
only the SDLC secondary station mode. However,
the structure could allow the addition of other
data link protocols (such as X.25) in the future.
This layer corresponds exactly to the data link
layer in both the DNA and SNA architectures.

Physica! Layer

The physical layer provides the means to control
and use the physical connections that transmit
data between systems. This layer can support a
wide variety of device typeS and interface stan
dards, and can be implemented in various hard
ware/software mixtures. This layer corresponds
exactly to the physical layer in both the DNA and
SNA architectures.

Digital's SNA Gateway Access
Architecture
The SNA gateway access architecture prescribes
the transport mechanism that allows SNA inter
face layer modules in a DECnet host node to gain
access to common network layer modules in an
SNA gateway node . This mechanism is at the
heart of the gateway access model for product
design. Hence it is used implicitly by most of the
current DECnet/SNA product set.

Overview of the Architectural
Structure
Two modules are needed to implement the SNA
gateway service: the SNA access module and the
SNA gateway module. The two modules commu
nicate by means of a protocol that operates over
a DECnet logical link. The protocol is termed the

Digltal TechnlcalJournal
No. 3 September 1986

SNA gateway access protocol, or GAP, and is
depicted in Figure 8. GAP is a fairly straightfor
ward DNA application layer protocol. It makes
use of the features provided by the DNA session
control and lower layers, in particular, flow con
trol, error control, and message segmentation
and reassembly. Hence GAP need not contain any
such mechanisms itself.

The SNA access module is part of the SNA inter
face layer, implementing what was referred to
above as the basic level of interface. The SNA
gateway module runs as a separate process in the
gateway system, in which the module uses ser
vices that provide it with the functions of path
control and common session control.

A brief example is presented in the following
section in lieu of listing the specific operations
of GAP in detail. This example illustrates some of
the message flows that take place between the
SNA access and gateway modules.

Example of Message Flows
This example describes the exchanges needed to
establish a session and to transfer data, with the
session being terminated by the IBM application.
Figure 9 illustrates the actions that take place. In
the following description, the "user" is a higher
level entity that utilizes the SNA gateway service.
In the context of the SNA product architecture,
such a user will in fact be part of the SNA inter
face layer.

To initiate the connection, the user program
issues a connect call. Included in the parameters
of this call are the name of the gateway node, the
secondary LU (SLU) address to be used, the name
of the primary LU (PLU) to be the session part
ner, and sundry other SNA parameters required
for the connection.

The SNA access module then allocates internal
resources and establishes a DECnet logical link
to the SNA gateway module in the specified gate
way node . In turn, the SNA gateway allocates
resources for the session and waits.

The SNA access module then transmits a GAP
connect message to the SNA gateway module .
The SNA gateway module allocates the requested
SLU address and transmits an SNA initiate-self
message to the SSCP, which informs the PLU via
an SNA control-initiate message.

Eventually, the PLU transmits a bind to the
gateway. The bind is forwarded to the SNA access
module as a bind-data message and ultimately to
the user program in response to a read-bind call.

43

New Products

Tbe DECnet/SNA Gateway Product

The user program then agrees to the session by
issuing an accept message, which causes the SNA
access module to send a bind-accept message to
the SNA gateway module. The gateway module
then acknowledges the bind (that is, transmits a
positive response), and the LUs are now consid
ered to be in session.

The user program can now exchange data
messages with the IBM application. To effect
an exchange, the program uses the transmit-calls
and receive-calls functions of the SNA access
module. Note that higher-level protocol initial
ization may well be needed before true end
user data exchange can begin. Such details,
however, are not known to the SNA access and
SNA gateway modules. During this data trans
fer phase, the SNA gateway module operates
as a simple message switch, passing data to
and from the SNA access module without
interpretation.

USER

At some point, the PLU will terminate the ses
sion by sending an unbind message to the gate
way. At that point the SNA gateway module dis
connects the logical link with the SNA access
module, supplying an appropriate reason code in
the disconnect message. The user program will
read this reason code and issue a close-call to
cause the SNA access module to deallocate its
resources.

Relationship between Products
and Architecture
The SNA product architecture allows consider
able freedom with respect to the distribution of
functions when a particular product is being
designed. Various amounts of a product can be
located in the DECnet/SNA Gateway, whatever is
appropriate for the design. Digital 's current
products conform to either the gateway access
model or the server model.

DEC
SYS

MODULE
net
TEM

I

DECnet
SYSTEM
CONTAINING
GATEWAY

(

(

SNA

SNA
ACCESS
MODULE

I
DECnet
NETWORK

SNA
GATEWAY
MODULE

I

)

PROTOCOL EMULATION
MODULE

SNA/SDLC
DATA LINK CONTROL
MODULE

SNA
NETWORK)

SNA GATEWAY ACCESS
PROTOCOL(OPERATED
OVER A DNA LOGICAL
LINK)

Figure 8 Structure of Digital's SNA Gateway

44 Digital TecbnicalJournal
No. 3 September 1986

The DECnet/SNA VMS DISOSS document
exchange facility (DDXF) is an example of the
gateway access model. DDXF allows documents
to be transferred between VAX/VMS systems and
IBM DISOSS. On the other hand, the DECnet/SNA
VMS remote job entry (RJE) is an example of the
server model. RJE is a traditional remote batch
workstation emulator that allows VAX/VMS users
to submit jobs to an IBM host for processing and
to have the job output returned to the VAX/VMS
system.

Building a product to the gateway model
allows the greatest use of common code mod
ules. The product designer need concern himself
only with the functional layer and, if no standard
interface module is available, with the SNA inter
face layer. Also, no product-specific software has
to be included in the gateway node.

Building a product to conform to the server
model can remove some of the processing
from the host node. The cost, however, will be

increased use of gateway resources and the intro
duction of product-specific support in the gate
way. Whether those trade-offs are acceptable
depends on the product.

DDXF as an Example of the Gateway
Access Model
The IBM DISOSS system uses three important IBM
architectures:

• The Document Content Architecture (DCA) ,
which prescribes the format and content of
documents

• The Document Interchange Architecture
(DIA) , which defines the format and protocols
used to transfer documents between office sys
tems

• The logical unit type 6 .2 (LU6 .2) , which
describes the SNA session protocols used to
implement the communications function

I CONNECT r-----i
-------i I INITIATE-SELF r~~~s]

SEQUENCE
OF
EVENTS

I

POINT

L
CONTROL <NffiA TE j

BIND,.-

BIND-DATA

I BIND-ACCEPT I

DATA

I DATA I

USER J
-PROGRAM

ABORT J
LGATEWAY

GAP OVER A
DNA LOGICAL
LINK

DATA

DATA

UNBIND I

SNA SESSION
PROTOCOLS

lPRIMARY
LOGICAL
UNIT -

Figure 9 Gateway Access Message Flow

Digital Tecbnical]ournal 45
No. 3 September 1986

New Products

Tbe DECnet/SNA Gateway Product

DECnet

INPUT JOB
FILES

OUTPUT FROM
PRINT/PUNCH
STREAMS

SYSrEM ~~l~-~-~-E-------~-~E_~_~s;_i_;_IO_N ____ :===---~-~-~-~-i--EFI_L __ E----~ L ACCESS

(DECnet NETWORK]

11=-:~-~VER ------.,_j _____..
DEC t
SYS
CON
GAT

ne
TEM
TAINING
EWAY

SNA
PROTOCOL
EMULATOR

SNA/SDLC
DATA LINK
CONTROL

Figure 10 Structure of Remote Job Entry Facility

The functional layer for DDXF handles both the
DIA protocols and the conversion to and from
DCA document formats . The functional layer
uses the LU6.2 component of the SNA interface
layer. Internally, the LU6.2 interface uses the ser
vices of the extended-mode interface, which in
tum is supported by the basic-mode interface .
The basic mode of the SNA interface layer must in
turn communicate with the common network
layer; the latter is located in the DECnet/SNA
Gateway node, and communication takes place
using the SNA gateway access mechanism dis
cussed earlier.

The common network layer uses the services
of the SDLC module in the data link layer. In
turn, this layer uses whichever physical layer
module is appropriate to the communications
hardware .

46

RJE as an Example oftbe Server Model
The functional and SNA interface layers for RJE
both appear in the RJE server process, which exe
cutes in the gateway. Figure 10 depicts the struc
ture of RJE. The functional layer converts data to
and from the formats used by SNA remote job
entry. This layer uses the DECnet remote file
access facility to read and write files located on
the DECnet host node. The SNA interface layer
implements the LUI protocol for remote work
stations . The RJE SNA interface layer uses the
common interface layer software in the gateway
node, as does the SNA gateway module.

The end user communicates with the RJE
server by using one of two command interfaces
(workstation operator or unprivileged user) resi
dent on the DECnet host node. These interface
programs use a private protocol, operated over a
DECnet logical link, to pass commands to the
server.

Digital TeclmlcalJournal
No. 3 September 1986

Di.gital's SNA Gateway Management
Architecture
The problem of network management is proba
bly the greatest impediment to effective inter
vendor networking. By network management we
mean configuration, performance monitoring,
and fault diagnosis.

In the DECnet/SNA Gateway product, we
chose to partition the management problem into
three parts: management of the DECnet compo
nents, management of the SNA protocol compo
nents, and management of individual servers .
This division mirrored both the logical and
physical structure of the gateway and made the
management problem tractable.

We did not attempt to implement a manage
ment gateway. It is not possible for a network
manager on a Digital system to display or modify
operational parameters of the SNA network. Nor
is it possible for the manager of an SNA network
to display or modify parameters of the DECnet
network or of the DECnet/SNA Gateway itself.
(It is possible, however, for either manager to
log in remotely to a system in the other net
work and use its management utilities. A brief
description of this capability is described in the
section Remote Access.)

Management of DECnet Components
The management of the DECnet components of
an SNA gateway node is performed according to
the DNA network management model , using
standard DECnet management utilities from a
host DECnet node . (This paper does not dis
cuss DECnet management. See reference 8, the
DECnet DNA Phase IV Network Management
Functional Specification , for more details.)

Gateway Management Entities
For the SNA components of the gateway, we
here define a model that is similar in a general
sense to the model described in the DECnet
DNA Phase IV Network Management Func
tional Specification . Our model treats the SNA
software as a number of oamed entities, each of
which is the focal point for some management
operation. An entity typically has parametric
information that can be read and perhaps writ
ten and maintains current state information that
can be read. An entity also maintains a set of
counters that can be read and/or zeroed and
sends event messages to a central logging facil-

Digital TedmicalJournal
No. 3 September 1986

1

1 New Products

ity. The manageable entities are the line, the cir
cuit, the PU, the LU, the access name, and the
server.

Not all entities possess all the above proper
ties. For example, the access name is a fairly
static entity possessing only a name and some
associated parameters . However, the access
name has no state, no counters, and generates
no events. In contrast, a circuit has a name,
parameters, and a state and also maintains coun
ters and generates events.

The line and circuit entities correspond to the
identically named entities of DECnet manage·
ment. The line entity represents the physical
layer, the circuit entity the data link layer. The
PU and LU entities represent the SNA physical
and logical units respectively. These have no
direct counterparts in DECnet management .
There are certain similarities between the PU
and DNA's ECL, and the LU and DNA's session
(both of which are subsumed into the manage
ment entity called executor node) .

An access name entity has no direct counter
part in the IBM environment. This entity is sim
ply a shorthand form for specifying any parame
ters required to establish a session between the
DECnet and SNA networks. A user process is able
to specify an access name instead of providing
the individual connection parameters. A server
entity is one that represents some sort of service
provided to users. Two examples of application
servers in the SNA gateway node itself are the
SNA gateway module and the RJE server module.

In a sense, the view of the gateway that results
from these entity definitions is a simplification
of the gateway architecture . This simplified
view is desirable because it lessens the effort
needed to understand and hence to manage the
gateway. This idea of having a simplified model
of the network for the purpose of management
is common to both SNA and DNA.

Configuration Management
Configuration and operating parameters for
the SNA components in the gateway are set
or modified by using a management utility
running on the DECnet host node . This utility
communicates with the SNA network manage
ment listener in the gateway node.

The general command syntax is derived from
that of DECnet management but has been
changed to accommodate the details of SNA

47

The DECnet/SNA Gateway Product

operation. A few examples of the syntax are
given as follows:

SET LINE DSV-0 DUPLEX FUU

SET CIRCUIT SDLC-0 ADDRESS 40
STATION ID OOOOODEC

SET ACCESS NAME CICS CIRCUIT SNA-0
APPLICATION CICS6 LU LIST 1-16

In these examples, LINE DSV-0 , CIRCUIT
SDLC-0, and ACCESS NAME CICS identify the
entities to which each SET command is to apply.

The rest of each SET command string is a
sequence of parameter names, each followed by
the value to be set. Thus ADDRESS 40 indicates
that the address parameter (the SDLC secondary
station address) is to be set to the value hexa
decimal 40.

Performance Monitoring
SNA gateway management maintains counters,
associated with various entities, which record
statistics. These include the amount of data trans
mitted, the number of CRC errors occurring on a
particular data link, any buffer availability prob
lems, and so forth. By examining these counters
periodically, the DECnet network manager can
see how well the various components of the gate
way are performing and whether or not any prob
lems need to be investigated.

Fault Diagnosis
There is considerable overlap between perfor
mance monitoring and fault diagnosis . Fre
quently, poor performance is the first indication
of a fault; thus counters can be viewed as fault
diagnosis aids. Event-logging messages are also
useful in diagnosing faults ; for example, fre
quent circuit-down events could indicate hard
ware problems. Event messages are generated by
various software components in the gateway and
are sent to the DECnet host. Usually the events
are displayed on the operator console of the
host; they may also be collected in a file for later
analysis.

Gateway management also supports com
mands that allow loopback testing to be per
formed. The system can isolate failing hardware
components by using loopback at various levels.

Management of Servers
Server management is perhaps the least well
defined area of the SNA gateway management
architecture. The range of different servers that

48

may be implemented makes it difficult to
include sufficient support for all servers. Thus if
necessary, each server implements its own man
agement utility.

Remote Access
Although neither the DECnet network manager
nor the SNA network manager can directly con
trol the other, it is possible to use remote termi
nal access mechanisms to effect some degree of
indirect control. The manager must log in to a
system in the " other" network, and hence
become a user of that network, in order to gain
access to the network management programs.

The DECnet/ SNA VMS 3270 terminal emulator
(TE) allows the DECnet network manager to log
on to IBM applications, including the SNA net
work management utilities, such as NCCF. He
can thus control the SNA network to the extent
that he has the privilege to do so.

The DECnet/SNA distributed host command
facility (DHCF) allows the SNA network manager
to log on to a VMS system through the gateway.
Once logged in with sufficient privilege, he can
issue NCP commands and hence control the
DECnet network.

DECnet/SNA Gateway Components
The DECnet/SNA Gateway provides a protocol
handling interface between SNA and DECnet net
works. The gateway, introduced in 1982, was the
first product to provide remote functions over a
network from a closed server system. The gate
way consists of several software components;
Figure 11 provides an overview of its major
parts. The base software is the RSX-1 lS operating
system with a communications supervisor called
the CommExec. These two components provide
the environment for both the DECnet-RSX soft
ware and the RSX/SNA protocol emulator.

RSX-11 S, Communications Executive,
and DECnet-RSX Software
We chose the RSX-1 lS software for the following
reasons:

• The RSX-1 lS operating system was well docu
mented and provided a good development
base by means of the RSX-1 lM operating sys
tem, a well-tested one.

• The RSX-1 lS system, being a memory-only sys
tem, required no expensive peripherals that
would add to the cost of the gateway.

Digital TecbnlcaJJournal
No. 3 September 1986

• The RSX-1 lS system could be down-line
loaded . This was proven and established
technology.

• RSX-1 lS had host support for system images.

Thus the RSX-1 lS system provided a sound start
ing point. Furthermore, the RSX communica·
tions executive and DECnet-RSX products also
provided a known base that worked well with
the host facilities provided in Digital's operating
systems.

RSX Communications Executive9
The communications executive is a group of soft
ware modules that create an environment within
which data communication software can execute
in cooperation with an operating system. Tai
lored to the needs of the communications soft·
ware, this special environment shields data com
munications programs from involvement with
the internal mechanisms of the host operating
system. Just as the operating system supervises
the execution of user programs on the computer,
so the communications executive supervises the
execution of data communications software .
Together with the software it manages, the com·

munications executive can be considered a dedi·
cated communications subsystem.

RSX/SNA Protocol Emulator
The RSX/SNA protocol emulator (PE), an exist·
ing product, provided a starting point for the
IBM SNA network connection required by the
gateway. Moreover, the PE used an early version
of the CommExec. We were able to reduce the
engineering effort required to build the gateway
from a complete design of basic network func
tions to an upgrade of the RSX/SNAPE that
would work in the DECnet Phase IV environ·
ment. Updating the RSX/SNA PE was an easier
task than doing a complete design because the
existing RSX/SNA product was stable and its lim·
itations were clearly understood.

For example , the RSX/SNAPE required
support for the SNA message " unbind-bind
forthcoming, " used with IBM TSO sessions .
The RSX/SNAPE also needed to support
the pacing and segmentation of messages .
Pacing is the IBM SNA method of flow
control ; it allows the network to regulate
buffer usage on an individual session basis.

PDP-11/24 SYSTEM

IBM SNA
NETWORK

SNA
PROTOCOL
EMULATOR

RSX-11S OPERATING SYSTEM

COMMUNICATIONS EXECUTIVE

SNA INITIAL LOAD
PROGRAM (SNAIL)

GATEWAY ACCESS
SERVER (GAS)

REMOTE JOB
SERVER (RJSRV)

HOST COMMAND
FACILITY SERVER
(HCFSRV)

DECnet-RSX

Figure 11 DECnet/SNA Components

DECnet
NETWORK

Digital TecbnlcalJournal 49
No. 3 September 1986

New Products

Tbe DECnet/SNA Gateway Product

Segmentation allows user code to send and
receive buffers larger than the buffers used at the
data link level.

Philosophy behind the Gateway
In building the gateway, we wanted a system that
could be developed completely within Digital's
engineering groups. We also wanted a system
that would allow the values chosen by our engi
neers to be overwritten by customers with their
own network values. This capability required
that data structures be allocated dynamically dur
ing the initial gateway startup.

User Level Components
The user level components are as follows:

• The initial load program (SNAIL), which man
ages SNA configuration with only a DECnet
interface

• The gateway access server (GAS) , which
switches messages from one network to the
other

• The remote job server (RJSRV) , which pro
vides IBM remote job submission functions

• The host command facility server (HCFSRV) ,
which provides IBM terminals with a method
of reaching DECnet-VAX hosts

SNAIL, the Initial Load Program
We chose to accommodate customers' network
values to the gateway during initialization by
means of a plain text file (configuration file).
Such files are common to all of Digital's operat
ing systems, and network routines are provided
that can read these files.

The text in the configuration files for the SNA
network is divided into three areas based on the
three SET commands used to configure the gate
way. (A SET command in the SNA gateway is sim
ilar to the one used for DECnet NCP.)

• The first SET command is used to determine
the type of modern signal control being used.
This SET LINE command allows two choices:
full duplex, meaning the modem leads are
held "high"; and half duplex, meaning the
modern leads are varied according to the send
ing and receiving rules.

• The second SET command defines the circuit
parameters. This command sets up the data
link station address, the number of SNA logical

50

units that the circuit can handle, an identifica
tion value used in dial-up configurations, and
other items in the SNA network.

• The third SET command defines a shorthand
name, SET ACCESS, for a number of SNA net
work connection items. This command defines
a list of LUs, a circuit name, and an IBM appli
cation. The user can specify a single access
name rather than all the needed parameters.

SNAIL is an RSX-privileged task that deciphers
the RSX/SNA PE data structures and reads the
configuration file on the DECnet host node.
SNAIL parses the commands from the configura
tion file, traces the RSX/SNAPE data structures,
and then places the configuration information in
the correct location in the data structures. In the
case of LU databases and access names, each
structure is allocated and linked into the existing
database.

Part of the SNAIL code detects errors during
the command parsing of the configuration file
records. Not having a console , the gateway
needs a means of reporting errors, and DECnet
event messages supply that means. The number
and contents of each line in error are merged
into a line of text that is sent to the DECnet host
node.

After loading the gateway, the DECnet network
manager must check that the software and infor
mation from the configuration file have been
loaded correctly. This checking is done by moni
toring the DECnet event messages that appear on
the host. These messages provide status informa
tion on successful steps and error information for
failed steps.

Gateway Access Server (GAS)
GAS provides support for the gateway access pro
tocols (GAP) . GAS is basically a message
switcher that receives messages from the IBM
SNA network session and sends them along the
correct DECnet logical links. GAS also takes mes
sages received from DECnet logical links and
sends them to the correct IBM SNA sessions. A
DECnet logical link and an IBM SNA session are
associated with one another at connection time.
Connections into the IBM applications are always
initiated from the DECnet side of the gateway.

GAS concerns itself only with the SNA bind
message because it determines the buffer size
that the gateway will receive from and transmit
to the IBM SNA network. These sizes are allo-

Digital Tecbnlcal Journal
No. 3 September 1986

cated from a common buffer pool, and each side
of the connection has a maximum allocation
limit . The buffers are allocated until the
allocation exceeds the maximum allowed .
This method provides the best allocation of
buffer memory, but it does not guarantee a
fixed number of sessions since a single buffer
can be allocated that exceeds the allocation
limit for a session. Therefore, the 32 sessions
that the gateway documentation discusses
only occur if the allocation limits are not
exceeded by the sessions. The server must per
form protocol work only at the stan and end of
the session.

Remote Job Server (RJSRV)
RJSRV is by far the most complicated program in
the gateway. RJSRV supports multiple SNA
remote job entry workstations. Each workstation
contains a DECnet control link, multiple
IBM sessions , and multiple network files .
This handling of many different linkages has
almost transformed the server from a simple
message switcher to a "micro-operating"
system, since it performs these activities in
real time. This micro-operating system provides
a scheduler for events , common termina
tion routines, and common buffer allocation
methods.

As with GAS, a DECnet host program initiates
the connection with RJSRV, thus establishing
the workstation connection. The number of
workstations and the sessions per workstation
are limited only by the available memory in
the gateway. Because of this limitation ,
each workstation is treated as an RSX pro
gram logical address space (PI.AS) region. Ses
sions can then be allocated from the PLAS
region.

The messages from the DECnet control link
are parsed, and the actions taken vary depending
on the current workstation state. At the same
time, IBM SNA sessions may be active, receiving
printer or punch records, or transmitting reader
records. The server provides all the SNA proto
cols for transmission control (TC) , data flow
control (DFC) , and function management head
ers (FMH). In addition, RJSRV provides suppon
for SNA character strings (SCS) and LUI com
pression. These facilities and the permutations
of different states make RJSRV rich in functional
ity and fairly complex in terms of its internal
structure.

Digital TecbnlcalJournal
No. 3 September 1986

Host Command Facility Server
(HCFSRV)
HCFSRV is a program lying midway in complex
ity between GAS and RJSRV. HCFSRV performs
some SNA protocols for the sessions that
have been established. It differs, however, from
the other servers in that the IBM application
initiates the connection. Mter the IBM applica
tion session has been established, HCFSRV
receives the VMS host name and establishes a
DECnet logical link with that node. HCFSRV
then continues to provide SNA protocol suppon
after the session to the VMS host has been estab
lished. This server can handle multiple sessions
from the IBM network, but the number of ses
sions is limited by the amount of buffer space
available.

The Gateway Hardware
The DECnet/SNA Gateway software runs on two
hardware configurations: a PDP-11/24 with
RX02 disks, DMRl ls for the DECnet connec
tion, and DUPl ls for the SNA connection; and
the Digital Ethernet Communications Server
(DECSA) . DECSA is the network equivalent of a
communications controller, such as the DZ 11 ,
DMF32, or DUPl 1. A server is a shared resource
for the hosts in an Ethernet and/or wide area
networks connected to an Ethernet. The server
performs specific communications functions for
these hosts . The hardware components are
packaged in a freestanding, table-top unit with
self-contained power and cooling; it can operate
in an office environment or in a computer room.
At stan-up, the unit performs a brief self-test.
Then the appropriate server software is down
line loaded from a Phase IV DECnet host on the
same Ethernet, and the unit begins operations as
a DECnet/SNA Gateway.

Summary
We have enumerated the many diverse issues
that need to be addressed as part of a network
interconnection process. This process is, to say
the least, a complex one. An effective network
interconnection scheme can result only from
an effective architectural and implementation
process.

Numerous aspects of cross-network intercon
nect must be considered if the final result is to
meet the end-user's needs . The following
aspects should be considered.

51

New Products

The DECnet/SNA Gateway Product

• One must clearly understand the properties of
all architectures to be interconnected to deter
mine the most effective level of interconnec
tion between them from a base services stand
point.

• In implementing the interconnect, one must
take consistent approaches that take into
account both the turnkey functions to be
implemented as well as end-user requirements
concerning those functions. (For example, is it
effective to split functions across multiple sys
tems, and if so, what are the benefits?)

A modular approach that uses effectively both
hardware and software "building blocks" is also
important for reliability, maintainability, and
reusability considerations. Thus it is as important
to provide a modular implementation consisting
of known, proven software segments as it is to
use a framework that allows " mixing and match
ing" pieces to facilitate the development of new
functions for various base systems. Once a struc
ture has been defined, the turnkey functions
themselves must be of a bidirectional nature,
allowing users in one environment equal access
to the resources of the other (provided, of
course, they are authorized to do so) .

Coincident with all this functionality is the
need to manage it effectively, either from a cen
tralized point in the network or at the distributed
points closest to the actual work being done. An
interconnect structure must be chosen that
allows the continuing use of existing mecha
nisms with convenient "hooks" to access other
environments, if needs so dictate. Finally, the
approach chosen must be flexible enough to
allow existing structures to migrate conveniently
to more cost-effective technologies as they
become available, all without disrupting the user
interface. The preservation of existing user
investment must always be a key concern.

All these goals were met in the existing
DECnet/SNA Gateway product set. Our approach
is the result of a carefully considered structure,
not of an ad-hoc collection of functionality. That
structure facilitates the rapid development of
new functionality today and preserves existing
application investments for the increasingly dis
tributed processing world of tomorrow. We
expect these products to be key components of
the network that eventually becomes the
system.

52

Acknowledgments
The authors would like to acknowledge the con
tributions of the following members of Digital's
IBM Interconnect Engineering team, with
out whose diligent effort much of our suc
cess would not have been possible: Scott David
son, Dave Garrod, Bob Fleming, and Ladan
Pooroshani of the Littleton team; Bob Ellis from
Colorado Springs; Richard Benwell, Carol Chorl
ton, and Chris Chapman of the Reading, U .K.,
team; and Craig Dudley of Systems and Commu
nications Sciences. Their leadership efforts have
truly resulted in leadership products.

References
1. V. Cerf and P. Kirstein, "Issues in Packet

Network Interconnection,'' Proceedings
of the IEEE, vol. 66, no. 11 (November
1978): 1386-1408.

2. Systems Network Architecture: Techni
cal Overview (Armonk: IBM Corporation,
Order No. GC30-3073, March 1982).

3. Systems Network Architecture: Transac
tion Programmer's Reference Manual
for Logical Unit Type 6.2 (Armonk: IBM
Corporation, Order No. GC30-3084, May
1983).

4. Systems Network Architecture: Sessions
between Logical Units (Armonk: IBM Cor
poration, Order No. GC20-1868, April
1981).

5. Digital Network Architecture Phase IV
General Description (Maynard: Digital
Equipment Corporation, Order No. AA
N149A-TC, May 1982).

6. J. Morency, "The SNAGateway-The Foun
dation for the Information Bridge," Pro
ceedings of INTERFACE '83 (March
1983): 146-154.

7. J. Morency and R. Flakes, "Gateways: A
Vital Link to SNANetwork Environments,''
Data Communications Oanuary 1984):
159-166.

8 . DECnet Digital Network Architecture
Phase IV Network Management Func
tional Specification (Maynard: Digital
Equipment Corporation, Order No. AA
X437A-TK, December 1983).

Digital TeclmlcalJournal
No. 3 September 1986

9.]. Forecast,]. Jackson and]. Schriesheim,
''Communications Executive Implements
Computer Networks," Computer Design
(November 1980) : 71-75.

Other References
R. Bradley, "Interconnection Draws DEC, IBM
Networks Closer," Data Communications (May
1985): 241-248.

D. Korf, " New Ways of Communicating with
IBM: A User View," Proceedings of INTERFACE
'85 (March 1985) 241-248.

J. Martin, Design and Strategy for Distributed
Processing, (Englewood Cliffs: Prentice Hall ,
Inc., 1981).

Systems Network Architecture Format and Pro
tocal References Manual: Architectural Logic
(Armonk: IBM Corporation, Order No . SC30·
3112-2, November 1980).

Digital Tecbnical]ournal
No. 3 September 1986

I New hoduc~ l

53

William R. Hawe I
Mark F. Kempf
Alan J. Kirby

The Extended Local Area
Network Architecture
and LANBridge 100

A study was conducted to identify the wide variety of application needs
and environments for broadband local area networks. This study con
cluded that no single local area network in isolation was capable of com
pletely solving the broad range of networking problems of interest. Tbe
project team investigated alternative ways to provide solutions to these
problems, including various local network technologies and interconnec
tion schemes. From this investigation the team developed the Extended
LAN Architecture, capable of incorporating a variety of LAN technologies.
Using this architecture, the team designed a high-performance implemen
tation of an Ethernet-to-Ethernet bridge, which led directly to the LAN
Bridge 100, a product satisfying the original goals.

In early 1982, Digital's Networks and Communi
cations Group in conjunction with Corporate
Research initiated an advanced development
effort called the Broadband Project. The project's
original goal was to recommend which broad
band products should be implemented during
the next two years and which technologies
should be contained in those products. There
were several motivations behind this goal.

First, there was significant uncertainty with
in computer companies, including Digital ,
about the most appropriate physical medium for
local area network (LAN) products. At that time,
Digital had - and still has - a strong commit
ment to the Ethernet concept using baseband
coaxial cable. It was clear that while most appli
cations were served very well by an Ethernet
using baseband coaxial cable, some applications
were better served by other media, such as CA1V,
fiber-optic, or twisted-pair cables. The increas
ing number of installations using private broad
band technology, with its moderate bandwidth,
led the team to focus on this technology.

Second, the DECOM broadband Ethernet
media access unit and related products were
under development within Digital at that time.
Therefore, an effective mechanism for intercon
necting broadband and baseband products was

54

needed. There was a clear need to have I.AN
products that could interoperate, at least at the
network level.

Third, the project team agreed that some LAN
applications would require significantly more
physical extent than could be offered with either
the baseband or broadband Ethernet products.
Therefore, some means of offering a greater
extent was required. As will be shown later, the
results of the Broadband Project were very differ
ent from the ones that had been anticipated
when it was initiated.

Defining the Problem
The project team first proceeded to investigate
the user environments in which these networks
would be utilized. There were three types of
environments of concern to the project: the busi
ness office, the university campus, and the fac
tory. Clearly, assumptions about these environ
ments were not mutually exclusive, but the
names evoke the problems to be solved in each
one. The next step was to gather more input on
customers' requirements, applications, and
physical environments.

Some information had already been collected
by team members on previous visits to customer
sites, including a heavy-manufacturing facility

Dlgual TecbnlcalJournal
No. 3 September 1986

and a university campus. This information
helped the team to construct a refined set of
questions to be asked on visits to other cus
tomers. Subsequently, the team visited two more
universities and several commercial sites where
continuous process monitoring and control, and
research were performed. The team also exam
ined one of Digital's sites that represented an
extensive office environment.

The team discovered several generalized types
of message traffic that were characteristic of the
applications studied. These types were terminal
to-computer, computer-to-computer, and real
time traffic.1 Unfortunately, most customers
were unable to deliver actual network loads and
traffic matrices for their environments. There
fore, the team had to derive models for those
generalized types of traffic, using previous mea
surements of internal workloads and some edu
cated assumptions. These models were subse
quently used to evaluate several architectures
offered by the team as candidates to meet the
project's goals.

The environmental model for each traffic type
shows particular characteristics. The terminal
to-computer model has a large number of termi
nals, all needing access to a small or moderate
number of host computers. Although the aggre
gate throughput is small, the traffic is bursty. In
addition, the cost to connect each terminal
device to the network must be small (i.e., not
large compared with the cost of an inexpensive
terminal) .

Computer-to-computer traffic needs full logi
cal connectivity and has higher throughput (up
to several megabits per second per computer)

Table 1 Definitions of Environments

Environment Extent

Office Less than
3 kilometers

Campus Less than
25 kilometers

Factory Less than
8 kilometers

Digital TecbnlcalJournal
No. 3 September 1986

Number of
Stations

Less than
130

Less than
10,000

Less than
2200

-1 New Product,

than the previous model. The traffic for this
model is also bursty. Furthermore, the project
team thought that, as workstations and personal
computers became common, this class of traffic
would soon become much more widespread
than terminal-to-computer traffic.

The real-time environment is characterized by
a large number of devices (thousands) whose
requirements to communicate are quite hierar
chically structured. The applied load for a real
time environment is more accurately modeled by
deterministic arrivals. Moreover, most applica
tions in this environment expect the variance of
the access latency to be low in the LAN.

The team next defined nominal environments
for an office, a campus, and a factory. These defi
nitions are summarized in Table I .

In these definitions, harsh and benign environ
ments refer to the environmental characteristics
in which the LAN needs to operate. For example,
in a harsh environment one might expect a wide
range of operating temperatures or the presence
of strong electromagnetic fields .

Added to the definitions were a number of
facts that customers stressed or that were of
general use to the project. These facts were as
follows:

• Many customers had a variety of standard and
nonstandard higher-level protocols running
on their I.ANs. Clearly, any solution had to
take those existing protocols into account.

• Despite using nonstandard protocols, cus
tomers generally implemented their LANs
with subsystems compliant with a standard,
such as one of the IEEE 802 standards.

Physical
Environments

Benign

Benign within
a building
Harsh between
buildings

Harsh

Frequency of
Station Movement

Occasional

Possibly frequent

Rare

55

Tbe Extended Local Area Network Architecture and LANBridge JOO

• In addition to the valid technological and
environmental reasons for choosing a particu
lar LAN technology, some customers had
based their choices upon faulty assumptions.
This was particularly noted in discussions on
the delay variance of token-based systems in
various normal recovery modes.

• The importance of performance-monitoring
and serviceability features were emphasized
almost universally by customers.

At. this point it was clear that the original project
goal of investigating only broadband technology
was too narrow. Using broadband technology
alone could not satisfy the broad requirements of
the environments identified by the team. There
fore, the team expanded its scope to encompass
the larger problem of providing a wide variety of
services (terminal-to-computer, computer-to
computer, and real-time) in the three environ
ments (office, campus, and factory) .

It was also clear that there were two funda
mental approaches to providing those services.
First, the team could attempt to develop a LAN
architecture, or enhance an existing one, that
could cope with the wide range of nodes, dis
tances, media, performance, and cost con
straints. Second, the team could attempt to
develop a mechanism for interconnecting the
various LAN technologies.

LAN Technology Alternatives
The team decided first to evaluate a variety of
suitable media access methods. Each alternative
and the conclusions reached by the team are
summarized below.

Carrier Sense Mult{ple Access with Collision
Detection (CSMA/CD) 2

This was the alternative most familiar to the team
members, since Digital was currently building
products utilizing CSMA/CD for both baseband
and broadband media. The performance of
CSMA/CD does not degrade rapidly as a functio
of the number of connected nodes (see Figure
1). However, its extent (maximum signal propa
gation path length), transmission rate, and mini
mum packet size are not independent because of
finite propagation delays .3,4 Therefore , to
increase the physical extent of CSMA/CD LAN,
the minimum packet size or the transmission rate
or both must be decreased to ensure that there
are no undetected collisions.

56

w 102
...J
< u en

~
en 10
0 z
0 e - 16
u w en e - 8 :::;
...J

~ e = 2.8

~ --- TOKEN BUS
>-

-- CSMA/CD j
w n = number of nodes
0

e- extent in kilometers z
i:5 10-1

(frame size - 100 bytes)

::E
0 25 50 75 100

PERCENT OF OFFERED LOAD

Figure 1 Local Area Network Performance

Carrier Sense Multtple Access (CSMA)
By eliminating the collision detection capability
of CSMA/CD, one can build a LAN whose trans·
mission rate scales well with distance. However,
the obvious benefits of collision detection will
be lost. Without collision detection, the delay
variance experienced by applications tends to
increase because CSMA relies on more-frequent
higher-layer protocol time-outs. To compensate
for this problem, the transmission rate could be
increased sufficiently to reduce the probability
of collision. However, this action would impose
significant cost penalties on the end stations,
which would need faster logic and would experi·
ence more difficult transmission problems.

Carrier Sense Multiple Access with Partial
Collision Detection (CSMA ±CD)
Either the physical extent or the transmission
rate of a CSMA/ CD network could be extended so
that collisions would be detected only if the col·
liding stations were sufficiently close or if the
packets were sufficiently large. Such a scheme
would have good throughput-delay characteris·
tics if the physical extent were small; however,
degraded performance would result if the physi
cal extent were large. Unfortunately, this scheme
yields a significant delay variance because the
relative locations of the colliding stations and
the size of the colliding packets now affect the
layer, either the media access control (MAC) or
transport, at which collision recovery is per
formed.

Digital TechnlcalJournal
No. 3 September 1986

Token Passing Bus5

The characteristics of the token-bus access
method scale reasonably well with physical
extent (see Figure I), but poorly with the num
ber of nodes.3 This situation is complementary to
that of CSMA/CD. The sensitivity of a token bus
to the number of nodes makes it unsuitable for a
single IAN with many nodes. The token bus, like
CSMA/CD, is well suited to implementation on a
CA1V-like cabie plant.

Token Ring6

The performance characteristics of the IEEE
80 2. 5 token ring are somewhat similar to those
of the token bus. However, an IEEE 802.5 token
ring station will not reissue a token until the pre
viously transmitted frame has circulated com
pletely around the ring. This characteristic
makes the ring more sensitive than a token bus to
increasing physical extent. Moreover, a token
ring cannot be applied directly to a branching
tree physical topology, such as the one in a
CA1V-like cable plant.

Slotted Ring

The design tradeoffs made in most slotted rings
result in small slots, usually less than 20 bytes.
Therefore, it is important to minimize the slot
overhead, such as source and destination
addresses and error detection fields. Such opera
tions are usually associated with connection
oriented services, such as voice transmission. In
slotted ring networks, mechanisms are often
present to impose a measure of "fairness" in the
network. Those mechanisms make it difficult for
an individual station to acquire a significant frac
tion of the instantaneous transmission rate. Such
networks are often inadequate for handling the
bursty traffic expected in the environments of
interest.

Time Division Multiplexed (TDM) Bus

The principal disadvantages of using a TOM
structure are that the number of time slots is
fixed, and each time slot is assigned to only one
station. Thus, with a large number of stations,
even with low network utilization, the mean
waiting time is large. Furthermore, since the bus
is allocated in tum to each station, the maximum
throughput of any station is limited to the data
transmitted in that station's slot. The TOM bus is
well suited to isochronous traffic, such as voice
or video.

Digital TecbnlcalJournal
No. 3 September 1986

l New Products

Frequency Division Multiplexed (FDM) Bus

The characteristics of an FDM bus are somewhat
similar to those of the TOM bus. The FDM bus has
an additional degree of freedom in that it could
have slots of different bandwidths. The problem
with the FDM bus, however, is logical connectiv
ity. To have full connectivity, each node must
monitor each frequency band for messages des
tined for that node. In practice, this monitoring
is prohibitively expensive. As an alternative, one
could apply a reservation system to either the
TOM or FDM buses. The characteristics of such
an approach, however, are much better suited to
a connection-oriented service, such as voice or
video, rather than one with bursts of data.

Hybrid of FDM and CSMA/CD

A hybrid scheme utilizing multiple slow-speed
(approximately I million bits per second, or
Mbps) CSMA/CD channels , each in its own
6-MHz band, is another specific alternative that
was considered. Without increasing the mini
mum packet size used in an Ethernet, each
CSMA/CD channel can span an extent of approx
imately 30 kilometers. Multiple CSMA/CD chan
nels could be used to increase the aggregate
capacity of the network. Unfortunately, logical
connectivity cannot be achieved without some
mechanism for switching packets between these
channels. Furthermore, the bandwidth available
to any station is limited to a rate of I Mbps. Since
there is no industry standard for a I -Mbps, 6-MHz
CSMA/CO IAN, selecting this approach would
make necessary an attempt to standardize it.

These evaluations convinced the team that
none of these access methods sufficed for build
ing a single IAN capable of successfully operat
ing in all dimensions of interest to the project.
Not one of these alternatives was capable of
directly employing all the types of media that the
customers wished to utilize. Furthermore, any
choice was constrained by the desire for an
access method with a defined standard having
the appropriate parameters. The project team
would have to find a way to interconnect at least
a subset of the standard IANs if the project were
to be successful.

LAN Interconnection Alternatives
The team next investigated a variety of intercon
nection methods, each of which had certain
advantages and drawbacks.

57

The Extended Local Area Network Architecture and LANBrldge 100

DECnet Router

The architecmre for DECnet Phase IV+ could be
used to create a DECnet network for the inter·
connection. Such a network would be fully capa
ble of handling the number of nodes needed in
any of the three environments of interest. In fact
this was quite an attractive alternative. One
could choose the data links in such a network to
optimize the cost and performance. For exam
ple, Ethernets placed in local areas could offer
good response at low and moderate network
loads. Then a token bus, with its capability to
handle high utilizations and large extents, could
be used as a backbone to interconnect the
routers. Those would in turn connect to the Eth·
ernets. The sensitivity of the token bus to large
numbers of nodes would be minimized since the
only nodes on the token bus would be the
routers. Unfonunately, not all customer nodes
use the DECnet routing protocol, making this
alternative useful for only a subset of the nodes
in a network.

Central Switch

To complete the logical connectivity of a net·
work composed of multiple LANs, the team con
sidered an architecture organized around a cen
tral switch element. Conceptually, the switch
could be connected to all LANs in the network
and then selectively forward packets to the I.AN
with the destination end station. This alternative
has most of the advantages of the DECnet router
solution discussed above. Normally, however, all
end stations need the same routing protocol. To
avoid this problem the switch must either sup
pon a variety of routing protocols (and translate
among them) or somehow perform its switching
task in a way transparent to the end stations. A
single switch of sufficient capacity and reliabil
ity to do either task was likely to be fairly com
plex to design and manufacture. It would also
need to scale in a cost-effective manner for a
wide range of networks.

Brldge7 ,8,9

A bridge, or MAC layer relay, is a device connect
ing two or more LANs so that a node on one I.AN
may communicate with a node on another, just as
if they were on the same LAN. In operation, a
bridge is a store-and-forward switch that isolates
traffic to only those I.ANs on which the traffic
must appear. For example, in Figure 2, traffic
between nodes X and Y would not appear on the

58

I.AN to which node Q is connected. Bridges make
use of data link layer addresses to make forward·
ing decisions. A bridge receives all frames from a
particular I.AN and then decides, based upon the
destination address in the MAC header, whether
to forward each frame.

A collection of I.ANs interconnected by bridges
is referred to as an extended LAN. In general,
bridges may be used to connect I.ANs of different
types, as shown in Figure 2. Therefore, this alter
native can successfully utilize diverse I.AN tech·
nologies, if appropriate, to optimize some func
tion (e.g., low cost, high performance , or a
combination of these) . Funhermore, a bridge
appears to be merely another station on each I.AN
to which the bridge is connected. Therefore,
multiple LANs, each fully configured, can be
connected to eliminate their practical con
straints on distance, number of nodes, media,
and utilization.

Based on the reasoning above , the team
selected the bridge alternative as the one best
suited to realize the expanded goals of the pro
ject. Thus the team began to develop an architec
tural specification for extended LANs and
bridges. The team also began to develop a work
ing breadboard model that evenrually led to the
LANBridge I 00 product. The architecture that
was evolved for extended LANs and bridges is
described in the next section.

USER
--STATIONS-

LOCAL
AREA NETWORKS

Figure 2 Bridged Network Configuration

Digital TeclnslcalJournal
No. 3 September 1986

Advantages of Bridges
Bridges used to connect IANs have several useful
properties:

• Traffic Filtering - Bridges isolate each IAN
from traffic that does not have to traverse that
IAN. For example, in Figure 2, traffic between
nodes A and B is not sent on the IANs to which
P and Q are connected. Because of this filter
ing, the load on a given IAN can be reduced,
thus decreasing the delays experienced by all
users on the extended IAN.

• Increased Physical Extent - IANs are limited
in physical extent (at least in a practical
sense) by either propagation delay or signal
attenuation and distortion . Being a store
and-forward device, a bridge forwards frames
after having gained access to the appropriate
LAN via the normal access method. In this
way the extended LAN can cover a larger
extent than an individual IAN. The penalty for
this coverage is a small store-and-forward
delay.

• Increased Maximum Number of Stations -
Because of either physical layer limitations or
stability and deby considerations, most IAN
architectures have a practical limit on the
number of stations on a single IAN. Since the
bridge contends for access to the IAN as a sin
gle station, one bridge may "represent" many
nodes on another IAN or an extended IAN.

• Use of Different Physical Layers - Some IAN
architectures support a variety of physical
media (baseband and broadband coaxial
cables, and optical fiber cable) that cannot be
directly connected at the physical layer.
Bridges allow these media to coexist in the
same extended IAN.

• Interconnection of Dissimilar IANs - IANs of
different architectures are typically intercon
nected with routers or gateways. Often these
devices are complex with only moderate
throughput, not an appropriate situation for a
LAN environment. It is possible to build a
bridge connecting dissimilar LANs (within
constraints discussed in the section .' 'Perfor
mance Considerations") . For example, such a
bridge would allow stations on an IEEE 802.3
(CSMA/CD) IAN to send frames to stations on
IEEE 802.4 (token bus) or IEEE 802.5 (token
ring) IANs. 2•5•6

Digital TecbnlcalJounsal
No. 3 September 1986

The Extended LAN Architecture

General Goals
An ideal extended IAN should possess a number
of characteristics that translate into design goals
for the architecture. These design goals are as
follows:

• Minimize Traffic - The primary traffic on the
individual IANs should be generated by the
user stations. Traffic due to complex routing
algorithms should be eliminated or at least
minimized .

• No Duplicates - The bridges should not
cause duplicate frames to be delivered to the
destinations during normal operation.

• Sequentiality - The combination of IANs and
bridges should not permute the frame order
ing as transmitted by the source station.

• High Performance - The extended LAN
should p reserve the characteristics of high
throughput and low delay that users expect in
LAN enviro nments. In practice, this means
that the bridges should be able to process
frames at the maximu m rate they can be
received. Since LANs operate in the multi
megabit-per-second range, fulfilling this goal
requires a fast switching operation.

• Frame Lifetime Limit - Frames should not be
allowed to exist in the extended IAN for an
unbounded time. Some higher-layer protocols
may operate poorly if frames are unduly
delayed. This fact is especially true for proto
cols used for interactive applications. These
protocols depend on the low delay character
istics of a IAN. An example is the Local Area
Transport (IAT) protocol. 10

• Low Error IQte - IANs typically have a low
effective bit error rate. Higher-layer protocols
are often designed to take advantage of this
low rate, which allows them to operate more
efficiently since they can assume that errors
are infrequent. Extended IANs should not sig
nificantly increase this error rate.

• Low Congestion Loss - Individual IANs min
imize congestion by employing access control
schemes that prevent excessive traffic from
entering the LAN. Extended LANs are more
vulnerable to congestion loss s ince the
bridges may be forced to drop frames when

59

New Products

Tbe Extended Local Area Network Architecture and LANBrldge 100

the ones queued to be transmitted match the
available buffers. This phenomenon should be
minimized by designing the bridges properly
so that they are not bottlenecks. It will also be
minimized by configuring (placement and siz
ing) the extended I.AN properly.

• Generalized Topology - To increase the
availability of the extended I.AN, it would be
useful to allow arbitrary interconnections of
I.ANs by means of bridges. This interconnec
tion allows duplicate bridges and I.ANs to be
configured in parallel , thus increasing
availability.

Specific Goals
Although the ideal goals described above served
as a framework for development, other specific
goals were formulated for the architecture
itself. l ,7,8 ,9

• No modifications should be needed to stations
that adhere to the existing IEEE 802 stan
dards. 2.s.6 Therefore, the extended I.AN will be
transparent to the end stations. This goal sim
plifies the end-station hardware and software
designs.

• The interconnection of all IEEE 802 MAC pro
tocols must be accommodated.

• Automatic recovery from state changes in the
extended LAN, including LAN, bridge, and
end-station failures, must be accomplished.

• Connectionless and connection-oriented
IEEE 802.2 logical link control (llC) proto
cols should be supported efficiently. The
extended I.AN should also be independent of
all higher-layer protocols. Such independence
is needed to support the diverse set of proto
cols that will exist.1 1,12,13

• A bridge should not require explicit notifica
tion of station location by the end stations or a
management entity. The bridge should learn
automatically of the stations' locations with
out communicating with other bridges. (The
bridges do communicate with each other to
maintain the logical tree topology. This com
munication is independent of the activities of
end stations.)

• Management intervention should not be
required to make the network operational; the
bridges should autoconfigure. For example, it

60

should be possible to simply plug the I.ANs
into a bridge , then apply ac power to the
bridge for the network to operate. No com
mands from a network manager should be
required to achieve normal operation.

• Growing from a single-segment LAN to an
extended I.AN should be accomplished with
out prior planning. The architecture must
provide simple, efficient mechanisms (net
work management, etc.) to manage growth
easily. This goal means that the owner of a I.AN
does not have to anticipate that he will, at
some time in the future, install bridges and
more I.ANs to build an extended I.AN. Thus his
I.AN can become an extended I.AN without his
having to plan the ultimate configuration of
the extended LAN when the first LAN is
installed. This fact is important since experi
ence has shown that networks never grow
according to the plans made at the outset.

• Predictable, stable performance, including
predictable route selection for a given topol
ogy, should be provided under normal and
failure modes. In addition, to make diagnosis,
maintenance, and management of the network
easier, the routing algorithm should be deter
ministic. For example, it should compute a
given topology based on the current state of
the network. If that state changes , the
algorithm will compute a new topology. If the
new state now changes back to the original
state, the algorithm should produce the origi
nal topology, not a completely new one. With
out this feature it is very difficult to reproduce
failure scenarios when diagnosing the net
work or to plan the network predictably.

• No overhead should be required in the end
stations to communicate with stations on the
same or different I.ANs.

• No overhead should be imposed on stations as
a penalty for communicating with many part
ners (such as file servers or gateways to other
extended I.ANs) .

• End-station and bridge MAC addresses can be
assigned with any policy (global, local, flat,
hierarchical , etc.) desired by the users. The
architecture should require only that each end
station and bridge have a unique address
within the extended LAN. If addresses are
assigned globally, then the extended LAN

Digital TecbnlcalJournal
No. 3 September 1986

should have the added advantage of requiring
no management intervention when previously
disjoint extended IANs are merged.

• A general mesh topology including backup
bridges and IANs should be supported trans
parent to the end stations for increased reli
ability and availability.

• End-to-end data integrity should be provided
across the extended IAN for all normal and
multicast/broadcast frames when the MACs
are the same type. This capability holds across
any connected subset of the topology that is
the same MAC type. Thus the frames are not
modified and the MAC frame check sequence
(FCS) has end-to-end significance for the
extended IAN.

Architectural Overview
We used the goals above to develop a unique
architecture for the extended IAN concept. This
architecture is described in this section. Follow
ing that description are sections on bridge per
formance and resources. These are two impor
tant, but often neglected, topics that should be
considered when specifying an architecture. Per
formance is especially critical to the proper
functioning of products that are eventually built
to use the architecture. For the first time, perfor
mance analyses were included as an integral part
of the architectural specification.

The algorithm used in the bridge is very sim
ple . The algorithm maintains an association
between the end-station MAC address and the
MAC entity on the bridge through which that sta
tion has been observed. The associations are
stored in a table, also called a forwarding data
base, in the bridge. The bridge maintains that
table by observing traffic on the IANs to which
the bridge is attached, operating in " promiscu
ous" mode. In this mode the bridge monitors all
frames that appear on the IAN. For each frame
received, the bridge notes the source MAC
address and the MAC entity on which the frame
was seen. The bridge also searches in the table
for the destination MAC address. If that address is
found, the frame will be forwarded on the MAC
entity indicated in the table. Of course, if the
indicated MAC entity is the same one that
received it, the frame will be dropped since the
destination is known to be on that "side" of the
bridge. If no association is found, the frame will

Digital TecbnlcalJournal
No. 3 September 1986

I New PrOOucts

be forwarded on each MAC entity except the one
that received the frame.

Frames with group addresses (i.e ., multicast
addresses) are always forwarded on each MAC
entity since the bridge has no way of knowing
which end stations should receive the frames
that are addressed to groups . This concept,
called protocol regionalization, can effectively
limit the propagation of these messages through
the extended IAN, thus allowing certain appli
cation protocols to be confined to various
regions.14 This confinement is done for reasons
of performance, management convenience, and
privacy.

The table is simply a cache of station address
to-MAC entity associations for stations that are
communicating. As with any caching scheme,
the problem of stale data exists. Therefore, the
table entries are aged out on a time scale that is
long enough to minimize overhead, yet short
enough to capture station movements.

The algorithm learns the location of end sta
tions dynamically and assumes that few of them
simply receive traffic without ever sending
replies. If the station location is not known, then
frames directed to it are forwarded on all MAC
entities. Our experience shows that in a typical
operation only one frame from a station is
required for most, if not all, bridges in the
extended IAN to learn the station's location. Typ
ical higher-layer protocols more than satisfy this
requirement.

The initialization phase of a bridge is specified
in a particular fashion. The bridge is powered on
and then passively observes the traffic on its MAC
entities for a number of seconds. During this
time the bridge accumulates associations in its
forwarding database, after which it comes on line
and begins forwarding operations. This initial
passive learning period prevents the bridge from
unduly flooding the extended IAN with frames
destined to stations it hasn't yet heard from. As
with all parameters in the algorithm, the dura
tion of this learning period during power-up is
not critical. It should simply be long enough to
witness frames from a large percentage of the
active stations.

As specified so far, the algorithm will not mod
ify frames as they are passed through a bridge
between IANs of the same type. This restriction
provides the additional benefit of end-to-end FCS
coverage for normal and broadcast frames within

61

The Extended Local Area Network Architecture and LANBrldge 100

the extended LAN. When forwarding between
dissimilar MACs, the LLC protocol data units
(PDU) are extracted from MAC data frames and
forwarded on the next MAC. An FCS for that MAC
is computed normally by the bridge. Bridges of
this type should guard against errors in memory
or on datapaths. Also note that the IEEE 802.5
token ring may require byte reordering, which,
however, can be dealt with at the controller
interface.

Because the bridge does not modify frames,
there is an inherent mechanism for loop detec
tion encoded into them. Conventional net
work layer routing algorithms detect loops
with hop counts or other frame lifetime (age)
controls , losing transparency in the pro
cess. 11·12·13 The Extended LAN Architecture
restricts the logical topology to a tree that pre
vents loops from occurring, while preserving
transparency.

It is desirable to maintain proper operation
of the extended LAN if it is misconfigured .
Therefore, we designed an algorithm to auto
matically and transparently transform a general
mesh topology into a spanning tree , thus
preventing packet looping.1s This algorithm
also allows redundant bridges and links to be
used as backups, thus increasing the availability
of the network. Availability is very important
since the extended LAN is quite of the basis for
much, if not all, of the communications. This
algorithm was implemented in the LANBridge
100.

The spanning tree algorithm imparts the fol
lowing characteristics to an extended LAN:

• A spanning, acyclic subset of a general mesh
topology is maintained.

• A very small, bounded amount of memory
per bridge is required, independent of the
total number of LANs or the total number of
bridges.

• A very small, bounded amount of communica
tions bandwidth is required on each LAN,
independent of the total number of LANs or
the total number of bridges.

• Lost messages are tolerated and the broadcast
nature of multiaccess LANs is utilized effi.
ciently.

• Participation by the end stations is not
required.

62

• The computed topology converges in a maxi
mum of twice the round-trip delay across the
extended LAN.

• The computed topology is deterministic,
meaning that it can be calculated deterministi
cally by the network designer.

• Bridges implementing this algorithm can
coexist with simpler bridges not implement
ing it. Loops will still be broken, provided
that no loop exists composed solely of bridges
that do not implement the algorithm.

• Duplicate packets are not generated when
redundant bridges are used for backup.

• An effectively unlimited number of bridges is
supported. The only practical limit is the per
formance characteristics one wishes to have
for the extended LAN. We size the extent of
the network based on the delay and through
put characteristics it achieves, not on arbitrary
restrictions. An example based on models
developed of the LAT protocol is given later in
this paper.

• No a priori knowledge of the topology is
required.

• Optional user-defined " primary" routes or
" backup" bridges are permitted; otherwise,
the routing is automatic.

Performance Considerations
The performance of an extended LAN is deter
mined by a number of design parameters, includ
ing the expected capacity of the backbone and
subnets, the overall system capacity, the applied
load, and the frame loss rates. The designer must
be concerned not only with providing adequate
performance for current usage but also with
allowing future growth.

Ideally, a system is designed to be sufficiently
robust to accommodate changes in its user popu
lation as well as its characteristics. For example,
studies have been conducted to measure user
workloads in a program development environ
ment. 16 The study results could be used directly
to estimate the applied load due to some number
of those users. To do that, however, requires that
the designer also model all the protocol layers
involved in transferring this information across
the extended LAN.

It is important to size the capacity of an
extended LAN. Given the characteristics of user

Digital TeclmicalJournal
No. 3 September 1986

demands, capacity is expressed in terms of the
number of users supported. The difficulty with
using this number as the independent variable is
that the designer must account for the resource
consumption from all layers of the protocol. That
is generally hard to do.

Another difficulty is that the performance
requirements may vary for different higher-level
protocols. Some may be delay sensitive. For
example, terminal access protocols that return
echoes end to end are quite sensitive to delay.
Other terminal access protocols that allow local
editing and echoing are not so delay sensitive.
File transfer protocols are not sensitive to the
delay but require high throughput. Therefore,
to determine the capacity of an extended LAN,
the designer must investigate both delay and
throughput as applied to the requirements of
particular protocols and applications that use the
LAN.

Certain LANs constrain the configuration,
owing to either physical layer limitations (such
as the distance over which the line drivers can
operate) or the interaction between the access
method of the data link layer and the propagation
delay. For example, Ethernet places a limit on
the maximum number of repeaters between
any two communicating stations. 17•18 This con
straint assures that the propagation delay bud
get, which is assumed by the access method pro
tocol, will not be exceeded in any configuration.
In an extended LAN, the designer may also wish
to constrain the configuration based on the
performance expectations of higher-layer pro
tocols. For example, he may require that there
be no more than a certain number of bridges
between two stations that use a delay-sensitive
protocol. In general , the constraints are more
complex when an extended LAN is config
ured with dissimilar LANs since the individual
LANs may provide different delay /throughput
characteristics.

Another problem when determining capacity
is estimating the amounts of traffic remaining
local to a subnet and leaving that subnet. The
worst case occurs when all traffic must be for
warded from a subnet through one or more levels
of backbone, thus creating the largest demand on
the resources of the backbone. One way the
designer can handle this situation is to assume
that all the locally generated traffic must also be
carried by the backbone. Increasing the load will
then define the system saturation point at which

Digital Teclmical Journal
No. 3 September 1986

the resources of the subnets will likely be under
utilized. The additional capacity of the subnet
can then be used only for local traffic. This calcu
lation defines the limits for the system with
respect to the ratio of local traffic to total traffic
that is possible.

Using the above principles we developed
a capacity-sizing methodology for extended
LANs. The diameter of an extended LAN is
sized in the following fashion . The average
one-way delay across the longest path cannot
exceed 10 milliseconds, chosen as the delay
budget based on analyses of higher-layer
protocols that are delay sensitive. One such pro
tocol is the LAT protocol used for terminal
access. 10

A detailed simulation of that protocol was used
to study different configurations and values of
an average delay budget. The IO-millisecond
delay budget allowed for variance in the delay
and kept the protocol operation in the normal
states (without timeouts, etc.) . In addition, the
operating point must be set so that none of the
links in the extended LAN run at greater than
90 percent utilization. (Note that this utilization
may occur at an offered load of much less than
90 percent.) On an Ethernet this limit occurs for
offered loads of anywhere from 4 5 percent to
90 percent utilization. The difference between
the utilization and the offered load is the over
head on the link. On an Ethernet this difference
includes delays caused by collisions; on token
rings it includes delays for token passing and the
like.

This methodology assures that the component
links in an extended LAN are all running in
stable operating regions, and that the delay is
similar to that on a single LAN. The fulfillment
of these conditions is important so that the per
formance expectations of higher-layer protocols
are still met. Depending on the type of LANs used
in an extended LAN, the number of bridges
allowed (in series) will be different. Token
access LANs often have higher average delays
than Ethernet LANs. These delays could consume
some of the delay budget, which averages IO
milliseconds. In the case of all Ethernet links, the
number of bridges allowed in series is some
where between seven and nine. Further discus
sion of the performance aspects of extended
LANs may be found in the paper " Performance
Analysis and Modeling of Digital's Networking
Architecture.'' 19

63

New Products

The Extended Local Area Network Architecture and LAN Bridge 100

Bridge Resources
The major resources of concern in a bridge are
the buffering required to store and forward
frames , the table space for the forwarding
database , and the CPU cycles to execute
the algorithm. Note that CPU cycles are also
required to perform network management. Typi
cally, any bridge implementation must guarantee
that network management commands are eventu
ally executed. For example, suppose a bridge
was heavily loaded because of a slow outbound
l(\N. A network manager wanting to disconnect
that bridge may be unable to do so if all received
frames are being dropped because of buffer con
gestion . Therefore , one important aspect of
implementing a network management architec
ture is that some amount of buffering must be
preallocated to handle those messages. More
over, scheduling must be accomplished so that
the network management process in the bridge is
guaranteed to make progress. This guarantee is a
matter of correctness and therefore should be
stated in any effon to make the architecture a
standard.

Buffers are also required to hold frames while
they are waiting to be either processed or for
warded. As depicted in Figure 3, bridge can be
modeled as a queuing system in which the ser
vice centers represent the forwarding process
and the outbound LANs. Congestion can occur at
three places:

1. Upon reception, owing to the lack of receive
buffers

2. After reception, owing to queuing for the
forwarding process

3. After the forwarding process, because of con-
gestion on the outbound LAN

Proper bridge design can solve the first two
sources of congestion. The third problem, how
ever, is a general one for bridges, routers, and
any store-and-forward device.20 There are several
ways that the bridge designer can address this
problem. We first make a general observation
about the required service rate of the service
centers in a queuing network. Steady-state con
gestion at the forwarding process can be avoided
completely if the network can always make for
warding decisions faster than the summation of
the interarrival times of the smallest frames
across all the inbound LANs. The forwarding
database must be consulted for each frame on
which a forwarding decision is made. There are
many ways to do that very efficiently.

The table discussed earlier is really only a
cache of station address-to-MAC entity associa
tions; a search of that table is required to locate
an entry. If the table is ordered, then a binary
search can locate the entry in question. There are
other alternative search methods, such as seg
mented hashing. The implementation of this pro-

BRIDGE
1 - -- - --------------- ------------

! BUFFERS
I
I

I

T
DISCARD

I
I

I
I
I

L-- I

Figure 3 The Two Port Bridge Resource Model

64 Digital TecbnicalJournal
No. 3 September 1986

cess is one of the key aspects of the bridge tech
nology. This facet is covered later in the paper in
the discussion of the technology used in the IAN
Bridge 100 product.

A final point with respect to caching is in
order. Further enhancements in performance can
be obtained by recognizing something about the
nature of the traffic on IANs. Extensive measure
ments on token rings, Ethernets, etc. have uncov
ered several important facts. These are related to
the nature of higher-layer protocol and applica
tion operation. One is that, given that a frame
from station S and station D has just been
observed on the LAN, the probability that the
next frame observed is either from D to Sor also
from S to D is very high.21 Thus, if the bridge
keeps the last few associations it has obtained
from the database, it is very likely that the next
frame will use one of those associations. Keep
ing them further reduces table access rates. It
amounts to a two-level cache.

With these observations we now focus on con
gestion at the receive or transmit buffers. Con
gestion at the receive buffers can be avoided
through proper machine organization. For exam
ple, a bridge using separate controllers for each
IAN, each controller having its own local buffer
ing, will have to assure that sufficient buffering

APPLICATION
LAYER

NElWORK
LAYER

is available to maintain stability in the queue
(particularly during transient bursts of frames) .
Frames will have to be moved (out of the con
troller buffers or shared memory) into another
buffer to queue for the forwarding process. With
respect to bridge delay, this time must also be
included in the forwarding process. With respect
to bridge throughput, the bottleneck server will
determine the peak.

Therefore, the only place any congestion will
occur in these bridges is at the outbound IAN.
This congestion will occur if that LAN is not
fast enough for the volume of traffic it must
carry. This problem is an issue of IAN speed, not
bridge speed. The philosophy is to design
bridges so that they will not be bottlenecks.
Most of these comments apply to any routing
algorithm and hold true whether a table or a
frame must be searched. And they hold true for
all the MACs.

Effect of Bridges on Ethernet Links
Bridges have several effects on the performance
of CSMA/CD IANs. One effect is due to the filter
ing function that prevents traffic from entering a
subnet that it need not traverse . Recall that
bridges operate above the data link MAC layer as
shown in Figure 4 . Preventing this traffic flow

I

APPLICATION
LAYER

NElWORK
LAYER I

------- ·-- -------
BRIDGE

BRIDGE FUNCTIONS

DATA LINK DATA LINK DATA LINK DATA LINK
LAYER LAYER LAYER LAYER

PHYSICAL PHYSICAL PHYSICAL PHYSICAL
LAYER LAYER LAYER LAYER

PHYSICAL MEDIUM ~ p PHYSICAL MEDIUM

Figure 4 Bridges and Data Links

Digital Tecbnlcal]ournal 65
No. 3 September 1986

New Products

The Extended Local Area Network Architecture and LAN Bridge 100

reduces the applied load on the LAN , thus
improving performance for the local users.

Another effect is more subtle. Consider a
CSMA/CD system with an extent of D meters and
N stations distributed uniformly over that extent.
Without using bridges, all N stations have to
share the resources of that one LAN extended
over D meters. The delay and capacity are deter
mined by the applied load, as described above . If
added in the center of the system, the Ethernet
will be partitioned into two Ethernets, each with
N/2 stations . Thus the collision windows on
each partition have been cut in half. The smaller
collision windows cause less bandwidth to be
wasted per collision. The net effect on the sys
tem is not only to reduce the load applied to a
given Ethernet (through filtering) , but also to
improve the overall efficiency or capacity of that
Ethernet since the extent it must cover is smaller.
In effect, the Ethernet gets more efficient as the
load applied to it is reduced. Given these factors,
along with performance information characteriz
ing the behavior of the Ethernets under load, the
bridge designer can investigate the performance
of bridged networks using these LANs.4•22

The remaining section of this paper discusses
the I.ANBridge 100, which is an implementation
of the Extended LAN Architecture.

Development of the LANBrldge 100
The bridge architecture was developed in paral
lel with the first implementation of that architec
ture . An Ethernet-to-Ethernet bridge , was
designed as a prototype to demonstrate the use
fulness and practicality of the bridge concept.
This was called the "Brooklyn Bridge." The pro
totype hardware and software were operated in a
laboratory environment. After some operating
for a time, the prototype was installed in Tewks
bury, Massachusetts, between an Ethernet and
Digital's Engineering Network (ENet). This pro
totype led to a full-scale product development
project, called Janus, that resulted in the LAN·
Bridge 100.

The prototype incorporated some, but not all,
of the higher-level reliability and availability fea
tures of the final LANBridge I 00 . Many of the
final features were incorporated by the product
development groups as the final product design
evolved. Another feature added in development
was a fiber-optic Ethernet extension that allows
networks to be extended farther than is possible
with the Ethernet cable alone.

66

In the following sections, the design goals and
principles of the IANBridge I 00 are discussed,
along with the trade-offs that had to be made in
the design.

Design Goals
The design of the IANBridge I 00 was guided by
one primary principle: The bridge characteristics
should not cause the performance of the
extended network to degrade. Network conges
tion could cause such a degradation, but not the
bridge. Therefore, the bridge had to have suffi
cient processing power to receive any possible
stream of incoming traffic and make the correct
forwarding decisions. If some or all traffic is to
be forwarded, the bridge must queue it for for
warding. If the outbound Ethernet is congested,
however, it may be impossible to forward the
packets and some or all may eventually have to
be discarded. This is a problem of network uti
lization, however, and not bridge design.

Although a bridge must discard packets during
periods of prolonged congestion, it should not
discard traffic during periods of transient conges
tion. Therefore, the bridge must provide suffi
cient buffering to prevent packet loss during the
traffic peaks occurring in any properly operating
LAN. When the individual Ethernets are operat
ing close to saturation, any LAN's performance
will be generally unsatisfactory regardless of
the presence or performance of bridges. When a
LAN is operating in the range in which good
performance can be expected, transient conges
tion may still occur. In this case, packet loss
in bridges can be avoided with a bounded
amount of buffer memory, an amount that can be
predicted.

Since bridges can be installed in series, the
issue of store-and-forward latency becomes
important. In varying degrees, higher-level pro
tocols are intolerant of delay; therefore, store
and-forward delay must be kept to a minimum.
Ideally, this delay should be equal to the packet
reception time; however, some additional time is
needed to make the forwarding decision. Even if
the decision process were partially overlapped
with the packet reception, this decision could
not be made until aft er the frame che ck
sequence (FCS) had been received at the end of
the packet. The nature of the applications in
which bridges were expected to be used led us
to choose I 00 microseconds as the maximum
latency for minimum-sized packets. Of course,

Digital TecbnlcalJournal
No. 3 September 1986

longer packets will have a greater store-and-for
ward delay, proportional to their length.

A bridge must be able to store information
about the location of the stations attached to its
IAN. If insufficient room exists to store all the
stations in the station database, the bridge must
forward messages for any station that did not fit.
This situation leads to inefficiency in the opera
tion of the IAN, since traffic may be forwarded
unnecessarily. Based on trends in network appli
cations , we judged it unlikely that a single
extended IAN would grow to over 8000 simulta
neously active stations within the lifetime of this
product. Therefore, the storage limit was set at
8000 station addresses.

In addition to providing a low packet loss rate
and efficient filtering, a bridge should not con
tribute significantly to the data error rate of the
extended IAN. Even more importantly, an unde
tected bit error corrupting a packet while it is in
a bridge should be detected at the destination
station. This detection can be ensured to a high
probability by forwarding the received cyclic
redundancy check (CRC) instead of generating a
new CRC in the bridge.

It is essential that a bridge be reliable and
available, since it is as important in an extended
IAN as in the Ethernet cable itself. Therefore, the
lANBridge 100 had to power up and operate cor
rectly without the intervention of any person or
other machine. Since a bridge is important to the
proper operation of an extended IAN, a mecha
nism to ensure high network availability was also
required. Parallel standby bridges provided that
mechanism. The bridges also had to be able to
detect and correct for many unworkable configu
rations , such as looping topologies, that might
result from installation errors.

Although a bridge must operate without inter
vention, a network manager should be able to
observe parameters and counters associated with
the bridge's operation. He should also be able to
alter some of those parameters . A centrally
located bridge is an ideal place from which to
observe activity in order to isolate faults and
gather information. That information can then be
used to make decisions about changes and
enhancements to the particular network configu
ration.

Of course, all these goals should be met with a
cost as low as possible. Although a bridge pro
vides many valuable features , it nevertheless
competes with single Ethernet cables, with

Digital TecbnkalJournal
No. 3 September 1986

repeaters, and with routers. To be successful, the
lANBridge 100 had to be perceived as having a
cost/performance advantage relative to those
other options.

Design Principles
Designing the lANBridge 100 hardware started
with the premise that a general-purpose
microprocessor is often the most cost-effective
method for implementing several complex func
tions in a single system. Microprocessors are flex
ible and economical because the same set of
hardware logic can be used to perform many dif
ferent functions under program control. For any
given technology, however, they are rarely as fast
as dedicated logic. Therefore, the bridge was
designed to implement as many functions as pos
sible in microcode; special hardware logic was
used only for time-critical functions.

With a sufficiently fast microprocessor, apply
ing the principles above to the I.ANBridge 100
requirements resulted in the high-level block
diagram shown in Figure 5. This diagram is use
ful for understanding the general principles of
bridge operation and represents the first pass at
the I.ANBridge 100 design.

Of course, this design was based on the
hypothesis that some available microprocessor
was fast enough to do all the required work in
the allotted time. In reality, some hardware assist
was required. Moreover, the memory sizes and
the implementations of the Ethernet interfaces
had not been considered. These complicating
factors are now examined in more detail, along
with the trade-offs that were required.

Processor and Support Logic
A preliminary performance analysis of the

bridge design in Figure 5 showed that all bridge
functions , except associating network addresses
with forwarding information, could be handled
by several available microprocessors. Assuming
that this exception could be performed by exter
nal logic, it was possible to consider other price
and performance requirements and select the
most suitable processor.

In this design, the microprocessor is directly
involved in making forwarding decisions, but
with hardware assistance. It also coordinates the
packet-forwarding process, although actual data
movement is the responsibility of the Ethernet
interface logic . Thus the microprocessor has
some stringent real-time requirements. Further-

67

New Products

The Extended Local Area Network Architecture and LANBrldge 100

MICRO-
PROCESSOR

I I
PROGRAM

ETHERNET
PACKET ETHERNET ETHERNET ADDRESS MEMORY

MEMORY MEMORY INTERFACE INTERFACE

ETHERNET

LAN

ETHERNET

LAN

Figure 5 High-level Block Diagram

more, it must have additional time available to
perform other functions, such as updating timers
and running the spanning-tree algorithm to cor
rect possible faulty network configurations. At
power-up or system reset, the microprocessor
must verify via diagnostic code that the entire
system is operating correctly.

The design of the real-time code paths was
fairly straightforward. It was written in a detailed
outline form for a generic processor. That
allowed us to understand the requirements and
select a processor with enough power. From
this design , it was quite clear that a high
performance microprocessor was required. The
10-MHz MC68000 chip from Motorola, Inc., was
chosen based on its available power and attrac
tive price.

In this design, the microprocessor has a private
memory. Thus instruction and local-data access
will not conflict with packet data flowing to and
from the two Ethernet interfaces. Some of this
memory is ROM, which contains all the code
needed by the bridge to be fully functional on
power-up. The bridge also contains RAM, used as
a writeable data area. There is a small amount of
nonvolatile RAM (NVRAM), which stores system
specific parameters that must survive power fail
ures and be available on the next system start-up.

Ethernet Interface
The Ethernet interface is a complex function that
is implemented most economically in VLSI. The
interface can be implemented at the board level,

68

but only at considerably greater expense. Since a
VLSI implementation was clearly the most attrac
tive option, we explored a number of alternative
sources for it.

Data integrity is one of the more important
considerations in designing a bridge. In particu
lar, the bridge should not cause undetectable
data errors in a packet delivered to a destination
station. This injunction implies that either the
packet memory in the bridge must have a very
low probability of error or the original CRC gen
erated by the source station must be forwarded
with the packet. If the original CRC travels
through a bridge with the packet, then any
packet memory errors will be detected as trans
mission errors at the destination station.

The only available chip set that allowed pack
ets to be transmitted without a recalculated and
appended CRC was one made by Advanced Micro
Devices Corporation. This chip set was called
IANCE (Local Area Network Controller for Ether
net) . Although other considerations were impor
tant, this very important capability was the
deciding factor in our selection process.

Network Address Look-up
The network address look-up mechanism is one
of the most interesting aspects of the LAN
Bridge 100 design. Upon receiving a packet, the
bridge must locate the information associated
with its destination address so that a forwarding
decision can be made. In addition, the source
address must be added to the database unless it

Digital TecbnlcalJournal
No. 3 September I 98 6

has already been added. Therefore, two 48-bit
network addresses must be located for each
packet received. It cannot be assumed that the
48-bit source and destination addresses found in
various packets have any known relationship to
each other. On the other hand, the addresses are
likely to occur in groups because each of the var
ious equipment manufacturers has been assigned
a block of addresses. The look-up function must
occur quickly,. since only a small portion of the
time available for processing each packet can be
devoted to this one function.

There are several possible techniques for look
ing up network addresses. One straightforward
approach is based on a software search per
formed by the microprocessor. With this tech
nique , the microprocessor fetches a network
address from a packet and then searches the data
base. Even with efficient search algorithms and
the fastest available microprocessor, however,
this technique is much too slow, especially
when.the database is filled to capacity.

A second .approach, also based on software, is
to use the source or destination address as an
index into a.table. This technique has the advan
tage of being fast; yet, it is quite impractical,
since the table length would be almost 280 bil
lion (248) entries.

A third solution is hashing, which might be fast
enough in software and could also be easily
implemented in hardware. In this technique,
48-bit addresses are transformed by an arithmetic
function to a hash address with a smaller maxi
mum value of the address. For example , if
the maximum hash value were 216 , a direct
table look-up could be .performed, using the
hash address as an index. The disadvantage of
hashing is that the distribution of network
addresses is not known a priori; therefore, many
network addresses could translate to the same
hash address. This duplication could result
in either unnecessary forwarding or incorrect
filtering.

Thus all three software solutions were unus
able. It became clear that some type of hardware
assist was required. The most attractive hardware
assist from the standpoint of speed and ease of
use was content addressable memory (CAM) .
Unfortunately, the available CAMs were best
suited for use in cache memory applications,
since they are small and faster than needed (thus
. more expensive) . These CAMs also do not scale
,well in width; for example, 8-bit wide CAMs can-

DJglbd 'Ceclmlc.al Journal
No. 3 September 1986

not be easily used in parallel to form a 16-bit or
a 48-bit wide CAM.

The only feasible alternative remaining was to
employ a hardware-assisted search using eco
nomical, commercially available memories for
data storage. Binary search was chosen as the
search algorithm. This search technique is fast
since it requires at most log(n) probes, where n
is the number of entries in the table. Unfortu
nately, the table must be kept sorted in numeric
order. That is not a severe disadvantage, how
ever, since the table can be sorted in place with
out interrupting search operations.

In the I.ANBridge 100, the search function is
performed entirely in hardware at the request of
the microprocessor. The microprocessor loads
the search hardware, or binary search engine,
with network addresses fetched from a packet.
The engine then runs in parallel while the pro
cessor does other work. After 3.9 microseconds,
the microprocessor logic returns to read the
results of the search.

Although searching is a hardware function, the
microprocessor uses software to order the table
of network addresses. Reordering must be done
only when new stations are added or when inac
tive stations are removed. These events happen
relatively infrequently, and analysis and experi
ence have shown that software is fast enough not
to hinder operations. If there are several changes
in a short time (for example, during the initial
learning period) , they are cached and added, at
lower priority, to the search table.

Packet Memory Size
Upon determining that a packet received on one
Ethernet should be forwarded to another Ether
net, the I.ANBridge 100 must queue the packet
for transmission. Since Ethernet is a shared chan
nel, the bridge must provide buffering to store
all packets that might be queued while the Ether
net is busy with traffic from other users. The
amount of buffer memory must be large enough
to avoid excessive packet loss resulting from
buffer exhaustion, yet small enough to be cost
effective. ,

Over the long term, if the average traffic gener
ated by a bridge and other users on a single Ether
net exceeds the total capacity, only an infinite
amount of memory will prevent packet loss. In
this case latency will increase without bound.
This situation is rather uninteresting from the
standpoint of bridge design. The system user will

69

New Products

The Extended Local Area Network Architecture and LANBrldge 100

have exceeded not only the capabilities of any
realizable bridge, but of the underlying network
technology as well. However, there is the more
interesting question of the magnitude and dura
tion of traffic transients in real networks, and the
amount of memory required to avoid packet loss
during those transients.

The size of the bridge memory can be bounded
if one notes that most high-level protocols built
on a datagram service like Ethernet expect timely
packet delivery. If the delivery of a packet is
delayed excessively, these protocols treat the
packet like a lost datagram and retransmit it. In
these circumstances forwarding the original
copy has the undesirable effect of generating
multiple copies, thus increasing network con
gestion. One way to avoid this problem is to
employ the concept of maximum packet life
time. This concept is enforced by the bridge and
can be used to place an upper limit on bridge
memory requirements. Unfortunately, even a
rather short packet lifetime requires large
amounts of memory. For example, a lifetime of
two seconds requires five megabytes of memory
(lOMB/second X 2 seconds X 2 directions + 8) .
Although declining costs may make memories of
this size practical in the future, packet lifetime
could not be used to size memory for this
product.

Another way to size bridge memory is to simu
late the behavior of the system under various
workloads. The IANBridge 100 can be modeled
rather easily if one notes that the bridge takes less
time in deciding to discard or forward a packet
than the packet takes to transmit. In this case the
forwarding operation wi11 not be a bottleneck,
and the receive buffers will never hold more
than one packet. The transmit buffers, however,
will be emptied at a variable rate depending on
the load on the Ethernet.

We considered four different workloads: the
first based on an existing timesharing environ
ment, the second on a file transfer application,
the third on a process control system, and the
fourth on a hybrid of office and process control.
The results showed that I 6KB of memory (in
each direction) was inadequate. Increasing the
memory size beyond 64KB gained very little in
terms of performance. Therefore, since 64KB
memories were readily available, a 16-bit mem·
ory bus provided the required 128KB in a conve·
nient and cost-effective manner.

70

Packet Memory Performance
The packet memory system in the bridge was
designed to handle worst-case conditions with·
out allowing overruns, underruns, or processor
memory cycle starvation. The worst case occurs
when both Ethernet interfaces are continuously
receiving but not forwarding Ethernet packets of
the minimum size (64 bytes) . The packet source
and destination addresses are examined only
when a packet is received. Therefore, if the pack
ets were forwarded, fewer memory cycles would
be required. If the packets were longer, the
number of memory cycles needed to deal with
buffer descriptors would be reduced, since
more data would be contained in each buffer.
Under worst-case conditions, the memory must
transfer approximately 108 16-bit words per
minimum packet time (63.3 microseconds) .
When the required memory refresh cycles
are also included, one memory cycle takes
580 nanoseconds.

The packet memory system must also provide
low-latency microprocessor access so that valu
able CPU cycles are not lost because of packet
memory wait states. Since the I.ANCE chips are
burst-transfer direct memory access (OMA)
devices, any shared bus system would have an
inherently unacceptable latency. Therefore, after
some analysis, a four-port memory system was
chosen: a port for each I.ANCE, a port for the
CPU, and a port for the refresh operation. The
memory is fully buffered so that the RAMs them
selves cycle every 300 nanoseconds, even
though the I.ANCE has a 600-nanosecond mini
mum cycle time, and the CPU has a 400-nanosec
ond minimum cycle.

1be Final LANBrldge 100 Design
A high-level block diagram of the final LAN
Bridge 100 design is shown in Figure 6. Its logic
is quite similar to the original prototype design
in Figure 5. The primary change was the addition
of hardware to assist in locating forwarding infor
mation. In addition, the single bus has been
divided into several buses to increase the total
bandwidth of the system.

Summary
The IANBridge 100 is the first product to imple
ment Digital's Extended I.AN Architecture. With
this product, customers may easily expand
beyond the confines of a single Ethernet to an

Digital TeclmkalJoswnal
No. 3 September 1986

MC68000
MICROPROCESSOR

I
I I I I

BINARY
MEMORY ROM SEARCH LANCE LANCE

CONTROL CONTROL

RAM I
ETHERNET

PACKET
NVRAM ADDRESS

RAM RAM

ETHERNET

LAN

ETHERNET
LAN

Figure 6 High-level Block Diagram with MC68000

extended network with as many as 8000 active
stations. Up to eight Ethernets may be intercon
nected in series (22,400 meters of cable). Aggre
gate bandwidth will increase proponionally with
every added Ethernet, and usable bandwidth will
also increase substantially in many application
environments.

The Extended LAN Architecture itself is now
a key part of Digital 's networking strategy.
As exemplified in the LANBridge 100, this
architecture permits substantial expansion in
the physical limits of a given LAN technology.
These physical dimensions include geographic
extent, number of stations, and aggregate band
width. Bridges implementing the Extended
LAN Architecture also p rovide in creased
availability as a result of the spanning tree
algorithm and the standby operation mode. The
transparent operation of high-performance
bridges enhances significantly the capabilities
and services offered by both Digital and non
Digital equipment.

The Extended LAN Architecture also provides a
unifying mechanism in networks composed of
multiple homogeneous or heterogeneous LANs.
The bridge concept may be extended to inter
connect LANs with different physical layers, such
as baseband and broadband Ethernet. Within cer
tain constraints, it may also be used to intercon
nect dissimilar LANs.

Digital TecbnlcalJournal
No. 3 September 1986

The origins of the LANBridge 100 and the
Extended LAN Architecture may be traced to a
project whose original goals only vaguely recog
nized the need for such a mechanism. Both the
product and architecture are the result of gather
ing and analyzing customer requirements, fol
lowed by applying innovative design techniques.

Acknowledgments
The authors would like to acknowledge the other
members of the original project team. In addi
tion, the work of Bob Shelley and Tony Robillard
was instrumental in the design and construction
of the bridge breadboard . Tony Lauck, Radia
Perlman, George Varghese, Mike Soha, as well as
the the entire I.ANBridge 100 development team
provided invaluable additions and insight to the
architectural process.

References
1. B. Stewan and W. Hawe, "Local Area Net

work Applications," Telecommunica
tions (September, 1984): 96f-96u.

2. IEEE Project 802 Local Area Network
Standards , "IEEE Standard 802.3 CSMA/
CD Access Method and Physical Layer
Specifications," Approved IEEE Standard
802.3-1985 , ISO/DIS 8802/3 (July
1983).

71

New Products

The Extended Local Area Network Architecture and LANBrldge J 00

3. W. Bux, " Local-Area Subnetworks: A Per
formance Comparison," IEEE Transac
tto ns on Communications , COM-29
(10) (October 1981): 1465-1473.

4. W. Hawe and M. Marathe, " Predicting Eth·
ernet Capacity-A Case Study," Proceed
ings of the Eighteenth Computer Perfor
mance Evaluation Users Group Con
ference (October 1982): 375-388.

5. IEEE Project 802 Local Area Network
Standards , "IEEE Standard 802.4 Token
Passing Bus Access Method and Physical
Layer Specifications," Approved IEEE
Standard 802 .4-1985, ISO/DIS 8802/4
(December 1985).

6 . IEEE Project 802 Local Area Network
Standards , "IEEE Standard 802.5 Token
Ring Access Method and Physical Layer
Specifications," Approved IEEE Standard
802.5-1985, ISO/DIS 8802/5 (December
1985).

7. B. Stewart, W. Hawe, and A. Kirby, "Local
Area Network Connection," Telecommu
nications (April 1984): 54-66.

8 . W. Hawe, A. Kirby, and B. Stewart, " Trans
parent Interconnection of Local Networks
with Bridges," Journal of Telecommuni
cations Networks , vol. 3, no. 2 (Summer,
1984): 116-130.

9 . W . Hawe, A. Kirby, and A. Lauck, " An
Architecture for Transparently Intercon
necting IEEE 802 Local Area Networks,"
Digital Equipment Corporation technical
paper submitted to IEEE 802 Standards
Committee, IEEE Document Number
IEEE-802.85.1.96 (October 31, 1984).

10. B. Mann, C. Strutt, and M. Kempf, "Terrni·
nal Servers on Ethernet Local Area Net·
works,'' Digital Technical Journal (Sep
tember 1986, this issue) : 73-87.

11 . DNA Phase IV Routing Layer Specifica
tion, Version 2 .0.0 , (Maynard: Digital
Equipment Corporation, Order No. AA·
X435A-TK, 1982).

12. Internet Transport Protocols (Rochester:
Xerox Corporation, Order No. XSIS
02811 2, 1981).

13. R. Callon, "Internetwork Protocol," Pro
ceedings of the IEEE, Special Issue on

72

Open System Interconnection (Decem
ber 1983): 1388-1393 .

14. W. Hawe and G. Varghese, " Extended
Local Area Network Management Princi
ples," Digital Equipment Corporation
technical paper submitted to IEEE 802
Standards Committee, IEEE Document
Number IEEE-802.85. 1.98 (October 31 ,
1984).

15. R. Perlman, "An Algorithm for Distributed
Computations of a Spanning Tree in an
Extended LAN," Digital Equipment Cor
poration technical paper submitted to
IEEE 802 Standards Committee, IEEE Doc·
urnent Number IEEE-802.85.1.97 (Octo·
ber 3 1, 1984) .

16. R. Jain and R. Turner, "Workload Charac
terization Using Image Accounting," Pro
ceedings of the Eigteenth Computer Per
formance Evaluation Users Group Con
ference (October 1982): 111-1 20 .

17. The Ethernet: A Local Area Network,
Data Link Layer and Physical Layer
Specification, Version 2. O (Digital Equip·
rnent Corporation, Intel Corporation, and
Xerox Corporation, Order No. AA·K759B·
TK, November 1982) .

18. R.M. Metcalf and D.R. Boggs, " Ethernet:
Distributed Packet Switching for Local
Computer Networks," Communications
of the ACM, vol. 19 Quly 1976): 395-
403.

19. R. Jain and W. Hawe, " Performance Analy·
sis and Modeling of Digital 's Networking
Architecture,'' Digital Technical Journal
(September 1986, this issue): 25-34 .

20. M. Gerla and L. Kleinrock, "Flow Control:
A Comparative Survey," IEEE Transac
tions on Communications , vol. COM·
28, no. 4 (1980): 553- 574.

21. R. Jain and S. Routhier, " Packet Trains:
Measurements and a New Model for Corn·
puter Network Traffic," IEEE journal on
Special Areas in Communications
(Forthcoming, September 1986).

22. F. Tobagi and V. Hunt, " Performance
Analysis of Carrier Sense Multiple Access
with Collision Detection, " Computer
Networks , vol. 4, no. 5 (OctoberjNovem·
ber 1980): 245-259.

Dlgllal Tecbnkal]ounral
No. 3 September 19 86

Bruce E. Mann I
Colin Strutt

Mark F. Kempf

Terminal Servers on
Ethernet Local Area Networks

Digital's terminal servers provide flexible, cost-effective connections
between terminals and host systems in a local area network (LAN). The
product developers tried several approaches before developing the Local
Area Transport (LAT) protocol as the basis for all terminal servers. The
LAT architecture supports connections to multiple hosts over a high
bandwidth Ethernet LAN. LAT establishes a single virtual circuit between
a terminal server and each host, and individual sessions are multiplexed
over a virtual circuit. A unique directory service permits terminal servers
to be configured automatically, learning about hosts as they become
available. The latest implementations support mixed-vendor environ
ments and Digital's major operating systems.

The Origin al, Problem
In 1981, Digital faced the task of designing a
method for connecting a few hundred "dumb
terminals" and printers to a VAXcluster system.
If, as in the past, the terminals were connected to
a single computer, then many of the advantages
of clustering would be negated. Instead, it was
proposed that terminals be connected to a
"front-end" terminal server shared by all mem
bers of the cluster. This front end would then
allow more flexible connections. A user termi
nal, for example, could connect to any processor
in the VAXcluster group, rather than directly
connecting to just one. Our goal was to migrate
our existing installed terminal base gracefully
from single-processor attachments to VAXcluster
systems.

The original effon to provide this server was
called the CI-Mercury project by our develop
ment groups. We aimed to attach this terminal
server directly to the high-speed cluster inter
connect, called the CI, so that the server func
tioned as a switch. However, the cost of this
scheme proved to be excessive. (The cost for the
interface to the CI itself was about $20,000.)
Moreover, a connection to the CI would have
resulted in a server that could connect only to
nodes in a single cluster.

We also studied other vendors' switch offer
ings as front-end terminal switches. These prod
ucts function much as do the dataswitch prod-

Digital Tecbnlcal]ournal
No. 3 September 1986

ucts available today; that is, backplane multi
plexers on the CPUs are switched to the termi
nals. The problems with this approach were
excessive cost, the lack of Digital technology in
this product area, and poor availability.

Because of these complexity and cost factors,
the original CI-Mercury project was replaced
with one called Pluto. This project envisioned
using an Ethernet as the interconnect , thus
lowering the attachment cost dramatically.
This server was based on a PDP-11 central pro
cessor, and we chose a variant of the RSX-1 lS
operating system for the initial kernel software.
The lower-layer communications protocols used
between Pluto and the VAXcluster nodes were
the DECnet protocols, successfully used in other
products.

We believed that Pluto could be cost effective
in large installations; however, its initial cost was
too high to be competitive in smaller configura
tions. This cost factor was especially important as
Ethernet became an integral part of Digital 's
strategy. With Ethernet, it became practical and
cost effective to distribute small terminal servers
throughout an office environment rather than
concentrating all terminal interfaces in a large,
centrally located server. Therefore, in late 1981 ,
work began on an eight-line terminal server, the
primary goals being low cost and high perfor
mance. Internally, this project was dubbed Pluto
Junior, later called Poseidon.

73

Terminal Servers on Ethernet Local Area Networks

Late in 1983 , significant problems were
encountered in the design of the Pluto and Posei
don terminal servers. The CTERM protocol, a
new design of a layered DECnet protocol off
loading character-processing overhead from the
host to the terminal server, proved to be more
complex than anticipated. Measurements of mes
sage-processing overhead and estimates of the
overhead in the DECnet-VAX software showed
that CPU consumption in the host system would
be a problem for keystroke editors. Existing stud
ies showed that terminals were used in keystroke
modes, rather than command-line modes, more
than fifty percent of the time. Moreover, the
Pluto server itself was experiencing severe per
formance problems. For example, CPU satura
tion occurred when running less than six termi
nals at 9600 baud, even when the terminal
interfaces used direct memory access (DMA) .

Finally, a number of issues, not considered
during the requirements phase, became more
apparent:

• How could a V AXcluster system be viewed as
a single system rather than as individually
addressable nodes?

• How could the terminal load be balanced
across nodes in the VAXcluster system?

• How could the management of the terminal
servers be automated?

Thus the use of the CTERM protocol for terminal
servers in both Pluto and Poseidon was halted.

(In fact, the Pluto project with an RSX kernel
was used successfully as the basis for a number of
different servers in the Ethernet Communica
tions Server, or DECSA, family, including the
DECnet Router, DECnet RouterjX.25 Gateway,
and DECnet/SNA Gateway products. The same
hardware base, though with a completely rewrit
ten software kernel , formed the basis for the final
Ethernet Terminal Server.)1

However, the original task still remained;
therefore, an alternative solution was proposed,
based upon work done using a new architecture
called local area transport (IAT) . The IAT solu
tion involved three essential components that
were unique to that architecture:

• A new transport and naming architecture to
replace the DNA routing, transport, and ses
sion layers

• A new operating system for the terminal server

• A new " port" driver for the terminal driver of
the VMS operating system

74

lbe Development of LAT
In late 1981 , the prototype of the original IAT
server was developed on a VTl 03 terminal
server, which contained a small Q-bus backplane
with a PDP-11/ 23 system and an Ethernet con
troller. (An Ethernet controller made by 3COM
Corporation was used since Digital had no Ether
net products available at that time.) This early
work involved quantifying the maximum charac
ter-echo delay that a person could comfortably
tolerate. We learned that an experienced touch
typist encounters difficulties when the echo time
exceeds 100 milliseconds. By extrapolating from
this fact, we deemed that the network and CPU
efficiency of the entire IAT subsystem should be
dramatically improved. The approach was to
" procrastinate" for up to 80 milliseconds after
characters were received from the terminals at
each server. This delay had the very desirable
effect of reducing the number of messages pro
cessed by the Ethernet, the host systems, and the
terminal servers. (Eighty milliseconds is imple
mentable as a multiple of either the 60-Hz line
frequency clock common in the United States or
the 50-Hz line-frequency clock common in
Europe and other countries.)

In early 1982 , we created a VMS driver
(LTD RIVER) using a dedicated Ethernet
controller to support the IAT server prototype.
By April 1982, log-in to a VMS system from
a server was achieved; about two weeks later,
the performance relative to the then current
multiplexer, the DZ-11 , was measured . The
IAT connection was easily able to outperform
the DZ-11 (a programmed-interrupt controller)
under a wide variety of loads . Under many
loads, the IAT connection was shown to outper
form the DMF-32 (one of a number of DMA
controllers) .

In early summer 1982 , we converted
LTDRIVER to the shared Ethernet port driver.
This conversion allowed a single Ethernet con
troller to be used simultaneously for IAT soft
ware , and DECnet and other communications
software. Unfortunately, this change yielded a
significant performance degradation. At this
time, however, the VMS Development Group was
designing a lower-level program interface to the
Ethernet driver that would allow system-level
VMS usage of the Ethernet. Currently, this inter
face is used to implement VAXcluster support via
the Ethernet.

Dlgllal TecbnlcalJournal
No. 3 September 1986

By late 1982, we decided to include both IAT
and CTERM support in the Pluto terminal server,
but only IAT support in Poseidon. In addition,
the original code from the prototype Vfl 03 ter
minal server was migrated to a UNIBUS PDP-11
system; this code was called IAT-11.

By early 1983, a significant number of VMS
developers were using the prototype IAT-11
servers. This software was maintained by the IAT
developers. It was important that the software
worked reliably since the VMS developers were
using it in developing the VAXcluster software.

As noted earlier, the original development
team for the CTERM terminal server on Pluto
experienced a number of problems. Therefore,
in early 1984, a new terminal server was imple
mented on Pluto, based on the IAT-11 code and
not on the RSX software. This new server, con
taining software only from IAT, was referred to
internally as Plato.

The prototype IAT-11 code was developed
into a product to run on version 3. 7 of the VMS
system. This product became available in July
1984, somewhat before VMS VAXcluster support
appeared in VAXfVMS version 4.0. One month
later, the Ethernet Terminal Server, the product
name for the Pluto terminal server, became avail
able. The risk of having the VAXcluster offering
adversely affected by an unproven terminal
server was limited by releasing it with the earlier
version of the VMS system. Thus we took advan
tage of extensive "free" testing from over 1000
internal users.

In March 1985, the DECserver 100, the pro
duct name for the Poseidon terminal server, was
released. The DECserver 100 implementation
was radically different from the other terminal
servers.

DECserver 100
Although the Ethernet Terminal Server and
IAT-11 products provided the benefits of server
based terminal interconnect, they did not fully
implement Digital's terminal server strategy. For
server technology to become pervasive, it must
compete with other terminal connection meth
ods on the basis of cost alone. In cluster and
multi-host systems, servers provide necessary
and desirable added functions . Therefore, they
should be compared with other connection
methods by assigning some value to the addi
tional features and then using cost/performance
as the deciding factor. In small single-system

Digital TecbnlcalJournal
No. 3 September 1986

environments, the added features of server tech
nology are not necessarily perceived as adding
value; then cost becomes the sole factor for com
parison. Digital's servers are at a disadvantage in
this situation because they offer features that cost
more. Digital must pursue a dual path to develop
servers for some applications and to maintain and
expand backplane terminal interfaces for others.

As noted earlier, we knew that the Ethernet
Terminal Server could compete effectively on
cost alone for large numbers of terminals; for
smaller configurations, however, it could com
pete only on the basis of greater functionality. Its
fixed cost is relatively high, although the incre
mental cost for each terminal added is low. Thus
we started to design a low-cost terminal server.

The first decision we made was an important
one: the product would be a local terminal
server and nothing more. Telephone data lines
usually terminate inside computer rooms. There
fore, Pluto, which is suited to computer room
configurations, already filled the need for a ter
minal server with modem control capabilities.
Poseidon was specifically designed to be dis
tributed along an Ethernet throughout an office
environment, near the attached terminals. Of
course, multiple Poseidons could also be used in
wiring closets and computer rooms.

We also believed that Pluto already provided a
hardware base for other communication server
applications; therefore, Poseidon need not sup
port applications other than terminal serving.
Although often desirable from the standpoint of
the company's total product set, generality is
also the archenemy of low cost. Hardware that
serves many functions also has capabilities that
are unused in some applications. Those unused
capabilities represent a cost from which no bene
fit is derived when an isolated application is
viewed.

On the other hand, hardware designed for a
particular application can optimize cost and per
formance by eliminating any unnecessary capa
bilities. The Ethernet Terminal Server and DEC
server 100 illustrate both ends of this spectrum.
The hardware base for the former functions in a
number of general roles related to communica
tions, such as the DECnet Router or DECnet/ SNA
Gateway products. Consequently, this product
has a high entry cost, but a low incremental cost
as each terminal is added. The DECserver 100,
being a specialized server, has a low entry cost as
well as a low incremental cost.

75

New Products

Terminal Servers on Ethernet Local Area Networks

A second equally important decision was made
early in the project: the product managers
defined and then enforced a very aggressive cost
goal in terms of dollars per connection. That goal
was set in two passes. In the first, the engineers
did a preliminary cost analysis, taking into
account competitive pressures and currently
available technology. In the second, the product
managers decided the original goal was too high,
lowered it, and then challenged the engineers to
meet it. This challenge gave the engineers every
incentive to squeeze cost out of the design.
Although some cost reductions seemed quite
insignificant and not worth the effort, in the end
the old adage of " watch the pennies and the dol
lars will watch themselves" proved to be true.
The insistence ori meeting the cost goal also pre
vented us from adding "bells and whistles," with
their associated costs and complexity, to the
requirements list as the project progressed.

Starting system design, we immediately faced
an inescapable trade-off in the design options. In
the ideal case, the cost per terminal to connect a
single isolated terminal should be the same as
cost per terminal to connect, say, 16 terminals.
That is, the cost steps should be uniform as ter
minals are added to the system. Unfortunately,
some of the costs in a server system are essen
tially fixed. For example, the power and packag
ing costs are approximately the same whether a
server accommodates one terminal or four .
These fixed costs result in a relatively large ini
tial cost step, followed by smaller steps as termi
nals are added, followed by another large step
when an additional server is added. We realized
that a compromise was needed between step size
and the potential for amortizing fixed cost over
several terminals. As the design progressed, we
decided that eight terminals per server provided
an acceptable step size that allowed us to meet
the cost-per-line goal.

Work started on the hardware design with
a clear cost goal, but with no preconceived
requirements for the implementation. It seemed
fairly obvious that an eight-line server could be
built on a single printed circuit board. Since
there is a substantial expense simply in connect
ing multiple boards, we decided very early that
directly incorporating any pieces of existing
products was too expensive. The server would
be a single board designed from scratch ,
although we were free to borrow design ideas
from other products. We also decided to use only

76

high-volume, and therefore inexpensive, compo
nents where possible - a decision driven par
tially by the desire to shorten the design time.

After these decisions, work started in earnest.
One of the most important issues was making
sure there was enough processing power. Since
we had confined the problem to a specific appli
cation, we could size the processing require
ments quite accurately. Pluto had to deal with
many potential applications and an expandable
number of terminals, Poseidon with exactly one
application and eight terminals. Pluto has one
main processor with assist processors added as
terminals are added; Poseidon did not have to
expand and needed only one processor if it had
sufficient power. At this time, several extremely
powerful 16-bit processors became generally
available. We evaluated them, including some
from Digital as well as other vendors. Since
Poseidon would not be programmed by cus
tomers, the extensive PDP-11 and VAX instruc
tion sets were not really needed. We decided
finally to use the Motorola 68000 chip, which
was the lowest cost, most readily available
microprocessor with sufficient power.

As the design progressed, we considered every
possible cost reduction option. For example, the
dynamic RAMs are refreshed by software since
sufficient processing time exists to do that; the
cost of refresh hardware could thus be elimi
nated. Chips were selected to perform multiple
functions whenever possible. For example, the
terminal interface (UART) chips have integral
timers used to control the software refresh, the
timer interrupt, and the watchdog timer. Essen
tially, the interrupt logic uses very little external
logic to turn around the interrupt priority level
to generate the vector address.

Thus the design resulted in an extremely low
cost, fixed-function terminal server, the DEC
server 100, which has proven to be, by far, the
most popular member of Digital's terminal
server family. Figure 1 depicts the initial I.AT
product.

The LAT Architecture

The LAT Protocol
One initial goal of the I.AT architecture was to
connect terminals to host systems using the Eth
ernet as a data link. Even today, I.AT is still used
primarily for connecting terminals to hosts.
However, its application has spread to connect-

Digital TecbnlcalJournal
No. 3 September 1986

VAX/VMS
HOST

DECserver 100

TERMINALS

VAXcluster SYSTEM

ETHERNET
TERMINAL
SERVER

TERMINALS DIAL-IN
MODEMS

Figure 1 Initial LAT Product

ing other asynchronous devices, such as printers
or links to hosts other than those directly con
nected to an Ethernet.

The goals of the IAT protocol are as follows:

• To permit dumb terminals to be connected to
multiple hosts

• To be a transparent character transport mecha
nism (implying that character echo must be
performed by the host and not by a server)

• To support a high-bandwidth LAN technology
(specifically the Ethernet)

• To use a fixed maximum bandwidth that is
much less than the total LAN bandwidth ,
which should be used in a fair and predictable
manner

• To be an efficient data link protocol, relative
to the higher-layer DECnet protocols, such as
CfERM operating in a LAN environment

• To provide for low CPU loads and memory use
on the host system at the expense of higher
CPU and memory utilization on the. terminal
servers

• To allow for simple terminal server imple
mentations, which means low-cost and high
performance hardware implementations

• To permit automatic configuration so that, for
example, servers can determine, without man
ual intervention, the names and addresses of
hosts on the Ethernet

Digital TecbntcalJournal
No. 3 September 1986

The IAT protocol makes certain simplifying
assumptions:

• Communication is local to a single logical Eth
ernet (possibly connected by repeaters and
bridges); thus no routing capability is
required.

• Communication is inherently asymmetric,
which simplifies connection management and
permits straightforward host implementa
tions.

• The bandwidth of the Ethernet (10 megabits
per second) is much greater than the band
width needed for a given terminal (e.g., 9 ,600
bits per second), so that a timer-based proto
col is appropriate.

The normal model of dumb terminal usage is
one of low-speed data entry, say a few characters
per second, and higher-speed display in bursts of
several hundred characters at a time, taking sev
eral seconds to display. In addition, a user is usu
ally sitting at his terminal while a program oper
ates at the host. IAT takes advantage of this
asymmetrical relationship. Also, the terminal
connection normally takes place at the explicit
request of the user rather than of the host system.
IA T also takes advantage of this asymmetric
aspect.

The server does not communicate characters
to a host system as they are entered by the user;
rather, it collects characters and periodically
transmits them to the host. The time interval of
this period, the "circuit timer," is quite short -

77

I New Products

Terminal Servers on Ethernet Local Area Networks

typically 80 milliseconds. With many users
connected, a host is interrupted much less often
by gathering together all the characters typed
by those users and sending them as a single
message.

The LA.T
1

protocol is divided into two distinct
layers, the virtual circuit layer and the slot layer.

Virtual Circuit Layer
The vinual circuit layer establishes and main
tains an error-free communications path (a
virtual circuit) between two nodes, typically a
terminal server and a host, that wish to commu
nicate. The connection is initiated by one end of
the communications path and operates under the
control of the initiator. However, the circuit can
be terminated by either end. Typically, the vir
tual circuit connection is initiated when the first
terminal user requests a connection to a host sys
tem to which no vinual circuit yet exists. The
initiator of the virtual circuit is referred to as the
" master node," the other end as the " slave
node." Thus the terminal server is normally the
master and the host the slave.

The establishment of a vinual circuit connec
tion requires a single message exchange. Infor
mation such as protocol versions, message sizes,
and node names are included in these messages.

Simplified View of Virtual
Circuit Operation
We start with a simplified explanation of the vir
tual circuit operation. Once established, the data
exchange occurs as follows:

• Every 80 milliseconds, the master sends to the
slave a message containing any data that must
be sent.

• On receiving this message, the slave processes
any data in that message and sends back a
reply containing any data waiting to be sent in
that direction.

• On receiving this reply, the master processes
any data that was in the message.

• Eighty milliseconds after one message was
sent, the next message is sent from the master.

The message round-trip time is typically less
than 10 milliseconds. This operation is timer
driven on the master, the terminal server, and
event driven (by message receipt) on the slave,
the host. The operation is simplified because we

78

have ignored errors that may occur in message
delivery, and we have assumed message delivery
even when there is no data to send. We will
examine the implications of these cases shonly.

The protocol as defined is, in effect, a request
response one. Such a protocol has the character
istic that only one data link buffer need be allo
cated at each end of the vinual circuit. This fact
can be imponant for hosts that need to suppon
large numbers ofvinual circuits without dedicat
ing large quantities of buffer space to that task.

The termination of a vinual circuit can occur
from either end; under normal conditions, how
ever, the master usually initiates the closing.

The LA.T protocol defines three messages at
the vinual circuit layer: the start, run, and stop
messages. Thus for a typical vinual circuit, we
might see the exchange of messages depicted in
Figure 2 (again, making the stated simplifying
assumptions) .

Knowing the built-in limits on maximum mes
sage size and the rate at which LA.T messages are
exchanged, we determined that the maximum
amount of data that can be transferred across any
vinual circuit is just under 150,000 bits per sec
ond in each direction. (In fact, the LA.T protocol
defines a method for increasing the available
bandwidth for a vinual circuit by using multiple
data link messages. To date, there has been no

TIME
(MILLISECONDS)

0

5

10

15

90

95

170

175

n

n+S

n+10

Figure 2

MASTER SLAVE

START

START

RUN

RUN

RUN

AUN

RUN

RUN

RUN

RUN

STOP

Exchange of Messages

Dlgllal TecbnkalJournal
No. 3 September 1986

need to implement this feature.) Once this max
imum has been reached, terminal users will
experience a degradation of service , shared
equally among them. As shown later, the mini
mum message exchange rate may be much less
than one exchange every circuit timer, due to
optimizations in the LAT protocol.

Removing tbe Simplifications
So far, our view of the virtual circuit protocol has
been constrained by two major simplifications.
These two are concerned with errors that can
occur on the Ethernet, and with a mechanism for
reducing traffic on the Ethernet when there
is no data to be sent. The following discussion
explains how the consequences of these simplifi
cations are taken into account.

The LAT protocol, being based on Ethernet,
presumes that the majority of packets will be
transmitted and received without errors. These
errors can be due either to corruption of data
(detected by CRC checking) or to buffering
problems at the destination node. To account for
any errors that do occur, a sequence number
must be assigned to each virtual circuit message,
and an acknowledgment of that message must be
made. No extra messages need be sent since the
sequence number and acknowledgment fields
are contained within the normal message for
mats. However, there is no negative acknowledg
ment defined by the LAT protocol for reasons of
simplicity and the low error rates experienced
on Ethernet LANs.

The Ethernet communications medium is
inherently very reliable. Therefore, whenever a
message is unacknowledged within the SO-mil
lisecond period before the next message is sent,
the cause will normally be due to either a heavy
CPU load on the host or a host crash. To avoid
compounding the problem of a transient over
load on the host CPU, LAT specifies that mes
sages are not retransmitted every 80 millisec
onds. Rather , they are retransmitted only
when they have not been acknowledged within
approximately one second. A given message will
be retransmitted a certain number of times; after
that, the conclusion can be drawn that either the
host has crashed or the communications con
trollers or medium have failed. This number is
known as the " retransmit limit."

If we can reduce the data sent over an idle vir
tual circuit, the CPU load of the host will be
reduced in tum. LAT employs a scheme whereby

Digital TecbnlcalJournal
No. 3 September 1986

each end of the virtual circuit can agree to acqui
esce for a time; a circuit in this mode is called
"balanced." Once balanced, if no data needs to
be sent for a long time, the master will eventu
ally send and the slave will then respond with
single run messages. Thus each end knows the
other is still alive. This action is called a "keep
alive" function, which takes place every 20 sec
onds by default.

If data becomes available when the circuit is
balanced, then either end must be permitted to
" unbalance" the circuit. If the master wishes to
send data, then this unbalancing operation is no
different from any normal run message that the
master may send. However, if the slave wishes to
send data, then it must send an "unsolicited" run
message that is not explicitly solicited by the
master. As with any other run message , the
unsolicited message is sequenced and must be
acknowledged by the master before the slave is
permitted to send another run message.

Thus by allowing virtual circuits to be bal
anced when there is no data to be sent, the LAT
protocol uses much less Ethernet bandwidth and
allows a corresponding reduction in the loading
of the CPU host.

The virtual circuit layer provides reliable com
munication between a pair of nodes. It also pro
vides a datapath that is bidirectional, sequential,
timely, and error free. All users desiring to com
municate over that path are multiplexed over the
same virtual circuit, consequently lowering the
CPU cost per user on the host. This multiplexing
function is the responsibility of the slot layer.

Tbe Slot Layer
The slot layer establishes user sessions, transfers
data bidirectionally, and multiplexes and demul
tiplexes sessions over virtual circuits. In this
context a session can be envisioned as a connec
tion from one user's terminal to one host system.

In the simplified case, a terminal user first
identifies the computer system with which he
desires to communicate. A virtual circuit is then
established - if one does not already exist -
from the terminal server to the chosen host sys
tem. A session is then established on top of the
virtual circuit. The service access point at the
host would normally be represented as a virtual
terminal port into the host operating system.
Thus the user would perceive the virtual termi
nal as being directly connected to the host
system. For example, on the VMS system, the

79

New Products

Terminal Seroers on Ethernet Local Area Networks

LOGINOUf function can be run to allow the user
to log in and continue with the normal interac
tive use of the system.

At the slot layer, data is passed to the vinual
circuit layer as " slots, " which are addressed
units of data. A number of different types of slots
have been defined. Each session has a unique slot
number on the vinual circuit to aid in the multi·
plexing and demultiplexing of sessions over vir
tual circuits. Slots are only sent over vinual cir
cuit run messages. Because slots all share the
underlying virtual circuit, no explicit error
detection and correction need be performed by
the slot layer.

The establishment of a session is accomplished
using one of the assigned slot types called a stan
slot. As with the stan message (which causes the
creation of a virtual circuit) , the session estab
lishment occurs with a single stan slot exchange.
First, the master sends a stan slot requesting a
connection to the slave. If the slave is able to
accept the connection, it replies with a stan slot;
if not, due perhaps to lack of resources, the slave
may reject the connection with a reject slot con
taining an appropriate reason code. During ses
sion establishment, various parameters are nego
tiated, one being the maximum quantity of data
that may be sent in a single data slot. This quan
tity can be different in each direction, the largest
being 255 bytes.

As noted earlier, the vinual circuit layer pro
vides an error-free , bidirectional datapath
between two nodes. The slot layer takes advan
tage of this condition and passes data in each
direction independently, mirroring the opera
tion of a terminal as a full-duplex device. Owing
to the mismatch of speed between terminal and
host, some flow-control mechanism is needed to
prevent one end from overloading the other.
(This mechanism is independent of the flow con
trol required between the terminal server and
the terminal itself. That control is normally han
dled by using the ANSI flow-control characters
XON and XOFF.)

The I.AT protocol defines a credit-based flow
control scheme at the slot layer. In this control
scheme, the receiver must give permission to a
transmitter to send each data unit , contain
ing one or a collection of bytes. Data may be
exchanged in units of up to 255 bytes in a
slot type called a data-A slot. The sending of a
data-A slot (if it contains any data at all) uses
up a single " credit. " If one end of a session

80

desires to send some data, that end must have a
credit outstanding. Typical implementations
normally keep two credits outstanding at any
time. Thus each end of a session must be pre
pared to receive up to 510 bytes of data. A credit
is not reissued until all the data contained in
the data slot that used the credit has been con
sumed. That is, all the data must have been either
displayed on the terminal or read by the host
application.

The initial credit allocation is passed in a start
slot. The slot header will contain a field for
passing credits to the other end of the session;
that field is non-zero when credits are being
extended. In this way it is possible to send a
data-A slot with no data but with the credit field
non-zero. Such a slot does not itself consume a
credit since it is presumed to take no additional
buffering at the slot layer at the other end to pro
cess the slot.

There are three additional slot types defined
for the slot layer. The first, the data-B slot, com
municates the following information:

• The physical port characteristics, such as baud
rate (e.g., 9600 baud) , character size (e.g., 7
or 8 bits), and parity (e.g., none, odd, even)

• The session characteristics, such as whether
the ANSI flow-control characters (XOFF/
XON) should be treated as data or flow-con
trol messages

• The in-band signaling of break conditions or
signaling errors (parity or framing errors)

The data-B slot is subject to the same credit
mechanism as the data-A slot and indeed shares
the same credits.

The next slot type, the attention slot, is not
subject to credits and is used for out-of-band sig
naling. This slot is currently used only for an
abort-output operation; for example, discarding
any output waiting to be sent to the terminal
when a cancel-output (''O) character is typed.

A session may be terminated by either end via
the final slot type, the stop-slot. Typically, the
stop slot is sent by the host system after the user
logs out of the system.

Directory Service
One goal of the I.AT protocol is to permit the
automatic configuration of the IAN. The impor
tant information that needs to be disseminated
throughout the IAN is the name of each service

Dlglllll Tecbnkal}ournal
No. 3 September I 986

that may be used. Rather than requiring that each
terminal server possess this information a priori,
I.AT provides a mechanism that permits each
server to "learn" about the configuration.

To accomplish this learning process, an addi
tional message type is used, the "service adver
tisement." This message is multicast from each
slave node to all master nodes and gives the
names of all services that the slave node is cur
rently offering. (A multicast message is a single
message addressed to and received by multiple
nodes.) An advertisement is transmitted periodi
cally, typically every 60 seconds. Thus on start
up, a server can "listen" for service advertise
ments and build a directory of available services.
This directory can then be presented to the user,
on demand, enabling him to choose whichever
services he wants from those available when a
connection to a host system is desired.

Service names, the names used to gain access
to the appropriate service access points, are not
limited to the name of the node on which the ser
vice is offered. Indeed, there is no restriction
that any node may offer just one single service.
Instead, I.AT allows a given node to offer multi
ple services.

One common use for multiple service names is
in a VAXcluster environment. Here the cluster
manager can choose to offer as a service a name
representing the logical name of the cluster, in
addition to (or instead of) each individual node
name. When a user requests a connection to the
service name representing the cluster, the termi
nal server can select one of the available nodes.
In this case all nodes offering the same service
will be presumed to be offering identical capa
bilities to the user.

To assist the terminal server in choosing a
node, the service nodes provide a " rating" asso
ciated with each service offered. The rating is a
numeric value from O to 255 that represents
some measure of the resources available to apply
to that service. For example, the current VMS
LTDRIVER implementation takes into account
the most recent CPU idle time, the CPU type, the
amount of memory, and the number of remain
ing interactive job slots. VMS LTDRIVER also
allows the system manager to specify a rating.
The terminal server can then choose, at any
instant, the node that offers a requested service
with the highest rating and use that node as
the one to which to form the connection. This
choice ensures that the load can be shared among

Digital TecbntcalJournal
No. 3 September 1986

the nodes in a VAXcluster system. The users need
not be aware of the current configuration of the
cluster in order to form a connection.

By carefully managing the service advertise
ments, the server makes the service directories
reflect the current service list and their associ
ated ratings. If a server fails to hear from a service
provider for some period, the server can assume
that the service provider has failed, or crashed.
The server can then remove the service from its
directory of available services.

Note that this multicast naming service is also
asymmetric; the master nodes do not send multi
cast advertisements to the slave nodes. A recent
addition to the I.AT protocol allows a slave to uti
lize a different multicast message to determine if
a given node name exists on the I.AN. This tech
nique is used so that host systems can find termi
nal servers (in order to solicit connections from
their ports, described later) by knowing only the
name, not the specific Ethernet address, of the
server.

Some details of this naming service deserve
further discussion. For example, the I.AT "load
balancing" and " fail-over" features are most
often associated with VAXcluster systems. How
ever, although they enhance Digital's VAXcluster
offering, these I.AT features are independent
of it.

"Equivalent services" may also be offered by
multiple nodes using the directory service. Con
sider services that are network based, such as
videotext and dial-out modems. With an Ethernet
I.AN, many independent nodes might offer such
services; typically, however, users can access the
service only through nodes on which they have
accounts. If a user's system is down, he is denied
access to the service, even though the service
remains available on other nodes. For example,
consider a videotext-based service, such as
LIVE_WIRE (an in-house electronic bulletin
board) , that can be offered by many independent
LAT host systems. If a LAT user connects to
LIVE_ WIRE, the terminal server software will
detect that the service is offered from multiple
sources. The software will then make a connec
tion to the source believed to be currently offer
ing the best leve l of service. If that service
should fail (i.e., stops sending Ethernet I.AT mes
sages) , the terminal server software will automat
ically reconnect the user to an alternate provider
of the same service if one exists; this action is
known as fail-over.

81

New Products

Terminal Servers on Ethernet Local Area Networks

Future versions of Digital's IAT products may
make more extensive use of the IAT service capa·
bility. That would make it possible to install
applications that are accessible to the extended
IAN but not to the wide area network. A form of
nondiscretionary access control is implicit in
this design.

IAT group codes can be used to partition an
Ethernet logically when the number of nodes
gets large. By large, we mean more than 100 ser
vices. Having more than 20 services or so means
that a server display with one line per service
will no longer fit on a terminal display without
scrolling.

Product Implications of the
LAT Architecture
Although not originally conceived as a dis·
tributed terminal switch, an Ethernet can be used
effectively in that role if combined with the ter·
minal server products. This fact remains true
even when the Ethernet and host system are run·
ning other protocols simultaneously, such as
DECnet and VAXcluster systems based on Ether
net. Our experience has shown that a single ded
icated Ethernet segment, without bridges, can
easily support several thousand concurrent
users.

Functioning as a distributed terminal switch
in the Digital computing environment, LAT
offers significant advantages over dataswitches
and backplane multiplexers. The most promi
nent of these advantages is that any terminal
server user can connect to any host system.
"Blocking" connections to host systems (more
accurately called " port contention") is not an
issue because host-system ports are logical, not
physical. A VAX/VMS system is limited by the
LAT architecture to about 6 million simultaneous

connections, or 32,000 terminal servers, each
with up to 255 sessions. This large number rep·
resents a significant cost advantage, especially
considering that Ethernet controllers are stan·
dard options on many of Digital's processors. In
this case the host-processor terminal connection
cost then becomes negligible, making back
plane-oriented terminal switches much less
attractive. This cost advantage improves as the
size of the system increases. Table 1 compares
the requirements of IAT with those of a data·
switch for different numbers of terminals and
hosts.

Some additional advantages afforded by using
LAT are as follows:

• Multisession capability, not offered by data·
switches

• Simplified installation and management
(especially where users and computer systems
are often added or moved around)

• Higher availability due to the lack of any sin
gle point of system failure

• Simplified, incremental expansion and
migration capabilities inherent in Digital 's
extended IAN architecture, utilizing bridges

LAT Performance
LAT performance is measured in terms of CPU
load per user, which decreases as the number of
users performing terminal 1/0 increases. Thus
LAT performance increases with increasing CPU
loads. Under light loads, LAT uses a relatively
large amount of CPU resources. This is under
standable if the cost of processing an Ethernet
packet containing a single character is compared
with the cost of servicing a single DZ-11 charac·
ter interrupt. As more data is exchanged, how
ever, the number of messages exchanged does

Table 1 A Comparison of Host Connections for LAT and Dataswitch

Number of Terminals,
Number of Hosts

8 terminals
1 host

64 terminals
8 hosts

512 terminals
16 hosts

82

LAT Requirements

8 server connections
1 Ethernet adapter

64 server connections
8 Ethernet adapters

512 server connections
16 Ethernet adapters

Dataswitch Requirements

8 terminal connections
8 host connections

64 terminal connections
512 host connections

512 terminal connections
4096 host connections

Digital TecbnicalJournal
No. 3 September 1986

0
<
0
...J

::,
0..
(.)

1/0 LOAD

Figure 3 Host CPU Loading/or LAT
and DZ-11

not increase. Instead, the number of characters
per message increases and the overhead cost of
processing the message is amonized over a larger
number of characters. Figure 3 shows these
relationships.

The performance of OMA backplane multi
plexers (such as the OMF-32 or OHU-11) falls
between the two curves. Thus LAT is less effi
cient than backplane multiplexers under light
terminal loads and more efficient under loads
operating with more concurrent terminals.

By essentially emulating the RS232 and RS423
interfaces, LAT is able to provide a " single-sys
tem view" in environments that include both
Oigital's and other manufacturers' systems. A
" reverse" LAT server can be used to " front end"
the equipment of other vendors (a process called
non-LAT host suppon) . These reverse-LAT serv
ers attach to the backplane multiplexers of the
non-LAT host systems. The servers offer service in
the same way Digital 's host systems do over the
Ethernet: by multicasting. Terminal server users
need not be aware of the details of this topology.
For example, a developer debugging a communi
cation product between a V AXfVMS system and
one from Prime Corporation could log in on both
systems simultaneously using the terminal
server's multisession capability. The developer
could then switch between sessions with a single
keystroke . Reverse LAT can also be used to
provide shared remote access to processor con-

Digital TecbnicalJournal
No. 3 September 1986

\ New Products

soles for management or system-level debugg
ing. Moreover, reverse LAT can also be used
to provide shared access to a pool of dial-out
modems.

Implementations and Applications

The Original Implementations
Digital's original terminal server family had
three members: LAT-11 , the Ethernet Terminal
Server, and introduced in March 198 5 , the
DECserver 100. These LAT products support
interactive terminal users. The products use the
unique naming capabilities of LAT (service
names, load-balancing, fail-over, and autoconfig
uration) and feature multisession support and
complete application transparency. The servers
implement an easy-to-learn user interface that
allows users to change parameters, view avail
able services, and connect and disconnect from
these services. In addition, the same user inter
face allows a local manager to control the opera
tion of the server and ports. The DECserver 100
and the Ethernet Terminal Server also implement
a remote console feature that allows remote man
agement from the server by using a convenient,
centrally located host system.

The LAT-11 product, unlike the other two ter
minal servers, is a software product. It was origi
nally sold to enable users with PDP-11 systems
that were no longer being used for general com
puting facilities to take advantage of the server
technology, but without incurring any initial
hardware investment. The software ran on some
of the older UNIBUS PDP-11 systems, using
124KB of memory, up to eight DZ-11 multiplex
ers, and a DEUNA Ethernet controller. The soft
ware was loaded either via the Ethernet or from a
local disk. LAT-11 offered a user interface and
capabilities similar to those on the original ver
sion of the Ethernet Terminal Server and could
connect up to 64 users to the Ethernet. Being
based on PDP-11 technology, servers using
LAT-11 would normally be located in computer
room environments.

The Ethernet Terminal Server uses the Ethernet
Communications Server (DECSA) hardware
shown in Figure 4. This is a special-purpose
PDP-11/24 system with 512KB of memory, a
DEUNA UNIBUS-to-Ethernet controller, and two
protocol assist modules (PAM). PAMs are intelli
gent microprocessor-controlled interfaces based
on the AMO 2901 from Advanced Micro Devices,

83

Terminal Servers on Ethernet Local Area Networks

Figure 4 Communications Server

Inc. Each PAM interface connects up to eight line
cards, each of which is a dual RS232C interface
with full modem-control capability. The server
also has a console boot terminator (CB1) module
for self-test code, bootstrap code, and remote
console support. The Ethernet Terminal Server
offers a user interface similar to that on the DEC
server 100. Using the IAT protocol, the server
can connect up to 32 terminals (either locally or
remotely via modems) to the Ethernet. The Eth·
ernet Terminal Server can be located in a com
puter room environment or a communications
closet. The software is always down-line loaded
into the unit from a DECnet load host across the
Ethernet.

VAX/VMS
SYSTEM

RSX11 -M-PLUS
SYSTEM

Internally, the DECserver 100 is radically dif
ferent from the other two members of the
terminal server family, yet still retains the same
external characteristics. The DECserver 100 is a
low-cost terminal server capable of connecting
eight asynchronous ASCII terminals to an Ether
net using the IAT protocol. This server is a very
compact unit and can be located in a computer
room, a communications closet, or in an office
environment. The server has no modem control.
Modem control is implemented using an 8-MHz
Motorola 68000 chip, with 128KB of RAM, and
512 bytes of nonvolatile RAM (NVRAM). Like the
Ethernet Terminal Server software, the DEC·
server 100 software is down-line loaded from a
DECnet load host.

Extensions to tbe Original
Implementations
The initial implementations of the IAT protocol
were on the terminal servers described above
and on VAX/VMS host systems. The servers
implemented only the master end of the
IAT protocol , whereas the hosts implemented
the slave end. Follow-on implementations
have added similar support for additional
host systems: the Micro VMS, RSX-11 M-PLUS,
MicroRSX, ULTRIX-32, ULTRIX-32m, TOPS-10,
and TOPS-20 systems.

Each system implementation offers access to
the command interpreter as the service access
point. Figure 5 illustrates this support.

ULTRIX-32
SYSTEM

TOPS-20
SYSTEM

MicroVMS
SYSTEM

Micro RSX
SYSTEM

TOPS-10
SYSTEM

DECserver 100

TERMINALS

ETHERNET
TERMINAL
SERVER

TERMINALS DIAL-IN
MODEMS

Figure 5 Additional LAT Host Support

84 Digital TecbnicalJounull
No. 3 September 1986

VAX/VMS
HOST

DECserver 100

TERMINALS

ETHERNET
TERMINAL
SERVER

NON-LAT HOSTS

ETHERNET
TERMINAL
SERVER

TERMINALS DIAL-IN PERSONAL
MODEMS COMPUTERS

Figure 6 Ethernet Configured as a Service Node

Version 2.0 of the Ethernet Terminal Server,
released in August 1985, added the reverse-lAT
implementation, permitting a server to offer
additional services to which terminal users
can connect . This implementation permits
sessions to be created within the box as well
as across the network, thus forming a switch
style of operation in a single server. The types of
services that may be offered by the terminal
server can be grouped into the following three
categories.

The first category is connections to non-lAT
hosts. In this mode, the server acts as the Ether
net connection for systems (typically not made
by Digital) that cannot themselves offer IAT ser
vices on the Ethernet. Asynchronous ASCII ports
on these systems are connected to a terminal
server. Terminal users on the same or different
terminal servers can connect to the service
offered. They can then communicate with the
non-IAT host as though it were connected to the
Ethernet.

The second category is service for dial-out
modems. Terminal users can connect to a port in
a pool of dial-out modems. The users can then
use the appropriate ASCII protocol to create a
dialed connection and then access the remote
system via its own dial-in port.

Digital TecbnicalJournal
No. 3 September 1986

The third category is service for personal com
puters (PC) . They can be connected to terminal
servers and run in either of the terminal emula
tion modes. Each PC thus acts as though it were
a dumb terminal. A PC can also run in file trans
fer mode when connected to another PC via the
same, or another, terminal server. Figure 6 illus
trates the terminal server as a service node.

Subsequent versions of the Ethernet Ter
minal Server, the DECserver I 00, and the VMS
LTDRIVER software all permit asynchronous
printers to connect to terminal servers. These
versions also allow print queues to be directed to
the printers from hosts. The IAT protocol has
been enhanced so that the connection mecha
nism remains under the control of the terminal
server (for the reasons of efficiency mentioned
previously) . That enhancement allows a host to
" solicit" a connection from a port on a terminal
server. Once the connection has been made, data
transfer can occur as in the normal interactive
terminal case, except that the printer output is
under the direction of a VMS print symbiont. It is
possible, with these implementations, to direct
the queues from multiple systems to a single
printer or bank of printers being offered as a
common service. When a connection request is
made while the printer is being used by another

85

New Products

Terminal Servers on Ethernet Local Area Networks

system, the connection request can be queued.
This queuing provides a basic mechanism for
sharing printers among multiple systems.

Some of Digital 's personal computers now
implement the master end of t~e LAT protocol
and can operate as simple single-session terminal
servers. These servers are implemented as part of
the DECnet-DOS and Pro/DECnet releases and
allow the PC to emulate a terminal connected to
a terminal server. Combining this feature with
the servers that offer services, a PC user can con
nect to any PC that is connected to a terminal
server for file transfer applications, to a dial-out
modem, or to a non-LAT host system. Data
integrity is provided "end-to-end" in PC-based
implementations due to the lack of twisted pair,
or similar, wiring. Figure 7 shows the connec
tions to asynchronous printers and LAT from per
sonal computers.

Within the LAT environment, the service name
offered by a host system does not always have to
represent the command interpreter on a given
system, though this is by far the most common
use today. Instead, a service name could repre
sent an application program, which might be run
automatically when a connection request is
made. Alternatively, using the solicited-connec
tion mechanism currently employed for printers,

DECnet-DOS

VAX/VMS
HOST

DECserver 100

applications programs could initiate connections
to terminals (or other asynchronous devices)
located within the LAN.

DECserver 200
The DECserver 100 interconnects terminals in
an office environment at a very low price. Soon
after it was announced, it became clear that
modem-controlled lines and connections to non
LAT host systems should also be priced just
as low.

Thus the DECserver 200 project was initi
ated to produce a new server based on the DEC
server 100 design, but with modem control capa
bilities. Moreover, this product had to meet the
original cost goals of the DECserver 100. This
project involved a redesign of the printed circuit
board, yet retained the same system architecture.
A faster version (10 MHz) of the same MC68000
microprocessor was used, and memory was
increased from 128KB to 384KB of RAM and
from 512 bytes to 2KB of NVRAM. This increase
allowed room for the implementation of modem
control software and support for non-LAT hosts
(i.e., reverse-LAT capabilities). The increase also
allowed a larger service directory database to be
stored and an enhanced on-line help capability
to be added.

NON-LAT HOSTS

PRO/DECnet

ETHERNET
TERMINAL
SERVER

ETHERNET
TERMINAL
SERVER

TERMINALS ASYNCHRONOUS TERMINALS DIAL-IN ASYNCHRONOUS

86

PRINTERS MODEMS PRINTERS

Figure 7 Asynchronous Printers and LAT on PCs

Digital Tec:lmlcalJournal
No. 3 September 1986

N--
~ ..
• • ,g
--- Ft

Figure 8

Another feature of the DECserver 200 takes
advantage of the new DECconnect cabling
scheme, allowing connections to be made using
DEC423 wiring. This feature allows communica
tions at up to 19.2 Kbaud over cable that is nei
ther twisted pair nor shielded, for relatively long
distances of up to 1000 feet. Figure 8 shows the
DECserver 200 hardware.

Summary
Unlike other existing packet-oriented transport
layer architectures, the LAT transport layer
implements asymmetric connection manage
ment, asymmetric data flows, and timer-based
message exchanges.

The most unusual innovation of the LAT archi
tecture is the use of multicasting as a presenta
tion level naming service. On Ethernet, packets
are normally addressed to the adapter of a
specific system. However, the Ethernet specifica
tion describes a form of logical addressing called
multicast addressing. In this scheme a packet
addressed to a multicast address is received
nearly simultaneously by many independent sys
tems. LAT uses these messages to completely
configure the topology automatically. This
action means that installing a terminal server is as
simple as plugging it into the Ethernet and wait
ing for services to be advertised.

Asymmetric connection management consider
ably simplifies the complexity of the protocol in
which terminal servers initiate connections to
host systems. If a host system wants to connect to
a terminal server, that connection must be solic
ited from the terminal server. This protocol
solves the problem of having many host systems

Digital TecbnicalJourwal
No. 3 September 1986

I New Products

.. ..

.,

DECserver 200

competing independently for the same resource.
The first "solicitation" is serviced by a connec
tion, and subsequent requests are queued on a
first-in, first-out basis.

On a particular terminal server, all devices that
are logically connected to the same host system
share messages both to and from that host .
Within each message, each user's data is con
tained within slots. This multiplexing, in con
junction with the delay timer, reduces further
the number of messages exchanged. For exam
ple, as more users log in to a host system, the
number of messages exchanged remains con
stant at approximately 12 per second in each
direction, even as the lengths of the messages
increase.

The DECserver 100 and DECserver 200 are
low-cost implementations of the LAT architec
ture, allowing terminals and other asynchronous
devices to be configured in a flexible and cost
effective manner in a LAN.

Acknowledgments
Over the years, a large number of people have
contributed to the architecture and products
described in this paper. The authors acknowl
edge, with gratitude, all this work. In addition, a
number of people have taken the time to review
this paper and have made many helpful sugges
tions; to these people we also extend our thanks.

References
1. J. Morency et al., "The DECnet/SNA Gateway

Product - A Case Study in Cross Vendor
Networking," Digital Technical Journal
(September 1986, this issue) : 35-53.

87

Paul R. Beck
James A. Krycka

The DECnet-VAX Product
An Integrated Approach
to Networking

Early DECnet implementations were completely layered above tbe ser
vices of tbe operating system. 'l'bis loose bonding of network products to
tbe operating system resulted from separate development efforts. From its
inception in 1976, tbe VMS operating system integrated networldngfunc
tions adhering to tbe Digital Network Architecture (DNA). 'l'be DECnet
VAX product is the DECnet implementation most tightly coupled with its
parent operating system. 'l'bis product provides an unprecedented degree
of transparency for network applications while remaining true to tbe
DNA strategy. Transparency is achieved by providing access to network
capabilities tbrougb system services, record management services, and
tbe standard 1/0 statements of high-level languages.

When the first VAX processor and its VMS operat
ing system were designed a decade ago, the
DECnet architecture was in its second major
phase. Several of Digital's major operating sys
tems had already implemented DECnet Phase II.
Therefore, a major goal of the VMS Development
Group was to provide networking capabilities
with the initial release of that group's product.

Both the VAX architecture and the VMS operat
ing system were completely new designs. How
ever, the VMS system shares a common heritage
with the RSX-11 M operating system. Some of the
utilities in the first few VMS releases were actu
ally images of their RSX-llM equivalents run
ning in compatibility mode. That was not the
case with the DECnet-VAX product, the network
product in the VMS system.

Previously, DECnet implementations had been
add-ons to their host operating systems, which
predated the development of the DECnet archi
tecture. The VMS system, on the other hand, was
designed after the DECnet architecture had been
well established. The VMS architects recognized
that including networking capabilities was vital
to their system's success in the future. Thus they
decided to integrate those capabilities smoothly
into the operating system itself rather than to
layer the architecture on top. Although sold as a

88

layered product, DECnet-VAX was designed and
implemented by the same group that developed
the VMS software. This product was designed
from the beginning to be a coherent part of the
VMS system. Its components are maintained with
the VMS source code and compiled as part of
each VMS base level. This decision to integrate
the DECnet-VAX development into the overall
VMS project was instrumental in achieving the
levels of integration and transparency found in
today's product.

In designing DECnet-VAX, a completely inte
grated approach to networking was taken to
achieve the following goals:

• A high degree of transparency at many levels,
allowing remote services to function in a way
that appears local to the system

• The utilization of unique features in the VAX
hardware and VMS software

• High performance and efficiency

• Ease of implementation of network
applications

To build adequate DECnet capabilities into the
VMS system, a model to view network functions
had to be developed. This model had to provide
answers to a number of strategic questions. How

Digital TeclmkalJournal
No. 3 September 1986

could the network name space be built on the
local name space of an individual node? How
would network functions be accessed from with
in the operating system itself? To what extent
should a user be aware that he is specifying a net
work function rather than a local one?

This paper will describe how the design of
the VMS system facilitates the integration of net
working capabilities. The DECnet-VAX product
takes advantage of this design to provide net
working services that are faithful to the DNA
philosophy while still tailored to the unique
VAXjVMS environment.

Foundations of the DECnet-VAX
Product
The foundation of all networking applications
is the ability of a program on one system to ex
change data with a program running on another
system. In the DECnet architecture this capabil
ity is called task-to-task communication. It is the
backbone upon which a wide range of VMS net
working facilities are built. These facilities
include

• Remote file access and virtual terminal
support

• Layered product extensions , such as dis
tributed mail and remote database applica
tions

• Applications that rely heavily on file access
and task-to-task capabilities, developed by
users and third-party companies

• Distributed network management operations

The DECnet-VAX implementation had to sat
isfy the needs of both end users and application
developers . Therefore, its main goals were to
provide remote file access and task-to-task com
munication capabilities that would be easy to
learn and use, functionally complete, and acces
sible through the standard VMS 1/0 interfaces.

Providing a high degree of transparency for
network activities was the key to achieving these
goals. For example, transparency at the file level
means that accessing a file on a remote node is
conceptually the same as accessing the file on
the local system. That access should not require
the use of different comm~ds or any changes to
application programs.

The VMS design was influenced by several
important concepts that laid the foundation for

Digital Technical Journal
No. 3 September 1986

integrating networking capabilities and evolving
a highly transparent user interface to network
services.

One fundamental concept is that the VMS sys
tem treats network operations as a natural exten
sion of local 1/0 operations. The DECnet-VAX
implementation, from the session layer (provid
ing logical link services) down to the physical
device layer, is modeled after the file access
primitives of the VMS file system. Both network
and file system operations use the assign channel
(ASSIGN) , queue 1/0 (QIO), and deassign chan
nel (DASSGN) system services as their program
ming interface, and make use of the same subset
of QIO functions . Both operations divide their
work between higher level functions requiring a
process context to provide a large address space
and 1/0 handled through appropriate device
drivers. At this level of abstraction, the program
ming steps required to engage in task-to-task
communication are quite similar to those needed
to access a local file.

Another design decision having a profound
effect on the style of interface to remote file
access was to integrate the record management
services (RMS) into the VMS system. RMS is used
for all common file access operations by the
operating system as well as by most VMS utilities.
These services provided a platform from which
to develop a common interface for both local
and remote file access, as well as task-to-task
communication . The DECnet-VAX developers
achieved transparent remote file access by incor
porating the data access protocol (OAP) modules
in RMS to communicate with a remote file access
listener (FAL) . For local file access, RMS uses the
QIO interface to the file system. For remote file
access, RMS uses the QIO interface to create a
logical link to the FAL server program through
the session layer of the network. FAL then
accesses the file by acting as a local user of RMS
on its system. The use of RMS is illustrated con
ceptually in Figure 1.

The definition of a VMS file specification
was extended to include the node name with a
provision for an optional access control string to
pass authorization information to the remote sys
tem. The syntax of a node specifier is one of the
following:

nodename::

nodename" usemame password account" ::

89

New Products

The DECnet- VAX Product - An Integrated Approach to Networking

LOCAL NODE

FILE
ACCESS
REQUEST RMS

SERVICES

I

LOCAL

REMOTE

L

VMS
FILE
SERVICES

NETWORK
SERVICES

NETWORK

-

DISK
DRIVER

COMMUNICATIONS
DRIVER

I
FILE
ACCESS
REQUEST

DISK

NETWORK

COMMUNICATIONS FAL RMS
DRIVER - SERVICES -- SERVER SERVICES

...

REMOTE NODE

Figure 1 RMS Interface to Local and Remote Files

Moreover, the concept of a quoted file specifica
tion was introduced to allow file name informa
tion on a non-VMS system (one not adhering to
the pacsing rules specified for VMS files) to be
represented. In addition, two special forms of
quoted string were adopted to specify the target
entity in task-to-task communication. Thus the
syntax of a file specification for network access
can be one of the following:

nodespec::device:[directory]file.type;vecsion

nodespec:: "foreign-file-specifier' •

nodespec: :''TASK=taskspec' '

nodespec::" n="

where the latter two forms are used to identify a
network task by name or object number.

Another important early design decision was to
provide full access to remote files, beyond
remote file transfer and manipulation functions,
through RMS. Currently, almost every RMS func
tion can be performed over the network on a
remote VAXfVMS system. Thus most applica-

90

tions using RMS can employ the network trans
parently to

• Access sequential , relative , and indexed
(ISAM) files

• Utilize different access methods (sequential,
random by relative record number, relative by
key, and record file address)

• Operate in either record or block mode

• Communicate with a network task as though
reading and writing to a sequential file

RMS is used throughout the VMS system by the
Digital Command Language (DCL) interpreter,
VMS utilities, and the run-time library routines
supporting high-level languages. As a result,
transparent remote file access and task-to-task
communication are available at the following
interface levels: DCL commands, high-level lan
guage 1/0 statements, RMS services, and 1/0-
related system services. Figure 2 illustrates these
relationships.

Digital TecbnlcalJournal
No. 3 September 1986

PROGRAM

TO

DIGITAL RECORD
LOCAL

COMMAND
QUEUE OR

H ~
MANAGEMENT 1/0

LANGUAGE UTILITY SERVICES INTERFACE NETWORK
DEVICE

HIGH-LEVEL H RUN TIME ~. LIBRARY
LANGUAGE

Figure 2 Interface Levels for the VMS System

All DECnet implementations provide task-to·
task communication so that an application pro
gram can exchange data with another program
running on a remote system. In the VMS environ
ment, task-to-task communication can be per
formed by the RMS services as if a file were being
accessed. This capability is made possible by two
design decisions.

The first decision was to model task-to-task
communications within RMS as though it were
sent to a bidirectional unit-record device. This
type of device has many properties of a terminal
or VMS mailbox. These properties allow an appli
cation program (or command procedure) to
share data with its remote counterpart through
sequential GET and PUT requests, just as if the
program were processing a local data file. Fur
thermore, a CLOSE operation initiated by either
partner is signaled to the other as an end-of-file
condition.

The second decision was to extend the syntax
of the quoted string form of an RMS file specifi
cation was extended to accommodate the identi
fication of a remote task, as described earlier.

When the file specification passed to RMS on
an OPEN request contains a quoted network task
specifier, RMS will connect to the remote task or
object identified in the string instead of to the
FAL object. The remote VMS process can then
complete the connection by issuing an OPEN
request using the logical name SYSSNET. In sub
sequent 1/0 requests from either cooperating
task, data records are passed directly to and from
the remote task without using OAP, which is
required when communicating with FAL.

Dlgllal Tecbnlcal]ournal
No. 3 September 1986

DECnet-VAX Building Blocks

Network Primitives
DECnet-VAX provides task-to-task communica·
tions between different nodes within a network.
Layered network applications, whether provid
ing file transfer, mail, or remote terminal ser
vices, use DECnet logical links to exchange
information. The operation of logical links can
be grouped into two basic categories of func
tions: logical link set-up (connect and discon
nect), and data exchange (transmission and
reception of data packets).

In DECnet-VAX these primitive functions are
modeled directly after the equivalent functions
in the VMS file system, all the way to the specific
QIO functions that are employed. Table I
depicts the parallels between network and local
functions .

Modeling logical links as files and using the
same coding semantics allows high-level lan
guage compilers to produce identical code for
equivalent fite and network operations. For
example, a programmer can use a WRITE state·
ment in FORTRAN to send data directly across a
logical link instead of issuing a call to a special
"transmit" function or subroutine.

DECnet-VAX Components
The DECnet-VAX kernel comprises two major
components:

• The network driver , NEIDRIVER, a pseudo
device driver that receives QIO functions
directed to DECnet-VAX and handles func
tions that must be performed most efficiently

91

New Products

The DECnet-VAX Product - An Integrated Approach to Networking

Table 1 Relationships between RMS and DECnet-VAX

File System RMS Programming DECnet-VAX
QIO Function Service Language Operation Operation

10$.....ACCESS $OPEN Open file Initiate or accept logical link

10$-DEACCESS $CLOSE Close file Disconnect logical link

10$-READVBLK $GET Read from file Read data across logical link

10$.._WRITEVBLK $PUT Write to file Transmit data across logical link

• The network ancillary control process ,
NETACP, which handles those functions that
require a process context in which to execute

NETDRIVER processes all QIO requests for the
network device. Network QIOs generally fall
into one of two categories: logical link traffic, or
network management requests. NETDRIVER
forwards to NETACP any request for logical link
start-up or shutdown (e.g., the IOLACCESS QIO
used to create a logical link) , or for net
work management functions . On the other
hand, NETDRIVER handles logical link transmit
and receive requests (IOS_WRITEVBLK and
IO LREADVBLK) by itself.

NETDRIVER also contains the bulk of the rout
ing layer of the DECnet-VAX software. Using
information provided by NETACP, NETDRIVER
can determine the optimal circuit on which to
send any received packet whose destination is
another node. By giving high priority to both
logical link and routing-forwarding traffic ,
NETDRIVER eliminates the overhead of invoking
a process to perform these high-throughput
functions .

NETACP defines and provides access to the
volatile network database, which is the working
copy of the permanent network database. The
volatile database is allocated from NETACP's vir
tual address space. NETACP also controls the
state transitions of data links, the routing layer,
and logical links. Both the start-up and shutdown
of logical links are handled in NETACP, which
also creates the process to receive an incoming
logical link having no declared network task.

In addition, NETACP provides support for Dig
ital's X.25 packet switch network product, VAX
PSI. Through " data link mapping," NETACP
makes it possible to map the functions normally
provided by a data link driver onto an X.25 con-

92

nection. This mapping causes the packet switch
network (PSN) to act as though it were a DECnet
data link, thus allowing DECnet nodes connected
to the same PSN (but not to each other) to com
municate using DECnet protocols. These proto
cols in tum permit any applications layered on
DECnet to function correctly between the DEC
net nodes.

DECnet-VAX provides two other components,
called the network control process (NCP) and
the network management listener (NML) , which
work together to provide local and remote net
work management capabilities.1 NCP provides
the user interface to network management func
tions. Network management is the process of
controlling those parameters that allow the
various components of a network to function
efficiently. These parameters reside in two sepa
rate databases: a permanent database that estab
lishes the default parameter values upon node
start-up, and a volatile database that contains
the current parameter values in a functioning
network.

Both the volatile and permanent databases can
be accessed through NCP by using a common
user interface. NCP in turn passes the parsed
requests to NML for actual processing. NCP then
formats the results returned by NML for the user.

NML is a server whose function is to perform
network management operations on behalf of
some client. NML receives its commands in a
protocol called NICE, either from a local NCP
copy or over a logical link from another node
(usually, but not necessarily, from that node 's
NCP) . NML then returns the results via the same
NICE protocol.

NML is also the agent that owns and main
tains the permanent database. Upon receiving a
request for a permanent database operation, NML

Digital TecbnlcalJournal
No. 3 September 1986

will access the appropriate file using normal
RMS calls. For operations on the volatile data
base, NML will issue a QIO to NETDRIVER,
which in tum forwards the request to NETACP,
where the request is honored.

Data Link Drivers
There is a separate device driver for each com
munications device that can be used by DECnet
V AX . In most cases these communications
devices can be used by non-DECnet applications
as well. The same device driver is used to
provide the data link interface to NETDRIVER, as
well as the QIO interface for user-written appli
cations not using the DECnet software.

The data link drivers supply the needed sup
port for the variety of lower level protocols pro
vided in the DECnet-VAX product. These proto
cols include the synchronous and asynchronous
Digital Data Communications Message Protocol
(DDCMP) , Ethernet, IEEE 802, and Systems
Communications Architecture (SCA) for commu
nicating across a VAXcluster communications
interface (CI).

File Access Listener
The File Access Listener is the component of RMS
that is activated to service a request for access to
the local file system by a remote node. As such,
FAL is an extension to RMS on the remote system.
FAL uses RMS services to access local files and
DAP to send data back to the requesting node.

VAXjVMS Environment in the
Network Kernel
The underlying structure of DECnet-VAX was
designed around the special environment pro
vided by the VMS system. The manner in which
network programs are created and the environ
ment in which they run are governed more by
the design of the surrounding operating system
than by the network architecture. Some impor
tant aspects of this design are the way network
objects are identified and activated and the use of
VMS command procedures. This use provides a
simple, transparent mechanism for creating a
network task.

The DECnet architecture defines two classes of
execution entities that have addresses within a
network and with which network communica
tions can be established. The first are called net
work " objects," identified by node address and

Digital TecbnlcalJournal
No. 3 September 1986

object number. The second are network " tasks,"
addressed by node and task name. Network tasks
are actually a special case of network objects,
with object number zero reserved for identifying
network tasks. If a logical link specifies object
number zero, it also supplies a task name identi
fying a particular network task on the target
node.

In the VMS system, execution of each program
image takes place within the context of a pro
cess. One process will typically run multiple
images serially during its lifetime. A flexible
mechanism was needed to associate a request for
a network object or task with the right process
running the right image.

DECnet-VAX has three mechanisms to identify
the execution entity that will be associated with
a network object or task. In the first, an image
registers itself in the network database as the
specified object or task. The image then waits for
(or initiates) connections with other programs in
the network.

The second mechanism involves creating an
entry in a local database that identifies network
objects. The database information specifies
either a command procedure or an executable
image to be run in response to a request to con
nect to the specified object. Upon receiving such
a connect request, NETACP will create a process
in a specified account that executes the com
mand procedure or image. Setting up an entry in
the object database provides the flexibility to
specify account information and privileges for
the object when it is activated.

The third mechanism is a catchall. This acti
vates a command procedure to serve as a network
task in the absence of either an entry in the
object database or a nontransparent declaration
of the network task by a running image. Upon
receiving a connect request for a network task
not identified by either of the first two methods,
DECnet-VAX assumes that a command procedure
resides in the default directory of the account
specified with the request. DECnet-VAX then
creates a process to execute this command pro
cedure. For example, upon receiving a connect
request for a task called NETTSK, undeclared by
any running image, DECnet-VAX will assume that
a command procedure called NETTSK.COM
resides in the default directory.

The DECnet-VAX software also causes a logical
name, SYSSNET, to be created for this process.
SYSSNET translates to a data structure containing
connection information for this logical link.

93

New Products

The DECnet-VAX Product - An Integrated Approach to Networking

The command procedure can either activate an
image that accepts the connection specified by
SYS$NET or complete the connection directly
from DCL by opening a channel using the logical
name.

There are both advantages and disadvantages to
the way in which DECnet-VAX uses separate pro
cesses for different network objects. Each VMS
process carries its own protection, defined by
the authorization parameters of the account
specified for the process and enforced by aspects
of the VAX architecture. Therefore, using a dif
ferent process for each logical link is a conve
nient way to maintain security and provide
accounting information. It is also a simple means
to keep separate the context of each logical link.
For example, FAL must maintain the file protec
tion appropriate for each user accessing files
over the network. A FAL process handles only one
logical link (for one file access) at a time. To
handle more would require FAL to completely
and securely replicate the security context of
each user for each logical link concurrently
maintained. That is a formidable task in the VMS
system, with its complex set of authorization
privileges.

The primary disadvantage of maintaining dif
ferent processes for different security profiles is
reduced performance. This reduction results
from having to create a new process when a log
ical link is established. This disadvantage can be
offset by using large timeout constants for each
account's NETSERVER processes and FAL logical
link caching, both of which are described later.

ASSIGN and DASSGN System Services
The ASSIGN system service creates a channel to a
specified device. This service provides transpar
ent access to the DECnet-VAX software by recog
nizing when the device specification includes a
node name. ASSIGN then issues an 10$.....ACCESS
QIO function to NETDRIVER on behalf of the
caller to establish a logical link transparently. In
this way, simply supplying a network task speci
fier in place of a device name will create a logi
cal link when a channel is assigned.

The internal data structures associated with
the channel are defined to resemble an open
file on the channel. As a result, when called to
deassign the channel , the DASSGN system
service will issue a QIO 10$_DEACCESS re
quest to close the file . The logical link is then
disconnected.

94

Transparent and Nontransparent
Modes
DECnet-VAX provides two mechanisms to estab
lish network communications between applica
tions on different nodes. In the nontransparent
mode, an image executes a network call to de
clare itself as a particular network task by
name or object number. To use this mode a pro
grammer must have a thorough understanding of
network primitives. However, the mode pro
vides greater flexibility than the transparent
mode. That is, the same image can support multi
ple logical links concurrently and can even act as
multiple network tasks.

The transparent mode provides a very simple
means to establish a correlation between a
network task and a process. In this mode, the
image being executed need not even be aware
that it is operating as a network task. Upon creat
ing a process to handle an incoming logical link
for an undeclared network object or task,
NETACP creates the logical name SYS$NET.
This name contains the network control block
needed to complete the connection with the
originator of the link. Performing a normal
RMS OPEN on this logical name will start a chain
of events culminating in the establishment of the
logical link:

• The RMS OPEN operation issues an ASSIGN
followed by a QIO IOL..ACCESS to confirm
the connection.

• The RMS GET and PUT operations translate to
QIO IOS_WRITEVBLK and 10$_READVBLK
calls to the same network device.

• The network device translates to network
transmit and receive operations.

The standard logical names SYS SINPUT and
SYS$0UTPUT can be assigned to the logical
name SYS$NET before an image is activated. This
action will allow programs originally written
to perform 1/0 from either terminal or disk
devices to act like distributed applications in a
network. The programs require absolutely no
rewriting.

At this point the various layers of the design
provide an environment in which network com
munications can proceed without any specific
network calls issued by the programmer. A sim
ple example, using DCL command procedures,
will demonstrate the nontransparent mode of
network communication.

Digital Tecbntca/Journal
No. 3 September 1986

1. At a node called SOURCE:: , the command

S TYPE TARGET::"O=TIME"

is entered from a process running under
account USER.

2 . The TYPE image issues an RMS OPEN to
TARGET: :"O=TIME" .

3. The OPEN service issues an ASSIGN re
quest on the st.ring, which results in a QIO
IOS-ACCESS being issued to DECnet-VAX.

4. A connect request for network task TIME is
routed to node TARGET, where the DECnet
V AX software creates a process to run a com
mand procedure called TIME.COM. DECnet
VAX then creates the logical name SYSSNET,
whose translation contains a network task
specifier identifying the source of the logical
link.

5. TIME.COM issues the commands

S DEFINE SYSSOUTPUT SYSSNET
S SHOW TIME

6. DCL issues an RMS OPEN using the logical
name SYS$0UTPUT for its output. OPEN in
turn issues an ASSIGN . When one logical
name points to another, the names are trans
lated in an iterative fashion until no further
translation is required. Since the logical
name SYSSOUTPUT points to the logical
name SYSSNET, the latter translation is used
by ASSIGN. ASSIGN finds the network task
specifier and issues a QIO IO $_ACCESS
request to DECnet-VAX. The formation of
the logical link is then completed . The
TYPE image at the source node now issues
an RMS GET, which then translates to a
QIO IO $_READVBLK request on the net
work channel.

7. The time is sent as a string by an RMS
PUT operation , which then issues a
QIO IOS_WRITEVBLK request on the chan
nel established for SYSSOUTPUT. Since this
is a network channel, the QIO is handled by
DECnet-VAX and passed across the logical
link to the source node.

8. At the source, the data satisfies the QIO
IOL.READVBLK, which in tum satisfies the
RMS GET, allowing the TYPE image to dis
play the time sent from the target node.

Digital TecbnlcalJournal
No. 3 September 1986

Throughout this example , only two network
functions were performed at the application
level: the use of a network destination name in
the TYPE function, and the reference to the
SYSSNET logical name in the TIME command
procedure.

DECnet-VAX Featu.res for the
VMS Environment
Besides implementing those functions defined
for all DECnet implementations, the DECnet
V AX product supplies added-value features
designed for the VMS environment. These exten
sions to the architecture enhance the way
DECnet-VAX blends into the VMS system. Several
examples are illustrated in the following
paragraphs.

Proxy Log-in
One traditional problem with password-based
access control is making the required password
available to all users needing access to a re
stricted resource. If the user membership needs
to change (e.g. , if someone changes jobs and
thus no longer has the right to access the
resource) , a new password, which must be com
municated to all current members, is required.
To address this problem, the concept of "proxy
log-in" was added to the DECnet-VAX software in
1983.2

With proxy log-in , each node maintains a
database of those network users having proxy
access to specific accounts on the local system.
The database is used to provide a one-to
one mapping between the user, identified as
NODE :: USERNAME , and the target proxy
account. For example, take the case of the arrival
of a logical link request having no explicit access
control information from a user whose name is in
the database. In this case the process created by
NETACP to handle the logical link will be run
using the authorization context of the proxy
account. This mechanism allows members to be
added to or deleted from a particular proxy
account without their a priori knowledge of the
account.

Cluster Alias Address
DECnet-VAX nodes can operate on VAXcluster
systems. A cluster is a loosely coupled, multiple
processor network featuring full sharing of disk
storage and common user environments on each

95

New Products

Tbe DECnet- VAX Product - An Integrated Approach to Networking

node. Each member node within a cluster can
be directly addressed from any other node in
the network . At times , however , it is also
very convenient to treat the cluster as a single
DECnet node . Among other advantages , this
capability makes it possible for mail to be sent to
users with accounts in the V AXcluster system
without knowing which member nodes are
active.

Associating the cluster with a DECnet address
is accomplished by supplying each node in the
cluster with a second address, an "alias," repre
senting the cluster. Each router in the cluster (at
least one is required) adds the alias address to
the routing vector transmitted to other routers
in the network. That makes the routing vector
appear to be the optimal path to the alias
address. As a result, the rest of the network can
not distinguish the cluster alias from the address
of a physical node. This approach has an advan
tage in that it requires no unique support in
other systems and no modifications to the DEC
net architecture.

As it is routed through the network, a message
with the alias address will eventually arrive at a
router within the V AXcluster system. The router
will recognize the destination address as its own
alias and select a node within the cluster to
receive the message. The selection process is
based on a weighted, round-robin algorithm. The
end communications layer within the router is
capable of identifying which node is associated
with each logical link. Therefore, once a connec
tion has been established, subsequent messages
will always be routed to the correct node within
the cluster.

Dynamic Asynchronous Connections
Many personal computers, ranging from IBM PCs
to MicroVAX workstations, are now capable of
running the DECnet software over asynchronous
lines. Thus has arisen the need for a more secure
and easily managed mechanism for setting up ter
minal lines to be used as DECnet communica
tions lines.

Ordinarily, one terminal line must be dedi
cated to DECnet use for each asynchronous line
needed. When those terminal lines are not being
used for DECnet purposes, they cannot be used
as normal terminal lines. To solve this problem,
DECnet-VAX introduced, in 1985, dynamic asyn
chronous connections which allow an interac
tive user to dynamically convert the terminal line

96

he is using to a DECnet line. (This conversion
requires that access be from a PC using a termi
nal emulation package, such as SET HOST/DTE
under the VMS software, and that the PC can run
the DECnet software.)

After logging in via the terminal emulator to an
account on a routing node, the user directs the
VMS system on the routing node to switch the ter
minal line to DECnet use. The VMS system sends
an escape sequence to the terminal emulator on
the PC. Recognizing the sequence, the emulator
converts the line to a DECnet link at the local
end. Meanwhile, the code in the router converts
the line at that end to DECnet use. The design of
the VMS terminal driver makes possible this con
version. The terminal driver separates its func
tions between class drivers (implementing
higher-level functions) and port drivers (inter
facing with the hardware devices) . The DDCMP
asynchronous device support in the DECnet-VAX
product is implemented as a class driver. That
makes it possible to switch dynamically between
DECnet and terminal use on a particular device
simply by switching class drivers on the same
port driver.

When both ends have switched to DECnet use,
the normal routing layer initialization takes
place . Some additional checks happen during
routing initialization on dynamic lines to ensure
that the node that just switched the line is per
mitted to do that by the router. These checks
give to the system manager on the router the
opportunity to control which nodes should be
permitted to connect to his system.

Performance Issues
As DECnet-VAX has evolved, continuing efforts
have been made to improve its performance.
These efforts have run the gamut from restructur
ing the basic modules to including support
aimed at improving specific areas of perfor
mance. The remaining sections discuss some of
the areas that have yielded the greatest perfor
mance increases.

Network Drivers and Ancillary
Control Processes
Wherever possible, those functions having the
greatest effect on performance have been imple
mented in NETDRIVER. There they can be exe
cuted at high priority without changing the pro
cess context , which would be required for
functions executed in NETACP.

Digital TecbnlcalJournal
No. 3 September 1986

Those functions that occur more infrequently
have been implemented in NETACP, which pro
vides the necessary process context. These func
tions include state changes and others that
require a process context to allow access to a
large pageable database or system service. These
include logical link creation and deletion, net
work management functions operating on the
volatile database, and routing table maintenance.

Network Server Processes
Transferring large files across a network or
accessing many remote files can consume con
siderable resources on a remote system. Thus the
provision of accurate accounting information for
remote file access operations is quite desirable.
This need led to the implementation of FAL as a
single-threaded server. That server runs in the
context of a process logged in to the remote sys
tem on an account that is accessible to the initia
tor of the file access request.

RMS, being procedure based, does not know
whether or not an application program intends
to access additional files via the same account on
the remote system. Originally, the OAP imple
mentation in RMS was designed to terminate the
logical link with FAL upon closing a file or finish
ing a file search sequence. Consequently, for
example, a wild-card operation transferring n
files using the COPY command results in the
invocation of a total of n + 1 FAL processes.
One process performs the RMS search sequence,
each of the others transfers in serial fashion each
file that is found. Unfortunately, this approach
significantly reduced overall throughput, espe
cially when a large number of small files were
being transferred.

The primary disadvantage of using separate
processes for individual network tasks lies in the
overhead required to create the process. The
increasing complexity of authorization and pro
tection mechanisms within the VMS system has
increased the start-up time during process cre
ation. This increase is experienced by users
activating network tasks on other nodes as an
increase in response time.

Support for network server processes was
introduced in 1983 to solve the overhead prob
lem. A NETSERVER process can handle serially
many logical links that require the same account
on the server node. NETACP maintains a list of
those NETSERVER processes that have been
started for particular accounts but are now cur-

Digital Tecbnkal]ournal
No. 3 September 1986

rently idle . When a new logical link request
specifying the same account is received, NETACP
will forward the request to an appropriate idle
NETSERVER process instead of creating a new
process to handle the request. On a busy system,
this action can trim seconds off the start-up time
for the logical link. To prevent the problem of
the local system filling up with NETSERVER
processes that no one needs to talk to, an idle
NETSERVER will time out and delete itself after a
certain amount of time.

In 1986, FAL was extended to include the
capability to serially process multiple logical
links (and as a result, multiple files) . This addi
tion yielded a significant improvement in overall
throughput for file transfer activity, especially
for wild-card operations.

Window-based Congestion Control
In a large network, data packets must be routed
through several nodes before reaching their des
tinations. Congestion in an intervening node can
severely decrease the throughput of all logical
links using that path. Continuing to send more
data through a congested node only makes things
worse. The systems at the ends of the logical link
have no knowledge of which path is being used;
therefore, they have no direct way of knowing
where congestion may be occurring in the net
work. This problem was addressed through the
implementation of a window-based "back-off'
scheme designed to detect the presence of con
gestion somewhere along the path. The rate at
which data is sent will be reduced until the
effects of the congestion are no longer seen.

Node Database Structure
Digital Equipment Corporation has a very large
internal communications network. As that net
work grew in size, its volatile node database
became a performance bottleneck. Searches
through the database to locate a particular entry
by name were causing excessive paging. Noting
that the node database is frequently accessed
using either the node name or the address as a
search key, it was decided that the speed of a
look-up should be the same for either type of
search. To accomplish that, the node database
was augmented by two balanced binary search
trees, one keying off the node address, the other
off the node name.3 Each entry in each tree con
tains a pointer to the node database entry refer
enced by that entry. It also has a separate pointer

97

New Products

Tbe DECnet-VAX Product - An Integrated Approach to Networking

to the node in the companion tree, making it pos
sible to parse the node database by either name
or address.

Another problem with the volatile node data
base developed in 1984 as our internal network
grew to over 2,500 nodes: the size of the data
base caused the NETACP process to exceed its
paging file quota. That quota was increased to
accommodate 5,000 nodes, a limit exceeded less
than one year later. At that point the best solution
was to reduce the number of pages required by
the node database rather than to continue taking
a larger portion of the paging file.

In a very large network, most nodes are repre
sented merely as names and addresses. Most of
the other node parameters, such as routing ini
tialization p~ords, are generally used only for
a small subset of the total node population. With
that in mind an optimization that "walked" the
binary trees was built into the search routines.
Any node with only its name and address defined
is completely represented by the binary tree
entries; so no database entry is allocated. When a
tree search locates an entry with no associated
database entry, the name and address information
from the tree entries will be used to initialize a
template database entry to return to the caller. In
a node database with 7,000 entries, this opti
mization resulted in a reduction of almost 2,500
pages in the paging file, which cut NETACP's
total page file utilization almost in half.

Buffer Size Optimization
The DECnet architecture does not allow the seg
mentation and reassembly of data packets at the
data link layer. The architecture requires that the
buffer size used by the NSP layer (the transport
layer) must be small enough to be handled by
any data link in the network. Traditionally, this
has meant using 576-byte buffers in the NSP
layer.

The 576-byte buffers limited the network's
performance when Ethernet, with its 1500-byte
data link buffers, was supported. The NSP layer
was still constrained to use the smaller buffers,
since lower capacity data links existed in the net
work. It was recognized that performance could
be improved between nodes on the same Ether
net by using the larger Ethernet buffers. In this
case there was no chance of the packets being
routed through a node that could not handle
them. The problem was to recognize when this
optimization could be safely used.

98

Solving this problem was easy on a routing
node since it could determine that the destina
tion node was exactly one "hop" distant on the
same Ethernet. On a nonrouting node, however,
this information was not readily available.

Fortunately, the NSP protocols establish the
buffer size as the smaller of those offered by the
two parties involved. Furthermore, a nonrouting
node maintains (in its routing layer) a cached list
of the nodes residing on the same Ethernet. That
list enables the nonrouting node to address pack
ets to other nodes directly without passing the
packets through a routing node. This action per
mits a nonrouting node to always offer the use of
1500-byte buffers when it initiates a logical link
request on an active Ethernet circuit. When the
request arrives at the target node, the cache there
will correctly reflect whether or not the source
node is on the same Ethernet. If so, the node can
either offer the larger buffers or demand the nor
mal buffer size.

Summary
The DECnet-VAX product makes possible the
provision of a comprehensive set of networking
capabilities that are compatible with implemen
tations in other operating systems. DECnet-VAX
does this while integrating a high proportion
of those capabilities into the heart of the operat
ing system. That integration supplies services
that make local and remote operations appear
indistinguishable.

This integration was achieved by anticipating
the need for integrated networking capabilities
from the start. The necessary " hooks" were pro
vided in a sufficiently general fashion to allow
the continued development and expansion of
the networking product. This design allowed
DECnet Phase II to be included with the early
releases of the VMS software, which did not have
to change as DECnet-VAX progressed through
Phases III and IV. Similarly, as the VMS system
itself evolved to support multinode VAXcluster
networks, DECnet-VAX was able to provide clus
ter addressing through its coupling with the
operating system.

As both the VMS operating system and DNA
continue to evolve, the design of the DECnet
VAX software will permit it to follow both,
providing transparent networking capabilities
for users of VMS.

Digital TedmlcalJournal
No. 3 September 1986

Acknowledgments
Any discussion about the basic design of the
VMS software should acknowledge the contribu
tions of its primary architects David Cutler and
Richard Hustvedt. The design and implementa
tion of DECnet-VAX owe much to the work of
Scott Davis, Alan Eldridge, and Tim Halvorsen.

References

1. N. La Pelle, M. Seger, and M. Sylor, " The
Evolution of Network Management Prod
ucts, " Digital Technical Journal (Septem
ber 1986, this issue) : 11 7-128.

2. P. Karger, "Security in DECnet: Authentica
tion and Discretionary Access Control ,'' Digi
tal Equipment Corporation Internal Techni
cal Report, DEC TR-121 .

3. D. Knuth, The Art of Computer Program
ming , Volume 3 (Reading: Addison Wesley,
1973) .

Digital Tecbnlcal]ournal
No. 3 September 1986

New Products

99

John Forecast I
James L. Jackson

Jeffrey A. Scbriesbeim

The DECnet-ULTRIX
Software

The UL TRIX system is the second operating system approved by Digital
for its VAX processors. Incorporating the Digital Networking Architec
ture (DNA) capabilities into this software was important to support dis
tributed applications. A key constraint was that no changes should be
required to existing DNA protocols or DECnet implementations. The
4.2BSD socket interface was expanded to support the DECnet protocols
and a unique object spawner was created to simplify writing new servers.
A network management structure incorporating DECnet's database con
cept also bad to be buUt. The DECnet-ULTRIX software is the first product
implementing the DNA strategy on any variant of the UNIX software.

Project Goals
The DECnet-ULTRIX software is Digital 's first
product to be layered on the ULTRIX-32 software
and is a key part of our ULTRIX strategy. One
major reason for developing DECnet-ULTRIX was
to bring the ULTRIX system into Digital's com
puting environment. We believe that our cus
tomers will better meet their computing needs
by being able to use the VMS and ULTRIX operat
ing systems together. Such a mixture of systems
requires communications mechanisms that
are easy to use and manage, yet provide high
throughput. These mechanisms make possible
the transportation of existing applications from
VMS systems to ULTRIX systems. Thus new dis
tributed applications can be built by taking
advantage of the strengths of each system.

DECnet-ULTRIX Version 1.0 provides file
transfer, remote terminal access, mail, network
management, and user programming interfaces.
All these functions are completely compatible
with all current implementations of the Digital
Network Architecture (DNA). The DECnet
ULTRIX software also makes possible a large
number of other options, such as support for ter
minal servers, protocol gateways developed by
Digital, layered applications, and management
tools. As we migrate the DECnet protocols
toward the Open Systems Interconnect (OSI)
protocols, the DECnet-ULTRIX software will
provide the means for ULTRIX systems to com
municate with those of other vendors.

100

Project Constraints
In planning the DECnet-ULTRIX design, we
wanted to clearly identify our constraints at the
outset of the project. Thus we would have a con
sistent and well conceived framework for making
design decisions.

We decided that the software should require
no changes to the currently available DNA proto
cols and DECnet implementations. If problems
with other DECnet products were uncovered by
the DECnet-ULTRIX software, those problems
would be solved. This decision was made so that
the software could be completely compatible
with the large base of existing DECnet networks
without requiring the upgrading or patching of
software for any system. Our goal was to have
ULTRIX systems simply " plug" into existing
networks, thus adding new capabilities for our
customers.

All features of the DECnet programming inter
face had to be provided even though some would
never be used by many customers. A DECnet
ULTRIX user should be able to write programs to
communicate with any existing DECnet applica
tion program on any type of DECnet system.
These features include passing optional data
with connection establishment and dissolution,
passing access control information on a connect
request, and rejecting a requested connection
while supplying a reason code.

We decided that the DECnet-ULTRIX software
should be culturally compatible with the UNIX

Digital TecbnlcalJournal
No. 3 September 1986

programming environment and other networking
implementations on the ULTRIX system. Such
compatibility required that it be easy to port
applications that used other protocols, such as
the transmission control protocol (TCP) and the
internet protocol (IP) to use the DECnet system.
Also, it should be possible to write applications
that would run over the DECnet and other proto
cols at the same time. We felt that the DECnet
UL TRIX software should perform at least as well
as the TCP /IP implementation.

Significant Design Decisions
For several weeks at the project's start we exam
ined alternatives for the basic design. Two major
ones were considered for the basis of the net
work environment. The first was to extend the
" socket" interface from the ULTRIX system,
which had been developed as part of Berkeley
4. 2BSD for the Defense Advanced Research Pro
ject Agency (DARPA) TCP /IP project. A socket is
an addressable end point of communications
within a process, directing data to a similar
socket in another process. This socket interface
had many of the functions we needed, although
some additions would be required. It had a disad
vantage in that the socket environment would
be difficult to port to another variant of the
UNIX software, should we eventually decide to
do that.

The second alternative was to build a version
of a communications executive on the ULTRIX
software that would isolate the protocol modules
from depending on the operating system.1 This
approach had been used successfully in another
product set and had the primary advantage of
making more of the implementation portable.
For example, this alternative would make it eas
ier for us to pon the DECnet-ULTRIX software to
the UNIX System V software.

Our final decision was to implement the
DECnet-ULTRIX software with the first alterna
tive , using the 4 .2BSD interprocess communica
tions (IPC) mechanisms. This alternative pro
vided the most compatible interface with other
protocols and took advantage of the services
already provided by the IPC code in the UL TRIX
kernel. We knew that the socket interface would
have to evolve to suppon other protocols, such
as ISO transpon, and that we could provide some
leadership in managing its evolution. In the shon
term we would provide extensions since the

Digital TeclmkaJJournal
No. 3 September 1986

DECnet system requires options having no equiv
alent in the IPC socket interface.

We also had to find ways to present those
options to users without extensively modifying
the IPC routines in the ULTRIX kernel. Modify
ing the kernel's IPC code would require changes
to other protocol implementations and reduce
our ability to pon the DECnet code to other
4 . 2BSD-based systems. In particular, a way had to
be found to allow a server process to reject a
requested connection. We also had to suppon
DECnet's ability to pass user-supplied data with
connect, accept, or reject operations. The IPC
interface in 4 .2BSD provides no means for pro
grams to pass data or access control information
within a connection request . Therefore, no
means existed for a program to decide that a
requested connection should be rejected. This
limitation was not acceptable for a DECnet
implementation because certain application
level protocols in the DNA structure depend on
connection data for version coordination and
access control.

Another weakness found in the existing
4. 2BSD mechanisms was in the area of network
management. One of DECnet's strengths is its
management and control functions provided by
network management tools across nodes within a
network. 2,3 Using a single command interface
called the network command program (NCP) , a
user may examine and change the state of key
parameters on any system within his network. In
addition, he may examine counters describing
network activity and errors. Many conditions
occurring on systems within a network can
trigger the generation of events or notification
messages. These messages can be directed to
consoles, files, and programs anywhere in the
network.

To implement these network management fea
tures, we had to add program-level access to
change parameters and to read counters and
other information kept in the UL TRIX kernel .
The network device control needed an especially
large number of changes. Berkeley 4 .2BSD pro
vides a very limited set of controls over network
interfaces. These controls are insufficient to sup
port the functions of DECnet network manage
ment. In particular, the DECnet software has to
be able to turn interfaces on and off, gather coun
ters kept in the device, and enable and disable
multicast addresses.

101

New Products

The DECnet-ULTRIX Software

Components of the DECnet-ULTRIX
Software
Programming Interface
As mentioned earlier, we decided to base the
programming interface in the DECnet-ULTRIX
code on the 4.2BSD interprocess communica
tions facilities, which are modeled on the socket
interface. Operations on sockets are similar to
operations performed on "logical units" or "file
descriptors," which direct 1/0 operations to a
file or another device. Programs make systems
calls to create, bind names to, connect to, send
and receive data over, and destroy sockets.

The IPC interface in 4.2BSD is designed so
that sockets exist in specified communications
domains. Sockets within a domain share common
properties, such as their naming scheme, and
may communicate only with other sockets in the
same domain. To implement the DECnet-ULTRIX
software, we had to add the "DECnet" communi
cations domain to the existing Internet and UNIX
domains. The basis of this support was the addi
tion of new modules implementing the DECnet
protocols (at OSI levels 2, 3, and 4). These mod·
ules would be linked into the ULTRIX kernel
when the DECnet domain was installed. They
allow programs to create sockets using the DEC·
net network services (NSP), routing, and Ether·
net data link protocols to communicate.

Within the DECnet domain, two types of sock·
ets are provided: stream, and sequenced packet.
Stream sockets provide a bidirectional, reliable,
and flow-controlled stream of data between two
processes. Sequenced packet sockets provide
these same features while preserving the mes
sage boundaries of the data as presented to, the
sending socket interface. All existing DECnet
applications protocols use the sequenced packet
interface because the message boundaries are
used to indicate the lengths of data within mes
sages. The stream socket interface was provided
to facilitate porting applications from the other
UNIX communications domains to the DECnet
domain. In stream sockets, the data flowing
through the stream must be self describing. In
that way the applications programs using the
stream know how long each data element is with·
out relying on message boundaries. Data delivery
is based on buffering and flow control consider
ations rather than preserving information about
the way the sender presented the data to the
stream.

102

We had to provide many supporting routines
in addition to the DECnet protocol code linked
into the ULTRIX kernel. Those routines are mod·
ules archived in the standard C-language library
at DECnet installation time. They provide access
to the DECnet node and object databases ,
address-conversion routines, and several routines
providing a simplified programming interface to
the kernel socket routines.

Kernel Changes
Our goal was to minimize the number of kernel
changes required to support the DECnet system.
All the new functions that reject connections and
pass data or access control information on con
nection requests were implemented using the
existing "setsockopt" (set socket option) and
"getsockopt" (get socket option) system calls.
We modified the ULTRIX kernel to allow those
calls to be dispatched to domain-dependent
code. That was something the 4.2BSD designers
had documented but not fully implemented. We
also increased from 112 to 1024 bytes the maxi·
mum amount of data that could be passed across
those interfaces. In that way we could accommo
date passing all the access control information in
a single request.

We found several bugs in the kernel support
for this type of socket. Therefore, this DECnet
implementation appears to be the first network
ing domain to support sequenced packets. All
these bugs were fixed in version 1 . 2 of the
ULTRIX-32 software.

Most of the kernel changes were made in the
network device drivers. The initial release of the
DECnet-ULTRIX software was to act as a nonrout
ing node on the Ethernet. Therefore, we were
concerned only with the Digital Ethernet inter
faces and the DEUNA and DEQNA network
adapters. As written, the drivers for those devices
supported only the internet protocol (IP) used
by TCP for routing. They had explicit informa
tion about the IP protocol types coded into the
device interrupt routines. We also wanted to add
support for additional protocols (e.g., the Local
Area Transport, IAT, and maintenance operations
protocol, MOP) at a later date. Therefore, we
added kernel routines that could be called from
any Ethernet driver. Those routines dispatch to
domain-dependent routines when a message is to
be transmitted or a new message is received. We
also added a number of 1/0 control (ioctl) func
tions to those drivers. Those functions allow

Digital TecbnkalJmwnal
No. 3 September 1986

changes to the physical address of the hardware
interface, enable and disable the reception of
multicast messages, and control more extensive
support for device counters than had previously
been present.

Object Spawner
We thought that one area could be greatly
improved over the standard socket support in the
4.2BSD standard: the invocation of server, or
"daemon," processes. When a client program
connects to a server program, software on the
specified node has to decode the address and
inform the correct target program that it has a
pending connection. Calls from the 4.2BSD
socket kernel support that software in a way
requiring all possible destination processes to be
running and listening for connections. This sup
port has several bad effects. First, each of those
servers consumes memory and slots in the pro
cess table. Second, writing a new server process
is more difficult since each process has to issue
multiple system and library calls to receive and
bind its address to a socket.

To solve these problems on the DECnet
ULTRIX software, we implemented an "object
spawner," which creates a socket to which the
process binds a special address. That address
informs the DECnet code in the kernel that
the spawner should be given the connection
requests for which no other process has declared
an interest. With this mechanism the existing
model of server process is still supported and can
be used as desired. A process may choose to cre
ate its own socket and listen for connections. It
does that if it wants to handle multiple sockets
per process or to decrease the connection pro
cessing time by the time required to create a new
process and execute a file.

Using the DECnet object spawner greatly sim
plifies the writing of a new server and provides
several useful services. A new server has to be
defined in the DECnet object database by using
NCP. Defining a server involves specifying its
address and the file that should be executed
when a connection for the server arrives. Addi
tional parameters indicate the type of socket that
should be created for the server (stream or
sequenced packet) and the default user account
to run under if no access control information is
supplied by the ,client process. The spawner
authenticates eveey.thing for the server and exe
cutes the process in the context of the specified

Digital Technical JOllrfUII
No. 3 September 1986

user account. Once the process is executing, the
server simply needs to read and write from stan
dard input and output, set up by the spawner to
be directed to the created socket.

Network Management
The user interface to network management is
provided via NCP, which on the ULTRIX system
accepts the same command syntax as that on all
other DECnet systems. NCP communicates with
the network management listener (NML) , both
on the local system and on remote systems, to
execute management commands. Local com
mands cause NCP to communicate with NML
using a UNIX "pipe"; remote commands are exe
cuted through DECnet sockets. NML controls the
management databases, implemented mostly as
files with some parameters stored in the kernel
and accessed through a special DECnet socket
interface.

The access methods and file organization for
DECnet databases are quite different from those
provided by the 4. 2BSD TCP /IP implementation.
The TCP /IP databases are organized as a set of
files constructed and modified using any stan
dard text editor. Those files contain the host
name-to-address mapping and the service name
to-address mapping. Program access to those
files is supported only for read operations. This
limitation was unacceptable for the DECnet data
bases, which require full read and write access
using the NCP/NML programs. NCP supports
commands to add and modify entries for many
DECnet entities. Moreover, the DECnet databases
must support networks containing many thou
sand of nodes.

We explored several alternative ways of struc
turing the databases to provide such program
access to support write operations. Eventually
we chose a file format organized as a simple
sequential binary file. Reading an element from
the database involves first allocating enough vir
tual memory for the entire file. Then the file is
read into virtual memory, and a linear search is
performed for the desired element. Writing an
element into the file involves reading the entire
file into the allocated virtual memory. Then the
file is searched for the position of the new
element, which is written to the file . Finally
the remainder of the existing portion of the
file is written into its new position in the file.
While this "brute force" method was not partic
ularly elegant, its performance and reliability

103

New Products

The DECnet-ULTRIX Software

have proven to be very acceptable, even with
extremely large databases. Other methods rely
ing on indexed and hashed file access proved to
be far more complicated than their marginal per
formance benefits warranted.

One idea we examined during the develop
ment of the DECnet-ULTRIX software was to
build a new network management database that
could include entries from TCP/IP, DECnet, and
other protocols. This idea was abandoned for two
reasons. First, we found that existing calls to the
TCP /IP database routines did not contain all the
necessary parameters required to support net
work addresses of more than one format. Since
one project goal was to leave the existing net
work programming interfaces unchanged, this
idea made impossible the adding of new parame
ters to those function calls. Second, we felt that
creating new routines that were to be linked into
customers' programs would require a signifi
cantly different database format, thus requiring
the relinking of existing TCP /IP applications.
We deemed this relinking to be unacceptable.

What we did do, however, was to ensure that
the DECnet and Internet database routines were
compatible in their naming and calling conven
tions. In that way a later release could change
both sets of routines to be "stubs" that called
into a common base of supporting routines. We
intend to explore this concept further when we
adopt a name server-based mechanism for storing
certain network management information.

File Transfers
In a DECnet system, file access operations are
performed using the data access protocol (OAP) .
File access uses a client/server model in which
the client program contacts a server program to
accomplish some task specified by a user. OAP
supports most of the common file system opera
tions, such as reading, writing, deleting, and list
ing the names of files. For the first release of the
DECnet-ULTRIX software, we decided that OAP
client operations would be implemented using a
new set of file operation commands called the d
(for DECnet) commands. They are similar in con
cept to the 4 .2BSD rep command for remote
copy. The d commands are as follows:

dcp - for DECnet copy files (as in the UNIX
"cp" command)

dis - for DECnet list file directory informa
tion (as in the UNIX "ls" command)

104

drm - for DECnet remove files (as in the
UNIX "rm" command)

dcat - for DECnet type files (as in the UNIX
"cat" command)

We decided to provide only command-level
access to OAP file operations to shorten the
development time for the DECnet-ULTRIX pro
ject. The d commands were implemented using a
set of file access routines with a calling conven
tion very similar to the normal C-standard 1/0
routines (stdio) . We decided not to make the
d routines available to customers. We felt that
network file access should be transparently avail
able to all programs, not just those using a spe
cial set of 1/0 routines. Making the routines
available would require extensive changes to the
UL TRIX kernel, something not possible given
our tight development schedule.

The server side of the OAP implementation is a
file access listener (FAL) program that is invoked
using the standard DECnet object-spawning
mechanism to handle user requests. FAL is a
straightforward program that can sometimes fall
short of what users expect it to do. In fact the
biggest challenge we faced in implementing the
OAP protocol on the ULTRIX system was to meet
the expectations of both ULTRIX and remote
operating system users concerning what consti
tutes reasonable behavior. The OAP protocol has
many options, but each OAP implementation
incorporates a slightly different dialect. These
slight differences exist because each operating
system's file operations are different. Each sys
tem must map its own way of performing those
operations into the OAP operations. Writing each
side, the client and the server, of a new OAP
implementation presents different problems.

These problems are exacerbated when one
requires also that no existing OAP implementa
tion be changed to work with the new imple
mentation. The client side of OAP drives the file
operations; the server side is passive, performing
only the operations requested. Most problems
occur because the UL TRIX system has no
enforced record structure within its files, while
most ofDigital's other operating systems perform
their file access using a record orientation. The
ULTRIX client code, as implemented in the
d commands, cannot simply request other OAP
servers to supply data in ULTRIX record format
(stream) . Instead, the d commands must inter
pret the record formats of those other operating

Dlgual TecbnlcalJournal
No. 3 September 1986

systems and convert data to and from the format
that ULTRIX users expect.

Achieving this capability involved adding
knowledge to the commands by programming
several different record formats and attributes. In
most cases the data is automatically converted
for the user into the form desired. For cases in
which that is undesirable, a means is provided
for the user to bypass that conversion. The
ULTRIX FAL program must also perform data
conversions even though DAP, as a server, has no
such responsibility. FAL is forced to convert the
ULTRIX format stream into the appropriate vari
able length format files of the other operating
system so that it nee~ not be modified to work
with the DECnet-ULTRIX code.

Remote Terminal Access
In our planning for the initial release of the
DECnet-ULTRIX software, we decided not to
include remote terminal access because it
required too much development time. Once the
basic networking code ran in the kernel, how
ever, we easily modified the 4.2BSD remote ter
minal access programs rlogin and rlogind to run
over a DECnet system. Those programs provide
ULTRIX-to-ULTRIX terminal access. Later, with
minor changes to the protocol , we used the
modified rlogind (now called dtermd) to adver
tise to other DECnet systems that it could com
municate with the TOPS-20 remote terminal pro
tocol. Using this mechanism we provided access
to the ULTRIX system from non-ULTRIX DECnet
systems that had previously implemented sup
port for the TOPS-20 software. This capability
proved so useful that we decided to include full
remote terminal support in DECnet-ULTRIX
Version 1.0.

In the DECnet system, remote terminal access
operations are currently performed using the
command terminal (CTERM) protocol. Remote
terminal access uses a host/server model in
which the server (which controls the physical
terminal) contacts the host to request access to
the remote system. Once that connection has
been established, the host controls the terminal
through the CTERM protocol.

The ULTRIX system supports a " pseudotermi
nal" driver that allows a program to control
other programs through what appears to be a
normal terminal interface. This control allows
the daemon program (dlogind) on the host to
provide a standard interface to users who are

Digital TeclmlcalJournal
No. 3 September 1986

remotely logged in. We did, however, encounter
some problems trying to use this capability.

The CTERM protocol exports terminal 1/0
requests from the host to a server, which exe
cutes them, thus reducing the host processing
load. The pseudoterminal interface provides
transparent buffering between the controlling
program and the programs controlled. In that
way the controlling program never knows when
another program has issued a read request; there
fore, the controlling program cannot know when
to ship a read request to the server. Fortunately,
the protocol supports a notification function that
the server sends to the host if a user types a char
acter and there is no outstanding read request.
Using this function we allowed the server to
issue a " pseudoread" request when the first
character is typed. Usually, the request is for a
full line of input, thus allowing the server to per
form character interrupt processing and local
character editing.

Using the remote terminal access protocol, a
terminal can connect logically to a remote sys
tem having very different control conventions,
such as control characters and line terminators.
For this reason the server program (dlogin) dis
ables all special character processing by the local
terminal driver. The program then processes
each character individually to perform any func
tions requested by the host system. A two-charac
ter sequence (by default a tilde [-) followed by
a carriage return) is reserved to allow entry to a
local command mode (the first character may be
changed by a command line switch) . This local
command mode provides access to the shell on
the local system. This mode also provides com
mands to log in the terminal session to a file and
to suspend or terminate the current remote ter
minal session.

Mail
Of all the functions in the DECnet-ULTRIX soft
ware, mail was the easiest to implement. The
mail system included with the ULTRIX system
was already quite sophisticated. This mail system
supports multiple mail protocols and address
formats with a central mail program named send
mail. Sendmail is driven by a configuration file
that can be tailored on each ULTRIX system to
define new address formats and mail-forwarding
rules. We decided to add support for the most
common DECnet mail protocol, called mail- I 1,
supplied with DECnet-VAX and other DECnet

105

New Products

Tbe DECnet-ULTRIX Software

systems. Supporting the mail- I I protocol was a
simple matter of writing a mailer program adher
ing to the sendmail interface and speaking the
mail- I I protocol. Once this program was writ
ten, we modified the sendmail configuration file
to handle DECnet mail addresses properly so that
the DECnet mailer would be invoked when nec
essary. Only a few minor problems were encoun
tered dealing with different ways to parse mail
addresses and different comments contained in
mail addresses between VMS systems and the
ULTRIX sendmail program.

With this new capability, ULTRIX systems can
now act as mail gateways between DECnet net
works and any other type of mail network sup
ported by UNIX systems.

DECnet-ULTRIX Performance
One original goal for the DECnet-ULTRIX soft
ware was to provide a level of performance simi
lar to that of the TCP /IP domain. In general, we
met this goal. Both rep and dcp transfer files at
approximately the same rate, and while rep is
slightly fasterr it requires a larger percentage of
the available CPU time.

The following measurements were taken
between two VAX-11/780 systems on a private
network:

dcp average file
tranfer rate

rep average file
transfer rate

ftp average file
transfer rate

DECnet maximum
data transfer rate

51 kilobytes (KB)
per second

SIKB
per second

27KB
per second

1200 kilobits (Kb)
per second

Project Management
The DECnet-ULTRIX project began in early
1984. The Berkeley 4.2 version of the UNIX
software had just been selected as the basis for
Digital's UNIX software for the VAX system. Ver
sion 1.0 of the ULTRIX system was well on its
way to completion. Our task was to define the
DECnet-ULTRIX project, build a project team,
and deliver a Phase IV implementation for the
ULTRIX system in the shortest possible time.

At the start, each team member had a lot of
DECnet and software development experience,
but very little UNIX expertise. As we learned the
intricacies of the UNIX software, we discussed

106

many of our development ideas with people
from Digital's UNIX Engineering Group. We
decided our first project should be to implement
an Ethernet end node using the DNA Phase IV
protocols. This implementation would include
support for a programmable user interface, mail,
and file transfer. Our decision to add a remote
terminal capability was made later. Experience
with other DECnet implementations had shown
us that these functions would be both necessary
and sufficient to satisfy the majority of most
users' needs.

We built prototypes whenever possible to get
functions working quickly. These prototypes
tested the viability of the interfaces and various
implementation approaches. Often we explored
several different designs before choosing one
that worked best as a prototype.

These shortcuts can be very valuable, provided
they are followed by a thorough review of the
work done. On this project this method worked
very well . The ULTRIX system ran as a DECnet
end node in late summer 1984, after which time
several UNIX utilities were quickly converted to
use the DECnet software.

Our past experience helped us to gauge the
amount of work required in each development
area. That experience allowed us to start work
early on network management since previous
implementations had shown that area to be one
of the largest bodies of work. Throughout the
project we succeeded in keeping work on each
component from being blocked by dependencies
on other components. With tight project man
agement we put the DECnet-ULTRIX software
into field test less than one year after the project
began.

The entire product was written in the C pro
gramming language; a large amount of code
was later transported to other projects, notably to
DECnet-DOS. Our experience transporting the
implementation improved the quality of
the code since many components were tested
using additional interfaces and different code
reviewers.

Summary
The DECnet-ULTRIX project provided many
challenges. The most constant one was how to
build a product that appeared similar to other
Digital products, yet acted like a natural exten
sion to the UNIX base upon which the product
was built. The compromises required to meet

Digital TeclmlcalJournal
No. 3 September 1986

that challenge forced us to address many areas,
from command formats to the structure of the
written documentation.

The DECnet-ULTRIX project met all its
goals for functionality, performance, and sched
ule. The completed product was delivered
to Digital 's Software Distribution Center only
16 months after the project's inception. The
DECnet-ULTRIX software will be followed by
other releases, thus adding functions and follow
ing the migration of the DNA strategy to Phase V.

Since the ULTRIX system supports TCP/IP, the
addition of DECnet has provided a natural base
for a DECnet-to-TCP/IP gateway. While not
being the primary focus for this product, the
essential functions required for a gateway are
now present. This fact is significant because
TCP /IP represents a de facto standard for com
munications protocols in the UNIX community.
The DECnet-ULTRIX product is thus able to
provide a level of integration for the UNIX prod
ucts of other vendors into Digital's computing
environment. Future standards in all areas of OSI
will provide a better degree of integration for the
DECnet system and the UNIX community. Until
they are widely implemented, however, DECnet
capabilities on the ULTRIX system provide a
valuable bridge between the two environments.

Acknowledgments
The authors wish to acknowledge the help of the
members of the DECnet-ULTRIX development
team, who maintained a high degree of energy
and enthusiasm throughout the project. These
members were Kim Buxton, Ed Ferris, Karen
Gillin, and Bill Spencer. Thanks are also due to
Steve Seufen, Faye Allen, Marie Rowntree, Terri
Buckley, Pat Nelson, and those individuals in the
ULTRIX Engineering Group who worked with us
throughout the project.

Digital TecbnlcalJournal
No. 3 September 1986

References
1. J. Forecast, J. Jackson, J. Schriesheim, "Com

munications Executive Implements Com
puter Networks," Computer Design (Nov
ember 1980): 71-75.

2. N. La Pelle, M. Segar, and M. Sylor, "The Evo
lution of Network Management Products,"
Digital Technical Journal (September
1986, this issue): 117-128.

3. M. Sylor, "The NMCC/DECnet Monitor
Design," Digital Technical Journal (Sep
tember 1986, this issue): 129-141.

107

New Products

Peter 0. Mierswa I
David J. Mitton

Martha L. Spence

The DECnet-DOS System

The DECnet-DOS system is an implementation of the Digital Network
Architecture standard for both Digital's Rainbow personal computers
and those of IBM Corporation. This system provides all the services asso
ciated with a DECnet implementation. These include a choice of commu
nication technologies, adaptive path routing over complex topologies,
and network monitoring and management. DECnet-DOS also supports
task-to-task programming, remote flle transfer and access, remote termi
nal services, and network maU services. Those tasks are all perfonned on
a famUy of low-speed, small-memory processors.

Over the past few years the low cost and avail
ability of applications for personal computers
(PC) have been enticing an increasing number of
businesses to acquire them. At first, each PC user
worked with his own computing resources in a
stand-alone manner. Eventually, however, these
users found they wanted to share programs, data,
and messages with each other. They also wanted
to take advantage of the databases, processing
power, and larger applications on the large com
puter systems in their companies.

Within Digital Equipment Corporation, there
is an engineering group responsible for the
implementation of DECnet software on Digital's
small systems. This group believed that a DECnet
implementation for personal computers could
easily satisfy these users' desire for data and pro
gram sharing. In 1984, this group initiated a pro
ject to implement the Digital Network Architec
ture (DNA) on personal computers that used the
MS-DOS operating system.

The implementation of DECnet software, a
mature, layered communications architecture,
on the personal computers of both Digital and
IBM Corporation presented a number of interest
ing problems. The team had to work with asyn
chronous and Ethernet communications con
trollers and a number of different, relatively slow
processors, all built by other companies. They
had to work within the confines of the MS-DOS
system, a small operating system with few system
services capable of supponing multiple commu
nication tasks in the background. Moreover, the
resulting product had to be compatible with
thousands of application programs already writ-

108

ten by hundreds of different companies. And
because of the volatile nature of the PC business,
this product had to provide a wide range of basic
network services and layered applications. Since
products for PCs were being rapidly introduced,
our goal was to design, implement, and test this
product in a fairly shon time period.

It was clear to the project team that the only
way to meet the time-to-market goal was to fol
low one strategy. First, the project had to adhere
strictly to the DNA architecture, thus eliminating
any temptation to implement new and unique
protocols not supponed by other existing imple
mentations. Second, the project had to borrow
software freely from other products that had
been or were being developed.

This paper presents a unique model for the
rapid development of a specific product by uti
lizing work done on many other projects. The
combination of original software and borrowed
code, all within the framework of DNA, allowed
us to introduce the DECnet-DOS system in a rela
tively shon time period. The overall problems
we encountered and how we solved them are
first presented within the context of general
issues. Then each layer of the architecture is
used as a springboard from which to discuss par
ticular problems encountered in that layer.

General Development Issues

Coding Style and Standards
The time-to-market goal dictated that both cod
ing and debugging had to be done as quickly as
possible. We immediately agreed upon using a

Digital TeclmlcalJournal
No. 3 September 1986

higher-level lang~age and fairly strict coding
standards to shorten our development time. We
also had to initiate a search for code fragments
already existing within Digital that were also
required in our product. We felt that incorporat
ing related code could also greatly reduce both
the development and debugging time.

The MS-DOS environment is quite similar to
the UNIX environment. Many C compilers based
on MS-DOS machines offer libraries similar to
the one on the UNIX system. Therefore, it was
quite fortuitous that the DECnet-ULTRIX system,
Digital 's DECnet implementation for the ULTRIX
system, had just been completed. It was written
almost entirely in the C programming language.
We felt that some of the DECnet-ULTRIX code
could be used successfully in DECnet-DOS. Our
strategy was to do the following tasks:

• Write as much code as possible in C. Do not
preclude the use of assembler language
if required to access devices or services
unavailable in C or to reduce execution time
where necessary.

• Use common coding and style practices for
all code.

• Adopt the DECnet-ULTRIX programming
interface. The programmer's access to net
work services is not part of the architecture
but is specific to the operating system and
the DECnet implementation.

• Port code from the DECnet-ULTRIX software
whenever it is applicable and easier than
writing original code.

• Include trace facilities in the basic driver
and all utilities as part of the design.

Training Issues
At the start of this project, few engineers in
Digital's Network and Communications Group
had extensive experience with MS-DOS internals
or C programming. To prevent a certain delay of
several months while people were trained, the
project team decided to pursue two avenues of
external assistance: temporary in-house consul
tants, and external engineering. Three consul
tants with MS-DOS and C programming back
grounds were employed, being gradually re
placed by Digital employees as they completed
their training. An arrangement was made with the
Computing Resources Department of the Univer-

Digital Tecbnlcal Journal
No. 3 September 1986

sity of Texas Health Science Center, San Antonio,
to implement the file transfer utility. They had
expertise developing an in-house DECnet imple
mentation on another small system.

Background Task Design
The MS-DOS system is a single-task operating sys
tem; no services are provided to support the con
current execution of two tasks. This fact raised a
problem because a number of the requirements
for the DECnet-DOS system demand the concur
rent operation of some network tasks with the
user's current application. Such tasks include the
transmission and reception of periodic routing
and line confidence messages, and the concur
rent operation of multiple connections. More
over, a particular constraint was that application
programs have to run as written, without coding
changes, while the network is active. We simply
could not require that the thousands of applica
tions currently on the market for MS-DOS-based
systems be changed.

To solve this problem, we devised a scheme
that would allow network tasks to run either at
periodic intervals or from an interrupt from a
communications controller. This design envi
sioned that network tasks were interruptable and
could run in the background completely trans
parent to the application program running in the
foreground . This scheme had to be designed
quickly and work the first time for the project
team to complete the product on schedule.

Unfortunately, the design of task scheduling in
the DECnet-ULTRIX software was incompatible
with our scheme. Therefore, that portion of the
DECnet-ULTRIX code could not be ported to
solve this problem. However, the interrupt archi
tecture of the PDP- I I system and those of the
Intel processors in the target machines are very
similar. Therefore, the interrupt design from the
DECnet-RSX software that runs on the PDP- I I
system could be used for the interrupt function
in DECnet-DOS.

The DECnet-RSX CPU scheduler uses a set of
work queues in which request packets called
communication control blocks (CCB) are
queued for processing. Any data buffers associ
ated with the requests are pointed to by fields
within the CCBs.

For example, if a message is received from the
communications controller, a CCB will be cre
ated by the device driver for the controller. The
received data is placed in a buffer pointed to by

109

New Products

The DECnet-DOS System

that CCB, which will be placed in the work
queue of the routing layer. This layer, when run,
will process the buffer pointed to by the CCB. If
further processing is necessary, this layer will
place the CCB in the work queue of another net·
work process.

This scheme would work perfectly well if the
CPU scheduler were designed to scan the work
queues both at periodic intervals and after con
troller interrupts. Then the scheduler would dis·
patch the network tasks to empty the work
queues. And all these actions must happen so
that they are transparent to the current fore
ground application.

To fulfill those requirements, we designed a
memory-resident scheduler that performs all
those actions by using a technique called inter
rupt shelling. To shell an interrupt, the sched
uler first records the address of the current
interrupt handler, then replaces it with the
scheduler's own address. Thus when the inter
rupt occurs, the CPU state and the interrupt
return address are saved, and the scheduler,
instead of the original interrupt handler, is called
directly.

Upon entry for an interrupt, the scheduler
saves the current context of the system and simu
lates an interrupt to the original interrupt ban·
<lier. When the interrupt processing completes,
the interrupt handler will return to the sched
uler - not the foreground task. Therefore, the
scheduler now gains control. The interrupt pro
cessing is now complete and the time-critical
processing has finished. The scheduler can now
enable interrupts and examine all work queues
for tasks that need to be run. After all tasks have
been run, the scheduler finally returns to the
interrupted foreground task.

Two examples will help to make this process
more clear.

First, consider an interrupt from an Ethernet
controller that signals the successful reception of
a message from some other node in the network.
When the controller causes the interrupt, the
scheduler gains control with interrupts disabled.
The scheduler saves the return address and state
and dispatches to the "real" interrupt handler of
the Ethernet controller. The interrupt handler
performs the following series of actions:

1 . Analyzes the interrupt

2. Determines that a message has been
received

110

3. Allocates a receive buffer

4. Copies the message from the Ethernet
controller to the receive buffer

5 . Resets the controller to receive another
message

6. Calls a subroutine to insert a CCB point·
ing to the message onto the work queue in
the background network process

The Ethernet interrupt controller then dismisses
the interrupt, and control returns to the sched
uler. The scheduler now enables interrupts and
scans the work queues for additional work.
The CCB containing the received message is
found on the work queues and the routing layer
is called to completely process the message.
When all work queues with immediate work are
empty, the scheduler finally returns to the origi·
nally interrupted code in the user's application
program.

The second example deals with handling an
interrupt from the clock. In this case exactly the
same code path as the one in the first example is
followed. The clock interrupts and the scheduler
gains control with interrupts disabled. It saves
the return address and state and dispatches to
the "real" clock interrupt handler. This handler
will update the date and time and dismiss the
interrupt. Control now returns to the scheduler,
which enables the interrupts, scans the timer
queues, and dispatches any process whose timer
has expired. When all such processes have
been completed, the scheduler returns to the
originally interrupted code in the application
program. ·

Using the scheduler to handle interrupts and
context switching allows network processing to
be performed in the background while an MS
DOS application is running in the foreground.
The interrupt shell ensures that a minimum
amount of code runs with interrupts disabled.
The background process scheduling ensures
there is no network performance loss due to a
pause between message receipt and message pro
cessing.

Overview of the DNA Architecture
Table 1 lists the layers of the ISO model for data
communications, along with the corresponding
DNA layers and the appropriate DECnet-DOS
components within each layer.

Digital TeclmkalJournal
No. 3 September 1986

Table 1 Data Communication Layers

ISO Layer DNA Layer

Application User/network management

Presentation Network application

Session Session control

Transport End-to-end communication

Network Routing

Data link Data link

Physical link Physical link

Data L ink Services

Asynchronous Data Link Layer
The Digital Network Architecture standard speci
fies a protocol providing a reliable data commu
nications path between two processors over
synchronous and asynchronous serial communi
cation lines. This protocol is the Digital Data
Communications Message Protocol (DDCMP) .
The asynchronous data link layer provides
DDCMP protocol processing and device driver
support for the asynchronous controllers con
tained in the PCs.

We found that no existing software could be
borrowed for the DDCMP protocol modules .
However, existing DDCMP software programs
from other products were used as models to con
struct our own modules. We also had to design
and code all device drivers for the various asyn
chronous controllers. At first we were not sure
exactly how the asynchronous controller chip
and the interrupt controller chip worked
together. Reading the specifications from the
chip manufacturers along with the documenta
tion from the makers of the controller boards
resolved any questions we had. The code we
then developed worked properly at lower
speeds; at 9600 baud, however, we found that
characters were being lost during reception.

Digital Tecbnlca/Journal
No. 3 September 1986

DECnet-DOS Components

Programming library
Job spawner
Network control program (NCP)
Network test utility (NTU)

Network file transfer (NFT)
Virtual terminal service (SETHOST)
Virtual disk/printer service (NDU)
Network mail (MAIL)
File access server (FAL)

SESSION

NSP

ROUTING

Asynchronous DATA LINK
Ethernet DATA LINK

Asynchronous controllers
Ethernet controllers

After calculating the bytes per second at
9600 baud and the instructions per second on
the lower-speed PCs, we realized that very few
instructions could be executed between each
received character. In this case the advantages of
coding in a higher-level language were out
weighed by other considerations. After carefully
recoding the interrupt handler for received char
acters in assembler language, we reduced but did
not eliminate the character loss. Using debug
tracing of the interrupt stack, we discovered that
the PC BIOS code handling the clock interrupts
could leave the interrupt system disabled for
long periods. Changing this clock interrupt code
solved the character-loss problem.

Ethernet Data Link Layer
The Ethernet data link layer provides buffer man
agement services, transmits and receives mes
sages, and dispatches the received messages
based upon their protocol types. The goal for
DECnet-DOS included support for a number of
Ethernet controllers. Unfortunately, the code for
the device drivers is often the hardest to design
and debug.

Our search for existing code led us to two sep
arate engineering groups within Digital. Both
groups had already written device drivers for PC
based Ethernet controllers. We decided to use a

111

New Products

The DECnet-DOS System

data link layer for buffer management and
received-message dispatching that was common
to these drivers. We also borrowed several other
device drivers, all having consistent calling
sequences. As a result, our team had to write the
code for only one device driver; the code for the
other device drivers and the data link layer was
provided to us complete and partially tested.

Network Layer Services (Routing)
The modules that perform routing functions
have well defined inputs and outputs that are
almost entirely independent of the operating sys
tem type. Messages arriving from the NSP layer
must be passed to lower layers, depending upon
information stored in the routing database. Mes
sages also arrive from the data link layer and must
be passed to higher layers, depending upon
information stored in the routing database.

Since the code is relatively independent of the
system, we were able to use the routing modules
from the DECnet-ULTRIX system with very few
changes.

Transport Layer Services (NSP)
The NSP layer is the one in which logical links
are created, maintained, and destroyed . Link
maintenance includes all the timing and retrans
mission of messages necessary to maintain logi
cal link integrity. NSP also segments large user
buffers into smaller network buffers and ensures
that they are reassembled correctly.

We studied the feasibility of porting the NSP
modules from the DECnet-ULTRIX system to the
DECnet-DOS system. However, the differences in
memory management and process scheduling
made the conversion appear too costly. There
fore, we rewrote the modules in the NSP layer of
the DECnet-ULTRIX software, but retained the
same names and functions.

This code was the most difficult to develop.
Manipulating dynamic memory, buffers, and tim
ing for multiple internal tasks is very specific to
the operating system. Code from other imple
mentations to perform these functions was not
very helpful.

In addition, our initial device drivers for asyn
chronous and Ethernet connections often lost
characters or messages. Since NSP maintains the
integrity of each logical link, the retransmission
algorithms had to be complete and correct very
early for both low- and high-speed failures .
These difficult problems, like many others,

112

were solved by using the algorithms from other
implementations.

Session Layer Services
The session layer, where user requests are
checked and dispatched for processing, is
highly dependent on the type of operating sys
tem. The single-task environment of the MS-DOS
system provides no process context identifica
tion or integrity assurance for the user. As a
result, we could not use the traditional design for
a DECnet session layer, in which logical link
ownership is known by a process code assigned
by the system.

To design a new session layer, we chose to
make the logical links into system-wide entities
and retain all information about those links in
the background network process. In that way the
identifiers for logical links would be unique
across the entire system. This solution ensures
the integrity of the logical link database even if a
user program creates a logical link and then
exits. One side effect of this design is that an
application can create a logical link, exit, and
then be run again later to access the existing log
ical link. This effect allows the SETHOST appli
cation to interrupt a virtual terminal session,
return the user to the MS-DOS system to perform
local tasks, and then resume the terminal session
later in the same state in which the session was
interrupted.

The actual session interface that we provided
was modeled after the UNIX 4.2BSD network
socket interface as implemented in the DECnet
ULTRIX system. Since the MS-DOS code is similar
to the UNIX code, we felt the interface was the
most appropriate model to use. Unfortunately,
we could not use any of the UNIX code in this
area, so we had to write our own implementa
tion. By providing the same interface, however,
we could easily share network application pro
grams with the DECnet-ULTRIX project.

Presentation Layer Services

Network File Transfer
The network file transfer utility (NFI) provides
file access services between the PC and remote
nodes. NFf supports a number of activities.

• Files can be copied in both directions.

• Remote files can be displayed on the PC's
console.

Digital TecbnlcalJournal
No. 3 September 1986

• Listings of remote directories can also be
displayed.

• Remote files can be deleted.

• Remote files can be queued to be printed or
executed at the remote node.

The files to be accessed can be specified using
wild cards and file lists.

In addition to these services, NFT is responsi
ble for reformatting data if it is copied to or from
a remote system with a different file system for
mat. To be a DECnet implementation, NFT had to
pass strict cenification tests that ensured its com
patibility with all other DECnet implementa
tions. Passing those tests was our single biggest
hurdle in this area.

The project team again decided to use existing
designs and code for NFT, the common parser
and common message processer being used to
parse NFT commands. We wrote the data format
ting and protocol modules using DECnet-RSX
NFT as a guide. Network 1/0 was done using the
programming interface library, which provides
programmers with network access.

Using the NFT implementation in the DECnet
RSX software proved to be a wise idea. That
implementation had been in use for many
years; therefore, its algorithms and design
were well tested. The DECnet-DOS NFT imp
lementation was so successful that it was one of
the first applications to run in house during
development.

The file access listener (FAL) provides the
same services as NFT but runs on the PC to give
other network nodes access to the PC files. The
FAL utility was begun very late in the project. As
a result we were able to pon the completed DEC
net-ULTRIX FAL to the MS-DOS system, a task
completed in under two weeks. This gave the
project team enough time to add a number of
attractive optional features, such as supponing
simultaneous multiple connections.

Virtual Terminal Service
The SETHOST utility allows the keyboard and
screen of a PC to emulate a Vfl 00 terminal con
nected directly to a remote DECnet node. To do
that, this utility must provide not only emulation
suppon for the keyboard and screen but also pro
tocol-handling suppon for the remote terminal
protocol used to communicate with the node.
Two protocols are currently used on Digital 's

Digital TecbnicalJournal
No. 3 September 1986

products to provide remote terminal suppon:
CTERM and LAT. CTERM is layered onto the
DECnet software and provides remote terminal
suppon to any node in a DECnet network. The
IAT protocol is independent of the DECnet soft
ware and provides remote terminal suppon only
among the nodes on a single Ethernet.

We constructed the SETHOST utility entirely
out of existing code, the common parser being
used to process SETHOST commands. The soft
ware to emulate the VTI 00 terminal was
obtained from another engineering group within
Digital. The handling code for the CTERM proto
col was ported from the DECnet-ULTRIX
software with very few changes. The han
dling code for the LAT protocol was obtained
from still another engineering group. All net
work 1/0 is done using the programming inter
face library.

Virtual Disk and Printer
Vinual device services support disk and printer
devices that are located at remote nodes yet
appear to be local to an application program.
Our goal was to provide this service in a transpar
ent manner so that no changes had to be made to
application programs or to the MS-DOS system.

Our final design for these services was quite
simple. The services are provided by two compo
nents: the network device utility (NDU), and the
virtual device driver. The NDU accepts com
mands from the user to establish either a vinual
disk volume or a virtual printer device at a
remote node. The logical link is made to the
remote system by NDU, and the logical link ID is
passed to the vinual device driver resident in
memory. This device driver is written to conform
to the standards for MS-DOS device drivers. It
loads at system boot time by the standard MS
DOS-loadable driver technique and accepts stan
dard device I/0 requests from the MS-DOS file
system. The driver then executes these requests
by performing the equivalent data access proto
col sequences on the logical link established by
NDU.

The data access protocol chosen was the same
one used for file transfer. This choice allowed us
to use existing DECnet implementations on
larger systems for the virtual device suppon.
Thus the need to design and implement a spe
cialized protocol for a numb~r of different oper
ating systems was eliminated.

113

' New Products

The DECnet-DOS System

NDU and the vinual device drivers were built
from three subcomponents:

• A common parser and common message pro
cessor (described in the next section)

• A small library of subroutines that create
remote files and open them using the data
access protocol (These subroutines were
taken directly from NFf.)

• The programming interface library

Network Mail
Digital provides network-wide mail services for a
number of its systems. These utilities allow users
to compose messages directly within the mail
utility or to use an editor or pre-existing text file
as the source. Text can be sent to one or more
users on a multitude of systems, even using a dis
tribution list from another text file .

The DECnet-DOS mail utility was completed in
a shon time by combining the common parser
with the mail utility from the DECnet-ULTRIX
software . The unique requirements of a small
system did present some problems. In a DECnet
network, node addressing is done by numeric
addresses. However, users often prefer to use
names, which can be more easily remembered.
To facilitate that use, each node maintains a data
base that maps names to addresses. Now, such
a database for a large network would be too
large for a small PC to keep on disk or search
quickly. Yet the PC users may want to send mail
to other users anywhere in such a network. For
example , Digital has an in-house network with
over 10 ,000 nodes, any one of which can be
addressed by any other. To solve this problem we
implemented the mail-forwarding feature of the
mail protocol. That feature allows a PC user to
send a message to an unknown node by asking a
known node to forward the message. Thus the PC
database keeps a much smaller list of known
nodes, which is considerably more manageable.

The project team originally had a requirement
for receipt and storage of network mail on the
local disks of the PC. Our investigations showed,
however, that the engineering cost of developing
a background task that could record the received
mail on disk was very high.

Since 1/0 in the MS-DOS system is single
threaded, the network software, running in the
background, cannot perform 1/0 while an appli
cation program is performing it. To overcome

11 4

this restriction, our PC mail service automati
cally tells the receiver of mail from the PC which
large system should be sent the replies.

Application Layer Seroices

Application Program Command
Parsing
The DECnet-DOS product would contain as many
as ten different application programs, including
one each for file access, vinual terminal suppon,
vinual device suppon, and mail services; and
two for network management. Our requirements
called for common, easily translatable messages
and common command parsing, including char
acter delete , line and character recall , and abbre
viation. These standards were imponant because
it would be very costly to have ten different
engineers coding in ten different ways. Such an
approach, without standards, could have intro
duced differences in the applications, which
would be difficult for the end user to learn and
remember.

To avoid this problem we designed and imple
mented a common parser and a common message
and help processor. The common parser is
driven by a parsing command file that supports
abbreviation , character delete, and line recall.
The common message processor is also driven by
a message file and performs fast look-ups of text
strings and blocks. This design greatly reduced
the time to code and debug the utility programs
and made their translation to foreign languages
fairly straightforward.

Network Management
The network management architecture in the
DNA architecture requires access to current
parameters, counters, and statistics, all kept in
the volatile database. It also needs the parame
ters, kept in the permanent database, that will be
in effect the next time the network software is
staned. Data in both databases should be accessi
ble from either the local node or a remote node.

However, the single-threaded restriction that
the MS-DOS system imposes on file 1/0 makes
access to the network management databases
very difficult. This restriction not only affects the
mail service, as explained earlier, but prevents
DECnet-DOS from providing remote access to
local network management databases. It also pre
vents the background network software from
accessing disk files. Thus the project team felt

Dlgltal TeclmicalJournal
No. 3 September 1986

that the cost of providing remote access to local
network management data was too high in terms
of resident memory usage and design complex
ity. Therefore, the DNA architects granted an
exception to the DNA requirement that remote
nodes have access to counters and parameters
local to PCs.

Solving the problem of database access by the
background network task, however, was essen
tial to the success of our project. Therefore, we
adopted the following design. On its first run,
the network software performs as a foreground
task. As such the software first performs initial
ization, then shifts to the background. During
initialization, the network software, running in
the foreground, can safely perform disk J/0 . At
this time it reads the permanent database, which
establishes the parameters necessary for running
the network, such as buffer counts and sizes. The
volatile database is kept in memory in the back
ground network task. The network control pro
gram (NCP) queries the background network
task when access to the volatile database is
required. Similarly, NCP performs disk 1/0 to
the permanent database when its access is
required.

Node name-to-address translations, usually
performed by resident DECnet code , were
assigned to the application layer in the DECnet
DOS software . This shift overcame the back
ground disk J/0 restriction. Also, even though
remote nodes cannot access our local DECnet
DOS databases, they can perform loopback tests
to the DECnet-DOS node. For Ethernet configura
tions, remote nodes can query the data link Jayer
for identification information and data link error
and traffic counters.

NCP and the network test utility (NTIJ) were
written using the common parsing package and
the programming interface library. The action
routines performing network management and
testing could not be ported from other imple
mentations because of the MS-DOS restrictions.
As a result, creating the routines to perform net
work management consumed a large part of our
development effort.

Network Programming Services
All DECnet implementations make the basic
program-to-program communication services
available to programmers through some sort of
system call or subroutine library. That allows
programmers to develop their own network

Digital TecbnlcalJournal
No. 3 September 1986

applications and services. DECnet-DOS provides
an assembler language interface, a C program
ming subroutine library, and transparent MS-DOS
file access services.

An assembler language programmer can
perform basic task-to-task services by filling a
data structure with control information, then
issuing a software interrupt that is serviced by
the DECnet process resident in memory. Such
services include logical link creation and
destruction, message transmission and reception,
and status and control.

A C language programmer can access the same
services through a subroutine library. We chose
to make this interface compatible with the
DECnet-ULTRIX programmer interface. This
choice decreased the development costs of a
number of our application modules by making
the DECnet-ULTRIX applications more portable.
It also allowed the project team to begin to
develop MS-DOS-specific applications under the
UL TRIX system. Our customers would benefit
from the same advantages.

Using these assembler language or C services,
however, requires a good understanding of logi
cal link management and networking concepts.
Many applications need only one simple connec
tion to access a file or program on another sys
tem. Unfortunately, existing applications often
cannot be easily rewritten to take advantage of
network calls.

To solve this problem, we designed services
for transparent network access. These services
make network access possible for the thousands
of PC applications already written and make the
development of new network applications eas
ier. Two tasks, one for remote file access and one
for remote program communication , are first
loaded into memory. These tasks then take con
trol of the software interrupt used by all pro
grams for services offered by the MS-DOS system.

Each interrupt made by an applications pro
gram requesting an MS-DOS service is examined.
If the request is a file OPEN or CREATE, the file
specification is also examined. File specifica
tions that begin with a double backslash are not
valid MS-DOS file names and instead signal a
request for network services. All other MS-DOS
service requests are passed on to the operating
system for processing. The " intercepted" service
requests are processed by the memory-resident
tasks that mimic the actions of the MS-DOS sys
tem. Thus an application to display a file on the

115

New Products

The DECnet-DOS System

console can access either a local file with the
specification " local.fit " or a remote file at
another node.

Although a wide range of programmer services
was offered to single application programs, the
single-tasking nature of the MS-DOS system made
it difficult to run a PC offering multiple services.
To solve this problem, we added a service to the
session layer. That service allows a single appli
cation to receive a request for any other service.
Using this capability, we wrote a program called
the job spawner, which receives all requests for
service . For each request , the job spawner
accesses a database for the name of the applica
tion that must be run to service that particular
request. Upon finding the application, the job
spawner runs it to completion and then waits for
the next request.

Summary
This implementation of DECnet-DOS provides a
wide range of reliable communications services
between personal computers and larger systems.
The development of this software was successful
and completed close to schedule, made possible
by

• Strict adherence to a proven communications
architecture

• Porting existing designs, algorithms, and code
from other software projects

• Strict, independent certification and perfor-
mance test procedures

An adherence to company-wide architectures
also ensures that future communication tech
nologies, both hardware and software, can be
easily integrated with the existing DECnet
architecture.

116

General, References
DECnet Digital Network Architecture (Phase
IV) General Description (Maynard : Digital
Equipment Corporation, Order No. AA-Nl49A·
TC, 1982) .

J . Forecast , J. Jackson , and J. Schriesheim ,
"The DECnet-ULTRIX Software," Digital Tech
nical Journal (September 1986, this issue):
100-107.

]. Forecast, J. Jackson, and}. Schriesheim, "Com
munications Executive Implements Computer
Networks, " Computer Design (November
1980): 71-75.

S. Leffler, W. Joy, and R. Fabry, "A 4 .2BSD Inter
process Communication Primer," University of
California Technical Report, Berkeley, California
(1 983) .

S. Leffler, W . Joy, and R. Fabry, " 4 .2BSD Net
working Implementation Notes," University of
California Technical Report, Berkeley, California
(1983) .

Digital TecbnlcalJournal
No. 3 September 1986

Nancy R.. La Pelle I
MarkJ. Seger

Mark W. Sylor

The Evolution of Network
Management Products

The management of data networks bas evolved at Digital since 1978,
although the management of voice networks bas been a more recent phe
nomenon. Digital's first data network management products managed
networks of DECnet twdes. Our capabilities now include the management
of diverse data network components by means of several different prod
ucts described in this paper. The integration of these data network man
agement capabilities through a common architecture, user interjaces,
management databases, and protocols is a major short-term goal. The
integration of voice and data network management is a much longer
tenn goal. The voice management product presented here will be part of
that future integration.

The size and complexity of networks have been
growing at an accelerating rate. For example,
over the last ten years the size of Digital's inter
nal network has grown from a few communicat
ing systems to over I 0,000 computer nodes, dis
tributed throughout 250 sites in 37 countries.
We are currently adding about a hundred new
systems per week to this private network. This
rapid growth has led to a need for more-sophisti
cated network management capabilities to con
trol such networks. This paper describes the
changing needs of network management, how
Digital's products and capabilities have evolved
to meet those needs, and some directions for
future evolution.

Traditionally, networks have come in two cate
gories: data and voice . Digital supports many
data network architectures, including BISYNCH,
SNA, X.25 , Ethernet, and OSI. However, the
primary one supported is the Digital Network
Architecture, or DNA, which defines our DECnet
products.

The Network Evolution
Some basic network management capabilities
were added to the DNA architecture early in its
evolution (1978). These capabilities included
the manual on-line observation and control of
both local and remote network nodes. Included
in the DNA design was a network control pro
gram that was to be implemented consistently

Digital TecbnlcalJoumal
No. 3 September 1986

across all DECnet products .1 That program
would allow a network manager to control the
operation and configuration of the network by
manipulating operational parameters. The pro
gram would also allow him to observe how well
the network operated by providing current status
information, and network traffic and error data.

Basic Management Capabilities for the
Whole Network
As other architectures and protocols emerged,
new products, such as X.25 and SNA gateways,
and local area network (LAN) bridges, needed
the same capabilities to be managed as did the
DECnet products. This requirement brought
about the first major evolutionary trend in net
work management. It became clear that DNA had
to be extended to accommodate the management
of connections to these non-DECnet products.

Adding Intelligence to Management
Functions
The second evolutionary trend was driven by the
increased size and complexity of DECnet net
works and the difficulty in finding qualified peo
ple to manage them and the systems within them.
This trend led to the need for more-intelligent
network management functions to support a cen
tralized staff dedicated to managing the network.
To partially meet this need, we developed a pro
duct that automates the monitoring of traffic

11 7

The Evolution of Network Management Products

and other events in the network. This product
also contains many event evaluation functions,
which produce statistics made available through
both interactive and hard-copy reports.

Other products have also added intelligence to
the basic network control capabilities of the
early DNA architecture. These products perform
I.AN testing and diagnosis, and X.25 accounting
and enhanced protocol-tracing.

Voice Network Integration
An evolutionary trend similar to that in data net
works was also happening in voice networks.
Voice network users were becoming more
sophisticated, requesting capabilities similar to
those seen in data networks. For example, like
their data network counterparts, voice network
managers need the ability to control, optimize,
configure, and monitor the network. In addition
to collecting management data, users also
requested its processing to provide management
information.

At the present time, telecommunications net
work management has evolved beyond the scope
of the DNA design. Because of this rapid advance,
product strategies have been adopted for tele
communications management that identify a
number of directions data network management
products could pursue in the future. Specifi
cally, we are expanding our management archi
tecture to allow for the inclusion of additional
network components. We also see the need to
integrate management user interfaces and infor
mation with other network applications. This
integration will support all the business-data and
resource-management needs of users.

The remainder of this paper covers the evolu
tion of network management in more detail as it
relates to the development of specific manage
ment products. The following section discusses
data network management as a distributed
application that provides operational control
and observation of a variety of data network
products.

Management as a Distributed
Application
Network management within Digital Equipment
Corporation began as the management of net
works of DECnet nodes. These networks con
sisted of peer computer nodes with peer manage
ment capabilities; that is, each node had remote
access to the management capabilities of every

118

other node, subject only to access control. Each
node also provided access to its own manage
ment functions and data for its own local users.

A common user-interface program, called the
network control program (NCP) , is imple
mented across all DECnet products. This pro
gram is not simply a remote console interface to
network products. In addition, it allows remote
access to network management functions via a
published, proprietary protocol.

The character of Digital ' s networks has
changed significantly over the last ten years.
They now have components that are neither
DECnet nodes nor peers, such as I.AN bridges,
gateways, and other servers of various kinds. The
approach we used to integrate the management
of these products was based on the DNA manage
ment strategy. That is, the level of function and
the general presentation to the user were similar
to those originally in DNA network management.
A number of initial strategies were tried to
extend the architecture in various ways to
include the management of these products.

For X.25 connections, our initial strategy was
to extend the architecture by adding X.25-
specific capabilities. Unfortunately, this strategy
tightly coupled the management of the X.25
product to that of the DECnet product by adding
X.25 management to NCP. That coupling made
upgrading the management implementation for
either product more difficult since it created
interdependencies between product develop
ment schedules. We have found these interde
pendencies to be difficult to manage with only
these two products. This strategy would be com
pletely unworkable if we pursued it for the man
agement of all the different network products.
Nothing would come to market if we had to coor
dinate the development and release schedules
for dozens of interrelated items.

For SNA gateways, our temporary strategy was
to derive a parallel management architecture for
SNA, based on the DNA management capabilities.
While decoupling the two architectures and
implementations, this strategy only postponed
the integration of network management for SNA
gateways. It also resulted in multiple manage
ment protocols and user interfaces, although the
parallels between these were obvious. We could
readily see that this approach would not work
well in the long term as the number of products
to be managed increased. We also knew that inte
gration of network management for all our net-

Digital Teclmlcal]ournal
No. 3 September 1986

work products was very desirable to customers
and would allow us to eliminate duplication on
development projects.

For LAN bridges, our strategy was to use a non
proprietary protocol based on the evolving IEEE
802.1 management protocol. This strategy was
the first step in an evolution toward the adoption
of emerging international standards for network
management. 2 Since the development of manage
ment protocol standards had not been com
pleted, using such protocols amounted to
working with prototypes. However, the need
to evolve the strategy in this direction was
clear.

NCP and other similar products developed for
SNA gateway and LAN bridge management pro
vide the network manager with various simple
functions . Among these are configuration con
trol , low-level testing, and snapshot views of
state information and various traffic and error
counters.

While integrating these products, both the
architecture and the subsequent implementation
strategy must be enhanced to allow the indepen
dent development of management capabilities
for these diverse components. We are currently
working on such enhancements, as discussed in
the section "Future Developments."

Other factors were also highlighted while we
developed management capabilities for bridges,
gateways, and servers. These more recent addi
tions to our network product set do not always
provide local access to their own management
capabilities or allow the initiation of manage
ment access to other network components. Many
have no locally connected device to suppon a
local management user interface. To allow net
work management for these components, some
type of remote management access from another
station that does provide a management user
interface is essential.

Remote access is also the key for managing
DECnet nodes. Without this access, no manager
could see more than his own local node informa
tion, which is not sufficient to diagnose and
solve overall network problems. Without remote
access, service personnel would have to be sent
to each node location that was experiencing the
problem in order to collect management infor
mation. This problem results in networks that are
much more expensive to service.

Remote access to the management application
can be provided in a number of ways. Access can

Digital Tecbnlca/Journal
No. 3 September 1986

be centralized, in which one management station
provides access to the entire network; dis
tributed to a few management stations; or fully
distributed to all nodes, as access is in DECnet
NCP. In any case remote access from one node to
the management functions and data from another
node necessitates designing and implementing
the management application itself as a dis
tributed function . The architecture for this dis
tributed management must specify a set of
distributed software and database elements
that will be needed to manage diverse network
components.

Distributed Management Architecture
and Application Elements
The basic elements that must be included in a
distributed management architecture and in the
applications developed within it are

• A user interface

• A management agent in each component to be
managed, providing remote access to its man
agement functions and data

• A communications mechanism between the
node running the user interface and the agent
software modules in the network components
being managed

• A management database

• A set of simple management functions on
which more intelligent functions can be
layered

Figure 1 illustrates the relationships between
these elements.

The User Interface
The user interface and software to invoke man
agement functions generally reside on one or
more management stations (more if distributed,
as with NCP; or one if centralized) . The user
interface is the key to developing an integrated
management application from a network man
ager's perspective. In developing new network
products, we have extended the command lan
guage syntax developed for DECnet management
to X. 25 connections and SNA gateway products,
as well as to bridge and server products currently
under development. Thus a common command
style, resembling English sentences as closely as
possible, has been used to manage our expand
ing set of network products.

119

New Products

The Evolution of Network Management Products

MANAGEMENT STATION

COMMAND
USER
INTERFACE

I 1

MANAGEMENT
FUNCTIONS

MANAGEMENT
DATABASE

COMMUNICATION OF
MANAGEMENT
FUNCTIONS, DAT A
OVER NETWORK

PROTOCOL

NETWORK
COMPONENTS

AGENT MANAGEMENT NODE
DATABASE

AGENT
MANAGEMENT

GATEWAY DATABASE

AGENT
MANAGEMENT

BRIDGE DATABASE

Figure 1 Distributed Management Application Elements

A unified user interface giving management
access to all these network products from a sin
gle program would have been extremely desir
able. Such an interface, however, could not be
provided for the first release of all of them. A uni
fied interface would have to allow for the identi
fication of all products (DECnet, X.25, SNA,
bridges, etc.) to which the desired management
function would apply. The architecture had not
yet addressed this problem of selecting among
multiple products to be managed, although it
had been extended for X.25 connections. Thus
the X.25 connections can be managed via the
standard NCP interface. However, the SNA gate
way has its own SNA control program bundled
into the SNA products; and LAN bridges have
their own management software, the remote
bridge management software (RBMS) , sold as a
separate product. The network architecture is
currently being extended to incorporate this task
of selecting among multiple products.

Management Agents
Network components must contain management
agents before the components can be managed

120

remotely. These agents perform the management
actions issued by users by way of the user inter
face. The agents also maintain the operational
management data needed to support the manage
ment application and provide remote access to
this data maintained by the component itself.

An agent must be addressable across the net
work and must respond to a set of function
requests that provide adequate management
capabilities for each particular type of compo
nent. Some components (e.g. , hardware commu
nications controllers connecting computers to
network media) may have extremely simple
agents. Complex programmable network compo
nents, like bridges and servers, have agents that
may respond to many more functions. 3 Thus
these components may have a lot of the dis
tributed management application residing in the
software or firmware of the agent.

Consistency of implementation of manage
ment function across agents of diverse types is
extremely important.4 If the implementation of
functions in the agents of different network
products is inconsistent, then these products
will not provide a uniform set of functions to the

Digital TecbnlcalJournal
No. 3 September 1986

users. Funhermore, the same management func
tion might result in different actions for different
network products. Inconsistency of this type
results in user confusion and dissatisfaction.

Management Protocols
A management protocol is the vehicle for com
municating management functions and data
between the user interface and the management
agent. The NICE protocol was developed for this
purpose within standard DECnet components.
NICE was later extended to include X.25 gate
way management and was also used as the base
for adding extensions to manage DECnet/SNA
gateways. As mentioned earlier, for non-DECnet
servers and bridges, we are tracking the evolu
tion of a nonproprietary standard management
protocol.

The communication mechanism between the
user interface and the management agent must
also provide reliable transmission and end-to-end
integrity of management function requests and
management data. These requirements have been
satisfied by the data link and end communication
(OSI transport) layers of the Digital Network
Architecture for DECnet links. These layers have
also been used in the management of the gate
ways between DECnet and X.25 or SNA networks
since the layers are available on all components
implementing the DECnet standards.

For IAN bridges and some other non-DECnet
server implementations, other transpon mecha
nisms have been used with the management pro
tocol. In the case of bridges, no transpon mecha
nism is implemented at the bridge ; simple
datagram-based management is used. For bridge
management, the node running RBMS must
assume total responsibility for the reliable trans
mission and integrity of management messages
on the LAN. The component being managed
assumes no mutual responsibility for these mes
sages. Based on product constraints, the respon
sibility for the reliable communication of man
agement information can thus be distributed in a
variety of ways. Therefore, we must extend the
network management architecture to specify a
standard solution to this problem for non
DECnet products.

Management Database
The database needed to suppon the management
application can be distributed in a number of
ways. Some data must be maintained by the man-

Digital TecbnlcalJournal
No. 3 September 1986

aged components themselves, including compo
nent identification, state information, traffic and
error counts, and other operational parameters. A
permanent copy of the operational parameters
must be maintained in nonvolatile storage to
recover from human, computer, and network
failures. This copy could exist either in non
volatile RAM in the component, on local external
storage, or on a file at the remote management
station. If the copy exists at the management sta
tion, then the component must depend on that
station for correct operation unless the data is
also stored locally.

Other data files that might be contained in a
management database include the following:

• Loadable software image files for both opera
tional and diagnostic images associated with
particular network components

• Event log files in which notifications of signif
icant events for network components are col
lected

• Reference data files that, though not essential
for component operation, give information
relevant to the physical identification, loca
tion, and servicing of network components

• Management directory

The management directory contains informa
tion needed to identify and locate data relevant
to a particular component and to gain access to
network addresses for the components them
selves. Those addresses are needed for the pur
pose of remote management access.

To provide reliable access to essential direc
tory information, the directory data must either
be part of a network-wide directory (or naming
service) or be kept at the management station of
the component. The other files, however, could
reside at the management station or on external
storage at the component, if such storage exists.
(It does not exist for many components like
bridges, gateways, and some servers.) The direc
tory can be used to access data no matter where
it resides. The directory allows management
data distribution trade-offs to be made to meet
the needs of the network products themselves
as well as those of the management station
software.

Management Functions
Simple management functions are network con
trol functions involving interactions with net-

121

New Products

Tbe Evolution of Network Management Products

work components in which few or no analyses
are made of the data or test results obtained.
These interactions include

• Collecting or modifying management data
maintained by components

• Requesting management actions to occur at
components (enable, disable, test, etc.)

• Loading operational code or parameters into
components

• Collecting notifications of significant events
from components

Access security to these operations is provided
through a database of authorized network man
agers and their access rights. In this way different
levels of access rights can be granted to different
users for certain functions (e.g., privileges might
be granted to collect management data but not
modify it from a remote node) .

We are currently extending the four simple
network-control functions across our network
product set. More-intelligent management func
tions are being devised to automate the collec
tion of management information and to provide
analyses of data and test results. Such analyses
would yield information about network perfor
mance, fault management, and accounting.
These more intelligent functions are being intro
duced in items such as the DECnet monitor and
PfFM products, described later, and FfHERnim,
the I.AN testing and diagnosis software. The
selection of simple and intelligent management
functions to be performed must be accommo
dated by an integrated user interface, just as that
interface must allow for the selection of compo
nents to be managed. The evolution in Digital's
network products toward this level of integration
has just begun.

Amount of the Management
Application to Be Distributed
Certain distribution criteria affect the design of
network components relative to their manage
ment capabilities.5 These criteria concern com
ponent pricing, component performance, and
network performance. Clearly, the cost of devel
oping sophisticated, intelligent management
age nts , suc h as those providing c omplex
threshold and statistical analyses , will b e
reflected in the price of the network product.
Customers will normally purchase many network

122

products to be managed by one or a few manage
ment stations. Therefore, an expensive manage
ment station would be preferable to many expen
sive network products. One could make the
decision to put much of the complexity into the
management station software if the product
requirements warrant this move; a more intelli
gent agent generally results in less traffic. How
ever, such an agent may also require more over
head in the component, thus affecting the
performance of the component itself.

The amount of the management application to
be distributed to the management agent also
affects the design of intelligent management
functions in the management station software.
For example, an agent able to log events at set
table time intervals automatically provides the
data needed for analyses by intelligent manage
ment functions. An agent not providing these
functions must be polled for this information by
that software, which means more code in the
management station software and more traffic on
the network. The following sections describe
two products that provide some of these more
intelligent management functions in the manage
ment station software.

The DECnet Monitor
Digital's monitoring product automates the col
lection and analysis of network management
data. This section discusses how the monitor
evolved to include automated functions and
enhanced management databases, management
protocols, and user interfaces.

Evolution of the Monitor
How to distribute the management responsibili
ties is a key question in developing a network
management strategy. One answer is to distribute
this responsibility to the manager at each compo
nent. That was done with DECnet network
management, as we described earlier. Another
answer is to centralize network management
responsibility at one or a few nodes.

By 1979 , Digital's internal network was large
enough to require the centralization of its man
agement tasks. The group responsible for central
management d eveloped a tool to monitor
the network. This tool, called Observer, was
released in December 1982 and ran on a PDP-11
system under the RSX-1 lM software. Eventually
the size of the network and the subsequent mon-

Digital Tec:bnlcal]ournal
No. 3 September 1986

itoring activities outgrew the capabilities of this
system. The lack of memory address space and
CPU speed prevented adding new features, and
the forms-based user interface became quite
cumbersome. Thus a new monitor develop
ment project was initiated, which culminated
in the DECnet monitor, based on the VAXfVMS
software.6

The DECnet monitor provides the capability
to centralize network management, automating
many of the intelligent monitoring functions
discussed in the last section. It also enhances
the databases, protocols, and user interfaces
provided by NCP, thus allowing the user to
monitor the state of his network more effec
tively.

Centralized Management
In centralized management, a centrally located
organization (for example, corporate head
quarters) assumes responsibility for the man
agement of key parts of the network. A central
group usually has the expertise and resources
to deal with the more difficult problems of
network management, which require people
whose skills are scarce and expensive. Thus
these people are more effective as a cen
tral, and therefore shareable, resource. Their
scarcity means that they need easy-to-use tools
to make them productive . There are many
aspects to ease-of-use; for the monitor, it means
providing users with information in a form
that is easy to understand. Of course, easy-to
use programs often require more computer
resources (disk space , memory, CPU time),
but the overall cost of network management
can be lowered if the tools make people more
efficient.

Centralized Database
Network problems typically span many nodes. A
system manager at a component may see the
symptoms of a problem but not have the informa
tion needed to fully understand it. Only the net
work manager can access all the information
needed to diagnose and solve problems that
affect the whole network. To do this diagnosis
from one location, the network manager must
gather and store data in a historical database at
his central site. This centralized database is an
immensely valuable resource in managing a net
work, operating even when some of the systems
being managed are not.

Digital TecbntcalJournal
No. 3 September 1986

Short, Medium, and Long Term
Problems
Network managers have short- , medium-, and
long-term needs for data and for analyses of that
data. Over a short time period (hours or min
utes) , the network manager is concerned with
detecting and solving critical network problems
or failures. Such failures might cause the com
pany's network application to be unavailable to
support its business needs for an indeterminate
amount of time. To detect problems, the network
manager needs intelligent analyses of the most
recent state of the network.

Network problems often arise from multiple
component failures . For example, in a network
that makes use of alternate paths and automatic
fail-over (such as provided by the DECnet soft
ware), the failure of two or more circuits
can partition the network. This failure could also
disrupt a business application that depends on
the network as a resource. Such a partition will
not occur if only one failure takes place. On
the other hand, a single failure can be detected
in several locations. For example, if a point-to
point communication line fails, that failure
will be recorded at each end of the circuit. Thus
the network manager needs coordinated informa
tion from all points noting the failure if he or
she is not to be confused by multiple indications
of the same problem. The monitor evaluates
these communications failures , sorting out
duplicate indications and ignoring redundant
information.

Error and traffic statistics are a key means of
detecting problems in the network. Many of
these statistics come from the counters built into
the DECnet software. Single counter readings,
however, are not immediately meaningful. To be
useful, counters must be sampled at the begin
ning and end of an interval, and their difference
can them be used to compute important statistics.
For example, dividing the difference in counter
readings by the length of the time period will
yield the rate (such as traffic or error rate) per
interval. The DECnet monitor computes both
these statistics as well as many others.

In a medium time period (hours or days) , the
network manager must note developing trends
that may predict incipient problems that might
be prevented. Certainly, increasing error rates or
traffic levels could signal developing problems.
The DECnet monitor provides displays to signal

123

New Products

The Evolution of Network Management Products

such trends, for example, an on-line histogram of
traffic or errors over the past week for a specified
line.

Over a long time period (weeks or months),
the network manager is concerned with planning
issues, such as how to configure the network so
that its performance and reliability meet the
users' needs. Information about the current net
work, its performance and reliability, and the
workload presented to it is invaluable. This
information is all available from the DECnet
monitor via traffic and error reports over speci
fied long-term intervals for specific network
components.

Function Distribution
A key to the design of the DECnet monitor was to
balance the functions that could be distributed
most advantageously with those that could be
centralized. The advantages of centralized infor
mation were described earlier. However, the
monitor's design had to incorporate the flexibil
ity and other advantages of the existing dis
tributed network management features built into
the DECnet software.

As discussed earlier, each DECnet system has a
management agent that maintains data about that
system and makes it available to a network man
ager at a remote location. That composite body
of data must be collected, analyzed, and stored in
some central database, after which it can be dis
tributed to the system managers. The DECnet
monitor gathers this data at user-specified inter
vals using the standard DNA management proto
col, NICE, originally used only by NCP. The data
collected concerns counter values, and status
and operational parameters for the lines, cir
cuits, and nodes in the network, including those
for DECnet, X.25, and SNA connections.

The central database supports remote shared
access from users. The DECnet monitor provides
each network manager with a separate presenta
tion interface to the shared data. Data distribu
tion is accomplished via an enhanced manage
ment protocol, an extension to NICE needed to
support the additional functions provided by the
DECnet monitor.

Usage Styles
Ease of use through human engineering was a
major goal of the DECnet monitor, reflected in
the graphical presentation of information that is
difficult to express in other ways (e.g., the topo-

124

logical map). Yet the command syntax and pre
sentation of information for the more basic capa
bilities have been derived from those in the
original DNA network control program.

Network managers have different styles of
using monitoring. The DECnet monitor supports
three usage styles: batch, interactive, and alarm.

In batch usage, reports are automatically gen
erated at set intervals. This style, oriented to
medium- and long-term planning needs, is used
most often to produce summaries of network
management information.

Interactive usage is driven by user commands.
The DECnet monitor's interactive user interface
adds many new commands and dynamically
updated displays to the static displays available
from NCP. These capabilities provide automated
monitoring capabilities on line. With these
added functions, it was impossible to keep the
monitor's syntax identical to that of NCP's; how
ever, there is a definite family resemblance.
Interactive usage is oriented toward short- and
medium-term management needs.

In alarm usage, the monitor initiates a signal to
indicate a problem to the user (for example,
turning red the symbol of a system on a topology
map) . Alarms are oriented toward short-term
problem solving.

Design of the DECnet Monitor
The most important decision we made in design
ing the DECnet monitor was to limit the product
to monitoring; we did not attempt to control the
network as well. Network managers really
needed more help in monitoring, since NCP's
capabilities in this area were primitive, although
its control capabilities were perfectly sufficient.
Including both monitoring and control was sim
ply too much to attempt in a single development
effort.

With these general requirements in mind, the
DECnet monitor was designed to have the fol
lowing five functions:

• Collect management data from the network
components

• Store the management data in a central
location

• Distribute data to users

• Evaluate the collected data into meaningful
information (statistics, configuration descrip
tion, etc.)

Digital TecbnlcalJournal
No. 3 September 1986

• Present that information to users in easy-to-use
formats (color graphics , topology maps,
histograms, tables, lists, forms, and batch
reports)

Many of the lessons learned from designing
management software, such as the DECnet moni
tor for data networks, also apply to voice net
work management.

Telecommunications Network
Management
Digital's earliest telecommunications manage
ment product provided simple cost-allocation
and traffic-management reports. This capability
has evolved to allow users to track costs and
expenses and to generate billing invoices. Users
can now capture historical data and perform pre
diction analyses on it.

The products developed are based on an office
automation system that also provides generic
application-generation tools. Thus users can now
integrate their telecommunications management
functions with the rest of their business commu
nication needs. This integration means that
reports, which are really just document files, can
now, after processing, be annotated and shared
(via electronic mail) with people from other
departments.

Evolution of Voice Management
The TELEPRO product, introduced in 1981 ,
was Digital's first entry into the field of voice
networks . This early telecommunications
product was designed to collect station message
detail recorder (SMDR) information from
PBX systems and to generate basic cost account
ing reports. These reports included roll-ups
of telephone charges for various subgroups,
such as departments, cost centers, and the like.
There were also reports providing network
traffic information, such as trunk usage and
call cost distribution. In the latter case, infor
mation was reported on a per-trunk basis and
subdivided by times of day over a monthly
period. For example, a manager could see
how many calls on a particular tieline exceeded
one minute, how many two minutes, etc.,
for each day of the month. This information
gave the manager better analyses of the perfor
mance of the network, helping him to make
better decisions about proper network con
figuration.

Digital TeclmlcalJournal
No. 3 September 1986

This early product was intended to be a stand
alone, inexpensive, and easy-to-operate product.
The processors initially chosen were the PDP-11
family. This choice gave end users the ability to
choose independently from a variety of proces
sors, disks, and memory configurations. Thus
they could tailor their systems to fit the require
ments imposed by their data volumes.

To further extend this product's functionality,
we added Digital's database query language and
report writer, the DATATRIEVE system. This addi
tion gave TELEPRO's developers the ability to
build a powerful set of standard reports in a
small amount of time. With this set, users could
create their own custom-built reports. As a
result, the early product fit well with the needs
of the then current market for telecommunica
tions management software.

When this early product was introduced, many
competing systems were based on personal com
puters, which did not have the same extended
functionality as the PDP-11 system. These small
computers simply could not provide the storage
capacity or processing power required by large
customers. Their applications needed large
tables for accurate call pricing, and reports of
varying detail with information stored as low as
the call record level. Many PC-based products
tried various ways to get around these limita
tions. Some approximated call prices (by region
rather than explicit area code/exchange); others
created summary data on the fly (thereby not sav
ing the raw data); still others used a combination
of the two. All these attempts meant that the
required information might not be available if a
user wanted to create his own reports.

Meeting Market Needs
Around 1984, because of the breakup of AT&T
Corporation, the requirements for voice manage
ment began to expand rapidly, beyond TELE
PRO's capabilities. Owners of large PBX systems
were now reselling telecommunication services,
for example, to landlords of buildings, universi
ties, and even hospitals. Unfortunately, TELEPRO
was limited to tracking expenses rather than gen
erating invoices. Thus the P /FM (PBX facilities
management) product was created to provide
this additional functionality.

As with the DECnet monitor, we soon realized
the limitations of the PDP-11 architecture for
supporting this additional functionality. To solve
this problem, we first decided to convert the

125

New Products

The Evolution of Network Management Pr,oducts

basic functions of the early product into the
richer VAX architecture. We then added an
invoicing capability and built a common user
interface to yield the final product.

Besides tracking telecommunications infor
mation, P /FM can track charges for nontele
communications items, such as monthly parking
fees, office cleaning, and equipment rentals in a
facility environment. These capabilities allow a
landlord of a building to present tenants with sin
gle invoices that charge not only for telephone
usage, but also for virtually anything he has
defined as a billable entity.

Unlike the early product , used primarily
by telecommunications managers experienced
with computers, the P /FM product is aimed at a
more business-oriented market. Therefore, it
needed an extra degree of friendliness to be
successful. End users can choose a wide variety
of processors from the VAX family, which pro
vides developers with an excellent base operat
ing system on which to add future functionality.
Not only do users have access to bigger data
bases, but developers have all the VAX layered
products with which to construct their applica
tions. One such product is the ALL-IN-1 system.
Although presented primarily as an office
automation product, this system provides a
very user-friendly environment for entering data
and paging through forms. When building PjFM,
we took the office automation forms software
from the ALL-IN-1 system and borrowed the
remainder for the base software. The resulting
product has the ease of use associated with office
automation, although it is clearly not office
automation in the electronic mail or calendar
sense.

To get the P /FM product into the marketplace
quickly, we designed and wrote the first version
of the software in a fairly shon time. This version
consisted of two separate and distinct subsystems
(expense tracking and invoicing) , even though
the user saw only one system interface. Unfonu
nately, in some cases information had to be
entered twice to produce different reports using
that information. Furthermore , the TELEPRO
algorithms were based on a limited program size
imposed by the original 16-bit PDP-11 architec
ture. Those parts of P/FM based on this architec
ture were already at their limits. It was clear the
expanding market for this product would
quickly supersede P /FM's ability to go beyond its
original goals.

126

Evolution of the P /FM Software
To meet these expanding needs, we redesigned
P /FM with a new architecture that allowed cer
tain areas to be easily modified in the develop
ment process, as well as in the field. In essence,
this new architecture would provide P/FM's
basic set of functions . As needs arose for addi
tional functions, experienced customers or
Digital's Software Services personnel could write
the necessary code. The resulting product would
have more functionality and be better integrated
and therefore easier to use. Furthermore, by
being tailored to fit the V AXjVMS environment,
the product's performance would improve as
well.

As companies throughout the country ex
panded their telecommunications needs, we saw
a continual flow of new product requirements. It
became obvious that a more formal strategy for
changes was needed to keep up with the con
stantly changing market. To satisfy this need, we
decided to have frequent P/FM releases (e.g., the
next two releases came out about a year apart) .
This schedule would allow us to add new func
tionality to the base product, such as supponing
changes in FCC regulations or implementing spe
cial requirements from customers. Most impor
tantly, it allowed us to offer in the base product
some of the custom programs written by Soft
ware Services. These programs expanded the
basic P /FM functionality while removing the
burden on external groups to suppon custom
code.

Although customers could then get the func
tionality they really needed, the overall cost of
operation was still a problem. A customer could
either run P/FM on a stand-alone VAX-11/730
system or share a larger VAX CPU (11/750 or
11/780) with other applications. This latter
choice could reduce the capability of the cus
tomer's primary processor. In essence, P/FM's
processing needs for large organizations re
quired more hardware than many users were
willing to pay for.

This problem was quite effectively solved by
Digital's new low- and high-end VAX processors.
The MicroVAX II system provides a cheaper and
more powerful low-end processor, while the
VAX 8000 series can, when clustered, provide
configurations with mainframe capabilities.
P /FM can run efficiently on a MicroVAX II system
but now at a considerably reduced cost from the
former arrangement. If a customer wants to run

Digital Technical Journal
No. 3 September 1986

on a bigger VAX system, there is now much more
CPU power available for the primary tasks since
the P/FM software takes a correspondingly
smaller slice. In fact, it's quite feasible to
run this software on the same hardware with the
All-IN- I system. The advantage here is that when
running P /FM, the user is presented with the
same type of user interface down to the individ
ual keystrokes. In fact, with simple modifica
tions, a user could actually take P /FM re pons and
mail them to ALL-IN- I users, thus closing the
loop between the telecommunications and MIS
departments.

Parallels between Voice and
Data Networks
There are some interesting parallels between
managing voice networks and data networks .
Both management schemes can potentially
require tremendous amounts of storage, and
manipulating that data can require a lot of CPU
power as well . It also appears that no matter
what capabilities are provided in the base pack
age, customers always have additional require
ments. The capability has always existed to build
complex systems to analyze massive amounts of
data. However, they have been too expensive for
all but a few companies. Hardware capabilities
have now become large enough and cheap
enough to allow the full integration of both types
of network management on a single system.

The computers in the new generation of VAX
systems, especially the MicroVAX II system,
provide the right amount of CPU power at the
right time. As regards software customization, we
can accommodate the need for custom-built
products by creating base software that will sup
pon that strategy. With P/FM, the All-IN-I sys
tem was used as the base on which customer
designed applications could easily be added .
That is a case study of how management applica
tions can fit into a more global structure. As our
network management architecture evolves, it
will define the global structure to be used for
integrating and customizing the software for
both data and voice management applications.

Future Developments
The lessons learned from developing the prod
ucts described above are helping us to plan the
continued evolution of Digital's network man
agement effon. This effon will address the man
agement needs for the complex network environ-

Digital TecbntcalJournal
No. 3 September 1986

ment now emerging. Developing products like
the DECnet monitor and P /FM are the first step in
this direction. However, they are only the begin
ning of a long-term commitment to produce an
integrated management architecture and man
agement software based on an integrated model.
Future versions of existing products will evolve
within the framework of this model.

Our proprietary management architecture is
being extended beyond the range of the DECnet
software and toward international standards
as they evolve. This architecture will further
integrate the management of non-DECnet prod
ucts, such as Ethernet bridges and SNA gateways,
with the existing integrated management capa
bilities of DECnet and X.25 products. This inte
gration will extend remote access to the current
management functions of all products (e.g. ,
simple network control functions for all servers,
and monitoring for bridges , gateways, and
servers) .

While extending our management architec
ture, we are developing a more loosely coupled
management software design that will ease the
addition of new network products and manage
ment functions. This design will include a uni
fied user interface across network products and
network management functions and will provide
a choice of interface styles (e.g., command line,
forms, graphics) . The design will also allow
users to customize their software in several ways.
A customer should be able to purchase as little or
as much network management capability as he
desires. Customers want to select which network
products are to be managed and which higher
level management functions are needed. Their
goal is to tailor the management application soft
ware appropriately for their network environ
ments. Customers' or Digital's field personnel
should be easily able to add customized software
enhancements, such as special repons and new
intelligent management functions.

Besides extending the architecture and devel
oping an integrated software design, we are eval
uating the market requirements for the addition
of more intelligent management functions and
management for emerging technologies. Pan of
this evaluation is understanding the ISDN stan
dards and future products based on those stan
dards. We need to determine how and when the
requirements for integrated voice and data net
works and network management will appear in
the customer environment. We also want to

127

New Products

,_________ _ The Evolution of Network Management Products

understand customers' needs for the integration
of network management with system and appli
cation management.

Throughout its evolution, network manage
ment has become increasingly essential to cus
tomers whose businesses depend on the opera
tion of their networks . One problem has been
that network management functions have high
requirements for processor power and database
storage . However, since processing power is
becoming cheaper, customers can now take
advantage of smaller, less expensive, yet more
powerful processors to fulfill these needs. The
primary evolutionary trend for network manage
ment has always been to make people more effi
cient. The affordability of increased processor
power will contribute enormously to Digital's
ability to provide integrated, extensible, and
more-intelligent management functions . The
availability of these functions will make people
more efficient and effective in the future .

Conclusion
Some important goals and guidelines have
emerged from the evolutionary process
described in this paper. They will serve as a
guide for future network management develop
ment in Digital Equipment Corporation.

• New products to be used in DECnet networks
should incorporate basic network manage
ment when those products are introduced.

• Remote access to management functions is
needed to support both decentralized and
centralized management.

• An integrated management architecture is
desirable , yet it must allow actual product
implementations that are not tightly coupled.

• Commonality in management user interfaces,
databases, protocols, and functions reduces
complexity, makes the products easier to use,
and reduces the duplication of development
resources.

• More intelligent and automated data-analysis
and evaluation functions are needed to facili
tate the network manager's job. These func
tions should address the network management
requirements of all network products.

• The distinction between voice and data net
works is becoming less distinct, and network
management must consider both.

128

• Customers should be able to tailor the man
agement application software appropriately
for their network environments.

• Network management is a distributed applica
tion that should be integrated into the overall
system environment in support of users'
businesses.

Acknowledgments
The authors express their appreciation to Jim
Critser, Stan Goldfarb, Bernard Harris, Bill Key
worth, John Morency, Louise Potter, and Donna
Ritter for their careful review and many sugges
tions that have enhanced the ideas presented in
this paper.

References
1 . DECnet Digital Network Architecture

(Phase IV) Network Management Func
tional Specification (Maynard: Digital
Equipment Corporation , Order No . AA
X437A-TK, 1983) .

2. J. Heffernan and D. Ritter, " Remote Bridge
Management," DEC US NETwords Newslet
ter (1986) .

3 . N. La Pelle and K. Chapman, "Building
Blocks for Remote LAN System Manage
ment, " FOC/LAN85 Proceedings (Septem
ber 1985): 137-146.

4. D. Thompson, "A Management Standard for
Local Area Networks," IEEE Fourth Inter
national Conference on Computers and
Communications (March 1985): 390- 396.

5 . N. La Pelle and K. Chapman, "Distribution of
the Management Function in LAN Systems,"
Second Annual ACM Northeast Regional
Conference Proceedings (October 1985):
250-267.

6 . M. Sylor , " The NMCC/DECnet Monitor
Design," Digital Technical Journal (Sep
tember 1986, this issue) : 129-141.

Digital TeclmlcalJournal
No. 3 September 1986

Mark W. Sylor I

The NMCC/DECnet
Monitor Design

lbe NMCC/DECnet Monitor system allows the monitoring of a DECnet
network. Using the monitor at a central point allows the network man
ager to control the operatton of the network. To be effective, be needs
information about the network's current configuratton, state, perfor
mance, and errors. lbe monitor maintains and interprets a database of
network information, which is presented clearly and concisely to the
user through interactive graphics and other techniques. lbe interpreta
tion and evaluatton techniques analyze situattons that may be problems
and alert the user to them in a real-time operatton.

Network management can be described as a con
trol and feedback loop like the one shown in Fig
ure 1. In this loop, information is gathered from
the network by the monitor function and pre
sented to the network manager. He then decides
if the situation in the network is satisfactory or
not. If not, the manager can initiate some control
action - perhaps issue a correction, gather fur
ther information, or perform a test. The control
loop feedback cycle is "Look, Think, Act. "

It's clear that one key to network management
is the manager's having available the information
he needs to make control decisions. In DECnet
networks, the NMCC/DECnet Monitor system, or
NMCC, can provide this information at one cen
tral point.

MANAGER

"THINK"

MONITOR " LOOK" "ACT" CONTROL

NETWORK

Figure 1 Monitor Control Feedback Loop

Digital TecbnlcaJJournal
No. 3 September 1986

Requirements for a Network Manager
A network monitor like the NMCC system must
meet many requirements. The most important
ones to consider in designing such a product are
described as follows:

• Multiple managers -A network may have
multiple network managers, people who all
access the monitor simultaneously. The moni
tor must allow performance data and calcula
tion programs to be shared among those man
agers, even though they will typically be
asking for different types of information.

• Multiple styles of usage - Network managers
use monitors for different purposes; hence,
they have different styles of usage. The five
styles of usage that are encountered are

1. Batch, characterized by the automatic pro
duction of periodic reports

2 . Routine , an interactive style wherein
monitoring is done at fixed time periods
(e.g., every morning when the user comes
to work)

3. Browse, an interactive style wherein mon
itoring is done on a random basis, when
time is available

4. Alarm, in which a monitor notifies the
user of problems when they are detected
(A notification could be to color a system
red on a display, print a console message,
signal a beeper, etc.)

129

The NMCC/DECnet Monitor Design

5 . Operational, in which the manager
observes a terminal on which information
about the network is continuously dis
played

The NMCC architecture suppons all five usage
styles.

• Variety of information - The complexity of
the network is reflected in the variety of infor
mation that the network's components can
present to a monitor. It must collect, store,
and analyze configuration, status, perfor
mance, error, and reference information about
the network. Each component in the network
can supply information about one or more of
these categories. Moreover, a monitor must
have information to control its own behavior.

• Real time and history - A monitor must
provide information about current conditions
in the network. Of course, "current" is a rela
tive term because changes occur in real time
as more recent information is gathered. A
monitor must also provide historical data,
needed to compute trends over periods of
time. Network managers must be able to
"replay" what occurred in the network, both
for long-term reponing and for immediate
problem solving.

• Ease of use and clarity of presentation - The
efficiency of information presentation is very
important, given that the manager interacts so
closely with the monitor. Often, graphics are
the best way to present complex statistical
information and topological relationships that
are difficult to display in any other way.

• Universality - A typical DECnet network is
implemented across many diverse computer
hardwar~ and software systems and suppons a
variety of communications media. Thus a
monitor must be able to collect and present
information from each and every one of them.

High Level Design of the
NMCC Software
To meet the requirements discussed above, we
decided that NMCC had to provide five basic
functions:

• Collect data from the network

• Store the data

• Distribute that data to users upon request

130

• Evaluate the data into meaningful information

• Present that information to the network man-
ager and end users upon request

We also decided to suppon two usage modes: an
interactive user interface, which suppons the
routine, browse, alarm, and operational styles of
usage; and a reponing user interface, which sup
pons the batch usage style.

These decisions led naturally to the overall
NMCC design shown in Figure 2. The monitor
consists of three major programs: the kernel, the
interactive user interface, and the reports
package.

The kernel collects data from the components
in the network and stores that data in an on-line
database. The kernel distributes the stored data
both through the NMCC protocol used by the
interactive user interface and through the history
files used by the repons package. Running con
tinuously, the kernel suppons parallel activities
for multiple simultaneous users.

The interactive user-interface (UI) program
can be run on demand by the manager or any user
with proper authorization. This program evalu
ates the data and returns the subsequent informa
tion to the person requesting it. The UI program
also manages the operation of the monitor itself.

The programs in the repons package also eval
uate the data, which is presented as hard-copy
repons. The kernel periodically writes data from
its on-line database into history files, which are
archived copies of the data collected during each
day of operation.

The design of NMCC separates the kernel,
which is a management server, from the network
manager's workstation, the user interfaces, and
the repons package. This separation allows the
kernel to be run on one system, while the other
programs can run on other systems.

Common Design Threads
Three common threads run through much of the
design of the NMCC/DECnet Monitor system.
These threads involve a data model, a request/
response operation, and a news function.

Data Model
Early in the design, we focused on modeling the
data being manipulated by the management
functions rather than modeling the functions
themselves. We felt that the organization of the
data was more complex than the functions.

Digital TecbnlcalJournal
No. 3 September 1986

The data does not change its organization
when passing through the collect, store, and dis
tribute functions. It may change its form (e.g.,
from binary to text) , but that is relatively minor.
Within that ponion of the monitor, the functions
can be viewed as simple database actions (i.e.,
read a record, write a record, etc.). As with a
database, deciding how to organize the data is
the most important decision in the design of the
system.

We found we could organize the data so that
any record could be identified with three keys:
the component, the information type, and the
time of collection.

Components
In a logical sense, components are the various
pieces of the network that must be represented
in NMCC. Fundamentally, a DECnet network
consists of computer systems and the communi
cations facilities (wires) that join them. Those

·· ..

···· ·

..... · ········

DNA
NETWORK
MANAGEMENT

.....
·······

·· ...

/.··T~·-...... :
:~. -- --
\ .. ___ /

·. _..--.....• · NICE
...... •

PROTOCOL • .

·.

. ,.
.... .. ···········.···· ····· ... -:-

DNA
NETWORK
MANAGEMENT

··· ...

.· .·
....:· ···

KERNEL

ON-LINE
DATABASE

systems and wires are the main components mod
eled by the monitor, and, since it also has to man
age itself, some of the monitor's components are
included as well. In that way, we unified two
separate functions within a single concept. Fig
ure 3 shows the component hierarchy that is
built into the monitor. The hierarchical relation
ship shown in this Bachman diagram reflects the
naming relationships between the components.
Each component located below other compo
nents in the hierarchy is considered to be part of
those components . For example , a circuit
located below a system is pan of that system.

Information Type
All the component attributes collected and dis
played by the monitor could be viewed as a sin
gle data record. For practical reasons, however,
the attributes are distinguished by a number of
different information types. The Digital Network
Architecture (DNA) structure that underlies all

NMCC
PROTOCOL• •

Figure 2 NMCC DECnet Monitor, Top Level Structure

Digital TecbnicalJournal
No. 3 September 1986

131

New Products

The NM CC/DECnet Monitor Design

NETWORK

WIRE

MONITOR

MONITOR
SYSTEM

LINE CIRCUIT REMOTE
NODE

Figure 3 Component Hierarchy

DECnet products provides three of these infor
mation types:

• Characteristics parameters that control the
behavior of the DECnet network

• Status parameters that reflect the dynamic
state of the DECnet network

• Counters that are incremented when an
important event occurs (e.g., a data packet is
received)

In addition, reference information provided by
users and definition information used in naming
are two more information types. The NMCC sys
tem stores data from all five types. From that
stored data, NMCC can compute three more
information types: statistical, topological, and
summary information.

Time of Collection
The monitor collects and stores historical data.
This third key, the time of collection, is used to
distinguish historical records. While data always
has a value, the monitor can collect only samples
of it.

By examining the attributes of the various
information types, we found that the data itself
could also be classified. For example, parametric
data is fairly constant over a period of time.
Rather than store the values found in each sam
ple together with the time the sample was col
lected, we store the values found plus the times
those values were first and last seen, thus saving
storage space. Counters change much more fre
quently than parameters, however, and, in fact,
more frequently than they can be sampled. In

132

this case each sample taken is stored with a time
stamp, indicating the time of collection. The
local clocks of the systems monitored cannot be
used for the time stamps since they are not syn
chronized, nor can they be guaranteed to run at
the correct rate. Thus NMCC uses its own time
stamps, calibrated in Universal Coordinate Time
(Greenwich Mean Time) , which are generated
within the kernel.

Request /Response Operation
Within the data model, only a few simple func
tions are needed to operate on the data. Those
functions create and delete components, read
collections of records (defined by their keys) ,
write records, and set one or more parameters
within records.

Each function can be modeled as a request
issued by the client software wanting that func
tion performed , followed by one or more
responses to that client from the server perform
ing the function. This interaction is shown in
Figure 4.

News Function
Once each record has been appropriately time
stamped, it is easy to access historical informa
tion in the database. To support a real-time oper
ation, changes in the data displayed have to be
communicated from the kernel to the user inter
face. To accomplish that transfer, we defined a
special time value called "current." Reading the
database with the time key of current causes the
data responses to be returned in two phases. In
the first phase, the most recent data is read from
the on-line database. In the second phase, the

Digital TeclmlcalJournal
No. 3 September 1986

SERVER

WAITING FOR SOMETHING TO DO.

CLIENT

I WANT TO DO X, AND THE SERVER CAN
DO IT, SO ... SEND A REQUEST!

REQUEST FOR X, MAY GET
DELAYED IN TRANSIT. GO ON DOING WHATEVER CAN BE

READ REQUEST.
DO X, WHICH MAY INVOLVE ISSUING

REQUESTS OF OTHER SERVERS.
SEND RESPONSE.

DONE. (SOONER OR LATER, WE DO ALL
THAT CAN BE ACCOMPLISHED WITHOUT
X HAVING BEEN DONE.)

WAIT.

RESPONSE FOR X.

WAITING FOR SOMETHING TO DO. READ RESPONSE.
CONTINUE WITH PROCESSING WHERE
WE LEFT OFF.

Figure 4 Request/Response Interaction

kernel will return a response whenever a new or
changed value to the data is written to the on
line database. A response received in this second
phase is called "news." News can be generated
by the collection of more up-to-date information
or by other managers modifying the database.

Data Evaluation
An important design choice was in what section
of NMCC should the collected data be evaluated.
This choice was important because data evalua
tion is a compute-intensive operation. There
were three basic choices.

1. Data could be evaluated immediately after it
was collected. This approach has two
advantages:

a. Processing has to be done only once. That
processing, however, would take place
whether or not any user ever looked at the
results. Thus the CPU time spent on com
putation could be wasted.

b. The evaluated data would be reduced -
and thus take less space - when stored in
the database. However, a careful analysis
found that in most cases the evaluated
data was no smaller than the raw data. Fur
thermore, in those cases where the data
was reduced, information had been lost.

Digital TecbnlcalJournal
No. 3 September 1986

The approach also has two disadvantages:

c . Adding new ways of evaluating the data
would result in major changes to the
software.

d. The compute-intensive evaluation could
not be performed on a separate machine.

2. The data in the database could be stored in
raw form and evaluated in the kernel only
when requested specifically by a user. While
avoiding the problems discussed in a. and b.
above, this approach also suffers from the
disadvantages inc. and d.

3 . The data could be evaluated in the user inter
face immediately before presentation to the
user.

We chose to use the third approach because
adding new evaluation functions is easy, be
cause evaluation is performed only when re
quested by a manager, and because the com~
pute-intensive evaluation could be moved to
a separate machine , a network-management
workstation.

Kernel
The major functional sections of the kernel are
depicted in Figure 5. The system is built in suc
cessive layers around the hean of the kernel, a

133

New Products

The NMCC/DECnet Monitor Design

--- LOGICAL ---
DATABASE
(LDB)

NETWORK NMCC --- MANAGEMENT PROTOCOL
INTERFACE SERVERS ---(NMI)

RELATIONAL
(NPS)

DATABASE
(RdB)

Figure 5

physical database that uses Digital's RdBfVMS
software. This relational database system was
chosen because it provides data integrity, its data
model is similar to the NMCC data model , and it
offered a simple method for handling sets of
records.

The physical database is contained within a
logical database (LDB) system. LDB provides
transaction services and abstracts the operations
on the database, thus masking from the rest of the
system the detailed knowledge of how the data
base is implemented. The interface to LDB is
asynchronous, allowing the rest of the system to
proceed with other actions while data is read
from or written to the disk. Because the interface
to the RdBfVMS software is synchronous, LDB is
implemented as multiple server processes sepa
rate from the kernel. Each server is synchronized
with its database transaction.

134

NMCC Kernel

The logical database is contained within the
kernel information manager (KIM) , to which
all requests to read or modify data are made.
The actions performed by KIM are atomic, mean
ing they act as a single unit even though com
posed of more primitive actions. K.IM's clients
are thus freed from needing detailed knowledge
of the transactions. But K.IM's most important
task is providing a uniform way to request histor
ical and real-time data. This uniformity greatly
simplifies the design of all other parts of the
code. The user interface and reports package
do not need special code to perform historical
or real-time functions. Instead, they only have
to perform some simple data manipulations;
KIM handles all the intricacies of detailed
processing. Many functions are clustered
around KIM, all of which use it to access their
data.

Dlgual TecbnicalJournal
No. 3 September 1986

)

Data is collected from the netwoPk by the net
work management interface (NMI) , which polls
the systems in the network periodically for data.
As defined in the DNA architectural specifica
tion, which is the formal basis for the DECnet
software, each system in the network stores man
agement information and accommodates remote
access to it. 1•2 The protocol for accessing this
data is called NICE, which NMI uses to request
status, characteristic, and counter information .
The components for which these types of infor
mation can be collected include the system, the
lines, the circuits, and any other remote node in
the network.

Counters have a limited range. When they
reach their maximum values, they latch, and any
subsequent events will not be counted. There
fore , if NMI detects any counters that have
already or may soon latch, it can zero their
values.

The kernel can poll multiple systems simulta
neously. The list of systems to poll .and the fre
quency of polling for each kind of information
for each component (twelve kinds in all, four
components times three types) are all controlled
by the network manager. This control data is
stored in the on-line database.

The data collected by NMI is passed to KIM,
which determines if the data is news. If so, KIM
writes the news to LOB and notifies any user who
has requested to be notified when that particular
news arrives. Among the other facts that could be
discovered from the data collected is that new
systems, lines, or circuits have been added to the

TASK TASK TASK TASK

network. When discovered, they arc added to the
on-line database.

If allowed to, the database would grow with
out bounds with continuous polling. The data
base administration (OBA) software prevents this
problem by periodically purging old data from
the database.

One unique attribute of the data collected
from the DECnet network is its extensibility.
Each new implementation or upgrade of the
DECnet software can define new fields in the
records returned from the polling operation .
That is accomplished by a data format (called
NICE data blocks) , which is self describing and
extensible. The kernel preserves this structure
and also enhances it so that all data passed from
one major function to another is carried in this
form .

The log file writer (LFW) produces the history
files that are read to produce reports. At fixed
periods, LFW writes to a set of files the data col
lected since the last history file was written.

The NMCC protocol server (NPS) is responsi
ble for the kernel's end of the protocol link by
which the UI program communicates with KIM.
In effect, NPS, the NMCC protocol, and the
NMCC protocol client (called NPC in the user
interface) allow remote access to the data main
tained by KIM. Multiple protocol links can be
supported by the kernel, thus allowing multiple
users to access the data.

The need for the asynchronous operation of all
these functions posed a major design problem for
the NMCC development team. Without our going

TASK TASK ... TASK

• ·~, ", ,,,"', I', ,,#', ;#
• ' '--~ ~-;> - ,.'),,./

14
/ . I,, -........ - _ / I • _ __ ::::.--c'"'-- - - ------

I ;
I I

j DECnet 1/0
• RESOURCE RESOURCE SCHEDULER DECnet 1/0 \

RESOURCE .
I \

I / VAX/VMS OPERATING SYSTEM
,.__. I

- - - TASK TO TASK MESSAGE PASSING RESOURCE

- · -· DECnet LOGICAL LINK TO OTHER PROCESSES

Figure 6 Kernel Resource Scheduler

Digital Tecbnicaljournal 135
No. 3 September 1986

New Products

The NMCC/DECnet Monitor Design

into excessive detail , the kernel is structured
as multiple, cooperating tasks running asyn
chronously (e.g. , a function could be one or
even one hundred tasks, as is the case with NMI) .
The tasks share resources to which they at times
need exclusive access. The tasks must communi
cate with each other, and they must be sched
uled. The software that performs these chores is
called the resource scheduling services (RSS) .
The design of RSS is based on the process/moni
tor structure proposed by C.A.R. Hoare.3 The
relationship between the tasks, RSS, and the mes
sage-passing services that allow communications
between the tasks is described in Figure 6 . The
main advantage of this approach is that the devel
opers writing the tasks did not have to deal with
the details of interrupts , synchronization , or
scheduling.

The User Interface (NMCC/UI)
The user interface supports the interactive usage
of the NMCC/DECnet Monitor. As shown in Fig
ure 7 , the UI program has three main parts: data
access, action routines , and presentation. The
data-access part controls the UI interfaces, and
the presentation part controls the interface to the
kernel and the interface to the network man
ager's terminal. The action routines, containing
the main routine of the UI program, execute user
commands and evaluate data.

CONTROL DATA MAIN AND
MANAGER (COM) PARSER

DISPLAY DATA DISPLAY,
MANAGER (DOM) MODIFY AND

NMCC REQUEST OTHER

Data Access Modules
Data access, interfacing the UI program with the
kernel , is further divided into a protocol client, a
request manager, and two data managers . The
protocol client implements the UI end of the
NMCC protocol. This protocol, being based on a
DECnet task-to-task logical link, allows remote
access by multiple users to the kernel database.
The protocol client performs the same services
as those provided at the KIM interface within the
kernel. This capability " hides" the kernel and
the logical link from the remainder of the UI pro
gram. The basic functions of the protocol link
are to connect and disconnect the logical link,
and to code and decode the protocol messages.

The NMCC protocol supports the reading and
modification of records in the kernel's on-line
database. The protocol is an asynchronous, full
duplex, interleaved request-response protocol.
It is asynchronous so that the UI program does
not have to wait for a response to a request, and
full duplex so that requests and responses can
flow simultaneously across the link. The proto
col is interleaved so that a request can be issued
while an earlier request is still outstanding. Thus
responses can be returned in a different order
than that in which the original requests were
issued. (This situation normally happens when
news data arrives while other data is being
returned .) The protocol also allows multiple

SCREEN
MANAGER

GRAPHICS
KERNEL

PRESENTATION TERMINAL SYSTEM
PROTOCOL MANAGER MISCELLANEOUS STYLE 1/0 (GKS)
CLIENT (RM) ACTION

ROUTINES

CACHE A GRAPHICS
DEVICE CONTROL
LANGUAGE
FOR VT240s
(ReGIS)

ACTION
DATA ACCESS----• -ROUTINES- ------PRESENTATION-----

Figure 7 NMCC User Interface

136 Digital Tecbnlcal]ournal
No. 3 September 1986

requests and responses to be transmitted in a
single message across the logical link. The proto
col has proven to be very fast, yet not expensive
in terms of CPU time. This fact has allowed us to
see a definite improvement in performance
when the kernel and the UI program are run on
separate machines connected by an Ethernet
cable.

Layered on top of the protocol client is the
request manager (RM) . RM maintains a list of the
outstanding requests so that they can be matched
to their responses. RM can be viewed as a set of
service routines used by the data managers. The
interface can be either synchronous (RM
"blocks" until the response is received) or asyn
chronous (RM notifies the main routine via an
event flag when a response is received) . The
code to access the synchronous interface is
simpler for the requesting person to program;
this interface also behaves in a way that is more
intuitive to the user. On the other hand, the asyn
chronous interface provides better performance
and must be used to implement real-time
monitoring.

If the protocol link to the kernel should be dis
connected (perhaps by a failure in the network) ,
RM will first wait and then attempt to reconnect
to the kernel. These actions allow the UI pro
gram to run unattended as a permanent display.
RM detects and eliminates duplicate read
requests, thus saving CPU time. It also cancels
old read requests when they are dropped from
the cache because of "old age." Finally, RM
keeps the pipeline flowing by receiving data at
the interrupt level and buffering that data for
later use.

The display data manager (DOM) provides the
action routines with an interface to read from the

Initialize;

database. DDM contains an internal cache of data
that has been recently read from the database .
This cache improves the monitor's performance
by decreasing the flow of data between the UI
program and the kernel. The UI process also runs
faster because a user request for data can often be
satisfied by a short access to the cache rather than
a longer one to the on-line database in the kernel.
The cache is purged according to a least
recently-used algorithm. In a read for current
information, the kernel has remembered the
request so that it can notify the UI program of
news. Thus the cache purging logic will ask RM
to cancel that outstanding request when the data
is no longer needed. DDM also provides a consis
tent view of the data in the cache by locking its
contents so that cache updates (read responses
received by RM) do not change those contents
while the action routines are reading the cache.
Among other benefits, this logical separation
allows the display action routines to be quite
simple.

The control data manager (COM) provides the
action routines with a synchronous interface to
modify data in the database .

Action Routines
The action routines control the UI program and
provide most of the functionality visible to the
user. The major action modules are the UI main,
the parser, and the display, modify, and miscella
neous action routines. UI main is the highest
level routine in the program. Figure 8 shows the
pseudocode of this routine's algorithm. The UI
program waits for one of two actions to occur:
either the user enters data on the keyboard, or a
response to a currently outstanding request is
received from the kernel.

current-di5play:•''Hetwork Summary Current Duration 15 Minute5 11
;

Loop
WaitFor(u5er-input OR re5pon5e-arrived);
If U5er-input
Then

GetCommandCcommand, current-display, new-display>;
Par5eCcommand, current-display, new-display>;
current-di5play:•new-di5play;

Di5play(current-di5play>;
Until exit;
Terminate;

Figure 8 UI Main Pseudocode

Digital Tecbntcal Journal 13 7
No. 3 September 1986

New ProductT

The NMCC/DECnet Monitor Design

The parser first performs a syntactical analysis
of the command entered by the user. It then dis
patches to the correct action routine, which per
forms the command. Table 1 lists the commands
supported by the UI program.

The parser is context sensitive, meaning that
the current display on the user's terminal is used
to resolve ambiguity wherever possible . For
example, if the user is currently viewing a dis
play for " Network System BOSTON" and issues
the command SHOW LINE UNA-0 TRAFFIC, the
parser will conclude that the line referred to in
the command is part of a system called BOSTON.
The parser accepts abbreviated commands and
allows most keywords to be entered in any order.

Since the main function of the UI program is to
present information to the user, the display com
mands are the most important.

Each display action routine presents a single
display to the user. The parser determines which
display is the current one. Since any display can
be changed if new data arrives from the kernel ,
the correct display action routine is accessed on
each main cycle of the UI program. The current
display is defined by the three key items men
tioned earlier: the component, the page, and the
time of collection.

The display action routines select the informa
tion to be displayed and then copy it to the pre
sentation routines. The information displayed

Table 1 Commands Supported by UI

Display Commands
SHOW display-id
NEXT
PREVIOUS
POP
PAN direction [distance]
FIND component-id
MAGNIFY scale-multiplier•
COMPRESS scale-multiplier•

Modification Commands
ADD component-id
DELETE component-id
SET [component-id) item-list
MOVE component-id X coordinate Y coordinate•

Miscellaneous Commands
HELP topic
SPAWN DCL-command
REPORT report-command
CONNECT kernel
EXIT

·only applies to the Network Map

138

can come either directly from the database or
from the evaluation routines, which evaluate
data stored in the database. The information dis
played can even come from different database
records, the intent being to display information
that provides a clear, related viewpoint.

The evaluation routines get their data from the
cache in DOM. It's quite possible that the data
may not yet be in the cache (if this is the first
time the data has been requested) . In that case
the evaluation routines have to either present no
data or take some reasonable default. Eventually,
the data will appear in the cache, at which time
the response-arrived flag will be set and the
updated data will be placed on the terminal
screen.

This approach was taken because we did not
want to block all actions while waiting for poten
tially large amounts of data to be returned. More
over, in a real-time display, we could not predict
when news would arrive. In practice, this design
choice has proven to be sound because the user
remains in control. He can issue another com
mand or change the current display at any time.
We did find that early versions of the software,
which sent no indication of progress to the user,
tended to be confusing since the user was unsure
if the software had completed its update of the
display. Currently, the software indicates when it
is "working," (i.e. , updating the screen) . In
future versions, clearer indications of progress
may be added.

During the design we were concerned that
evaluating all the information on a display would
consume too much CPU time since it was possi
ble that only one item might have changed. We
considered a number of ways to run the evalua
tion routines "in reverse," so that only those
items that were changed by news data would be
re-evaluated. However, we rejected all those
ways since they were too complex to implement.
The problem was that a change in one piece of
data would change items shown on many dis
plays, only one of which was seen by the user.

An important goal of the UI program was to
make as simple as possible the writing of a dis
play action routine . These routines and the
evaluation software that supports them are the
largest body of code in the monitor.

Many evaluation routines are supported. Some
are used to compute statistics from the data col
lected from the counters. The method used is
called normalization, which uses averaging and

Digitnl TedmicalJournal
No. 3 September 1986

I New Products

Figure 9 Photo of Computer Screen

interpolation techniques to estimate statistics
over any time period. Other routines determine
the current states of portions of the network,
while still others determine the configuration of
the network.

The modify action routines change the con
tents in the on-line database. Invoked by the
parser, these routines use the services of CDM
and are synchronous with respect to the data
base. They were made synchronous to avoid con
fusing users whose commands were invalid. If an
error message indicating that a command was
invalid was displayed long after the user issued
the command, he might have proceeded with
another command and therefore might lose track
of the cause for the error.

The remaining commands supponed by the UI
program perform such functions as providing
help to the user, spawning a subprocess, invok
ing the repons package, connecting to a different
kernel in the network, and the all-important
EXIT command.

Digital Technical Journal
No. 3 September 1986

Presentation Modules
The network manager interacts with NMCC via
either a VT240 terminal or a VT241 terminal.
The software managing that interaction is called
the presentation software. It presents a consis
tent structure for output on the screen and for
keystrokes entered by the user. The screen is
divided into four areas: an identification area,
where the current display is shown; the data
area, where the information is shown; a com
mand area; and a message area. Figure 9 shows a
typical screen format with the three areas.

The UI program supports a number of presen
tation styles. The information on any given page
is best displayed for the user in one particular
style. Some of the styles supported are forms,
tables , histograms , and maps. Each page is
designed to present the data to the user in the
most effective manner, given the limitations of
the two terminals supported. We avoided the use
of flashing warnings to alert users to problems.
Instead, each display presents data so that users

139

Tbe NMCC/DECnet Monitor Design

can spot problems quickly or observe behavior
patterns in an advantageous way.

The forms may contain text, numbers, meters,
and color-coded values for text or numbers .
Meters are graphs of numeric values; they may
also show thresholds that, if exceeded, indicate
problems. These thresholds can be preset by the
user, although reasonable defaults are provided.

The network map is a plot showing the topol
ogy of the network. Systems are shown as
squares and wires as lines connecting systems.
(The shape of each line indicates the type of
wire .) The user can also request that each
component shown on the map be color coded
with its status. The map communicates a large
amount of information in a comprehensible fash
ion to the user. Statistics can be displayed in the
form of histograms, which plot values against
time.

A table is used to display each succeedingly
lower level of the component hierarchy depicted
in Figure 3. Each row in the table describes one
component "owned" by the requested compo
nent. For example, for each system, a table is dis
played listing all lines known to be connected to
that system. Each column displays a key summary
fact about the owned component.

The raw data collected from the DECnet net
work is shown in lists of parameters and counters
with their respective values.

In the case of the map, tables, and lists, there
may be more information available than can be
displayed on the screen. Thus the data area pro
vides a "window" onto the data; the user can pan
over the available information by manipulating
this window. For tables and the map, the user can
also locate a component with a FIND command,
which moves the window over the component.
The map can be scaled by magnifying or com
pressing the display.

The presentation software supports a direct
manipulation style, as well as a command syntax
that uses whole words rather than acronyms. In
some cases direct manipulation is a more natural
style to the user.' However, the commands allow
more complex actions to be expressed. For
example, one SHOW command can navigate to a
new display unrelated to the current display
more quickly than can a series of function key
actions.

Each presentation style can be directly manip
ulated by a user. In tables and the map, he can
point at a component by positioning the cursor

140

on the component. Once that is done, the user
can press a key to issue a command with the
pointed-at component as the object of the com
mand. For example, a line could be deleted in
this way. Each command has an equivalent func
tion key.

The values in a form may be set by typing the
new value over the current value. Function keys
will move the cursor from field to field.

In the network map, a user can directly manip
ulate the position of a system or wire by pointing
the cursor at the object, pressing the MOVE func
tion key, and "dragging" the component to the
desired location with the arrow keys. These
actions allow users to create displays that are aes
thetically pleasing. We did not create algorithms
that tried to optimize the positions of systems
and wires on the map; we found that the results
were usually too crowded or did not reflect how
users pictured the network.

Finally, the terminal 1/0 (TIO) software is
responsible for all access to the VT240 and
VT241 terminals. TIO uses GKS (a graphics
package), SMG (a text 1/0 package), and in some
cases the ReGIS graphics protocol to format the
output or to accept input. Logically, TIO isolates
the remaining software from having to have
detailed knowledge of the terminal hardware.

Reports Package
The reports package of the NMCC/DECnet Moni
tor is a separate set of programs run in batch
mode to evaluate and present information about
the network in list form. The programs are run in
two phases. The first phase is run after the history
files have been written by the kernel. This phase
normalizes the collected counters into hourly
periods. The second phase is invoked by a user.
This phase extracts data from the summary files
and formats the subsequent information into
report listing files, which may be printed.

The main goal in designing the reports pack
age was that it be extensible. We knew that each
user would have his own unique requirements
for accessing and manipulating data. Thus the
reports provided can be viewed more as samples
of what can be done than as solutions to every
user's needs. The VAX DATATRIEVE system, a
report-generation package, can be used to gener
ate custom reports from the data contained in the
history files.

The history and summary files used in the
reports are simple sequential binary files in a

Digital TeclmkalJournal
No. 3 September 1986

fixed format that are accessible through any pro
gramming language.

The first phase of report processing is con
trolled by a command file, which can be modi
fied by the user. For example, the user can auto
matically produce daily reports.

Summary
Networks are complex systems at the leading
edge of modem communications engineering.
The NMCC/DECnet Monitor system creates a
model of a network through a database of infor
mation that reflects the complex relationships
between the components of that network. The
challenge in designing this monitor was to
present this complexity as simply as possible to
the network manager. He is ultimately responsi
ble for the quality of service that the network
provides.

The monitor was designed to be a truly dis
tributed application. Special monitor software
does not have to reside on each node, yet the
monitor can collect information about any node
in the network. By separating the If 0-intensive
kernel from the compute-intensive user inter
face, yet allowing them to cooperate in monitor
ing the network, the actual monitoring can be
divided between two machines. Both can be
optimized for the tasks assigned to them.

This design is a framework within which many
new functions and additional data can fit. As we
gain experience with using the monitor, and
feedback on the human engineering of simple
presentations of complex data, we are confident
that this design can support an evolving manage
ment system.

Acknowledgments
The author thanks Jim Critser, Nancy La Pelle,
Linsey O'Brien, and Bruce Luhrs for their
thoughtful review. Most of all, he thanks the
developers of the NMCC/DECnet Monitor ,
whose long hours and hard effort made possible
the realization of this software. Those developers
were Peter Burgess, Bill Gist, Matthew Guenin,
Robert Merrifield, Dennis Rogers , Arundhati
Sankar, Robert Schuchard, Evelyn Wang, and Riaz
Zolfonoon.

Digital Tecbnlcal]ournal
No. 3 September 1986

References
1. DECnet DIGITAL Network Architecture

(Phase IV) General Description (May
nard: Digital Equipment Corporation,
Order No. M-N149A-TC, 1982).

2 . DECnet Digital Network Architecture
Phase IV Network Management Func
tional Specification (Maynard: Digital
Equipment Corporation, Order No. M
X437A-TK, 1983).

3. C.A.R. Hoare, " Monitors: An Operating
System Structuring Concept," Communi
cations of the ACM, vol. 17, no. 10
(October 1974): 549-557.

4. B. Shneiderman, " Direct Manipulation: A
Step Beyond Programming Languages,"
Computer (August 1983): 57-69.

Other References
R. Rubinstein and H. Hersh, The Human Factor
(Bedford: Digital Press, 1984).

NMCC/DECnet Monitor User's Guide (May
nard: Digital Equipment Corporation, Order No.
M -EW35A-TE, 1986).

141

New Products

Cover Design

This issue features networking products. Our cover depicts
the veins of a leaf as a visual metaphor for the connections
in a network. As the leaf grows to support the flow of nutri
ents, so the local area network expands with extended LANs,
gateways, and terminal servers to support the flow of infor
mation. Tbe Image was created using the Ligbtspeed system.

1 be cover was designed by Deborah Falck and Eddie Lee of
the Graphic Design Department.

Editorial Staff

Editor - Richard W. Beane
Production Staff

Production Editor - Jane C. Blake

Designer - Charlotte Bell

Interactive Page Makeup - Terry Reed

Advisory Board

Samuel H. Fuller, Chairman

Rohen M. Glorioso
John W. Mccredie

John F. Mucci
Mahendra R. Patel
F. Grant Saviers
William D. Strecker

The Digital Technical Journal is published by Digital
Equipment Corporation, 77 Reed Road, Hudson,
Massachusens O 1749.

Changes of address should be sent to Digital
Equipment Corporation, attention: Media Response
Manager, 200 Baker Ave., CFOl-lfM94, Concord, MA
01742.

Comments on the content of any paper are welcomed.
Write to the editor at Mail Stop HL02-3/Kl 1 at the
published-by address. Comments can also be sent on
the ENET to RDVAX::BEANE or on the ARPANET to
BEANE%RDVAX.DEC@DECWRL.
Copyright© 1986 Digital Equipment Corporation.
Copying without fee is permitted provided that such
copies are made for use in educational institutions by
faculty members and are not distributed for commer
cial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted.
Requests for other copies for a fee may be made to the
Digital Press of Digital Equipment Corporation. All
rights reserved.

The information in this journal is subject to change
without notice and should not be construed as a com
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

ISBN 1-55558-000-9
Documentation Number EY-67 l 5E-DP

The following are trademarks of Digital Equipment
Corporation: ALL-IN-I , DATATRIEVE, DDCMP, DEC,
DECconnect, DEChealth, DECnet, DECnet-DOS,
DECnet Router, DECnet RouterjX.25 Gateway,
DECnet-RSX, DECserver, DECnet/SNA Gateway,
DECnet-ULTRIX, DECnet-VAX, DEQNA, DEUNA, Digital
Network Architecture (DNA), IAS, LANBridge, the
Digital logo, MicroRSX, MicroVAX, MicroVMS, NMCC,
NMCCjDECnet Monitor, PDP-8, PDP-11 , PjFM,
PRO/DECnet, Q-bus, Rainbow, ReGIS, RSTS, RSX,
RSX-1 lM, RSX-I IM-PLUS, RSX-I IS, RX02, TELEPRO,
ThinWire, TOPS-IO, TOPS-20, ULTRIX, ULTRIX-32,
ULTRIX-32m, VAX, VAX-11/730, VAX-11/780,
VAXcluster, VMS, VT, VTIOO, VT103, VT240, VT241 ,
UNIBUS
AT&T and UNIX are trademarks of American Tele
phone & Telegraph Company.

IBM is a registered trademark of International Business
Machines, Inc.
Intel ls a trademark of Intel Corporation.
Llghtspeed is a trademark of Lightspeed Computers,
Inc.
Motorola is a registered trademark of Motorola, Inc.
MS is a trademark of Microsoft Corporation.

Xerox is a registered trademark of Xerox Corporation.
3COM is a trademark of 3COM Corporation.
68000 is a trademark of Motorola, Inc.

Book production was done by Educational Services
Media Communications Group in Bedford, MA.

ISSN 0898-90 1X
Printed i n USA EY-67 1 5E-DP Copyright© September 1986 Digital Equipment Corporation

./~ ' _v

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	A Digital Network Architecture Overview
	Performance Analysis and Modeling of Digital's Networking Architecture
	The DECnet/SNA Gateway Product
	The Extended Local Area Network Architecture and LANBridge 100
	Terminal Servers on Ethernet Local Area Networks
	The DECnet-VAX Product - An Integrated Approach to Networking
	The DECnet-ULTRIX Software
	The DECnet-DOS System
	The Evolution of Network Management Products
	The NMCC / DECnet Monitor Design
	Back cover

