
Digital TechnicalJournal

515 Number 4
February 1987

Cover Design
This issue .features the VAX 8800 .family. Our couer depicts

the growth of a chambered nautilus as a metapbor .for the

grotl'tb of the VAX famiiJ'. As those chambers spiral from

the center, so the power of the VAX family grows .from the

Micro VAX systems, through the VAX 8200 and 8.300 CPl!s,

to the neuJ VA X 8800 multiprocessor. The image was cre­

ated using the Lightspeed system.

The co11er was designed by Deborah Falck, Eddie Lee and

Tsuneo Taniuchi of the Graphic Design Department.

Editorial Staff
Editor- Richard W 13eane

Production Staff
Production Editor- jane C. 13lakc

Designer- Charlotte 13eJJ

Interactive Page Makeup- Leslie K. Schoemaker

Advisory Board
Samuel H. Fuller. Chairman

Robert M. Glorioso

john W. McCredie

Mahendra R. Patel

F. Grant Savicrs

William D. Strecker

The Digital Technical journal is published by
Digital Equipment Corporation. 77 Reed Road,
Hudson. Massachusetts 01749.

Changes of address should be sent to Digital
Equipment Corporation. attention: Media Response
Manager, 200 13aker Ave .. CFO l-l/M94. Concord,
i'>lA 01742

Comments on the content of any paper arc wel­
comed Write to the editor at Mail Stop HL02-.3/K ll
at the published-by addrcss. Comments can also be
sent on the ENET to RDVAX::I3EANE or on the
ARPANET to llEANE'!;,RDVAX DEC@DECWRL

Copyright © 1987 Digital Equipment Corporation
Copying without fee is permitted provided that such
copies are made for use in educational institutions
by faculty members and arc not distributed for com­
mercial advantage. Abstracting with credit of Digital
Equipment Corporation's authorship is permitted.
Requests for other copies for a fee may be made to
the Digital Press of Digital Equipment Corporation.
All rights reserved.

The information in this journal is subject to change
without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digi­
tal Equipment Corporation assumes no responsibility
for any errors that may appcar in this document.

!SUN l-55558-001-7

Documentation Numbcr EY-671 I E-DP

The following are trademarks of Digital Equipment
Corporation DEC, DECnet. the Digital logo. LNO.)
Plus. MicroVAX I. MicroVAX IJ. NMI, PDP-J I .
PDP-I lj2�t. PDI'-l lj-44, RSX, RSX-IlM,
RSX-1 I M-PUIS. Sill. UNJilllS, VAX. VAX-I l/750.
VA)>-LI/780. VAX-11/782. VAX 8200. VAX 8.)00,
VAX 8500 VAX 8550. VAX 8600, VAX 8650.
VAX 8700. VAX 8800. VAXBI, VAXIII 787.32.
VAXclustcr, VAX.station. VAXstation Jl, VMS

ADA is a registered trademark of the U.S. Government

Data General is a registered trademark of Data
General Corporation

Harris is a trademark of Harris Corporation

IBM is a registered trademark of I ntcrnational
Business Machines Corporation

l.ightspecd is a trademark of Lightspeed Computers,
Inc.

Motorola is a registered tradcmark of Motorola. Inc

SCAI.OSystcm and ValidGED ar� trademarks of Valid
Logic. Inc

TK1Solver is a trademark of Software Arts. Inc

CNIX is a trademark of American Telephone &
Telegraph Company llell LaboratOries

Book production was clone by Educational Services
Media Communications Group in 13cdford, MA.

Contents

8 Foreword
Donald J. Mcinnis

10 An Overview of the Four Systems in the VAX 8800 Family
Robert M. Burley

20 The VAX 8800 Microarchitecture
Sudhindra N. Mishra

34 The CPU Clock System in the VAX 8800 Family
William A. Samaras

41 Aspects of the VAX 8800 C Box Design
John Fu, James B. Keller, and Kenneth J. Haduch

52 The Memory System in the VAX 8800 Family
Paul J . Natusch, David C. Senerchia, and Eugene L. Yu

62 Floating Point in the VAX 8800 Family
John H.P. Zurawski, Kathleen L. Pratt, and Tracey L. Jones

72 The VAX 8800 Input/Output System
James P. Janetos

81 The VAXBI Bus -A Randomly Configurable Design
Paul C. Wade

88 A Logical Grounding Scheme for the VAX 8800 Processor
Michael W. Kement and Gerald J . Brand

New Products

100 The Simulation of Processor Peifonnance for the VAX 8800 Family
Cheryl A. Wiecek

111 VMS Multiprocessing on the VAX 8800 System
Stuart]. Farnham, Michael S. Harvey, and Kathleen D. Morse

120 A Parallel Implementation of the Circuit Simulator SPICE on
the VAX 8800 System
Gabriel P. Bischoff and Steven S. Greenberg

129 The Impact of VAX 8800 Design Methodology on CAD Development
Dennis T. Bak

136 On-line Manufacturing Data Access on the VAX 8800 Project
Andrew J. Matthews

I

Editor's Introduction

Richard W. Beane
Editor

This issue features papers about the design of
the VAX 8800 family of CPUs, written by mem­
bers of the design team. The technology used in
Digital's latest high-end machine, the VAX 8800
multi processor, also forms the basis for the
other three family members: the 8700, 8550 ,
and 8500 CPUs.

Bob Burley's overview relates the processes
used in the 8800 design and the functions of the
memory interconnect (NMI) , the VAXBI 1/0
bus, and the four logic boxes forming the five­
stage pipeline. The early discovery of design
flaws and the use of automated tools helped to
achieve an aggressive completion schedule.

The micromachine implements the microar­
chitecture and contains four of the five pipeline
stages. Sudhin Mishra describes how microin­
structions are handled, emphasizing the use of
microbranches and microtraps to ensure
coherency.

The VAX 8800 clock system, discussed by Bill
Samaras, was designed using an automated tim­
ing verifier. He describes the trade-off between
using the verifier and maximizing the accuracy
of timing signals by minimizing their skew.

The C Box and the M Box are two parts of the
pipeline. John Fu, Jim Keller, and Ken Haduch
describe the C Box's no-write allocate cache and
the delayed-write algorithm that ensures correct
write-through. The C Box must also handle
pipeline stall conditions and maintain data
coherency between processors. The M Box han­
dles read and write requests for the memory
arrays. Paul Natusch, Dave Senerchia, and Gene
Yu explain how the designs of the NMI and the

2

cache affected their design, and why they used
TTL in the memory controller.

The VAX 8800 family does not have a separate
floating point accelerator. As John Zurawski ,
Kathy Pratt, and Tracey Jones point out, how­
ever, a custom ECL unit achieves high perfor­
mance through the normal datapaths. Thus less
hardware is needed, and operands are fetched
faster.

1/0 devices are linked to the CPU by the
VAXBI bus. In his paper, Jim Janetos discusses
the NBI adapter, which contains logic to handle
CPU references and DMA requests . Then Paul
Wade describes how the VAXBl design team had
to abandon the traditional approach and use a
variety of techniques to specify the bus. Some
chip problems were resolved only after a thor­
ough analysis of the physical configuration.

Jerry Brand and Mike Kement discuss the
importance of using ground correctly as a signal
conductor to achieve high performance. They
describe the sources of ground-related noise in
the CPU, and what they did to isolate and con­
trol those sources.

Many VMS features support multiprocessing.
Stu Farnham, Mike Harvey, and Kathy Morse first
describe the hardware that supports multipro­
cessing, then the interlocked instructions
exception handlers, and traps that implemen~
VMS multiprocessing. To show how multipro­
cessing decreases execution time , Gabriel
Bischoff and Steve Greenberg converted the
SPICE circuit simulator into CAYENNE, a paral­
lel program. They created master and slave pro­
cesses that ran CAYENNE 1. 7 times faster than
SPICE.

The final two papers relate some of the auto­
mated tools and techniques used on the 8800
project. Dennis Bak first describes building the
CAD suite from existing tools, newly developed
ones, and modifications. The methodology was
truly innovative , serving as a framework for
future projects. Then Andy Matthews discusses
the on-line system that transformed CAD data
into specifications used by Manufacturing. This
system minimized the product start-up time by
eliminating paperwork.

Biographies

Dennis T. Bak Dennis Bak is a principal software engineer in the
Advanced VAX Development Group. As a project leader, he is currently
developing new CAD tools to improve designer productivity on future
design projects. In other positions, Dennis performed configuration testing
for PDP-11 and VAX systems. Prior to joining Digital in 1980, he worked as
a research engineer at Ford Motor Company, doing advanced development
on electronic engine-control systems. Dennis earned a B.S. degree in elec­
trical engineering from the University of Michigan in 197 4.

Gabriel P. Bischoff In 1985, Gabriel Bischoff joined Digital after receiv­
ing a Diploma of Engineer and a Diploma of Advanced Studies in device
physics from the Ecole Centrale de Lyon (1980) and a Ph.D. degree in E.E.
from Cornell University (1985). As a senior software engineer in the Semi­
conductor Engineering Group, he is investigating the application of paral­
lel computing architectures for VLSI CAD tools, particularly circuit simula­
tors. Gabriel developed a parallel version of the circuit simulator SPICE for
shared-memory multiprocessors. A member of IEEE, he has published
papers on device modeling and circuit simulation.

Gerald J. Brand Jerry Brand is a principal engineer currently developing
high-density, high-availability power systems. Prior to working on the
power and packaging team for the VAX 8800 family, he designed two MPS
power modules that are widely used in Digital's products. Before joining
Digital in 1980, Jerry worked for over 14 years in disciplines ranging from
oceanography to gas-turbine instrumentation. He holds a B.S.E.E. degree
from the University of Illinois and participated in the M.S.E.E. program at
the University of New Hampshire. Jerry teaches circuit analysis and elec­
tronics in the continuing education program at the University of Lowell.

Robert M. Burley As a senior product management manager, Bob Burley
was the engineering product manager for the four systems in the VAX 8800
family. As a program manager in the LSI Acquisition and Test Group, he was
responsible for relations with external vendors and acquiring technologies
for the advanced gate arrays used in new CPU designs. Prior to joining Dig­
ital in 1980, Bob was a product and business development manager at Colt
Industries, Inc. , and a product and manufacturing manager at Scott Paper
Company. He earned his B.S. degree in mathematics and economics from
Hobart College in 1965.

3

Biographies

4

Stuart J. Farnham As a principal software engineer in the VMS Develop·
ment Group, Stu Farnham is currently working on future directions in mul­
tiprocessing. Earlier, he provided VMS support at the corporate level for
Software Services. Stu was a developer and instructor for the VAXjVMS Sys­
tems Seminar. He joined Digital in 1982 after working as a software engi­
neer at Pitney Bowes, Inc.

John Fu Currently earning his M.S. degree in computer science at the
University of Illinois, John Fu was a principal engineer on the VAX 8800
project. He worked on the design of the C Box and configurations for the
VAX 8800 family. Formerly, he worked on large-systems designs at Interna­
tional Computers Limited and on microprocessor control systems for
Siemens Limited. John was also a project manager at Systems and Software,
Inc. He received a B.Sc. (Hons) in computer science (1977) from the Uni­
versity of Manchester in England. John is a member of the British Computer
Society and the IEE in England.

Steven S. Greenberg As a team leader in the CAD Department of the
Semiconductor Engineering Group, Steve Greenberg codeveloped the
CAYENNE program. An early provider of circuit and process simulators at
Digital, he did research in timing verification and circuit simulators. As a
Digital industrial fellow at the University of California at Berkeley, Steve
performed research on iterated timing analysis. Before joining Digital in
1976, he was a member of the technical staff at RCA and a CAD engineer at
Texas Instruments. Steve received a B.S.E.E. degree (1966) from M.I.T. and
an M.S.E.E. degree (1979) from Northeastern University. He is a member of
IEEE and Tau Beta Pi.

Kenneth J. Haduch In 1974, Ken Haduch joined Digital after earning
his Associate in Electronic and Computer Technology degree from the Elec­
tronic Institutes, Pittsburgh. He worked as a technician in Manufacturing
on the PDP-11/70 and VAX-11/780 CPUs and in Engineering on the
DR750 and FP750 designs. Ken helped to develop the C Box as a hardware
designer on the VAX 8800 project. He is currently a hardware engineer in
the Advanced VAX Development Group, working on the hardware design
for a new VAX processor. Ken is also pursuing a B.S. degree from Northeast­
ern University.

Michael S. Harvey Mike Harvey joined Digital in 1978 after receiving
his B.S. degree in computer science from the University of Vermont. He
worked on developing the RSX-1 lM and RSX-1 lM-PLUS operating systems
and then led the team that developed the VAX-11 RSX layered product for
the VMS system. Since joining the VMS Development Group, Mike has par­
ticipated in new processor support for the VAX 8300 and 8800 systems,
specializing in multiprocessing. As a principal software engineer, he is cur­
rently working on future directions for VMS multiprocessing and support
for high-end VAX CPUs.

James P. Janetos Jim Janetos is currently studying computer architec­
ture as a graduate student at Purdue University. He joined Digital in 1980
after receiving his B.S.E.E. degree (Summa Cum Laude) from the University
of Michigan, where he was elected to Tau Beta Pi. As a design engineer, Jim
worked on memory upgrades for the PDP-11/24 and 11/44 systems, on
memory system designs, and on dynamic RAM evaluations. On the VAX
8800 project, he initially worked on the diagnostic software for the 1/0
adapter, the NBI. Later, he designed the NBIB module, one of the two mod­
ules in the NBI.

Tracey L. Jones Earning her B.S. degree in computer engineering from
Boston University, Tracey Jones joined Digital after graduation in 1982. As
a firmware engineer in the Advanced VAX Engineering G,roup, she wrote a
major portion of the microcode that performs floating point operations in
the VAX 8800 family of processors. After promotion to senior engineer,
Tracey enrolled in Digital's Graduate Engineering Education Program and is
now pursuing an M.S. degree in electrical engineering at Brown University.

James B. Keller Jim Keller is the project leader for the instruction-fetch
and execution units, the I and E Boxes, and the console for a new VAX pro­
cessor. On the VAX 8800 project, he worked on the design of the C Box.
Prior to joining Digital in 1982, Jim worked on fiber optics and the designs
of several microprocessor boards at Harris Corporation. He earned a B.S.
degree in electrical engineering in 1980 from Pennsylvania State Univer­
sity, where he was elected to Eta Kappa Nu . Jim has applied for three
patents on the technology in the VAX 8800 design.

Michael W. Kement Mike Kement is a senior design engineer in the
Power System Technology Group, currently working on EMI and EMC. He
was the design engineer for the power system on the VAX 8800 project.
Mike has worked on the power systems of many products since joining Dig­
ital in 1974, including the LA36 and LA180 terminals , the PDP-11/44,
VAX-11/780 and 11/750 systems, and the VAX 8600 CPU.

Andrew J. Matthews As a senior software manager in the Advanced VAX
Systems CAD Group, Andy Matthews is currently automating the CAD to
CAM transition. He has managed the development of surface-mount CAD
processes and a pilot program of advanced CAD to CAM data methods. Andy
designed the prototype and first release of VLS, the VAX layout software
Digital uses for module design. He worked for Adage, Inc., as the manager
of applications programming before coming to Digital in 1977. Andy holds
a B.S. degree in C.S. and M.E. (1968) from Boston University. He has pre­
sented two papers at the Design Automation Conference.

5

Biographies

6

Sudhindra N. Mishra Sudhin Mishra is a project leader in the Advanced
VAX Development Group, currently developing a design verification CAD
tool. As a principal engineer on the VAX 8800 project, he designed and
implemented most of the I Box and originated the system-level simulation
of the CPU. Before joining Digital in 1982, he was a senior research engi­
neer at Prime Computers, Inc. Sudhin has worked on projects ranging from
radar and heat-seeking missiles to computers. He earned a B.Sc. degree in
engineering from Ranchi University and an S.M. in E.E. and C.S. from M.I.T.
Sudhin has applied for a patent on the technology in the VAX 8800 design.

Kathleen D. Morse As a consulting software engineer, Kathy Morse is
responsible for all low-end CPUs and peripherals. She is also one of the
designers for future directions in VMS multiprocessing. Kathy provided
VMS support for the VAX-11/782 and MicroVAX I and II systems, and the
MA780 memory. She joined Digital after receiving her B.S.C.S. degree
(1976) from Worcester Polytechnic Institute, where she also earned her
M.S.C.S. degree (1985). Kathy is a member of IEEE, the Professional Coun­
cil, ACM, Tau Beta Pi , and Upsilon Phi Epsilon. She has published in the
Computer Measurement Group's Conference Proceedings, the Digital
Technical Journal, and DATAMATION.

Paul J. Natusch As a principal hardware engineer, Paul Natusch is cur­
rently managing the hardware development for a new VAX processor in the
Advanced VAX Development Group. On the VAX 8800 project, he was a
member of the memory system team and later took over as its leader. Ear­
lier, he worked on an upgrade to the VAX-11/750 memory controller,
which expanded it from 2MB to 8MB. Paul joined Digital in 1980 from
Storage Technology Corporation, where he was a diagnostic engineer. He
received his B.S.E.E. degree from Cornell University in 1979 and an M.B.A.
degree from Northeastern University in 1985.

Kathleen L. Pratt Educated at Rensselaer Polytechnic Institute, Kathy
Pratt came to Digital after receiving her B.S. degree in computer and sys­
tems engineering in 1980. She worked on hardware designs for networks in
the Local Area Networks Group, then on the design of the floating point
hardware for the VAX 8800 central processor in the Advanced VAX Devel­
opment Group. Kathy is currently a senior engineer working on the float­
ing point design for a new VAX processor.

William A. Samaras Bill Samaras is a principal engineer working to
design a new VAX processor. He joined Digital in 1982 to design the clock
system on the VAX 8800 project. Formerly, at Accutest Corporation, Bill
designed VLSI testers and timing systems. He holds an Associates degree
(1973) from Northern Essex Community College, and B.S. degrees in engi­
neering technology (1975) and electrical engineering (1976), both from
Southeastern Massachusetts University. Bill teaches digital electronics for
continuing education at the University of Lowell. He has applied jointly for
a patent on the technology in the 8800 clock system.

David C. Senerchia Dave Senerchia is currently a senior engineer in the
Electronic Storage Development Group. He is a member of the design team
working on the main memory for a new mid-range VAX system. On the VAX
8800 team, Dave designed the initial array module for main memory and
participated in the architecture and design of the memory system, the
M Box. He joined Digital in 1982 after earning a · B.S. degree in electrical
engineering from Washington University.

Paul C. Wade As a principal engineer, Paul Wade is working on advanced
development for future VAX CPUs. He was responsible for the electrical
design, verification, and testing for the VAXBI bus. Paul also designed parts
of the VAX 8200 system. Before joining Digital in 1980, he worked as a
project engineer at Microwave Semiconductor Corporation, RCA, and Lock­
heed Electronics. Paul earned a B.S.E.E. degree (1973) from Newark Col­
lege of Engineering. He holds a patent on gallium arsenide technology and
has written nine papers on that topic . One paper won the Beatrice Winner
Award at the 1980 ISSCC.

Cheryl A. Wiecek Cheryl Wiecek is the engineering manager of the Sys­
tems Architecture Group and is responsible for the VAX architecture and a
number of Digital's interconnect architectures. She worked on VAX instruc­
tion-set characterization and performance simulation for the VAX 8800
CPU. Cheryl also worked on PDP-11 performance simulation after coming
to Digital in 1978. She was a programmer/analyst at the Connecticut Edu­
cation Association and taught mathematics in Connecticut. Cheryl holds a
B.A. degree in mathematics (1974) and an M.S. degree in computer science
(1979) from the University of Connecticut. She has published five papers
on computer performance in ACM and IEEE journals.

Eugene L. Yu Gene Yu is a senior design engineer in the Workstation
Engineering Group at Palo Alto. On the VAX 8800 project, he designed the
memory system interface to the memory interconnect, the NMI. Before
joining Digital in 1982, Gene worked at Prime Computer as a hardware
designer on their 400 and 9900 systems, and at Data General Corporation
on Nova products . He earned a B.S. degree in electrical engineering from
the University of Massachusetts. Gene has applied for a patent as coinventor
of the NMI and memory design for the VAX 8800 CPU.

John H.P. Zurawski John Zurawski is a consulting engineer working as
the project leader for computer arithmetic in the Advanced VAX Develop­
ment Group. He led the team that designed the floating point strategy and
hardware for the VAX 8800 family. John joined Digital in 1982 from the
University of Manchester, where he was a post-doctoral research associate.
He holds a B.Sc. degree in physics (1976), and M.Sc. (1977) and Ph.D.
(1980) degrees in computer science, all from the University of
Manchester. A member of IEEE, John has published four papers on com­
puter technology.

7

Foreword

Donald J. Mcinnis
Group Manager,
Advanced VAX Engineering

Since the announcement of the V AX-11 /780 sys­
tem in November 1977, Digital Equipment Cor­
poration has steadily expanded the VAX family
with new VAX products: the VAX-11/750, VAX-
11/7 30, MicroVAX I , VAX-11/7 25 , VAX-11 /
785 , VAX 8600, MicroVAX II, VAX 8650, VAX
8200, and VAX 8300 systems. The market accep­
tance of the VAX family has been excellent across
almost all computing applications. This remark­
able and steady increase in the use of VAX sys­
tems creates a continuous demand by the VAX
customer base for enhanced products across all
segments of the computing industry. In the fall
of 1982, the development team for the 8800
project (known internally as " Nautilus") was
assigned the responsibility of designing new sys­
tems to enhance the mid-to-high end of the VAX
family.

This issue of the Digital Technical Journal
represents a sampling of the types of design engi­
neering that went into the VAX 8800 family . It
takes an amazingly large number of different
engineering disciplines to design and manufac­
ture a product of this complexity. As time moves
on, each successive development project seems
to require a bigger investment in a larger number
of disciplines to produce a product attractive to
the marketplace. It is unfortunate that ne ither
time nor space permits us to give proper visibil­
ity to all the design, manufacturing, and cus­
tomer-service engineering efforts that led to the
shipment of the VAX 8800 family.

8

The VAX 8800 family consists of four new pro­
cessors: the VAX 8800, VAX 8700, VAX 8550,
and VAX 8500 CPUs. The VAX 8800 family and
the VAX 8200 system introduced a major new
1/0 bus, the VAXBI. We also introduced a com­
pletely new set of 1/0 adapters for the VAXBI
bus, which will be the new foundation 1/0 chan­
nel for many future mid- to high-end VAX sys­
tems. The VAXBI bus will replace the UNIBUS on
this class of system. The VAXBI offers a six-fold
increase in performance and substantially better
reliability and maintainability features in com­
parison to the UNIBUS.

The 8800 represents a significant advance into
new areas of high-performance computing for
the VAX family . A customer can replace a VAX-
11 /780 CPU with a VAX 8800 CPU in the same
footprint and effect an order of magnitude
increase in the amount of work done. The VAX
8500 CPU is really a replacement product for the
VAX-11/785 CPU kernel. However, the 8500 has
the same price, twice the performance, and one­
third the footprint.

To produce a product that has a good price/
performance ratio in the marketplace, you have
to push hard on some dimensions of technology.
A number of new pieces of technology were
introduced on the VAX 8800 project, such as the
22-layer backplane and a 480-pin, zero insertion
force connector. In the VLSI technology area,
one 8800 includes a total of 186 emitter-cou­
pled logic (ECL) gate arrays and a total of 28 cus­
tom-designed ECL parts.

The cycle time of a VAX CPU is a large determi­
nant in its performance. The challenge of meet­
ing a 4 5-nanosecond cycle time (versus 200
nanoseconds for the 11/780) required signifi­
cant advancements in technology implementa­
tion and in CAD tools for analysis.

Enhancements were made to the base operat­
ing system software for the VAX 8800 processor.
These software enhancements represent a basic
technological change that is available to our cus­
tomers. The VMS operating system was improved
significantly to provide much better throughput
for customers using the VAX 8800 dual proces­
sor as a general-purpose system. The ULTRIX-32
operating system was enhanced to support
tightly coupled multiprocessing. Software

library structures were also developed for cus­
tomers who might want to improve the through­
put of a single job by decomposing it to run in
parallel on the tightly coupled dual processors
of an 8800.

To meet the performance goals, the overall
design of the VAX 8800 system is necessarily
quite complex and was potentially difficult to
implement quickly and correctly. We under­
stood this from the beginning of the project,
based on our understanding of the experiences
of previous projects (e.g., the VAX-11/750, VAX
8600, and JI 1 VLSI CPU chip projects). To
manage that complexity in a timely manner, we
selected some key strategies and stuck with
them through the completion of the project.
They proved to be very successful since the
hardware prototypes were relatively error free ,
and the manufacturing start-up was very smooth
and rapid. Some of these strategies are as fol­
lows:

• The project followed a structured design
methodology that ensured the completion of
comprehensive specifications before any
detailed design was done.

• We made a large investment in our CAD team
and in CAD tools to automate the design pro­
cess.

• The basic design was managed by a chief
architect.

• The system was simulated extensively before
we built any hardware. (We finished the pro­
ject with 14 VAX-11/780 and 11/785 sys­
tems in our. cluster. During our peak simula­
tion effort, however, over 30 dedicated VAX
systems were used for a period of several
months.)

• Since many different engineering and manu­
facturing locations were involved, we made
extensive use of Digital's worldwide network
for electronic mail and data exchange.

A more important factor than any of the above
examples, however , was the people who
worked on the project. We attempted to build
an excellent team that worked well together.
The attribute of teamwork and the willingness

of people to have a broad engineering focus
proved to be invaluable, especially in the simu­
lation and prototyping phases. The core manage­
ment team started with very experienced peo­
ple , most of whom had VAX- I 1/780 or
VAX-11/750 development experience: Sas Dur­
vasula, VAX 8500 project manager; John Hittell,
manufacturing manager; Steve Jenkins, engineer­
ing manager; Nancy Kronenberg, VMS engineer­
ing; Bob Kusik, CAD manager; Steve Omand,
customer service engineering; and Bob Stewart,
chief architect. Many contributors at the next
level also had similar backgrounds , and all
remained in place for the duration of the pro­
ject. This continuity was a major factor in com­
pleting a very successful project and a very suc­
cessful family of products.

9

Robert M. Burley I

An Overview of the Four Systems
in the VAX 8800 Family

Ibe VAX 8800 mul.tiprocessor and the VAX 8700, 8550, and 8500 systems
all derive f rom the same fundamental design. Their sustained appli­
cations throughput ranges from 3.0 to 12 times that of the VAX-11/780
system. In the design process, automated tools helped to correct design
bugs early. ECL technology and a two-phase clock system achieve a
45-nanosecond cycle time. Microinstructions are processed simulta­
neously through four logic boxes that implement a five-stage pipeline. A
high-speed memory interconnect, the NMI bus, links CPUs to memory and
the 1/0 subsystem, which connects to VAXBI buses. Many reliability f ea­
tures, including extensive diagnostics, are implemented.

Design work on the VAX 8800 system began in
September 1982 and concentrated on develop­
ing a balanced, high-performance system based
upon the use of ECL components and multipro­
cessing. Although performance was the primary
product goal, many technology, packaging, and
implementation decisions reflected the equally
pressing business requirements for reliability
and ease of manufacturing.

The flexibility of the design ultimately
spawned four CPU systems: the VAX 8800, VAX
8700, VAX 8550, and VAX 8500 models. These
systems share many common functional and
design attributes yet maintain noticeable imple­
mentation differences in the areas of perfor­
mance, multiprocessing, expansion capability
(memory and 1/0), and packaging. As a result of
these implementation variations, the sustained
applications throughput (SAT) rates for these
systems range from approximately 3.0 to 12
times the rate for a VAX-11 / 780 system. Sus­
tained applications throughput is more indica­
tive of usable performance for a given system
than the more frequently reported peak num­
bers that can be derived from ideal or biased
conditions. Table 1 compares the physical and
performance attributes of these four VAX pro­
cessor systems.

Design Environment
Trad itional des ign environments have placed
the greatest emphasis on discovering and elimi-

10

nating design errors in the physical hardware .
The complexity of the VAX 8800 design cou­
pled with the new technologies involved would
have created costly delays in the development
schedule had traditional approaches been used .
Early in the project, goals were defined to iden­
tify logic design problems and to solve all tim­
ing problems through the use of extensive
design verification tools .

A hierarchical design and simulation environ­
ment allowed the engineers to move freely
throughout the design at any level from gates,
layouts, and behavioral models through com­
plete system simulation and timing verification.
Considerable computing resources were required
to allow that freedom . This environment, with
its carefully managed libraries and databases,
allowed this work to be done before any hard­
ware was actually assembled. 1 As a result, the
design matured within our VAXcluster systems,
evolving to hardware prototypes only after it
was essentially complete and stable. In addition
to the expected savings in prototype costs and a
reduction in overall development time, the per­
vasive use of software tools significantly shifted
the traditional debug effort to an earlier point in
the design process. Cumulative bug-detection
plots were used extensively to provide insight
into the stability of the design.

The effect of this shift was to p rovide stable ,
early prototypes fo r extensive system characteri ­
zation and testing, leading to earli e r des ign

Digital Technicaljou rnal
No. 4 February 1987

Table 1 CPU and Memory Attributes of the VAX 8800 Family

VAX 8500 VAX 8550 VAX 8700 VAX 8800

CPU Attributes

SAT (compared 3.5 6.0 6.0 10.0 to 12.0
to VAX-11 /780)

Cycle Time 45 ns 45 ns 45 ns 45 ns

Number of 2
Processors

Upgrade To 8550 None To 8800 None
Potential

Writable Control 15K 15K 15K 15K in each CPU
Store (Words)

User Control 1K 1K 1K 1 K in each CPU
Store (Words)

Microword Size 143 Bits 143 Bits 143 Bits 143 Bits

CACHE Size 64KB 64KB 64KB 64KB (in each CPU)

Internal Datapath 32 Bits 32 Bits 32 Bits 32 Bits

Instruction Buffer 16 Byte 16 Byte 16 Byte 16 Byte Look Ahead
Type Look Ahead Look Ahead Look Ahead in each CPU

Maximum Total 16MB/s 16MB/s Over 30MB/s Over 30MB/s
1/0 Data Rate

Maximum 1/0 2 2 4 4
Channels

Memory Attributes

Maximum Physical
Memory Size

80MB 80MB 128MB 128MB

Cycle Times:
Hexword Read 495 ns min. 495 ns min. 495 ns min. 495 ns min.
(256 bits) 1260 ns max. 1260 ns max. 1260 ns max. 1260 ns max.

Octaword Write 270 ns min. 270 ns min. 270 ns min. 270 ns min.
(128 bits) 540 ns max. 540 ns max. 540 ns max. 540 ns max.
Longword Write 135 ns min. 135 ns min. 135 ns min. 135 ns min.
(32 bits) 495 ns max. 495 ns max. 495 ns max. 495 ns max.

acceptance. This strictly controlled design envi­
ronment allowed us to complete physical debug
along with the required system evaluation and
testing in only eight months.

In a software-intensive design environment,
the production of actual hardware is deferred
somewhat in favor of design stability, resulting
in a slightly longer soft-design period. The delay
in hardware availability, however, is more than
balanced by the stability of the hardware proto­
types, which can then be accelerated through
the evaluation and qualification-testing phases.

Digital TecbnicalJournal
No. 4 February 1987

The design schedule recovers during these later
phases, and substantial cost savings are realized
because fewer engineering changes are made
and stable manufacturing can b egin quickly.

CPU Design Overview
The VAX 8800 family of designs were structured
around the functional elements, or "boxes," of
the system . The CPU, memory, 1/0, and bus
subsystems were all matched to provide the nec­
essary system balance. One simple model is to
treat performance as a function of two variables:

11

New Products

________ An Overview of the Four Systems in the VAX 8800 Family

the instruction execution rate, and the amount
of "work" each instruction can perform. The
design of the VAX 8800 family focused on what
we call the "short tick" approach to achieve the
necessary, sustained performance.

In this approach, the instruction and data
streams are kept simple and are executed
quickly. Any design trade-offs were resolved in
favor of speed and simplicity, thus reducing
design complexity. The use of high-speed cus­
tom and semicustom VLSI components com­
bined with several new internal bus architec­
tures resulted in a family of processors with a
45-nanosecond (ns) cycle time. All models
employ a five-stage instruction execution
pipeline, integral floating point acceleration (F,
D, G, H formats) , and the VAXBI bus as the pri­
mary 1/0 subsystem . The extensive use of
microcode controls with minimal hardware
assist augments current performance while
providing flexibility for future enhancements .
The block diagram in Figure 1 (using the VAX

ECC
MEMORY

8700 and VAX 8800 systems) illustrates the key
functional elements common to the VAX 8800
family design.

Technology
The raw speed, off-chip drive capabilities, and
availability of bipolar emitter-coupled logic
(ECL) logic components provided the most
straightforward means of achieving the desired
performance of the VAX 8800 family . Most logic
is implemented in 1200-gate ECL arrays. Cus­
tom logic chips designed by Digital provide fur­
ther performance gains for floating point opera­
tions and general-purpose registers. The cache is
implemented in 10-ns and 15-ns ECL RAMs .
Nine-layer, controlled-impedance CPU logic
modules and a 22-layer, controlled-impedance
CPU backplane were developed to meet the sig­
nal-integrity and signal-propagation require­
ments crucial to an ECL design . Other multi­
layer backplanes were designed for the private
memory array bus and 1/0 subsystems.

VAX
PROCESSOR
(STANDARD
VAX 8700)

CONSOLE

,~;;-----,
I PROCESSOR I

- -ti (UPGRADE II
I VAX 8800) I

L----,---J
I
I

HIGH SPEED MEMORY INTERCONNECT BUS (NMI)

BUS INTERFACE

VAXBI
1/0 BUS
STD 8700/8800

--,
I
I
I
I
I ,. ___ __1 ___ _,

I I
I VAXBI I
I 1/0 BUS I
I STD 8800 I
I I
L---""?1..----J

/ ' , r
I 2 I
~ '7 ' , v

I
I

r---....l----·
I I
I BUS INTERFACE I

r- -1 (OPTIONAL) L-~
I I I I
I I I I
I L--------' I
I I
I I r---.l----, ____ 1... ___ ,

I VAXBI I I VAXBI I
I 1/0 BUS I I 1/0 BUS I
I (OPTIONAL I I (OPTIONAL I I 0100100ooi I I 0100,00ooi I
L----;c::---..J L---,...----'

/ ' / ' .., r " ,,.
I 3 I I 4 I
~ L,. ~ 7
' / ' /

v "

Figure 1 VAX 8700/ 8800 Block Diagram

12 Digital Tecb11ical]our11al
No. 4 February 1987

An innovative scheme of bus bars and ribbon
straps routes the appropriate power to each of
the backplanes, minimizing cable management
problems for system power. The eight CPU logic
modules, all memory arrays, and all I/0 con­
trollers attach to their respective backplanes by
means of zero insertion force (ZIF) connectors,
which improve our ability to manufacture and
service the system. Figure 2 shows the two dif­
ferent module types (CPU and VAXBI) used in
the VAX 8800 family .

Figure 2 Typical CPU and 1/0 Modules

An extensive environmental monitoring sub­
system, called the EMM, has been implemented
throughout the system. The EMM constantly
mon itors current fluctuations , air flows, and
temperature variations, providing warnings at
the system console. The EMM can automatically
power down the system in the event that safe
operating limits are violated.

CPU Subsystems
The designs of the CPUs in the VAX 8800 family
are partitioned along the logical functions per-

Digital Tecbnicaljournal
No. 4 February 1987

formed within each processor. There are four
logical boxes: the instruction unit (I Box) , the
cache (C Box) , the execution unit (E Box), and
the memory subsystem (M Box) . Each processor
contains these functional units and their related
buses. Five buses are implemented within each
CPU: the cache/ALU bypass bus, the cache data
bus, the instmction-buffer data bus, the virtual­
address bus, and the write data bus. Figure 3 is a
block diagram of the processor configuration.

I
BOX IBD BUS

CONSOLE
SUBSYSTEM
INTERFACE

VISIBILITY BUS

E
BOX VA BUS

c
BOX

WD BUS

CACHE DATA BUS

HIGH SPEED MEMORY INTERCONNECT BUS (NMI)

NBIA
ADAPTER

TO NBIB ADAPTERS

C/A BUS - CACHE/ALU BYPASS BUS
IBD BUS - INSTRUCTION BUFFER DATA BUS
VA BUS - VIRTUAL ADDRESS BUS
WD BUS - WRITE DATA BUS

MEMORY
CONTROLLER

Figure 3 Processor Block Diagram

A short overview of each functional box fol­
lows. Other papers in this issue of the Digital
Technical Journal and the VAX Hardware
Handbook contain substantially more detail. 2

13

New Products

An Overview of the Four Systems in the VAX 8800 Family

Pipelining the VAX 8800 Family
Pipelining, which functionally involves the
E Box, the C Box, and the M Box, is primarily
controlled by the I Box. Pipelining is a proven
method to improve performance. The incorpo­
ration of pipelining, in ·conjunction with faster
microcode instruction execution rates, or cycle
times, increases aggregate throughput more than
can be achieved by improvements of the cycle
time alone. The concept of pipelining is based
upon partitioning instruction execution to
allow simultaneous operations upon multiple
microinstructions. The VAX 8800 family
employs a five-stage pipeline. In this design a
new microinstruction executes every 4 5 ns,
with five microinstructions executing simulta­
neously. A simplified schematic of the VAX
8800 family pipeline is represented in Figure 4.

I DNA I cs R A W,C

! DNA cs R A W,C

DNA cs R A W,C

DNA cs R A W,C I

DNA cs R A I W,C I

DNA - DECODE/NEXT ADDRESS
CS - CONTROL STORE LOOK-UP (MICROCODE INSTRUCTION)
R - REGISTER READ
A - ALU OPERATION
W,C - REGISTER WRITE, CACHE OPERATION

Figure 4 The Pipeline in the VAX 8800
Family

The I Box
The I Box contains the microcode store and con­
trol center and performs five primary functions.

• Buffering the prefetched VAX instruction­
stream data received from the cache

• Decoding and controlling the execution of
microinstructions

• Monitoring and servicing microtraps, inter­
rupts, and exceptions

• Supplying instruction-stream embedded data

• Interfacing between the console interface
module and the processor

For each processor, a writable control store of
I 6K words by 14 3 bits is loaded directly from
the intelligent console subsystem upon system

14

start. A segment of control store with 1 K words
by 14 3 bits, the user-writable control store, is
provided for the system user to optimize appli­
cations. The logical function of the I Box
includes the following:

• The instruction buffer

• The instruction decoder

• The microsequencer

• The condition code and microbranch logic

• The interrupt and processor-register logic

• The file-address generator

Figure 5 depicts the implementation of the
I Box.

The C Box
The C Box for each processor is built around a
64-kilobyte (KB) write-through data cache
memory that is physically indexed and direct
mapped. Functionally, the C Box provides very
high-speed physical memory, high-speed
address translations, and a communication path
for the processor to the NMI bus. The compara­
tively large cache size was specifically selected
to allow large applications to remain fully resi­
dent in the cache, substantially reducing mem­
ory traffic and processor wait states. The com­
plete C Box implementation includes a
IKB translation buffer, a 64KB cache data store,
and an NMI interface. The translation buffer
consists of a 1 K-entry cache of virtual-to-physical
address translations. This translation buffer con­
tains a tag store and a data store organized into
512 process-translation slots and 512 system
region-translation slots. Using a portion of the
virtual address to compare the tag-store and
data-store addresses, the translation buffer con­
catenates the page frame number with the low­
order virtual-address bits to form the physical
address for the data store cache.

Data read from the cache data store (a cache
"hit") requires no memory request. If the
required data is not in the cache data store (a
cache "miss"), logic embedded in the NMI
interface uses the cache-miss address to spawn a
command/address transaction that is sent to the
memory subsystem. Upon return, the requested
data from memory is passed to the req uesting
CPU and then placed in the cache data store for
subsequent use. This design allows the translation

Digital Tecbnica/Journal
No. 4 February 1987

CACHE DATA BUS ~--~------< TO CONSOLE INTERFACE

INSTRUCTION
BUFFER
MANAGER

WRITE

READ

ALIGN

OPCODE

SPECIFIER

CONSOLE
DATA/CONTROL

GATEWAY
CONTROL

CONDITION
CODE&
BRANCH

INTERRUPT
LOGIC

BRANCH

INTERRUPT PENDING

Figure 5

VIRTUAL ADDRESS • - ----,

MICROWORD t

CACHE

TAG
STORE

DATA
STORE

TRANSLATION BUFFER

PHYSICAL ADDRESS

INSTRUCTION
BUFFER

TO INSTRUCTION
BUFFER DATA BUS

BUS
WATCHER

CONTROL

INSTRUCTION 1------~
DECODER

FILE
ADDRESS

DECODER CONTROL

MUX
MICROWORD

MICRO­
SEQUENCER

WRITABLE
CONTROL
STORE

SEQUENCING
CONTROL

I Box Block Diagram

TO
C BOX

~-- TO
E BOX

buffer and the cache data store to be free to
process other processor requests until the
requested data arrives from memory.

A block diagram of the C Box is shown in
Figure 6.

The E Box
The E Box receives data from the I Box and the
C Box, processes that data, and returns it to the
C Box. The E Box performs five primary func­
tions required by the processor.

MEMORY
CACHE DATA REFILL DATA INTERCONNECT
STORE i...-------t lNTERFACE • Handles all arithmetic , logical and bit-shift

operations

< CACHE DATA BUS > NMI

• FROM EXECUTION BOX
t FROM INSTRUCTION BOX

Figure 6 C Box Block Diagram

Digital Technical journal
No. 4 February 1987

• Maintains the program counter and general
registers

• Maintains the processor registers

• Controls data transfers between the C Box,
the I Box, and the clock-module registers

• Provides condition-code information to the
I Box microsequencer

15

New Products

An Overview of the Four Systems in the VAX 8800 Family

TO C BOX FROM I BOX

• ...
WRITE DATA BUS INSTR UCTION BUFFER DATA BUS

" v " I
"

FROM C BOX

+
CACHE DATA BUS

" "
FROM C BOX

+ I LATCH

...
VIRTUAL ADDRESS BUS

" I v

t
SLOW REGISTER PROGRAM
DATA FILE COUNTER
FILE

t • i---

f----+- ARITHMETIC AND LOGIC UNIT

~

PARITY
CHECK

FROM
C BOX

I
t +

MULTIPLIER SHIFTER FLOATING
POINT

... + +
CACHE/ ALU BYPASS BUS

" "

Figure 7 E Box Block Diagram

The major elements of the E Box, located phys­
ically on the data-s lice modules and the shifter
module , consist of a register file , a data file , the
program-co u n ter logic , the main ALU , and a
shifter. The logic of the E Box includes integral
floating point operations that are optimized and
a 64-bit multiplier (i mp lemented in custom­
designed VLSI chips) that augments the speed of
both integer and floating point multip lication .
Figure 7 is a block d iagram of the E Box.

16

TheM Box
The M Box, the memory subsystem, consists of
memory control logic , memory arrays, and a
dedicated memory array bus that p rovides a
usable data rate of over SOMB per second to the
memory subsystem . The control logic op timizes
multiple memory read and write operations ,
implements three-way interleaving, and buffers
memory transactions for optimum data move­
ment. The dedicated memory array bus, coupled

Digital Tecb11ical J ournal
No. 4 February 1987

with the memory control logic, effectively off­
loads the NMI bus, providing balanced bus
access and loads. The interleaving algorithms
are based upon array boundaries, making the
memory control logic technology independent.
The result is that as increasingly dense memory
arrays become available, few if any controller
modifications will be required.

The error checking and control (ECC) is built
around 7 check bits for every 32 bits of data.
This protocol provides automatic single-bit cor­
rection and double-bit detection.

In the VAX 8800 multiprocessor, all memory is
fully sharable. Current systems in the VAX 8800
family are offered with 16MB per memory array,
giving the VAX 8700 and VAX 8800 systems a
maximum memory capacity of 128MB, and the
VAX 8500 and VAX 8550 systems a maximum of
BOMB. Figure 8 is a block diagram of the M Box.

INSTRUCTION
BOX

EXECUTION
BOX

CACHE
BOX

HIGH SPEED MEMORY INTERCONNECT BUS (NMI)

POWER SUBSYSTEM

r
I
I

-------,
MEMORY CONTROL I

I
I
I
I
I

MEMORY INTERCONNECT INTERFACE

POWER
CONTROL

ECL TOTIL

I
I
I
I
I
I
I
I L __ - __ ..J

r--
1
I

ARRAY BUS

I CONTROL BANK

LOGIC O

: i.........-..i.........-~__.__,__, I

~~Y~ O~'=----------J

Figure 8 M Box Block Diagram

Digital Tecbnical]ournal
No. 4 February 1987

The Clock Subsystem
The clock subsystem generates, controls, and
distributes timing signals to all the components
of the processor system. The clock subsystem
contains the console interface, an oscillator, a
phase generator, clock-control logic circuits, and
the logic circuits for clock signal distribution.

The VAX 8800 family implements a two­
phase, nonoverlapped clock subsystem operating
at a cycle time of 45 ns. A stable, high-frequency
oscillator (120 MHz nominal with variable out­
put) , coupled with a phase generator, provides
the signal. The implementation of a two-phase
design with matched signal-length distribution
throughout the CPU is most efficient for the
pipelined, latch-based design of the VAX 8800
family . This design avoids the inefficiencies
associated with the compressed signal-assertion
times resulting from approaches that specify
minimum delays for given logic elements.

A-clock and B-clock signals are distributed to
alternate latches in a given logic stream. All data
transfers occur between latches clocked by dif­
ferent phases to assure a race-free design. The
essence of fast-processor design is managing and
controlling skew. In this regard, signal propaga­
tion and distribution presented significant chal­
lenges in the areas of controlled etch lengths,
controlled impedance, routing, and placement.
To assure a stable , reliable design, all design
activity was predicated on worst-case design
rules rather than using the typical-case limits.

The NM/ Bus
Integral to the design of this family of proces­
sors was the development of a high-speed mem­
ory interconnect bus called the NMI bus. This
bus, analogous to the synchronous backplane
interconnect (SBI bus) in the VAX-11/780 CPU,
links the subsystems for CPU logic , central
memory, and 1/0. The NMI bus is a 32-bit syn­
chronous bus, physically implemented within
the 22-layer backplane . This bus provides the
control and datapath functions as well as the
distribution of clock signals for the VAX 8800
family.

One fundamental problem in the design of
high-performance systems revolves around bal­
ancing the bus access needed at any given
instant with the raw bandwidth available. To
provide the correct balance, the NMI bus was
implemented as a pended (vs. interlocked) bus,
resulting in very high bus-access availability.

17

New Products

------- An Overview of the Four Systems in the VAX 8800 Family

Since memory is the critical resource in sus­
tained operations, the NMI bus uses a modified
round-robin arbitration that gives the memory a
higher priority when there is contention for the
bus . This arbitration priority eliminates any
lock-step conditions and also provides for recov­
ery of states and data in the event of preemp­
tion . This high bus-access capability, coupled
with usable data rates of up to 60MB per sec­
ond, provides the necessary balance to support
CPU, memory, and 1/0 transactions. The inclu­
sion of write buffers within each CPU, coupled
with the large cache size, effectively reduces
the number of transactions presented to the bus.
Measurements on a VAX 8800 system in our
Engineering VAXcluster environment have indi·
cated that the NMI bus is rarely busy more than
50 percent of the time; the CPUs use approxi­
mately 25 percent of the available access time
and bandwidth. Other applications may see
somewhat different ratios.

VAXBI Bus
The VAX 8800 family uses the VAX bus inter­
connect, called the VAXBI bus, for the 1/0 sub­
system in order to provide adequate balance for
the CPU performance. The VAXBI bus, a 32-bit
clocked bus with distributed arbitration, is capa­
ble of usable data rates in the VAX 8800 family
up to 8MB per second, depending upon word
size and application. Custom logic on each
interface module provides all bus protocols, as
well as integral data-integrity features, including
master transmit and command acknowledge.

The VAX 8800 and VAX 8700 systems can be
configured with up to four VAXBI channels ,
whereas the VAX 8550 and VAX 8500 systems
accept up to two. Therefore, fully configured
VAX 8800 and VAX 8700 systems can support
aggregate 1/0 bandwidths up to 30MB per sec­
ond. Similarly, fully configured VAX 8550 and
VAX 8500 systems can support aggregate band­
widths up to 16MB per second. Each VAXBI bus
can su p port up to 16 nodes , or logical
addresses, which connect to any combination of
networks, intelligent and nonintelligent
devices, DMA devices, and VAXcluster systems,
as well as providing for connection to existing
UNIBUS-based devices.

All of Digital 's network protocols interface
directly to the VAXBI on the VAX 8800 family.
Thus, VAXcluster, Ethernet, DECnet and DSA

18

(Digital Storage Architecture) devices are all
ported directly to this high-performance 1/0
subsystem.

Reliability
Reliability was one of the primary goals of the
VAX 8800 design. Numerous features were
implemented that more than doubled the basic
computing kernel availability compared to the
VAX-11/780 system. Some of the key functions
include

• Environmental and power monitors that
query the system and maintain safe system
operating levels

• Automatic verification of hardware, firmware,
and software revision compatibility

• Electrically keyed modules and module slots
that prevent improper installation and dam­
age to the modules or the system

• Automatic electrostatic discharge (ESD) pro­
tection of modules during installation and
removal

• ECC on main memory

• Parity checking on internal RAMs

• Bus protocol checking for the memory inter-
connect

• Timing and voltage margining

• Remote diagnostics capability

• Dual-to-single processor reconfiguration
(VAX 8800 system only)

Diagnostic Development
Similar to the hardware development , the
design methodology for the diagnostics
depended very heavily on simulation. Almost all
the diagnostic tests were debugged on behav­
ioral and structural models of the design before
the initial prototype was powered up. There
were three major benefits of this methodology.

1 . Microdiagnostic and macrodiagnostic
tests were useful for design verification
testing.

2. Test vectors for automatic test equipment
(module test) were extracted from the
simulation database.

3. A comprehensive diagnostic package was
available shortly after the prototype was
powered up.

Digital TecbnicalJournal
No. 4 February 198 7

The diagnostic for the VAX 8800 family con­
sists of tests specific to this processor and
generic to the VAX architecture. The processor
is tested primarily with microdiagnostics. These
tests execute from the processor's writable con­
trol store and are governed by the console.

VAX generic diagnostics are included to test
the UNIBUS and VAXBI adapters and options. All
the diagnostic code fits on the console's
Winchester disk. When the system is powered
up, a subset of the microdiagnostic tests are
executed.

Balanced Systems
The VAX 8800 design effort delivered four dif­
ferent systems, the 8800, the 8700, the 8550 ,
and the 8500, all reflecting the overriding con­
cept of balanced system design. While the CPUs
themselves demonstrate excellent internal bal­
ance between their logical and functional sub­
systems, they are also balanced members of the
extended system that can span much larger
physical distances. Monolithic or isolated com­
puting resources are no longer capable of
accessing, manipulating, and distributing the
volumes of information needed for complex or
extended solutions. In this light, the VAX 8800
family should be viewed in the context of a bal­
anced network. The movement of data is gov­
erned by speed and distance . An inverse rela­
tionship exists as shown in Figure 9 . The VAX
8800 family fits on the top bound of the band­
width range throughout the distance function.

w TECHNOLOGY
-;;}_ COMPLEX---~-----~SIMPLE
0 en 100
C)
0
::::!.
Cl
z
8 10
w
~
CD
~

I

I
I-­
Cl

3:
Cl
z
<
CD 10 100

DISTANCE - METERS (LOG SCALE)

Figure 9 Bandwidth versus Distance

Digital TecbnicalJournal
No. 4 February 1987

1000

Summary
The VAX 8800 family of products merges fast
instruction-execution rates, large physical mem­
ories, large high-speed data caches, VAXBI 1/0
channels, pipelining, and balanced internal-bus
architectures to provide high system-applica­
tions throughput. Spanning an applications
throughput range that is from 3 to 12 times that
of the VAX-11/780 system, the VAX 8500, VAX
8550 , VAX 8700 , and VAX 8800 systems are
matched to the network and applications strate­
gies offered by Digital Equipment Corporation.

References

I. D. Bak, "The Impact of VAX 8800 Design
Methodology on CAD Development ,"
Digital Technical Journal (February
1987, this issue): 129-135.

2 . VAX Hardware Handbook (Maynard:
Digital Equipment Corporation , Order
No. EB-21 7 10-20, 1982).

19

New Products

Sudhindra N. Mishra I

The VAX 8800 Microarchitecture
The VAX 8800 processor has a simple but efficient microarchitecture. Its
pipelined micromachine has a one-cycle next-address loop and four-cycle
latencies for both microbranches and microtraps. Instruction pref etch
and decode are done in parallel with microcode execution. The instruc­
tion buffer is a bit-sliced, four-longword circular queue. The decoder is
primarily a RAM-based table. For special events, hardwired logic is used
for decoding. A bit-sliced microsequencer provides up to 32-way condi­
tional microbranching, using a collection of about 80 branch conditions.
A hardware microstack provides up to 15 levels of nested subroutine calls
and returns. Microtrap conditions are prioritized over 16 levels, and
microtraps are chained, not nested.

The term "microarchitecture" means the speci­
fication or description of the interrelationships
between the parts of the micromachine that
implements the instruction set processor. In
terms of this definition, the microarchitecture of
the VAX 8800 processor will be described by
elucidating the organization of its micromachine
and the interaction between its components.

Figure 1 shows a simple three-stage state­
machine model of an abstract micromachine
appropriate for implementing the control unit
of a typical von Neumann processor. Figure 2
shows a block diagram depicting the essential
elements of such a micromachine. This state­
machine is capable of executing microcode rou­
tines to implement an instruction set processor.
In such a system, every macroinstruction is
decoded by the hardware to produce the start­
ing addresses of a small set of microprograms,
which execute sequentially to produce the
desired effect. Barring some exceptions, a
microprogram or microcode routine can exe­
cute rather independently in the sense that each
microinstruction produces the address of the
next microinstruction. The last microinstruction
causes the selection of an external address, such
as one produced by the decoder, to start the
execution of another routine.

In Digital's vernacular, the I Box is the logical
partition containing the instruction-processing
hardware. Figure 3 shows a block diagram of the
VAX 8800 I Box with the basic elements of its
micromachine.

20

LOOK UP
MICRODATA

Figure 1 State-machine Model of an
Abstract Micromachine

From the early IBM and CDC computers to the
modern CRAY machines, computer designers
have used a technique called "pipelining" to
obtain higher performance. Pipelining overlaps
the execution of instructions in time; that is,
several instructions can be executing at the
same time. This technique provides a higher
throughput when the pipeline is fully loaded,
but there is a cost involved. If the pipeline is
broken, extra processing is required to refill it.
Moreover, if any active instructions have par­
tially executed, information about their states
may have to be saved to continue processing
after an abrupt interruption.

The degree of pipelining varies from one
machine to another depending upon the design
choices and trade-offs made by the system archi­
tects. A metaphor often used to indicate the
degree of pipelining is the length of the pipeline

Digital TecbnicalJournal
No. 4 February 1987

EXTERNAL
ADDRESSES
AND CONTROLS

MICRO­
ADDRESS
GENERATION
LOGIC

MICRO­
ADDRESS
LATCH
OR
REGISTER

CONTROL
STORE

MICRO­
DATA
LATCH
OR
REGISTER

MICRO­
DATA
INTERPRE­
TATION
LOGIC

CONTROL
SIGNALS

Figure 2 Block Diagram of an Abstract Micromachine

BRANCH CONDITIONS,
TRAPS, INTERRUPTS

CACHE

i

MICRO­
SEQUENCER

CONTROL
STORE

INSTRUCTION
BUFFER

18 DATA

CONTROL

OPCODE,
SPECIFIER,
SPECIFIER
NUMBER

.---'-----'---,
PC

DECODER INCREMENT
TOE BOX

DECODER CONTROL

MICROWORD CONTROL TO E BOX

CONTROL TO C BOX

MICROSEQUENCER CONTROL

Figure 3 VAX 8800 I Box

stated as the number of stages, for example , a
three-stage pipeline or a four-stage pipeline .
The number of stages conveys the extent of time
overlap for typical operations in a computer.
In a machine with a pipelined microarchitec­
ture, these operations are executions of microin-

INPUT

t
1

CL · COMBINATORIAL LOGIC

structions. A higher degree of pipelining makes
short cycle times possible, thus leading to a
higher throughput when the pipeline is fully
loaded. But longer pipelines entail increased
overhead in terms of their ability to resume oper­
ations after a break in the pipeline caused by any
abnormal event. Therefore, an architect's goal is
to design the system so that the pipeline remains
loaded most of the time and recovery from a bro­
ken pipeline is not too inefficient. The VAX 8800
CPU is a prime example of a processor with a
pipelined microarchitecture.

System Considerations
The design philosophy of the VAX 8800 proces­
sor was to optimize the hardware so that it
would execute the microcode efficiently. A
large control store (144 bits by 16,000 entries)
holds the entire microcode . Using fairly general­
ized datapaths, the microcode executes the
logic of the instructions. However, special hard­
ware is used to speed up performance in critical
areas. The processor logic is primarily designed
with latches, which are clocked with a globally
distributed, two-phase , nonoverlapping clock­
ing scheme. The two clock phases are called the
A-clock and the 8 -clock. A typical example of
logic design, based on the above approach, is
shown in Figure 4.

OUTPUT

Figure 4 A Typical Section of the VAX 8800

Digital TecbnicalJournal 2 1
No. 4 February 198 7

New Products

The VAX 8800 Microarchitecture

It is apparent from Figure 4 that the data flow
in such a logic system occurs through the per­
petual data transfers between the latches con­
nected to the A-clock and those connected to
the B-clock. Each data transfer may be consid­
ered atomic in the sense of hardware operation.
A microoperation may be envisioned as a logical
operation that is atomic in terms of the execu­
tion of a microinstruction, such as a register
read, a register write or an ALU function. Hence
a microoperation constitutes one or more data
transfers, and the microinstruction execution
simply constitutes a time sequence of micro­
operations, as shown in Figure 5.

CLOCK

A

I

READ REGISTERS

8

I
ALU FUNCTION
ADD

TIME

A

I
STORE RESULT
IN REGISTER

8

I

Figure 5 Example of a Microinstruction

In high-performance machines, like those in
the VAX family, there is usually a mismatch
between CPU cycle times and memory-access
times. For example, consider an ADD instruc­
tion. If the operands are in registers, the ADD
can be done rather quickly. But if one of the
operands has to be read out of memory, the ADD
cannot be performed until the desired d;ita
arrives from memory. Most VAX processors have
a fast cache memory, tightly bound to the pro­
cessor's arithmetic units, to alleviate the mem­
ory-latency problem. In the case of a cache miss
on a required datum, however, the only alterna­
tive for a von Neumann processor is to wait. A
processor in such a state is said to be "stalled."
Under such conditions, the state of the proces­
sor must be "frozen" until the cause of the stall
no longer persists and the stall is broken . The
two-phase clocking scheme provides a conve­
nient way to implement stalls, in which one of
the clock phases (the A-clock in the 8800) may
be blocked. Stalls are controlled by the cache
through a special hardware signal distributed
globally to block the A-clock. Thus, the proces­
sor logic contains two flavors of A-latches:

• Stalled A-latches, which are affected by a stall

22

• Unstalled A-latches, which are not affected by
a stall

The micromachine is implemented only with
stalled A-latches. Hence the effect of stalls on
the execution of the micromachine is largely
transparent.

A mechanism is also required to deal with
hardware exceptions when the results of the
execution of a microinstruction have to be
undone. In a pipelined microarchitecture, sev­
eral microinstructions may have partially exe­
cuted when an exception condition is detected.
In that case it is necessary to undo the effects of
all those microinstructions. The most common
technique used to deal with such situations is
called a microtrap. Since microtraps relate
closely to the micromachine execution, every
processor has its own scheme to implement
them. In every case, however, microtraps must
permit the "roll back" of some number of
microinstructions because the detection of a
trap condition usually occurs quite late with
respect to microinstruction execution.

In the VAX 8800 processor, microtraps are
implemented so that the offending micro­
instruction is allowed to complete, but subse­
quent microinstructions in the pipeline are
blocked. Since the offending microinstruction
may have caused some undesirable results, the
trap-handler microcode must fix the problem.
Depending on the particular situation, either
the microinstruction execution flow is resum­
ed from the blocked state or a new flow is
originated.

System Buses and Datapath
Figure 6 is a block diagram of the VAX 8800
CPU datapath, showing all the major buses. The
hardware organization of the CPU provides a
two-cycle operation between the cache and the
ALU, as shown. The processor has several func­
tional units in addition to the main ALU. These
additional units perform high-speed multiply
and divide, shifting, and floating-point arith­
metic operations.

There are several possibilities for selecting
inputs to these functional units. For operations
involving two inputs, both can be presented
simultaneously onto the two legs of the main
ALU as well as most other functional units. The
results from these functional units are sent on
the W bus for writing to either the multiport

Digital Tecbnical]ournal
No. 4 February 1987

BYPASS BUS VIRTUAL ADDRESS BUS

BACKUP PC

i m,eec
~ --- .. n1II
A

B MULTI-
A In PLIER

& . B

\ I DIVIDER .., - PC A ::;;: . ~ MUX TB

I \ i CBUS

A I
IL__]". I B I

A

?~ A

().
PCINC

:ut
A - B

I - D; ~
CACHE__

I A I A_Do.....-

r=Jn I \ I \ A-PORT B-PORT
MUX MUX

nnnr ,/' ~/' ;./';.

< /\---

J
CACHE DATA BYPASS BUS v---

~
- - -18 DATA BUS ~ - v--- -

\
-

= JU=
' . ;,. " ;,., .

~

x
,- R -

,----- E -
G -

~rr.rc -< ·I ::G,s~,111
EXPONENT V-- -ALU .,....__

~v---

SHIFT 9 PC
~ INCREMENT

COUNT I /\ --- A

BUS I \ .

·~ --;:::::::= A

ij A ~--,
~ SLOW

/\
MPR DATA 18

FILE

B B

MICRODA TA __j t__ n .(' CACHE fl• DATA ~
rrA

DELAY

B~ "--~ VA< l :0> WRITE
BUFFER

I .
B ,-.

>--~ WRITE BUS MD BUS
r

A, B - A AND B PHASES OF TWO-PHASE CLOCK

Digital TecbnlcalJournal
No. 4 February 1987

Figure 6 VAX 8800 Datapath

------ . _.,,...--- -

23

New Products

The VAX 8800 Microarchitecture

register file (MPR) or the cache. However, since
the write actually occurs in the following cycle,
the bypass bus provides a shortcut (saving a
cycle) in case the write datum is read by the
very next microinstruction.

The virtual address bus carries the virtual
address of any data-stream (d-stream) refer­
ences, whereas the program-counter bus has the
current program counter (PC). The instruction­
buffer data bus provides the instruction-stream
(i-stream) data. The instructions and data from
the cache are returned on the cache data bus.
However, a cache data bypass bus provides a
direct path to the functional units for the data
returned by the cache, in case the processor is
or will be stalled for that data.

Microinstruction Pipeline
The top part of Figure 7 shows the execution of
microinstructions as a function of time in a non­
pipelined microarchitecture; the bottom depicts
that in a pipelined microarchitecture.

The basic data flow in a processor occurs in
the following sequence:

1. Read the register operands into a func­
tional unit, such as the ALU.

2. Perform some ALU function.

CLOCK- A B A B A

MICROINSTRUCTION 1

B

3. Write the results into the destination
register.

4. If there is a cache, start a cache operation
at approximately the same time as a regis­
ter write since memory references are
buffered through special-purpose mem­
ory data registers (MDRs or MDs) in most
high-performance processors.

Figure 5 shows that the sequence above
occurs in a natural order in time as a conse­
quence of the microinstruction execution. With
pipelined microarchitectures, a time reference
is needed to correlate the microoperations per­
formed by various microinstructions with
respect to each other. The notion of canonical
times is very convenient for this purpose. The
clock ticks of the reference microinstruction
may be labeled with a monotonically increasing
set of T numbers starting at T0 as shown in
Figure 8 . These T numbers are called the canon­
ical times of a particular microinstruction . The
microoperation labeled T0 marks the start of a
microinstruction execution cycle. Figure 8
shows the basic microoperations of a VAX 8800
microinstruction with their canonical times.

We shall use the simple model of a microma­
chine in Figure 1 to describe the VAX 8800 micro-

A B A B A B A

MICROINSTRUCTION 2

24

MICROINSTRUCTION EXECUTION IN
A NONPIPELINED MICROMACHINE

MICROINSTRUCTION 1

MICROINSTRUCTION 3

MICROINSTRUCTION 2

MICROINSTRUCTION EXECUTION IN
A PIPELINED MICROMACHINE

Figure 7

MICROINSTRUCTION 3

MICROINSTRUCTION 4

Microinstruction Execution

Digita l Tecbnical]ournal
No. 4 February 1987

CYCLE - To

CLOCK- A

T, T2

B A

r------
1
I
I DECODER
: OPERATION

I
L--------

T 3 T, T5

B A B

Boa.. 6 T"" a. --' N 0..
0 ::::, a: w =? a:w~ a:w ,

f-- a:"' f-- a:"' f-- a:"' zoo zoo zoo
0f--O 0f--O Of--0 u <n _J u <n _J u <n _J

To T, Te To

A B A B

REGISTER
WRITE

ALU
OPERATION

CACHE
OPERATION

T,o

A

T12

B

CACHE MISS
ACTION

A

T 13

B

Figure 8 Canonical Times of a VAX 8800 Microinstruction

instruction format as a sequence of basic micro­
operations like those in Figure 8. The first stage
in the microinstruction execution cycle is the
microaddress fetch . The microinstruction execu­
tion cycle begins with a decoder operation. The
decoder produces the starting microaddress for
every new microinstruction sequence and pre­
sents it to the microsequencer . The decoder
determines that address on the basis of the con­
tents and current state of the instruction buffer
(18). Each microinstruction specifies to the
microsequencer whether or not to accept the
decoder's microaddress. If not, the microinstruc­
tion must either specify the address of the next
microinstruction directly , as a part of the
microword, or indicate an alternate source for
the address within the microsequencer. Since the
decoder's operation is concurrent with the
microsequencer's, the decoder always has a start­
ing microaddress for the microsequencer. It is
convenient to think of this 18-decoder concur­
rency as a "hidden decoder cycle ."

CLOCK - A B A B A B

I I I I I I
CYCLE - 0 1 2 3 4 5

r
I LUK I xos I MICROINSTRUCTION A: I DECODER RD L--------

A

I
6

The next stage in the microinstruction execu­
tion sequence is the fetch of the microinstruc­
tion , performed by a look-up in the control
store . In the VAX 8800 system, the microaddress
is pipelined, not the microdata. Consequently,
the microdata from a segmented control store
appears at the appropriate time for the three
basic operations to occur in the indicated order.

The microdata looked up causes a sequence
in which the register read occurs between the
times T5 and T6 , the ALU function between T6

and Ts, and the register write between Ts and
T10 . The cache operations also occur between
the times Ts and T 10 • The section beyond T 10

denotes cache activity with respect to the mem­
ory if there is a cache miss. (The cache/memory
interface is controlled by an independent micro­
machine .) During every cycle, a microinstruc­
tion produces the address of the next microin­
struction , which is then executed. Figure 9
depicts the generic microinstruction pipeline of
the VAX 8800 processor.

B A B A B A B A B

I I I I I I I I I
7 8 9 10 11 12 13 14 15

ALU WR.GACH

8 : c~=~-='DER I LUK I xos I RD I ALU WR,CACH

C: f DECODER _I LUK I XOS I RD ~-~-~-~---~---~ ALU WR .GACH

ALU WR,

E: [_~_;-_c""a_D_E_R _ _.!_L_u_K __ !._x_o_s_._l _R_D_._! _A_L_u
DECODER - DECODER OPERATION
LUK - CONTROL STORE LOOK-UP (CONTROL STORE O SEGMENT)
XOS - BOARD CROSSING SEGMENT (OVERLAPS CONTROL STORE 1 LOOK-UP)
RD - REGISTER READ (OVERLAPS CONTROL STORE 2 SEGMENT LOOK-UP)
ALU - ALU FUNCTION
WR - REGISTER WRITE
GACH - CACHE OPERATION

Figure 9 Microinstruction Pipeline of the VAX 8800 CPU

Digital Technical Journal 2 5
No. 4 February I 987

New Products

The VAX 8800 Microarchitecture

Microbranch Latency
One consequence of pipelining is that any inter­
vening microinstructions must be spaced
between the instruction that produces a branch
condition and the instruction that can branch on
it due to latency in the development of the
branch condition. Obviously, the execution of
the intervening microinstructions must be inde­
pendent of the branch. Usually, microcoders are
able to code some useful operations during the
inevitable wait. Otherwise, the intervening
instructions must be NOPs (no operation).
Figure 10 shows the microbranch latency in the
VAX 8800 CPU.

Microtrap Latency
A hardware exception causes a microtrap. How­
ever, the trap conditions, like the branch condi­
tions, may develop after some execution cycles
have been completed. Once again there must be
some intervening microinstructions between the
trap-causing microinstruction and the trap-han­
dling routine. Moreover, the state of the micro­
machine must be saved so that the current exe­
cution can be resumed in such a way that the
intervening execution of the trap routine
appears to be transparent. This state consists pri­
marily of microbranch conditions that result
from the execution of microinstructions in the
pipeline since those could influence subse­
quent microaddresses and hence the execution
sequence. Therefore, on interruption of the cur­
rent sequence by the trap routine, the branch

CLOCK - A B A B A B

I I I I I I
CYCLE - 0 1 2 3 4 5

MICROINSTRUCTION C: l_ DECODER _I LUK I xos I RD

A

I
6

conditions from the earlier execution are essen­
tial to reproduce the same sequence.

To simplify the hardware design, all early
traps are delayed to a fixed canonical time
(T10). Some trap conditions, however, develop
later than the canonical time with the conse­
quence that those traps cannot be returned
from. In such cases the microcode must roll
back the state to the beginning, which causes a
reexecution of the entire macroinstruction.

Figure 11 shows a sequence in which a
microinstruction at address T provokes a micro­
tra p. At the earliest, the trap-handling routine
can begin at microinstruction X. Meanwhile,
microinstructions U, V, and W follow T, quite
unaware of the impending trap. In fact, they are
in partial execution when the trap condition is
detected. These microinstructions are said to be
in the trap shadow, and they must be blocked
from writing any registers, thus making it appear
as if they had never executed. When control is
returned from the trap-handling routine, these
trap shadow microinstructions are reexecuted,
continuing the sequence that would have arisen
had the trap not occurred.

Instruction Buffer and Decoder
The IB buffers the prefetched VAX i-stream
delivered by the cache and in turn delivers the
opcode and specifier to the decoder. The IB also
delivers the i-stream data to the execution unit,
the E Box. The decoder expects to receive the
current opcode and the current specifier byte.

B A B A B A B A B

I I I I I I I I I
7 B 9 10 11 12 13 14 15

ALU WR,CACH I-GENERATES
BRANCH CONDITION

D: LDECODER _I LUK I xos I RD I ALU WR,CACH I - POTENTIAL NOP

26

~g;ENTIAL ---... E: r DECODER _._I _Lu_K--1l_x_o_s-1.I _R_D_L..-_A_L_u _ __a_w_R_.c_A_c_H__J

~~i:il~STRUCTION ----- F: r DECODER _1 LUK I xos
I

RD I ALU WR,

TARGET OF r
CONDITIONAL ------------ G: ,I DECODER_ I LUK I xos I RD ALU
MICROBRANCH · - -

Figure 10 Microbranch Latency

Dig ital Technical J ournal
No. 4 February 1987

CLOCK - A B A B A B A B A B A B A B A B

I I I I I I I I I I I I I I I I
CYCLE - 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MICROINSTRUCTION T: l_ DECODER _ I LUK I xos I RD ALU WR,CACH I-CAUSES A MICROTRAP

U: lDECODER _I LUK I xos I RD ALU WR .GACH

TRAP
SHADOW

V: r DECODER _I LUK I xos I RD ALU WR,CACH

W: [DECODER _I LUK I xos I RD I ALU WR,

TRAP HANDLER , r I I I
(OVERLAYS X) ------ X: I DECODER_ LUK XOS RD ALU

Figure 11 Microtrap Latency

Hence the IB saves the opcode for the duration
of the instruction execution and shifts the
buffered i-stream along to send each specifier in
turn to the decoder. The goal of the VAX 8800
decoder is to produce a starting microaddress
corresponding to the opcode and the specifiers.
The sequence of microcode execution caused
by the decoder is first to process all the specifi­
ers, making all the operands available, and then
to execute the operation specified by the
opcode. If an instruction has no specifiers, the
execution microcode is initiated directly. In any
case the decoder always has a microaddress
ahead of time for the microsequencer. This
microaddress is the starting address of either a
specifier routine or the execution routine ,
based on the contents and the state of the IB.

If at any time the IB does not contain enough
i-stream data for a successful decode , the
decoder will produce a special microaddress.
The microinstruction at that address is simply a
NOP that again requests the selection of the
decoder's address. The micromachine thus waits
in a loop for sufficient i-stream data to arrive in
the IB so that the decoder can again dispatch a
useful microaddress. This wait-loop state of the
micromachine is commonly referred to as the IB
stall, which is different from the stall described
earlier. Note that clocks to stalled A-latches are
not blocked for an IB stall. On the contrary, the
micromachine runs normally as does the rest of
the processor hardware. IB stalls may occur
when the instruction prefetch pipeline is bro-

Digital Technical Journal
No. 4 February 1987

ken due to macroinstruction branches. This con­
dition requires the current contents of the IB to
be discarded and new i-stream data to be
prefetched into the IB.

The VAX 8800 IB is a four-longword circular
queue, which is usually long enough to hold an
entire instruction. The data is consumed out of
the lB from the position pointed to by the read
pointer. However, new data could be written
concurrently by the cache at the position
pointed to by the write pointer. Whenever it has
room, the IB is loaded by the cache if the cache
has no other higher priority job to do. Occasion­
ally, the IB becomes full (the write pointer
catches up with the read pointer) , and then it
does not accept the datum from the cache. If a
datum is not accepted by the IB, the cache
keeps repeating the transfer until the datum is
accepted. Occasionally, the IB becomes empty
if the cache is busy doing other things and the
decoder has consumed all the data from the IB
(the read pointer and the write pointer point to
the same location) .

The IB in the VAX 8800 family is implemented
with four identical gate arrays with 8-bit slices
designed to use a rather clever bit-scattering/
gathering scheme. The IB also contains logic to
extract and format i-stream data, making it avail­
able to the E Box. A common silo holds the
opcode history for the duration of a macro­
instruction's execution, as well as for recov­
ery from microtraps. The VAX 8800 decoder is
a RAM -based look-up table for generating

27

New Products

The VAX 8800 Microarcbitecture

4
SPECIAL

THINGS THAT MAKE SPECIAL MICROADDRESS
SPECIAL ADDRESSES ADDRESS

ENCODER

MICROADDRESS 14
ENABLE MICROADDRESS

A
OPCODE

L
A
T

SPECIFIER BITS c
AND STATE H

DECODER
RAM

OPCODE
ADDRESS

10

10

SPECIFIER USE
ADDRESS OPCODE

ADDRESS

IB STATE
t-------------CONTROL

B

L
A
T
c
H

SPECIFIER RELATED
t----------- - ASSISTS

SPECIFIER
STATE FLAGS

Figure 12

IB DATA
'--- ----------• FORMAT

CONTROL

VAX 8800 Decoder

Microsequencer microaddresses . In the case of special events,
however, hardware logic is provided for gener­
ating special microaddresses, as shown in Fig­
ure 12 , thus bypassing the RAM look-up . The
decoder also provides controls for the IB state­
machine as well as some other hardware assists.

The state-machine responsible for generating the
next microaddress for a microinstruction se­
quence is commonly called the microsequencer.
As shown in Figure 13, this state-machine is
realized collectively by the control store, the next

NEXT MICROADDRESS GENERATION LOGIC r------------------------------------
EXTERNAL ----.
CONTROLS

TRAP

MICROTRAP MICROTRAP TRAP
CONDITIONS--~-~ LOGIC ADDRESS

EXTERNAL MICRO·
ADDRESSES ---+--i BRANCHING

AND
MICROBRANCH----+--<~ ADDRESS
CONDITIONS SELECTION

LOGIC

L-----------------------~----------1

MICRO­
ADDRESS
LATCH
OR
REGISTER

CONTROL
STORE

NEXT ADDRESS, ADDRESS SELECTION CONTROLS

Figure 13 An Abstract Microsequencer

MICRO­
DATA
LATCH
OR
REGISTER

28 Digital Tecb,iical]ournal
No. 4 February 1987

microaddress generation logic, and the microad­
dress and microdata latches (or registers) .

The goal of the VAX 8800 microsequencer is
to produce the address of the next microinstruc­
tion during every cycle. Figure 14 depicts how
the microsequencer achieves this goal.

Each microinstruction may modify its next­
microaddress field through a microbranch com­
mand to produce the address of the target
microinstruction. Microbranch conditions are
delivered by other sections of the machine, such
as the ALU . These conditions are grouped
together in ways convenient for microprogram­
ming so that multiway branches can be taken .
Microsubroutines can be called and returned
from by means of a hardware microPC stack.

Stalls cause the microsequencer state to be
frozen on a cycle boundary (i.e., the clocks on
microaddress and microdata latches are effec­
tively blocked). Microtraps allow the microcode
to deal with unusual events that would be too
slow or inconvenient to check normally with
microbranches, such as TB misses and address
misalignments. The VAX 8800 processor does
not permit traps to be nested. Instead, traps are
"chained," meaning that trap routines and hard­
ware trap priorities are carefully arranged so
that a second trap is taken only when the first
trap routine finishes. (Machine check traps can­
not be controlled in this way.)

Sources of Microaddresses
There are five sources for microaddresses:

• The decoder

• The next-address field in the microword

• The microstack upon returning from a sub­
routine

• The microPC silo for a saved microtrap

• The micromatch register for an address from
the console

An address from the console is selected in
response to an explicit console request and
takes precedence over everything else .
Addresses from the silo are requeued in
response to a trap-return command. Addresses
from the microstack are selected in response to
a subroutine-return command. A decode r-gener­
ated address is selected whenever the current
sequence ends and a new specifier or execution

Digital TecbnicalJournal
No. 4 February 1987

routine should begin. Normally, this selection is
caused by the assertion of a microword bit in
the very last microinstruction of the current
sequence. The next-address field is selected as
the default for normal sequencing. This field is
also used to provide an offset in case of subrou­
tine returns.

Micro branching
In normal cases, part of the selected microad­
dress can be modified according to the branch
conditions, that is, whenever the next-address
field is selected . A combination of two
microword fields, branch type and branch mask,
selects the branch conditions, which are then
ORed into part of the target microaddress. In
the VAX 8800 system, the microbranch logic is
implemented with five identical gate arrays ,
each of which generates a 3-bit slice of the
microaddress. One microaddress bit is branch
sensitive in each slice. This organization permits
up to 32-way branching. Branchings of 2, 4 , 8,
and 16 ways are also made possible by a sepa­
rate mask bit, called the branch mask, to every
slice. This bit is used to turn off the sensitivity
to branch conditions in a particular slice.

There are 16 basic recipes for conditional
branching in each slice . This arrangement of
slicing, masking, and branch-condition selection
in every slice requires that all the microbranch
conditions be organized into 5 groups of
16 conditions each. The branch conditions are
classified as either static or dynamic. Static con­
ditions, once captured, are available for branch­
ing in any later cycle as long as those conditions
remain unchanged . Dynamic conditions are
asserted for just one cycle and must be branched
on in that cycle.

Some special trap-related branch conditions
are saved at the time of the trap so that the trap
routine may use them. For speed reasons, the
basic hardware mechanism for multiway branch­
ing is that the selected condition is ORed rather
than added to the branch-sensitive microaddress
bit. The OR implies that the branch-sensitive
bits of a microaddress must be " zeros" by con­
vention . If branching is masked in any slice ,
however, only unmasked branch-sensitive bits
need to be zeros . Thus the branch-masking
scheme leads to a substantial increase in the
number of conditional branch-target addresses,
constrained by the requirement for zeros .

29

New Products

The VAX 8800 Microarchitecture

MICROBRANCH
CONDITIONS

!··· ! u
I A I

BRANCH
CONDITION
LOGIC

/
v5

0

DECODER'S
MICROADDRESS

/5
I

;5
I

.,,

DECODER-\
SELECT

I

I

30

MICROWORD NEXT ADDRESS

/_

15

TOP-OF-MICROSTACK

SILO ADDRESSES

CONSOLE ADDRESS

I
MICRO­
ADDRESS
SOURCE
SELECTION
LOGIC

t t t

TRAP VECTOR
I

+ I ,...... __,
\/TRAP

.,, 1..)5

,,-14 1/14
/

I
B I

;14

I

A

/14

I

B

/14 _

I

MICROSTACK
POINTER
AND
MICROTRAP
LOGIC

t t ... t
MICROTRAP
CONDITION

B A B

CONTROL
STORE O

CONTROL
STORE 1

CONTROL
STORE 2

I
A

MICRO­
MATCH
REGISTER PUSH ~ ~

~-------.-1

M ~
I B
c "T
R p B
OC-

A
S-
I~
L A
OE!

MICROSTACK POINTER

/ 15

I

-

MICROSTACK

A - CONTROL STORE O
MICRODATA

.....
-
B ~ CONTROL STORE 1

MICRODATA

.....
-
A ...__ CONTROL STORE 2

MICRODATA

.....

Figure 14 VAX 8800 M icrosequencer

Digital Tecbnlcaljournal
No. 4 February 1987

Table 1 Microbranch Conditions

Slice
Number Microbranch Conditions

1 State flags
2 WBUS low-order bits

3 WBUS high-order bits

4 SALU condition codes

5 PSL condition codes

6 XALU condition codes

7 Priority encoder condition codes

8 ALU condition codes

9 TB-status

10 Cache command

11 MD number

12 AC low

13 Digit valid

14 NMI ID

15 Interrupt pending

16 Interval timer carry

17 Halt pending

18 Console mode

19 Interrupt ID
20 Non_Retry flag

Table 1 shows an example of several micro­
branch conditions.

Microsubroutine Call and Return
As in the normal case just discussed, the default
microaddress, the next-address field, is selected
as the starting address of a microsubroutine.
However, a subroutine-calling microinstruction
pushes its own address onto the microstack.
During the subroutine return, the microstack is
selected as the source and then popped. Thus
the address of the calling instruction is used as a
base for the return. The returning instruction
may OR an offset from the next-address field to
that base , thus yielding the target return
address. The fact that bits are ORed rather than
added constrains the calling addresses to have
zeros in the low-order bit positions.

The write path to the microstack (PUSH) is
pipelined by a cycle for timing reasons. How­
ever, a bypass path saves what would be the top
entry of the microstack in the read latch (POP)
so that PUSHs and POPs occur in a fairly unre­
stricted manner. There are, however, some
minor coding restrictions with respect to traps
and decoder-made addresses.

D igital Technical Journal
No. 4 February 1987

Subroutine calls and returns are unaffected by
stalls. In the VAX 8800 CPU, the microstack is
16 entries deep and is used exclusively for sub­
routine calls and returns (i.e., microtraps do not
use the stack). Subroutine calls maybe nested up
to 1 5 entries deep, beyond which the microstack
wraps around and overwrites previous call
addresses. Since the next-address field is condi­
tionally ORed into the calling address to make
the return _address, a conditional multiway return
becomes feasible.

Microtrap and Return
A microtrap is caused when the hardware
detects a condition that would not allow the
current microinstruction to complete its execu­
tion successfully. The hardware forces the next
microaddress to a fixed location that depends
on th~ particular condition, thus overriding the
address that would otherwise be selected. This
special location is the starting address of the
trap-handling microcode routine specific to that
trap condition. Microtraps are used extensively
by the memory management system to imple­
ment the virtual memory architecture. Micro­
traps are also caused by serious system faults
(i.e ., machine checks), such as control-store or
bus parity errors. Table 2 lists the microtrap
conditions and their priorities. The priorities are
arranged so that if more than one microtrap
occurs during a cycle, the one with the highest
priority will be serviced and the others ignored.

Table 2 Microtrap Conditions and Priorities

Microtrap Condition

Microbreak
Machine check
VA parity error
TB tag parity error
Reserved for ECO
Reserved float operand
Add rounding
Multiply rounding
Integer overflow
TB miss
Access violation
Modify bit
Page cross
Unaligned page cross
Unaligned trap
Conditional VAX branch

Priority

Highest

Lowest

31

New Products

The VAX 8800 Microarchitecture

Figure 11 shows the microtrap latency and its
consequences on pipelining. As described ear­
lier, a trap-causing microinstruction, even if it
writes the wrong results, is allowed to complete
because it is too late to block it anyway. (The
canonical time of register write is T9 , whereas
the microtrap signal occurs at canonical time
T1 0). The only recourse is to let the trap-han­
dling microcode correct any problems caused
by the trapping microinstruction. The microtrap
signal occurs in time to block all three microin­
structions in the trap shadow. Therefore, the
microtrap logic generates two global signals, the
global microtrap (one-cycle long) and the block
writes (three-cycles long), at time T10 . The pur­
pose of the global-microtrap signal is to trigger
any necessary trap-contingent actions in various
parts of the processor. The purpose of the
block-writes signal is to block register writes at
canonical times T11 , T13, and T15 , thus rendering
ineffectual microinstructions U, V, and Win Fig­
ure 11. In other words the blocking of writes by
hardware is in effect until the trap-handling
microcode takes control of the micromachine.

A silo is generally used to save the state of the
machine across a microtrap. In most cases the
length of the silo is equal to the depth of
pipelining. Since there are many more branch­
condition bits than microaddress bits, it is more
economical to save microaddresses in the trap
silo than to save the conditions causing those
addresses. Microaddresses U, V, and W must be
saved in the silo since they may be branch
targets of some previous microinstructions. For
the same reason, however, the address X (over­
ridden by X', the starting address of the trap rou­
tine) must be saved as well. During the execu­
tion of the trap routine, the trap silos are
"frozen" (blocked from loading), thus saving
the state of the micromachine at the time of
trap.

After the trap routine has completed, two con­
ditions are possible:

32

1. The recovery from the trap is impossible,
and hence the microinstruction sequence
cannot be continued. Then the only
recourse is to roll back and reexecute the
macroinstruction. That is, the macroPC is
backed up from its silo, the IB is flushed,
and if necessary, any register changes are
undone. In this case the last micro-

instruction of the trap routine performs a
trap release, which unblocks the silos so
they can resume loading the new states.

2. Microcode can remedy the cause of the
trap so that the microinstruction
sequence can be continued. In this case
the last microinstruction of the trap rou­
tine performs a trap return, causing the
hardware to recycle microaddresses U, V,
W, and X through the microaddress pipe.
This action results in the reexecution of
aborted microinstructions from the trap
shadow.

In the case of a trap return, the hardware
selects the microPC silo as the microaddress for
the next four cycles. As shown in Figure 14,
however, the microPC silo does not contain the
microaddresses made by the decoder. Therefore,
it is necessary to resynchronize the microin­
struction execution sequence with the decoder,
while requeuing the trapped microaddresses
from the silo. This is made possible by keeping
a tag bit in the silo to identify the positions of
the microaddresses made by the decoder in the
sequence. If a microaddress from the silo is
found to be tagged, the requeuing is terminated
immediately and the microaddress generated by
the decoder is selected. A complete recovery
thus occurs since the state of the IB has by this
time been backed up, and therefore the
decoder-generated microaddress can be used for
the continuation.

Chaining of Microtraps
By convention, microtraps are not allowed to
nest; instead, they are chained. In other words
the trap-handling microcode must ensure that it
will not cause any microtraps itself. The sole
exception is its last microinstruction, which
may cause a second microtrap to follow imme­
diately, even as the saved microaddresses from
the silo are being requeued to resume the origi­
nal flow. Note that this second microtrap does
not take effect until four cycles later, whereas
intervening microinstructions are blocked by
the hardware as a result of this second micro­
trap. Consequently, the same microaddresses
end up in the microPC silo once again during
the execution of the second trap routine. The
original sequence may finally resume after the
last of such chained traps has been serviced.

Digital Technical Journal
No. 4 February 1987

Acknowledgments
The specification and design of the VAX 8800
I Box was a team effort. Dave Laurella con­
tributed to the IB design, the i-stream data for­
matter, and the interrupt logic . Bei Pong Wang
was responsible for the decoder, the PC incre­
ment logic, and the IB-state manager. Jack Ward
looked after the physical construction of the
sequencer and the control store . The entire
development was carried out under the excel­
lent leadership of Doug Clark. Many thanks also
go to both Doug Clark and Bob Stewart for their
suggestions and guidance during the course of
this development.

Digital Technical Journal
No. 4 February 1987

New Products

33

William A. Samaras I

The CPU Clock System in the
VAX 8800 Family

The clock system in the VAX 8800 CPU sends timing signals to every state
device every 45 nanoseconds. The lack of accuracy of these timing signals
is called skew, which must be minimized. Two skews exist: global, between
modules; and local, within a module (the lower of the two). The design
complexity of the overall system dictated the use of an automated timing
verifier. Although advantages accrue from designingfor local skew, the
verifier could not segregate between skew types. To gain the benefit of the
verifier, a unique hardware trade-off was made to minimize total skew:
local was made equal to global. The result was that 83 percent of the cycle
time is used productively.

All synchronous computers must provide some
means of generating and distributing accurate
timing signals. The goal of the timing system in
the VAX 8800 family is to provide low-skew
(therefore, accurate) timing signals to all parts
of the processor without any manufacturing
adjustments . Furthermore , the design team
wanted to automate the verification of the tim­
ing during the design phase . Therefore , design
trade-offs in the clocking system were necessary
to accomplish that automation. This paper dis­
cusses how the hardware designs of the clocking
system were influenced to provide a good envi­
ronment for the automatic timing verification.

Clocking System Requirements
The design of the clocking system required us to
address many interrelated problems that had to
culminate in a common solution. This design
depended on certain fundamental specifications
that were established for the VAX 8800 CPU by
the system architects. The two primary require­
ments are described below.

Cycle Time
The cycle time of the VAX 8800 family of pro­
cessors is 45 nanoseconds (ns), which means
that a CPU can accomplish some amount of
work during that period. Looking at it another
way , these processors can do 22.5 million
actions every second. Usu.ally, a number of these
45-ns cycles are required by a processor to pro-

34

duce just one VAX instruction. The clocking sys­
tem must keep the thousands of circuits in the
processor "ticking" in perfect step together
every 45 ns.

The 8800 was designed to contain two com­
plete CPUs in the same cabinet. Since both
CPUs share a common memory, it is beneficial
to make the memory system and both CPUs syn­
chronous with each other. The clock system
must keep all three items running together, pre­
cisely locked in time.

Modules
All the circuitry for both processors and the
memory controller is contained on 20 16-inch
by 12-inch modules, or printed circuit boards.
These modules occupy slots in a 21-inch-wide
backplane. Each module contains up to 20 ECL
gate arrays and miscellaneous ECL logic . The
state devices, called latches, reside both in the
gate arrays and the miscellaneous logic of each
module.

The Clocking Problem
The basic difficulty for this (and any) clocking
system is to get the timing signals to every state
device in the machine at precisely the same
time . Every synchronous machine faces this
problem. However, in faster computers, like the
VAX 8800 system, the tolerances placed on the
timing signals are more severe . In a physical
sense, it is simply not possible to send all the

Digital Tecbntcal]ournal
No. 4 February 1987

timing signals to evety part of each module at the
same instant. There is some precision, however,
that should and can be achieved. We now discuss
how important this tolerance is to the VAX 8800
systems, and what we did to minimize it.

The tolerance , or time difference , that we
encounter in attempting to provide timing signals
to evety state device at the same time is called the
clock skew. Clock skew is the uncertainty in the
time of a particular event. As an analogy, consider
an airline flight that is scheduled to arrive at an
airport at precisely 5:02 P.M. Now, we know this
flight will not arrive at 5:02 P.M. on the dot; it
will probably arrive within a minute or two of
that published arrival time. This uncertainty in
the time of arrival is the skew of that time. If the
uncertainty of arrival is 30 seconds, this skew
would probably be a vety acceptable value and
we would say the flight is right on time : it
arrived with low skew.

On the other hand, if the uncertainty of arrival
is large, say 30 minutes, we would probably tty
another airline. Why? Not simply because we are
impatient but for a more fundamental reason.
When the uncertainty is large, we have less time
to do other things that are valuable to us. Usually,
we are committed to the entire time of the uncer­
tainty. Put another way, this uncertainty, or skew,
is wasted time . Enough of this analogy - how
does this skew affect the operation of a digital
computer?

As mentioned earlier, since the cycle time of
each CPU is 45 ns, all state devices are "sched­
uled" to clock at the start of that period. Any
uncertainty in this time from one latch to

another is called clock skew. As in our airline
example, clock skew is wasted time. There are
many factors that increase the clock skew; let us
consider one of the most important ones.

Since the backplane width is 21 inches, all the
CPU hardware modules are separated by no more
than that distance. Since all the wiring in the sys­
tem is composed of controlled-impedance trans­
mission lines, the logic signals can travel at close
to the speed of light. At that speed a logic signal
could circle the earth about 4. 5 times in 1 sec­
ond, or it takes about 4 nanoseconds to travel the
21 inches across the processor backplane . Now
we can begin to understand the skew problem.
The minimum uncertainty of any signal traveling
through the entire processor would be at least
4 ns, which is almost 10 percent of the 4 5-ns
cycle. And that is only one source of skew.

Digital Technical Journal
No. 4 February 1987

Since skew can be wasted time, our goal was to
make it as small as possible. In the 8800 system,
there are three major contributors to clock skew:
variations in the semiconductor components,
variations in the wiring lengths (described above) ,
and different manufacturing tolerances of the
modules. One common way to remove skew from
a system is to make some type of adjustment dur­
ing the assembly of the hardware. Theoretically,
at least, all the skew could be removed through
this method of adjustment. To keep the cost of
manufacturing low, however, another of our goals
was to require no adjustments of any kind. That
goal placed an extra burden on the clock system
to deliver accurate signals without excessive
skew. By carefully designing the circuits of the
clocking system and controlling the skew sources
mentioned above, we held the overall clock skew
in the VAX 8800 family to 7 .5 ns . Thus, on aver­
age, 83 percent of our 45-ns cycle is utilized. The
remainder of the paper explains some of the trade­
offs we made to achieve this figure.

Clock Hardware Overview
Figure 1 depicts the hardware in the clock sys­
tem of the VAX 8800 family.

The oscillator section is the time base of the
whole machine. The implementation is a custom
phase-locked-loop design that allows the clock
period to be varied for test purposes during the
manufacturing process. Using a phase-locked
loop makes it possible to have a vety accurate
timing source at many specific clock periods.

The output of the oscillator section connects
to a phase generator that provides two clock
phases with the proper timing relationship
between them. The outputs (called the A-Clock
and the B-Clock) of the phase generator are the
actual clock signals distributed to all state
devices in the machine. The phase generator is
implemented digitally by high-speed, 1 OOK ECL
shift registers. This technology creates vety accu­
rate timing without requiring any manufacturing
adjustments.

Since there is only one phase generator and
thousands of state devices requiring the clocks,
or timing signals, a method is needed to get the
output of the phase generator to every state
device without adding vety much skew. That is
the purpose of the distribution stage of the clock
system. The actual circuitty used for the distribu­
tion consists of 1 OOK ECL differential devices
and 1 OKH ECL devices. The distribution was

35

New Products

The CPU Clock System in the VAX 8800 Family

CLOCK MODULE

CPU
BACKPLANE
INTERCONNECT

A CLOCK
DISTRIBUTION .A . -

l:ROGRAMMABLE
A • B

~ CONTROL
.

CLOCK
A, , ,

LOGIC A
OSCILLATOR - A' ', B

;

'

A .
PHASE

A ,
DIGITAL A'

~ r CLOCK
PHASE -----
GENERATOR

.
- B '

133.5 MHz ~
B '.

22.25 MHz

20 A,B CLOCK
PAIRS, ONE TO
EACH CPU
MODULE, ONE
TO THE MEMORY
CONTROLLER,
AND ONE
TO EACH
1/0 CONTROLLER

NOMINAL B
, A ;

B . ; B B. ,A
PHASE B, ·,a . ,

'-----
B CLOCK
DISTRIBUTION

Figure 1 Clock System in VAX 8800 Family

36

A

B

A

CPU 1 (8 MODULES)

TYPICAL MODULE

GATE
ARRAYS

B
A B

A

B

CPU 2 (8 MODULES)

TYPICAL MODULE
A

B GATE
A ARRAYS

B
A B

A

B

MEMORY

MEMORY CONTROLLER
MODULE

A

B

A

B

GATE
ARRAYS

1/0 CONTROLLER (UP TO 2)

GATE
ARRAYS

A B

Digital Tecbnica/Journal
No. 4 February 1987

heavily influenced by our desire to use an auto­
matic timing verifier. The following discussion
of the timing verification environment gives a
clearer view of the reasoning behind the clock
distribution scheme.

Clock System and the Timing
Verification Environment
Traditionally, timing verification was accom­
plished by hand calculations using component
specifications. A designer would simply add all
the component propagation delays in a particu­
lar path and determine if all timing criteria were
met. In the past, this method worked fairly well
for several reasons. First, the designer usually
knew which paths in a circuit were critical and
could give special attention to them. Second,
components generally behaved better than their
worst-case vendor specifications.

Marginal timing problems, or ones that were
simply overlooked, would often be less serious
than the difference between the worst-case
specifications and how the components actually
worked. Finally, timing errors were expected to
appear during the hardware debug phase of a
project. Therefore, timing errors that were bla­
tantly missed during the design could be cor­
rected (with a lot of hard work) during that
phase . That was possible because the overall
complexity of the design could be compre­
hended by the designers.

From the beginning of the VAX 8800 design
effort, we knew that the timing of the design
would be difficult to analyze manually. First ,
the sheer complexity of the machine created
over four million different timing paths. It was
impossible to analyze every path manually or to
discover every "critical" one with either man­
ual or intuitive analysis methods.

Second, hardware circuit loops are widely
used in the design; these are circuits that feed
signals back to themselves during a later
machine cycle. These circuits are very difficult
to analyze, especially when loops cross physical
boundaries or are nested within other loops. Just
thinking about the timing ramifications of
nested loops taxes the mind. Manually analyzing
thousands of these cases would be impossible.

Finally, the hardware design made heavy use
of gate arrays, which contain most of the logic.
Our ambitious development schedule and the
large number of gate array designs simply could

Digital TecbnicalJournal
No. 4 February 1987

not tolerate unanticipated timing errors. A tim­
ing error in a gate array meant that a new gate
array must be produced to fix the problem. The
fabrication overhead for another semiconductor
device, usually taking months, was not consis­
tent with our development schedule. Moreover,
while that new gate array was being fabricated,
the debugging of the entire system could be
jeopardized since it was just not possible to
"fix" an LSI chip.

Therefore, the hardware design group wanted
to design the processor with the aid of an auto­
matic CAD tool for timing verification. Such an
automatic method for verifying the timing was
essential to the success of the project. Since the
entire design was to be " soft" (the schematics
were contained in computer databases) , it
seemed logical that some type of software tool
for automatic timing verification could be
applied.

We decided that the most appropriate timing
verifier for this project was produced by Valid
Logic, Inc. Although this automatic tool solved
the problems caused by manual timing verifica­
tion , it also created some very special new
restrictions.

It was apparent from the beginning of the
design effort that some restrictions had to be
placed on the design styles of individual engi­
neers to reduce the timing-analysis problem to a
manageable level. CPU hardware designers, like
any other creative persons, often assume large
degrees of freedom in their work. Usually, no
two designers will arrive at the same solution to
a problem , although all solutions may be
acceptable. When ten or more designers work
independently, as happened on this project, it is
likely that ten unique design styles will emerge.

Therefore, we placed restrictions on the tim­
ing environment for the following two reasons:

• Some standardization of timing had to take
place for electrical signals to communicate
properly between designs generated by dif­
ferent people.

• Since the automatic timing verification soft­
ware was new, several important features
were lacking.

The usefulness of an automatic timing verifier
depends largely on how well timing-rule viola­
tions are reported. Knowing that a design con­
tains timing errors is useful only if it is easy to

37

New Products

The CPU Clock System in the VAX 8800 Family

find them. One way to aid the reporting of timing
errors is to create an environment that clocks all
state devices in the processor the same way. This
means that all logic designs in the processor must
follow consistent and strict rules for the clocking
of state devices. That was the method we decided
to pursue in this design project.

The Timing Environment
The clock system needed strict constraints on its
circuit design and physical layout to guarantee

CLOCK
SOURCE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
j
I
I
I
I
I
I
I ____ J

LEVEL 1

I
I
I
I
I
I
I
I
I
I
I
I

I I
I I
L----'
LEVEL 2 LEVEL 3

accuracy. Therefore, the generation and use of
clocking signals were tightly controlled to mini­
mize the different ways in which the circuits
could communicate. The timing control of state
devices had to be consistent throughout the
design. Moreover, any arbitrary timing control
of the state devices would have been an impossi­
ble task for the timing verification software.

The timing signals in the VAX 8800 processor
were carefully distributed to every state device.
This distribution was accomplished by carefully

.

LEVEL 4

L ___ _J

LEVEL 5

LATCHES

LATCHES

Figure 2 Clock Expansion Groups

38 Digital Tecbnical]ounral
No. 4 February 1987

CLOCK MODULE BACKPLANE r-----------------~ r------,
I I I I
I A I
I A I

~------1 A -.-e-----1 I l A I

TYPICAL CPU MODULE
f -----------------------------~

I
I
I
I
I
I

TO GATE
ARRAYS

I Al
I .,........,..._ _ ____,,.,__..., A
I PHASE A l GENERATOR
I A ,-..,......,__.,._A_,
I A A
I
I
I B B
I B I B ,___,_.,..__.,.._--,-
I B
I
I
I

I
I
I
I
I
I
I
I
I
I
I

91

I
I B I

l B --~-=8
-, I I B i

I I I I
l------------------J L ______ J

FANOUT
LEVEL 1

FANOUT
LEVEL 2

I B
I
I
I
I
L---------

TO GATE
ARRAYS

L------------------------------- -
FANOUT
LEVEL 3

FANOUT
LEVEL 4

FANOUT
LEVEL 5

Figure 3 Minimized Global Skew Distribution

expanding the clock signals at strategic physical
positions in the processor. A simple example of
this expansion , or fan -out, is shown in Figure 2.

Each time the clock signals are expanded,
more timing uncertainty is introduced into the
resulting signals. The 8800 design required up
to five levels of expansion to produce enough
clock signals for every state device. As shown in
Figure 2, some signals are in common distribu­
tion groups. Signals existing in the same group
will have low timing uncertainty between them,
a characteristic called skew correlation. The
timing uncertainty between signals in different
distribution groups has no correlation; there­
fore, these signals have the highest skew. Signals
from the same group have a skew, called local
skew, lower than the overall group-to-group
skew, called global skew.

It is very tempting for designers to take advan­
tage of the lower local skew, which is often only
half that of the global skew. Each clock distribu­
tion group is usually contained entirely on one
logic module due to the natural physical parti­
tioning of the hardware. Therefore , communica­
tion between circuits on any particular module
can take advantage of the lower local skew. If all
signal communication occurs within the local-

Digital Tecbnica/Journal
No. 4 February 198 7

skew environment, the timing analysis can be
consistent and easily managed. However, com­
plications arise when trying to analyze signals
that cross from the local-skew environment to
the global-skew environment. Signal communi­
cation between logic modules will have to pay
the penalty of using the higher global skew
because the timing signals at each end of the
communication are derived from different dis­
tribution groups. Managing the timing interface
across this partition between local and global
skews was beyond the capabilities of the timing
verification software.

As discussed earlier, a timing analysis of the
entire processor was beyond human capacity;
therefore , it had to be performed with timing
verification software. The timing verification
tool chosen for the 8800 development had no
facility for distinguishing between local and
global skews. Moreover, we wanted to use the
timing verifier to analyze the timing of the entire
CPU as one entity. This decision forced us to dis­
allow the use of any local-skew computations in
our timing analysis. Now, from a design point of
view this decision made the environment very
easy to work with. All timing transactions any­
where in the CPU could be analyzed the same

39

New Products

The CPU Clock System in the VAX 8800 Family

CLOCK MODULE BACKPLANE r----------------, r------1
I I I I
I .-,--------fi~A4 I
I A I

I A I
I Al
I ~----,
I PHASE I GENERATOR

A

A

TYPICAL CPU MODULE r----------------------------------,
I
I
I
I
I
I
I
I

TO GATE
ARRAYS

I A A

I
I
I
I
I
I
I
I
I
I
I

I
I
I

,.....__-~ A

I
I
I B
I
I
I
I
I
I
I

B

B

B

s l

B
I B
I B 1--r-11r-.._-=-,

I
I
I
I
I

I
I
I I L ________________ J

B

I I L ______ J

I
I
I
I
I
I
I
I
I

TO GATE
ARRAYS

I I
L-------------------------------~

Figure 4 Minimized Local Skew Distribution

way with the same set of specifications. Every­
thing comes at a price, however, and the obvious
negative side of this decision was the loss of the
abil ity to apply the lower local skew. At that
point , some performance of the processor
seemed to be compromised just to simplify the
timing analysis. The following discussion
explains how this problem was solved.

The Clock Distribution Solution
Since we wanted to time the CPU as one entity,
we had to make the global skew as small as possi­
ble to maximize CPU performance . In the actual
implementation, the global skew was lowered by
removing one gating level from the clock distri­
bution. The gating level removed was necessary
for producing low local skew. Figure 3 illustrates
the five levels of fan-out that were required to
produce enough signals when the global-skew
distribution was minimized. Figure 4 shows the
same fan-out to produce enough signals in the
case in which the local-skew distribution would
be minimized. Table 1 illustrates the impact of
this optimization for global skew.

Table 1 Distribution Changes

Global Skew Local Skew

Optimized Local Skew
Optimized Global Skew

40

9 ns

7.5 ns

2 ns

7.5 ns

Although using the lower local skew would
have been valuable, it was sacrificed by making it
equal to the global skew.

In short , the hardware of the clock system was
designed to allow the maximum exploitation of
the timing verification software. Of course, hard­
ware and software trade-offs are a common
occurrence in any design project. In this case,
however, the value of the hardware involved
with operating the machine was balanced against
the software analysis needed during the design
phase of the machine.

Summary
Producing the clocking system for a high-speed
computer is best described as an exercise in min­
imizing and managing skew. In the VAX 8800
project, we avoided exotic hardware techniques
so that we could gain the benefit of using an
automatic timing verifier. The resulting skew of
1 7 percent of the cycle time was a figure that
could be tolerated. This balance was a fair trade­
off since the simplicity of the timing environ­
ment allowed us to decrease the time to design
and build the VAX 8800 family of systems.

Digital Tecb,ilca/Jounaal
No. 4 February 1987

John Fu
James B. Keller

Kenneth J. Haduch

Aspects of the VAX 8800
C Box Design

In each processor in the VAX 8800 family, instructions and data are sup­
plied to the execution units by the C Box. Employing a simple structure
with a translation buffer, cache, and address and data buffers, this logic
unit is an integral part of the processor's Jive-stage pipeline. The no­
write allocate cache uses a write-through scheme featuring a unique
delayed-write algorithm. The C Box has control logic to accommodate
pipeline stall conditions caused by memory accesses. The C Box also
maintains data coherency within a processor and between processors. A
dynamic priority-arbitration scheme solves the lock-out problem between
1/0 and processor requests.

The performance of a high-speed computer
depends to a large extent on how fast data can be
passed from its memory to its execution units. If
the computer is pipelined, the unit responsible
for memory accesses may have to handle
pipeline stall conditions. And if the computer is
a multiprocessor, that unit in each processor may
also have to handle data coherency problems. In
processors with the VAX architecture , data
accesses are further complicated by the fact that
virtual addresses are normally specified. These
addresses require translation to physical
addresses before a data access can even be
attempted.

In the VAX 8800 system, which is a multipro­
cessor with pipelined CPUs, the unit that per­
forms address translations and data accesses is
the C Box.

C Box Description
The C Box consists of three subunits: the transla­
tion buffer (TB) , the cache , and the NMI inter­
face. Figure 1 is a schematic diagram of this unit.

The translation of a VAX virtual address to a
physical address is a complicated process . 1

Accesses to system and process page tables are
required, and shifting and adding must be done
to obtain the final physical address. Performing
this address translation process for every data
reference significantly increases the data access
time and reduces the read bandwidth. One way

Digital Technical Journal
No. 4 February 1987

to avoid that is to store the result of this address
calculation in a small , fast memory called a
translation buffer. Since each translation can
access a page of data (512 bytes in the VAX
architecture) , it is likely that the translation will
be used again in the program being executed.
Rather than recalculating the physical address
(PA) on those subsequent accesses, it can be
retrieved from the TB.

The translation buffer in the VAX 8800 pro­
cessor holds 512 system and 512 process
address translations. The following summarizes
the characteristics of the TB.

Characteristics of the Translation Buffer

• Direct Mapped

• 1024 Lines
- 512 System Lines
- 512 Process Lines

• Allocation on Translation Buffer Miss

A common approach to the problem of data
access latency for high-speed processors, and
the one used in the VAX 8800 CPU, is to use a
cache. 2 A cache is a small, fast memory located
between the processor and the main memory
system. If the data requested by the CPU is not
contained in the cache , that data is accessed
from main memory and loaded into the cache.

41

Aspects of the VAX 8800 C Box Design

A ---------~ B 1--~----I DATA

A1--~---1
TB
DATA

TB
TAG

TRANSLATION BUFFER

TB-TRANSLATION BUFFER
VA- VIRTUAL ADDRESS
PA- PHYSICAL ADDRESS
A, B - A AND B PHASES OF TWO PHASE CLOCK

PA

TB
HIT

CACHE
DATA

ADDRESS

CACHE
TAG

---+----< ADDRESS

READ STREAM
ADDRESS
BUFFERING

WRITE STREAM
DATA
BUFFERING

WRITE
BUFFER

NMI INTERFACE

CACHE
HIT

CACHE

NMI

¢::>

Figure 1 Block Diagram of C Box

Thus, in the majority of cases, the cache will
contain recently referenced data items , and
future references to those data items will be
fetched from the cache. The intent is to mini­
mize the number of longer latency accesses to
the main memory subsystem. The success of a
cache memory relies on the locality of refer­
ences in both time and space .

The data cache in each VAX 8800 CPU holds
64 kilobytes (KB) of both data and instructions.
The list on the right summarizes the characteris­
tics of the cache .

The TB and the cache are very similar in con­
cept and structure , except that the TB is used to
accelerate address translations and the cache to
accelerate data accesses. Each consists of a tag
section and a data section. The tag section holds
the unique identifier , or tag, for the data item
held in the corresponding data section. The TB
and the cache are direct mapped, meaning that

42

Characteristics of the Cache

• Direct Mapped with Physical Address

• Read Allocate Only

• Delayed-Write Cache Update

• Write-through Memory Update with Write Buffering

• 1024 Blocks

• 64-byte Block Size

• 4-byte (one longword) Line Size

• 32-byte (one hexword) Cache Refill Size

each address can point to only one location;
however, each location can potentially be allo­
cated to one of many addresses . A tag permits
the identification of a data item in either the TB
or a cache location . The tag in the VAX 8800
processor is an unmodified selection of bits

Digital TecbnlcalJournal
No. 4 February 1987

VA(31-0)

TB TB
VA(31 ,17-9) TAG DATA

VA(30-18)

PA(29-0)

TB HIT

VA - VIRTUAL ADDRESS
PA - PHYSICAL ADDRESS
TB - TRANSLATION BUFFER

PA(29,0)

PA(28-16)

CACHE ._____ _ ___,
PA(15-6) DATA

PA(28-16)

CACHE HIT

Figure 2 Translation Buffer and Cache
Address Mapping

from the address of the data item being
accessed . This concept is depicted in Figure 2.

As mentioned earlier, a memory access is
required if the cache does not contain a
requested data item. In the 8800, both proces­
sors are connected to the memory and the 1/0
subsystems through the NMI bus. All read and
write references that go to these subsystems are
processed by the NMI interface . This interface
maintains a set of buffers for both read and write
reference streams. For the read stream there are
actually two sets of address buffers: one for data
reads, the other for instruction reads.

C Box Operations
A C Box reference consists of a function code,
an address, and in the case of writes, 32 bits of
data. In general, that address is a 32-bit virtual
address (VA). The VA translation process begins
with a check to see if the PA is available in the
TB. If the PA is available, called a TB hit, the
data is read out and concatenated with the lower
nine bits of the VA to form the PA. As part of the
translation process, the TB also performs page
access checking. If the PA that pertains to the VA
is not in the TB , called a TB miss , then
microcode must perform the translation. The
microcode then writes the data into the TB for

Digital Tecbntcal]ournal
No. 4 February 1987

subsequent use . (If the address supplied is
already a PA, then the TB is not used.)

Only physical addresses access the cache. If
the data referenced is contained in the cache ,
called a cache hit, then the data can be accessed
from there . If the cache does not contain the
data, called a cache miss, then the data must be
accessed from memory.

Read Operations
Cache-miss addresses for reads are passed to the
NMI interface, where they are held in the read
address buffers. A hexword read request
(32 bytes) , with the address of the missed loca­
tion, is then made to memory. The memory data
is passed to the requesting unit, and the address
held in the read address buffer is used to update
the missed cache location. A read miss is the
only occasion upon which a cache location is
allocated.

There are two read streams in the C Box for
requests to memory: the data stream, called the
d-stream, and the instruction stream, called the
i-stream. The i-stream requests the memory to

send data destined for the instruction unit
(I Box) , which interprets that data as macroin­
structions . I-stream fetches are initiated by
microcode, which loads a C Box register called
the physical instruction buffer address (PIBA) .
The PIBA holds the address of the next long­
word of the i-stream to be fetched. If the execu­
tion of macroinstructions is sequential (i.e. ,
there are no branches, page crosses, etc.), the
C Box can increment the PIBA contents automat­
ically after each fetch. However, should the pro­
gram branch or a page cross occur, microcode
must be used to reload the PIBA. D-stream
fetches are made only by the microcode, which
must specify one of eight memory data (MD)
registers as its destination . D-stream data is
always returned to the execution unit .

Write Operations
In general, the performance of a cache is mea­
sured by its hit rate when reading data. The
selection of the update mechanisms for both
cache and memory, however, can have a major
influence on the design of the cache . There are
two well known strategies for updating a cache:
write allocate , and no-write allocate . A write­
allocate scheme updates a cache location
whether or not the write is a hit or a miss. This
scheme is generally implemented with a write-

43

New Products

Aspects of the VAX 8800 C Box Design

back memory arrangement (discussed later). In
a no-write allocate scheme, the cache is updated
only if the write was a hit. The VAX 8800 pro­
cessor uses a no-write allocate scheme.

The no-write allocate scheme does, however,
present a problem. Since only writes that hit
will update the cache, cache updates take two
pipeline cycles in the C Box - the first to

check for hit or miss, the second to update the
cache for a hit. The C Box was designed to
enable one read reference to complete in each
cycle. If two consecutive cycles are needed to
update the cache, the second cycle could block
a read reference, thus causing a pipeline stall.

To solve this problem, the C Box implements
a delayed-write algorithm. This mechanism
delays writes that must update the cache from
doing so until the first cycle of the next write
reference. The second cycle of the delayed
write does not need to be the next consecutive
cycle.

The delayed-write algorithm in the C Box
takes advantage of the fact that the first cycle of
a write utilizes only the tag section of the cache
to determine whether a hit or a miss has
occurred. The second cycle uses only the data
section. A write that must update the cache has
its address and data placed into the delayed­
write address and data buffers respectively. On
the next write access, during the cache-tag look­
up cycle, the data section of the cache will be
updated from the address and data contained in
those buffers, but only if the previous write
access was a hit. Since reading a data item after
one has been written is common, this design sig­
nificantly reduces the potential for stalls.

Write Buffer
All write references, whether or not they hit in
the cache, must eventually go to memory. There
are two general strategies in cache design with
respect to memory updating: write-through, and
write-back. In the write-through approach ,
write references are sent to the memory system
immediately. Conversely, in the write-back
approach, writes are held until the cache block
is deallocated (made ready to receive different
data) .

There are several major problems with a
write-back strategy. First, it requires either
microcode or hardware to accomplish all the

44

write-back functions. Adding that code or hard­
ware to the C Box would have considerably
increased its complexity.

Second, if there is a write miss with this
scheme, a cache block that might be full of
valid data could be displaced by a block whose
only valid data was that just written to the
cache. For a cache having a large block size, like
the 8800 has, this action is undesirable. More­
over, in most cases microcode reads data before
it is written; therefore, writes will generally hit
in the cache.

Finally, the write-back strategy requires a
complex algorithm to maintain coherency
between caches within a multiprocessor system.
Therefore, for all those reasons, we chose to use
the write-through approach in the cache.

One disadvantage of write-through is that it
tends to generate a lot of write traffic to the
memory. In a shared-bus system like the 8800,
this traffic can limit performance. To reduce
memory-write traffic, writes in the VAX 8800
processor are buffered in a write buffer con­
tained in the NMI interface. This write buffer is
really a one-line , octaword , write-allocate
cache. A write going out to the NMI bus is held
in the write buffer. Subsequent writes to the
same octaword update only the write buffer so
that no memory requests are sent on the NMI
bus. A write that is outside the octaword cur­
rently in the write buffer deallocates it; that is,
the contents of the write buffer are sent to mem­
ory, and the next write replaces those contents
in the buffer.

Like the cache, the success of the write buffer
in reducing bus traffic relies on the locality of
programs in space and time . For example ,
sequential writes, such as pushes to the stack,
will get collected in the write buffer even if the
writes occurred in different macroinstructions.
This collected "package" of writes can then be
sent to the memory more efficiently than can
individual writes.

Another advantage of the write buffer is that it
decouples the processor from memory activity.
When the memory is busy processing transac­
tions from the other processor or from the 1/ 0
subsystem , a processor will not stall due to
writes. The write buffer is actually implemented
as a two-deep buffer, which further reduces the
potential for stalls.

Digital Technical Jounial
No. 4 February 1987

Pipeline Stalls
In a pipelined implementation, how well the
pipeline performs is determined both by how
often it is flushed clear and how often it is
stalled . Stall conditions are generally related to
the lack of some physical resource or data.

In some implementations , some pipeline
stages can take more cycles to complete than
others for certain functions. If a shorter stage
precedes a longer one, the longer one will be
unable either to accept fresh data or to pass its
result to the next stage until finished with its
cycle . In turn, other portions of the pipeline
cannot proceed with their operations; therefore,
the pipeline will stall. In this stalled condition,
all stages preceding the "bottleneck" maintain
their input and output conditions until the stage
responsible for the stall completes its function.
Some implementations have a combination of
stages that may exhibit these characteristics,
leading to complex pipeline stall conditions.

In the VAX 8800 CPU, the design simplicity
of the pipeline ensures that each pipeline
stage - except the C Box - always completes
its function in one cycle .3 Since the C Box also
controls data accesses, all stalls in the 8800 are
related to the operation of this unit. The
pipeline will experience two types of stalls: the
MD stall, and the VA stall.

MD Stalls
When making a read reference, a microinstruc­
tion must specify one of eight MD registers to be
used as its destination. When data is made avail­
able , either from the cache or from memory, it
is written into the specified MD register. Subse­
quent microinstructions then use the data from
this register . If a microinstruction attempts to
use an MD register that is not "valid" (i.e., the
data has not yet been fetched by the C Box), the
pipeline will experience an MD stall.

The MD stall condition is a data-dependency
type of stall that is generally seen in pipelined
machines. On the VAX 8800 processor, certain
steps are taken to either avoid such stalls or
reduce their effects. For example, consider two
consecutive microinstructions, R and S, as illus­
trated in Figure 3. R is a microinstruction that
performs a read and puts data into an MD regis­
ter. S then accesses and uses the data fetched by
R. If Rand Sare adjacent, the pipeline will stall
in the 8800 . The reason for the stall is that the
pipeline stage accessing the MD data and the
stage fetching that data (the C Box) are sepa­
rated by one other stage , the arithmetic and
logic unit (ALU) . When S tries to use the MD
data, R is just starting to make the read reference
in the C Box. S must therefore stall the pipeline,
waiting for data to be supplied by R.

CYCLES

(MD ACCESS
FOR
DATA

INSTRUCTION R

INSTRUCTION S

MD - MEMORY DATA REGISTER
TB - TRANSLATION BUFFER

ALU

~
MD
ACCESS
FOR
DATA

TB CACHE

' R STARTS READ REFERENCE

ALU TB CACHE

~ S REQUIRES DATA READ BY A.
'----------- MUST STALL AT LEAST ONE

CYCLE FOR THE DATA.

Figure 3 Instructions R and S Are Adjacent

Digital Tecbnlcaljournal 45
No. 4 February 1987

New Products

Aspects of the VAX 8800 C Box Design

INSTRUCTION R

"'
MD
ACCESS
FOR
DATA

INTERVENING
INSTRUCTION

ALU

(MD
ACCESS
FOR
DATA

INSTRUCTION S

TB

(

CYCLES

CACHE

I

ALU

MD
ACCESS
FOR
DATA

TB CACHE

ALU TB

R HAS COMPLETED READ
REFERENCE. DATA JUST
AVAILABLE

CACHE

"" S REQUIRES DATA. ~ DATA SENT DIRECTLY INTO
ALU, BYPASSED MD
UPDATE. NO STALL.

Figure 4 Instructions Rand S Separated by Another Instruction

On the other hand, if Rand Sare separated by
one other instruction, then when S attempts to
use the data read by R, that data is just being
made available by the C Box (assuming, of
course, a read hit in the cache). If S were to wait
for the MD registers to be updated before using
the data, the pipeline would stall. To eliminate
that type of stall, a path has been designed from
the C Box d irectly into the input of the ALU,
bypassing the MD registers. Therefore, the data
coming from the cache is sent both to the MD
registers for updating and directly to the ALU,
where S can use the data. The net effect is that
this bypass path removes the one-cycle latency
that S would have experienced had it waited for
the data to come out of the MD registers . Figure 4
illustrates these concepts.

Had R caused a read miss, S would still cause
an MD stall since the C Box must make a memory
fetch for the data. Notice that an MD stall hap­
pens only when S attempts to use an MD register.
Therefore , a general rule for making microcode
accesses to the C Box is to make read references
early and to use the MD registers late. Should the
read reference miss, some part of the memory­
fetch latency will be hidden by the microinstruc­
tions between the read and the MD register

46

access . When data returns from a read miss and
the pipeline is either undergoing or about to
undergo an MD stall, the bypass path can be used
to reduce the effects of the stall or even prevent it.

VA Stalls
A VA stall condition occurs when the C Box can­
not process a requested reference. This can be
due to either an invalidation cycle in the C Box
(discussed in the final section of this paper) or
the capabilities of the address and data buffers
in the NMI interface being exceeded.

As mentioned earlier, for reads there is a set of
buffers for ct-stream and i-stream references . The
ct-stream buffering is one deep, meaning there
can only be one read miss outstanding in the
C Box. However, the implementation will not
allow the pipeline to stall should subsequent
reads hit in the cache. I-stream reads never stall
the pipeline as do VA and MD stalls, which stop
the clock. The instruction buffer can "stall" if it
does not have enough data for the decoder to
complete the decode of the current VAX instruc­
tion operand. This condition causes the CPU to
perform a no-operation microword. That does
not stop the clock, however, and thus is not a
pipeline stall.

Digital Tecbnica/Jounial
No. 4 February 1987

The C Box can still receive commands even if
it contains one read miss. Of course, there is the
potential that the command being received will
miss in the cache . That will require the NMI
interface to request the data from memory, thus
resulting in a VA stall. That stall lasts from the
time the command is received until the time the
previous read-miss data returns from memory. If
the second command is a read that hits in the
cache, a VA stall will be generated for the one
cycle that it takes to determine whether or not
there is a cache hit. The read data will then be
taken from the cache and returned to the MD,
after which the stall will be released.

Since writes go to memory more than reads,
the buffering for writes is more extensive . The
delay-write buffer and the double buffering in
the write buffer are used to reduce the possibility
of write stalls. These buffers enable the C Box to
hold a maximum of nine longwords of data
before the pipeline will experience a VA stall on
a write.

Stalled and Unstalled Logic in
the C Box
If an instruction is stalled, the C Box has either
not returned the data or cannot take another ref­
erence. Therefore, all stages prior to the C Box
(the I Box and the E Box) must be stalled. The
TB is part of the last stage of the pipeline; there­
fore, it must be capable of being stalled. When
the pipeline stalls, the TB holds the address of
the stalled reference. Only the NMI interface
can resolve a stall, either by supplying the read­
miss data or by freeing up its buffers. Thus this
interface can never be stalled . However, the
cache , being part of the last stage of the
pipeline, is also the path for supplying data to

I BOX E BOX

STALLED

DATA

TRANSLA­
TION
BUFFER

PHYSICAL
ADDRESS

the stalled instruction . This situation leads to an
interesting control characteristic of the C Box.
One of its sections , the TB, can be stalled;
another, the NMI interface, must never stall; and
the third section , the cache , must remain
unstalled but maintain stalled input and output
conditions in its logic . Figure 5 depicts the
logic for stalled and unstalled conditions in the
C Box.

Coherency Problems in the C Box
In general , data coherency means that a read
should always get correctly modified data when
a series of reads and writes is made in any
sequence. One way to maintain coherency is to
perform all reads and writes to completion in a
purely sequential manner, thus strictly main­
taining their sequence of reference . However, in
a pipelined machine, not only can there be sev­
eral sources of read and write references, but
there can also be more than one copy of the data
item. This duplication often leads to very com­
plex solutions to achieve coherency.

This complexity has been simplified some­
what in the VAX 8800 pipeline by having the
C Box both control and sequence all data
accesses . The C Box itself, however, is pipelined,
having ad-stream and an i-stream for reads, and a
stream for writes. This fact also presents some
coherency problems. Coherency for the C Box
means that two conditions must be met.

1. After a sequence of reads and writes has
completed, any valid blocks in the cache
must match the data in the memory.

2. Whenever the processor writes to a loca­
tion in memory and then reads that loca­
tion, the data has to be what was written.

CACHE

STALLED/
UN STALLED

PHYSICAL
ADDRESS

DATA

NMI
INTERFACE

UNSTALLED

Figure 5 Stalled and Unstalled Logic in C Box

Digital Technical Journal 4 7
No. 4 February 1987

New Products

Aspects of the VAX 8800 C Box Design

Two types of coherency problems exist in the
VAX 8800 system: coherency within a proces­
sor, and coherency between processors.

The first type of problem in the C Box arises
from the implementation of the delay-write
algorithm discussed earlier. A problem occurs
when a read is attempted to the cache location
waiting to be updated by the write held in the
delay-write buffers. The read will hit, but the
cache data will be stale. One solution to this
problem is to stall the pipeline while the cache
is updated, performing the read for the correct
data. The trouble here is that the sequence of
writing to and reading from the same location is
a common occurrence. Thus to stall would sig­
nificantly reduce the read bandwidth.

The C Box solves this problem by comparing
selected bits of the read and write addresses in
the delay-write buffer. If the bits match, then
the data content of that buffer is used as the read
data. This solution works because, to the read,
the delay-write buffer appears to be an exten­
sion of the cache. Since the read address
matched the address in this buffer, the data can
be taken directly from it. Coherency is thus
assured, and no stall penalty is incurred.

The second type of coherency problem occurs
when the read is a miss and thus goes to the NMI
interface. To assure high performance, the NMI
interface maintains two streams of data requests,
the read and write streams. The buffering and
the control of these two streams operate inde­
pendently. If made to different data items, read
and write requests can be processed to memory
as quickly as possible, even out of sequence.
The coherency problem is to make sure that
subsequent reads and writes to the same data
item result in its correct state.

If a read request occurs that was a miss, the
cache will send it to the NMI interface upon dis­
covering that fact. Once in the NMI interface ,
the read address is compared to the address of
the octaword in the write buffer. If those
addresses are different, the cache will send the
read directly to memory. Thus the data in the
write buffer will be unaffected. If the addresses
match, however, the write data will be sent to
memory, followed by the read request. Since the
memory subsystem processes references in a
sequential manner, the read will always access
the correct data . (Of course , this case is fairly
simple. A more complicated one is that in which

48

a read is sent to memory, and the processor per­
forms a write while waiting for that read.)

If the addresses of the read and write match,
the cache can give the processor the requested
data but cannot mark the returned data valid in
the cache. This situation occurs because the
read-miss data being fetched from memory has
been made stale for subsequent reads.

The microcode is designed so that it will
never read a data item and then write to it with­
out first accessing the MD registers. However, a
cache block is 64 bytes long. The microcode
could write to any other data item in the block
before coming to the missed data item. There
can be as many as three writes and two reads
(one each for the d- and i-streams) buffered
simultaneously in the C Box, all referencing the
same cache block. Even worse , the C Box can
send an arbitrary number of writes to memory
while waiting for the data returned by the read
to memory. To maintain coherency, the C Box
performs a set of address matches between the
read and write streams. Then it "remembers"
whether or not any write addresses matched the
outstanding reads and marks them invalid as
appropriate.

C Box Design for a
Multiprocessor System
The VAX 8800 system consists of two identical
VAX 8800 processors on· the NMI bus connected
to the memory and 1/0 subsystems. Within a
processor, only the design of the C Box has been
affected by the requirements of a multiproces­
sor arrangement . That is because the C box is
the CPU's interface to the NMI bus and contains
the central arbitration logic for that bus.

There are three key issues in designing a
memory interconnect for a multiprocessor sys­
tem: bus arbitration , bus bandwidth, and data
coherency between processors .

Bus Arbitration on the NM/ Bus
Two major problems were encountered in the
design of an arbitration scheme for the NMI bus.
The first was the fact that between the CPUs and
the 1/0 subsystems, called the NBis, there was a
possibility that a high-priority device could lock
out a low-priority device from the bus. This is
certainly possible with a fixed priority-arbitra­
tion scheme. To address this problem, the C Box
implements a dynamic priority-allocation

Digital Technical Journal
No. 4 February 1987

scheme that causes priority to be assigned
between two groups: the 1/0 devices, and the
CPUs. Within these groups, the priority shifts
between the two CPUs and the two 1/0 devices.
For example, if all four devices wanted to use
the bus all the time, the order in which the bus
would be granted to the devices would be

first CPU, first 1/0, second CPU, second 1/0,

first CPU, first 1/0, second CPU, second 1/0,
etc.

This scheme guarantees that all devices on the
bus will have nearly equal access to the bus,
thus solving the lock-out problem.

The second problem involves the "memory
busy" situation. Whenever the memory subsys­
tem cannot process more requests, it sends a
" memory busy" signal. It could happen, for
instance , that a CPU accesses the bus and
attempts to write to memory. Upon receiving a
memory-busy signal , the CPU will abort the
write . When memory is released, some other
device will access the bus and perform a write ,
thus filling the write queue in memory. Once
again, the first CPU re-arbitrates, accesses the
bus, and tries to write. Once again, that CPU
receives a memory busy signal. And so on.

The NMI arbitration scheme mentioned above
solves this problem in which a device might get
locked-out of memory. As implemented, the
arbitration scheme saves the priority state at the
time before the memory-busy signal was
asserted. The arbitration logic then restores that
state so that the device that received the signal
will get the bus when the memory-busy signal is
deasserted.

Bus Bandwidth
For the processors on the interconnect, bus
bandwidth involves two components: read band­
width, and write bandwidth. The problem of
inadequate read bandwidth is addressed by hav­
ing a high hit-rate cache. The higher the hit rate,
the fewer the requests to memory. The problem
of inadequate write bandwidth can be treated in
two ways. The first way is to have a write-back
cache like the one on the VAX 8650 processor.4
Such a cache writes a block to memory only
when the cache block is deallocated. This tech­
nique can significantly reduce the write band­
width requirements.

Digital Tecbnical]ournal
No. 4 February 1987

In multiprocessor systems like the 8800 ,
however, in which each processor has an inter­
nal cache, this technique becomes complicated.
In these systems, a data item can exist not only
in memory but also in all the caches. To main­
tain coherency, each write-back cache would
have to notify the other cache when the first
cache writes. This technique usually leads to a
complex protocol and design implementation.

Another approach in a multiprocessor system,
the one used in the 8800 , is to implement
write-through caches. In such an approach, all
write references go directly to memory so that
each cache on the bus can "sec" all write activ­
ity. The caches can then be invalidated. Such an
approach greatly simplifies the protocol for
cache coherency but, as discussed earlier, gen­
erates a high degree of write traffic . The unique
design of the write buffer helps to reduce this
traffic , although not as much as a write-back
cache would. In the 8800 processor, however,
the write buffer reduces traffic enough so that
the two VAX 8800 processors can write at their
maximum bandwidths on the NMI bus.

Coherency in a Multiprocessor System
A multiprocessor system, with internal caches,
presents a number of interesting coherency
issues when sharing data. Ideally, if one proces­
sor writes to a location and the other processor
reads that location, the read will always get the
data that was written. In practice, achieving this
condition is difficult. Several major questions
arise: Did the read happen before the write or
after it? What happens if both processors write
to the same location at the same time? Unless
controlled, these situations can produce unpre­
dictable results.

If programs on the processors want to share
data, they must use the interlock instructions in
the VAX architecture.s Only after an interlock
instruction is processed will the memory loca­
tion be guaranteed to have the correct data. The
general method is as follows . Processes must
decide to share a block of memory. One mem­
ory location is called the software lock, and only
one process at a time is allowed to write to (or
lock) that location. This is accessed with an
interlock instruction, for example , the branch
on bit set and set interlocked (BBSSI) or the add
aligned word interlocked (ADAWI) instructions.

49

New Products

Aspects of the VAX 8800 C Box Design

Upon gaining the software lock, a given process
can proceed to write any location in the shared
block. Read-write coherency will be assured
only if the other processes shari ng that data
observe the protocol of obtaining the software
lock before modifying the data structure .

The VAX interlock instructions are imple­
mented using interlock microi nstructions.
These enable a processor to lock and unlock the
memory subsystem. Once locked, this subsys­
tem excludes further attempts to lock it until an
unlock has occurred. Thus only one processor
or 1/0 system can lock the memory subsystem at
any one time.

When each processor has an internal cache ,
there is one more mechanism that keeps the two
processors coherent. While one processor is
performing a write to memory and while the
write command is on the NMI bus, the other
processor will examine its cache store to see if
it contains a copy of that data. If the data is
there, it is marked invalid. The next request for

LEFT
PROCESSOR

WRITE
BUFFER

WRITE INTERLOCK
FORCES WRITE BUFFER
CONTENTS TO MEMORY

NMI

this data will then result in a cache miss and a
subsequent fetch to memory. This simple
approach is possible because the VAX 8800
caches are write-through. Although all writes
are seen on the bus , the write buffer packs
together consecutive writes within an octaword.
Therefore , the number of invalidation cycles
performed by a processor will be reduced .
When an interlock write is performed, the con­
tents of the write buffer are sent to memory.
Thus the interlock mechanism ensures that data
coherency will work under all conditions. Fig­
ure 6 illustrates the e vents that achiev e
coherency in the 8800.

Summary
The general concepts used in the design of the
C Box are well known to computer designers.
Our goal was to achieve a simple yet high-per­
formance design that avoided unnecessarily
complex solutions that did not give comparable
increases in performance. The choices made

OTHER PROCESSOR
SEES WRITE ON
NMI AND LOOKS
IN CACHE FOR
INVALIDATION

RIGHT
PROCESSOR

CACHE

WRITE
BUFFER

SOFTWARE
LOCK

MEMORY

Figure 6 Multiprocessor Coherency

50 Digital Teel.mica/Journal
No. 4 February 198 7

have yielded a design that fully supports the
multiprocessor concept. The VAX 8800 system
can translate addresses and access data faster
than any previous VAX processor.

Acknowledgments
All those who worked on the VAX 8800 system
contributed to the thinking that went into the
C Box design . Special thanks go to Dave Sager
for keeping things going.

References

1. VAX Architecture Handbook , (Maynard:
Digital Equipment Corporation, Order
No. EB-26115-46, 1986) : 7-11 to 7-19 .

2 . A. Smith, " Cache Memories, " Computing
Surveys , vol. 14 , no . 3, (September
1982) : 473-530.

3 . S. Mishra, " The VAX 8800 Microarchitec­
ture ," Digital Technical Journal (Febru­
ary 1987, this issue) : 20-33 .

4. T . Fossum, J. McElroy, and W. English,
" An Overview of the VAX 8600 System,"
Digital Technical Journal (August
1985) : 8-23 .

5 . S. Farnham , M. Harvey , and K . Morse ,
" VMS Multiprocessing on the VAX 8800
System ," Digital Technical Journal
(February 1987, this issue): 111-119.

Digital Tecbnica/Jounial
No. 4 February 1987

New Products

51

Paul]. Natusch
David C. Senerchia

Eugene L. Yu

The Memory System in the
VAX 8800 Family

The memory system in the VAX BBOOfamily can send data at 71MB per sec­
ond and receive it at 59MB per second. The 8800 and 8700 CPUs can con­
tain up to 128MB of memory, the 8550 and 8500 up to BOMB. Commands,
addresses, and data flow between the memory interconnect (NM/ bus)
and the memory controller, array bus, and array modules. Read, write,
and masked-write commands are executed. The designs of the NM/ bus
and write-through cache affected the memory system design. Although
ECL is used in the controller, TTL is used in the array bus. The array
modules of 4MB and 16MB contain 256K MOS dynamic RAM chips.

All members of the VAX 8800 family of proces­
sors (the 8800, 8700, 8550, and 8500) use the
same type of memory system. Since the
VAX 8800 system is a multiprocessor, that mem­
ory system must connect to both CPUs and both
1/0 adapters, called the NBIAs. The bus connect­
ing these devices is called the NMI bus, and each
connection on the NMI bus is called a nexus .
These connections are illustrated in Figure 1,
which shows five nexuses: one for each CPU, one
for each NBIA, and one for the memory system.

CPU NBIA

MEMORY
SYSTEM

NMI

NBIA CPU

Figure I Memory Interconnect Structure

The memory system itself consists of three
major parts, as depicted in Figure 2:

• A memory controller based on ECL technology

• A high-speed TIL bus connecting that mem­
ory controller to a maximum of eight array
modules

• The array modules themselves

52

The memory system can deliver 71 megabytes
(MB) per second of read bandwidth and 59MB
per second of write bandwidth.

Since the VAX architecture has a 32-bit for­
mat , all datapaths in the memory system must
also handle 32 bits . These datapaths are com­
bined by pipelined and parallel operations to
produce the read and write bandwidths. The
most significant occurrence of parallel operations
is two-dimensional interleaving. The first dimen­
sion interleaves between longwords (32 bits) of
data on a single array module; the second inter­
leaves between octawords (4 longwords) on dif­
ferent array modules . As many as three array
modules can be active simultaneously with
either a read or a write. There are three cases:

• Each module can do one read.

• One module can do a read while the other
two can do as many as four writes.

• Two modules can each do a read while the
third can do as many as four writes.

The selection of the array modules can be
programmed from the console when the system
is powered up . Thus the memory system can
support a variety of array module sizes and
speeds without the need to modify the hardware
in the memory controller. Moreover, the mem­
ory controller can address 5 l 2MB of physical
memory, the limit of the VAX architecture. The
8800 is the first VAX sys tem to b e able t o
address this much physical memory.

Digital Technical Journal
N o . 4 February 1987

COMMAND BUS-INPUT COMMAND AND CLOCK

NMI
MEMORY
CONTROLLER

ARRAY
MODULE
1

ARRAY
MODULE
2

ARRAY
MODULE
8

DATA BUS - READ DATA

COMMAND BUS- ARRAY STATUS

Figure 2 Plan of Memory System

Owing to the limits of the existing technol­
ogy, however, the initial machine was intro­
duced with 32MB for the 8800 and 8700 sys­
tems, and 20MB for the 8500 and 8550 systems.
The 32MB configuration consists of eight
4MB modules with 256K MOS dynamic RAMs
packaged in DIPs. To increase the density of the
machine without using a different semiconduc­
tor technology, a 2MB daughter module was
developed after the initial announcement. This
module uses double-sided surface-mount tech­
nology and p lastic leadless chip carriers. Eight
of these daughter modules are mounted on a
mother module to produce a I 6MB array mod­
u I e . This new module has increased the
machine's memory to 128MB for the 8800 and
8700 systems, and to BOMB for the 8550 and
8500 systems.

Memory System Architecture
As shown in Figures 1 and 2 , the memory con­
troller communicates with the CPUs and the
NBIAs over the memory interconnect, called the
NMI bus . Commands , addresses , and data
requests are all first received by the NMI inter­
face and then passed to other sections of the
memory controller. Addresses and data are
stored in custom multiport RAMs, where eight
locations are reserved for addresses and eight for
data . The NMI interface encodes command
information, passing it to the command-control
portion of the memory controller.

Since the memory controller communicates
with the NMI bus and the array bus, the NMI

Digital Tecbnicaljournal
No. 4 February 198 7

protocol has to be changed to that of the array
bus. Reads and writes of data fields with various
sizes are received by the NMI interface. The NMI
bus supports a very robust set of commands .
Reads and interlocked reads are supported for
longwords (4 bytes) , octawords (4 longwords),
and hexwords (2 octawords). Masked writes and
masked-write unlocks are supported for long­
words, quadwords (8 bytes) , and octawords .
Writes are supported for longwords and octa­
words.

The r e ad-interlocked and masked-write
unlock commands are used to implement VAX
instructions in which mutual exclusion is
required . For example , the VAX instructions
ADAWI , BBCCI , BBSSI , INSQHI , INSQTI ,
INSQUE, REMQHI, and REMQTI all need these
commands. Since an interlocked instruction
locks the entire memory system, the interlock
bit must reside in the memory controller. This
bit restricts the execution of subsequent inter­
lock commands until the lock has been released
by a masked-write unlock instruction.

After receiving a memory request from a
nexus, the memory controller must transfer that
request to the appropriate array module. This
transfer is accomplished using the array bus.
This bus consists of

• A unidirectional set of command and address
lines from the memory controller to the array
modules

• Another unidirectional set of data lines from
the memory controller to the array modules

53

New Products

The Memory System in the VAX 8800 Family

• A set of data lines (capable of assuming three
states) that can be driven by any one of the
array modules and received by the memory
controller

• Various status and control lines that commu­
nicate in both directions

The array bus has a minimal repertoire of
commands, consisting of longword reads, octa­
word reads, and longword writes, but not hex­
word reads. Since the NMI supports hexword
reads, the memory controller must convert them
into two octaword reads and then send them to
the array modules. Thus the two octawords of a
hexword read can reside on different array mod­
ules. That fact increases the memory bandwidth
because parallel accesses can be executed. The
array bus supports only longword writes; there­
fore, octaword writes must also be converted. As
mentioned earlier, the array bus has one line for
commands and addresses and another for data.
Therefore, an octaword write , which takes five
cycles to transfer on the NMI (one for the com­
mand, four for the data) , can be transmitted in
five cycles on the array bus to an array module.
Figure 3 shows the corresponding actions dur­
ing each cycle on the NMI and on the array bus.

In addition to commands, the memory system
must also execute maintenance tasks, including
memory refresh, error reporting, and battery
backup.

Since physical memory is implemented with
MOS dynamic RAMs, every array row must be

CYCLE

2 3

COMMAND
NMI OR DATA DATA

ADDRESS

ARRAY BUS

COMMAND/ COMMAND
ADDRESS OR
LINE ADDRESS

DATA
LINE

refreshed once every 4 milliseconds. This func­
tion can be done by refreshing one row every
14 microseconds. To facilitate this activity, the
memory controller sends signals to each array
module from a 14-microsecond oscillator. Upon
receiving a refresh signal, an array module will
handle the refresh arbitration and execute the
operation.

Occasionally, a bit will be lost due to either
alpha particles or a device failure. In that case
the memory controller must handle those errors
and other types in a graceful manner. To do
that, the memory system uses a 7-bit modified
hamming code to generate the ECC , which
allows all single-bit errors to be corrected and
all double-bit errors to be detected. After cor­
recting each error the memory system logs the
error's physical page address and the bit. The
memory system then interrupts the CPU to call
an error service routine , which logs in a VMS
file the necessary information to isolate the fail­
ure . The memory system can also interrupt the
CPU to handle internal parity errors and inter­
locked time-outs. An interlocked t ime-out hap­
pens when a nexus executes a read interlock but
never issues a masked-write unlock. The system
software can enable or disable these interrupts.

Battery backup, standard equipment on both
the 8800 and 8700 systems, can power the
refresh operation when the system is down. That
power allows the memory system to continue to
refresh the RAMs so that data will not be lost.
Note that the entire system is not backed up;

4 5 6 7

DATA DATA

COMMAND COMMAND COMMAND
OR OR OR
ADDRESS ADDRESS ADDRESS

DATA DATA DATA DATA

Figure 3 Cycles on NM/ Bus and Array Bus

54 Digital Tecbnicaljournal
No. 4 February 1987

BUS ENABLE

L
ERROR ~
CORRECTION ,..,._-----, T ____ _,

LOGIC C

A FLIP-
T FLOP c

H H
T
R
A
N

MULTIPORT s
RAM L

N
M
I

L
A

~----- T ,__ __ ..,
c
H

L
A

141.--- -------.-.fT
c
H

MEMORY CONTROLLER

DATA
BUFFER

ADDRESS
BUFFER

A
T
0 ECC R GENERATION s LOGIC

L

FLIP- A
T FLOP c
H

ARRAY MODULE

Figure 4 Datapaths in Memory Controller and Array Modules

therefore, all components must be in quiescent
states before the memory system enters battery
mode. Upon sensing that power is eroding, the
8800 will write all its data to the memory sys­
tem. The memory controller will then complete
all commands and send signals to the array mod­
ules informing them to enter battery mode . In
this mode only five MSI chips on the memory
controller and approximately half the control
logic on the array module will be active .

Command Execution
The execution of any command received by the
memory system is a joint effort between the
memory controller anq the array modules. Fig­
ure 4 depicts the datapath in each memory com­
ponent. After a nexus places a command on the
NMI bus, the interface in the memory controller
ascertains if the command is a valid memory ref­
erence and, if so, decodes it. The interface then
places the command in a queue of commands
waiting to be executed.

Since one array module can execute multiple
write commands simultaneously, and since mul­
tiple array modules can also execute commands,
the memory controller must maintain the status
of the array modules. The status control logic to

Digital Tecbtlical Jour,,aJ
No. 4 February 1987

monitor activity must " remember" which por­
tions of which arrays are "busy." This status
control logic can best be described by showing
how the three basic operations, writes, reads,
and masked writes, are executed.

Write Commands

For a write command, the control portion of the
memory controller performs only three actions:
it determines the capability of the array module
to accept the command, it sends the command,
and it waits for the array module to signal its
readiness to receive another command.

The write datapath is that portion of the logic
responsible for the flow of data from the NMI bus
to the array modules. This path comprises both
electrical interconnects (buses and cables) and a
considerable amount of logic. The major storage
element for the datapath is a 9-bit by 32-location
custom multi port RAM (MPR) with two ports for
reads and two for writes. Data received from the
NMI bus is placed in the next available location
of the MPR. Upon determining that the required
array module is available , the control logic sends
the data from the MPR to that array module over
the array bus. Each array module holds the data
until it is strobed into the dynamic RAMs

55

New Products

The Memory System in the VAX 8800 FamiZY

(DRAMs). The array module can load four long­
words of data with their associated ECC bits on
four consecutive cycles.

Some writes are called masked because there
is a 4-bit byte mask associated with each data
word. The byte mask informs the memory sys­
tem as to which bytes are to be written. The
memory system executes this command by first
doing a read and correcting any single-bit errors
that may exist. It then merges the memory data
with the data received from the NMI bus, and
finally does a write command. This sequence
easily allows the implementation of longword
and octaword masked writes. Masked writes for
quadwords (8 bytes) are executed by perform­
ing an octaword masked write in which the data
of two of the longwords remains unchanged.

Read Commands

For read commands, the memory controller per­
forms four actions: it determines if the selected
array module is ready to accept the read , it
sends the command, it waits for a data-ready
response, and it transfers the data from the array
module. lmbedded in the command field of the
read are address bits that select the longword of
the octaword that is required first. This action
allows wrapped reads to be implemented.
(Wrapped reads are described later in the sec­
tion " Impact of the Cache.")

The read datapath originates at the DRAM,
which sends the requested data. As in the case of
write commands, each array module stores an
octaword of read data. Once the data has been
loaded into the latches, the array module signals
to the memory controller that the data is ready.
As mentioned earlier, the read datapath between
the array module and the memory controller is
tristatable. Therefore , the memory controller
must ensure that only one array module at a
time drives this datapath . Once the data has
been requested by the memory controller, the
array module must send the longwords sequen­
tially, beginning with the starting address that
was sent with the command. This action allows
the memory controller to request any one of the
four longwords as the first to be read. The array­
module portion of the read datapath can transfer
one longword of data during every cycle.

The error-correction logic in the memory con­
troller receives each longword of data plus the
seven ECC bits. This logic detects sing le- and
double-bit errors, but only single-bit errors can

56

be corrected. A significant feature of this pro­
cess is that error detection and correction is per­
formed as the read data is pipelined through the
memory controller. Thus no additional cycles
are needed to correct read data.

Masked-write Commands
The execution of a masked write involves both a
read and a write sequence. The memory con­
troller executes a masked-write command by
first issuing a read to the selected array module.
Assuming that there were no memory errors, the
data returned is sent to the MPR, where the
bytes are merged with those sent to the memory
controller over the NMI bus. The memory con­
troller must ensure that no commands to the
same array come between the read and write
portions of a masked write. After all the bytes
have been merged into the data buffer, the
memory controller will write the data to the
array module. The array module then generates
new ECC data , adds it to the other data, and
strobes the composite data into the DRAMs.

If a single-bit error is detected, the process is
quite similar to the one with no errors, except
that the data must be corrected. Since corrected
data and NMI traffic both share the same data­
path on the memory controller, the NMI inter­
face must be free to correct errors found during
masked writes . This freedom is ensured by
asserting a signal that stops all activity on the
NMI bus. Once activity has stopped, the data
can be routed through the NMI interface, cor­
rected, and then merged with the NMI data in
the data buffer. The process then continues as it
would have if there were no errors.

If a double-bit error is detected, the process is
similar to the case in which no error occurred,
except that the write is prevented from happen­
ing. When the array location is read the second
time, the double-bit error will still be present,
thus alerting the system that the data is unusable.

Memory Address Path
The memory controller continuously latches all
addresses from the NMI bus. Once an address is
latched, the memory controller must verify it as
a valid memory address. That verification is
done by comparing the address to valid
addresses of both the control status registers
(CSRs) and physical memory.

The CSR addresses are hardwired into the NMI
interface logic; therefore, only a simple compare

Digital TecbnicalJournal
No. 4 February 1987

of the addresses is required . The compare for a
valid memory address requires a reference to a
" decode" RAM. This RAM is loaded by console
software when the system is powered up and is
used to configure memory . Loading the RAM
from software allows the memory controller to
support several different sizes of array modules
without modifying any hardware .

Once the address has been verified as being
valid, it is p laced in one of eight storage loca­
tions allocated to address buffering in the MPR.
The address remains in that buffer until its com­
mand is sent to an array module .

Even though eight locat ions are allocated to
address buffering, only seven of them can be used
for temporary storage . One location is reserved
for the error's page address , a pointer to a physi­
cal page of memory containing an error. Since
the location of the error page-address buffer is
not fixed, the control logic for the address-buffer
control must look ahead and not allow a new
address to overwrite that error page address .

The control of the address buffer is fur ther
complicated by masked writes and error logging.
Since a masked write is implemented as a read
followed by a write , the address in the buffer
cannot be overwritten until the write has com­
pleted. A similar situation exists for error logging
on read transactions . Since an error is not
detected until the read has completed , the
address cannot be overwritten until the data has
been checked.

Design Requirements of the
VAX 8800 System

Impact of the NM/ Bus
As stated earlier, the VAX 8800 memory system
interfaces with the CPUs and I/ 0 systems
through a synchronous bus called the NMI bus.
This bus is h ighly efficient and operates in a
pended fashion similar to the synchronous back­
plane interconnect (SBI bus) in the VAX-11/780
processor. The NMI bus allows several transfers
to be in progress simultaneously.

There are four nexuses in the 8800 system
that can require memory: the two CPUs, and the
two NBIAs. Each nexus is allowed to have two
commands outstanding at any time . The proto­
col supports this arrangement by allocating two
codes in a 4-bit ID field to each nexus.

The CPUs use one of their references for pro­
gram data, called the d-stream, and the other for

Digital Technical Journal
No. 4 February 19 8 7

instructions , called the i-stream . The CPUs
always request a hexword of data; the NBIAs may
request either longwords or octawords. Thus
there can be as many as eight simultaneous
requesters of memory data. These simultaneous
events require that the memory system buffer
several commands while executing. In the 8800
implementation, the memory system can access
three array modules in parallel and store two
commands.

Moreover , since the memory system can
accept multiple read commands, it must store
the identification of the requester and the
length of the transaction . The NMI interface
does the actual storing and returns the identifi­
cation with the correct data. This action is possi­
ble because all commands are processed in
sequence; therefore, the read returned first is
the one stored the longest . However, hexword
reads are returned to the NMI interface as two
separate octaword reads; therefore, that inter­
face must ensure that both octawords have been
returned before d iscarding the identification .

To prevent a deadlock condition, the memory
system is given the highest priority during arbi­
tration. This priority guarantees that the memory
system will be able to return data to a requester.
When full, the memory system notifies any poten­
tial requesters that it cannot p rocess any more
commands and to try again later, thus preventing
the memory system from overfilling.

Impact of the Cache
The design of the cache affected the design of
the memory system. The write-through design of
the cache guarantees there will be a large num­
ber of longword writes directed at memory.1 A
write buffer was installed to bundle a series of
longword writes into octaword writes; however,
the write buffer is only effective if multiple
longwords are written in the same octaword.

Extra logic is always required to increase per­
formance . The extra write bandwidth for this
memory system, however, required more logic
than what would have been required to imple­
ment extra read bandwidth . The added com­
plexity was needed to facilitate interleaving on
longword boundaries for write operations.

When the 8800 project was first initiated, the
goal of the memory system was to maximize
read bandwidth, thus producing a relatively sim­
ple array-module design . In that design , any
operation, regardless of its size, kept an entire

57

New Products

The Memory System in the VAX 8800 Family

array module busy until the operation com­
pleted. The control logic on the array module
was simple and required a reasonable amount of
board space and power . When the design
changed to the write-through concept, however,
higher write bandwidth was required . There­
fore, the control logic in each array module had
to be replicated for each bank (longword) of
memory to allow independent write operations.
This replication permitted four longwords to be
written on four consecutive cycles to the same
array module.

This increase in design complexity was not
limited to the array module . In the initial
design, when maximum read bandwidth was
critical, the memory control logic was relatively
simple. It had only to track the state of an array
module as being busy or not. However, with the
interleaving capability required for the
increased write bandwidth, the memory control
logic now has to track simultaneously the status
of as many as eight write operations in progress
on two array modules.

Although maximizing the longword write
bandwidth was important, minimizing the read
latency to the first longword required was criti­
cal. Wrapped reads were implemented to
reduce this latency. A wrapped read is a hex­
word or octaword command that requests a
specific longword to be returned first, with
other longwords in that block to follow in
"wrapped" fashion.

Other Design Trade-offs and Options
As in all design processes, we considered many
trade-offs and options before committing to a
particular design architecture . One area with
several alternatives was the interconnect
between the memory controller and the array
modules. The array modules and the controller
reside in physically separate backplanes inter­
connected by a cable. We had to decide whether
to make this interconnect with ECL or TTL.

The overall project goal was to make the
8800 an all-ECL machine. Therefore, our first
choice for this interconnect was ECL, which
provides enhanced signal integrity , reduced
skews, and overall speed advantages over TTL.
As the system and memory design progressed,
however, some real problems arose that altered
our opinion. The first problem became apparent
as the array-module design coalesced enough to

58

allow some accurate power estimates to be
made . We found that, with an ECL bus, the array
module would require - 5.2 Vin excess of its
allocation . The next problem surfaced in
response to an architectural requirement that
the memory system function with less than eight
array modules and , preferably, without load
cards . This requirement made it difficult to
implement a termination scheme for an ECL
interconnect.

With these problems in mind, we investigated
a TTL interconnect, which clearly offered some
design challenges , the least of which were
speed and skew. Using the SPICE simulator, we
constructed an accurate model to verify that a
TTL electrical interconnect could indeed meet
our signal integrity, speed, and skew require­
ments. 2 While the simulation results showed
that a TTL interconnect could work, the associ­
ated skews certainly increased the complexity of
the memory design. While alleviating the prob­
lems of limited - 5. 2 V power on the array mod­
ule and the termination of varied loading, this
TTL scheme required ECL-to-TTL translators in
the memory controller to drive the array bus.
We finally decided to accept the added com­
plexity and use TTL for the interconnect. The
sole exception was the clocks, which were dif­
ferential ECL, received and translated on the
array module.

There were logical trade-offs as well as elec­
trical ones. The original specification for the
NMI did not support quadword masked writes.
They were added after the implementation of
the memory system had progressed consider­
ably. Since the array bus supported only long­
word and octaword reads , there were three
options to support this change:

• The first was to change the array bus proto­
col, the command generator on the memory
controller, and the array module .

• The second was to execute the command by
performing two longword masked writes.
This option would take almost twice as long
as a quadword masked write if implemented
like the first option, yet still require changes
to the command generator in the memory
controller.

• The third was to execute an octaword masked
write in which the data of two of the long­
words remains unchanged.

Digital Technical Journal
No . 4 February 1987

Since the design was well advanced, we chose
the last method to ease the problems of imple­
mentation ; this decision actually has little
impact on system performance . The logic to
accomplish this addition already existed on the
array module . Only small changes were required
to the command generator of the memory con­
troller and the datapath control. In practice, the
frequency of quadword masked writes i s
extremely low since they are executed only by
the NBIAs.

Technology Description
A number of different module and component
technologies were used for the memory con­
troller, backplane, and two array modules.

Memory Controller
The memory controller is a 9-layer, controlled­
impedance , extended hex module (15 inches by
11 inches) . The lay-up consists of 6 routing layers ,
2 power layers (- 5.2 Vand - 2 V) , and a ground
plane . Since there is a minimal amount of TTL,

r----- ------------~
I MEMORY I

both the + 5 V power and the + 5 V battery are run
on the surface with 50-mil etch. With the mixed
technology on the module, we took special care
to keep the TTL signals properly spaced from the
ECL signals to avoid signal integriry problems.

The logic on this module is implemented
using nine unique macrocell-array designs from
Motorola, Inc., and one custom ECL multiported
RAM . There are 16 custom and semicustom
devices on the module . It also contains some
1 OKH MSI logic , some ECL-to-TTL converters,
and some CMOS logic used for operating with
battery backup.

Array Module Backplane
The array module backplane in the VAX 8800
and 8700 CPUs is a 12-layer, 8-slot pressed-pin
backplane . The one in the VAX 8550 and 8500
CPUs is a 5-slot backplane . Since a TTL bus was
chosen to communicate between the memory
controller and the array modules , a good termi­
nation strategy had to be developed . Using the
SPICE simulator , we evolved the termination
strategies shown in Figure 5 .

I CONTROLLER I ARRAY MODULES
I I

8480 I

ECL TO TIL

DI DO

cs
HLO

470
OHMS

I
I

F374

DO
DI

CLK

EN

NAB COMMAND/ADDRESS-WRITE DATA BUS

F374 F374 F374

DO DO DO

DI DI DI

CLK CLK CLK

EN EN EN

(TO 8 MODULES)

8481

TIL TO ECL

+5 VOLT

4700
OHMS

F374

DO

DI

CLK

EN

F374

DO

DI

CLK

EN

F374

DO

CLK

DI

EN

DO Dlt--~~--~~l~~~~~~~~~N-A_B_R_E_A_D_D_A_T_A_B_U_S~~~~~----t

CS I

HLD
I
I
I
I

------------------~
DI - DATA IN
DO- DATA OUT
CS- CHIP SELECT

HLD- HOLD (CLOCK)
EN - ENABLE
CLK - CLOCK

Figure 5 Termination Strategies in Memory Controller and Array Modules

F374

DO

DI

CLK

EN

Digital Technical Journal 5 9
No. 4 February 19 8 7

New Products

The Memory System in the VAX 8800 Family

Figure 6 Sixteen Megabyte Array Module

Four Megabyte Array Module Summary
The 4MB array module was designed using an
8-layer, controlled-impedance, printed circuit
board. The lay-up consists of 4 routing layers,
2 power layers, and 2 ground layers. To support
battery backup, the module has separate power
planes for + 5 V power and the + 5 V battery.
Since only a limited amount of - 5.2 V and
- 2 V power is needed, these voltages share
space on the other power planes. To eliminate
discontinuities that could cause unwanted
reflections, we ensured that signals d id not cross
the power-plane splits by surrounding the
power planes with solid ground planes.

Approximately half of the logic technology on
the array module consists MOS dynamic RAMS;
the other half is FAST MSI logic. The clock system
is implemented in ECL to minimize the skew.

Sixteen Megabyte Array Module
A I6MB array module was developed to increase
the available memory to I 28MB for the 8800
and 8700 systems and 80MB for the 8550 and
8500 systems. This array module consists of an
8-layer mother board (similar to the 4MB mod­
ule) and eight 2MB surface-mounted daughter
boards. The I 6MB array module is pictured in
Figure 6.

60

The VAX 8800 memory system was designed to
provide 71 MB per second of read bandwidth
and 59 MB per second of write bandwidth to the
multiprocessor system. The system architecture,
processor performance needs , and high 1/0
activity combined to make a high-performance
memory a requirement.

Since the 8800 contains ECL components, the
memory system has to provide a high-speed path
between the ECL logic in the CPUs and the high­
density dynamic RAMs used for main storage .
Although the memory system does not play a
direct role in the execution of a VAX instruc­
tion, its performance has to match closely that
of the multiprocessor system. If the memory sys­
tem were under designed, the processors would
stall frequently, thus reducing their usable per­
formance . If the memory system were over
designed, it would contain extra complexity,
with the attendant extra cost, that could not be
used by the system. Thus the memory strategy
played an important role in the price/perfor­
mance trade-offs that had to be made.

Acknowledgments
Although done by a small group of engineers,
the des ign of the memory system was grea tl y

Digital Technical Journal
No. 4 February J 987

influenced by the efforts of many people from
the Electronic Storage Development Group and
the Advanced VAX Engineering Group . We
would especially like to acknowledge the cre­
ativity, leadership, and energy level of the late
John Henry, Jr.

References

I. J . Fu, J. Keller, and K. Haduch, "Aspects
of the VAX 8800 C Box Design," Digital
Technical Journal (February 1987, this
issue: 41-51.

2. SPICE was developed by Lawrence Nagel
and Ellis Cohen of the Department of
Electrical Engineering and Computer Sci­
ence, University of California, Berkeley.

Digital TecbnicalJournal
No. 4 February 1987

New Products

6 1

John H.P. Zurawski
Kathleen L. Pratt

Tracey L. Jones

Floating Point in the
VAX 8800 Family

The processors in the VAX 8800 family were designed with particular
emphasis on cost-effectiveness. These CPUs do not contain separate float­
ing point accelerators. Their perjonnance is not compromised, however,
especially f or the double-precision instructions. High perfonnance is
achieved, in part, by a custom ECL multiplier and divider unit and by
specific hardware for exponent manipulation and nonnalization. The
main advantages of this integrated approach are less hardware to repli­
cate and a tightly coupled interjace to each CPU, thus less time is wasted
fetching the operands. Microcode branch problems are minimized by
using a prediction strategy and extensive hardware assistance.

Unlike other VAX families, the processors in the
VAX 8800 family do not contain separate float·
ing point accelerators (FPAs). Instead, their FPA
is integrated into each processor's main data­
path. Therefore, no distinction is made between
instructions that are executed in the FPA and
those that are not: the hardware is available to
be used for all functions. For example , the
extended arithmetic logic unit (XALU) is also
used as a counter for the move character instruc­
tion (MOVC). This usage differs from that in the
VAX 8600 and VAX-11/780 systems, where the
XALU is used only for floating point instruc­
tions . Furthermore , all the floating point
instructions, from the most complicated (POLY
and EMOD) to the simplest (MOVF) , have
access to the FPA hardware.

There are a number of advantages to this
approach. First, logic is not duplicated; only
one arithmetic logic unit (ALU) and one shifter
unit is shared between the floating point and the
normal arithmetic. Second, the design is tightly
integrated with the rest of the computer; there
is no overhead involved in starting the floating
point computation.

Clearly, since all other VAX families use FPAs,
there are also disadvantages with our approach.
Shared logic is more complex than specialized
logic . Performance may also suffer since the
design cannot be optimized toward one class of
problem. Those d isadvantages can be overcome,
however, as we shall relate in this paper. The

62

problem of optimization was ameliorated by
providing dedicated hardware for the main
operations of multiplication and addition. A cus­
tom multiplier and divider chip is provided
together with exponent manipulation logic and
a shifter unit optimized for floating point. These
logic elements handle those floating point oper­
ations that take the longest times to execute .

The floating point logic resides in the execu­
tion unit, the E Box, of the VAX 8800 CPU. That
logic is controlled by microcode in the instruc­
tion unit, the I Box. 1

VAX Formats and Instructions
The VAX architecture supports four floating
point formats: F, D, G, and H. These formats are
discussed at length in references 2 and 3. The
F format is 32 bits wide, the D and G formats are
both 64 bits wide, and the H format is 128 bits
wide . Although the D and G formats have the
same width, the exponent field is larger in the
G format, and its fractional field is commensu­
rately smaller. This format allows a larger range
but with slightly lower precision. The fractions
are always normalized and the leading bit - the
hidden bit - is not stored.

E Box Operation
Physically, floating point operations are per­
formed on three modules: two slice modules
and a shifter module. The slice modules contain
the cache, the main ALU, and a register file . The

Digital Tecbntcaljournal
No. 4 February 19 8 7

shifter module contains the custom multiplier,
the shifter unit, the exponent manipulation
logic (the two ALUs) , and the priority encoder.
Figure 1 shows this partitioning . To a large
extent, the shifter module strongly resembles an
FPA but without the ALU and register file .

The source operands are fetched from either
the 64 kilobyte (KB) cache or a general-purpose
register (GPR). The operands are sent on the
A and B ports to the ALU on the slice modules
and to the shifter module . All the components
on the shifter module are driven in parallel by
the A and B ports.

From Figure 1 it is clear that the datapath is
highly parallel ; the shifter, XALU, multiplier,
and ALU can all operate simultaneously. This
parallelism is used extensively to gain perfor­
mance and to save cost. For example, in multi­
plication operations, the XALU determines the
exponent of the result , the multiplier multi­
plies, and the shifter absorbs the low-order bytes

BYPASS BUS<31 :0>

SHIFT COUNT BUS <5:0>

of the product that are discarded each cycle by
the multiplier.

The main problem with designing an inte­
grated FPA is that the VAX formats for integer
and floating point numbers must all be handled
by the same shared units. Figure 2 shows the dif­
ferent bit orderings for two VAX formats , the
F floating point and the integer. In the integer
format , the bit ordering is from right to left. In
the F format, the mantissa begins at bit 16 and in­
creases in significance to bit 31, then continues
from bits O through 6 . The remaining bit positions
are used to hold the exponent and the sign.

This requirement for shared handling compli­
cates the carry path of the ALU. The carries out
of the 16-bit word boundaries have to be
switched into the appropriate places, as shown
in Figure 3 . The problem with shifting is similar
to the carry problem, except that now the carry
path of Figure 3 represents the flow of the
shifted bits.

SHIFTER MODULE

MULTIPLIER
-DIVIDER

A PORT

B POAT

SLICE MODULES

CACHE DATA

REGISTER FILE

Figure 1 Block Diagram of the E Box

Digital Technical Journal 6 3
No. 4 February 1987

New Products

Floating Point in the VAX 8800 Family

F FORMAT:

31

MANTISSA
(LEAST SIGNIFICANT PART)

BIT POSITION

16 15

s EXPONENT

7 6 0

MANTISSA

LEAST SIGNIFICANT BIT_J MOST SIGNIFICANT BIT _J

INTEGER FORMAT:

31

L MOST SIGNIFICANT BIT

S - SIGN BIT

0

LEAST SIGNIFICANT BIT _J

Figure 2 Two VAX Formats

The ALU and the shifter unit are both
designed to handle all integer and floating point
formats. The multiplier expects operands to
come only in a floating point format. Therefore,
for integer multiplications, the data must first
be converted into a pseudo-floating point format
by swapping the p laces of 16-bit words within
the integer format. This operation is performed
by the shifter unit.

Table 1 gives the execution times for the most
common floating point instructions. These times
include the overhead for fetchi ng the operands.

D FORMAT:

The VAX 8800 processor is designed so that
there is little, if any, d ifference in performance
between register and memory operands. The
execution times vary from 2.25 to over 5 times
the performance of the VAX-11 /780 CPU with
an FPA for the F and D formats. For mu ltiplies,
one 8800 CPU is 2.5 times faster in F format
and 4.8 times faster in D format; divides are
3.0 times faster. The gain is even more substan­
tial for the G and H formats since they are not
accelerated on the 11/780.

(MOST SIGNIFICANT PART) BIT POSITION

15 7 6

MANTISSA s EXPONENT MANTISSA

MOST SIGNIFICANT BIT_J

D FORMAT:
(LEAST SIGNIFICANT PART)

MANTISSA MANTISSA

LEAST SIGNIFICANT BIT CARRY IN

S - SIGN BIT

Figure 3 Floating Point Carry for D Format

64 Digital Tecbnicaljournal
No . 4 February 1987

Table 1 Execution Times

Instruction Execution Time (Nanoseconds)
Register to
Register F D G H

ADD 315 495 540 3314
MUL 450 675 842 6306
DIV 1607 3197 3107 21649

In the 8800 the D format is slightly faster than
the G format with its longer opcode, which
requires an extra cycle in the decoder. The single­
precision F format executes the fastest, and the
larger 128-bit H format executes the slowest.
However, the H format is intended as a backup
for intermediate calculations in the D and
G formats. Used thus, the H format ensures that
the final calculation result has sufficient preci­
sion and avoids overflow or underflow prob­
lems. Little hardware assistance is provided for
the H format; it is driven mostly by microcode .

Technology
Component technology used in the VAX 8800
processor is an enhanced version of the macro­
cell array (MCA) used in the VAX 8600 CPU. 2

This technology provides about 1 ,200 gate
equivalents with a typical gate speed of
1 nanosecond (ns) . MCAs utilize emitter-cou­
pled logic (ECL) in a 72-pin package that is
1 square inch with a maximum power dissipa­
tion of 5.5 watts. The GPR and the multiplier
are made with custom technology, which uses
the same package as the MCA but contains a
more advanced process. Around 1,800 gate
equivalents are provided, and the gate speed is
50 percent faster than the MCA. This higher
performance is achieved by using the following
features:

• Smaller transistors and metal-oxide-walled
resistors

• Current mode logic instead of the slower ECL

• Four-level logic instead of the two-level logic
of the MCA

At 300 by 260 mils, the size of the custom
chip is larger than the dimensions of 221 by
2 5 2 mils for the MCA.

D igital Tecbnical]ournal
No. 4 February 1987

The shifter module contains 12 MCAs and
8 custom multiplier parts. Some 1 OKH parts are
used for clock distribution and for driving the
bidirectional bypass bus.

Arithmetic Algorithm Processing

Addition and Subtraction
For an addition operation, !he 32-bit words con­
taining the exponents are sent to the main ALU.
There they are passed to the A and B ports,
which feed the shifter module. These ports
drive all the gate arrays in parallel.

The exponents are then loaded into the XALU
and the shift-amount ALU (SALU) , which com­
putes the alignment shift amount sent to the
shifter. The SALU also generates some 20 branch
conditions for the microcode. These conditions
indicate the size of the alignment shift and
whether any source operand is zero or a
reserved operand. They also help to optimize
the microcode flow.

The XALU, which selects the larger exponent
and saves it for later use, has a 12-bit datapath
and a register to hold the exponent. The size of
this datapath is sufficient for the F, D, and G for­
mats plus a guard bit for overflow or underflow
detection. An ALU is provided to perform arith­
metic operations on the exponent. The SALU,
with an 11-bit datapath, subtracts the exponents
to determine the alignment shift amount, which
is always positive. The sign manipulation logic
also resides in the SALU.

Next, the fractional part of the smaller operand
is aligned by the shifter. This operation involves
either one CPU cycle for F format operands or
two CPU cycles for the D and G formats. The
shifter unit shifts in the floating point format and
can do a full 64-bit shift . The logic that deter­
mines the round bits is related to the alignment
shift operation but is physically located in the
priority encoder gate array. This gate array also
contains some of the shifter functionality.

Nine gate arrays are used for the shifter unit.
Of those, eight make up the datapath, the ninth
is the control device . The shifter can accept
either a 64-bit operand on the A and B ports or a
32-bit operand on either port. The shifter gener­
ates a 32-bit result that can be either the high­
order or the low-order part of the answer. The

65

New Products

Floating Point in the VAX 8800 Family

shifter datapath gate arrays are identical ; each
effectively constitutes a byte slice of the design
and performs a bit shift of up to seven places.
Byte shifting is then performed by sending the
correct shifter output to the correct byte posi­
tion. This operation is facilitated by having all
the outputs wired to the OR gates at all possible
byte positions and by enabling the correct output.

The shifter performs floating point, integer,
and logical shifts, as well as a number of miscel­
laneous functions. These include converts from
decimal-format data into integer format and vice
versa. The masking of the exponent field and
the insertion of the hidden bit are also done by
the shifter.

After the alignment shift, the output of the
shifter is directed to the main ALU on the bypass
bus. There, the output is added to or subtracted
from the fraction of the larger operand. The out­
put of the ALU operation is now ready to be nor­
malized in the shifter. In most cases a small nor­
malize shift of at most one bit position left or
right will be sufficient. The specialized hard­
ware in the shifter handles this case and then
rounds the result. Should a larger shift be
required, then microcode will first direct the
ALU result to the priority encoder gate array.
There, the position of the leading 1 is found and
used to determine the normalize amount for the
subsequent cycle.

The rounding operation in the VAX 8800 CPU
is unusual in that it is limited to the low-order
eight bits. Therefore, a small 8-bit adder can be
used for this operation. This adder is both faster
and cheaper than the usual method of using a
full 64-bit adder. The 8-bit adder is also suffi­
cient to calculate the correct answer in over
99.5 percent of the addition operations. Should
a carry-out be generated by this 8-bit rounding
add, then clearly the result created is incorrect.
In that case the computer is trapped and
microcode invoked to correct the result.

Multiplication
As mentioned earlier, the 8800 contains a high­
performance, custom-designed multiplier and
divider unit. A number of factors impelled us to
use such a unit. First, multiplication is a very
frequent operation that is used extensively in
matrix manipulation. For example, in the UN­
PACK benchmark, the time-critical routine con­
tains an even mix of addition and multiplication
operations.4

66

Second, it was not possible to succumb to the
temptation of using the main ALU to provide the
division operation. This desire was natural since
division is an infrequent operation, and the use
of an ALU in a repeated subtract and shift mode
was appealing. For example, the VAX 8600 uses
the ALU for just that purpose. In the 8800 the
main ALU also computes the virtual address .
Since this datapath is very time-critical (in the
8800 as well as in most other computer
designs) , it cannot be allowed to go any slower.
Including an extra path to accommodate divi­
sion would have slowed down this critical path
by around 5 ns, resulting in a 10 percent perfor­
mance degradation for all operations.

Moreover, the available space for the multi­
plier and divider unit was limited since floating
point operations are integrated with the rest of
the machine. Approximately one-third of a mod­
ule (12 inches by 16 inches) was available . In
contrast, the VAX 8650 CPU dedicates a full
module to multiplication.

The custom design of the multiplier and
divider unit is basically a byte slice of a large
word-sized multiplier and divider unit. The
multiplier handles 8 bits per cycle, the divider
handles 1 bit. Figure 4 shows the complete
56-bit by 8-bit multiplier with its eight byte­
slice custom chips. Eight chips are used to form
the required word size of 6 4 bits (56 data bits
plus 8 guard bits). This arrangement is suffi­
cient to handle F, D, and G format operations.
H format operations are performed by partition­
ing the problem into many smaller 56-bit multi­
plications under microcode control.

The multiplicand is loaded into the MD latch
after passing through the mask logic , which
clears the sign and the exponent field and
inserts the hidden bit. The PR latch and the
PRGB are cleared at the start of the multiply.
The PRGB contains the guard bits for the PR
latch. At the end of a multiply, this latch will
hold the bits required for a possible normaliza­
tion shift and also for a rounding operation. The
least significant eight bits of the multiplier are
loaded into the multiplier latch. The first multi­
ply cycle is now ready to be performed.

A 56-bit by 8 -bit multiplication is performed
between the contents of the MD and multiplier
latches. The result is then added to the contents
of the PR latch (which is initially zero) and then
written back into it with a right shift of 8 b its .
The PR latch is thus an accumulating latch and

Digital Tecbnica/Journal
No. 4 February J 987

MULTIPLICAND INPUT MULTIPLIER INPUT

MASK LOGIC MULTIPLY/DIVIDE SELECT

8-BIT SHIFT

PR LATCH PRGB MD LATCH MULTIPLIER LATCH

64 BITS 56 BITS 8 BITS

56 BIT X 8 BIT MULTIPLIER BOOTH RECODE

64-BIT ADDER

MOST SIGNIFICANT 56 BITS OF RESULT

LEAST SIGNIFICANT 8 BITS OF THE RESULT

RESULT LATCH

NORMALIZE LOGIC

MUL Tl PLIER OUTPUT

Figure 4 Multiplier and Divider Unit

contains the 64-bit partial product of each mul­
tiplication operation . The next 8 bits of the
multiplier are loaded into the multiplier latch,
ready for the next cycle . This cycling continues
until the multiplicand has been multiplied by
all the multiplier bytes. This algorithm is similar
to the one used in the VAX 8650 scheme ,
except that that processor has a narrower data­
path of 32 bits.

Notice that the least significant byte of the
partial product is discarded after each cycle and
absorbed by the shifter unit. These bytes are
required only for the H format multiply.

Once completed , the res ult is sent out
through the result latch, then normalized and
rounded. The rounding carry is only propagated
into the least significant byte of the result. This
procedure uses less logic since only an 8-bit
instead of a 64-bit incrementer is required. The
8-bit incrementer will be sufficient for most

Digital Technical Journal
No. 4 February 1987

multiplies . Should a greater increment be
required, then the multiplier will trap the rest
of the machine, and the correction will be per­
formed by the main ALU. This scheme is similar
to the one used for addition.

The provision of a 64 -bit adder inside the
main multiply path is unusual in a high-perfor­
mance machine. High-speed multiplier designs
typically use carry-save adders, which do not
propagate the carry signal but save them so they
can be absorbed by the subsequent cycle. This
form of adder is indeed used in the custom mul­
tiplier to perform the 56-bit by 8-bit multiply
function illustrated in Figure 4. However, the
8800 also uses a full 64-bit adder for the follow­
ing reasons:

• A 64-bit adder has to be provided somewhere
to propagate the carries from the carry-save
adders.

67

New Products

Floating Point in the VAX 8800 Family

• With the 45-ns cycle time, the 64-bit adder
fits in the main datapath. A faster clock for
the multiplier would have complicated the
clock distribution and been difficult to gener­
ate with low skew.

• A full adder in the datapath allows the use of
a simple nonrestoring division algorithm.

The multiplier and divider chip contains a
12-bit by 8-bit multiplier, two 8-bit adders,
six latches with a total size of 72 bits, as well as
the rounding, normalizing, and control logic. A
comparable MCA design would require between
three and four of these elements.

Alternative Designs for the Multiplier
An MCA design was certainly possible and could
have been made to fit in the specified space.
The performance of such a design, however,
would not be as good as the custom design for
multiplication but comparable for division. An
MCA design would be 1. 7 times better than an
11/780 with an FPA for a multiply in F format,
whereas the custom logic chosen is 2.5 times
better. The performance would be 2.5 times
better for the D format, whereas the custom
design is 4.8 times better.

Another alternative was to use a commercially
available multiplier. That was tempting because
such a product has the advantage of being read­
ily available and tested. Using it would have cir­
cumvented the high risk of a custom design .
However, there are a number of disadvantages to
using general-purpose multipliers:

• Extra logic is required to mask out the sign
and exponent of the data and to insert the
hidden bit. The output of the multiplier
would have to be masked.

• Most available products cannot handle divi­
sion. Thus a separate divider would have
been required, which was expensive. Even
division algorithms using multiplication
require a large amount of ROM to contain the
approximation constants.

• Many of the available designs are intended for
integer applications, such as FFT butterflies
and digital signal processors. Hence, the
designs are optimized for those applications.
Extending these 8- or 16-bit multipliers to a
larger word length, as required for the VAX
architecture, was neither straightforward nor
cost effective. Moreover, the normalization

68

and rounding of results entails either extra
logic or additional cycles if the floating point
hardware in the E Box is used.

• Most designs have a clock system not consis­
tent with the rest of the machine. This fact
introduces the complication of a special
clock distribution and difficulties in verifying
the design.

• Very few designs are based on ECL technol­
ogy. Other technologies, such as TTL, would
require a different power rail and thus an
extra power supply.

The closest available multiplier to the 8800
reg uirements is the 10901 made by Motorola,
Inc. This MCA implementation contains an 8-bit
by 8-bit multiplier together with a 16-bit adder.
However, no latches are included; they must
therefore be provided externally, thus increas­
ing the cost substantially. On the other hand,
division could be provided by repeatedly using
the 16-bit adder of the 10901 .

Division
The multiplier performs a nonrestoring division
algorithm, 1 bit per cycle, for the F, D, and
G formats. The divider can accept a new divi­
dend bit during every cycle, thus permitting a
128-bit by 56-bit divide. A divide of this size is
used in the H format algorithm to form the start­
ing approximation.

The booth recode of the multiplier is modi­
fied slightly to accommodate the division
decode. 2 In the case of multiplication, the mul­
tiplier recode selects the correct multiples of
the multiplicand to add to the partial product
during each multiplication operation. In the
case of division, the divisor is loaded into the
MD latch, and the booth recode selects either
+ 1 or - 1 times the divisor for each division
step.

In the nonrestoring division algorithm, the
sign bit of the previous result selects the correct
divisor multiple for the next cycle. This selec­
tion is facilitated by feeding the sign signal into
the modified booth recode so that it will se­
lect the multiples of either + 1 or - 1 times the
divisor.

The quotient bit generated every cycle is sent
to the shifter unit to be absorbed. The first quo­
tient bit generated corresponds to the most sig­
nificant bit of the answer. That bit is then nor­
malized and rounded by the shifter.

Digital Technical Journal
No. 4 February 1987

Microcode Design
Being integrated into the logic in the main
mach ine , the floating point logic is also con­
trolled by the main microcode. The VAX 8800
CPU is an extensively pipelined d esign . 5

Although pipelining is a well known technique
for improving performance (for example, the
VAX 8600 CPU) , it comes at a price: the micro­
code branch latency will increase. By that we
mean that the microcode cannot branch on a
condition or flag in the very next instruct ion;
instead, it must wait a number of cycles. This
delay is a consequence of the overlapping of the
microi nstru c ti o ns ; each su ccessive micro­
inst ruction starts before its predecessor has
completed.

Figure 5 shows a typical pipeline similar to
that used in the VAX 8800 system. The microin­
struction is subdivided into five components:

• In NEXT ADDRESS, the address for the next
microinstruction is computed , as well as
those for any selected branch conditions.

• In LOOK-UP, the microcode RAM is accessed
to fetch the microinstruction specified by the
current NEXT ADDRESS.

• In READ, the register file is read to fetch the
specified operands (e.g., fetch RO and RI).

• In ALU, the operation in the arithmetic logic
unit is performed (e.g. , RO + RI).

• In WRITE, the result of the ALU operation is
written back to the register file .

Thus when the next-add ress cycle has com­
pleted for the first microinstruction, A, the next­
address cycle for the microinstruction, 8, in the
subsequent cycle is started . This cycle now
overlaps with the look-up cycle for A. As many
as five operations can proceed simultaneously in
this manner.

The branch latency of this pipel ine is gov­
erned by the first microinstruction that can
"see" a branch condition set in an earlier cycle.
For example, if the ALU cycle of A sets a carry
condition, then the first instruction that can
possibly use this signal in its next-address cycle
is E. Thus the branch latency is three microin­
structions, as shown in Figure 5 .

Naturally, this branch latency influenced the
way in which we designed the logic to perform
floating point operations. Clearly, we had to
avoid branching whenever possible as this
would result in an excessively slow algorithm.
Instead, we had to adopt a strategy based on
prediction and p rovide extensive hardware
assistance.

Prediction is based on the fact that the speed
of algorithms for floating point adds are usually
data dependent. For example, for certain data
values, the result of a floating point add will
require considerable normalization . That
requirement is always present when two values

INSTRUCTION A:

r-CONDITION CODE SET (E.G., CARRY OUT)

..--N- A~-,-~L-U~-r--R-E-AD~,--A- L-U~~I-W-R-IT- E--,1

B: NA

c:

NA - NEXT ADDRESS
LU - MICROCODE INSTRUCTION LOOKUP

LU READ

NA LU

D: NA

E:

ALU I WRITE

READ

LU

NA

ALU I WRITE BRANCH
LATENCY

READ ALU I WRITE

LU READ ALU WRITE

EARLIEST INSTRUCTION THAT CAN BRANCH
ON CONDITION CODE OF INSTRUCTION A.

Figure 5 Five-stage Pipeline

Digital Tecb11lcaJJounraJ 69
No. 4 Febmary 1987

New Products

Floating Point in the VAX 8800 Family

of similar magnitude and large cancellation are
subtracted. In other cases little or no normaliza­
tion is required. It is clearly preferable not to
pay the penalty of unnecessary normalizations.

The approach we took in the 8800 is to pro­
ceed down the most likely path, assuming that a
small normalization will be required while wait­
ing for the result of the branch signals. The add
and subtract algorithms in panicular are struc­
tured that way. The SALU examines the expo­
nents of the operands and other signals; then it
sets approximately 20 branch conditions in the
first two cycles of the add/subtract datapath.

In cenain situations all paths may be equally
probable. In these cases the microcode enables
hardware signals to control the datapath. A good
example of this processing is the selection of
operands. For a floating point add, it is natural
to think in terms of the larger and the smaller
operands. For example, the smaller operand is
the one that is always aligned . However, the
microcode does not know which register loca­
tion holds the smaller value , and it does not
want to wait for the whole branch-latency
period to find out.

Therefore, the microcode will assume that the
larger operand is in a panicular register. Should
this assumption be incorrect, then the SALU will
swap the register file read addresses (thus san­
ing the operands) . Not all locations have their
addresses modified in this manner since the
microcode still needs to be able to read and
write to specific locations.

Similarly, the SALU determines if the main
ALU is to do an add or subtract operation. At this
point in the computation the microcode is
unaware of which operation will be required.
The pipeline is still within the long branch
latency of the 8800 and cannot branch until this
latency delay has elapsed. Note that one of the
most frequently performed instructions is ADDF.
That instruction will have just completed by the
time the microcode can finally branch. There­
fore, the ADDF cannot execute any faster since it
is limited by the branch-latency delay. Conse­
quently, those instructions that are the most
probable cases are completely hardware driven.

To allow fast paths in the add algorithms, it is
necessary to know that the result cannot possi­
bly overflow since overflowed results must
never be written. To prevent overflow the SALU
examines the exponents of the operands. It then

70

determines if the exponent of the result could
possibly overflow or underflow, taking into
account any possible normalization shift. There
is also the added complexity of a rounding oper­
ation provoking an extra normalization step.
That would happen when the rounding incre­
ment caused a carry to propagate throughout
the whole fraction.

Consequently, the use of a small 8-bit incre­
menter for the round operation is possible only
if it is known that an overflow cannot happen.
The reason for this is that halting (trapping) the
machine is not instantaneous (for the same rea­
son that branch latency exists); therefore, the
result will always be written. Thus, although the
microcode can eventually correct the result, it
cannot prevent that result from writing.

Petj'ormance Issues
When a program with many floating point
instructions - such as UNPACK - is run, its
performance is not totally dictated by the raw
floating point speed of the CPU. Having a more
profound effect are other factors, such as

• The size and organization of the cache - This
factor is panicularly imponant for programs
with large amounts of data because the
operands will reside in memory . Having
superior register-to-register performance will
not help in this type of program. Clearly, the
larger the cache, the greater the chance that
the required data will be quickly available,
thus avoiding a lengthy transaction with
memory.

• The performance of the integer and control
instructions - Even programs performing
extensive floating point operations still have
significant amounts of integer and control
instructions. Doing these quickly can con­
tribute substantially to the program's perfor­
mance.

To illustrate the effect of these factors, com­
pare the performance of the VAX 8800 system
with that of the VAX 8650 when both run
UNPACK, as shown in Table 2.4 The 8650 has
faster raw floating point speed, especially for
the F format (over twice as fast). Yet the two
systems run this benchmark with almost the
same performance. Clearly, in programs with
these characteristics, factors other than raw

Digital Technical Journal
No. 4 February 1987

speed will have a greater influence on perfor­
mance. Of course, in applications without them,
the raw speed advantage of the 8650 will be
more pronounced.

Table 2 UNPACK Performance

Performance (MFLOPS)

Computer

VAX 8800
VAX 8650

Summary

F Format

1.35
1.30

D Format

0.99
0.70

The architecture of a processor like the VAX
8800 CPU is all a matter of trade-offs . Where
does the performance make a difference? For
example , we could have supplied the 8800
with a separate floating point unit to achieve
faster performance. Doing that, however, would
have required at least one extra module . To
keep the cost of the system constant, this extra
module would have entailed removing a module
of logic from some other part of the computer.
Perhaps removing that module would h ave
resulted in a smaller cache or a simpler decoder
with no optimizations for the frequent instruc­
tions. In any case the net effect would have
been to sacrifice the performance of the com­
puter in some other area. All things considered,
we feel that the design is well balanced for the
multitude of different computing tasks that cus­
tomers will perform with the VAX 8800 system.

Acknowledgments
The authors would like to thank Ron Melanson
and his team for the circuit design of the custom
multiplier. In addition, we would like to thank
Dave Sager for his help and guidance.

References
1. R. Burley, " An Overview of the Four Sys­

tems in the VAX 8800 Family," Digital
Technical Journal (February 1987, this
issue) : 10-19.

2 . T . Fossum, W. Grundmann, and V. Blaha,
" The F Box , Floating Point in the VAX
8600 System," Digital Technical Jour­
nal (August 1985): 43-53.

Digital TecbnicalJournal
No. 4 February 198 7

3 . VA X Architecture Manual (Maynard :
Digital Equipment Corporation , Order
No. EB-19580, 1981).

4. J. Dongarra , " Performance of Various
Computers Using Standard Linear Equa­
tions Software in a FORTRAN Environ­
ment," Argonne National Laboratory (May
1986) .

5 . S. Mishra, " The VAX 8800 Microarchitec­
ture," Digital TechnicalJournal (Febru­
ary 1987, this issue): 20-33.

71

New Products

James P.Janetos I

The VAX 8800 Input/ Output System
The VAXBI bus links the processors in the VAX 8800family to 1/0 devices,
including clusters and networks. The VAX 8800 multiprocessor can sup­
port four of these 32-bit synchronous buses, each of which connects up to
161/0 devices. Each VAXBI bus connects to the memory interconnect, the
NM/ bus, by an NB/ adapter, which contains an interjace chip to imple­
ment the VAXBI protocol. The NB/ adapter logic handles CPU references
and direct memory accesses to and from the I /0 devices. The adapter has
its own 200-nanosecond clock, which is completely asynchronous with
the 45-ns CPU clock.

The VAX 8800 family of systems is another
major step for Digital Equipment Corporation
into the realm of high-performance computing.
While increasing the computing capability of
the VAX line for scientific and technical appli­
cations, these systems will undoubtedly play an
important role in commercial and office mar­
kets. In these markets, the ability to connect to a
computing cluster, service many users , and
function in a network are as important as a fast
CPU. Indeed, in a multiuser, multiprogramming
system, the efficiency of "housekeeping" opera­
tions affects the perceived system performance
as much as raw processor computing speed.
These operations include sharing memory
between many programs, swapping processes
into and out of memory, paging, and responding
to interactive user requests.

All members of the VAX 8800 family use Digi­
tal's new VAXBI bus as their communication
link to clusters, networks, and interactive users.
With its ability to connect to four separate
VAXBI channels, the VAX 8800 system in partic­
ular offers great flexibility in configuring
peripheral devices and interfaces. This paper
first discusses the characteristics of the system
communication buses in the VAX 8800 system.
Following that is a discussion of the interface,
called the NBI adapter, linking the primary sys­
tem bus to the VAXBI input/output (1/0) bus.
Figure 1 illustrates the various components of a
VAX 8800 system.

The Processor-to-Memory Bus
The two CPUs, the 1/0 subsystem, and memory
all share the primary system bus, called the NMI

72

bus. This bus is a limited-length , high-speed
synchronous communications path that provides
the data link between these four devices. The
NMI bus is completely contained in the main
system cabinet; its cycle time is 4 5 nanoseconds
(ns), the same as the CPU's. The bus protocol
handles several outstanding transactions at one
time, thus effectively increasing the bus's uti­
lization. That is, once a device has issued a
transaction (e.g. , a read) , that device relin­
quishes the use of the bus until the responding
device is ready with the data. Other devices are
then free to start other transactions.

In this fashion , the bus usage is greatly
increased. The two CPUs communicate directly
with memory over the NMI bus; the 1/0 devices
connected to the V AXBI buses access memory
via the NBI adapters. A device on the NMI bus is
called a "nexus." Arbitration among nexuses
occurs in parallel with data transfers and is han­
dled by one CPU in a nearly round-robin fash­
ion. This guarantees that each nexus gains its
fair share of the bus resource. Data transfers on
the NMI bus occur in longword, octaword, and
hexaword lengths (4, 16, and 32 bytes respec­
tively). Four levels of device interrupts are
supported.

The V AXBI Backplane Interconnect
The VAXBI bus is used as the 1/0 bus for the
VAX 8800 system. As shown in Figure 1 , from
one to four V AXBI buses can be interfaced to the
NMI bus, depending on a customer's needs and
his desired mix of peripheral devices. Each
VAXBI bus is a 32-bit-wide synchronous bus that
can connect up to 16 V AXBI devices. Each V AXBI

Digital TecbnicalJournal
No. 4 February I 987

device, called a " node," uses a chip called the
VAXBI Interface Chip as its bus interface. This
chip provides a consistent logical and electrical
interface to the bus. The VAXBI Interface Chip
implements most of the bus protocol for its
node, including bus arbitration and error check­
ing. The V AXBI cycle time is 200 ns, controlled
by an oscillator on the NBIB.

The NBI adapter acts as both a processor and a
memory on the VAXBI bus. The adapter pro­
vides the following three important functions:

I . A means for the master CPU to read and
write device registers

2 . A window into memory for VAXBI
devices

3 . The facility for VAXBI devices to inter­
rupt the processsor

VAXBI BUS

Control of Peripheral Devices
To gain an appreciation of the NBI adapter
architecture, it is worthwhile to discuss the con­
trol of peripheral devices. 1 To move data from a
disk into memory or to send program output to
a peripheral device, a programmer must specify
the operation to be carried out (read or write),
a memory address to receive the data or that
contains data to be output to a device, and the
amount of data to be moved. In early machines,
the processor was required to control the entire
operation - executing instructions to move the
data, waiting for the slower device to complete
the operation, and then continuing in this fash­
ion until all the data had been moved. This pro­
cess wasted a great deal of processor time since
many instructions could have been executed
while waiting for an 1/0 operation to complete.

UNIBUS.

LINE
PAINTER

VAXBIBUS

TO
OTHER

COMPUTERS

Figure 1 VAX 8800 Configuration

Digital Tecb,iicalJournal
No. 4 February 1987

73

New Products

The VAX 8800 Input/ Output System

Modern machines have 1/0 controllers, which
are special hardware interfaces that handle
device operations. A programmer must specify
to the controller the attributes of the operation
to be carried out. Once the operation is
accepted by the controller, the processor is
freed from the details of actually moving the
data. In this way processing and 1/0 operations
can be overlapped , increasing processing
utilization.

For slow devices, such as terminals, the con­
troller usually has a small buffer to hold the data
to be transferred to or received from the proces­
sor. This buffer is loaded by the processor when
it has data to be transmitted to the device. The
device accepts the data, then signals when ready
for more. When having data to be transmitted to
the processor, the device loads that data into the
buffer and then signals to the processor to
remove the data . This process is called pro­
grammed 1/0.

For high-speed devices, such as disks, the 1/0
controller normally performs direct memory
access (DMA) operatiions. The processor loads
special registers in the controller with informa­
tion about the transfer - the amout of data to
be moved and its location and destination. The
processor is then freed while the controller per­
forms the transfer. In this way large amounts of
data can be moved with miinimal processor
intervention.

Addressing in the VAX 8800 CPU
The master CPU manipulates the 1/0 controllers
with reads and writes of single lonwords to their
control and status registers. These registers have
addresses in physical address space and can be
manipulated by standard VAX instructions. This
technique contrasts with that used in many com­
puters in which special instructions control
1/0. The address range of the VAX architecture
is shown in Figure 2 , in which addresses are
given in hexadecimal notation.

Physical memory occupies the first 512 mega­
bytes of the defined address range . The 1/0
adapter and the 1/0 controller registers
are located in the range from 2000 0000 to
3FFF FFFF. In the 1/0 space, the address range
allocated for each VAXBI bus is further subdi­
vided into space for each device on the bus.

74

BYTE ADDRESS

0000 0000

1FFF FFFF

2000 0000

3FFF FFFF

512 MEGABYTE PHYSICAL
MEMORY SPACE

512 MEGABYTE 1/0 SPACE

Figure 2 VAX Address Space

The NB/ Adapter
An adapter provides an interface between two
existing buses , each with its own addressing
protocol and data-transfer protocol. The adapter
is responsible for all communications between
the two buses. It is a datapath for the processor
to access device registe rs and for devices to
access memory. This datapath is also ued to
interrupt the processor and for initialization
functions .

The NBI adapter, consisting of an NBIA mod­
ule and either one or two NBIB modules, inter­
faces the VAX 8800 system to the VAXBI buses,
which are 1/0 buses in this application. That is,
the NBI adapter issues reads and writes on the
VAXBI buses in response to reads and writes that
are in the NBI address range initiated by the pro­
cessor on the NMI bus. Likewise , the NBI
adapter issues reads and wites to memory on the
NMI bus in response to reads and writes ini­
tiated by VAXBI devices on the VAXBI buses.
The NBI adapter in the VAX 8800 system sup­
ports a new generation of high-performance,
native V AXBI devices.

Figure 3 contains a block diagram of the
NBIA/NBIB adapter system. Basically, the data­
path of the NBIA module contains an NMI inter­
face, which provides buffering for addresses and
data transmitted and received during NMI trans­
actions. The NMI interface is connected to a
transaction buffer, which is a 16-location, dual­
ported ECL/TTL RAM . The transaction buffer
provides five locations to buffer commands and
addresses and up to four longwords of read/
write data for direct memory access (DMA)

Digital Technical Journal
No. 4 February 1987

transfers by devices on the VAXBI-0 bus. A sec­
ond group of five locations is provided for DMA
transfers by devices on the VAXBl-1 bus. Two
locations are used for the command/ address
packet and the single longword of read/write
data transferred when the processor accesses the
VAXBI device registers . The NBIA/NBIB TTL
datapath indicating the layout of the transaction
buffer is shown in Figure 4. The TTL port of the
transaction buffer connects to a set of two bi­
directional latches used to buffer commands ,
addresses, and data for transmission across the
data-bus cable to and from an NBIB module.

The datapath of the NBIB module consists of a
set of four bidirectional latches used to buffer
both DMA commands and addresses and CPU
commands and addresses, as well as data. These
latches connect to another set of latches known
as the BCI data buffer (one longword deep) ,
which connects to the VAXBI Interface Chip.
(The module side of the interface chip is known
as the BCI .) The interface chip controls the
enabling of data onto the BCI for data transmis­
sion onto the VAXBI bus.

Data flows between the NMI bus and the
V AXBI bus by moving it between these two sets
of latches. Control logic moves data from stage
to stage, passing control successively to the next
stage as each part of the transfer completes. The
VAXBI bus runs approximately four times
slower than the VAX 8800 processor and is asyn­
chronous with it . Therefore , the additiona l
problem exists of synchronizing control be-

NBIA
DATA
BUFFERS

N

NMI NBI
M INTERFACE TRANSACTION

BUFFERS BUFFERS

NBIA
DATA
BUFFERS

tween the NBIA and NBIB modules. Facilities are
provided for delaying data transfer until a buffer
is free, thus preventing data corruption. Another
synchronization problem occurs when the mas­
ter processor wants to read from or write to a
V AXBI device when that device wants to make a
memory access. The control logic in the NBIA
and NBIB modules is carefully designed to ref­
eree such contention problems.

DMA Transfers

From VAXBI Devices to Memory
A DMA transfer to memory by a VAXBI device is
shown in Figure 5 .

After w inning the VAXBI bus, the device want­
ing to make a transfer initiates a command and
address cycle. In Figure 5 , that device is a disk
controlle r. The VAXBI Interface Chip in an NBIB
is programmed to recognize memory addresses
on the VAXBI bus . The chip " awakens" the
NBIB control logic, decodes the command, and
stores the command/ address packet, as shown in
Figure 4 . Control logic on the NBIB then sends a
"OMA request" signal to the NBIA. After a syn­
chronization delay on the NBIA, the NBIA TTL
controller begins to transfer the command and
address from the NBIB to the NBIA.

Meanwhile, the NBIB takes the longwords of
data as they appear on the VAXBI bus and stores
them in the NBIB's data buffers. The NBIA stays
approximately one cycle behind the NBIB,
removing data from the NBIB buffers and storing

v
DATA BUS O BCIBUS

A
NBIB VAXBI x
DATA INTERFACE B
BUFFERS CHIP I

0

DATA BUS 1 NBIB BCIBUS VAXBI
DATA INTERFACE
BUFFERS CHIP

Fig ure 3 Block Diagram of NB! Adapter

Digital Tecbnica/Jour,r.al 75
No. 4 February I 987

New Products

The VAX 8800 Input/Output System

it in the DMA locations in the transaction buffer.
After successfully transferring all data into the
transaction buffer, the NBIA alerts the NBIB,
w hich, after a synchronization delay, ends the
transaction on the V AXBI bus. At this time the
NBIA TTL controller passes the DMA request to
the NMI interface in the NBIA, which then per­
forms the write to memory on the NMI bus.

It should be noted that a DMA write transac­
tion is considered to be complete on the VAXBI
bus before the data is actually written to mem­
ory. A VAXBI device is thus free to start another
transaction immediately. This performance
enhancement is known as a " disconnected
write," in which the write operation is consid­
ered to be completed on one bus before that

------------------,
I
I
I
I
I
I

N~ I
TRANSACTION I DATA BUS O
BUFFERS

O (40 BITS)

1
2
3

9
10
11

12
13
14

15

BUS 1
DATA
BUFFERS

I
I
I
I
I
I
I

NBIA I -------------------~

DATA BUS 1

(40 BITS)

TRANSACTION BUFFER ORGANIZATION

OMA 1

r------------------------------------~

I
I
I
I
I
I
I
I
I

DATA BUS
BUFFERS

BCIDATA
BUFFERS

I N~B

BCIBUS VAXBI
INTERFACE
CHIP

L------------------------------ -------
r--------------------------------------

DATA BUS
BUFFERS

BCI DATA
BUFFERS

NBIB

BCI BUS VAXBI
INTERFACE
CHIP

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I L------------------ --------------------~

Figure 4 NBIA/NBIB TTL Datapatb

v
A
x
B
I

0

v
A
x
B
I

76 Digital Tecbnica/Jounial
No. 4 February 1987

MEMORY

N
M
I

I ARB I ~g~: I !~: I DATA I DATA I DATA I DATA I · . · ltlilililil
VAXBICYCLES

C/A - COMMAND/ADDRESS
ARB - ARBITRATION
EMB ARB - EMBEDDED ARBITRATION

NMI CYCLES

Figure 5 DMA Transfer to Memory

operation has actually taken place on the target
bus. The NBI adapter is designed in such a way
that a write transaction could be waiting in the
transaction buffer (e.g., while the NMI interface
controller services the other V AXBI bus) while a
second transaction waits in the data bus
transceivers. Using two levels of buffering and
the disconnected write technique allows the
NBI adapter to support a write bandwidth of
8 megabytes per second.

It is interesting to note that during the data
transfer from the NBIB to the NBIA, the NBIB
notifies the NBIA TTL controller of the OMA
request immediately after storing the command/
address packet. However, the NBIA TTL con­
troller does not pass the OMA request to the
NBIA NMI interface controller until the com­
mand/address packet and all the write data have
been loaded into the transaction buffer. The rea­
son for this delay is that the NMI interface con­
troller runs at the same speed as the NMI bus, or
45 ns per cycle.

The NBIA TTL controller runs four times
slower, or 180 ns per cycle, to closely match
the VAXBI cycle time of 200 ns per cycle. Thus

Digital TecbnicalJournal
No. 4 February 1987

if the NBIA TTL controller were to signal the
OMA request after loading only the command/
address packet into the transaction buffer, the
NBIA NMI interface would attempt to read data
from the transaction buffer before that data had
been loaded. That is obviously a bad thing to do.
Indeed , the NMI interface of the NBIA can
empty the transaction buffer in approximately
the time it takes for the NBIA TTL controller to

load one longword.

From Memory to a VAXBI Device
A write request from a V AXBI device is similar
to the OMA operation just described. After win­
ning the VAXBI bus, the device wanting to read
data from memory on the NMI bus transmits
a command and address on the VAXBI bus .
Figure 6 depicts this transfer.

The interface chip awakens the NBIB control
logic, which then decodes the command and
stores the command and address in a data-bus
buffer location. The NBIB then passes the OMA
request to the NBIA immediately after the com­
mand/address packet is loaded. Again similar to
the write operation, the command or address is

77

New Pr oducts

The VAX 8800 Input/Output System

transferred to the appropriate location in the
transaction buffer by the NBIA TTL controller.
However, a DMA read is unlike a write opera­
tion, in which the data is ready for transmission,
in that the data must be fetched from memory.
The DMA request is first passed to the NBIA NMI
interface controller, which arbitrates for the
NMI bus. Upon winning the bus, the interface
controller initiates a read request to memory.
When the the data is ready, the memory returns
it on the NMI bus to the NBIA. Thence the data
is transferred into the DMA locations in the
transaction buffer, and the NBIA TTL controller
is notified by the NBIA NMI interface that the
data is ready. The controller then begins to
transfer data to the NBIB, loading it into succes­
sive locations in the NBIB buffers. This process
is illustrated in Figure 4. A " DMA Done" notifi­
cation is sent to the NBIB after the first long­
word of data, rather than all the data, has been

MEMORY

N
M
I

transferred. That maximizes the read bandwidth
on the VAXBI bus. The NBI adapter has a maxi­
mum DMA read bandwidth of four megabytes
per second.

The DMA read transfer illustrates one funda­
mental difference between the NMI bus and the
VAXBI bus. Referring to Figure 6 , one can see
that the VAXBI bus is unusable while the NBIA
and memory complete the read operation. (The
NBIB issues stall signals to the requesting device
during this time.) The NMI is a pended bus, but
the VAXBI bus is nonpended, or interlocked.
That is, the NMI bus is immediately available for
use once a command has been transmitted and
acknowledged, whereas the VAXBI bus must
wait. Thus " pending" transactions are allowed
on the NMI bus. Indeed, the NBIA NMI interface
can respond to requests from the other VAXBI
bus while also having an outstanding read to
memory on behalf of the first VAXBI bus.

VAXBI DISK
~-----..,1 CONTROLLER

I !~: ISTALLISTALLISTALLlSTALLISTALLISTALLISTALL ISTALLISTALL,STALLISTALLISTALL ISTALLI DATA I DATA I DATA I DATA I

VAXBI CYCLES • •

C/A - COMMAND/ADDRESS
EMB ARB - EMBEDDED ARBITRATION

78

• .

Figure 6

MEMORY
___ ___ READ

LATENCY

NMI CYCLES
(NOT TO SCALE)

D D D D
A A A A
T T T T
A A A A

DMA Transfer from Memory

•

Dig ita l Technical J ou rnal
No. 4 FebrumJI 198 7

MEMORY

N
M
I

NMI CYCLES

(NOT TO SCALE)

C/A - COMMAND/ADDRESS
ARB - ARBITRATION
EMB ARB - EMBEDDED ARBITRATION

VAXBICYCLES

11

D

• • • A
T
A

NMI CYCLES

Figure 7 CPU Transfer from VAXBI Device

CPU Transfers to and from V AXBI device controller to cause it to transfer
V AXBI Devices large amounts of data.

CPU transfers to and from VAXBI devices are
similar to VAXBI transfers to and from memory,
the obvious difference being that the transaction
is initiated on the NMI bus. CPU transfers are
shown in Figure 7 .

Another difference is that CPU transactions
are limited to longword length when accessing
VAXBI devices. Since there is only one location
for a command/address packet for CPU transfers
and one location for read/write data in the trans­
action buffer, the NBI adapter can handle only
one CPU transaction at one time. These limita·
tions lower the CPU-to-VAXBI bandwidth as
compared to the DMA bandwidth. An analysis of
bus traffic , however, has shown that CPU­
initiated transactions account for under 10 per­
cent of the VAXBI traffic in a VAX 8800 system.
This finding could be anticipated since the CPU
must make only a small number of accesses to a

Digital TecbnicalJournal
No. 4 February 1987

Synchronization
In the earlier discussions of data transfers, the
term "synchronization delay" was introduced. In
genera l , some type of synchronization is
required whenever more than one independent
clock exists in a system. This is the case in the
VAX 8800 system. Timing for the processors,
memory controller, and NBIAs is derived from a
sophisticated clock module that provides two­
phase , nonoverlapping clocks with a basic
period of 45 ns and tightly controlled skew.2

The V AXBI timing, on the other hand, is derived
from an oscillator and a clock-driver circuit on
the NBIB. This timing has a basic period of 200 ns,
completely asynchronous to the VAX 8800 ker­
nel. The synchronization of control signals is
thus necessary for data transfer between the
NBIA and NBIB modules. A DMA read transfer

79

New Products

The VAX 8800 Input/Output System

involves the synchronization of a " OMA
request" and a " OMA complete" signal. There­
fore, the synchronization overhead can account
for approximately 5 to 15 percent of the time it
takes to complete the operation.

Summary
The performance of the 1/0 subystem is critical
to the operation of high-performance systems
like those in the VAX 8800 family . The 1/0
adapter provides a communication link between
the each processor, the memory, and the 1/0
devices. The NBI adapter is this link for these
systems, providing access to a new generation of
VAXBI devices and high-performance 1/0 opera­
tion for these important new machines.

References

80

1 . H . Levy and R. Eckhouse , Computer
Programming and Architecture: The
VAX- I 1, (Bedford: Digital Press, 1980) .

2 . W. Samaras, " The CPU Clock System in
the VAX 8800 Family," Digital Techni­
cal Journal (February 1987, this issue):
34-40.

Dig ital Technical J ounial
No. 4 February 19 8 7

Paul C. Wade I

The VAXBI Bus -A Randomly
Configurable Design

Th~ VAXBI bus provides a high-performance alternative to the UNIBUS
system as Digital's general-purpose bus. The VAXBI design was completely
specified before any hardware was built and is independent from any
physical configuration. The designers bad to discard the traditional
small-perturbation approach and instead used many techniques to
specify the bus characteristics. Two custom chips, a differential driver
and receiver, are used to clock the bus. The bus designs were tested exten­
sively with SPICE, but tests on the physical chips led to some unantici­
pated problems. Further analysis of waveforms, crosstalk, and switching
noise led to changes that met all the original goals.

The VAXBI bus is a new, high-performance, gen­
eral-purpose bus that provides a common inter­
face to all of Digital's new VAX products, from
the VAX 8200 CPU to the VAX 8800 system .
This bus can also be used for future VAX sys­
tems. The VAXBI bus is a higher-performance
replacement for the UNIBUS system and should
have a similarly long and productive lifetime .

The UNIBUS system was enhanced many times
during its long history. Since there was no for­
mal specification for this bus until 1986, these
many de facto enhancements led to numerous
compatibility and configuration problems. Hav­
ing learned from those problems, the VAXBI
design team decided to make a complete design
specification of the VAXBI bus before any hard­
ware was built. Thus compatibility problems
should not occur if all future designs comply
with that specification.

One of the most important aspects of that
specification - and the most difficult to imple­
ment - is that the VAXBI bus operates indepen­
dently from any particular physical configura­
tion . That is , the bus must be randomly
configurable. The achievement of that specifica­
tion was the most difficult part of the electrical
design. The techniques and solutions involved
in solving this problem should be instructive to
future bus designers.

Digital TecbnicalJournal
No. 4 February 1987

VAXBI Bus Description
There are several excellent references that
describe in detail the operation of the VAXBI
bus and the VLSI chip that implements the bus
logic and arbitration. 1 •2·3 Therefore, only a short
description of the bus will be given here. The
VAXBI bus is a general-purpose bus with data
transfer rates high enough (up to 13 .3 mega­
bytes per second) to serve as a memory bus in
mid-range VAX systems, such as the VAX 8200
CPU. All machines in the new generation of VAX
systems use the VAXBI bus for all 1/0, commu­
nications, networks, and connecting adapters for
mass storage. Those high rates also allow it to
serve as an 1/0 bus in all sizes of VAX systems by
using multiple VAXBI channels in the largest
systems, such as the VAX 8800 multiprocessor,
shown in Figure 1.

All the machines in the new generation of
VAX systems use the VAXBI bus for all 1/0, con­
necting adapters for mass storage, communica­
tions, and networks. A VAXBI subsystem, con­
sisting of two six-slot card cages and the
backplanes, is shown in Figure 2 . The back­
planes are connected with flexible interback­
plane jumpers with terminators at each end.

The key to general-purpose operation is the
distributed nature of the VAXBI bus. All nodes
on it contain identical interface hardware, and a

81

The VAXBI Bus - A Randomly Configurable Design

82

VAXBIBUS

VAXBIBUS

COMMUNI­
CATIONS
INTERFACE

TO STAR
COUPLER

CPU 1

DISK
ADAPTER

NBI
ADAPTER

CPU 2

NMI

NBI
ADAPTER

MEMORY.

UNIBUS
ADAPTER

UNIBUS

VAXBIBUS

ETHERNET
ADAPTER

ETHERNET

Figure 1 VAX 8800 System with Four VAXBI Buses

Figure 2 VAXBI Subsystem

distributed arbitration scheme precludes the
need for a processor to act as a dedicated bus
master. The VAXBI bus can support both multi­
ple and networked processors, thus implement­
ing Digital's strategy of distributed computing.
The synchronous operation of the bus achieves
high performance by providing predictable
communication delays. The distributed arbitra­
tion is embedded within each bus transaction so
that further data transactions may follow with­
out delay.

The VAXBI bus architecture is rigorously
specified, and all designs that are verified to its
specification will be fully compatible with the
bus. The task of system designers has been greatly
eased by the incorporation of all data-handling
and arbitration logic in one VLSI element , the
7873 2 chip, called the VAXBI Interface Chip.

Digital Tecbnical]ournal
No. 4 February 1987

That chip also performs self-test functions and
bus error detection and handling to improve sys­
tem reliability and robustness. The physical bus
interfaces are also rigorously specified, and the
bus clocking is controlled by custom clock­
driver and receiver chips. Figure 3 shows the
VAXBI corner of a module, with all the compo­
nents required for the bus interface contained in
a standardized layout. These features free a
designer to concentrate on his unique design
rather than on the bus details.

Figure 3 VAXBI Corner of a Module

VAXBI Electrical Design
A randomly configurable bus has many advan­
tages as a data bus in general-purpose computers
since their physical configurations are not
known a priori and are subject to change during
repair or upgrading. The previous state of the
art within Digital was to use an artificial intelli­
gence program , called XCON, to calculate a
configuration for each unique set of UNIBUS
options. XCON is based on an extensive set of
bus configuration rules. Although it is a triumph
of applied artificial intelligence , the necessity
to use it for bus configurations was a bottleneck
we hoped to avoid by better bus design with the
VAXBI bus.

The design of a randomly configurable bus
involves essentially the design of a group of ape­
riodically loaded transmission lines. The charac­
teristics of regularly loaded transmission lines
are well defined, but those of randomly and
unpredictably loaded lines are less well under­
stood. The design team evolved a design proce-

Digital Technical Journal
No. 4 February 1987

dure from their work on the VAXBI bus .
Although this procedure was derived from the
development rather than being planned in
advance, it may help bus designers with their
projects in the future. Therefore, the remainder
of this paper describes that procedure , espe­
cially the activities and results that proved most
significant to the project.

The first step in designing this bus was the
realization that the problem was not completely
random but may be bounded. A bus is physically
implemented as a group of transmission lines in
a backplane. These lines are perturbed by the
loading of connectors for modules and by the
modules themselves. Each connector, or slot, in
which a module may be inserted causes a small
perturbation if empty and a larger one if popu-

~lated . A transmission line can also continue
through cabling and connectors onto another
backplane. In either case the transmission line is
terminated in some manner.

The classic method of dealing with transmis­
sion line loading is to make the characteristic
impedance so low that perturbations will be
trivial. In that case any reflections from these
perturbations will be small, and the line can be
end terminated in its characteristic impedance
so that there is no reflection. The loading is then
considered to be predominantly capacitive.
Thus the loaded impedance can be calculated as

Zo' = Z 0 / yl + Cd / Co

Our first approach was to determine if the
classic method could be used to deal with trans­
mission-line loading for the modules on the
VAXBI bus. Z 0 , the characteristic impedance ,
ranges from 3 5 to 100 ohms for the standard
dimensions of organic printed circuit boards
made by Digital. Corresponding values of C0 ,

the intrinsic line capacitance, range from 1.8 to
0.6 picofarads per centimeter (pf/cm) . How­
ever, Cd , the distributed loading capacitance,
can be as much as 5 pf/cm for modules in this
implementation. That capacitance means that
Z 0

1
, the loaded impedance , would be in the

range of 18 to 33 ohms, clearly a major pertur­
bation. Therefore, for modules with these char­
acteristics , the small-perturbation approach
could not be used.

In the case of the VAXBI bus, even if it were
possible to produce lines whose characteristic
impedances were low enough (Z0 < 15 ohms) ,
massive drivers would be required to supply the

83

New Products

The VAXBI Bus - A Randomly Configurable Design

necessary current. Therefore, bus power would
become a significant portion of the system
power dissipation, an undesirable situation.
Consequently, we had to consider a design
approach different from the classic one.

Our alternative design approach was more
pragmatic. Significant development investments
had already been made in several key compo­
nents, particularly the module connector and
the 78732 chip. Therefore, the rest of the
design had to be as compatible as possible with
the characteristics of those key components.
Particular attention was paid to three areas: the
physical layout, to keep capacitance within the
drive capability of the 78732 chip; the clock,
since it is the critical element in bus timing; and
grounding, which is critical for signal integrity.

The VAXBI data lines are driven directly by
the 787 32 chip, which is fabricated using
advanced MOS technology. MOS devices, how­
ever, are limited in their ability to drive current.
Within the constraints of chip area and power
dissipation, open-drain drivers of about 21 mil­
liamperes (ma) are the only ones available. The
data cycle of the VAXBI is 200 nanoseconds.
Therefore, the maximum bus length of
1.5 meters (VAXBI specification) is short com­
pared to a wavelength, and a lumped-constant
approximation could be used for calculating the
delays. An RC time-constant model was used for
this approximation, and the voltage swing was
limited to 3 V to accommodate a smaller termi­
nating resistor for faster switching. The resulting
resistance was 238 ohms (5 V/21 ma).

After calculating the tolerances and worst-case
allowances, we chose a standard value for this
resistance of 270 ohms. By choosing an RC time
constant equal to the maximum available propa­
gation delay (and after subtracting device delays
and allowing for component tolerances and a
10 percent timing margin), we calculated the
capacitance as 410 pf. This figure became the
maximum capacitance for each data line,
including backplanes, interbackplane jumpers,
connectors, modules, and bus transceivers on
the chips. Obviously, the RC time constant is
applicable only on the low-to-high transition,
when the open-drain device is turning off.
Device turn-on, which is normally much faster,
is internally compensated for by controlling the
rise time to minimize the transmission-line
reflections.

84

For the clock lines, the timing requirements
are critical enough to justify the use of very large
drivers since only two signals are involved. We
selected a differential configuration for clock
signals in order to minimize the skew, which
could degrade timing accuracy. This configura­
tion also provides noise immunity by common­
mode rejection . Since the clock frequency is
much higher than the data frequency, ECL was
chosen for the logic technology. The maximum
drive capability of standard devices is
25-ohm impedance, however, so a custom driver
is required. We also chose to use a custom differ­
ential receiver, for the following reasons:

• Both parts can operate from the available
+ 5 V supply rather than the -5.2 V supply

normally required for ECL.

• The receiver sensitivity and common-mode
range can be optimized for the driver.

• The receiver input can be designed for mini­
mal bus loading capacitance.

• The receiver output levels can be standard
TTL levels, thus eliminating the need for a
separate integrated circuit (IC) for level
translation.

Altogether, these two custom clock chips do
the work of five standard ICs, thus saving power
and module real estate while improving perfor­
mance.

Since the characteristics of ECL drivers are
well understood, we require the clock driver to
use an output driver made from three standard
50-ohm ECL drivers in parallel. Thus the effec­
tive drive capability is 1 7 ohms (50 ohms/3) .
The design termination is intended to match the
estimated impedance of a maximally loaded sys­
tem , approximately 2 5 ohms differential
impedance. This impedance is composed of a
resistor to ground from each line and a resistor
between lines, chosen to sink the appropriate
high- and low-state currents. The design was
extensively modeled using the SPICE circuit
simulator, which indicated that the driver had
adequate current capability for this load. 4 The
characteristic impedance of the clock lines was
made as low as possible by maximizing the line
width within the space constraints of a 0.1-inch
via-hole (plated-throughhole in a printed circuit
board) grid. To improve the common-mode

Digital TecbnicalJournal
No. 4 February 1987

rejection, the two lines of each differential pair
are located one above the other on adjacent lay­
ers with ground planes above and below the
pairs.

Finally, careful attention was given to the
grou n d retu rn path for a l l VAXBI signals .
Ground planes, to minimize inductance , are
provided on the modules, backplanes, and inter­
backplane jumpers for data lines as well as the
clock lines described above. The data-line
capacitance was constrained within the 410-pf
limit described above by controlling the line
width and the ground-plane spacing. A particu­
larly difficult problem is the ground inductance
of the 78732 chip. The 78732 chip can switch
as many as 48 data lines simultaneously, with a
total switching current of over one ampere. The
induced voltage, V, from simultaneous switch­
ing is calculated as

V = L X (di/dt)

in which L is the inductance and di/ dt is the
rate of current change. For example , if the
ground inductance were 10 nanohenries and the
chip switched in 10 nanoseconds, 1 volt of
switching noise would result. Based on these
noise calculations, we designed the package
with an internal ground plane and 15 ground
pins to minimize inductance and switching
noise.

Test Results
When the custom clock devices became avail­
able , measurements showed that the driver
could not power a 2 5-ohm differential load and
still maintain the desired 700-mV amplitude
over all conditions. Therefore , we carefully
measured the output characteristics in both the
high and low states to calculate an optimum ter­
mination . The TK!Solver software was used to
solve iteratively the driver equations for the
piecemeal linear approximations of the driver
characteristics, which did not fit any simple
curve. We then calculated the optimum resis­
tances and chose the nearest standard resistor
values. We also recalculated the output voltages
for normal tolerances of resistance, voltage, and
temperature, and a + / - 50 percent variation in
the internal resistance of the driver. The mini­
mum calculated amplitude was 695 mV, giv­
ing us a very high confidence of having at least
700 mV for any actual hardware.

Digital Tecbnica/Journal
No. 4 February 1987

The optimized termination has a differential
impedance of 37.6 ohms, which turns out to be
a better match for the measured impedances of
the rest of the hardware. An empty backplane
has a differential impedance of approximately
60 ohms, dropping to as low as 28 ohms when
fully populated; a jumper cable between back­
p lanes typically has a 45-ohm differential
impedance. The various possible VAXBI configu­
rations yield a maximum reflection coefficient
at any point of 0 .28; probable configurations
will have even smaller reflections.

Reflections of this magnitude could cause sig­
nificant timing variations in single-ended sys­
tems due to a fixed receiver threshold voltage.
However, they have no effect on a differential
line since the reflection is the same on both lines
of the differential pair. The only variation we
found was caused by the differences in imped­
ances on different printed circuit layers. Subse­
quent experiments indicated that improving the
matching of impedances by putting the differen­
tial pair on the same layer reduces the skew
more than the common-mode noise reduction due
to the mutual coupling of adjacent layers. Further
experiments showed that the clock system oper­
ates at frequencies at least 25 percent higher
than the design goal over all combinations of
bus configuration, voltage, and temperature.

The data lines exhibited more subtle prob­
lems. Our initial testing yielded results very
similar to our design predictions. As sufficient
hardware was assembled for a maximum config­
uration with heavy bus traffic , however, unex­
pected waveforms were discovered. The wave­
forms no longer exhibited the exponential
shape of an RC time constant; instead , they
resembled step functions with exponential ris­
ers . After due deliberation, we realized that ,
although the full time constant was fairly slow,
the initial slope, dV / dt , was much faster. There­
fore , its higher-frequency components traveled
down the line and were reflected several times
during the duration of an RC time constant ,
resulting in the staircase effect. SPICE simula­
tions yielded an identical waveform when a
transmission line, originally considered unnec­
essary, was included in the model. The overall
timing was not affected by the reflections. Fig­
ure 4 shows this waveform with its staircase
effect caused by incomplete termination of the
transmission line.

85

New Products

The VAXBI Bus - A Randomly Configurable Design

VOLTS

NANOSECONDS

Figure 4 Simulated Waveform from SPICE

A second, more significant, effect was due to
crosstalk, or coupling between the lines. To
meet the capacitance budget, the original physi­
cal design aimed to minimize the capacitance to
ground. An undesired result was that the mutual
capacitance from line to line, while still small,
became proportionally larger, thus increasing
the coupling from line to line. The voltage on
one line was affected by voltages on nearby
lines: transitions were aided by like transitions
and slowed by opposing transitions. In the worst
case , the magnitude of this variation was as
much as 24 nanoseconds.

This worst case occurred on a group of lines
in close proximity to a "spare" line, not con­
nected or terminated, which contributed addi­
tional mutual capacitance, thus enhancing the
coupling. This spare line, included to reduce
the need for engineering change orders to the
backplane , nearly needed an ECO for its
removal, which could have delayed several new
products. However, a timing analysis showed
that its removal was unnecessary. It should be
emphasized that this effect was not visible until
actual bus traffic, consisting of random data pat·
terns, was being transferred on a large bus con­
figuration. Test patterns were too small and too
regular to show these significant effects.

Simultaneous switching noise , described
above, was also investigated because its effect
was similar to the effect of crosstalk. All VAXBI
data signals except one were switched simulta·
neously, and the induced voltage was monitored
on the remaining line, which was fixed in the
high (inactive driver) state. Ground pins were
then broken off one at a time, the voltage being

86

measured after the removal of each pin . As a
result the induced voltage increased from an
insignificant level with 15 ground pins to more
than one volt with only 3 ground pins remain­
ing. With one more pin removed, the chip no
longer passed self-test. These results showed
that only a few ground pins are necessary for the
chip to operate, but 15 are needed to prevent
the addition of noise to the bus.

The timing analysis involved fabricating spe·
cial lots of 78732 interface chips with the
fastest and slowest possible process variations.
From these lots chips were selected at the abso­
lute specification limits. These chips were care­
fully measured in a range of configurations,
including one beyond the specified limits. Then
the timing margins were calculated over the
specified range of operating conditions. When
all possible worst-case conditions and the
effects described above had been included, the
calculated timing margin was reduced to
0. 5 nanoseconds. Design verification testing on
this worst-case system showed that it could still
operate at a frequency 10 percent higher than
that specified over the full operating range of
temperature and voltage.

Summary
The VAXBI bus was designed to a rigorous bus­
architecture specification. After minor adjust­
ments during design verification testing, the bus
met all the requirements of that specification.
In particular, this testing proved that the VAXBI
bus can operate independently of system config·
uration.

Several other points should be noted by bus
designers for future products:

1. Designing a product to a rigorous specifi·
cation, called top-down design, can really
work.

2. Differential signals are recommended for
critical timing. They are best located on
the same printed-circuit layer on a
module.

3 . Testing should be performed on real
hardware with real data, as closely as it
can be approximated during the design
process. Too often , the test patterns run
on test structures yield nothing but the
expected results . Testing should also
reveal unexpected problems, not simply
corroborate the design.

Digital TecbnicalJournal
No. 4 February 1987

4. Ground return paths require careful con­
sideration, particularly under conditions
of simultaneous switching.

Acknowledgments
The following people were invaluable in the
successful and timely conclusion of the VAXBI
project: Dana Blanchard, Frank Bomba, Bob
Chen, Norm Comma , Ron Desharnais, Rick
Gillett, Glenn Herdeg, Bill Lin, Bill Schmidt, Jim
Staples, Betty Ann Tyson, Bob Willard . Of
course, the VAXBI bus would not have been pos­
sible without the contributions of the VLSI team
responsible for the 78732 VAXBI Interface
Chip.

References

1. F. Bomba, R. Chen, and R. Gillett, "Gen­
eral Purpose Bus Eases Interaction of Dis­
tributed Resources," Computer Technol­
ogy Review , vol. VI , no. 2 (Spring
1986): 47-53.

2 . VAXBI Options Handbook (Maynard,
Digital Equipment Corporation, Order
No. EB-27271-46, 1986) .

3- R. Schumann and W. Parker, "A 32-bit
Bus Interface Chip," ISSCC Digest of
Technical Papers , vol. XXVII (February
1984): 147-148.

4. SPICE was developed by Lawrence Nagel
and Ellis Cohen of the Department of
Electrical Engineering and Computer Sci­
ence, University of California, Berkeley.

Digital TecbntcaJJournal
No. 4 February 1987

New Products

87

Michael W. Kement I
Gerald J. Brand

A Logical Grounding Scheme for
the VAX 8800 Processor

The treatment of ground as a signal conductor is crucial in achieving
high-performance computer systems. The impact of system grounding on
signal integrity becomes even more important as systems are connected
into networks. For the VAX 8800 CPU design, the authors.first identified
the sources of ground-conducted noise from the four ground systems: the
power and logic systems, and the safety and RF grounds. They then iso­
lated and defined the ground elements in order to specify an intercon­
nection strategy to guarantee the CPU's performance. Then the 1/0
subsystem grounding was established and f inally a system-to-system
grounding scheme was completed.

The design of the ground interconnection is
often given little attention in system design, at
least until it becomes crucial to system perfor­
mance and program development schedules.
The treatment of this interconnection as a signal
conductor greatly affects the electrical noise
levels. Ultimately, these noise levels are a criti­
cal factor in limiting the maximum clock speeds
and thus machine performance .

Field service personnel have long recognized
that many installation problems result from the
subtleties of grounding when cabling together
CPUs, mass storage devices, and peripherals.
Particularly difficult problems occur when
equipment comes from different vendors. The
traditional approach to solving these problems
has been to dispatch a seasoned field service
representative to the site with an assortment of
ground straps and other parts. Given the injunc­
tion to "make it work," he could, with enough
ingenuity and customer patience , bring about
satisfactory results.

As a consequence, early in the development
cycle the VAX 8800 project team set a high pri­
ority on the logical design of the ground system.
We knew that the 8800 would be used in large
networks, thus intensifying any problems with
ground-conducted noise. In fact, the inclusion
of the backplane interconnect, called the VAXBI
bus, ensured that many 1/0 ports with high
bandwidths would exist in close electrical prox­
imity to the logic backplane . Moreover, many of

88

the applications targeted for the product would
preclude its installation in the controlled envi­
ronment of a computer room, with its traditional
massive copper grounding grid beneath a raised
floor. The system components would be con­
nected for the first time at a customer's site. Our
goal was to require minimum site preparation
efforts; system components were designed to be
cabled together in a "plug-and-play" manner.

These product goals, coupled with the EMI/
RFI and system safety requirements of the inter­
national regulatory agencies, required an inte­
grated system philosophy for grounding and
shielding. The approach that we followed on
the VAX 8800 project involved three separate
but interrelated steps:

First, we identified the sources of ground­
conducted noise within the VAX 8800 and
devised ways to reduce that noise to the lowest
practical level. Next, we identified the intercon­
nections within the ground networks and con­
nected them in ways that controlled the ground
noise. There are four ground networks:

1 . Power return

2. Logic return

3. Safety, or ac power-fault ground

4. Radio frequency shield and chassis
ground

Finally, we extended the concept of system
ground in the VAX 8800 to large-system appl ica-

Digital Technical J ournal
No. 4 February 1987

tions and computer networks in an effort to
ensure optimal overall system performance. In
the majority of cases, these networks involve
mature products for which it is difficult to make
any internal configuration changes.

Ground Conducted Noise

Power System
The VAX 8800 power system consists of modu­
lar units of switching power regulators operat­
ing at 50 kilohertz (KHz). The total three-phase
ac power required for a typical application con­
figuration is about 5 kilowatts (KW). The hard­
ware implementation uses units from a family of
products called the Modular Power System, or
MPS, designed by Digital. These units yield low
and tightly controlled differential (normal
mode) noise levels for the de power that sup­
plies voltages to run logic.

Through their high electrical efficiency of
power conversion, such switching power sys­
tems have made possible the small sizes and low
weights of present computers. This power cir­
cuitry, however, has current spikes (dI/dt) as
high as 1 000 amperes per microsecond (µs) and
voltage slew rates (dV/dt) as high as 2000 volts
(V) per µs. These high slew rates, a conse­
quence of the pursuit of high efficiencies, can
produce significant noise problems. The rest of
this section discusses five of the most important
noise sources that we identified and resolved in
the power system.

Noise Currents

When high-voltage slew rates are present across
parasitic capacitances (i.e. , unintentional capac­
itance that is present as a consequence of a
physical metallic structure), a noise current In
will be generated:

In= Cp dV/dt

in which Cp is the parasitic capacitance.
One significant source of common-mode

noise in the MPS regulators is the parasitic
capacitance between the primary windings in
the high-frequency power transformer and the
solid-foil safety shield between the primary and
secondary windings. The use of this shield, con­
nected to a sheet-metal "safety ground," is one
way of complying with the international safety
regulations. 1

Digital Technical Journal
No. 4 February 1987

During normal switching-converter operation,
voltage pulses with rise times of approximately
1000 V per µs are applied to the primary. These
pulses cause capacitively coupled noise cur­
rents with peak amplitudes of approximately
200 milliamperes to be sent into the system
chassis, or safety ground. Figure 1 shows a sche­
matic representation of this process. The para­
sitic leakage inductance associated with the pri­
mary winding comprises a series-resonant
circuit with the shield capacitance. This noise
current has a decaying exponential waveform
with a frequency in the range of 5 to 10 mega­
hertz (MHz) and a repetition rate of twice the
switching frequency. Since many power con­
verters are used in the VAX 8800 system and
they are all synchronized to a common clock,
the noise currents tend to add. Current ampli­
tudes as high as 2 amperes were observed.

The most practical way to reduce this noise
source was to insert a damping resistance, Rd ,
that would reduce the Q of this resonant circuit
at the specific frequency range. Q is tradition­
ally defined as the ratio of reactive impedance
to resistance, and represents a measure of reso­
nant efficiency. The international safety regula­
tions, however, strictly limit the fault-current
impedance in this path. To meet both require­
ments, we inserted a ferrite bead on the shield
ground lead. This bead is made of ceramic ferro­
magnetic material that is electrically lossy. It
acts as a small inductance at low frequencies
and as a nearly pure resistance at high frequen­
cies. The bead does not block the fault currents
from a short circuit but does reduce the noise
current to the desired level. The noise ampli­
tude is reduced by two to four times and the
ring frequency reduced to about 1 MHz. Thus a
potentially serious cause of common-mode
noise current in the system is reduced at the
source to acceptable levels.

In new designs , more effective schemes
involving different shield configurations and
interconnections could be employed.

Power Line Filter

One of the more subtle (and ironic) sources of
common-mode noise current originates in the
power filter designed to reduce the electrical
noise emanating from the power line. Figure 2
depicts a schematic of a typical line filter ,

89

New Products

A Logical Grounding Scheme for the VAX 8800 Processor

PRIMARY
O~~~~~~+-~~~_.L~~~+'--~~-CURRENT

I
I
I

L

(Ip)

PRIMARY
VOLTAGE
(Vp)

NOISE
CURRENT
(In)

T1

PRIMARY I SECONDARY D1 Ls
l.,p

•

~
I I I I I I I I

Cs • l __ t (--J l ___ ~ (----]
I~ I

,----
....l-

~ D2 R,
I C1
L----

L,p = 1.2 x 10
6
H primary leakage inductance

Cp = Cs = 200 x 10·
12

picofarads primary and secondary parasitic capacitance to shield

Rd is the damping resistance provided by a lossy ferrite bead

Resonant frequency of In is Fo = [2..- (L,p x Cp)
112)°1 = 10.3 MHz

Resonant impedance Ro = (L,p/Cp)
112

= 775 ohms

With Rd = 0, In (peak) = Vp (peak)/Ro = 200 milliamps

With Rd = 500 ohms@ 10 MHz, In (peak) = 118 milliamps

Figure I Parasitic Capacitance of the Power Transformer

including the parasitic, or leakage , inductance
of the common-mode choke, 1 1 • The "Y" capac­
itors, Cy, are connected from either side of the
power line to the chassis , forming a high-Q res­
onant circuit with this leakage inductance . The
load current for this power filter is dominated
by the discontinuous current pulses of the
switching power converters , which provide

90

excitation for this resonant circuit. The result is
a resonant current pulse into the chassis with
each half-cyle of current in the power line.

Other considerations of signa l integrity
demand that an inductor be placed in series
with the power ground wire in the filter before
that wire is connected to the chassis. The resulting
ground impedance forces the resonant common-

Digital Tecb11icalJournal
No. 4 February 1987

POWER LINE FILTER r------------------------,
I I

LINE

PHASE

I L, :
I • ~

VuNE

GROUND
INDUCTOR

0.05 µFl
200 V I

I
0.05 µFi
200 V I

AC/DC
SWITCHING
POWER
CONVERTER

+

LOW VOLTAGE
VLOAD DC LOAD

(LOGIC)

A

1 µH I
-------------------------~

A

Figure 2 Power Line Filter

mode current to flow through the chassis of the
system, probably through the logic returns. If
the filter design has taken this parasitic reso­
nance into account, a series resistor or ferrite
bead, Ry, may be added to lower the circuit Q.
That reduces the common-mode current at the
expense of filter attenuation.

In the case of the 8800, many of the system
components had been designed and released
before this problem was fully appreciated.
Therefore, our only viable strategy was to segre­
gate this noisy ground by separating the logic
returns and chassis grounds to the greatest
degree possible.

Noise Voltages

The electrical dual of the noise source just
described is the generation of noise voltages

Digital Technical Jounial
No. 4 February 1987

across both real and parasitic circuit induc­
tances when rapidly changing currents flow
through them. This noise voltage is expressed as

Vn = Lp dl/dt

in which Lp is the value of inductance.
The most common source of noise voltage in

switching power converters is parasitic induc­
tances excited by the rapid rise and fall of cur­
rent in the transistor power switch and by the
reverse charge recovery in the rectifier diodes.
These abrupt transitions between the conduct­
ing and nonconducting states generate a very
high dl/dt. For example, the primary reset
diodes (D1 and D 2 in Figure 3) in the MPS con­
verters have very fast switching times of 30 to
50 nanoseconds (ns). As the diode current
rapidly goes to zero when the switch is turned

91

New Products

A Logical Grounding Scheme for the VAX 8800 Processor

+
300 V

Ls
- VN +

2

Ls
. 9

Ls - 300 x 10 H, Stray Inductance

Cos - 100 x 10·
12

F, Collector - Base Capacitance of a, and a,

NOTE: The screened components are not active;
a, and a, are off. The magnetizing current (IM) from T, is
resetting to zero through D, and D, to the 300 V source.

High-Frequency Equivalent Model

+rnLs Vnoise t IM
Cos - 2

Figure 3 Parasitic Inductance of the Power
Switching Stage

off, the circuit parasitic inductance will ring
with the capacitor in the switch-protective
snubber, C, . The frequency range will be from
10 to 30 MHz for typical circuit values. The
result is a differential noise voltage at the con­
verter output.

Our solution to this noise voltage source was
to install an appropriate ferrite bead on the
diode lead to damp the oscillations in this fre­
quency range.

Radiated Magnetic Flux
A substantially more difficult problem is caused
by rapidly changing magnetic fields that radiate
from the high-current secondary circuits in the
power converters. The output rectifiers can be
conducting as much as 200 amperes when they

92

switch off; the resulting di / dt can easily
approach 1000 amperes per microsecond. As
the current dies, the magnetic field surrounding
the secondary windings of these high-current
conductors will collapse. That induces a voltage
in other conductors enclosed by this magnetic
flux. According to Faraday's Law, this noise
voltage is

Vn = N d0/ dt

in which N is the number of turns in the other
conductors, and d 0 /dt, which is proportional
to di/ dt , is the rate of change of magnetic flux.
It is quite possible to develop volts of noise
across 2 inches of circuit board etch or a sheet­
metal panel through this effect .

The original designs of the MPS converter
tried to minimize this noise problem by making
the high-current loop areas as small as possible ,
thus minimizing the radiated magnetic flux. In
addition , copper Faraday shields and ground­
plane circuit boards were used. In spite of this
care , we encountered problems with circulating
currents induced in the mechanical support
structure in the VAX 8800 system design . As
with the power-line filter , we could not reduce
the noise at its source . Therefore , the only
viable solution was to take great care with the
chassis ground connection of these structures so
that the noise currents are directed away from
sensitive circuits.

The Logic System
A significant source of noise within the logic
system is the energy radiated from the inter­
connect cables from the 1/0 bus to the disk
controller. This noise radiates at a fundamental
frequency of about 47 MHz. The bus itself is a
high-speed, mass-storage parallel interface. The
interconnect cable is composed of individual
coaxial signal pairs that are transformer coupled
and driven differentially . However, the
impedance from the coaxial center conductor
to the outer overall shield is slightly different
from the impedance from the coaxial shield to
the outer shield. That is, both signal conductors
do not have equal impedances to the outer
shield, which is grounded to the chassis at each
end. The result is a net noise current that flows
on the outer shield. Within the VAX 8800 pro­
cessor, this current can couple into adjacent
cables.

Digital Technical Journal
No. 4 February 1987

The only practical method to minimize this
noise coupling was careful routing and dressing
of the interconnect cables relative to other com­
munication and power cables.

VAX 8800 System Grounding
This section describes the types of ground struc­
tures present in a large system like the VAX
8800 multiprocessor. As such a computer sys­
tem expands in size and complexity, its ground
connections also expand and their interrelation·
ships grow in complexity. To appreciate the
grounding scheme as a total system, the various
components must be isolated by function and
location. In that way the ground system can be
broken into its constituent elements. The indi·
vidual components can then be viewed as func­
tional blocks that require interconnection.

Although a designer can choose how to inter­
connect the ground elements, he is always con­
strained by the existing international regulations
in the implementation of the grounds.

Types of Ground Topologies
There are three choices of ground interconnec­
tion topology: single point, multipoint , and
hybrid. The single-point ground looks like a
wagon wheel with the ground in the center and
the other devices connected radially around the
hub. That center becomes the absolute ground
point, called the zero-voltage potential refer·
ence, for all devices. Multipoint grounding has
each device individually connected to a single
ground plane, all of which is at the same zero­
voltage potential. The hybrid is some mixture of
the single-point and multipoint topologies in
which interconnections are made based on the
characteristic needs of the subsystem functional
elements.

The single-point topology is not practical to
implement on a large system like the VAX 8800.
The physical distances and associated im·
pedances of the interconnects begin to domi·
nate so much that an absolute ground point does
not really exist. The multipoint ground requires
a ground plane, or grid, to be effective. Again,
in a large system, it is not practical to imple·
ment a ground plane into the physical layout.
The hybrid scheme has advantages over the
other two, but it requires a detailed evaluation
of the characteristics of each subsystem element
before an interconnection can be designed. That
was the approach we followed in designing the

Digital Tecbnlca/Journal
No . 4 February I 987

interconnection for the different ground types
in the VAX 8800 system.

DC Power Return
The de-to-de converters in the system required a
de current return that presented a low
impedance through the frequency range of de to
200 KHz. Our primary consideration was to
specify a conductor with a sufficiently large
cross-sectional area to keep the IR losses and
heating effects to a minimum. A secondary con­
sideration - often overlooked - was to mini­
mize the physical distance between the current
feed and the return. In a large system the cur­
rents involved can exceed 400 amperes. The
resulting flux can produce a large magnetic
field . This field is determined by the relation­
ship

Magnetic Flux = I X µ X A/I

in which I is the current, µ is the permeability
of air, and A the area and I the length of the con·
ductor. These leakage fields can couple into
adjacent devices, sheet metal, and cables. If the
flux has an ac component, a current may be
induced in adjacent conductors, as described
earlier.

A power supply in the MPS series used in the
8800 has a silver-plated bus as its main output.
That bus is mated to a large connector that is
mechanically mounted on the power backplane.
This connector is soldered to multiple epoxy·
coated copper strips that are 0.050 inch thick
by 2 inches wide. These strips are fusion welded
to a horizontal bar that is bolted to the inner lay­
ers of the CPU backplanes. The supply and
return straps are overlapped to minimize para­
sitic inductance and its consequent radiated
magnetic flux. The flat, wide geometry of the
connection is essential to minimize that flux .
(See Figure 4.) Minimizing this stray inductance
is also essential to obtaining rapid power-system
response to load transients with adequate stabil­
ity (phase margins) .

Logic Return
The logic return provides a common signal ref­
erence for the logic within the system. To mini·
mize noise this reference must be designed with
a low impedance at the frequency correspond·
ing to the logic switching speed. With logic
operating at rise times of 1 V per ns, or 300 MHz,
this reference is considered to be a radio

93

New Pr oducts

A Logical Grounding Scheme for the VAX 8800 Processor

frequency (RF) ground and thus can be mod­
eled as a frequency-dependent impedance. The
ground impedance at these frequencies is domi­
nated by the depth of penetration of current
into the conductor. The magnetic field sur­
rounding the current forces the density of cur­
rent to decrease from the surface value as the
depth into the conductor increases. In the limit­
ing case, as frequency becomes very high, the
current will flow as a sheet of charge at the sur­
face. The result is a steadily increasing real com­
ponent of impedance (resistance) with increas­
ing frequency. The point at which the current
density decreases to 1/E of the surface magni­
tude (approximately 37 percent) is one "skin
depth."

Therefore, the first step in calculating the
ground impedance is to derive the skin depth,
in meters, as follows:

Skin Depth = l/y1r X F X µ

in which Fis the frequency in Hz andµ is the per-

VAXBI POWER
FLEX-CIRCUIT POWER BUS

(D HORIZONTAL
LAMINATED CPU
POWER DISTRIBUTION
BUS

VAXBI - 1/0
BACKPLANES

CPU BACKPLANE

NOTES:

-5.2 V@200 A
POWER BUS

meability of air in siemens per meter. For exam­
ple, for copper, the skin depth is 0.0666/yFin
meters. After the skin depth has been deter­
mined, . the impedance at the frequency of con­
cern can be found using the sheet resistance of
the material. The specific resistance, R, is equal
top X L /A, in which p is the specific resistance
of the conductor, Lis the inductance, and A the
area. For copper, p equals 1.673 microohms per
centimeter.

Another major factor in designing a ground
plane is the voltage drop across the ground layer
at low frequencies (de to I KHz) as the total
load current is sent from the logic modules.
This voltage drop produces an offset in the logic
threshold from module to module that affects
the noise margins, or tolerance. The voltage
drop is a function of the sheet resistance of the
ground layer (directly proportional to the thick­
ness) and the method of termination of the
ground layers to the return buses. The connec­
tion geometry must be chosen to ensure a safe

-2.0 V@ 100 A
POWER BUS

+5.2 V@ 100 A
POWER BUS

@MPS
POWER SYSTEM
BACKPLANE

MEMORY BACKPLANE

1. The return, or logic ground rail, is connected along its entire length to the system chassis and
represents the system single-point connection of RF (chassis) power and logic ground.

2. MPS regulator rack is electrically isolated from chassis ground and connected through lossy
RF chokes.

Figure 4 Logic Power Distribution System

94 Digi tal TecbnicalJournal
No. 4 February 1987

maximum current density through the ground
layers. Current crowding, particularly at the
connection points and plated through-holes, can
turn the backplane into a toaster oven.

We used the inner layers of the CPU back­
plane as the logic reference for the VAX 8800
CPU. There are four ground layers, each
0.003 inch thick. Figure 5 illustrates the de
voltage-potential drop as a function of geometry
across the CPU backplane. The return current is
approximately 500 amperes; therefore, this CPU
backplane was the most challenging part of the
design.

-5.2000 V ------.------
-7.0 mV

-5.1930-J---"L,~:::r-J'~-;,t~7717t/A

1 2 4 6 B 10 12 14 16 18

BACKPLANE SLOT

NOTE: Measurements were made from corresponding local points
on the ground plane. It demonstrates the excellent control
over voltage drops provided by the internal ground and
power planes of the multilayer CPU backplane. Maximum
current available to these -5.2 V inner layers is 400 amps.

Figure 5 Distribution of the Backplane
Voltage for the - 5.2 V Power
Plane

AC Safety Ground
The primary function of a safety ground is to
provide a low impedance at 60/50 Hz, thus
allowing fault currents to follow a path with a
low IR drop. The design and implementation of
this path is strictly controlled by the interna­
tional regulations, to which all other uses of this
ground must comply. The safety ground also
acts as a signal ground in that it connects prod­
ucts to the ground grid of the building housing
the system. This connection can be detrimental
to the system's 1/0 signals. Thus it is advanta­
geous to add an impedance whose magnitude is
frequency and current dependent in series with
the safety ground. A saturating inductor meets
those requirements.

For a fault condition, Digital's internal design
standards require that a current of twice the

Digital TecbnicaJJournal
No. 4 February 1987

product's receptacle rating flowing through the
safety ground system must not result in a voltage
rise of more than 4.0 V, and this level must be
sustained for 10 minutes. With these require­
ments in mind, we used a 1.2-millihenry choke
to isolate the VAX 8800 CPU from the building
ground at high frequency. This choke was
designed to saturate as described above if a fault
occurs.

Chassis Ground
The RF shield comprises the chassis ground and
the outer panels of the cabinet. The federal reg­
ulatory agencies (FCC and VOE) set and enforce
the allowable limits of radiated emissions from
computer equipment. Since the integrated cir­
cuits within the system are switching at high fre­
quencies, they can be modeled as RF sources.
The interconnecting etches between integrated
circuits that are not tightly coupled to a ground
layer can be modeled as antennas.

The faster the clock and edge speeds, the
shorter the antenna needed to act as an effective
radiator. The length, in meters, of a full wave­
length is defined as 3 X 108/F.

Once this wavelength has been found, the
outer panels of the cabinet can be modeled as
an attenuator, which decreases the amount of
radiated energy that can be transmitted from
within the cabinet. To maintain this level of
attenuation, all openings, such as doors, must be
bridged with conductive gasketing or finger
stock. The openings for air flow must be treated
as a wave guide. The attenuation, in decibels, of
the opening is related to its size by the follow­
ing formula:

.0046 X l X F X \!5900 X F/gap2 - 1

in which Fis the frequency in MHz, and l is the
length and gap the width of the opening, both
in centimeters.

Ground Interconnections
within the System
Once the separate ground elements had been
defined, we began to formulate an orderly inter­
connection strategy for the main computer that
would not compromise the system's perfor­
mance. We used the same return path for both
the logic and the de power because there was
no dichotomy in the requirements for both
returns. In the VAX 8800, the junction of these
returns comes at the point where the horizontal

95

New Products

A Logical Grounding Scheme for the VAX 8800 Processor

bus bar (return) is bolted to the inner layers of
the logic backplane. (See Figure 5.)

Digital's internal standards, which meet all
the applicable international regulations, man­
dates that the de power return be connected to
the safety ground . This connection must be able
to withstand the short-circuit current of the de
regulator output. (In certain cases it may be
desirable to insert a frequency-dependent
impedance in series with this connection to
" isolate at frequency" an element of the system.
That could be done when creating a single-point
ground system - directly referenced to the
chassis - or a controlled hybrid -ground
system.)

In the VAX 8800 CPU, the de output could,
under fault conditions, produce approximately
400 amperes. Thus the interconnection must
handle this high fault current. This interconnec­
tion was accomplished by bolting the junction
node of the combined de-power and logic
return to the chassis for the entire length of the
horizontal bus bar. This portion of the chassis
was chosen as the connection point because it
was not used as a conductor for any other high­
frequency currents.

In summary, the grounding approach we used
for the 8800 featured the following design
points:

• The logic and de return and the chassis
ground are connected together at the hori­
zontal power-return bus.

• The power-system outputs and the chassis
ground are isolated from ground at RF fre­
quencies by high impedances using lossy fer­
rite inductors . DC currents and line-fre­
quency (50/60 Hz) fault currents may thus
flow unimpeded.

• Particular care was taken to minimize the
flow of logic-return currents through the sys­
tem chassis, thus isolating the peripheral
boxes (CI750 , BAI IAW, etc .) from the sys­
tem chassis ground . Insulated chassis slides,
shunted by lossy ferrite inductors, accom­
plished that isolation . Although there are still
common-mode currents with the ferrite
inductors, they reduce unwanted common­
mode noise voltages that can couple into cir­
cuits through parasitic inductances. That is a
far worse problem, as we demonstrated to our
own chagrin.

96

• The 1/0 panel bulkhead and the logic and
power returns for the VAXBI bus and memory
backplanes are tightly bonded to the single­
point ground at the CPU power-return bus.

• The elimination of circulating noise and logic
currents through the chassis will maximize
the effectiveness of the shielded cabinet as an
attenuator of radiated energy.

The implementation of this ap proach is
shown in Figure 6.

I /0 and Expansion of Grounding
Once the main processor's grounding had been
defined, we had to deal with grounds between
the external elements, such as the 1/0 subsys­
tem. The VAX 8800 system can accommodate a
large array of 1/0 devices by utilizing the VAXBI
architecture. The H9652 EC-ED cab has provi­
sions for two expansion boxes, the CI750 and
the BAI lAW. These boxes are self contained and
have integral power supplies, logic backplanes,
and interconnects. In keeping with our ground­
ing architecture, we isolated these boxes from
the chassis ground by using low-Q inductances.
The signal/logic ground was then established by
means of cables to the VAXBI-to-CPU backplane.
This scheme ensures that the chassis is not used
as a signal/logic return .

Sy stem to System Grounding
Grouping systems together or networking them
has a large impact on system noise and the sub­
sequent grounding techniques to eliminate it. In
terms of the signal-to-noise ratio and from the
aspect of grounding, a networked system can be ·
divided into two cases: the dense network, and
the dispersed network.

Dense Network
A dense network is a group of computers or sys­
tems with associated support hardware that is
located within one area, either an office or a
computer room. This area is likely to contain
systems from different vendors as well as phone­
switching networks, experimental equipment,
or industrial controllers and monitors. All these
devices share a common ground that could be a
grid or simply a branch ground as part of their
safety ground. This connection also provides a
signal reference between interconnecting
devices in the area through the chassis and

Digital Technical Journal
No. 4 February 1987

A
C

 F
R

O
N

T-
EN

D
 C

A
B

IN
ET

A
C

C

O
R

D

G
R

O
U

N
D

S

i-
--

--
-r

--
--

-,

::~g
;~~

y:
..

-
~

li
-
-
~

~
-+

~
~

~
~

~
~

~
~

-t
-~

~
-
,

I
Ir

I

I
I~

I

I
:~

I

I
I

I
c

I
L

 _
_

_
_

_
 L

 _
_

_
_

 J

B

B

'67
 -M

P
S

 C
H

A
S

S
IS

 (
IS

O
LA

T
E

D
)

w
 -CAB

IN
E

T
 F

R
A

M
E

~
 -

IS
O

L
A

 T
E

D
 B

O
X

 F
R

A
M

E

w
 -PER

IP
H

E
R

A
L

F
R

A
M

E

w
 -H717

0
 F

R
A

M
E

\fl
 -C

S
P

 F
R

A
M

E

--
,

;- 1 I I I

+
5

V

+
5

V
 :

~

~
~

-+
~

~
~

~
1

--
~

t-
t>

7
'\

7
7

"
7

'7
7

'7
-:

'r
7

7
,"

7
7

'~
7

7
~

'7
7

'"
T

.7
7

7
,'

7
7

r~
-,

-~
,-

-
V

A
X

BI

I I I I I
M

E
M

O
R

Y

I
I

L
-
-
-
-
-
-
-
-
-
-
-
-
.
.
.
J

8
7

6

P
O

W
E

R
 C

O
N

T
R

O
L

(P
R

O
 3

80
)

C
O

N
S

O
L

E

LA
S

O

P
R

IN
T

E
R

I I I I I
I

L
--

-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
--

J

r
-

1 I I I I I I
r

I 18

I I I I L
-
-

--
--

-,

~

0 0

M
P

S
 A

C
/D

C
 C

O
N

V
E

R
T

E
R

S

r
-
-
-

I C
S

P

I I I I I I I I i
I

L
 _

_
_

_
 J

N
O

T
E

S
:

1
.

T
h

e
 r

et
u

rn
 o

f
th

e
p

o
w

er
 b

u
s

fo
r

th
e

C
P

U
 b

ac
kp

la
n

e
is

 t
h

e
co

m
m

o
n

 c
o

n
n

ec
ti

o
n

 (
si

n
g

le
­

p
o

in
t

gr
ou

nd
)

fo
r

th
e

 l
o

g
ic

,
p

o
w

e
r,

 a
nd

 c
h

a
ss

is
 (

R
F

)
gr

ou
nd

s.

2.

T
h

e
 1

20
0-

pF
 c

ap
ac

ita
nc

e
is

 t
h

e
 t

yp
ic

al
 p

ar
as

iti
C

 c
ap

ac
ita

nc
e

b
e

tw
e

e
n

 t
h

e
 is

o
la

te
d

 M
P

S

po
w

er
-s

up
pl

y
ra

ck
 a

nd
 t

h
e

m
ai

n
ch

as
si

s.

3
.

T
h

e
 in

d
ic

at
ed

 c
o

m
m

o
n

-m
o

d
e

in
d

ic
at

o
rs

,
o

r
b

al
u

n
s,

 a
re

 c
o

m
p

o
se

d
 o

f
lo

ss
y

fe
rr

it
e

co
re

s
su

rr
ou

nd
in

g
th

e
bu

s
su

pp
ly

 a
nd

 r
et

ur
n

co
nd

uc
to

rs
.

4.

T
h

e
 in

d
u

ct
o

rs
 s

h
o

w
n

 b
et

w
ee

n
 t

h
e

"B
"

g
ro

u
n

d
 o

r
ch

as
si

s
an

d
 t

he
 s

u
b

as
se

m
b

lie
s

a
re

lo

ss
y

in
du

ct
or

s
de

si
gn

ed
 t

o
in

cr
ea

se
 t

he
 A

F
im

pe
da

nc
e

an
d

to
 p

re
ve

nt
 t

he
 c

lrc
ul

at
io

n
of

n

o
is

e
cu

rr
en

ts
 i

n
th

e
ch

as
si

s.

5
.

T
h

e
 i

n
d

ic
at

ed
 i

n
d

u
ct

an
ce

 i
s

th
e

st
ra

y,
 o

r
le

ak
ag

e,
 i

n
d

u
ct

an
ce

 i
n

th
e

p
o

w
e

r
co

rd
 i

so
la

ti
n

g

th
e

ca
b

in
et

s
fr

o
m

 a
c,

 o
r

ut
ili

ty
,

g
ro

u
n

d
.

F
ig

ur
e

6
S

ys
te

m
 G

ro
u

n
d

 S
ch

em
a

ti
c

A Logical Grounding Scheme for the VAX 8800 Processor

power line ground in a complex way. All these
devices can generate high-frequency currents
that flow into the ground. These currents must
flow through the complex impedance of the
grid where , consequently, RF voltages can
develop. Under those conditions the ground
would act as a noise injection point rather than
a stable reference.

Dispersed Network
The dispersed network is an interconnection of
computers or systems spread over a wide area,
perhaps residing on different floors of a build­
ing or in different buildings altogether. Commu­
nication on this scale cannot depend on a
mutual RF ground because it cannot be reason­
ably established. In this case, communication
must be accomplished by means of either trans­
former-coupled circuits, optical links, or differ­
ential driver/receiver logic.

Both types of networks illustrate the fact that
system networking cannot, and in some cases
should not, be accomplished by attempting to
create an absolute ground reference to the net­
work.

System to Peripheral Grounding
As a system expands with the addition of periph­
eral devices, such as disk drives, printers, and
LANs, the ground system must be viewed as a
large hybrid arrangement. Interconnecting these
devices must be predicated on the ground-cur­
rent characteristics (signature) and the 1/0 con­
nections of these devices to the system.

This signature is particularly important when
connecting devices that were designed to be
used as small, standalone applications. Their
designs may have involved decreased line-filter­
ing capabilities and minimally sized chokes for
ground isolation or perhaps none at all. It is
imperative that such factors be considered when
connecting peripheral devices to a large system.

Summary
We now offer some conclusions based on our
recent experiences with the VAX 8800 and
other new systems. These con cl us ions take the
form of recommendations for minimizing noise­
related problems in any computer system.

Ground Noise Current Signature
It is important to identify the spectrum of
ground-conducted noise for each subsystem ele-

98

ment. This noise depends on parasitic elements
in the circuits and electromechanical structure.
Therefore, this information is best obtained ·
empirically by measurements on the actual
hardware. The noise current amplitudes and
fundamental frequencies should be measured
on cable shields, chassis grounds, 1/0 logic
returns, and power inputs.

Segregation of System
Ground Networks
A ground system schematic should be developed
for each particular subsystem. The interconnec­
tion of ground types will be based on the
intended system application. As a general rule,
the ground types should be segregated to
account for the finite amplitudes and often
unpredictable paths of the noise currents. This
segregation of grounds (e.g. , power, chassis,
and safety grounds) can be accomplished by
carefully choosing the frequency-dependent
impedances. These impedances are lossy ferrite
inductors placed in series with the appropriate
ground connection.

Appropriate Signal and
Power Interconnect
The optimal signal interconnections are
designed as controlled-impedance transmission
lines with each signal and its return path closely
coupled and having equal impedance to the
chassis ground. Depending on the noise sensitiv­
ity, data rate , and interconnect length , the
implementation can range from coaxial cables
with overall shields to ground-plane ribbon
cables to ribbon cables with alternate ground/
signal pairs. Even the crudest, slowest signal
line that relies on chassis ground for a signal
return is doomed to failure if it is sensitive to
noise.

High-performance data lines should certainly
be designed with low-impedance differential
line drivers and rece ivers, either directly cou­
pled or transformer coupled. Single-ended line
drivers and receivers may be acceptable within a
subsystem in which the noise between grounds
is low and controlled. Communication through
unbuffered TTL outputs and inputs are never
acceptable when leaving a subsystem back­
plane .

The initial cost of and board space needed for
proper line drivers and receivers are more than
justified in today's distributed computing envi-

D igital TecbnlcalJournal
No . 4 February 1987

ronment. Their use increases reliability and
decreases start-up problems. The power inter­
connects should be designed with minimum
inductance and the lowest high-frequency char­
acteristic impedance that is reasonable. The cir­
culating path of supply and return power cur­
rents should be kept as low as possible . This
design allows better power-system transient per­
formance and ensures the existence of minimal
radiated magnetic fields.

Notes

1. A short circuit between the high-voltage
primary and the low-voltage secondary
could produce lethal voltages referenced
to the chassis ground at accessible points
within the computer. With this shield,
however, the short will produce a high
fault current to the chassis. That current
will open various protective devices ,
such as fuses and circuit breakers, that
render the system safe in the event of a
fault.

Appendix

Determining Skin Depth
To calculate the impedance of a given conduc­
tor, the depth of current penetration - or skin
depth - in a conductor must be calculated
first. To do that, a designer must perform the
following steps:

1. Determine the type of metal of which the
conductor is made (i.e ., copper, zinc,
etc.).

2. Look up in a reference table the magnetic
susceptibility of the material. (The CRC
Handbook of Chemistry and Physics
contains tables of this nature.) Two types
of listings of susceptibility are commonly
used. The first type gives values of
specific susceptibility that must be con­
verted by multiplying the value by 4 X 1r

X density of material, called P. For cop­
per, this value would be - 0.086 X 10-6

X 4 X 1r X 8 .89, which equals -0.960
X 10-5 _

The second type uses susceptibility in
one gram formula weight. This value
must be converted by multiplying it by 4
X 1r X density of material or molecular

Digital TecbntcalJournal
No. 4 February 1987

weight, which for copper would be
-5.46 X 10- 6 X 4 X 1r X 8.89/63.54,

which equals -0.960 X 10-5 .

3 . The resulting figure must now be con­
verted to relative permeability by add­
ing 1.0 to the susceptibility factor . For
copper, this value would be 1.0 -0.960
X 10-5, which equals 0 .9999904.

4. The relative permeability must be con­
verted to permeability by multiplying the
value from step 3 above by the perme­
ability of air (4 X 1r X 10- 7). For cop­
per , this value would be 0.9999904
X 1.25663 X 10 - 6, which equals
1.25662 X 10-6.

5 . The next piece of information needed is
the conductivity of the material used.
This value must be in the form of siemens
per meter, although most listings will be
in ohms per centimeter. To convert, mul­
tiply the table entry by 1 X 10- 2 and
then take the reciprocal. For annealed
copper, this value is 1/1.7241 X 10- 6

X 1 X 10 - 2 , which equals 5.8001
x 107 .

6 . The skin depth can then be determined
by the relationship l/(1r X frequency of
concern X conductivity X permeabil­
ity> 1'2. The result can be manipulated to
the form of l/(1r X conductivity X per­
meability) 1'2 / (frequency of concern) 112.
For copper, this value is l/(1r X 5.8001
X 107 X 1.25662 X 10- 6) 1'2, which

equals 0.06608/(frequency of concern)112.
For example, if the frequency of concern
were 1 KHz, then the skin depth would
be 2.089 X 10-3 meters, or 2 .089 mil­
limeters, deep.

If the frequency of concern were 50 KHz,
then the skin depth would be 295 micro­
meters.

99

New Products

Cheryl A. Wiecek I

The Simulation of Processor
Performance for the VAX 8800 Family

An effort was initiated in the fall of 1981 to simulate the performance of
the processor design for the VAX 8800 family of computer systems. That
simulation stayed current with the changing design and continues to be
used today for studies associated with developing VAX processors. This
paper discusses why this simulation was done, how it was structured, and
what was simulated. Since the results generated are quite extensive and
detailed, only the conclusions from these studies are presented here.
W'bat was learned from the model and bow it affected the processor
design are particularly emphasized.

Many levels of simulation are done within pro­
cessor development projects well before any
actual hardware is built. Structural models at
the circuit and gate levels are used in tasks such
as verifying timing and developing diagnostic
tests . Behavioral models at the function level are
useful for verifying processor instruction
microcode. Another useful class of models simu­
lates performance at the microcycle level. Such
models look at a processor's design as a collec­
tion of hardware resources that must be man­
aged. These models are most useful for gather­
ing design trade-off information and verifying
the design performance estimates. By emphasiz­
ing the key hardware resources and how they
interact, performance simulators can

• Focus on how those resources are being used

• Indicate how well they support the required
activities

• Provide a high-level view of the interactions
in the processor system

This paper describes the performance simu­
lator used on the project that developed the
VAX 8800 family of computer systems . This
modeling project began in the fall of 1981 , and
the simulator continues to be used today to
study alternatives for new VAX processor
designs. The following two sections discuss how
the simulator was designed and what was simu­
lated. The third section highlights the results
and discusses what was learned from them.

100

Methodology
The overall structure of the performance model
mirrors the structure used previously for the
performance simulation of a PDP-11 processor
design . 1 The model contains three parts, all
developed as separate entities:

• The instruction stream that is acted on by the
processor resources

• The microcode that directs instruction execu­
tion

• The simulation of the processor resources
and timing

These three parts are then combined to gener­
ate simulation results. The tasks performed to
develop each part are discussed in the following
section.

Workload Model
The most appropriate model for the workload
fed to the simulator is the streams of VAX
instructions from typical programs being exe­
cuted. Information about each executed instruc­
tion is required to obtain performance data at
the microcycle level about the processor and its
resources. The software used to extract these
execution streams had already been developed
from a previous project. That software is essen­
tially a debugger that uses the VAX T-bit to gen­
erate a software trap after the execution of each
instruction in the traced program. 2 That tracing
permits the collection of the next instruction's

Digital Technical Journal
No. 4 February I 987

operation code, the addressing modes and regis­
ters of the operand specifiers, the read and write
references, and the operand values.

The task of choosing which programs to trace
was bounded by a number of requirements and
constraints. One requirement was to provide
some initial performance estimates for the
VAX 8800 family processor. Those estimates
emphasized integer, logical, and floating-point
operations in CPU-intensive programs. Another
requirement was to select programs that exer­
cised the processor resources that we wanted to
model, especially the cache subsystem, where
capturing best-case, typical, and worst-case sce­
narios was important.

All the constraints involved the programs
from which instructions were traced. A reason­
able length for these programs was about one­
half million VAX macroinstructions, thus per­
mitting the simulator to process them in a
reasonable time . We avoided programs that
required extensive microcode characterization
for instructions that were either less frequently
executed or too complex, such as those in the
packed decimal group. Moreover, the trace soft­
ware was limited to processing executing pro­
grams that ran in nonprivileged user mode. Thus
we had to avoid programs, such as editors, hav­
ing extensive operating-system service calls ,
which could only be partially traced.

We chose six programs to drive the model.
These included four benchmarks and two popu­
lar utilities for creating executable images on
VAX systems. The number of iterations in the
four benchmarks was shortened proportionally,
keeping the mix of instructions constant to
retain their representativeness. Three bench­
marks were written in FORTRAN : Towers of
Hanoi , a prime-number generator, and single­
precision Whetstone ; one , called Puzzle , was
written in PASCAL. The other two programs
were a FORTRAN compile and a VAXjVMS link,
both written in BLISS. For all their constraints,
these programs exercised the model well. The
accuracy of the performance estimates was con­
firmed later by measurements on a prototype
machine.

Microcode Model
How microcoded instruction control is charac­
terized has a significant impact on both the
speed and results of a processor performance
simulator. For example , creating a model at a

Digital TecbntcalJournai
No. 4 February 1987

very detailed level permits a finer analysis of the
results, but takes a long time to develop and
run. Therefore, we had to decide what the trade­
off should be between time and detail. We also
wanted to stay current with the latest develop­
ments in the processor microcode , which we
knew would change significantly during the
project. With all that in mind, we decided to use
the latest version of the actual microcode
sources as the input to a unique process, par­
tially automated, that extracted the information
needed by the simulator. This strategy allowed
us to ignore details that were not required by
the simulator , as well as to keep up with
microcode revisions as they were released. A
useful by-product of this approach was the abil­
ity to produce microPC histograms with the sim­
ulator . This information helped to explain how
the microcode was being used.

One step in modeling the microcode is to
determine the control fields that are key to the
processor's performance. Only a small number
of the defined fields are actually needed. Many
microwords are effectively no-operation instruc­
tions for the simulated processor pipeline .
Table 1 contains the microword key for the per­
formance simulator. Each microword has three
fields: SRC, ALU, and DST. In any microword,
each field has a command subfield and up to
three operand subfields. (The address operands
generated by the trace software are actually
extracted as both the traced program and the
simulator are being run. The other operands and
commands are extracted from the microcode
prior to simulation execution.)

Before any actual microcode had been devel­
oped, simulated microwords were written man­
ually from microcode flows provided by the
group developing the firmware. Once the actual
microcode was available , a significant portion of
the performance simulation microcode was gen­
erated automatically by mapping real fields to
the small number of fields that the simulator
required. This automatic mapping of processor
microcode to that used in the simulator was
complicated by several issues.

One problem was that the microbranching
logic required additional information at simula­
tion runtime to decide which branch path to
take. To solve that problem, the firmware group
flagged microbranches by inserting comments
in their microcode . Those comments were then
caught by the microcode translation software ,

101

New Products

The Simulation of Processor Performance for the VAX 8800 Family

Table 1 Microword Key to the Performance
Simulator

Field Command Description Operands

Any No operation performed. None

SRC Stall if the memory data ASRC,
registers (MDRs) specified BSRC
by ASRC and BSRC are not
yet valid for input to the
arithmetic logic unit (ALU).

ALU Send a cache arbitration None
signal and stall the pipe-
line if it is not the winner.

DST Send the cache a read MDR
request for x Bytes starting number,
at Address, and set MDR Bytes,
number to valid when the Address
data is available.

DST Send the ca che a write Signal,
request with x Bytes of data Bytes,
starting at Address. The Address
value of Signal determines
whether hardware or micro-
code control sends the write
buffer data to memory.

DST Conditionally flush the 18 Address
and provide the cache
with a new Address for
prefetching IB data.

DST Send the cache notification None
of a new address for pre-
fetching 18 data once the
decoder handles the
IS-address page cross.

DST Send the cache a read/ None
write probe request.

which marked them for processing at runtime.
Another problem was that some VAX macroin­
structions had not been coded yet, and others
were more complicated than required for simu­
lation. (Many of the VAX floating-point instruc­
tions were in this category.) In those cases
sequences of handwritten microcode were used.

Processor Simulation Model
The structure of the processor simulation model
was driven by the need to provide timely
answers to questions asked by the designers.
The results had to be generated, verified, and
distributed as quickly as possible to be most
useful in design trade-off decisions. The require­
ments we considered most important were the
following.

102

• The simulator must have a modular structure
that facilitates replacing, reconfiguring, and
reusing routines while minimizing the
runtime overhead.

• A general-purpose control mechanism is
needed to manage communication and syn­
chronization betw.een a number of indepen­
dent tasks running in parallel.

• Extensive and flexible 1/0 features are
needed to generate cycle-by-cycle traces and
reports with simulated performance statistics.

• The ratio of simulated time to real time must
not be a bottleneck to obtaining results.

We chose a structure that favored changing
and reusing parts of the simulator, but which
ran slower, over one that ran faster, but was
hard to change. We did this knowing that the
simulator would be used to try many design
ideas that would eventually be discarded. The
simulator also had many parameters built in so
that different configurations and timings could
be tried. The structure we chose could be used
to evaluate many design alternatives. Since this
was the first VAX processor to be modeled this
way, we had to design and build all the software
for the simulator; none of it could be borrowed
from other projects. Therefore, we knew that
producing results quickly would be difficult.

The structure chosen required that the simu­
lated processor be partitioned into a number of
independent components, each modeled by a
deterministic state-machine. That machine
defined the actions to be done when each state
was entered, and the conditions to be evaluated
for deciding the next state transition. This
approach had several advantages. The hardware
designers could relate easily to state-machine
models of their particular designs, even though
the states in the simulator sometimes marked
performance-related events, not real hardware
states. This structure also made it possible to
replicate components and reconfigure the origi­
nal single-processor version of the simulator
into a dual-processor version.

A monitor is needed to control the communi­
cation, synchronization, execution, and status of
these independent state-machine components.
For communication between components, only
certain types of send and receive operations are

Digital TecbnicaJJournal
No. 4 February 1987

used. This restriction allows the component
interfaces to be simple and well defined. There
are three types of send operations:

1. A targeted send directs source informa­
tion to a single destination within the
current cycle.

2. A broadcasted send directs source infor­
mation to zero or more destinations
within the current cycle.

3. An arbitrated send directs source informa­
tion to a single destination, stalling exe­
cution of the sending component until
the information is delivered.

There are two types of receive operations:

1. A targeted receive results in the delivery of
source information from a send operation.

2. A collection receive is limited to probing
source information from a send opera­
tion; this information is used by the
model to make decisions.

The monitor keeps two queues for the com­
ponents: one for component send requests, the
other for component receive requests. The mon­
itor also synchronizes send and receive requests
on behalf of the components and reports errors
when undelivered send or receive entries
remain in the queues.

Synchronization between components is
achieved using the send, receive, and timing
services built into the monitor. The send and
receive operations allow the specification of a
phase number so that components can send and
receive information only at certain intervals
within the basic microcycle clock recognized by
the monitor. The monitor blocks components
from executing while they wait for send or
receive requests to be serviced. States within a
component can be designated as time sensitive .
When the next state to be executed within a
component is so designated, that component is
blocked from executing until the monitor incre­
ments the clock.

Execution proceeds on the basis of one
machine cycle. State-machine components are
chosen to execute, one at a time, starting at the
state at which each was last left. Component
execution continues until the required send,
receive, or timing service returns control to the
monitor. When all components have reached

Digital Technical Journal
No. 4 February 1987

states in which no more activity is possible for
the cycle, the monitor will increment the mas­
ter clock and the execution of components can
resume. End-of-simulation and detected-error
conditions cause the monitor to generate a
report of results by calling each component to
execute its report code.

The complete model for the VAX 8800 family
processor ran on a VAX-11/780 system and exe­
cuted about six VAX macroinstructions per CPU
second. That translates to a ratio of simulated
time to real time of about 90,000 to 1. The con­
trol monitor was written in PL/I; the processor
state-machine components were written using
VAX assembler macros. Once the ADA language
had been added to the list of VAX-supported lan­
guages, we translated the entire processor per­
formance simulation model into that language.
This new simulator is being used for follow-on
processor performance studies. The ADA lan­
guage was chosen because its multitasking fea­
tures provide excellent support for the control
monitor functions that we defined.

Verification of the Simulation Model
An important and often overlooked aspect of
developing a performance simulation model is
the effort required to verify that the model
reflects the actual design. In the early stages of a
project, the details of the proposed design are
usually communicated by word-of-mouth. Con­
tinuous changes to that original design enlarge
greatly the margin for error within a perfor­
mance simulator. Since wrong performance data
is counterproductive, a great deal of our effort
went into verifying that the simulation opera­
tion and results accurately reflected the current
state of the design.

Once the performance simulator produced
results, the designers reviewed cycle-by-cycle
traces of simulator activity to confirm that the
simulator's operation matched the processor
design. In addition, we developed a set of short
tests that exercised certain key functions. These
tests were rerun for each new version of the sim­
ulator, and the test results were exhaustively
compared to those from the previous version.
This procedure was effective in revealing unan­
ticipated interactions and errors due to changes
made in both the simulator and the design. As
the design progressed, we were able to compare
our simulation results with those from a behav­
ioral model used for debugging microcode.

103

New Products

The Simulation of Processor Performance for the VAX 8800 Family

Eventually, we could compare our results with
those from a working prototype system. Because
the mode l tracked the design's evolution
closely, these comparisons showed the perfor­
mance model to be an accurate representation
of the design.

Peifonnance Model for the
VAX 8800 Family Processor
This section describes the processor hardware
resources that were modeled. For each modeled
component, there is a short summary describing
its function , the information communicated
with other components, and the parameters that
can be specified at runtime to control simula­
tion configuration and timing. Although some
information about the VAX 8800 family proces­
sor design is included, reference 3 should be
consulted for more detail.

Figure 1 is an overview of the processor per­
formance simulator used for the VAX 8800 fam­
ily. The various components are represented by
circles, the communication paths by arrows. As
described earlier, each component is an inde­
pendent state-machine that communicates with
other components using defined send and
receive operations.

MICROINSTRUCTION

Figure 1 Performance Model for the
VAX 8800 Family

104

Decoder
The decoder state-machine sends the pipeline a
microinstruction during every unstalled cycle
and detects the end-of-simulation condition. To
do those actions, the decoder requests bytes
from the instruction buffer (18), using informa­
tion provided in the instruction trace. When the
18 indicates that the requested bytes are avail­
able, the appropriate microcode flow is chosen
to start execution. If the 18 cannot deliver the
requested bytes, then no-operation microin­
structions are fed to the decoder. The decoder
must also communicate with the cache control.
For example, the decoder must resolve any 18-
address page crosses detected by the 18 prefetch
hardware in the cache. Also kept by the decoder
is a parameter that controls the number of VAX
instructions executed between cache flushes
due to context switching.

Pipeline
The pipeline state-machine simulates how
microinstructions provided by the decoder are
to be executed. During any one cycle, parts of
three consecutively queued microinstructions
are processed:

• The DST field of the oldest microinstruction

• The ALU field of the next microinstruction

• The SRC field of the microinstruction most
recently queued

For every cycle that the pipeline is not
stalled, the oldest microinstruction is retired
after the command in its DST field has com­
pleted. The actions performed by the pipeline
are described in Table 1. The pipeline can send
flush requests to the 18, and processor read and
write requests to the cache (after arbitrating and
winning it). The pipeline also manages the vali­
dation of the memory data registers (MD Rs).
Pipeline stalls that result from those actions are
made known to the decoder. The only pipeline
parameter the user must enter is the cycle time
in nanoseconds, used for calculating perfor­
mance data at the end of simulation.

Instruction Buffer
The 18 state-machine simulates a first-in, first­
out (FIFO) cache for VAX instruction stream
data. The IB accepts requests for bytes from the

Digital Technical Journal
No. 4 February 1987

decoder and notifies it whether or not the bytes
are available. The IB model does not actually
store any stream data; however, it does manage
the count of valid bytes within IB longwords as
that data is shifted in and out. The cache-control
component prefetches data for the IB and also
notifies the IB of prefetched data whenever no
other activity is scheduled for the cache during
a cycle. When full , the IB notifies the cache
control of that condition. In turn, the IB is noti­
fied by the pipeline model when it needs to be
flushed due to a change in the instruction
stream sequence.

The configuration of the IB is controlled by
two parameters: the number of blocks, and the
number of bytes per block. For the VAX 8800
family processor, the IB has four blocks, each
four bytes long.

Cache Arbiter, Control, and Queues
From the viewpoint of performance, the cache
subsystem in the VAX 8800 family processor
contains an important set of resources . This
cache design was modeled in the simulator by
three state-machine components: the cache
arbiter, the cache control, and the cache mem­
ory-request queues. From the viewpoint of per­
formance simulation, these functions were the
most independent ones that could be segre­
gated.

The cache arbiter state-machine collects
requests from the three components that require
cache service. The first, the pipeline model ,
sends read/write arbitration signals for the pro­
cessor. The second, the cache-control model,
sends read arbitration signals for a stalled-pro­
cessor condition. The third, the memory inter­
connect model, sends memory arbitration sig­
nals. During every cycle, the arbiter sends to the
cache control the arbitration winner that will
have the cache during the next cycle. There is a
fixed priority for choosing an arbitration win­
ner. Memory has the highest priority, followed
by processor reads and writes of various types;
cache IB prefetching (the default) has the low­
est priority. The cache-control and memory­
request queues models also provide status infor­
mation used in deciding an arbitration winner.
Certain types of stalls result in no winner. The
arbiter model requires no parameters to be
specified by a user at runtime.

Digital Technical Journal
No. 4 February 1987

The cache-control state-machine is the center
of the performance simulation model in the
sense that it communicates with all but one of
the other state-machine components. The hard­
ware resources managed include the combined
instruction-stream-and-data cache, and a long­
word delayed-write buffer used to hold write-hit
data until it can be written into the cache. Like
the IB, the cache control model keeps control
and status information only for the cache and
the write buffer. During every cycle, the cache
control acts on the request chosen during the
last cycle by the arbiter. That request can be a
refill from memory, a read lookup and the
appropriate cache hit or miss activity, or a write
to the delayed-write buffer and memory. For a
cache-write request, the data in the delayed­
write buffer is written to the cache when the
next write request is processed, and then only if
the address of the buffered write actually hit in
the cache. If there are no memory or processor
requests, data is prefetched for the IB automati·
cally, by default.

A. number of parameters can be specified at
runtime within the cache control, most of them
specifying the configuration of the cache. Such
configuration parameters include

• Switching the cache on or off

• The cache size in bytes

• The set size

• The block size in bytes

• The block fill size in bytes

• The block replacement algorithm (random,
least recently used, or FIFO)

• The memory updating algorithm (write back
or write through)

• Allocation for write misses

Control does not exist for all possible
cache options in the processor model for the
VAX 8800 family, but the cache routines do
support them. The implemented cache configu­
ration is 64KB, direct mapped with 64-byte
blocks and a 32-byte block fill (done as two sep­
arate 16-byte refill sequences) . It features write­
through memory updating and no allocation
for write misses. For study purposes, another

105

New Products

The Simulation of Processor Performance for the VAX 8800 Family

parameter was included that allows either one­
or two-cycle read hits to the cache. The VAX
8800 family processor design implements one­
cycle cache read hits .

The cache memory-request queues state­
machine manages the IB read-miss queue , the
processor read-miss queue, and the write-buffer
queue. The IB read-miss queue has two ele­
ments , thus allowing two outstanding misses for
IB data. A third outstanding miss will replace
the second one, thus avoiding a pipeline stall.
The processor read-miss queue has one element;
therefore, two outstanding read misses will stall
the pipeline. However, processor read hits are
allowed to continue with one outstanding read
miss . The write-buffer queue consists of two
octaword (16-byte) elements . Consecutive
writes within the same octaword are buffered
until an event forces data in the write buffer to
be sent to memory. That event can be encoun­
tering either a write that is not in the same octa­
word or a microcode control command . The
cache control sends read -miss and write
requests to the appropriate queue . If a queue is
full , a signal tells the cache control that no
more requests can be accepted.

From the cache queues, requests to memory
are generated and sent to the memory intercon­
nect after the arbitration for that interconnect
has been won. These requests are prioritized to
facilitate choosing which of three possible
requests will be sent to the memory intercon­
nect at any point in time . To maintain the rank­
ing, a two-bit counter will increment only on
the appearance of a write following a read. The
request chosen is the one with the lowest rank
count. If two requests have the same ranking,
priority will be given first to the write, then to
the processor read, and finally to the IB read.
The cache queues component has one parame­
ter that can be specified at runtime: the number
of cycles that a request ready to be sent to the
memory interconnect must remain queued. The
final processor implementation required only
one cycle, although this timing was not known
when the model was built.

Memory Interconnect
The memory interconnect state-machine handles
requests between the cache queues and mem­
ory. Transactions requiring one or more cycles
on t he bus include cache-refill data, in octa­
word packets, from memory; processor-write

106

requests of up to an octaword in size; and pro­
cessor data- or instruction-read requests for
32 bytes (returned from memory as two octa­
word packets) . Until transmitted, each transac­
tion " owns" the bus. A one-cycle settle time is
required between transactions as well. Arbitra­
tion for the bus occurs during every cycle to
choose a winner for the next cycle. Priority is
gi ven first to the current transaction holding the
bus, then to the one-cycle settle time , then to
memory, and finally to any pending write or
read from the cache. A cache request to memory
is queued during the cycle after the request was
transmitted on the bus . The timing of subse­
quent cache requests for memory is controlled
by the sum of two parameters specified at
runtime . These parameters are

• The number of cycles between the time a
cache request transmits on the interconnect
and the time the cache receives an acknowl­
edgment from the bus

• The number of cycles between the time the
cache receives the bus acknowledgment and
the time the next cache request can transmit
on the bus

The VAX 8800 family processor implementa­
tion has a value of two for each parameter ,
although this timing had not been determined
when the model was created . Several other
parameters were included in the memory inter­
connect state-machine for study purposes. The
one-cycle settle time can be enabled or disabled,
and the interconnect can acknowledge configu­
rations with either one or two processors. We
also included the capability to slow the memory
subsystem , relative to the processor/cache
request timing, by either two or three times.

Memory
We had considered modeling in detail the
designs for both the memory controller and the
array module . The effort required was so substan­
tial , however, that we first modeled only the
best- and worst-case scenarios. The ensuing
results indicated that extra detail in the model
would not yield correspondingly enlightening
information ; therefore , the memory state ­
machine models only best- and worst-case mem­
ory performance. The choice of best- or worst­
case is a pa rameter specified by the user at
runtime .

Digital Technica/Journa/
No. 4 February 1987

The best-case memory model assumes memory
is never busy and can take requests from the mem­
ory interconnect whenever they are generated.
Thus instead of the eight memory-array modules
the processor is limited to, this model effec­
tively simulates an infinite number of modules
with no contention for specific ones. The only
parameter the user must specify is the number
of cycles between the time the read request
reaches memory and the time memory arbitrates
for the memory interconnect to return requested
read data to the cache. The implementation has a
value of approximately 14 cycles, which reflects
the memory read latency. Write requests for
memory are simply delivered; no further action
has to be taken.

The worst-case memory model assumes only
one array module is available to handle read and
write requests. Requests for memory are queued
in a buffer for processing by the array module.
When all queue elements have requests, a mem­
ory-busy signal will inhibit the memory intercon­
nect from sending additional requests until a
queue element is available. A number of parame­
ters can be specified by the user at runtime to
control the timing of requests within the mem­
ory controller and the array module . One
parameter is the length of the memory-request
queue, a value from one to eight. The processor
design used a value of three for this queue
length. The other parameters are the numbers of
cycles required for various operations, as
described below. The actual value specified for
the processor design is contained between the
parentheses following each parameter's descrip­
tion. These parameters are

• The time a request must be queued before
processing in the array module (2 cycles)

• The time required by the array module to
process a read (12 cycles)

• The time required by the array module to
process a write (9 cycles)

• The time required by the array module to
process read data for a masked write (2
cycles)

• The time required for a refresh of the array
module (12 cycles)

• The time between array refresh signals (300
cycles)

Digital TecbnicaJJournaJ
No. 4 February 1987

Processor Resources Not Modeled
In addition to some of the microcode and parts
of the memory subsystem, several other parts of
the design are not simulated. The translation
buffer that contains virtual-to-physical address
mappings is not modeled. (The design has a
1024-entry, direct-mapped translation buffer,
half of it for system-space addresses, the other
half for process-space addresses.) 3 The logic
and microcode that handle alignment traps are
not modeled. Any unaligned addresses associ­
ated with processor read and write requests for
the cache are automatically aligned by the simu­
lator. Finally, no 1/0 traffic is generated on the
memory interconnect to compete with proces­
sor and memory traffic . These omissions could
impact the simulated performance of some pro­
cessor designs for some workloads. However,
their exclusion from this model did not impact
the performance estimates generated for the
processor with the set of workload programs
used.

Evolution of the Model
Before presenting studies done with the proces­
sor performance simulator, we should examine
how the model evolved. Our most significant
achievement was to continue developing the
model even as project goals changed and as the
design materialized over time . This continual
adjustment resulted in a model that reflected
the latest design and could be used in new
design studies.

The first version of the simulator was not
very detailed . It included the pipeline ,
the instruction buffer, the cache arbiter, a cache
shell , and some hand-coded microcode for
evaluating operand specifiers and for a limited
number of VAX instructions. No lookup was
done in the cache shell. A parameter specified
the hit and miss percentages desired, and
random number generation was used to decide
the lookup results. Runs were made with
both two and four IB longwords, and 90 and
100 percent hit rates in the cache; the workload
was the Towers of Hanoi benchmark . Two
important results were indicated: first, the per­
formance was in line with the stated goals; sec­
ond, it was desirable to have more than two IB
longwords.

107

New Products

The Simulation of Processor Performance for the VAX 8800 Family

At that point, a more aggressive set of design
goals was set by engineering management .
Therefore, the next version of the simulator
modeled more of the detailed implementation
that was evolving . This detail included the
decoder, the cache-control and memory-request
queues , and the memory interconnect. We
developed microcode translation software and
used the first base-level microcode released to
control the model. Some custom coding was
done to accommodate single-precision floating
point instructions that were needed. Both hard­
ware and microcode bugs were uncovered dur­
ing the design and verification of this simulator
version, thus increasing its value to the designers.

Perfonnance Simulation
Results and Studies
Using the simulator just described , we carried
out a number of studies to verify the processor's
performance and to examine design alternatives .
Since the detailed results are very extensive, this
concluding section outlines the kinds of perfor­
mance information gathered and highlights a
number of studies that were done.

Performance Information Gathered
Information provided by a performance simula­
tor falls into four areas:

1. Measuring the performance of a program
on an existing processor and then tracing
that same program to drive a processor
simulator are used to produce a relative
performance estimate for the proposed
processor. (Of course, this comparison is
reasonable only if both processors are
implementations of the same architec­
ture .) The information needed to make
the comparison includes the following:
the total number of instructions exe­
cuted, the execution time required, and
the cycle time on the measured system, as
well as the total number of instructions
simulated, the total cycles required, and
the proposed cycle time on the simulated
system. The VAX-11 /780 processor was
used as the comparison machine for gen­
erating performance estimates relative to
the VAX 8800 family processor design .

2. Simulating the use of resources within
processor system components produces
information about how efficient each

108

component is in processing requests and
how well the components interact.
Knowing what requests are received and
what percent of the time component
resources are stalled or busy (and why)
provides insight into the overall system
performance. We found that presenting
this detailed information in terms of aver­
ages-per-instruction was an effective way
of summarizing the activities. This infor­
mation helped the designers in making
hardware design decisions at a low level.

3 . Varying the parameter values in a simula­
tor and comparing the results produces
useful information to evaluate high-level
design and configuration decisions. Since
the VAX 8800 family processor design
was modeled, a number of studies have
been done to evaluate schemes that could
be used in new processor designs.

4. Analyzing the instruction stream data from
the trace that drives the simulator pro­
duces information about how the archi­
tecture's instruction set is used. This type
of information helps designers decide
which optimizations are most beneficial ,
especially in the microcode flows . Gath­
ering this information generally does not
require processor-specific functions in
the simulator. Therefore , the simulator
does not produce that information. For
our purpose , the information was gath­
ered from another package of analysis soft­
ware. 4 Only individual VAX instruction
times that were specific to the VAX 8800
family processor came from the simulator.

Highlights from Simulation Studies
Initially we used the Towers of Hanoi, the prime­
number generator , and the single-precision
Whetstone benchmark to drive the model. From
it we derived results indicating that the perfor­
mance of the VAX 8800 family processor was
between 4.5 and 5.6 times that of a VAX-11/780
processor. The designers made one change based
on the resource utilization statistics the simula­
tor generated. Cache read hits had required two
cycles, rather than the usual one cycle , when the
read address also matched a valid delayed-write
buffer address. This number was changed to one
cycle when the simulator showed the frequency
of this event was higher than antic ipated .

Dtgttal Tecbntcal]ournal
No. 4 February 1987

Once the basic processor design had been
successfully modeled, work focused on broad­
ening the microcode coverage and simulating
various alternatives. Better microcode coverage
allowed more programs to be traced and run
through the simulator. We wanted to use more
diverse programs, like the FORTRAN compile
and the VAXjVMS link, to exercise the design
using the simulator. Alternatives such as cache
flushing to simulate context switching, the
worst-case memory model, and the dual-proces­
sor version were also added . To study the
model's behavior, we ran many simulations ,
varying the basic processor configuration and
comparing results to detect the effects. Even
today, this work continues as new design ideas
surface .

The following list shows the VAX 8800 family
processor simulation parameters and configura­
tions that were most sensitive from a perfor­
mance point of view:

• Context switching, simulated by invalidating
all cache entries every n VAX instructions,
showed a performance degradation from
8 percent when done every 10 ,000 instruc­
tions, to 23 percent when done every 2,000 in­
structions. We chose an interval of 5,000 in­
structions for the simulator , which is a
conservative estimate. (The degradation was
13 percent for 5,000 instructions.)

• A timing requirement of two cycles for read
hits in the cache , rather than one cycle as
implemented in the VAX 8800 family proces­
sor design, degraded the simulated perfor­
mance by 9 percent.

• The latency time for memory reads decreased
performance by about 0.75 percent for each
additional cycle of latency.

• The worst-case model for memory, using only
one array module, required 14 percent more
cycles than the best-case model. (This result
contributed to our decision to use only the
best and worst cases.)

• A slow memory interconnect and controller
relative to the processor degrades the perfor­
mance gains when a faster processor is used.
Doubling the processor speed by cutting the
cycle time in half increased performance by
only 1. 5 times over that of the slower proces-

Digital TecbnicaJJournal
No. 4 February 1987

sor with the same memory. Tripling the
speed increased performance by only 1. 7
times.

• Enhancements made in the FORTRAN com­
piler for generating code had a great impact
on the instruction stream traced, as well as on
the performance estimates derived using the
FORTRAN benchmarks. This improvement
was particularly noticeable for the FORTRAN
compiler released with VMS Version 4.

Summary
The development of the VAX 8800 processor
performance simulator continued throughout
the entire project. The simulator helped to ver­
ify the attainment of performance goals and pro­
vided performance trade-off information to the
designers. The model's results fostered discus­
sions about interfaces, helped the designers to
find problems, and uncovered unanticipated
interactions. The simulator continues to con­
tribute to current processor design efforts
through its use in studying the performance
impact of alternatives.

ln addition, we learned a number of impor­
tant lessons that will be useful in designing
future simulators. First, it is important to
develop the basic processor simulation func­
tions as early as possible in a design project.
Having a general-purpose cache model that can
be called and controlled from different proces­
sor implementation models is one of the most
important functions.

Second, defining and developing a monitor to
control the various parts of a simulator, apart
from implementing the particular design, has
significant implications for designers of perfor­
mance simulators. Having separate control func­
tions allows the implementor to concentrate on
understanding the design to be modeled, as well
as to take advantage of features provided by the
control monitor to debug the model. Separating
control from the simulated design, however,
does not result in a simulator with the most
optimized runtime performance.

Acknowledgments
I had the support of many people in developing
the performance simulator for the VAX 8800
family processor. The processor hardware and
firmware teams explained the design, reviewed

109

New Products

The Simulation of Processor Performance for the VAX 8800 Family

the results, and encouraged the effort. Simon
Steely and Mark Firstenberg helped to design
and implement the original simulation tools.
Peter Craig developed the microcode characteri­
zation process and software. Eric Rasmussen cre­
ated the dual-processor version of the simulator
and the ADA performance simulation model.

References

1. C. Wiecek and S. Steely, "Performance
Simulation as a Tool in Central Process­
ing Unit Design," Performance Evalua­
tion Review, vol. 11 , no. 1 (August
1979): 4 1-47.

2. T. Leonard, ed. VAX Architecture Refer­
ence Manual (Bedford: Digital Press,
Order No. EY-3459E-DP, 1986) .

3. S. Mishra, "The VAX 8800 Microarchitec­
ture," Digital Technical Journal (Febru­
ary 1987, this issue): 20-33 .

4. C. Wiecek, "A Case Study of VAX-11
Instruction Set Usage for Compiler Exe­
cution," ACM Proceedings of the Sym­
posium on Architectural Support for
Programming Languages and Operat­
ing Systems (March 1982): 177-184.

11 0 Digital Technical Jounial
No. 4 February 1987

Stuart J. Farnham
Michael S. Harvey

Kathleen D. Morse

VMS Multiprocessing on the
VAX 8800 System

Some features of the VAX 8800 architecture are particularly relevant to
multiprocessor operation. Special hardware, not included in the VAX
architecture, allows the VMS operating system to use both CPUs in an
asymmetric, tightly controlled fashion. The processors operate in a
master-slave relationship with one CPU handling all l/0. The hardware
bandies interprocessor interrupts, cache coherency, and shared mem­
ory. VMS uses the interprocessor interrupt in managing operations
between the master and slave CPUs. The VMS system also uses interlocked
instructions, exception handlers, and traps to handle multiprocessing.
These instructions allow events to be scheduled and executed efficiently
on both processors.

Every computer system is a combination of hard­
ware and software architectures, the operating
system being a direct result of their merger. The
same operating system can be implemented on
different hardware systems with the same archi­
tecture, but a user can access only those features
that each set of hardware can suppon. The most
effective merger is the one allowing users of the
resulting operating system to make maximum
use of all the features designed into both the
hardware and software architectures. 1 The
VAX 8800 multiprocessor is an example of the
result of such an effective merger.

The VAX Architecture and
Multiprocessing
Many of the VAX 8800 hardware features impor­
tant to VMS multiprocessing are defined by the
VAX architecture for single-processor and multi­
processor systems alike. 2 These features include
the processor modes, 1/0 and software inter­
rupts, exception handling, asynchronous system
traps (ASTs), and interlocked instructions. This
section briefly describes these features, which
are discussed in more detail later.

Processor Modes
The VAX architecture defines four modes in
which a processor may execute. In order of
decreasing levels of privilege, these modes are

Digital TecbntcaJJournal
No. 4 February 1987

kernel, executive, supervisor, and user. Most of
the critical resource management code in the
VMS system is executed in kernel mode; in fact,
some instructions can be executed only while in
that mode. Two examples of such instructions
are LDPCTX and MTPR (move to processor reg­
ister). LDPCTX loads the context (stacks, page
tables, and so on) of a process into a CPU so that
the process can execute. MTPR is used, among
other things, to enable, disable, or trigger cer­
tain interrupts during resource management.

Interrupt and Exception Handling
The VAX architecture supports the immediate
servicing of important events by means of a
mechanism that can transfer control away from
the currently executing process. Events that are
primarily relevant to and normally invoke soft­
ware in the context of the currently executing
process are called exceptions. Events that are
relevant to other processes, or to the system as a
whole, are called interrupts, which are serviced
in a system-wide context. 2 The VMS operating
system provides a handler routine for each
exception and interrupt defined by the VAX
architecture.

Upon system startup, the VMS operating sys­
tem initializes a system control block (SCB),
which defines the locations of the various event
handlers, as shown in Figure 1. The SCB contains

111

VMS Multiprocessing on the VAX 8800 System

. . .
TRANSLATION NOT VALID (PAGE FAULT) EXCEPTION . . .

CHANGE MODE TO KERNEL EXCEPTION

CHANGE MODE TO EXECUTIVE EXCEPTION

CHANGE MODE TO SUPERVISOR EXCEPTION . . .
INTERPROCESSOR INTERRUPT

SOFTWARE INTERRUPT LEVEL 1 (UNUSED)

ASYNCHRONOUS
SOFTWARE INTERRUPT LEVEL 2 - SYSTEM TRAP DELIVERY

SOFTWARE INTERRUPT LEVEL 3 - RESCHEDULING . . .
SOFTWARE INTERRUPT LEVEL 15 - XDELTA

10 MILLISECOND INTERVAL TIMER INTERRUPT

. . .

Figure 1 System Control Block

an assigned longword that holds the address of
the handler for each interrupt and exception
serviced by the operating system.

Interrupts and exceptions have varying
degrees of urgency. Each event has a specific
interrupt priority level (IPL) that designates the
relative priority of that event. The VAX architec­
ture includes 31 IPLs, divided into 15 software
levels (numbered, in hexadecimal , 01 to OF) ,
and 16 hardware levels (10 to IF). User appli­
cations and system services run at the process
level, which may be thought of as IPL 0 . Inter­
rupt levels with higher numbers have higher
priorities. That is to say, a request at an IPL
higher than the processor ' s current IPL will
interrupt immediately; requests at the same or
lower levels will be deferred. 2 The interproces­
sor interrupt and the IO-millisecond (ms) inter­
val-timer interrupt are examples of hardware
interrupts. The rescheduling interrupt and the
AST-delivery interrupt are examples of software
interrupts.

Software executing in kernel mode posts a
software interrupt by setting the appropriate bit
in the software interrupt request register

112

(SIRR) . A bit exists in the SIRR for each software
interrupt level. An interrupt can take place only
when the IPL level of the CPU has been lowered
below that of the pending interrupt. For exam­
ple, the handler for the interprocessor interrupt
(executing at IPL 20) can post a reschedule
event (a software interrupt at IPL 3) by setting
the appropriate bit in the SIRR. When the CPU's
IPL drops below IPL 3 , the IPL 3 interrupt han­
dler is invoked, which is the VMS code that ini­
tiates process rescheduling .

This technique allows high IPL code threads
to schedule lower IPL functions in a way that
allows all potentially interrupted code threads
at intermediate IPLs to complete first. Should a
higher IPL code thread merely lower the IPL by
force to execute the lower IPL function , any
intermediate IPL code threads that had been
interrupted would complete out of order, thus
breaking the software synchronization .

AST Delivery Mechanism
In any mode, the VAXjVMS system can interrupt
a code thread executing at IPL 0 , begin a new
code thread (also at IPL 0) , and then continue
the previously interrupted code thread. This
mechanism is called " delivering" an AST. The
hardware notifies the operating system that an
AST is deliverable to the currently executing
process by means of an interrupt at IPL 2. (Note
that this is the only instance of the VAX hard­
ware posting a software interrupt) . Any process­
context code thread that must execute without
interruption by an AST has to be executed at
IPL 2 or higher. If a deliverable AST is queued to
the current process and the IPL of the CPU
drops below 2, then an IPL 2 interrupt will be
generated. To execute that interrupt, the IPL 2
interrupt handler first verifies that the AST can
be delivered and then delivers it to the process,
after which the new code thread associated with
the particular AST is executed.

An AST code thread is associated by a process
with events that are expected to complete asyn­
chronously to the main thread of the process. An
example of such an event is an 1/0 request that,
once issued, is handled by the system in parallel
with the main thread of the process. Upon 1/0
completion, the associated AST is delivered,
which causes the main thread of the process to
be interrupted in favor of the AST's code-thread.

When an AST is specified for an asynchronous
event, it is assigned a particular processor mode.

Digital TecbnicaJJournaJ
No. 4 February 1987

When the AST is queued to a process, its delivery is
deferred while that process is executing in a more
privileged mode than that of the queued AST. For
example , when an AST in supervisor mode is
queued to a process executing in kernel mode, the
AST will not be delivered until the context
changes from kernel mode to at least supervisor
mode.

Interlock ed Instructions
The VAX architecture includes a few instructions
that allow synchronous access to locat ions in
memory. Only those instructions will guarantee
consistent results if multiple processors want
simultaneous access to the same memory location.

For bit manipulations, these interlocked
instructions are

• BBCCI - Branch on bit clear and clear inter­
locked

• BBSSI - Branch on bit set and set interlocked

For arithmetic manipulations , there is
ADAWI -Add aligned word interlocked.

For queue manipulation, the instructions are

• INSQHI - Insert at head of queue interlocked

• INSQTI - Insert at tail of queue interlocked

• REMQHI - Remove from head of queue inter­
locked

• REMQTI - Remove from tail of queue inter­
locked

These instruct ions are used extensively in the
operating system to provide multiprocessor syn­
chronization . They are also available to user pro­
cesses to synchronize access to shared application
data.

The VAX 8800 System
The specific implementation features of the
VAX 8800 multiprocessing system are described
in this section. Remember that the 8800 is only
one of many implementations of the VAX archi­
tecture. Several important hardware features pro­
vided by the 8800 are not specified in the VAX
architecture but are required for VMS multipro­
cessing. These hardware features are

• Primary processor access to all peripherals

• Interprocessor interrupts

• Shared main memory

• Cache coherency

VAX 8800 Implementation
The VAX 8800 system consists of two VAX 8800
processors that share main memory by means of a
fast memory-system interconnect called the NMI
bus. 3 The processor hardware is completely sym­
metric; that is, either processor can fulfill the role
of primary processor for any booted instance of
the operating system. Figure 2 is a block diagram
of the VAX 8800 system.

CONSOLE

MEMORY

LEFT
CPU

CLOCK

NMI

NBI
ADAPTER

RIGHT
CPU

VAXBI VAXBI
BUS BUS

1/0
CONTROLLER

1/0

VAXBI
BUS

CONTROLLER

NBI
ADAPTER

VAXBI
BUS

Figure 2 Block Diagram of VAX 8800 System

Digital Tecbnical j o u rnal 113
No. 4 February 1987

New Products

VMS Multiprocessing on the VAX 8800 System

There is one console subsystem in the 8800,
which is shared by the two CPUs. The console
command language, implemented in software in
the console subsystem, is a superset of the con­
sole functionality specified by the VAX architec­
ture . 2 Both CPUs can be controlled from the
single console terminal . After the system is
booted, the console terminal can be used like
any other terminal connected to the system.

All 1/0 devices are connected to the system
through VAXBI buses. The 8800 can accommo­
date up to four VAXBI buses, each of which can
accommodate up to 16 nodes, generally 1/0
controllers. The buses are connected to the NMI
by means of the NMl-to-VAXBI adapters, called
the NBls. Each NBI consists of either two or
three parts: an NBIA, which is the interface to
the NMI; and one or two NBIBs, which are inter­
faces to the VAXBI buses. An NBIB is one of the
16 nodes on its respective VAXBI bus.

Under VMS multiprocessing, all peripherals
are controlled by the first processor to be
booted, designated the primary processor. The
other processor, the secondary, is prevented
from accessing any peripheral devices (disks,
terminals, and so on) because the code commu­
nicating with those devices runs in kerne l
mode, an access mode that VMS utilizes only on
the primary. Thus, all 1/0 peripherals will be
accessed only by the primary processor. Typi­
cally, the left CPU in the VAX 8800 system is
chosen as the primary processor. However, con­
sole commands are available to designate either
CPU as the primary one. A change in that desig­
nation takes effect after the next INIT command
is received by the console.

The VAX 8800 hardware provides the capabil­
ity for one processor to interrupt the other. This
interruption is accomplished by writing a value
of 1 to an internal processor register on the
interrupting CPU by means of the privileged
MTPR instruction (from kernel mode only) . The
VMS system uses this mechanism to synchronize
the CPUs as different system events occur.

The main memory contains one copy of the
VMS software, which depends upon the memory
subsystem and interlocked instructions for
cache coherency and the consistency of memory
contents. The VAX 8800 memory subsystem
automatically handles all cache updates; no soft­
ware logic is needed to maintain consistency
between the cache contents in each processor.
The 8800 does implement a write buffer to

11 4

optimize transfers across the NMI to the memory
subsystem. Therefore, the interlocked instruc­
tions must be issued to flush the necessary write
data all the way out to memory. If one processor
modifies shared data, the other needs to see the
change in a synchronized and timely fashion.

Multiprocessor Implementation
Improvements
The VAX 8800 system includes features that are
improvements over previous multiprocessing
VAX hardware implementations, such as the
VAX-11/782 system. Larger amounts of physical
memory can be used, all of which is available to
the VMS system or the system diagnostics. More­
over, the 8800 cache provides better perfor­
mance, and the system has a smaller footprint
and a better price/performance ratio. Perhaps
the most significant fact from a system-manage­
ment viewpoint is that only one console subsys­
tem with one terminal is needed to control the
entire multiprocessor. This single control point
has ramifications for setting up the system and
running it as a multiprocessor.

The console subsystem has access to the mem­
ory configuration of the 8800 . With previous
multiprocessors, the system manager had to con­
figure memory by manually determining the
appropriate data , then entering it into cus­
tomized command procedures on specially built
floppy disks in the console.4

The console subsystem of the 8800 also elimi­
nates the need for operator intervention to boot
or restart the secondary processor. The VMS sys­
tem is initially booted on the primary processor
and subsequently directs the console subsystem
to boot the secondary. Similarly, the console
subsystem restarts the VMS system on the pri­
mary processor after a power failure. The oper­
ating system then directs the console to restart
the secondary at the appropriate point in the
power-recovery sequence. At no time must the
operator be involved in bringing the secondary
on line.4

The VMS Operating Sy stem
The multiprocessing aspects of the VAX archi­
tecture and the VAX 8800 implementation
provide the underlying hardware support for a
totally integrated multiprocessing computer sys­
tem. This section discusses aspects of the VMS
software that are specifically related to multi­
processing as implemented for the 8800. (See

Digital Tech n ical jounw l
No. 4 February 1987

reference 5 for additional multiprocessing infor­
mation and recommended programming tech­
niques.)

Classification
In multiprocessing terminology, VMS multipro­
cessing is classified as " asymmetric " and
"tightly coupled." An asymmetric system is one
in which one CPU, called the primary, has criti­
cal system-wide responsibilities, including the
management of all the CPU resources. The other
CPU, called the secondary, has more restricted
responsibilities that exclude the management of
critical system resources (including itself) . This
type of multiprocessing system is also referred
to as a " master-slave" arrangement. The other
classification, tightly coupled, means that both
processors operate in a closely synchronized
fashion; if they fail, they fail together.

On a VMS multiprocessing system, both pro­
cessors share the same copy of the operating sys­
tem, although some code is executed only by
one or the other CPU. Most of the kernel logic
in the VMS operating system is executed only by
the primary processor. That eliminates the need
for the complex synchronization and locking
mechanisms that would otherwise be required
to protect the system 's data structures from
access by multiple CPUs.

History of VMS Multiprocessing
VMS multiprocessing was introduced during the
development of VMS Version 3.0. At that time ,
the power of a single VAX-11 /780 processor
was insufficient to build the VMS executive in a
reasonable amount of time . Several constraints
were placed on the multiprocessing develop­
ment effort. It had to involve minimal changes
to VMS kernel mode routines, use existing hard­
ware, and have minimal performance impact on
single-processor VMS systems.6

The first constraint above had the greatest
impact on the chosen design of VMS Ver­
sion 3.0 . To achieve fully symmetric multipro­
cessing, changes would be required throughout
the whole operating system to extend IPL syn­
chronization as already implemented by VMS for
single-processor operation. Since those changes
were too extensive to make, we chose an asym­
metric design in which the synchronization of
critical code was achieved by limiting that activ­
ity to the primary CPU. In this context, existing

Digital Technical Journal
No. 4 February 1987

IPL-based techniques were sufficient to synchro­
nize the code threads in kernel mode.

The second constraint led us to configure a
system with two VAX-11/780 CPUs coupled by
an MA780 shared memory. In this configuration,
each CPU has a separate, independent console
subsystem; neither has access to the other's con­
sole . Booting this multiprocessor requires spe­
cial console command files and operator inter­
vention for both CPUs. Similarly, the 1/0
devices configured on one CPU are inaccessible
on the other. Since most of the 1/0 subsystem
code executes in kernel mode, this constraint
has the effect of limiting the 1/0 devices usable
by the multiprocessor to those connected to the
primary CPU.

The final constraint led to a design that allows
multiprocessing code to be inserted dynamically
into the running executive. No multiprocessing
code is present in a single-processor configura­
tion of VAXjVMS.

The multiprocessing capabilities in VMS
Version 3.0 were extended to support the new
VAX 8800 system. These extensions take advan­
tage of new functions allowed by the new VAX
design. For example, as mentioned earlier, the
shared console subsystem allows the secondary
processor to be booted from the primary under
program control ; no operator intervention is
required.

Division of Work between Processors
As mentioned earlier, the VMS multiprocessing
code is a master-slave implementation. The sec­
ondary CPU is required to do whatever work is
assigned to it by the primary. The secondary
CPU can execute application code only, while
the primary CPU handles the 1/0, paging, and
all resource management, as well as the execu­
tion of application code . Since all system ser­
vices that manage system resources are executed
in kernel mode , only the primary CPU is
allowed to execute those services . The sec­
ondary CPU can execute code that is in any
other mode : user , supervisor , or executive .
Thus, to be technically accurate in multipro­
cessing terminology, the VMS multiprocessing
system is symmetric for code in the user, super­
visor, and executive modes, but asymmetric for
code in kernel mode.

The VMS boot code creates a SCB for each pro­
cessor. As described earlier, the SCB contains

115

New Products

l-MS Multiprocessing on the VAX 8800 System

vectors to routines that handle various interrupt
and exception events. Many VMS interrupt and
exception handlers are identical for both the
primary and secondary processors. However,
there are cases in which exceptions or inter­
rupts must be handled differently, depending
upon which processor receives the event. The
interprocessor interrupt and the software inter­
rupt used for rescheduling are both examples of
system-wide events. Both are vectored through
the SCB but require different handlers for each
processor. (Figure 1 shows the various interrupt
levels in the SCB.) The AST-delivery software
interrupt and the quantum end, a scheduling
event (described later) , are examples of pro­
cess-related events that also require different
exception handlers in the SCB of each CPU. By
separating the handlers into processor-specific
SCBs, the more costly and difficult task of run­
time separation within an otherwise commonly
executed handler is avoided.

Typically, when an exception occurs on the
secondary, that CPU's exception handler
"reflects" that exception back to the primary.
To do that, the exception handler stores both
the address of the primary's exception handler
and an appropriate processor status longword
(PSL) on the stack of the current process. The
secondary's exception handler then saves the
context of the current process and passes the
process back to the primary by requesting a
rescheduling event. The process eventually exe­
cutes on the primary, whose exception handler
will immediately get control as if the exception
had occurred there originally. Exception pro­
cessing is therefore synchronized on a system­
wide basis by virtue of running on the primary
processor only.

The SCB for the primary CPU consists of mul­
tiple pages of interrupt and exception vectors.
The format of the first page is defined by the
VAX architecture. This page contains vectors for
all implementation-independent exceptions and
interrupts, and for a few implementation-depen­
dent ones. Additional pages of vectors are pro­
vided for 1/0 interrupt handlers. Under VMS
multiprocessing, the length of the SCB for the
secondary CPU is one page. The pages that make
up the 1/0 subsystem portion of the SCB are not
needed on the secondary, which will not initiate
1/0 requests nor receive 1/0 interrupts.

116

Interprocessor Interrupts
The VAX 8800 hardware provides a key feature
for optimizing the VMS multiprocessing soft­
ware: the ability of one processor to interrupt
the other. This interprocessor interrupt mecha­
nism is used extensively on each CPU by the
VMS operating system.

The primary processor interrupts the sec­
ondary for several reasons. First, the primary can
request an invalidation of a translation buffer
entry corresponding to a system-space address
that is about to be invalidated on the primary.
This event forces coherency between the trans­
lation buffers of both processors with respect to
mapping changes in the shared system virtual
address space. Second, the primary can interrupt
because it has queued an AST, typically for 1/0
completion, for the process currently executing
on the secondary. This event ultimately results
in the process being rescheduled onto the pri­
mary, where the actual delivery of the AST to

the process can be accomplished . Finally, the
primary can initiate and synchronize a system­
wide shutdown or a crash.

The secondary processor will interrupt if it
wants the primary to take back the current pro­
cess and find another process for the secondary
to execute. The secondary will also interrupt if
it detects a hardware error or if it wants to ini­
tiate a system-wide crash.

Secondary State Transitions
A state variable is maintained to record the cur­
rent state of the secondary processor. The pri­
mary processor uses this state to determine
whether or not to schedule work for the sec­
ondary. When the secondary is booted, the state
variable is already set to INIT. After booting, the
secondary changes the state variable to IDLE.
During its next reschedule operation, the pri­
mary will notice the IDLE state and attempt to
schedule a process for the secondary to execute.
After finding a process for the secondary, the
primary sets the state variable to BUSY. The sec­
ondary, which has been continually checking
the state variable for this transition, then loads
the process's context from memory and sets the
state to EXECUTE.

The secondary will execute its current pro­
cess until the process either receives its quan­
tum of CPU time or is blocked by some request

Digital Tecbnical]ournal
No. 4 Febr uary 198 7

that must be synchronized in a system-wide con­
text. (That request must be executed in kernel
mode on the primary.) At this point, the sec­
ondary saves the process's context in memory
and sets the state to DROP. Using the VAX 8800
interprocessor interrupt mechanism, the sec­
ondary then interrupts the primary and requests
another process to execute. The primary takes
the saved process back from the secondary, set­
ting that CPU's state to IDLE. Thus, the state
transition has made an entire circuit.

Figure 3 shows the state transition diagram for
the secondary CPU. The primary's paths are
marked P and the secondary's paths are marked
S to indicate which processor controls each tran­
sition from one state to another. The only state
not explained above is the STOP state, used only
when the secondary is shut down.

p
INIT

p
DROP

s p s

STOP
p

IDLE EXECUTE

s

p
BUSY

Figure 3 Secondary CPU State Transitions

Process Scheduling under the VMS
Operating System
Some aspects of process scheduling were dis­
cussed in the previous section. This section
describes in greater detail how process schedul­
ing is implemented in the VMS system and
which of its aspects are different in a multipro­
cessing environment.6

Single-Processor Scheduling

The VMS scheduling algorithm implemented on
a single processor is round-robin and preemp­
tive, with the highest priority process being exe­
cuted first. There are 31 levels of process prior-

Digital Tecbnicaljournal
No. 4 February 1987

ity (which are not the same as interrupt priority
levels). Thirty-one is the highest priority, one
the lowest; process priorities are subdivided
into real-time (priorities 16 to 31) and "nor­
mal" (priorities O to 15) ranges. The real-time
priorities are used by time-critical applications,
such as high-speed data acquisition. When a
process is created, it is assigned a base priority.
Its priority during execution is guaranteed never
to drop below that base priority unless either
that process or another, privileged process
requests it to.

Each process is allowed a quantum of CPU
time (usually 200 ms, equivalent to 20 inter­
rupts of the 10-ms interval timer; however , a
system manager can change the default). Each
time the interval timer interrupts, the interrupt
handler checks to see if the current process has
used up its quantum. If so, quantum-end pro­
cessing is initiated.

For a process with a priority in the real-time
range , quantum-end processing consists of
awarding a new quantum to the process and
allowing it to continue execution. A reschedule
event will occur when a normal-priority process
has used up its quantum. In the latter case, the
current process is placed at the end of the
scheduling queue maintained for that process's
priority (there is one such queue for each pro­
cess priority), and the process at the head of the
queue is chosen to execute.

The priority of a normal-range process is
raised after certain blocking events have
cleared. For example, to provide good response
time to interactive users, a process's priority
will be temporarily boosted after the comple­
tion of terminal input. This arrangement results
in a tendency for compute-bound processes to
remain at their initial priorities (called the base
priority) . However, 1/0-bound and interactive
processes, which are blocked more frequently ,
usually attain priorities somewhat higher than
their base ones. A process's priority is lowered one
point when the process is scheduled to execute,
unless it is already running at its base priority.

Multiprocessor Scheduling

The primary processor schedules all work on
the system, for both itself and the secondary
processor. The scheduling algorithm used for
the primary processor is basically the same one
used in a single-processor system (an important

11 7

New Products

VMS Multiprocessing on the VAX 8800 System

goal in this implementation). For the multipro­
cessor scheduling algorithm, however, certain
modifications were made to extend the effec­
tiveness of process scheduling to utilize the
additional CPU resources that are available. The
execution environment of the secondary proces­
sor is more constrained than that of the primary.
Most notably, the kernel-mode code is restricted
to the primary CPU. The multiprocessor
scheduling algorithm attempts to keep that sec­
ondary CPU as fully utilized as possible with
minimal scheduling overhead in the following
ways:

• The primary processor always schedules a
process to run on the secondary before
scheduling a process for itself to execute.

• The primary processor will schedule a pro­
cess to run on the secondary only if that pro­
cess does not require immediate execution in
kernel mode and does not have an AST
(which requires kernel-mode execution)
ready to be delivered. This scheduling helps
prevent situations in which a process can
flip-flop between processors , sometimes
called scheduler thrashing.

• Scheduling is preemptive on the primary pro­
cessor, but not on the secondary. Thus, if the
secondary processor is executing one job
when another job with higher priority
becomes computable, the primary processor
will not interrupt the secondary to give it the
higher priority job. Therefore , processes exe­
cuting on the secondary processor are more
likely to run for their entire quantum than are
processes executing on the primary.

This approach guarantees only that the
highest priority process will be executing,
not the two highest priority processes. To
guarantee the latter would require signifi­
cantly more interprocessor interrupt traffic
and is likely to increase thrashing on the
entire system, and will especially affect the
primary's ability to devote processing time to

its own selected process.

• If all computable processes require execu­
tion in kernel mode, then the primary proces­
sor cannot schedule a process for the sec­
ondary and will execute a process itself.
Should that happen, an AST-delivery interrupt
will be generated automatically after the pri­
mary processor stops executing the process

118

in kernel mode. The primary processor han­
dles this interrupt by performing a reschedul­
ing operation. As a result, the primary proces­
sor sends the process it was just executing,
which is no longer in kernel mode , to the
secondary processor in a timely fashion. The
primary is then free to execute another pro­
cess itself.

When there is only one computable process,
one of the CPUs will remain idle. In this case
the primary processor executes the process
itself even it may be perfectly eligible to exe­
cute on the secondary. Thus the overhead
processing associated with the post-kernel
mode AST and the subsequent rescheduling
of the secondary can be avoided. This case
also has the effect of preventing future
thrashing if the process needs access to ker­
nel-mode resources, at least until enough
computable processes become available to
keep both processors busy.

• The system services7 that request event-flag
waits (SWAITFR, SWFIAND, and SWFLOR)
are among the most commonly executed ker­
nel-mode services. 1 If a process running on
the secondary processor requests an event­
flag wait , the VMS operating system will
attempt to avoid rescheduling the process
onto the primary CPU. The system-service
dispatcher on the secondary CPU first checks
to see if the requested flags are already set. If
so, the process is allowed to continue execut­
ing on the secondary without rescheduling.

If the flags are not set, an interprocessor
interrupt requesting that the process be
placed into an event-flag wait state (either
LEF or CEF) will be sent to the primary CPU.
When that processor services the interrupt, it
again checks to see if the wait request has
been satisfied (the flags have been set). If so,
the process is allowed to continue executing
on the secondary. If the flags are still not set,
the process is taken out of execution and
placed into the appropriate wait state . The
secondary processor then becomes available
for scheduling.

Although a process may currently be eligible
for scheduling onto the secondary, the VMS
operating system cannot predict whether or not
that process will require kernel-mode services
in the near future. If those services are needed,

Digital Technical Journal
No. 4 February 1987

the process would have to be rescheduled onto
the primary. For example, utilities that perform
interactive tasks (such as editors or the mail sys­
tem) require numerous 1/0 requests. Other
types of programs incur many page faults. These
processes are therefore poor candidates for exe­
cution on the secondary. Sometimes a system
manager can predict that certain processes will
have those characteristics, and he or she can
take preventive measures to avoid processing on
the secondary.

The following VMS multiprocessing schedul­
ing features give the system manager manual
control over the scheduling of processes onto
the secondary CPU:

• A SYSGEN parameter exists to limit the maxi­
mum priority of processes allowed to execute
on the secondary.5 Recall that priority boosts
are granted to processes after certain events,
such as 1/0 completion. These ljO-intensive
processes tend to stay at priorities above
those of compute-intensive ones. Therefore,
setting the SYSGEN parameter a point or two
above the default base-process priority may
effectively screen out many "unsuitable"
processes from the secondary processor. The
system manager can set the SYSGEN parame­
ter to O (indicating no priority screening is to
occur) or to any value from 1 to 31, which
sets the priority limit to the specified value.

• A process can be made ineligible from exe­
cuting on the secondary processor by means
of the SET PROCESS/CPU=NOATTACHED
command. This command prevents user pro­
cesses that execute only interactive or 1/0-
bound utilities from running on the sec­
ondary. This fixed-process attribute remains
in force until it has been changed with a SET
PROCESS/CPU=ATTACHED command.5

Summary
The VAX 8800 system running the asymmetric
VMS operating system provides the most com­
puting power currently available in the VAX
family to execute compute-intensive applica­
tions. The 8800 represents a merger of a new
hardware implementation of the VAX architec­
ture with preexisting multiprocessing capabili­
ties in the VMS operating system. This software
uses features of the VAX architecture and the
hardware for which it was originally intended.
With the advent of new multiprocessing hard-

Digital Technical Journal
No. 4 February 1987

ware, the software design could be modified
to take advantage of additional capabilities
offered by the advanced hardware design in the
VAX 8800 CPU.

Acknowledgments
The authors thank Jill Angel of Digital's Corpo­
rate User Publications Group for excellent assis­
tance in organizing this material and for serving
as writing coach, and Lawrence Kenah of the
VAX/VMS Development Group for technical
assistance in planning this paper. Thanks also to
all others who reviewed this paper and made
technical and editorial suggestions and improve­
ments.

References

1. K. Morse and R. Kinicki, "A Performance
Study of Multiprocessor Scheduling
Algorithms on a VAX-11/782," Confer­
ence Proceedings of the International
Conference on the Management and
Performance of Computer Systems
(1985): 280-289.

2. VAX-11 Architecture Reference Manual
(Bedford: Digital Press, Order No.
EY-3459E-DP, 1987).

3. J. Fu, J. Keller, and K. Haduch, "Aspects
of the VAX 8800 C Box Design," Digital
Technical Journal (February 1987, this
issue): 41-51.

4. VAX-11/782 User's Guide (Maynard:
Digital Equipment Corporation, Order
No. AA-M543A-TE, 1982).

5. Guide to Multiprocessing on VAX/VMS
(Maynard: Digital Equipment Corpora­
tion, Order No. AA-HP69A-TE, 1986).

6. L. Kenah and S. Bate, VAX/VMS Internals
and Data Structures (Bedford: Digital
Press, 1984).

7. VAX/VMS System Services Reference
Manual (Maynard: Digital Equipment
Corporation, Order No. AA-Z501B-TE,
1986).

119

New Products

Gabriel P. Bischoff I
Steven S. Greenberg

A Parallel Implementation of the
Circuit Simulator SPICE on
the VAX 8800 System

Multiprocessors are efficient only if the added computing power can be
used to solve specific applications. To demonstrate the VAX 8800 multi­
processor's advantages, the authors converted the circuit simulator
SPICE into the parallel program CAYENNE. Their methodology involved
using VAX instructions and VMS system services to create and control a
series of master and slave processes. Other VMS instructions were used to
synchronize these processes and to manage the critical sections. Modifi­
cations for parallel processsing were made in SPICE's load, LU factoriza­
tion, and local truncation error phases. The result was that CAYENNE,
with two slave processes, ran 1. 7 time Jaster than SPICE.

The realization that two processors might be
better than one is not new. Indeed , parallel
computing can be traced back to the n ineteenth
century.1 The advent of very large scale integra­
tion opened a variety of new opportunities in
the field of para llel processing for spec ific
applications such as image processing and signal
processing. Designing and efficiently using a
multiprocessor for general-purpose , high-speed
computing, however, is more complex.

The majority of today's application programs
are written for single-processor machines. To
convert these programs tO run on multiproces­
sor machines and achieve close to the ideal
speed up, linear with the number of processors,
is not an easy task. Two approaches can be
adopted to accomplish this conversion task. The
first is to design specific compile rs that auto­
matically convert programs written for single
processors into programs that run efficiently on
multiprocessors. The second is to leave tO the
application programmer the task of writing code
that makes efficient use of the multiple pro­
cessors.

The first approach is the best from a user's
point of view; however, good multiprocessor
compilers have yet tO be designed. The second
approach leaves more flexibi lity to the pro­
gram mer , who can modify some of the
algorithms in the program to have more concur-

120

rency. Indeed, the two approaches should not
be mutually exclusive: the compiler can detect
parallelism at the instruction level whereas the
programmer can define parallelism at the
algorithmic level. Parallelism on the VAX 8800
system is achieved through the second
approach.

We will describe in this paper the features of
the VAX architecture and the VMS operating sys­
tem that we used tO implement our methodol­
ogy for parallel processing. We will present a
set of FORTRAN routines we wrote to relieve
the application programmer from having to
know the inner workings of the VAX architec­
ture and the VMS operating system. We will then
describe the modifications made to the circuit
simulator SPICE2 to develop a parallel process­
ing implementation , called CAYENNE. Finally,
we will give comparative timing results on two
simulation examples.

VAX/ VMS Primitives for Parallel
Processing
The VAX 8800 system is a shared-memory multi­
processor; all communications between proces­
sors are performed through sections of shared
memory rather than through message passing.
When writing parallel code on a shared-memory
multiprocessor, a programmer must be aware of

Digital Technical Jourmu
No. 4 February 1987

two concepts: critical section and processor syn­
chronization. A critical section is a section of
shared memory that could be accessed by sev­
eral processors at the same time if no precau­
tions were taken to prevent that. Allowing
simultaneous access to shared memory could
result in incorrect data. Processor synchroniza­
tion is the means by which processors proceed
in an orderly fashion. It consists of mechanisms
allowing processors to broadcast the beginning
or the completion of a task or to wait until a sig­
nal is received.

Some VAX instructions and some VMS system
routines support the management of critical sec­
tions and processor synchronization. 3·4 We use
three VAX instructions to control access to criti­
cal sections:

• BBSSI - Branch on bit set and set interlocked

• BBCCI - Branch on bit clear and clear inter­
locked

• ADAWI -Add aligned word interlocked

The instructions BBSSI and BBCCI are the VAX
implementation of the atomic-test and set
instructions that allow the control of access to
critical sections to one process at a time . The
instruction ADA WI performs an interlocked
integer addition and returns a condition status
depending on whether the result is zero or
nonzero.

We use three system routines of the VMS oper­
ating system to support processor synchroniza­
tion:

• SETEF - Set event flag

• CLREF - Clear event flag

• WAITFR - Wait for event flag

These routines are services provided by the
VMS operating system to synchronize processes.
Indeed, the significant entity in the VMS multi­
processor environment is not the processor but
the process. A processor is a physical processing
unit, whereas a process is a software entity cre­
ated by the VMS operating system. Multiprocess­
ing is achieved by creating several processes
that VMS will assign to available processors .
Only the operating system, not the user , can
assign a given process to a given processor .
Event flags are bits maintained by VMS. Several
different processes can have access to the same
event flag, and signaling between processes can

Digital Technical Journal
No. 4 February 1987

be achieved by setting or clearing an event flag.
For example, the system service WAITFR places
a process in a wait state pending the setting of
an event flag.

Additional VMS system routines allow the cre­
ation of processes, the creation and mapping of
sections of shared memory, and the initializa­
tion of event flags. These system routines are:

• CREPRC - Create process

• CRMPSC - Create and map section of shared
memory

• MGLBSC - Map global section of shared
memory

• ASCEFC - Associate common event flag cluster

More information on these routines can be
found in the VAX/VMS System Services Man­
ual . 5 We used the VAX instructions and the
VMS system routines listed above to write a set
of routines that embeds our methodology for
parallel processing.

Parallel Processing Methodology
In the next section we outline the methodology
we use to achieve parallelism and in the process
define some important terminology. A program
we wish to convert for parallel processing is
divided into serial phases. Each phase is divided
into tasks that are executed either serially or
concurrently. A phase whose tasks are executed
serially is called a single-stream phase, whereas
a phase whose tasks are executed concurrently
is called a multiple-stream phase. The single­
stream phases are executed by a master process,
whereas the multiple-stream phases are exe­
cuted by slave processes. The slave processes
are idle when the master process is active and
vice versa. Figure 1 shows this relationship.
Master and slave processes run the same exe­
cutable file , thus leading to easier program
maintenance. As mentioned earlier, processes
are dynamically assigned to processors by the
VMS operating system.

We designed a general set of FO RTRAN
routines for this environment. This set now has
seven entries and implements th e critica l ­
section and process-synchronization con~epts
defined earlier. It also performs the necessary
initialization and provides facilities for debug­
ging a multiprocess execution. The remainder
of this section describes the functions available
in this set.

121

New Products

A Parallel Implementation of the Circuit Simulator SPICE on the VAX 8800 System

KEY:

- ACTIVE
IDLE

~ SIGNAL TO PROCEED

Figure I Synchronization of Processes

Initialization
Initialization is performed by a logical function
called MASTEILPROCESS, which is set to TRUE
if a master process runs the executable file and
FALSE if a slave process runs it. The slave pro­
cesses have special names that differentiate
them from the master process. An argument list
permits the specification of the number of slave
processes to create and the input and output
files to use for those slave processes . Through
this argument list a unique process number is
returned to each calling process.

A user can also specify the number of slave
processes to create by using a command-line
option when the program is run . For example,
the program CAYENNE would be run with
N slave processes if invoked with the command
CAYENNE/SLAVES=N at the S prompt . If the
calling process is a master, MASTEILPROCESS
will create the sections of shared memory, ini­
tialize the event flags used for synchronization ,
and create the required number of slave pro­
cesses. If the calling process is a slave, the func­
tion will map the shared virtual-address space to
the existing sections of shared memory. The sec­
tions of shared memory are FORTRAN common
blocks defined as shared when the program is
linked with an appropriate linker command .
During this initialization phase, CREPRC creates
slave processes, CRMPSC and MGLBSC create
and map sections of shared memory respec­
tively, and ASCEFC initializes the event flags.

122

Synchronization
Synchronization is performed by four of our
seven subroutines: FORK, JOIN , JOIN_EXIT ,
andJOIN_FORK. These subroutines use the VMS
system routines SETEF, CLREF, and WAITFR to

perform the necessary interprocess signaling .
Each subroutine accomplishes the following
functions :

• FORK - This subroutine is called by the
master process to signal the slave processes to
proceed. The master process then waits in
this subroutine for the slaves to signal back.

• JOIN - This subroutine is called by the slave
processes to signal the master process to pro­
ceed. The slave processes then wait in this
subroutine for the master to signal back.

Only the last calling slave process signals the
master process. The VAX instruction ADAWI
is used to identify this last calling slave pro­
cess.

• JOIN_EXIT - This subroutine is called by
the slave processes to signal the master pro­
cess to proceed . However, the slave processes
then exit instead of waiting for a signal. That
is the way the slave processes are stopped
when they are no longer needed .

• JOIN_FORK -This subroutine is called by
the slave processes to synchronize two multi­
ple stream phases with no intervening single­
stream phase . The use of this subroutine
allows slave processes to be synchronized
without having to signal the master process.

These synchronization routines put a process
that needs to wait for a signal into a wait state .
Processes in a wait state do not use any CPU
time. Each call to one of these synchronization
routines , however , requires many machine
instructions to be executed . If the application
programmer anticipates a very short waiting
time, an alternative to the previous method of
synchronization is synchronization through busy
wait. In this scheme a process will loop, execut­
ing an instruction of the form DO WHILE
(FLAG_IS__NOLSET) ENDDO. The process will
execute the previous instruction until the logi­
cal FLAG_ IS__NOL..SET is set to FALSE.

The busy-wait form of synchronization needs
to be used with care. It can lead to loss of over­
all system performance . Indeed , the process

Digital Technical Joun1a/
No. 4 February 1987

executing a busy-wait instruction will use CPU
time that might be more productively used
by another process . In addition , the logical
FLAG_ JS_NOT _SET , which is constantly
checked for, is shared by all processes. There­
fore, access to this logical must be carefully con­
trolled. If several processes change this logical at
the same time, its final value will be unknown. If
no process updates FIAG_IS_NOT_SET, a pro­
cess may execute the busy-wait instruction
forever, thus leading to deadlock. Deadlock
occurs when processes are waiting to receive a
signal that will never be sent.

Critical Section
Critical sections in a parallel implementation
should be minimized. They are the bottlenecks
of the multiple-stream phases because they can
be accessed by only one process at a time. If a
critical section cannot be avoided, the time
spent to access this section should be minimized.
Exel usive access to critical sections can be
achieved by using either the VAX interlocked
instructions or the VMS system services. 3 The
former method implements a busy-wait form of
access synchronization, the latter uses event
flags.

The two subroutines LOCK and UNLOCK are
assembly language routines implementing a
busy-wait form of access synchronization. We
chose this method because it is faster in elapsed
time, and the time spent by a process waiting is
expected to be small when the access to critical
sections has been minimized. These subroutines
are used in the following manner to access a
critical section:

CALL LOCK(SECTION_ENTRY)
CALL ACCEss_cRITICALSECTION

CALL UNLOCK(SECTION_ENTRY)

SECTION_ENTRY is an integer associated
with a given critical section. This integer is set
to I when a process is using the critical section
and to O when no process is using the critical
section . The two calls LOCK and UNLOCK
ensure that only one process at a time executes
the code ACCEss_cRITICALSECTION. We use
these routines only once in CAYENNE for
dynamic task allocation.

Parallel Debugging
Debugging parallel code is somewhat more
complex than debugging sequential code. We

Digital Technical Journal
No. 4 February 1987

debug our parallel code using the following
methodology. The functionality of our parallel
code does not depend on the number of slave
processes or on which specific process performs
a particular task. Therefore, the whole code can
be executed by the same process. For example,
CAYENNE runs with only one process if the
number of slave processes is specified to be
zero. This allows most algorithmic modifica­
tions made in the code to be debugged with the
VMS debugging facilities provided for sequen­
tial code.

After the first debugging phase, a code section
could still have errors when run with multiple
processes . Our routines allow two forms of
debugging, requested either through a flag in
the argument list of the logical function
MASTEILPROCESS or through a command-line
option. The first form of debugging permits the
assignment of a different terminal to each pro­
cess and the setting of a debugging session for
each process on its assigned terminal. The sec­
ond form of debugging is intended to be used
with a workstation. A different workstation win­
dow is assigned to each process, and a debugging
session is set up for each process in its assigned
window. The number of processes that can be
debugged concurrently is limited to either the
number of terminals available or the number of
workstation windows that can be opened.

Example
The following example , shown in Figure 2 ,
illustrates some of the functionality of our set of
routines. We want to compute the sum SUM of
all integers from I to N•S. We assume that a mas­
ter process with the help of N slave processes
does the task. Each slave process is assigned a
unique number PROCESS_NUMBER between I
and Nby the logical function MASTEILPROCESS.
The section of shared memory consists of an array
PARTIAL_SUM of size N . The slave pro ­
cesses work in parallel. Each slave process
adds S consecutive integers and stores its re­
s u It in the shared memory location
PARTIALSUM(PROCESS__NUMBER).

After the slave processes have completed their
task, the master process adds their partial sums,
stored in the shared array PARTW.....SUM, to pro­
duce the final result SUM. The code correspond­
ing to this procedure follows. (Remember that
master and slave process run the exact same
executable file .)

123

New Products

A Parallel Implementation of the Circuit Simulator SPICE on the VAX 8800 System

PROGRAM parallel

•

EHD

LOGICAL ma5ter_proce55

I tffEGER proce55_number

IHTEGERnumber_of_5lave5,default_number_of_5lave5

IHTEGER debug_ flag

PARAMETER Cdefault_number_of_5lave5zS,debu9_fla9=0)

CDMMDH /5hared/ number_of _5 lave5

CDMMDH I local I proce55_number

IF Cma5ter_proce55(proce55_number,number_of_5lave5 ,

default_number_of_5lave5,'input','output',debu9_fla9)) THEH

CALL master_code

ELSE

CALL 5 lave_code

EHDIF

SUBRDUTIHE master_code

EHD

IHTEGERnumber_of_5lave5 , maximum_number_of_5lave5,i

PARAMETER Cmaximum_number_of_5lave5z10)

IHTEGERpart i al_sum(max i mum_number_of_5lave5) , sum

CDMMDH /5hared/ number_of _ 5laves,partial_5um

CALL fork

5Um • 0
DD i • 1,number_of_5lave5

5um=5um+partial_5um(i)

EHDDD

SUBRDUTI HE 5 lave_code

EHD

IHTEGERproce55_number , number_of_5laves , 5tart , 5,i

IHTEGER part iaL5umC 1)

PARAMETER Cs=200)

CDMMDH /local/ proce55_number

CDMMDH /5hared / number_of _s lave5, part ial_sum

partial_5umCproce55_number) • 0

5tart = Cproce55_number-1) • 5

DD i • start+ 1, start+5

partial_sum(proce55_number) = partial_5um(proce55_number) +

EHDDD

CALL join_exit

Fig u re 2 PROGRAM Parallel

124 Digital Tecbntcal]o11rnal
No. 4 Febr 11ary 1987

In the next section we describe how we cre­
ated parallel processing in several phases of the
circuit simulator SPICE to produce the program
CAYENNE.

Modifications Made in SPICE
Before addressing each parallel phase of
CAYENNE, we give a brief overview of the cir­
cuit simulator SPICE.

Overview of SPICE
SPICE performs several types of circuit analysis:
steady-state analysis , transient analysis, and
small-signal analysis. The most commonly used
analysis for digital circuits is the transient analy­
sis, which becomes increasingly time consum­
ing as the size of the simulated circuit increases.
Figure 3 gives a global description of the
algorithms used by SPICE for a transient analysis .

The circuit equations form a system of ordi­
nary differential equations. This system is solved
numerically at successive time points t1, i = 1,
N . It is reduced at a given time point t1 into a
system of nonlinear equations by using a dis­
cretization method. A discretization method
approximates the time derivative of a variable at
a given time point as a function of the value of
the variable at that time point and at previous
time points. This method introduces a dis­
cretization error that must be controlled and

time• 0

DD WHILE C time< finish time>

di5cre.tize differential equations

DD WHILE C not converged)

linearize algebraic equations

solve linear equations

check convergence

END DD

IF C local truncation error too big) THE!'!

reduce time

ELSE

save resul t5 at this time

advance time

El'IDIF

rnDDO

Figure 3 Transient Analysis Algorithm for
SPICE

Digital Technical Journal
No. 4 February 1987

maintained below a specified threshold. This
error is called the local truncation error. The
resulting system of nonlinear equations is
reduced to a system of linear equations by per­
forming a first-order Taylor expansion of the
nonlinear elements of the circuit. This lineariza­
tion introduces another error called the lin­
earization error. The resulting system of linear
equations is then solved exactly, using an LU
factorization of the system matrix.

After the solution of the system has been
obtained, the linearization error can be esti­
mated. If this error is too big, a new lineariza­
tion is performed around the previously com­
puted solution, and the new linear system is
solved again. Successive linearizations are per­
formed until convergence is obtained, that is,
until the linearization error is below a specified
threshold . When convergence is reached the
solution of the nonlinear system is obtained, and
the local truncation error is then checked. If
this error is too big, the solution at time point t1

is rejected and the system of differential equa­
tions is solved at a new time point tj so that
t1 - 1 < tj < t1• If the error is below a specified
threshold, the solution is accepted, and the sys­
tem is solved at a new time point t1 + 1 so that
t1 < t1 + 1. This procedure is repeated until the
entire transient analysis is computed. During a
transient simulation the circuit simulator SPICE
spends up to 90 percent of its CPU time in three
phases of the previous algorithm. These phases
are as follows:

• Load Phase - This phase consists of loading
the matrix and the right-hand side of the sys­
tem of linear equations obtained as described
above. Device-model equations and lineariza­
tion errors are also computed in this phase.

• LU Factorization Phase - This phase consists
of factoring the matrix of the system of linear
equations into the product of a lower triangu­
lar matrix and an upper triangular matrix.
This factorization is used to solve the system
of linear equations.

• Local Truncation Error Phase - This phase
consists of computing the local truncation
error committed at each time step.

The modifications for parallel processing made
in these three phases are described next.

125

New Products

Load Phase
In the load phase each circuit element com­
putes and loads all its contributions to the
matrix and the right-hand side of the linear sys­
tem obtained from the circuit equations. Several
distinct elements may contribute to the same
matrix or right-hand side entry. This means that
the matrix and right-hand side are critical sec­
tions in the load phase , and access to them
needs to be controlled. One approach to syn­
chronize accesses to the matrix is to use a single
lock on the whole matrix.6 In this case only one
processor can write into the matrix at a given
time, leading to contention for shared resources
and decreased efficiency.

In our approach locking the entire matrix is
avoided by creating an additional data structure
to store each individual element contribution .
This structure can be viewed as a three-dimen­
sional matrix whose third dimension is used to
store each individual element contribution to a
given circuit-matrix entry. Figure 4 depicts such
a matrix. There is no unused memory in this
structure because it has a variable depth in its
third dimension. Nevertheless , using this struc­
ture will increase the memory requirements of
the simulator. In the design of CAYENNE it was
necessary on many occasions to trade memory
for speed. Our test examples show that
CAYENNE requires an average of 20 perce nt
more data memory than SPICE version 2G5
requires . The contributions for each matrix
entry are subsequently summed and loaded in
parallel into the circuit matrix. The matrix load
is therefore performed in two successive multi­
ple-stream phases.

It is crucial that tasks are evenly distributed
among slave processes so that no slave process
stays idle whit~ others are computing . A
dynamic task allocation was chosen for the first
multiple-stream phase of the matrix load. That
allocation was preferred to a static task alloca­
tion because the time needed to load each ele­
ment cannot be estimated accurately. Indeed ,
computation of device models may be bypassed
during simulation. The model equations of a
device are not computed at a given iteration of
the analysis if the voltages applied to this device
did not change significantly compared to their
values at the previous iteration . This strategy
saves CPU time.

Dynamic task allocation is achieved through
an array of tasks whose number exceeds the

126

J K

J

G, - CONDUCTANCE OF FIRST RESISTOR

G2 - CONDUCTANCE OF SECOND RESISTOR

Figure 4 Three Dimensional Matrix

number of slave processes. A task consists of a
list of circuit elements to be loaded. Tasks are
defined so that each requires approximately the
same amount of work . The amount of work
needed to load a circuit element is estimated
roughly by neglecting bypass and evaluating the
CPU time needed to load the element. Dynamic
task allocation is expected to minimize any
imbalance that may occur during simulation
through device model computation bypass.

The task allocation for the second multiple­
stream phase of the matrix load is done stati­
cally since the work needed to perform this
phase can be divided into tasks requiring the
same amount of CPU time. The only interlocked
access to shared memory during the matrix load
is the one on the array index, which defines the
next task when dynamic task allocation is used.
This index is successively read and incremented
by all slave processes.

Digital Tecbnica/Journal
No. 4 February 1987

LU Factorization Phase
The time spent by a direct-method circuit simu­
lator in the load phase is linear in the number of
elements, whereas the time spent solving the
linear system of equations is superlinear in the
size of the matrix.7 For large circuits the matrix
solution part will therefore become more
important and will dominate over the load
phase .

In SPICE the matrix-solution phase is done
using sparse matrix LU factorization . Although
full matrices can be factorized efficiently in par­
a ll e 1, 8 the parallel factorization of sparse
matrices is more difficult. The LU factorization
algorithm has a sequential dependency, and the
amount of concurrent work that can be done at
each step in a sparse matrix is small .

It is possible to design algorithms that detect
the maximum parallelism at each step of the LU
factorization. Such algorithms have been used
for vectorized circuit simulation .9 In our envi­
ronment synchronization is done through soft­
ware and the fine-grain parallelism used for vec­
torization may not be efficient. Based on these
considerations, we have proposed and imple­
mented an algorithm in which particular care
has been taken to minimize the overhead
incurred with parallel processing. The details of
our algorithm can be found in reference 10 .

Local Truncation Error Phase
The parallel computation of the time step does
not present major difficulties since the compu­
tation of the local truncation error for each
energy storage element is independent. Each
slave process is assigned a set of energy storage
elements and computes the time step required by
this set. The master process then computes the
minimum time step among the time steps returned
by the slave processes . The energy storage ele­
ments are statically assigned among slave pro­
cesses so that the work among them is balanced.

Results
The parallel algorithms described in this paper
have been implemented to produce the program
CAYENNE . We now present two examples to
compare the timing performances of SPICE and
CAYENNE.

The first example is the simulation of a MOS
arithmetic logic unit (ALU) on a VAX 8800 sys­
tem. The circuit has 200 nodes and 1350 ele-

Digital Technical Journal
No. 4 February 1987

ments. Twelve hundred Newton Raphson itera­
tions are required for the transient simulation.
The efficiency of our parallel implementation is
measured in this example . If a multiple-stream
phase runs sequentially in an elapsed time T,
and in parallel with N slave processes in an
elapsed time Tp , we define the efficiency, E , of
the parallel execution by

E = (Ts - Tp)/(Ts - Ts/N)

E represents the ratio of the actual savings in
elapsed time to the potential savings in elapsed
time. Table 1 gives timings and efficiencies for
the ALU example . As a comparison, SPICE simu­
lates the same circuit in an elapsed time of 834
seconds.

Table 1 Timing Perfonnances and Efficiencies

CAYENNE CAYENNE
O Slaves 2 Slaves Efficiency

Phase (Seconds) (Seconds) (Percent)

Load
LU
LTE

Total
Simulation

694
22
67

867

97
14
35

529

86
70
96

The second example is the simulation of a
MOS control store . The circuit has 160 nodes
and 5 30 elements, and the transient simulation
requires 14 0 4 Newton Raphson iterations .
SPICE spends 91 percent of the simulation time
in the three phases we modified for parallel pro­
cessing. CAYENNE executing with two slave
processes achieves 90-percent efficiency in
these phases and simulates the circuit 1. 7 times
faster than SPICE. For this simulation, CAYENNE
on a VAX 8800 runs 9 times faster than SPICE on
a VAX-11/780 CPU. Table 2 shows these com­
parisons .

The efficiencies of a parallel execution of
CAYENNE depend on the size of the circuit .
Indeed, there is a fixed overhead incurred by

Table 2 Comparison of SPICE and
CA VENNE Elapsed Run Times

Case

SPICE on VAX-11 /780
SPICE on VAX 8800
CAYENNE on VAX 8800

Elapsed
Seconds

3990
750
440

Ratio

9.1
1.7
1.0

127

New Products

calling the synchronization routines JOIN,
FORK or JOIN__FORK. The bigger the task per­
formed by the slave processes before a call to a
synchronization routine, the smaller the relative
cost of synchronization. The simulations of our
examples were also run on a lightly loaded sys­
tem. Loss of efficiency occurs when processors
have to be shared with nonrelated processes,
and busy-wait synchronizations may waste sig­
nificant resources. A workload consisting of sev­
eral independent simulations of equal impor­
tance is already decomposed, and CAYENNE
should be run in single-process mode. If the
turnaround of a single, large simulation needs to
be minimized, however, CAYENNE should be
run with two slave processes on a dedicated or
lightly loaded 8800.

Summary
We have described a general methodology for
parallel processing on the VAX 8800 system and
a user-friendly set of routines that embed our
methodology. We have also presented the suc­
cessful conversion of the circuit simulator
SPICE into the parallel program CAYENNE. New
schemes to minimize the overhead of parallel
processing and to balance the load among pro­
cesses contribute to the overall efficiency of our
implementation.

Acknowledgments
We would like to acknowledge Bob Kusik for
initiating this project, Craig Yankes for intro­
ducing us to parallel processing within the
VAXjVMS system and for providing us with an
initial library of routines from which our
methodology evolved, and John Faricelli, Nadim
Khalil, Karem Sakallah, and John Sopka for many
fruitful discussions.

Ref erences
1. R. Hockney and C. Jesshope, " Parallel

Computers," (Bristol: Adam Hilger, Ltd. ,
1981).

2. L. Nagel, "SPICE2. A Computer Program
to Simulate Semiconductor Circuits ,"
Memo no. ERL-M520 , University of Cali­
fornia, Berkeley (May 1975).

3. Guide to Multiprocessing on VAX/VMS
(Maynard : Digital Equipment Corpora­
tion, Order No. AA-HP69A-TE, 1986).

128

4. S. Farnham, M. Harvey, and K. Morse ,
"VMS Multiprocessing on the VAX 8800
System," Digital Technical Journal
(February 1987, this issue) : 111-119.

5. VAX/VMS System Services Reference
Manual (Maynard: Digital Equipment
Corporation, Order No. AA-250 lB-TE,
1986).

6 . G. Jacob, A. Newton, and D. Pederson ,
" Direct Method Circuit Simulation Using
Multiprocessors, " Proceedings of the
International Symposium on Circuits
and Systems (May 1986): 170-173.

7. A. Newton , "The Simulation of Large
Scale Integrated Circuits," IEEE Transac­
tions on Circuits and Systems, vol. CAS-
26 (September 1979): 74 1-749.

8. R. Thomas, "Using the Butterfly to Solve
Simultaneous Linear Equations," Labora­
tory Memorandum , Bolt , Beranek, and
Newman, Inc. (March 1985) .

9. F. Yamamoto and S. Takahashi , " Vector­
ized LU Decomposition Algorithms for
Large Scale Circuit Simulation," IEEE
Transactions on Computer Aided
Design, vol. CAD-4, no. 3 Ouly 1985) :
232-239.

10 . G. Bischoff and S. Greenberg, " CAY­
ENNE: A Parallel Implementation of the
Circuit Simulator SPICE," Proceedings of
the IEEE International Conference on
Computer Aided Design (November
1986): 182-185.

Digital Tecbnical]ournal
No. 4 February 1987

Dennis T. Bak I

The Impact of VAX 8800 Design
Methodology on CAD Development

Contributing to the success of the VAX 8800 project was an integrated
CAD environment supporting the hardware design effort. A CAD group
dedicated to this single project was chartered to supply a smoothly oper­
ating CAD process from initial design conception to final production.
The CAD environment evolved through a blending of existing tools avail­
able in Digital with new tools developed outside the company. Gaps in the
environment were filled through extensive modification of existing tools
and new development efforts. The driving force behind the CAD process
was a design methodology, radical for its time but second nature now.

Past CAD Development Efforts
Prior to the mid-1970s, logic development
efforts within Digital Equipment Corporation
were largely done without the extensive use of
CAD tools. Hand-drawn schematic diagrams
were the primary means of expressing logic
designs.

A major advance in design automation took
place in the mid-1970s when the Stanford Uni­
versity Design System, or SUDS, began to be
used within Digital. SUDS allowed the entry of
schematics into and the extraction of net lists
from a graphics database. Although it was a
major step forward in the automation of design
processes, SUDS required significant user train­
ing and experience to become an effective tool.

Building a SUDS database capable of being
used by a computer opened a new avenue for
the evolving CAD groups to automate their
design processes. These groups soon developed
a large body of programs to support net-list
extraction, design analysis, placement and rout­
ing, and eventually manufacturing parts-lists
generation. Simulation tools were developed to
help verify the operations of a design before any
actual hardware was available. The increased
complexity of design drove CAD developers to
provide more powerful CAD tools. In turn, logic
designers soon grew increasingly dependent on
CAD tools as their capabilities increased.

The design methodologies and the CAD tool
suite evolved to support large-CPU designs ,

Digital TecbntcalJournal
No. 4 February 1987

such as the VAX 8600 family. SUDS eased the
burden of entering and coping with design
changes ; however , the actual contents of its
schematics differed little from those of the ear­
lier hand-drawn ones. In large part the schemat­
ics entered by designers into SUDS correlated
directly with the physical entity being built,
showing all components and their pins.

At the inception of the VAX 8800 project in
the early 1980s, a vast collection of CAD tools,
written by many internal groups, had sprung up.
Most of these tools required large ASCII data
files and significant manual intervention by CAD
experts. Although many aids were provided to
develop design processes, they lacked the cohe­
siveness and simplicity needed to put a process
directly into the hands of the designers.

At about this time , a number of significant
advances were made in CAD technology. Engi­
neering workstations were announced at prices
that made it practical to put them directly into
the hands of designers. Moreover, new design
methodologies, such as structured computer­
aided logic design, or SCALD, were also devel­
oped.1

These methodologies could significantly
improve the quality of design while decreasing
the time to develop complex systems. There­
fore , Digital made a commitment to use those
methodologies on the VAX 8800 project to pro­
duce not only the product but a more produc­
tive way of developing it.

129

The Impact of VAX 8800 Design Methodology on CAD Development

Design Methodology
The deve lopment of CAD tools for the
VAX 8800 project was a considerable challenge
to the CAD designers. The complexity of the
VAX 8800 design, with its particular gate array
implementation , demanded that the design
quality be high before anything was committed
to hardware. In fact, the project managers made
a radical (for its time) commitment to simulate
the entire design and verify its timing before
any hardware was built . Therefore , the CAD
process had to be designed to meet not only that
goal but also to facili tate the rapid p roduction
of hardware once the design had proven accept­
able . This section of the paper describes the
methodology we followed to make the best use
of our CAD tools. The next section describes
those tools and how they were used.

The tool suite that evolved, pictured in Figure 1,
supported both logical and physical design pro­
cesses with checks and balances to ensure that
the design topologies remained the same. Sche­
matic diagrams , captured at an engineering

workstation, were processed into a logical net
list that was used by the simulation and verifica­
tion tools . Once a logical design reached a cer­
tain level of maturity, it was mapped into a
physical design. At that point a physical analysis,
to determine delays and signal integrity, was
performed . Placement and routing tools were
then run to further refine the design. The part of
the physical design database that represented
the logical topology was then passed back to the
logical side of the design process. There, a com­
parison was made to ensure that the physical
and logical designs were congruent. The results
of simulations based on the physical design
were also passed to the logical process for com­
parison with the simulations based on the logi­
cal design . These mechanisms provided the pri­
mary checks to ensure that the logical design
matched the physical one.

We decided that the best way to assure suc­
cess was to develop a complete paper specifica­
tion of the machine to be built. Once the over­
all goals for the machine had been established,

.------..-i DECSIM 1------ -

GED

TIMING
1-------.i VERIFIER

DESIGNER

STATE
,-------1 CHECKING

SCALDSYSTEM 1--- ~
,__ _ _, SOFTWARE VLS MANUFACTURING

- LOGICAL TO PHYSICAL - REPORTS - PLACEMENT - INTERACTIVE CLEANUP
MAPPING - DELAYS - ROUTING - MANUFACTURING RULES CHECK

- WIRE RULE CHECK - SIGNAL INTEGRITY
- INTERFACE FILES

UN~ VA~ VMS

Figure I CAD Tool Suite

130 Digital Technica/Journal
No. 4 February 198 7

the designers developed the specifications for
each major logic section. This high-level logical
design was then partitioned into functions
required within modules and gate arrays. These
primary interfaces were specified before any
detailed logic was developed. As it turned out,
that partitioning remained relatively intact
throughout the project.

The next step was to develop probe designs
and abstract models for the most complex parts
of the machine . These designs and models
tested whether or not particular logic functions
could be developed and timing constraints met.
In some cases the probe designs were carried
through to the actual fabrications of gate arrays
or modules. This continuity allowed us to test
the limitations of the selected ECL technology as
well as the logic design.

The probe designs proved useful in many
ways to both the designers and the CAD devel ·
opers. The designers were able to verify that
their logic implementations would work. The
CAD developers were able to use the designs as
test cases to develop and debug processes .
These test cases proved to be critical to the pro­
ject's success, especially when the finished
design was given to the manufacturing organiza­
tion . The process was so smooth, in fact, that
designs flowed through it with few problems.

The Influence of SCALD
At the onset of the VAX 8800 project, we inves­
tigated the tools available within Digital for
building a process to support the evolving
design methodology. This study lead the CAD
team to explore several systems being devel­
oped by other companies. One system being
developed by Valid Logic, Inc. , the SCALDSys­
tem CAD system, was procured by Digital. This
system put the power of dedicated engineering
workstations directly into the hands of logic
designers. Of equal importance was the fact that
the SCALDSystem CAD tools were being devel­
oped by the same people who conceived the
SCALD approach to hardware design.

Logical schematics, requiring almost no infor­
mation about the physical design, were entered
into the SCALDSystem database . These schemat­
ics were entered in a hierarchical manner
through an easy-to-learn graphical system. Such
an arrangement encouraged the designers to

Digital Technical Journal
No. 4 February 1987

avoid the creation of paper schematics by trans­
ferring their concepts directly to the worksta­
tion screens.

The decomposition of the design was from the
top down, but the actual entry of design data
occurred simultaneously at many levels.
A "design tree" evolved in which cells form­
ing gate arrays were merged onto modules
that plugged into the backplane to form a sys­
tem . The logical design was entered via the
SCALDSystem tools onto schematics. The physi­
cal implementation of that logical design was
left to the physical design tools.

Simulation and Timing Verification
Simulation on the VAX 8800 project was
approached from two different viewpoints. The
first aimed to determine whether or not the per­
formance goals of the proposed microarchitec­
ture were within the necessary range, as speci­
fied by the project's needs. 2 This simulation
started early in the project before any detailed
logic design had been completed. Once those
performance goals had been verified, the second
level of simulation focused on the logic design
as it evolved.

The designers could verify that each piece of
the design functioned as specified while that
piece was being developed. As the design tree
evolved, the number of logic levels given to the
simulation tools increased until the entire logic
design had been entered. At this point the
designers actually had the equivalent of a soft·
ware breadboard of the entire VAX 8800 proces­
sor. Microcoded instructions were "running" on
this software breadboard long before any hard­
ware was available.

The ability to run instruction streams on the
breadboard gave the project several advantages.
Logic designers could debug their logic concur­
rent with the microcode developers verifying
their microcode . Moreover, the diagnostics
engineers could write as well as debug signifi­
cant numbers of microdiagnostics much earlier
than was usual in a design project. The early
completion of those diagnostics allowed the
first available hardware to be checked thor­
oughly.

Making the design logically correct through
simulation did not ensure that the machine
would work at the desired cycle time. In the

131

New Products

The Impact of VAX 8800 Design Methodology on CAD Development

ECL technology used in the VAX 8800, signal tim­
ing was critical. Therefore, a timing verifier, part
of the SCALDSystem tools, was used to ascertain
whether or not the timing goals were being met.

It was within the timing verifier that the influ­
ence of the physical implementation on the log­
ical design was first felt . The logic designers had
to ensure that the placement of gates and rout­
ing of signals was optimal for all critical ele­
ments. Delay information was then extracted
from the physical design and fed back to the
timing verifier .

Physical Design
As the logical design evolved, we developed a
CAD process to convert it rapidly into a physical
design. A set of automatic placement and rout­
ing tools, together with delay-estimation and
signal-integrity tools, was used to give feedback
to the designers. The important question here
was whether or not they could build physical
representations of their logic designs . These
tools also passed data to the timing verifier,
which analyzed the effect of the physical design
on circuit timings .

Since all the logic had to be verified before
any hardware was fabricated, all processes had
to be designed to handle a large number of
designs in parallel. The relevant Digital manu­
facturing facilities and outside vendors were
acquainted with the physical design through the
test cases rather than through an actual proto­
type. Thus the facilities and vendors could con­
figure and debug their own manufacturing pro­
cesses before any completed physical designs
were sent to them.

To ensure a smooth transition into the fabrica­
tion phase, manufacturing engineers were
assigned to work directly with the designers
early in the design process . Thus these engi­
neers became familiar with the VAX 8800 tech­
nology and the machine as it evolved. This was
an important step because our manufacturing
organization was to build all the hardware,
including the prototypes. This early acquain­
tance with the design allowed them to develop
manufacturing processes to support the rapid
change to full volume shipments soon after the
VAX 8800 system was announced.3

Computational Resources
One of the largest VAXcluster systems ever built
was assembled to support the VAX 8800 project.

132

This cluster consisted of 14 VAX-11/780 and
VAX-11/785 systems with over 20 gigabytes of
mass storage. Even this large amount of storage
was inadequate at times to support the demands
of the databases. Forecasting the computational
requirements of this project proved difficult .
The VAXcluster system provided the computa­
tional power and flexibility to grow as the
demands increased.

The availability of sufficient computational
resources was critical to the success of our pro­
ject. The design methodology of extensive simu­
lation was effective only with reasonable pro­
gram run times. Once the design was verified,
large numbers of physical designs were released
for fabrication within a short period, which con­
sumed significant computational and storage
resources.

The Tool Suite

Design Data Management
A design data management (DDM) system was
developed to organize the many files that con­
tained the actual design data. At the heart of that
system was the concept of a "design object."
This object was some functional piece of the
design, usually conforming to the physical parti­
tioning. For example, each gate array and mod­
ule in the system was defined as a design object.
For each object we developed a hierarchy of
subdirectories within the VMS file system. This
separation of data files into subdirectories
allowed various tools within the CAD process to
know where to find input files and to write out­
put files.

The design database was continually churning
with new information. To give a stable picture
as the overall design evolved, a "snapshot" of a
design object could be taken at any time, thus
generating a revision of the design object. New
subdirectory file trees were then created for
each revision. Using this scheme a designer
could create a "frozen" revision of a design. He
could then use that revision for simulations or
other activities while changes were being made
to another revision of the design.

The relationships between design objects
were defined within a revision-matrix file kept
with each file tree. This file defined the system­
level hierarchy of the machine: which design
objects were subordinate to a given object.
Using this file a designer worki ng on a module

Digita l Technical Jour nal
No. 4 February 1987

design could select frozen revisions of the gate
array designs on that module and be assured of
not having them changed as he worked on it.

Another facility provided by the DDM system
was a user interface to the design environment.
This interface consisted of a simple command
language for transversing the design trees and
for running specific tools. Since these tools
required a large number of input variables, we
established a system of default parameters to
minimize user input. For cases in which those
defaults proved inadequate, users or CAD devel­
opers could change parameters to meet the
design's needs.

Schematic Capture
Using the ValidGED editor, logic schematics
were entered directly into the workstations by
the designers. The extracted wire lists were then
transferred from the SCALDSystem UNIX-based
workstation through a communications port to
the VAXcluster system. The workstations were
also interconnected in a networking environ­
ment, thus providing communication between
them. To ease the burden on designers to learn
multiple operating systems, only graphical data
entry was permitted on the workstations. All the
other CAD tools were run in the more native
VAXcluster environment.

Since the majority of a designer's time was
spent interacting with CAD tools on the
VAXcluster system, there was no need for each
designer to have a dedicated workstation for
schematic capture. The ratio of designers to
workstations of about two to one proved ade­
quate. The easily learned GED editor supported a
rapid increase in the number of nondesigners -
managers, secretaries, and documentation writ­
ers - in the user community. All were drawn to
the system by the ease of graphical data creation.
Eventually, this documentation activity
accounted for the majority of workstation usage.

Simulation and Timing Verification
Another proprietary tool, called the DECSIM sys­
tem, was the primary simulator used on the pro­
ject. This system supported mixed-level simula­
tions, both structural and behavioral. The logical
design was transferred hierarchically to the DEC­
SIM system. This system allowed the designers to
deal with complex designs by viewing the simu­
lation in the same hierarchical form as the sche­
matics. For complex devices, such as multiplier

Digital TecbnicaJJournaJ
No. 4 February 1987

chips and RAM devices, behavioral models were
developed. These more efficient models
increased the overall performance of the simula­
tions. In the case of RAM devices, abstracting to a
behavioral model also allowed the microcoded
instructions to be loaded efficiently.

Complementing the functional simulation
facilities of DECSIM system was the timing veri­
fier (lV) in the SCALDSystem tools. TV analyzed
circuit timings to ensure that the design would
work under worst-case conditions at the desired
clock rate.

Wire delays are a major factor to be taken into
account by timing verification. The placement
of the physical gates was critical to minimize
the wire lengths and hence the delays. Since the
placement was not available in the initial design
phases, statistical delays based on loading were
used. As placement information became plenti­
ful, the latest refined delays were sent to the
timing verifier. When the physical design had
been completed, delays based on routed lengths
were used. If the required timing was not met at
any point in the process, the offending circuits
were redesigned or the layout was changed to
correct the problem.

Wirelisting and State Maintenance
The logic gates entered on schematics by the
designers were, in general, assigned to physical
components by the CAD process. This mapping
occurred initially within the SCALDSystem post­
processor software using a random gate-to-com­
ponent assignment. This random packaging was
then fed into a system called YAWL (for Yet
Another WireLister). YAWL acted as a general­
purpose wirelister, generating interfaces to
many tools and accepting feedback from the
physical design tools.

As the physical design process refined the gate
assignment, YAWL ensured that the logical
design topology did not change. By accepting
feedback data from the placement and routing
tools and the physical design system, YAWL
caught any illegal changes that would have
altered the logic functions.

Eventually, the complexity of maintaining the
state became so large that YAWL alone could not
cope with it. Therefore, several other programs
were placed in the feedback loop from the phys­
ical design tools to detect changes made in the
process of manually cleaning up the physical
design. These programs were needed since,

133

New Products

The Impact of VAX 8800 Design Methodology on CAD Development

even at that late stage, a designer could still add
logic to the design. The CAD process therefore
had to handle these additions as well as to
detect illegal transformations to the logic. The
resolution of these changes took a lot of
resources, both in terms of time and computer
power.

In addition to being the state maintainer,
YAWL acted as a primary source of the design
data needed for the remainder of the CAD pro­
cess. YAWL created many reports to inform
designers of problems between their logical and
physical designs. Most of the interface files in
the CAD process were either read, written, or
both, from YAWL, which played a key role in
the overall process.

Placement and Routing
Two processes were developed for the place­
ment and routing of gate-array and module
designs. The gate array process was highly auto­
mated, requiring a minimum of interaction by
the designers. The process was organized to
make several runs from which a designer could
select the one that best optimized his logic
design.

The bounded problem of placement and rout­
ing within a gate array was easy to solve in com­
parison to the module designs. Here the con­
straints placed by designers, the limitations of
tools, and the complexities of design required
extensive human intervention.

Analysis tools were used extensively to assist
in determining the quality of design at the two
design levels: gate arrays and modules. These
tools analyzed such factors as thermal dissipa­
tion, signal integrity, and crosstalk. The con­
straints defined in these tools and in the exten­
sive design-rule checkers were met, thus
ensuring a high-quality design.

Most of the tools used for the physical design
were developed within Digital. Those devel­
oped outside the VAX 8800 CAD group were
modified, sometimes extensively, to meet the
needs of the project.

Physical Design and
Manufacturing Interface
A proprietary physical design system, called the
VAX layout system (VLS), was used for the final
physical design tasks. VLS took the physical
design, as given by the placement and routing

134

tools, and added the data required to manufac­
ture the design. A layout designer, through the
VLS interactive graphics system, could manually
complete the routing that could not be handled
by the automatic tools. Some additional parts
that were necessary for fabrication, such as han­
dles for modules, were also added at this time.
The net result was a complete design, specified
so that it could be used to manufacture the
product.

The design data was then collected to form a
release package. To keep track of the formal
release of design data, a system called POST was
developed by the CAD group. POST provided an
on-line database, which any member of the pro­
ject team could query to determine the release
status of a design.

Problems Imposed by the
Design Methodology
Up to this point, we have described the basics of
the design methodology used to develop the
VAX 8800 system and some highlights of the
CAD tools supporting that methodology. As
mentioned earlier, the CAD process was placed
directly into the hands of the designers. Thus a
tight coupling was established between the pro­
cess of design and the design process. This cou­
pling posed several major problems, as now
described, for the CAD group.

Training
With direct control of a process or tool given to
the designers, they all now needed extensive
training. On previous projects, one highly
knowledgeable individual could run a tool;
now, there were 30 or so novice users all learn­
ing to use that same tool. Extensive support for
those users, in terms of both trainers and docu­
mentation, had to be provided.

In most cases the designers quickly learned
how to utilize the tools. In a few cases - the
placement of modules in particular - placement
experts were needed owing to the specialized
nature of the task. In summary, the extent of the
support required by users was greater than
anticipated.

State Maintenance
The task of state maintenance proved to be
extremely complex owing to the freedom given
to designers to make changes at almost any point

Digital TechnicaJJournaJ
No. 4 February 1987

in the design process. To ensure that the logical
and physical designs matched, it was necessary
to do a complete isomorphic comparison of the
physical topology against the logical topology of
the design.

Logical Prints
The schematics gene rated by the designers at
their workstations represented the logical
design, not the physical one . Certain features
available in the SCALDSystem tools, such as vec­
torized signals and gates, allowed it to produce
a concise representation of the logic. This came,
however, at the expense of not putting physical
data back onto the print set. For reasons of state
maintenance , we were also unable to restruc­
ture a print set once mapped to a physical
implementation. Both these factors contributed
to a print set that appeared quite different from
those generated by previous projects.

Logical print sets , while initially envisioned
as being beneficial , later caused problems in
documenting the designs. This was particularly
true for module-level designs for which training
was needed so that groups outside the project
team could interpret the new symbology.

Cross References
Using logical print sets alone , a technician
could not probe a pin of the physical boards.
Since an abstract mapping took place in the CAD
process, it was necessary to develop an exten­
sive set of cross references showing the map­
ping of the logical to the physical design. These
cross references proved to be cumbersome and,
when printed, consumed vast amounts of paper.

Libraries
CAD tools run on libraries, and each major tool
has its own format for library data . These
libraries must be consistent across the entire
process. Despite all the safeguards built into the
process , we found that inconsistencies still
crept back into the database. Discovering and
e liminating those inconsistencies , many of
which were found late in the project, consumed
a lot of time .

Summary
Both the design methodology and the CAD pro­
cess supporting the VAX 8800 project were
quite successful. The first prototype hardware

Digital TecbnicalJournaJ
No. 4 February 1987

delivered to us worked as expected. We found
only a small number of hardware problems dur­
ing the prototype debug phase of the project.
Most of those problems were in areas that had
not had extensive simulation or timing verifica­
tion.

Some general conclusions reached from the
VAX 8800 project can help future CAD design­
ers to improve their tools .

• A close coupling from the start, both physi­
cally and organizationally, between all
groups associated with the project leads to
the development of a smooth process flow.

• The design methodology has a direct and far­
reac hing impact on the CAD process. The
capabilities of CAD tools directly affect the
design methodology.

• Extensive simulation and timing verification
before fabrication can help to achieve a high­
quality product.

• The impact of radical changes (e.g., in the
data content of schematics) must be appreci­
ated and then taken into account by all pro­
ject members.

In future projects we will focus on reducing
the process-loop times and enhancing the capa­
bilities of the simulation and timing verification
tools . It will be easier to function in future
design environments, and more tools will be
placed directly into the hands of the designers.
The design methodology will be modified to
make the resolution of the design state easier
and therefore faster.

References

1 . Structured Computer Aided Logic Design
was developed at Lawrence Livermore
Laboratories and applied there to the
design of the SI computer.

2 . C. Wiecek, "The Simulation of Processor
Performance for the VAX 8800 Family,"
Digital Technical Journal (February
1987 , this issue) : 100-110.

3. A. Matthews, " On-line Manufacturing
Data Access on the VAX 8800 Project, "
Digital Technical Journal (February
1987 , this issue): 136-1 4 1.

135

New Products

Andrew J. Matthews I

On-line Manufacturing Data
Access on the VAX 8800 Project

Prevfously, the transition from design to manufacture involved transfer­
ring significant amounts of data on paper. To minimize product start-up
time, the VAX 8800 project used an on-line system that eliminated much of
the paper. The key task was transforming the data from existing CAD
tools with different formats into manufacturing data. Two generic types
of VMS files, DATA and DRAWING, contained data for each Part Number
and Revision Number. VMS's subdirectory and access-control capabilities
provided total revision control. Manufacturing engineers pulled files at
will using DATA.files to drive their processes and viewing DRAWING.files
from VAXstation II workstations.

A key objective for the VAX 8800 project was to
go from the completed design to full-volume
manufacture in the shortest possible time. In the
past, delays have often occurred in the transi­
tion from Design Engineering to Manufacturing.
Therefore, to achieve our goal, we had to elimi­
nate or minimize those delays.

We knew of a number of ways to speed up
this transition phase. Since there is normally a
tremendous flow of data on paper between Engi­
neering and Manufacturing, one way was to
eliminate the paper itself. A second way was to
accelerate the controlled revision process when
changes were required. And a third way was to
accelerate the query-and-response process that
was necessary to solve specification problems.
One can see right away that these activities
involve many people and consume significant
resources. Therefore, a formal project was estab­
lished to determine how best to implement the
three ways to minimize delays.

The project team determined that although
the data flowing between Engineering and Man­
ufacturing was vital, the paper itself was not .
Thus the team's goal was to find out how to
establish a paperless, but not drawingless ,
scheme to pass that information between the
two organizations. The team also set some con­
straints on this scheme. First, existing data tech­
niques should be used whenever possible rather
than developing new ones. Second, Manufactur­
ing should be free to obtain data as required

136

rather than have Engineering "push" it to them.
Third, any intermediate data processing func­
tions and groups, which all have priorities and
queues of their own, should be bypassed .
Finally, the data had to be organized in the way
Manufacturing needed it, that is, by Part Num­
ber and Revision, among others . Therefore ,
some translation process had to take place
between the data sources in Engineering and the
data repositories used by Manufacturing.

The data sources in Design Engineering are
many and varied. Digital uses a large set of CAD
tools in its design processes.• These tools use a
variety of methods to gather, store, and manipu­
late data. The databases associated with these
tools are the sources for all the specifications
conveyed to Manufacturing as plans and draw­
ings. Manufacturing also has its own set of CAM
tools used in various processes.

The primary CAD and CAM process tools did
not communicate since they were all based on
different data formats and revision procedures.
The primary goal of the project was to take the
design data created by the CAD tools and, with
as little paper as possible, turn it into manufac­
turing data that could be used by the various
manufacturing groups. The direct way that goal
could be accomplished was to create an inte­
grated source of data as VMS files that would be
available on line to engineers in Manufacturing.
This capability of data transfer was called manu­
facturing data access, or MDA.

Digital TecbnicalJournal
No. 4 February 1987

As typically happens in a rapidly evolving
technological environment, the standard data­
transfer processes already in place had rapidly
become outdated. The result was that the stan­
dard process was handling only part of the data,
and informal systems evolved to deliver the
remainder. MDA had to identify all these data
processes, regardless of their sources. Then, it
had to provide all the data needed to build and
test the product through a consistent on-line
process. That task was accomplished by
"reverse engineering" the existing processes.
All the process managers responsible for the
product in Manufacturing were interviewed to
find out what data they were receiving by both
formal and informal means. They were asked, in
particular, what additional data they needed.
The result was a lengthy list of data files, most
of which existed or could be easily generated.

One key limitation to this type of data-genera­
tion process was the availability of an appropri­
ate engineering database. For example, a visual­
inspection process might need the color of a
component, but this data may not be in any
engineering database. Therefore, some manufac­
turing data processes would have to continue
using other sources, typically libraries of addi­
tional information, as well as the engineering
database.

The objective of MDA was to provide on line
all the data needed for new product start-up.
The problem, as noted earlier, was that this data
was derived from many different files used by
the CAD tools. These separate software tools,
having come from many sources at different
times, generally operate on independent VMS
files and do not yet utilize complex, integrated
database capabilities. Therefore , another pri­
mary goal of the MDA project was to bring
appropriate data management to these existing
processes, but at the same time not to require
significant changes within them.

Given this VMS file environment, the team
made an early decision that the VMS system
could provide the framework for comprehen­
sive data management and organization capabili­
ties if full advantage were taken of the possibili­
ties inherent in the system. That is, files and
directories, subdirectory schemes, and access
control lists had to be used effectively. The
advantages of using VMS features for these exist­
ing files rather than implementing a specialized
data-management scheme were numerous. This

Digital Technical Journal
No. 4 February 1987

procedure meant that these capabilities would
be immediately accessible to all of Digital's VAX
users, could be readily linked to existing read
and write processes for CAD/CAM files, and
would require no unique training, software, or
hardware.

The remainder of this paper describes the
approach that MDA takes to achieve an inte­
grated source of manufacturing data. As a first­
generation paperless process, MDA was used on
the VAX 8800 project with great success. We
anticipate that MDA could evolve at a later date
into a second-generation paperless process. In
this process, users in Manufacturing would be
able to selectively compose and generate any
desired drawing from the databases. For the first
design of MDA, however, that was too sophisti­
cated a solution to be applied to a broad manu­
facturing community still in transition from
paper processes.

MDA Capabilities
We designated the files containing the data that
drives the computer-aided processes in Manu­
facturing as DATA files. Every drawing sheet in
the full drawing package is electronically
released as a plot file. These on-line files, called
DRAWING files, are effectively the master draw­
ings, and any locally generated paper prints are
temporary working copies. DRAWING files are
intended only for human interpretation (view­
ing or plotting); they do not have to be inter­
preted as structured data by other functional­
process software. DATA files are used for that
purpose.

Both DATA and DRAWING files are made
available through a single unified process avail­
able anywhere on Digital's world-wide internal
DECnet network. Data security is provided in
the software by an access control list of specifi­
cally authorized users in Manufacturing. A list
method rather than password control was cho­
sen since the VMS system has all the capabilities
to implement list control (identifying re­
mote users). Control over access to the on­
line product database remains with the data
managers.

The files are organized around the Part Num­
ber and Revision Number of the physical object.
A complete DATA and DRAWING file set is pro­
vided for each revision, thus leading to a degree
of redundancy between files. We originally con­
sidered solving this redundant-data problem in

137

New Products

On-line Manufacturing Data Access on the VAX 8800 Project

the traditional CAD/CAM way by defining sepa­
rate universal interface files and designing inte­
grated databases from which any needed file
could be extracted. To achieve the primary goal
of minimizing all delays in product data trans­
fers, however, we concluded that providing the
process specific, but redundant, files needed
directly in Manufacturing was worth the price.

This technique eliminated all hand-off delays
and allowed the already proven processes to
operate efficiently. Of course, the risk was that
data in the redundant files could in some way
diverge. Therefore, Engineering assumed the
responsibility of verifying that the data was con­
sistent between them. Engineering uses special
software to verify that all files in a set, some of
which come from different CAD tools, represent
the identical design object and revision state.

The DATA files utilized are those the start-up
team identified as being directly needed for
each manufacturing process. Our ideal target for
DATA files was the specific data set needed by a
"work cell" of the manufacturing plant; this
typically includes both a computer resource and
specific people that together receive and adapt
the generic data to the immediate needs of their
particular plant and process. To minimize the
process start-up time, eliminate queues, and
assign responsibilities clearly, MDA avoided
using intermediate data formats. These formats
historically required preprocessing by some
third party before they could be used in the
plant. We expected the plants to adapt the DATA
files to the specific needs of their own pro­
cesses. For sophisticated data consumers with
complex manufacturing needs, the source-data
design fil es are also included with the on-line
data.

The practical r~alities of the many CAD/CAM
processes in use first required a smoothly oper­
ating file-management process. A large number
of files are required to support the build-and­
test processes for one designed object. A typical
Digital part (e.g., a complex CPU logic module)
is today completely specified by 50 to 70 DATA
files and 30 to 50 DRAWING files. With that
many files involved, a key to success for this
type of file management is total data acquisi­
tion. Thus the process was made mandatory (not
voluntary); that is, it could not depend on some­
one's remembering to do something. The only
way to acco mplish complete data acquisition

138

was to integrate the data-management process
with the CAD tools that generated the source
files.

The principal MDA implementation concept
was to use the extensive VMS subdirectories that
"belonged" to each object and revision and
then collect all the appropriate files into the
appropriate directories. This technique makes
possible a user data-access process based
directly on the VMS system in which a user can
answer several questions about the object or
revision for which data is needed. MDA then
provides him with a directory containing the
files relevant to the requested object or revision.
This directory represents the bounded set of
data. Within that set each DATA and DRAWING
file is "named" so that it is completely identi­
fied even if moved later to other manufacturing
locations. The file-naming scheme is also not
cryptic so that manufacturing users can specify
and recognize the particular files they need.

An underlying objective of the MDA program
was to provide an environment in which a
released data file was perceived as being as sta­
ble as an approved and released paper drawing.
Whenever a set of DATA and DRAWING files for
a given revision of an object are released, that
set of data becomes "read-only" and is placed
under strict control. The engineering group will
not modify any file within the set belonging to
that revision, and subsequent revisions of that
object do not overwrite prior revisions.

MDA allows users to pull data selectively as it
is needed rather than pushing it automatically to
predetermined receivers. The strategy here is to

deliver not data, but automatically generated
notification messages on Digital's electronic
VAXmail system. The generation of mail is tied
to the design-management functions of the hard­
ware designers and the coordinators for engi­
neering change orders (ECOs). The mail mes­
sages are sent to designated representatives in
any of the manufacturing plants around the
world to inform them to pull whatever data they
require from the on-line system. Data users in
Manufacturing are notified by automatic mes­
sages whenever new data is issued or when the
status of existing data changes. This method
takes advantage of the existing VMS Mail facili­
ties for identifying remote users. A user access­
control list has been implemented, and all user
transactions are logged . These techniques con-

Digital Tecbnica/Journal
No. 4 February 1987

firm that new data has been received by users
and provide an audit trail of who accessed par­
ticular data in case an error is discovered later.

Much of the data provided for the product is
intended for the specific assembly and test pro­
cesses implemented by the start-up team. Provi­
sion of this data is made possible by the close
coupling of the Engineering Design and start-up
team efforts and the sophistication of the data­
driven fabrication and test processes. In other
words, the designs of high-technology products
are now aimed at specific manufacturing pro­
cesses for assembly and test . Except for simple
dimensional data, much of this product data can
no longer be '' post processed '' (by software
means only) onto a different manufacturing pro­
cess. A major process alteration might require
reconvening the start-up team and adapting the
design and data for the new process.

Revision Management
Each revision of a part means that that physical
design object has changed in some way. In the
MDA process a complete set of DATA and DRAW­
ING files is provided for every revision; there is
no implied or referenced data. All active revi­
sions still being built remain on line, and subse­
quent revisions do not overwrite earlier revi ­
sions . If the same DRAWING file applies to
different revisions, it will be provided with each
of those revisions. We were concerned initially
that this simplified approach would generate a
large number of redundant files, particularly
DRAWING files. However, an analysis of the
completed sets showed that , with the CAD
design processes in use, only 10 to 20 percent
of the files were unchanged from one physical
revision to the next . Our conclusion now is that
having some redundant files is a cheap price for
the benefit and simplicity of having full data
sets. Thus no data set has to reference data from
another set, and old revisions can be readily
archived.

The MDA process currently has one significant
limitation. Unlike the existing procedures for
paper drawings, there is no standard control
process for putting a formal revision on a DATA
file. On the other hand, it is not clear that a con­
trol process is sufficiently valuable in a product
environment that is totally data driven . Tradi­
tionally, when necessary, a paper drawing can
be changed separate from the physical revision
of the object itself. That cannot currently be

Digital Technical Journal
No. 4 February 1987

done for DATA files since there are no standard
procedures that are equivalently recognized for
naming them or for controlling revisions. If the
DATA files really define the physical product,
then an erroneous data file defines the wrong
physical product. In that case, it can be argued,
the right way to signify the change is to update
the revision of the object itself. At the present
time, if an incorrect DATA file is included in the
released data set, the only unequivocal way to
correct that problem is to advance the physical
revision and generate a new set of data.

Within the MDA process, the status of any file
is specifically marked. (The mere existence of
the file within the process does not imply any
particular status.) Typical categories of status
are verified, issued, released, and obsolete . A
status is implemented by using the file-owner­
ship capabilities within the VMS system . As its
name implies, MDA provides on-line access to
all needed data and drawings for any and all
revisions. However, the formal status (prelimi­
nary, released, etc.) of each part and revision
available on line is controlled and specified by
other existing standard procedures. That status
is confirmed by MDA but cannot be determined
solely from the status information that MDA pro­
vides on line with the data.

The MDA process is not directly coupled to
the control procedures in Manufacturing, but is
linked directly with status-setting activities in
Engineering. For example, the issued status is
set by a procedure run by the product's ECO
coordinator when he issues an ECO package to
his counterpart in the manufacturing plant .
Therefore , the data users in Manufacturing are
advised to use the displayed status only as con­
firmation of a change; they will continue to be
notified first through the existing ECO control
procedures.

Thus, MDA has on-line data available for a
manufacturing activity when Manufacturing is
notified, by means external to the MDA process,
that they should be building a particular revi­
sion . Also, MDA provides no on-line information
about such things as the interactions and rela­
tionships between revisions, which revisions of
the modules go together, and which revisions
go with which backplane revisions. Therefore,
although MDA is a comprehensive data-manage­
ment and access process, it is not also a true
configuration-control and revision-management
process.

139

New Produc ts

On-line Manufacturing Data Access on the VAX 8800 Project

Directories and File Names
Within the MDA process, the DATA and DRAW­
ING files are managed by grouping them in VMS
subdirectories for the object that these files
specify. The subdirectories are tied to a com­
mon-root directory to facilitate the management
of the overall physical data on the host (e.g. ,
moving various directory structures between
disk drives). The directory files themselves are
owned by the data-management process . They
may not be read directly over the network; the
access process provided must be used. In picto­
rial form, the directory structure is described in
Figure 1.

COMMON ROOT

I ... ,
PART PART PART PART
NUMBER NUMBER NUMBER NUMBER

I ... I
VARIATION VARIATION VARIATION VARIATION

REVISION REVISION REVISION REVISION

~
DATA FILES DRAWING FILES
(50 - 70) (30 - 50)

Figure I VMS Directory Structure

The name of each DRAWING file is tied
directly to the Digital drawing number plotted
by that file. For multisheet drawings , a plot file
is made for every sheet in the complete drawing
package , so there is a one-to-one correspon­
dence between DRAWING files and drawing
sheets. The files are named to match exactly the
title block of the drawing sheet. A typical
DRAWING file name is depicted in Figure 2.

For DATA files, a different strategy for file
names was necessary since , unlike the DRAW­
ING files, a one-to-one linkage does not exist. A
DATA file relates to the physical object it
defines ; therefore , the file name defines the
exact part to which that file applies as well as

140

SHEET SIZEJJE-\L_'JA_F

2

00S_O_O_~~-rt,m ,oRMA>

DRAWING CODE ~ SHEET 2

DRAWING NUMBER SHEET REVISION

Figure 2 Typical DRAWING File Name

the file ' s specific content and format. File
names must also continue to completely iden­
tify the files after they have been extracted from
the MDA management process and moved to
Manufacturing. Therefore , part of the file name
is actually redundant with the MDA directory
name. These file names can become extremely
long, and although reading them is not a prob­
lem, typing them is. Thus the file names are
automatically generated, and users can select
them from menus. The name of a typical DATA
file is structured as in Figure 3 .

Since there were many DATA and DRAWING
files, the file -naming scheme also permits the
creation of a typical VMS "wild card" directory
listing for specific types of DATA or DRAWING
files. For DATA files, the specific type of process
activity supported by that file is included as a
unique field in the file name. For DRAWING
files, the drawing code is included in the file
name, which also implies the likely uses. These
fields within file names are then used in Manu­
facturing to obtain file listings specific to an
activity; wild-card directory listing is by far the
most common style of use.

PART NO:~:s-r!!J-ICT -"CA,ODEL_QXVZO 11 . Hrn

VARIATION~

REVISION

CATEGORY OF DATA
(IN_ CIRCUIT TEST)

DETAILED TYPE OF DATA ___ _,
(MCA MODEL)

(FOR QXYZ MCA, LOGICAL REVISION 011)

DATA FORMAT-------------~

Figure 3 Typical DAT A File Name

Digital Technical Jo11rna/
No. 4 February 1987

On-line Data Access
Since all DATA and DRAWING files for each revi­
sion of a Part Number are accessible on line, it
is a simple process for authorized users to
access them. A user first logs on to a captive
(limited function) account on a specific host
CPU from any system on the Digital 's DECnet
network. Since this process is controlled by a
list of authorized users , no password is neces­
sary. The user never sees the VMS prompt level
but is immediately presented with a menu of
MDA functions . He is then asked a short series of
questions about either the Part Number or Revi­
sion Number and is provided with a directory of
applicable files.

All user transactions with the data-access pro­
cess are automatically logged. This logging pro­
vides several important capabilities:

• An accurate summary of the actual on-line
data usage (which has showed that our initial
assumptions were quite incorrect as to who
would use what data, and how much access
traffic there would be)

• A degree of additional security by tracking all
data accesses

• A means to notify all users who have utilized
any file in which an error has been found

Electronic Drawing Access, Plotting,
and Management
At the present time, most DRAWING files are in
the VMS data format of FILE_NAME.PLO since
.PLO is the data format that can be released elec­
tronically to Digital's on-line drawing-microfilm
service . A variety of software packages using this
data format are available in each manufacturing
plant. We expect to make a transition to a new
industry standard when it comes into general
use .

Providing each separate drawing sheet as a
separate file was the first step toward a paperless
process. The second step was to give Manufactur­
ing the ability to view a drawing on a VAXstation
workstation, manage drawings, annotate them,
send those annotations back to the engineer, and
make plots. These basic functions permit Manu­
facturing to do on line what they would have
done previously with paper drawing sheets.
Engineering provided some necessary software
tools for these functions to expedite the transi­
tion to a paperless process in Manufacturing.

Digital Tecbntcal Journal
No. 4 February 1987

The workstation used is the VAXstation II sys­
tem. The software provides the following capa­
bilities:

• Access drawings directly from the on-line
data process

• Create windows for the drawing, and zoom
around it

• Annotate a copy of the drawing for use with
specific processes

• Return a copy with questions for the respon­
sible engineer

• Submit plot requests automatically for the
whole drawing or any se lected window
to either a large electrostatic plotter or an
LN03 Plus printer, both accessible on a local
Ethernet link

The process of making snap-shot window
plots of specific areas of interest on the LNO 3
Plus printer has proven to be a very effective
capability, and shows some of the possibilities
of replacing large sheet paper plots within the
Manufacturing functions.

Summary
The MDA process has been operational since the
first prototypes of the VAX 8800 system were
built. MDA presently maintains approximately
three gigabytes of VAX 8800 product data on
line , including both prototype and produc­
tion revisions . More than one hundred users
from ten different locations in both Manufactur­
ing and Field Service have logged an average of
two hundred transactions per week. Although
MDA contains significant amounts of control and
verification software , there has been little for­
mal user training . The simplicity of the MDA
process allows the on-line Help information to
be an effective source of primary documenta­
tion.

References

1. D. Bak, " The Impact of VAX 8800 Design
Methodology on CAD Development ,"
Digital Technical Journal (February
1987, this issue) : 129-135 .

141

New Products

ISBN 1 -5 5 5 5 8-00 1 -7

Prinrcd in USA EY-67 1 1 E-DP Copyrighr© February 1 98 7 Digi"'1 Equipmem Corporation

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	An Overview of the Four Systems in the VAX 8800 Family
	The VAX 8800 Microarchitecture
	The CPU Clock System in the VAX 8800 Family
	Aspects of the VAX 8800 C Box Design
	The Memory System in the VAX 8800 Family
	Floating Point in the VAX 8800 Family
	The VAX 8800 Input / Output System
	The VAXBI Bus - A Randomly Configurable Design
	A Logical Grounding Scheme for the VAX 8800 Processor
	The Simulation of Processor Performance for the VAX 8800 Family
	VMS Multiprocessing on the VAX 8800 System
	A Parallel Implementation of the Circuit Simulator SPICE on the VAX 8800 System
	The Impact of VAX 8800 Design Methodology on CAD Development
	On-line Manufacturing Data Access on the VAX 8800 Project
	Back cover

