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Editor's Introduction 

Richard W. Beane 
Editor 

This issue features papers about the design of 
the VAX 8800 family of CPUs, written by mem­
bers of the design team. The technology used in 
Digital's latest high-end machine, the VAX 8800 
multi processor, also forms the basis for the 
other three family members: the 8700, 8550 , 
and 8500 CPUs. 

Bob Burley's overview relates the processes 
used in the 8800 design and the functions of the 
memory interconnect (NMI) , the VAXBI 1/0 
bus, and the four logic boxes forming the five­
stage pipeline. The early discovery of design 
flaws and the use of automated tools helped to 
achieve an aggressive completion schedule. 

The micromachine implements the microar­
chitecture and contains four of the five pipeline 
stages. Sudhin Mishra describes how microin­
structions are handled, emphasizing the use of 
microbranches and microtraps to ensure 
coherency. 

The VAX 8800 clock system, discussed by Bill 
Samaras, was designed using an automated tim­
ing verifier. He describes the trade-off between 
using the verifier and maximizing the accuracy 
of timing signals by minimizing their skew. 

The C Box and the M Box are two parts of the 
pipeline. John Fu, Jim Keller, and Ken Haduch 
describe the C Box's no-write allocate cache and 
the delayed-write algorithm that ensures correct 
write-through. The C Box must also handle 
pipeline stall conditions and maintain data 
coherency between processors. The M Box han­
dles read and write requests for the memory 
arrays. Paul Natusch, Dave Senerchia, and Gene 
Yu explain how the designs of the NMI and the 
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cache affected their design, and why they used 
TTL in the memory controller. 

The VAX 8800 family does not have a separate 
floating point accelerator. As John Zurawski , 
Kathy Pratt, and Tracey Jones point out, how­
ever, a custom ECL unit achieves high perfor­
mance through the normal datapaths. Thus less 
hardware is needed, and operands are fetched 
faster. 

1/0 devices are linked to the CPU by the 
VAXBI bus. In his paper, Jim Janetos discusses 
the NBI adapter, which contains logic to handle 
CPU references and DMA requests . Then Paul 
Wade describes how the VAXBl design team had 
to abandon the traditional approach and use a 
variety of techniques to specify the bus. Some 
chip problems were resolved only after a thor­
ough analysis of the physical configuration. 

Jerry Brand and Mike Kement discuss the 
importance of using ground correctly as a signal 
conductor to achieve high performance. They 
describe the sources of ground-related noise in 
the CPU, and what they did to isolate and con­
trol those sources. 

Many VMS features support multiprocessing. 
Stu Farnham, Mike Harvey, and Kathy Morse first 
describe the hardware that supports multipro­
cessing, then the interlocked instructions 
exception handlers, and traps that implemen~ 
VMS multiprocessing. To show how multipro­
cessing decreases execution time , Gabriel 
Bischoff and Steve Greenberg converted the 
SPICE circuit simulator into CAYENNE, a paral­
lel program. They created master and slave pro­
cesses that ran CAYENNE 1. 7 times faster than 
SPICE. 

The final two papers relate some of the auto­
mated tools and techniques used on the 8800 
project. Dennis Bak first describes building the 
CAD suite from existing tools, newly developed 
ones, and modifications. The methodology was 
truly innovative , serving as a framework for 
future projects. Then Andy Matthews discusses 
the on-line system that transformed CAD data 
into specifications used by Manufacturing. This 
system minimized the product start-up time by 
eliminating paperwork. 
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Foreword 

Donald J. Mcinnis 
Group Manager, 
Advanced VAX Engineering 

Since the announcement of the V AX-11 /780 sys­
tem in November 1977, Digital Equipment Cor­
poration has steadily expanded the VAX family 
with new VAX products: the VAX-11/750, VAX-
11/7 30, MicroVAX I , VAX-11/7 25 , VAX-11 / 
785 , VAX 8600, MicroVAX II, VAX 8650, VAX 
8200, and VAX 8300 systems. The market accep­
tance of the VAX family has been excellent across 
almost all computing applications. This remark­
able and steady increase in the use of VAX sys­
tems creates a continuous demand by the VAX 
customer base for enhanced products across all 
segments of the computing industry. In the fall 
of 1982, the development team for the 8800 
project (known internally as " Nautilus") was 
assigned the responsibility of designing new sys­
tems to enhance the mid-to-high end of the VAX 
family. 

This issue of the Digital Technical Journal 
represents a sampling of the types of design engi­
neering that went into the VAX 8800 family . It 
takes an amazingly large number of different 
engineering disciplines to design and manufac­
ture a product of this complexity. As time moves 
on, each successive development project seems 
to require a bigger investment in a larger number 
of disciplines to produce a product attractive to 
the marketplace. It is unfortunate that ne ither 
time nor space permits us to give proper visibil­
ity to all the design, manufacturing, and cus­
tomer-service engineering efforts that led to the 
shipment of the VAX 8800 family. 
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The VAX 8800 family consists of four new pro­
cessors: the VAX 8800, VAX 8700, VAX 8550, 
and VAX 8500 CPUs. The VAX 8800 family and 
the VAX 8200 system introduced a major new 
1/0 bus, the VAXBI. We also introduced a com­
pletely new set of 1/0 adapters for the VAXBI 
bus, which will be the new foundation 1/0 chan­
nel for many future mid- to high-end VAX sys­
tems. The VAXBI bus will replace the UNIBUS on 
this class of system. The VAXBI offers a six-fold 
increase in performance and substantially better 
reliability and maintainability features in com­
parison to the UNIBUS. 

The 8800 represents a significant advance into 
new areas of high-performance computing for 
the VAX family . A customer can replace a VAX-
11 /780 CPU with a VAX 8800 CPU in the same 
footprint and effect an order of magnitude 
increase in the amount of work done. The VAX 
8500 CPU is really a replacement product for the 
VAX-11/785 CPU kernel. However, the 8500 has 
the same price, twice the performance, and one­
third the footprint. 

To produce a product that has a good price/ 
performance ratio in the marketplace, you have 
to push hard on some dimensions of technology. 
A number of new pieces of technology were 
introduced on the VAX 8800 project, such as the 
22-layer backplane and a 480-pin, zero insertion 
force connector. In the VLSI technology area, 
one 8800 includes a total of 186 emitter-cou­
pled logic (ECL) gate arrays and a total of 28 cus­
tom-designed ECL parts. 

The cycle time of a VAX CPU is a large determi­
nant in its performance. The challenge of meet­
ing a 4 5-nanosecond cycle time (versus 200 
nanoseconds for the 11/780) required signifi­
cant advancements in technology implementa­
tion and in CAD tools for analysis. 

Enhancements were made to the base operat­
ing system software for the VAX 8800 processor. 
These software enhancements represent a basic 
technological change that is available to our cus­
tomers. The VMS operating system was improved 
significantly to provide much better throughput 
for customers using the VAX 8800 dual proces­
sor as a general-purpose system. The ULTRIX-32 
operating system was enhanced to support 
tightly coupled multiprocessing. Software 



library structures were also developed for cus­
tomers who might want to improve the through­
put of a single job by decomposing it to run in 
parallel on the tightly coupled dual processors 
of an 8800. 

To meet the performance goals, the overall 
design of the VAX 8800 system is necessarily 
quite complex and was potentially difficult to 
implement quickly and correctly. We under­
stood this from the beginning of the project, 
based on our understanding of the experiences 
of previous projects (e.g., the VAX-11/750, VAX 
8600, and JI 1 VLSI CPU chip projects). To 
manage that complexity in a timely manner, we 
selected some key strategies and stuck with 
them through the completion of the project. 
They proved to be very successful since the 
hardware prototypes were relatively error free , 
and the manufacturing start-up was very smooth 
and rapid. Some of these strategies are as fol­
lows: 

• The project followed a structured design 
methodology that ensured the completion of 
comprehensive specifications before any 
detailed design was done. 

• We made a large investment in our CAD team 
and in CAD tools to automate the design pro­
cess. 

• The basic design was managed by a chief 
architect. 

• The system was simulated extensively before 
we built any hardware. (We finished the pro­
ject with 14 VAX-11/780 and 11/785 sys­
tems in our. cluster. During our peak simula­
tion effort, however, over 30 dedicated VAX 
systems were used for a period of several 
months.) 

• Since many different engineering and manu­
facturing locations were involved, we made 
extensive use of Digital's worldwide network 
for electronic mail and data exchange. 

A more important factor than any of the above 
examples, however , was the people who 
worked on the project. We attempted to build 
an excellent team that worked well together. 
The attribute of teamwork and the willingness 

of people to have a broad engineering focus 
proved to be invaluable, especially in the simu­
lation and prototyping phases. The core manage­
ment team started with very experienced peo­
ple , most of whom had VAX- I 1/780 or 
VAX-11/750 development experience: Sas Dur­
vasula, VAX 8500 project manager; John Hittell, 
manufacturing manager; Steve Jenkins, engineer­
ing manager; Nancy Kronenberg, VMS engineer­
ing; Bob Kusik, CAD manager; Steve Omand, 
customer service engineering; and Bob Stewart, 
chief architect. Many contributors at the next 
level also had similar backgrounds , and all 
remained in place for the duration of the pro­
ject. This continuity was a major factor in com­
pleting a very successful project and a very suc­
cessful family of products. 
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Robert M. Burley I 

An Overview of the Four Systems 
in the VAX 8800 Family 

Ibe VAX 8800 mul.tiprocessor and the VAX 8700, 8550, and 8500 systems 
all derive f rom the same fundamental design. Their sustained appli­
cations throughput ranges from 3.0 to 12 times that of the VAX-11/780 
system. In the design process, automated tools helped to correct design 
bugs early. ECL technology and a two-phase clock system achieve a 
45-nanosecond cycle time. Microinstructions are processed simulta­
neously through four logic boxes that implement a five-stage pipeline. A 
high-speed memory interconnect, the NMI bus, links CPUs to memory and 
the 1/0 subsystem, which connects to VAXBI buses. Many reliability f ea­
tures, including extensive diagnostics, are implemented. 

Design work on the VAX 8800 system began in 
September 1982 and concentrated on develop­
ing a balanced, high-performance system based 
upon the use of ECL components and multipro­
cessing. Although performance was the primary 
product goal, many technology, packaging, and 
implementation decisions reflected the equally 
pressing business requirements for reliability 
and ease of manufacturing. 

The flexibility of the design ultimately 
spawned four CPU systems: the VAX 8800, VAX 
8700, VAX 8550, and VAX 8500 models. These 
systems share many common functional and 
design attributes yet maintain noticeable imple­
mentation differences in the areas of perfor­
mance, multiprocessing, expansion capability 
(memory and 1/0), and packaging. As a result of 
these implementation variations, the sustained 
applications throughput (SAT) rates for these 
systems range from approximately 3.0 to 12 
times the rate for a VAX-11 / 780 system. Sus­
tained applications throughput is more indica­
tive of usable performance for a given system 
than the more frequently reported peak num­
bers that can be derived from ideal or biased 
conditions. Table 1 compares the physical and 
performance attributes of these four VAX pro­
cessor systems. 

Design Environment 
Trad itional des ign environments have placed 
the greatest emphasis on discovering and elimi-

10 

nating design errors in the physical hardware . 
The complexity of the VAX 8800 design cou­
pled with the new technologies involved would 
have created costly delays in the development 
schedule had traditional approaches been used . 
Early in the project, goals were defined to iden­
tify logic design problems and to solve all tim­
ing problems through the use of extensive 
design verification tools . 

A hierarchical design and simulation environ­
ment allowed the engineers to move freely 
throughout the design at any level from gates, 
layouts, and behavioral models through com­
plete system simulation and timing verification. 
Considerable computing resources were required 
to allow that freedom . This environment, with 
its carefully managed libraries and databases, 
allowed this work to be done before any hard­
ware was actually assembled. 1 As a result, the 
design matured within our VAXcluster systems, 
evolving to hardware prototypes only after it 
was essentially complete and stable. In addition 
to the expected savings in prototype costs and a 
reduction in overall development time, the per­
vasive use of software tools significantly shifted 
the traditional debug effort to an earlier point in 
the design process. Cumulative bug-detection 
plots were used extensively to provide insight 
into the stability of the design. 

The effect of this shift was to p rovide stable , 
early prototypes fo r extensive system characteri ­
zation and testing, leading to earli e r des ign 
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Table 1 CPU and Memory Attributes of the VAX 8800 Family 

VAX 8500 VAX 8550 VAX 8700 VAX 8800 

CPU Attributes 

SAT (compared 3.5 6.0 6.0 10.0 to 12.0 
to VAX-11 /780) 

Cycle Time 45 ns 45 ns 45 ns 45 ns 

Number of 2 
Processors 

Upgrade To 8550 None To 8800 None 
Potential 

Writable Control 15K 15K 15K 15K in each CPU 
Store (Words) 

User Control 1K 1K 1K 1 K in each CPU 
Store (Words) 

Microword Size 143 Bits 143 Bits 143 Bits 143 Bits 

CACHE Size 64KB 64KB 64KB 64KB (in each CPU) 

Internal Datapath 32 Bits 32 Bits 32 Bits 32 Bits 

Instruction Buffer 16 Byte 16 Byte 16 Byte 16 Byte Look Ahead 
Type Look Ahead Look Ahead Look Ahead in each CPU 

Maximum Total 16MB/s 16MB/s Over 30MB/s Over 30MB/s 
1/0 Data Rate 

Maximum 1/0 2 2 4 4 
Channels 

Memory Attributes 

Maximum Physical 
Memory Size 

80MB 80MB 128MB 128MB 

Cycle Times: 
Hexword Read 495 ns min. 495 ns min. 495 ns min. 495 ns min. 
(256 bits) 1260 ns max. 1260 ns max. 1260 ns max. 1260 ns max. 

Octaword Write 270 ns min. 270 ns min. 270 ns min. 270 ns min. 
(128 bits) 540 ns max. 540 ns max. 540 ns max. 540 ns max. 
Longword Write 135 ns min. 135 ns min. 135 ns min. 135 ns min. 
(32 bits) 495 ns max. 495 ns max. 495 ns max. 495 ns max. 

acceptance. This strictly controlled design envi­
ronment allowed us to complete physical debug 
along with the required system evaluation and 
testing in only eight months. 

In a software-intensive design environment, 
the production of actual hardware is deferred 
somewhat in favor of design stability, resulting 
in a slightly longer soft-design period. The delay 
in hardware availability, however, is more than 
balanced by the stability of the hardware proto­
types, which can then be accelerated through 
the evaluation and qualification-testing phases. 
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The design schedule recovers during these later 
phases, and substantial cost savings are realized 
because fewer engineering changes are made 
and stable manufacturing can b egin quickly. 

CPU Design Overview 
The VAX 8800 family of designs were structured 
around the functional elements, or "boxes," of 
the system . The CPU, memory, 1/0, and bus 
subsystems were all matched to provide the nec­
essary system balance. One simple model is to 
treat performance as a function of two variables: 
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________ An Overview of the Four Systems in the VAX 8800 Family 

the instruction execution rate, and the amount 
of "work" each instruction can perform. The 
design of the VAX 8800 family focused on what 
we call the "short tick" approach to achieve the 
necessary, sustained performance. 

In this approach, the instruction and data 
streams are kept simple and are executed 
quickly. Any design trade-offs were resolved in 
favor of speed and simplicity, thus reducing 
design complexity. The use of high-speed cus­
tom and semicustom VLSI components com­
bined with several new internal bus architec­
tures resulted in a family of processors with a 
45-nanosecond (ns) cycle time. All models 
employ a five-stage instruction execution 
pipeline, integral floating point acceleration (F, 
D, G, H formats) , and the VAXBI bus as the pri­
mary 1/0 subsystem . The extensive use of 
microcode controls with minimal hardware 
assist augments current performance while 
providing flexibility for future enhancements . 
The block diagram in Figure 1 (using the VAX 

ECC 
MEMORY 

8700 and VAX 8800 systems) illustrates the key 
functional elements common to the VAX 8800 
family design. 

Technology 
The raw speed, off-chip drive capabilities, and 
availability of bipolar emitter-coupled logic 
(ECL) logic components provided the most 
straightforward means of achieving the desired 
performance of the VAX 8800 family . Most logic 
is implemented in 1200-gate ECL arrays. Cus­
tom logic chips designed by Digital provide fur­
ther performance gains for floating point opera­
tions and general-purpose registers. The cache is 
implemented in 10-ns and 15-ns ECL RAMs . 
Nine-layer, controlled-impedance CPU logic 
modules and a 22-layer, controlled-impedance 
CPU backplane were developed to meet the sig­
nal-integrity and signal-propagation require­
ments crucial to an ECL design . Other multi­
layer backplanes were designed for the private 
memory array bus and 1/0 subsystems. 
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Figure 1 VAX 8700/ 8800 Block Diagram 
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An innovative scheme of bus bars and ribbon 
straps routes the appropriate power to each of 
the backplanes, minimizing cable management 
problems for system power. The eight CPU logic 
modules, all memory arrays, and all I/0 con­
trollers attach to their respective backplanes by 
means of zero insertion force (ZIF) connectors, 
which improve our ability to manufacture and 
service the system. Figure 2 shows the two dif­
ferent module types (CPU and VAXBI) used in 
the VAX 8800 family . 

Figure 2 Typical CPU and 1/0 Modules 

An extensive environmental monitoring sub­
system, called the EMM, has been implemented 
throughout the system. The EMM constantly 
mon itors current fluctuations , air flows, and 
temperature variations, providing warnings at 
the system console. The EMM can automatically 
power down the system in the event that safe 
operating limits are violated. 

CPU Subsystems 
The designs of the CPUs in the VAX 8800 family 
are partitioned along the logical functions per-
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formed within each processor. There are four 
logical boxes: the instruction unit (I Box) , the 
cache (C Box) , the execution unit (E Box), and 
the memory subsystem (M Box) . Each processor 
contains these functional units and their related 
buses. Five buses are implemented within each 
CPU: the cache/ALU bypass bus, the cache data 
bus, the instmction-buffer data bus, the virtual­
address bus, and the write data bus. Figure 3 is a 
block diagram of the processor configuration. 

I 
BOX IBD BUS 

CONSOLE 
SUBSYSTEM 
INTERFACE 

VISIBILITY BUS 

E 
BOX VA BUS 

c 
BOX 

WD BUS 

CACHE DATA BUS 

HIGH SPEED MEMORY INTERCONNECT BUS (NMI) 

NBIA 
ADAPTER 

TO NBIB ADAPTERS 

C/A BUS - CACHE/ALU BYPASS BUS 
IBD BUS - INSTRUCTION BUFFER DATA BUS 
VA BUS - VIRTUAL ADDRESS BUS 
WD BUS - WRITE DATA BUS 

MEMORY 
CONTROLLER 

Figure 3 Processor Block Diagram 

A short overview of each functional box fol­
lows. Other papers in this issue of the Digital 
Technical Journal and the VAX Hardware 
Handbook contain substantially more detail. 2 
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Pipelining the VAX 8800 Family 
Pipelining, which functionally involves the 
E Box, the C Box, and the M Box, is primarily 
controlled by the I Box. Pipelining is a proven 
method to improve performance. The incorpo­
ration of pipelining, in ·conjunction with faster 
microcode instruction execution rates, or cycle 
times, increases aggregate throughput more than 
can be achieved by improvements of the cycle 
time alone. The concept of pipelining is based 
upon partitioning instruction execution to 
allow simultaneous operations upon multiple 
microinstructions. The VAX 8800 family 
employs a five-stage pipeline. In this design a 
new microinstruction executes every 4 5 ns, 
with five microinstructions executing simulta­
neously. A simplified schematic of the VAX 
8800 family pipeline is represented in Figure 4. 

I DNA I cs R A W,C 

! DNA cs R A W,C 

DNA cs R A W,C 

DNA cs R A W,C I 

DNA cs R A I W,C I 

DNA - DECODE/NEXT ADDRESS 
CS - CONTROL STORE LOOK-UP (MICROCODE INSTRUCTION) 
R - REGISTER READ 
A - ALU OPERATION 
W,C - REGISTER WRITE, CACHE OPERATION 

Figure 4 The Pipeline in the VAX 8800 
Family 

The I Box 
The I Box contains the microcode store and con­
trol center and performs five primary functions. 

• Buffering the prefetched VAX instruction­
stream data received from the cache 

• Decoding and controlling the execution of 
microinstructions 

• Monitoring and servicing microtraps, inter­
rupts, and exceptions 

• Supplying instruction-stream embedded data 

• Interfacing between the console interface 
module and the processor 

For each processor, a writable control store of 
I 6K words by 14 3 bits is loaded directly from 
the intelligent console subsystem upon system 
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start. A segment of control store with 1 K words 
by 14 3 bits, the user-writable control store, is 
provided for the system user to optimize appli­
cations. The logical function of the I Box 
includes the following: 

• The instruction buffer 

• The instruction decoder 

• The microsequencer 

• The condition code and microbranch logic 

• The interrupt and processor-register logic 

• The file-address generator 

Figure 5 depicts the implementation of the 
I Box. 

The C Box 
The C Box for each processor is built around a 
64-kilobyte (KB) write-through data cache 
memory that is physically indexed and direct 
mapped. Functionally, the C Box provides very 
high-speed physical memory, high-speed 
address translations, and a communication path 
for the processor to the NMI bus. The compara­
tively large cache size was specifically selected 
to allow large applications to remain fully resi­
dent in the cache, substantially reducing mem­
ory traffic and processor wait states. The com­
plete C Box implementation includes a 
IKB translation buffer, a 64KB cache data store, 
and an NMI interface. The translation buffer 
consists of a 1 K-entry cache of virtual-to-physical 
address translations. This translation buffer con­
tains a tag store and a data store organized into 
512 process-translation slots and 512 system 
region-translation slots. Using a portion of the 
virtual address to compare the tag-store and 
data-store addresses, the translation buffer con­
catenates the page frame number with the low­
order virtual-address bits to form the physical 
address for the data store cache. 

Data read from the cache data store (a cache 
"hit") requires no memory request. If the 
required data is not in the cache data store (a 
cache "miss"), logic embedded in the NMI 
interface uses the cache-miss address to spawn a 
command/address transaction that is sent to the 
memory subsystem. Upon return, the requested 
data from memory is passed to the req uesting 
CPU and then placed in the cache data store for 
subsequent use. This design allows the translation 
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buffer and the cache data store to be free to 
process other processor requests until the 
requested data arrives from memory. 

A block diagram of the C Box is shown in 
Figure 6. 

The E Box 
The E Box receives data from the I Box and the 
C Box, processes that data, and returns it to the 
C Box. The E Box performs five primary func­
tions required by the processor. 

MEMORY 
CACHE DATA REFILL DATA INTERCONNECT 
STORE i...-------t lNTERFACE • Handles all arithmetic , logical and bit-shift 

operations 

< CACHE DATA BUS > NMI 

• FROM EXECUTION BOX 
t FROM INSTRUCTION BOX 

Figure 6 C Box Block Diagram 
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• Maintains the program counter and general 
registers 

• Maintains the processor registers 

• Controls data transfers between the C Box, 
the I Box, and the clock-module registers 

• Provides condition-code information to the 
I Box microsequencer 
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TO C BOX FROM I BOX 
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t + 
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Figure 7 E Box Block Diagram 

The major elements of the E Box, located phys­
ically on the data-s lice modules and the shifter 
module , consist of a register file , a data file , the 
program-co u n ter logic , the main ALU , and a 
shifter. The logic of the E Box includes integral 
floating point operations that are optimized and 
a 64-bit multiplier (i mp lemented in custom­
designed VLSI chips) that augments the speed of 
both integer and floating point multip lication . 
Figure 7 is a block d iagram of the E Box. 
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TheM Box 
The M Box, the memory subsystem, consists of 
memory control logic , memory arrays, and a 
dedicated memory array bus that p rovides a 
usable data rate of over SOMB per second to the 
memory subsystem . The control logic op timizes 
multiple memory read and write operations , 
implements three-way interleaving, and buffers 
memory transactions for optimum data move­
ment. The dedicated memory array bus, coupled 
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with the memory control logic, effectively off­
loads the NMI bus, providing balanced bus 
access and loads. The interleaving algorithms 
are based upon array boundaries, making the 
memory control logic technology independent. 
The result is that as increasingly dense memory 
arrays become available, few if any controller 
modifications will be required. 

The error checking and control (ECC) is built 
around 7 check bits for every 32 bits of data. 
This protocol provides automatic single-bit cor­
rection and double-bit detection. 

In the VAX 8800 multiprocessor, all memory is 
fully sharable. Current systems in the VAX 8800 
family are offered with 16MB per memory array, 
giving the VAX 8700 and VAX 8800 systems a 
maximum memory capacity of 128MB, and the 
VAX 8500 and VAX 8550 systems a maximum of 
BOMB. Figure 8 is a block diagram of the M Box. 
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Figure 8 M Box Block Diagram 
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The Clock Subsystem 
The clock subsystem generates, controls, and 
distributes timing signals to all the components 
of the processor system. The clock subsystem 
contains the console interface, an oscillator, a 
phase generator, clock-control logic circuits, and 
the logic circuits for clock signal distribution. 

The VAX 8800 family implements a two­
phase, nonoverlapped clock subsystem operating 
at a cycle time of 45 ns. A stable, high-frequency 
oscillator ( 120 MHz nominal with variable out­
put) , coupled with a phase generator, provides 
the signal. The implementation of a two-phase 
design with matched signal-length distribution 
throughout the CPU is most efficient for the 
pipelined, latch-based design of the VAX 8800 
family . This design avoids the inefficiencies 
associated with the compressed signal-assertion 
times resulting from approaches that specify 
minimum delays for given logic elements. 

A-clock and B-clock signals are distributed to 
alternate latches in a given logic stream. All data 
transfers occur between latches clocked by dif­
ferent phases to assure a race-free design. The 
essence of fast-processor design is managing and 
controlling skew. In this regard, signal propaga­
tion and distribution presented significant chal­
lenges in the areas of controlled etch lengths, 
controlled impedance, routing, and placement. 
To assure a stable , reliable design, all design 
activity was predicated on worst-case design 
rules rather than using the typical-case limits. 

The NM/ Bus 
Integral to the design of this family of proces­
sors was the development of a high-speed mem­
ory interconnect bus called the NMI bus. This 
bus, analogous to the synchronous backplane 
interconnect (SBI bus) in the VAX-11/780 CPU, 
links the subsystems for CPU logic , central 
memory, and 1/0. The NMI bus is a 32-bit syn­
chronous bus, physically implemented within 
the 22-layer backplane . This bus provides the 
control and datapath functions as well as the 
distribution of clock signals for the VAX 8800 
family. 

One fundamental problem in the design of 
high-performance systems revolves around bal­
ancing the bus access needed at any given 
instant with the raw bandwidth available. To 
provide the correct balance, the NMI bus was 
implemented as a pended (vs. interlocked) bus, 
resulting in very high bus-access availability. 
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Since memory is the critical resource in sus­
tained operations, the NMI bus uses a modified 
round-robin arbitration that gives the memory a 
higher priority when there is contention for the 
bus . This arbitration priority eliminates any 
lock-step conditions and also provides for recov­
ery of states and data in the event of preemp­
tion . This high bus-access capability, coupled 
with usable data rates of up to 60MB per sec­
ond, provides the necessary balance to support 
CPU, memory, and 1/0 transactions. The inclu­
sion of write buffers within each CPU, coupled 
with the large cache size, effectively reduces 
the number of transactions presented to the bus. 
Measurements on a VAX 8800 system in our 
Engineering VAXcluster environment have indi· 
cated that the NMI bus is rarely busy more than 
50 percent of the time; the CPUs use approxi­
mately 25 percent of the available access time 
and bandwidth. Other applications may see 
somewhat different ratios. 

VAXBI Bus 
The VAX 8800 family uses the VAX bus inter­
connect, called the VAXBI bus, for the 1/0 sub­
system in order to provide adequate balance for 
the CPU performance. The VAXBI bus, a 32-bit 
clocked bus with distributed arbitration, is capa­
ble of usable data rates in the VAX 8800 family 
up to 8MB per second, depending upon word 
size and application. Custom logic on each 
interface module provides all bus protocols, as 
well as integral data-integrity features, including 
master transmit and command acknowledge. 

The VAX 8800 and VAX 8700 systems can be 
configured with up to four VAXBI channels , 
whereas the VAX 8550 and VAX 8500 systems 
accept up to two. Therefore, fully configured 
VAX 8800 and VAX 8700 systems can support 
aggregate 1/0 bandwidths up to 30MB per sec­
ond. Similarly, fully configured VAX 8550 and 
VAX 8500 systems can support aggregate band­
widths up to 16MB per second. Each VAXBI bus 
can su p port up to 16 nodes , or logical 
addresses, which connect to any combination of 
networks, intelligent and nonintelligent 
devices, DMA devices, and VAXcluster systems, 
as well as providing for connection to existing 
UNIBUS-based devices. 

All of Digital 's network protocols interface 
directly to the VAXBI on the VAX 8800 family. 
Thus, VAXcluster, Ethernet, DECnet and DSA 
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( Digital Storage Architecture) devices are all 
ported directly to this high-performance 1/0 
subsystem. 

Reliability 
Reliability was one of the primary goals of the 
VAX 8800 design. Numerous features were 
implemented that more than doubled the basic 
computing kernel availability compared to the 
VAX-11/780 system. Some of the key functions 
include 

• Environmental and power monitors that 
query the system and maintain safe system 
operating levels 

• Automatic verification of hardware, firmware, 
and software revision compatibility 

• Electrically keyed modules and module slots 
that prevent improper installation and dam­
age to the modules or the system 

• Automatic electrostatic discharge (ESD) pro­
tection of modules during installation and 
removal 

• ECC on main memory 

• Parity checking on internal RAMs 

• Bus protocol checking for the memory inter-
connect 

• Timing and voltage margining 

• Remote diagnostics capability 

• Dual-to-single processor reconfiguration 
(VAX 8800 system only) 

Diagnostic Development 
Similar to the hardware development , the 
design methodology for the diagnostics 
depended very heavily on simulation. Almost all 
the diagnostic tests were debugged on behav­
ioral and structural models of the design before 
the initial prototype was powered up. There 
were three major benefits of this methodology. 

1 . Microdiagnostic and macrodiagnostic 
tests were useful for design verification 
testing. 

2. Test vectors for automatic test equipment 
(module test) were extracted from the 
simulation database. 

3. A comprehensive diagnostic package was 
available shortly after the prototype was 
powered up. 
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The diagnostic for the VAX 8800 family con­
sists of tests specific to this processor and 
generic to the VAX architecture. The processor 
is tested primarily with microdiagnostics. These 
tests execute from the processor's writable con­
trol store and are governed by the console. 

VAX generic diagnostics are included to test 
the UNIBUS and VAXBI adapters and options. All 
the diagnostic code fits on the console's 
Winchester disk. When the system is powered 
up, a subset of the microdiagnostic tests are 
executed. 

Balanced Systems 
The VAX 8800 design effort delivered four dif­
ferent systems, the 8800, the 8700, the 8550 , 
and the 8500, all reflecting the overriding con­
cept of balanced system design. While the CPUs 
themselves demonstrate excellent internal bal­
ance between their logical and functional sub­
systems, they are also balanced members of the 
extended system that can span much larger 
physical distances. Monolithic or isolated com­
puting resources are no longer capable of 
accessing, manipulating, and distributing the 
volumes of information needed for complex or 
extended solutions. In this light, the VAX 8800 
family should be viewed in the context of a bal­
anced network. The movement of data is gov­
erned by speed and distance . An inverse rela­
tionship exists as shown in Figure 9 . The VAX 
8800 family fits on the top bound of the band­
width range throughout the distance function. 
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Figure 9 Bandwidth versus Distance 
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Summary 
The VAX 8800 family of products merges fast 
instruction-execution rates, large physical mem­
ories, large high-speed data caches, VAXBI 1/0 
channels, pipelining, and balanced internal-bus 
architectures to provide high system-applica­
tions throughput. Spanning an applications 
throughput range that is from 3 to 12 times that 
of the VAX-11/780 system, the VAX 8500, VAX 
8550 , VAX 8700 , and VAX 8800 systems are 
matched to the network and applications strate­
gies offered by Digital Equipment Corporation. 
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The VAX 8800 Microarchitecture 
The VAX 8800 processor has a simple but efficient microarchitecture. Its 
pipelined micromachine has a one-cycle next-address loop and four-cycle 
latencies for both microbranches and microtraps. Instruction pref etch 
and decode are done in parallel with microcode execution. The instruc­
tion buffer is a bit-sliced, four-longword circular queue. The decoder is 
primarily a RAM-based table. For special events, hardwired logic is used 
for decoding. A bit-sliced microsequencer provides up to 32-way condi­
tional microbranching, using a collection of about 80 branch conditions. 
A hardware microstack provides up to 15 levels of nested subroutine calls 
and returns. Microtrap conditions are prioritized over 16 levels, and 
microtraps are chained, not nested. 

The term "microarchitecture" means the speci­
fication or description of the interrelationships 
between the parts of the micromachine that 
implements the instruction set processor. In 
terms of this definition, the microarchitecture of 
the VAX 8800 processor will be described by 
elucidating the organization of its micromachine 
and the interaction between its components. 

Figure 1 shows a simple three-stage state­
machine model of an abstract micromachine 
appropriate for implementing the control unit 
of a typical von Neumann processor. Figure 2 
shows a block diagram depicting the essential 
elements of such a micromachine. This state­
machine is capable of executing microcode rou­
tines to implement an instruction set processor. 
In such a system, every macroinstruction is 
decoded by the hardware to produce the start­
ing addresses of a small set of microprograms, 
which execute sequentially to produce the 
desired effect. Barring some exceptions, a 
microprogram or microcode routine can exe­
cute rather independently in the sense that each 
microinstruction produces the address of the 
next microinstruction. The last microinstruction 
causes the selection of an external address, such 
as one produced by the decoder, to start the 
execution of another routine. 

In Digital's vernacular, the I Box is the logical 
partition containing the instruction-processing 
hardware. Figure 3 shows a block diagram of the 
VAX 8800 I Box with the basic elements of its 
micromachine. 
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LOOK UP 
MICRODATA 

Figure 1 State-machine Model of an 
Abstract Micromachine 

From the early IBM and CDC computers to the 
modern CRAY machines, computer designers 
have used a technique called "pipelining" to 
obtain higher performance. Pipelining overlaps 
the execution of instructions in time; that is, 
several instructions can be executing at the 
same time. This technique provides a higher 
throughput when the pipeline is fully loaded, 
but there is a cost involved. If the pipeline is 
broken, extra processing is required to refill it. 
Moreover, if any active instructions have par­
tially executed, information about their states 
may have to be saved to continue processing 
after an abrupt interruption. 

The degree of pipelining varies from one 
machine to another depending upon the design 
choices and trade-offs made by the system archi­
tects. A metaphor often used to indicate the 
degree of pipelining is the length of the pipeline 
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stated as the number of stages, for example , a 
three-stage pipeline or a four-stage pipeline . 
The number of stages conveys the extent of time 
overlap for typical operations in a computer. 
In a machine with a pipelined microarchitec­
ture, these operations are executions of microin-

INPUT 

t 
1 

CL · COMBINATORIAL LOGIC 

structions. A higher degree of pipelining makes 
short cycle times possible, thus leading to a 
higher throughput when the pipeline is fully 
loaded. But longer pipelines entail increased 
overhead in terms of their ability to resume oper­
ations after a break in the pipeline caused by any 
abnormal event. Therefore, an architect's goal is 
to design the system so that the pipeline remains 
loaded most of the time and recovery from a bro­
ken pipeline is not too inefficient. The VAX 8800 
CPU is a prime example of a processor with a 
pipelined microarchitecture. 

System Considerations 
The design philosophy of the VAX 8800 proces­
sor was to optimize the hardware so that it 
would execute the microcode efficiently. A 
large control store ( 144 bits by 16,000 entries) 
holds the entire microcode . Using fairly general­
ized datapaths, the microcode executes the 
logic of the instructions. However, special hard­
ware is used to speed up performance in critical 
areas. The processor logic is primarily designed 
with latches, which are clocked with a globally 
distributed, two-phase , nonoverlapping clock­
ing scheme. The two clock phases are called the 
A-clock and the 8 -clock. A typical example of 
logic design, based on the above approach, is 
shown in Figure 4. 

OUTPUT 

Figure 4 A Typical Section of the VAX 8800 
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It is apparent from Figure 4 that the data flow 
in such a logic system occurs through the per­
petual data transfers between the latches con­
nected to the A-clock and those connected to 
the B-clock. Each data transfer may be consid­
ered atomic in the sense of hardware operation. 
A microoperation may be envisioned as a logical 
operation that is atomic in terms of the execu­
tion of a microinstruction, such as a register 
read, a register write or an ALU function. Hence 
a microoperation constitutes one or more data 
transfers, and the microinstruction execution 
simply constitutes a time sequence of micro­
operations, as shown in Figure 5. 

CLOCK 

A 

I 

READ REGISTERS 

8 

I 
ALU FUNCTION 
ADD 

TIME 

A 

I 
STORE RESULT 
IN REGISTER 

8 

I 

Figure 5 Example of a Microinstruction 

In high-performance machines, like those in 
the VAX family, there is usually a mismatch 
between CPU cycle times and memory-access 
times. For example, consider an ADD instruc­
tion. If the operands are in registers, the ADD 
can be done rather quickly. But if one of the 
operands has to be read out of memory, the ADD 
cannot be performed until the desired d;ita 
arrives from memory. Most VAX processors have 
a fast cache memory, tightly bound to the pro­
cessor's arithmetic units, to alleviate the mem­
ory-latency problem. In the case of a cache miss 
on a required datum, however, the only alterna­
tive for a von Neumann processor is to wait. A 
processor in such a state is said to be "stalled." 
Under such conditions, the state of the proces­
sor must be "frozen" until the cause of the stall 
no longer persists and the stall is broken . The 
two-phase clocking scheme provides a conve­
nient way to implement stalls, in which one of 
the clock phases (the A-clock in the 8800) may 
be blocked. Stalls are controlled by the cache 
through a special hardware signal distributed 
globally to block the A-clock. Thus, the proces­
sor logic contains two flavors of A-latches: 

• Stalled A-latches, which are affected by a stall 

22 

• Unstalled A-latches, which are not affected by 
a stall 

The micromachine is implemented only with 
stalled A-latches. Hence the effect of stalls on 
the execution of the micromachine is largely 
transparent. 

A mechanism is also required to deal with 
hardware exceptions when the results of the 
execution of a microinstruction have to be 
undone. In a pipelined microarchitecture, sev­
eral microinstructions may have partially exe­
cuted when an exception condition is detected. 
In that case it is necessary to undo the effects of 
all those microinstructions. The most common 
technique used to deal with such situations is 
called a microtrap. Since microtraps relate 
closely to the micromachine execution, every 
processor has its own scheme to implement 
them. In every case, however, microtraps must 
permit the "roll back" of some number of 
microinstructions because the detection of a 
trap condition usually occurs quite late with 
respect to microinstruction execution. 

In the VAX 8800 processor, microtraps are 
implemented so that the offending micro­
instruction is allowed to complete, but subse­
quent microinstructions in the pipeline are 
blocked. Since the offending microinstruction 
may have caused some undesirable results, the 
trap-handler microcode must fix the problem. 
Depending on the particular situation, either 
the microinstruction execution flow is resum­
ed from the blocked state or a new flow is 
originated. 

System Buses and Datapath 
Figure 6 is a block diagram of the VAX 8800 
CPU datapath, showing all the major buses. The 
hardware organization of the CPU provides a 
two-cycle operation between the cache and the 
ALU, as shown. The processor has several func­
tional units in addition to the main ALU. These 
additional units perform high-speed multiply 
and divide, shifting, and floating-point arith­
metic operations. 

There are several possibilities for selecting 
inputs to these functional units. For operations 
involving two inputs, both can be presented 
simultaneously onto the two legs of the main 
ALU as well as most other functional units. The 
results from these functional units are sent on 
the W bus for writing to either the multiport 
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register file (MPR) or the cache. However, since 
the write actually occurs in the following cycle, 
the bypass bus provides a shortcut (saving a 
cycle) in case the write datum is read by the 
very next microinstruction. 

The virtual address bus carries the virtual 
address of any data-stream (d-stream) refer­
ences, whereas the program-counter bus has the 
current program counter (PC). The instruction­
buffer data bus provides the instruction-stream 
(i-stream) data. The instructions and data from 
the cache are returned on the cache data bus. 
However, a cache data bypass bus provides a 
direct path to the functional units for the data 
returned by the cache, in case the processor is 
or will be stalled for that data. 

Microinstruction Pipeline 
The top part of Figure 7 shows the execution of 
microinstructions as a function of time in a non­
pipelined microarchitecture; the bottom depicts 
that in a pipelined microarchitecture. 

The basic data flow in a processor occurs in 
the following sequence: 

1. Read the register operands into a func­
tional unit, such as the ALU. 

2. Perform some ALU function. 

CLOCK- A B A B A 

MICROINSTRUCTION 1 

B 

3. Write the results into the destination 
register. 

4. If there is a cache, start a cache operation 
at approximately the same time as a regis­
ter write since memory references are 
buffered through special-purpose mem­
ory data registers (MDRs or MDs) in most 
high-performance processors. 

Figure 5 shows that the sequence above 
occurs in a natural order in time as a conse­
quence of the microinstruction execution. With 
pipelined microarchitectures, a time reference 
is needed to correlate the microoperations per­
formed by various microinstructions with 
respect to each other. The notion of canonical 
times is very convenient for this purpose. The 
clock ticks of the reference microinstruction 
may be labeled with a monotonically increasing 
set of T numbers starting at T0 as shown in 
Figure 8 . These T numbers are called the canon­
ical times of a particular microinstruction . The 
microoperation labeled T0 marks the start of a 
microinstruction execution cycle. Figure 8 
shows the basic microoperations of a VAX 8800 
microinstruction with their canonical times. 

We shall use the simple model of a microma­
chine in Figure 1 to describe the VAX 8800 micro-

A B A B A B A 

MICROINSTRUCTION 2 
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MICROINSTRUCTION EXECUTION IN 
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MICROINSTRUCTION 1 
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MICROINSTRUCTION EXECUTION IN 
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Figure 8 Canonical Times of a VAX 8800 Microinstruction 

instruction format as a sequence of basic micro­
operations like those in Figure 8. The first stage 
in the microinstruction execution cycle is the 
microaddress fetch . The microinstruction execu­
tion cycle begins with a decoder operation. The 
decoder produces the starting microaddress for 
every new microinstruction sequence and pre­
sents it to the microsequencer . The decoder 
determines that address on the basis of the con­
tents and current state of the instruction buffer 
(18). Each microinstruction specifies to the 
microsequencer whether or not to accept the 
decoder's microaddress. If not, the microinstruc­
tion must either specify the address of the next 
microinstruction directly , as a part of the 
microword, or indicate an alternate source for 
the address within the microsequencer. Since the 
decoder's operation is concurrent with the 
microsequencer's, the decoder always has a start­
ing microaddress for the microsequencer. It is 
convenient to think of this 18-decoder concur­
rency as a "hidden decoder cycle ." 

CLOCK - A B A B A B 

I I I I I I 
CYCLE - 0 1 2 3 4 5 

r 
I LUK I xos I MICROINSTRUCTION A: I DECODER RD L--------

A 

I 
6 

The next stage in the microinstruction execu­
tion sequence is the fetch of the microinstruc­
tion , performed by a look-up in the control 
store . In the VAX 8800 system, the microaddress 
is pipelined, not the microdata. Consequently, 
the microdata from a segmented control store 
appears at the appropriate time for the three 
basic operations to occur in the indicated order. 

The microdata looked up causes a sequence 
in which the register read occurs between the 
times T5 and T6 , the ALU function between T6 

and Ts, and the register write between Ts and 
T10 . The cache operations also occur between 
the times Ts and T 10 • The section beyond T 10 

denotes cache activity with respect to the mem­
ory if there is a cache miss. (The cache/memory 
interface is controlled by an independent micro­
machine .) During every cycle, a microinstruc­
tion produces the address of the next microin­
struction , which is then executed. Figure 9 
depicts the generic microinstruction pipeline of 
the VAX 8800 processor. 
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Microbranch Latency 
One consequence of pipelining is that any inter­
vening microinstructions must be spaced 
between the instruction that produces a branch 
condition and the instruction that can branch on 
it due to latency in the development of the 
branch condition. Obviously, the execution of 
the intervening microinstructions must be inde­
pendent of the branch. Usually, microcoders are 
able to code some useful operations during the 
inevitable wait. Otherwise, the intervening 
instructions must be NOPs (no operation). 
Figure 10 shows the microbranch latency in the 
VAX 8800 CPU. 

Microtrap Latency 
A hardware exception causes a microtrap. How­
ever, the trap conditions, like the branch condi­
tions, may develop after some execution cycles 
have been completed. Once again there must be 
some intervening microinstructions between the 
trap-causing microinstruction and the trap-han­
dling routine. Moreover, the state of the micro­
machine must be saved so that the current exe­
cution can be resumed in such a way that the 
intervening execution of the trap routine 
appears to be transparent. This state consists pri­
marily of microbranch conditions that result 
from the execution of microinstructions in the 
pipeline since those could influence subse­
quent microaddresses and hence the execution 
sequence. Therefore, on interruption of the cur­
rent sequence by the trap routine, the branch 
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conditions from the earlier execution are essen­
tial to reproduce the same sequence. 

To simplify the hardware design, all early 
traps are delayed to a fixed canonical time 
(T10). Some trap conditions, however, develop 
later than the canonical time with the conse­
quence that those traps cannot be returned 
from. In such cases the microcode must roll 
back the state to the beginning, which causes a 
reexecution of the entire macroinstruction. 

Figure 11 shows a sequence in which a 
microinstruction at address T provokes a micro­
tra p. At the earliest, the trap-handling routine 
can begin at microinstruction X. Meanwhile, 
microinstructions U, V, and W follow T, quite 
unaware of the impending trap. In fact, they are 
in partial execution when the trap condition is 
detected. These microinstructions are said to be 
in the trap shadow, and they must be blocked 
from writing any registers, thus making it appear 
as if they had never executed. When control is 
returned from the trap-handling routine, these 
trap shadow microinstructions are reexecuted, 
continuing the sequence that would have arisen 
had the trap not occurred. 

Instruction Buffer and Decoder 
The IB buffers the prefetched VAX i-stream 
delivered by the cache and in turn delivers the 
opcode and specifier to the decoder. The IB also 
delivers the i-stream data to the execution unit, 
the E Box. The decoder expects to receive the 
current opcode and the current specifier byte. 
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Hence the IB saves the opcode for the duration 
of the instruction execution and shifts the 
buffered i-stream along to send each specifier in 
turn to the decoder. The goal of the VAX 8800 
decoder is to produce a starting microaddress 
corresponding to the opcode and the specifiers. 
The sequence of microcode execution caused 
by the decoder is first to process all the specifi­
ers, making all the operands available, and then 
to execute the operation specified by the 
opcode. If an instruction has no specifiers, the 
execution microcode is initiated directly. In any 
case the decoder always has a microaddress 
ahead of time for the microsequencer. This 
microaddress is the starting address of either a 
specifier routine or the execution routine , 
based on the contents and the state of the IB. 

If at any time the IB does not contain enough 
i-stream data for a successful decode , the 
decoder will produce a special microaddress. 
The microinstruction at that address is simply a 
NOP that again requests the selection of the 
decoder's address. The micromachine thus waits 
in a loop for sufficient i-stream data to arrive in 
the IB so that the decoder can again dispatch a 
useful microaddress. This wait-loop state of the 
micromachine is commonly referred to as the IB 
stall, which is different from the stall described 
earlier. Note that clocks to stalled A-latches are 
not blocked for an IB stall. On the contrary, the 
micromachine runs normally as does the rest of 
the processor hardware. IB stalls may occur 
when the instruction prefetch pipeline is bro-
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ken due to macroinstruction branches. This con­
dition requires the current contents of the IB to 
be discarded and new i-stream data to be 
prefetched into the IB. 

The VAX 8800 IB is a four-longword circular 
queue, which is usually long enough to hold an 
entire instruction. The data is consumed out of 
the lB from the position pointed to by the read 
pointer. However, new data could be written 
concurrently by the cache at the position 
pointed to by the write pointer. Whenever it has 
room, the IB is loaded by the cache if the cache 
has no other higher priority job to do. Occasion­
ally, the IB becomes full (the write pointer 
catches up with the read pointer) , and then it 
does not accept the datum from the cache. If a 
datum is not accepted by the IB, the cache 
keeps repeating the transfer until the datum is 
accepted. Occasionally, the IB becomes empty 
if the cache is busy doing other things and the 
decoder has consumed all the data from the IB 
(the read pointer and the write pointer point to 
the same location) . 

The IB in the VAX 8800 family is implemented 
with four identical gate arrays with 8-bit slices 
designed to use a rather clever bit-scattering/ 
gathering scheme. The IB also contains logic to 
extract and format i-stream data, making it avail­
able to the E Box. A common silo holds the 
opcode history for the duration of a macro­
instruction's execution, as well as for recov­
ery from microtraps. The VAX 8800 decoder is 
a RAM -based look-up table for generating 
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Microsequencer microaddresses . In the case of special events, 
however, hardware logic is provided for gener­
ating special microaddresses, as shown in Fig­
ure 12 , thus bypassing the RAM look-up . The 
decoder also provides controls for the IB state­
machine as well as some other hardware assists. 

The state-machine responsible for generating the 
next microaddress for a microinstruction se­
quence is commonly called the microsequencer. 
As shown in Figure 13, this state-machine is 
realized collectively by the control store, the next 
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microaddress generation logic, and the microad­
dress and microdata latches (or registers) . 

The goal of the VAX 8800 microsequencer is 
to produce the address of the next microinstruc­
tion during every cycle. Figure 14 depicts how 
the microsequencer achieves this goal. 

Each microinstruction may modify its next­
microaddress field through a microbranch com­
mand to produce the address of the target 
microinstruction. Microbranch conditions are 
delivered by other sections of the machine, such 
as the ALU . These conditions are grouped 
together in ways convenient for microprogram­
ming so that multiway branches can be taken . 
Microsubroutines can be called and returned 
from by means of a hardware microPC stack. 

Stalls cause the microsequencer state to be 
frozen on a cycle boundary (i.e., the clocks on 
microaddress and microdata latches are effec­
tively blocked). Microtraps allow the microcode 
to deal with unusual events that would be too 
slow or inconvenient to check normally with 
microbranches, such as TB misses and address 
misalignments. The VAX 8800 processor does 
not permit traps to be nested. Instead, traps are 
"chained," meaning that trap routines and hard­
ware trap priorities are carefully arranged so 
that a second trap is taken only when the first 
trap routine finishes. (Machine check traps can­
not be controlled in this way.) 

Sources of Microaddresses 
There are five sources for microaddresses: 

• The decoder 

• The next-address field in the microword 

• The microstack upon returning from a sub­
routine 

• The microPC silo for a saved microtrap 

• The micromatch register for an address from 
the console 

An address from the console is selected in 
response to an explicit console request and 
takes precedence over everything else . 
Addresses from the silo are requeued in 
response to a trap-return command. Addresses 
from the microstack are selected in response to 
a subroutine-return command. A decode r-gener­
ated address is selected whenever the current 
sequence ends and a new specifier or execution 
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routine should begin. Normally, this selection is 
caused by the assertion of a microword bit in 
the very last microinstruction of the current 
sequence. The next-address field is selected as 
the default for normal sequencing. This field is 
also used to provide an offset in case of subrou­
tine returns. 

Micro branching 
In normal cases, part of the selected microad­
dress can be modified according to the branch 
conditions, that is, whenever the next-address 
field is selected . A combination of two 
microword fields, branch type and branch mask, 
selects the branch conditions, which are then 
ORed into part of the target microaddress. In 
the VAX 8800 system, the microbranch logic is 
implemented with five identical gate arrays , 
each of which generates a 3-bit slice of the 
microaddress. One microaddress bit is branch 
sensitive in each slice. This organization permits 
up to 32-way branching. Branchings of 2, 4 , 8, 
and 16 ways are also made possible by a sepa­
rate mask bit, called the branch mask, to every 
slice. This bit is used to turn off the sensitivity 
to branch conditions in a particular slice. 

There are 16 basic recipes for conditional 
branching in each slice . This arrangement of 
slicing, masking, and branch-condition selection 
in every slice requires that all the microbranch 
conditions be organized into 5 groups of 
16 conditions each. The branch conditions are 
classified as either static or dynamic. Static con­
ditions, once captured, are available for branch­
ing in any later cycle as long as those conditions 
remain unchanged . Dynamic conditions are 
asserted for just one cycle and must be branched 
on in that cycle. 

Some special trap-related branch conditions 
are saved at the time of the trap so that the trap 
routine may use them. For speed reasons, the 
basic hardware mechanism for multiway branch­
ing is that the selected condition is ORed rather 
than added to the branch-sensitive microaddress 
bit. The OR implies that the branch-sensitive 
bits of a microaddress must be " zeros" by con­
vention . If branching is masked in any slice , 
however, only unmasked branch-sensitive bits 
need to be zeros . Thus the branch-masking 
scheme leads to a substantial increase in the 
number of conditional branch-target addresses, 
constrained by the requirement for zeros . 
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Table 1 Microbranch Conditions 

Slice 
Number Microbranch Conditions 

1 State flags 
2 WBUS low-order bits 

3 WBUS high-order bits 

4 SALU condition codes 

5 PSL condition codes 

6 XALU condition codes 

7 Priority encoder condition codes 

8 ALU condition codes 

9 TB-status 

10 Cache command 

11 MD number 

12 AC low 

13 Digit valid 

14 NMI ID 

15 Interrupt pending 

16 Interval timer carry 

17 Halt pending 

18 Console mode 

19 Interrupt ID 
20 Non_Retry flag 

Table 1 shows an example of several micro­
branch conditions. 

Microsubroutine Call and Return 
As in the normal case just discussed, the default 
microaddress, the next-address field, is selected 
as the starting address of a microsubroutine. 
However, a subroutine-calling microinstruction 
pushes its own address onto the microstack. 
During the subroutine return, the microstack is 
selected as the source and then popped. Thus 
the address of the calling instruction is used as a 
base for the return. The returning instruction 
may OR an offset from the next-address field to 
that base , thus yielding the target return 
address. The fact that bits are ORed rather than 
added constrains the calling addresses to have 
zeros in the low-order bit positions. 

The write path to the microstack (PUSH) is 
pipelined by a cycle for timing reasons. How­
ever, a bypass path saves what would be the top 
entry of the microstack in the read latch (POP) 
so that PUSHs and POPs occur in a fairly unre­
stricted manner. There are, however, some 
minor coding restrictions with respect to traps 
and decoder-made addresses. 
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Subroutine calls and returns are unaffected by 
stalls. In the VAX 8800 CPU, the microstack is 
16 entries deep and is used exclusively for sub­
routine calls and returns (i.e., microtraps do not 
use the stack). Subroutine calls maybe nested up 
to 1 5 entries deep, beyond which the microstack 
wraps around and overwrites previous call 
addresses. Since the next-address field is condi­
tionally ORed into the calling address to make 
the return _address, a conditional multiway return 
becomes feasible. 

Microtrap and Return 
A microtrap is caused when the hardware 
detects a condition that would not allow the 
current microinstruction to complete its execu­
tion successfully. The hardware forces the next 
microaddress to a fixed location that depends 
on th~ particular condition, thus overriding the 
address that would otherwise be selected. This 
special location is the starting address of the 
trap-handling microcode routine specific to that 
trap condition. Microtraps are used extensively 
by the memory management system to imple­
ment the virtual memory architecture. Micro­
traps are also caused by serious system faults 
(i.e ., machine checks), such as control-store or 
bus parity errors. Table 2 lists the microtrap 
conditions and their priorities. The priorities are 
arranged so that if more than one microtrap 
occurs during a cycle, the one with the highest 
priority will be serviced and the others ignored. 

Table 2 Microtrap Conditions and Priorities 

Microtrap Condition 

Microbreak 
Machine check 
VA parity error 
TB tag parity error 
Reserved for ECO 
Reserved float operand 
Add rounding 
Multiply rounding 
Integer overflow 
TB miss 
Access violation 
Modify bit 
Page cross 
Unaligned page cross 
Unaligned trap 
Conditional VAX branch 

Priority 

Highest 

Lowest 
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Figure 11 shows the microtrap latency and its 
consequences on pipelining. As described ear­
lier, a trap-causing microinstruction, even if it 
writes the wrong results, is allowed to complete 
because it is too late to block it anyway. (The 
canonical time of register write is T9 , whereas 
the microtrap signal occurs at canonical time 
T1 0 ). The only recourse is to let the trap-han­
dling microcode correct any problems caused 
by the trapping microinstruction. The microtrap 
signal occurs in time to block all three microin­
structions in the trap shadow. Therefore, the 
microtrap logic generates two global signals, the 
global microtrap ( one-cycle long) and the block 
writes (three-cycles long), at time T10 . The pur­
pose of the global-microtrap signal is to trigger 
any necessary trap-contingent actions in various 
parts of the processor. The purpose of the 
block-writes signal is to block register writes at 
canonical times T11 , T13, and T15 , thus rendering 
ineffectual microinstructions U, V, and Win Fig­
ure 11. In other words the blocking of writes by 
hardware is in effect until the trap-handling 
microcode takes control of the micromachine. 

A silo is generally used to save the state of the 
machine across a microtrap. In most cases the 
length of the silo is equal to the depth of 
pipelining. Since there are many more branch­
condition bits than microaddress bits, it is more 
economical to save microaddresses in the trap 
silo than to save the conditions causing those 
addresses. Microaddresses U, V, and W must be 
saved in the silo since they may be branch 
targets of some previous microinstructions. For 
the same reason, however, the address X ( over­
ridden by X', the starting address of the trap rou­
tine) must be saved as well. During the execu­
tion of the trap routine, the trap silos are 
"frozen" (blocked from loading), thus saving 
the state of the micromachine at the time of 
trap. 

After the trap routine has completed, two con­
ditions are possible: 
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1. The recovery from the trap is impossible, 
and hence the microinstruction sequence 
cannot be continued. Then the only 
recourse is to roll back and reexecute the 
macroinstruction. That is, the macroPC is 
backed up from its silo, the IB is flushed, 
and if necessary, any register changes are 
undone. In this case the last micro-

instruction of the trap routine performs a 
trap release, which unblocks the silos so 
they can resume loading the new states. 

2. Microcode can remedy the cause of the 
trap so that the microinstruction 
sequence can be continued. In this case 
the last microinstruction of the trap rou­
tine performs a trap return, causing the 
hardware to recycle microaddresses U, V, 
W, and X through the microaddress pipe. 
This action results in the reexecution of 
aborted microinstructions from the trap 
shadow. 

In the case of a trap return, the hardware 
selects the microPC silo as the microaddress for 
the next four cycles. As shown in Figure 14, 
however, the microPC silo does not contain the 
microaddresses made by the decoder. Therefore, 
it is necessary to resynchronize the microin­
struction execution sequence with the decoder, 
while requeuing the trapped microaddresses 
from the silo. This is made possible by keeping 
a tag bit in the silo to identify the positions of 
the microaddresses made by the decoder in the 
sequence. If a microaddress from the silo is 
found to be tagged, the requeuing is terminated 
immediately and the microaddress generated by 
the decoder is selected. A complete recovery 
thus occurs since the state of the IB has by this 
time been backed up, and therefore the 
decoder-generated microaddress can be used for 
the continuation. 

Chaining of Microtraps 
By convention, microtraps are not allowed to 
nest; instead, they are chained. In other words 
the trap-handling microcode must ensure that it 
will not cause any microtraps itself. The sole 
exception is its last microinstruction, which 
may cause a second microtrap to follow imme­
diately, even as the saved microaddresses from 
the silo are being requeued to resume the origi­
nal flow. Note that this second microtrap does 
not take effect until four cycles later, whereas 
intervening microinstructions are blocked by 
the hardware as a result of this second micro­
trap. Consequently, the same microaddresses 
end up in the microPC silo once again during 
the execution of the second trap routine. The 
original sequence may finally resume after the 
last of such chained traps has been serviced. 
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The CPU Clock System in the 
VAX 8800 Family 

The clock system in the VAX 8800 CPU sends timing signals to every state 
device every 45 nanoseconds. The lack of accuracy of these timing signals 
is called skew, which must be minimized. Two skews exist: global, between 
modules; and local, within a module (the lower of the two). The design 
complexity of the overall system dictated the use of an automated timing 
verifier. Although advantages accrue from designingfor local skew, the 
verifier could not segregate between skew types. To gain the benefit of the 
verifier, a unique hardware trade-off was made to minimize total skew: 
local was made equal to global. The result was that 83 percent of the cycle 
time is used productively. 

All synchronous computers must provide some 
means of generating and distributing accurate 
timing signals. The goal of the timing system in 
the VAX 8800 family is to provide low-skew 
(therefore, accurate) timing signals to all parts 
of the processor without any manufacturing 
adjustments . Furthermore , the design team 
wanted to automate the verification of the tim­
ing during the design phase . Therefore , design 
trade-offs in the clocking system were necessary 
to accomplish that automation. This paper dis­
cusses how the hardware designs of the clocking 
system were influenced to provide a good envi­
ronment for the automatic timing verification. 

Clocking System Requirements 
The design of the clocking system required us to 
address many interrelated problems that had to 
culminate in a common solution. This design 
depended on certain fundamental specifications 
that were established for the VAX 8800 CPU by 
the system architects. The two primary require­
ments are described below. 

Cycle Time 
The cycle time of the VAX 8800 family of pro­
cessors is 45 nanoseconds (ns), which means 
that a CPU can accomplish some amount of 
work during that period. Looking at it another 
way , these processors can do 22.5 million 
actions every second. Usu.ally, a number of these 
45-ns cycles are required by a processor to pro-
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duce just one VAX instruction. The clocking sys­
tem must keep the thousands of circuits in the 
processor "ticking" in perfect step together 
every 45 ns. 

The 8800 was designed to contain two com­
plete CPUs in the same cabinet. Since both 
CPUs share a common memory, it is beneficial 
to make the memory system and both CPUs syn­
chronous with each other. The clock system 
must keep all three items running together, pre­
cisely locked in time. 

Modules 
All the circuitry for both processors and the 
memory controller is contained on 20 16-inch 
by 12-inch modules, or printed circuit boards. 
These modules occupy slots in a 21-inch-wide 
backplane. Each module contains up to 20 ECL 
gate arrays and miscellaneous ECL logic . The 
state devices, called latches, reside both in the 
gate arrays and the miscellaneous logic of each 
module. 

The Clocking Problem 
The basic difficulty for this (and any) clocking 
system is to get the timing signals to every state 
device in the machine at precisely the same 
time . Every synchronous machine faces this 
problem. However, in faster computers, like the 
VAX 8800 system, the tolerances placed on the 
timing signals are more severe . In a physical 
sense, it is simply not possible to send all the 
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timing signals to evety part of each module at the 
same instant. There is some precision, however, 
that should and can be achieved. We now discuss 
how important this tolerance is to the VAX 8800 
systems, and what we did to minimize it. 

The tolerance , or time difference , that we 
encounter in attempting to provide timing signals 
to evety state device at the same time is called the 
clock skew. Clock skew is the uncertainty in the 
time of a particular event. As an analogy, consider 
an airline flight that is scheduled to arrive at an 
airport at precisely 5:02 P.M. Now, we know this 
flight will not arrive at 5:02 P.M. on the dot; it 
will probably arrive within a minute or two of 
that published arrival time. This uncertainty in 
the time of arrival is the skew of that time. If the 
uncertainty of arrival is 30 seconds, this skew 
would probably be a vety acceptable value and 
we would say the flight is right on time : it 
arrived with low skew. 

On the other hand, if the uncertainty of arrival 
is large, say 30 minutes, we would probably tty 
another airline. Why? Not simply because we are 
impatient but for a more fundamental reason. 
When the uncertainty is large, we have less time 
to do other things that are valuable to us. Usually, 
we are committed to the entire time of the uncer­
tainty. Put another way, this uncertainty, or skew, 
is wasted time . Enough of this analogy - how 
does this skew affect the operation of a digital 
computer? 

As mentioned earlier, since the cycle time of 
each CPU is 45 ns, all state devices are "sched­
uled" to clock at the start of that period. Any 
uncertainty in this time from one latch to 

another is called clock skew. As in our airline 
example, clock skew is wasted time. There are 
many factors that increase the clock skew; let us 
consider one of the most important ones. 

Since the backplane width is 21 inches, all the 
CPU hardware modules are separated by no more 
than that distance. Since all the wiring in the sys­
tem is composed of controlled-impedance trans­
mission lines, the logic signals can travel at close 
to the speed of light. At that speed a logic signal 
could circle the earth about 4. 5 times in 1 sec­
ond, or it takes about 4 nanoseconds to travel the 
21 inches across the processor backplane . Now 
we can begin to understand the skew problem. 
The minimum uncertainty of any signal traveling 
through the entire processor would be at least 
4 ns, which is almost 10 percent of the 4 5-ns 
cycle. And that is only one source of skew. 
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Since skew can be wasted time, our goal was to 
make it as small as possible. In the 8800 system, 
there are three major contributors to clock skew: 
variations in the semiconductor components, 
variations in the wiring lengths ( described above) , 
and different manufacturing tolerances of the 
modules. One common way to remove skew from 
a system is to make some type of adjustment dur­
ing the assembly of the hardware. Theoretically, 
at least, all the skew could be removed through 
this method of adjustment. To keep the cost of 
manufacturing low, however, another of our goals 
was to require no adjustments of any kind. That 
goal placed an extra burden on the clock system 
to deliver accurate signals without excessive 
skew. By carefully designing the circuits of the 
clocking system and controlling the skew sources 
mentioned above, we held the overall clock skew 
in the VAX 8800 family to 7 .5 ns . Thus, on aver­
age, 83 percent of our 45-ns cycle is utilized. The 
remainder of the paper explains some of the trade­
offs we made to achieve this figure. 

Clock Hardware Overview 
Figure 1 depicts the hardware in the clock sys­
tem of the VAX 8800 family. 

The oscillator section is the time base of the 
whole machine. The implementation is a custom 
phase-locked-loop design that allows the clock 
period to be varied for test purposes during the 
manufacturing process. Using a phase-locked 
loop makes it possible to have a vety accurate 
timing source at many specific clock periods. 

The output of the oscillator section connects 
to a phase generator that provides two clock 
phases with the proper timing relationship 
between them. The outputs (called the A-Clock 
and the B-Clock) of the phase generator are the 
actual clock signals distributed to all state 
devices in the machine. The phase generator is 
implemented digitally by high-speed, 1 OOK ECL 
shift registers. This technology creates vety accu­
rate timing without requiring any manufacturing 
adjustments. 

Since there is only one phase generator and 
thousands of state devices requiring the clocks, 
or timing signals, a method is needed to get the 
output of the phase generator to every state 
device without adding vety much skew. That is 
the purpose of the distribution stage of the clock 
system. The actual circuitty used for the distribu­
tion consists of 1 OOK ECL differential devices 
and 1 OKH ECL devices. The distribution was 
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heavily influenced by our desire to use an auto­
matic timing verifier. The following discussion 
of the timing verification environment gives a 
clearer view of the reasoning behind the clock 
distribution scheme. 

Clock System and the Timing 
Verification Environment 
Traditionally, timing verification was accom­
plished by hand calculations using component 
specifications. A designer would simply add all 
the component propagation delays in a particu­
lar path and determine if all timing criteria were 
met. In the past, this method worked fairly well 
for several reasons. First, the designer usually 
knew which paths in a circuit were critical and 
could give special attention to them. Second, 
components generally behaved better than their 
worst-case vendor specifications. 

Marginal timing problems, or ones that were 
simply overlooked, would often be less serious 
than the difference between the worst-case 
specifications and how the components actually 
worked. Finally, timing errors were expected to 
appear during the hardware debug phase of a 
project. Therefore, timing errors that were bla­
tantly missed during the design could be cor­
rected (with a lot of hard work) during that 
phase . That was possible because the overall 
complexity of the design could be compre­
hended by the designers. 

From the beginning of the VAX 8800 design 
effort, we knew that the timing of the design 
would be difficult to analyze manually. First , 
the sheer complexity of the machine created 
over four million different timing paths. It was 
impossible to analyze every path manually or to 
discover every "critical" one with either man­
ual or intuitive analysis methods. 

Second, hardware circuit loops are widely 
used in the design; these are circuits that feed 
signals back to themselves during a later 
machine cycle. These circuits are very difficult 
to analyze, especially when loops cross physical 
boundaries or are nested within other loops. Just 
thinking about the timing ramifications of 
nested loops taxes the mind. Manually analyzing 
thousands of these cases would be impossible. 

Finally, the hardware design made heavy use 
of gate arrays, which contain most of the logic. 
Our ambitious development schedule and the 
large number of gate array designs simply could 
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not tolerate unanticipated timing errors. A tim­
ing error in a gate array meant that a new gate 
array must be produced to fix the problem. The 
fabrication overhead for another semiconductor 
device, usually taking months, was not consis­
tent with our development schedule. Moreover, 
while that new gate array was being fabricated, 
the debugging of the entire system could be 
jeopardized since it was just not possible to 
"fix" an LSI chip. 

Therefore, the hardware design group wanted 
to design the processor with the aid of an auto­
matic CAD tool for timing verification. Such an 
automatic method for verifying the timing was 
essential to the success of the project. Since the 
entire design was to be " soft" (the schematics 
were contained in computer databases) , it 
seemed logical that some type of software tool 
for automatic timing verification could be 
applied. 

We decided that the most appropriate timing 
verifier for this project was produced by Valid 
Logic, Inc. Although this automatic tool solved 
the problems caused by manual timing verifica­
tion , it also created some very special new 
restrictions. 

It was apparent from the beginning of the 
design effort that some restrictions had to be 
placed on the design styles of individual engi­
neers to reduce the timing-analysis problem to a 
manageable level. CPU hardware designers, like 
any other creative persons, often assume large 
degrees of freedom in their work. Usually, no 
two designers will arrive at the same solution to 
a problem , although all solutions may be 
acceptable. When ten or more designers work 
independently, as happened on this project, it is 
likely that ten unique design styles will emerge. 

Therefore, we placed restrictions on the tim­
ing environment for the following two reasons: 

• Some standardization of timing had to take 
place for electrical signals to communicate 
properly between designs generated by dif­
ferent people. 

• Since the automatic timing verification soft­
ware was new, several important features 
were lacking. 

The usefulness of an automatic timing verifier 
depends largely on how well timing-rule viola­
tions are reported. Knowing that a design con­
tains timing errors is useful only if it is easy to 

37 

New Products 



The CPU Clock System in the VAX 8800 Family 

find them. One way to aid the reporting of timing 
errors is to create an environment that clocks all 
state devices in the processor the same way. This 
means that all logic designs in the processor must 
follow consistent and strict rules for the clocking 
of state devices. That was the method we decided 
to pursue in this design project. 

The Timing Environment 
The clock system needed strict constraints on its 
circuit design and physical layout to guarantee 
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accuracy. Therefore, the generation and use of 
clocking signals were tightly controlled to mini­
mize the different ways in which the circuits 
could communicate. The timing control of state 
devices had to be consistent throughout the 
design. Moreover, any arbitrary timing control 
of the state devices would have been an impossi­
ble task for the timing verification software. 

The timing signals in the VAX 8800 processor 
were carefully distributed to every state device. 
This distribution was accomplished by carefully 
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expanding the clock signals at strategic physical 
positions in the processor. A simple example of 
this expansion , or fan -out, is shown in Figure 2. 

Each time the clock signals are expanded, 
more timing uncertainty is introduced into the 
resulting signals. The 8800 design required up 
to five levels of expansion to produce enough 
clock signals for every state device. As shown in 
Figure 2, some signals are in common distribu­
tion groups. Signals existing in the same group 
will have low timing uncertainty between them, 
a characteristic called skew correlation. The 
timing uncertainty between signals in different 
distribution groups has no correlation; there­
fore, these signals have the highest skew. Signals 
from the same group have a skew, called local 
skew, lower than the overall group-to-group 
skew, called global skew. 

It is very tempting for designers to take advan­
tage of the lower local skew, which is often only 
half that of the global skew. Each clock distribu­
tion group is usually contained entirely on one 
logic module due to the natural physical parti­
tioning of the hardware. Therefore , communica­
tion between circuits on any particular module 
can take advantage of the lower local skew. If all 
signal communication occurs within the local-
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skew environment, the timing analysis can be 
consistent and easily managed. However, com­
plications arise when trying to analyze signals 
that cross from the local-skew environment to 
the global-skew environment. Signal communi­
cation between logic modules will have to pay 
the penalty of using the higher global skew 
because the timing signals at each end of the 
communication are derived from different dis­
tribution groups. Managing the timing interface 
across this partition between local and global 
skews was beyond the capabilities of the timing 
verification software. 

As discussed earlier, a timing analysis of the 
entire processor was beyond human capacity; 
therefore , it had to be performed with timing 
verification software. The timing verification 
tool chosen for the 8800 development had no 
facility for distinguishing between local and 
global skews. Moreover, we wanted to use the 
timing verifier to analyze the timing of the entire 
CPU as one entity. This decision forced us to dis­
allow the use of any local-skew computations in 
our timing analysis. Now, from a design point of 
view this decision made the environment very 
easy to work with. All timing transactions any­
where in the CPU could be analyzed the same 
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The CPU Clock System in the VAX 8800 Family 
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Figure 4 Minimized Local Skew Distribution 

way with the same set of specifications. Every­
thing comes at a price, however, and the obvious 
negative side of this decision was the loss of the 
abil ity to apply the lower local skew. At that 
point , some performance of the processor 
seemed to be compromised just to simplify the 
timing analysis. The following discussion 
explains how this problem was solved. 

The Clock Distribution Solution 
Since we wanted to time the CPU as one entity, 
we had to make the global skew as small as possi­
ble to maximize CPU performance . In the actual 
implementation, the global skew was lowered by 
removing one gating level from the clock distri­
bution. The gating level removed was necessary 
for producing low local skew. Figure 3 illustrates 
the five levels of fan-out that were required to 
produce enough signals when the global-skew 
distribution was minimized. Figure 4 shows the 
same fan-out to produce enough signals in the 
case in which the local-skew distribution would 
be minimized. Table 1 illustrates the impact of 
this optimization for global skew. 

Table 1 Distribution Changes 

Global Skew Local Skew 

Optimized Local Skew 
Optimized Global Skew 

40 

9 ns 

7.5 ns 

2 ns 

7.5 ns 

Although using the lower local skew would 
have been valuable, it was sacrificed by making it 
equal to the global skew. 

In short , the hardware of the clock system was 
designed to allow the maximum exploitation of 
the timing verification software. Of course, hard­
ware and software trade-offs are a common 
occurrence in any design project. In this case, 
however, the value of the hardware involved 
with operating the machine was balanced against 
the software analysis needed during the design 
phase of the machine. 

Summary 
Producing the clocking system for a high-speed 
computer is best described as an exercise in min­
imizing and managing skew. In the VAX 8800 
project, we avoided exotic hardware techniques 
so that we could gain the benefit of using an 
automatic timing verifier. The resulting skew of 
1 7 percent of the cycle time was a figure that 
could be tolerated. This balance was a fair trade­
off since the simplicity of the timing environ­
ment allowed us to decrease the time to design 
and build the VAX 8800 family of systems. 
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Aspects of the VAX 8800 
C Box Design 

In each processor in the VAX 8800 family, instructions and data are sup­
plied to the execution units by the C Box. Employing a simple structure 
with a translation buffer, cache, and address and data buffers, this logic 
unit is an integral part of the processor's Jive-stage pipeline. The no­
write allocate cache uses a write-through scheme featuring a unique 
delayed-write algorithm. The C Box has control logic to accommodate 
pipeline stall conditions caused by memory accesses. The C Box also 
maintains data coherency within a processor and between processors. A 
dynamic priority-arbitration scheme solves the lock-out problem between 
1/0 and processor requests. 

The performance of a high-speed computer 
depends to a large extent on how fast data can be 
passed from its memory to its execution units. If 
the computer is pipelined, the unit responsible 
for memory accesses may have to handle 
pipeline stall conditions. And if the computer is 
a multiprocessor, that unit in each processor may 
also have to handle data coherency problems. In 
processors with the VAX architecture , data 
accesses are further complicated by the fact that 
virtual addresses are normally specified. These 
addresses require translation to physical 
addresses before a data access can even be 
attempted. 

In the VAX 8800 system, which is a multipro­
cessor with pipelined CPUs, the unit that per­
forms address translations and data accesses is 
the C Box. 

C Box Description 
The C Box consists of three subunits: the transla­
tion buffer (TB) , the cache , and the NMI inter­
face. Figure 1 is a schematic diagram of this unit. 

The translation of a VAX virtual address to a 
physical address is a complicated process . 1 

Accesses to system and process page tables are 
required, and shifting and adding must be done 
to obtain the final physical address. Performing 
this address translation process for every data 
reference significantly increases the data access 
time and reduces the read bandwidth. One way 
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to avoid that is to store the result of this address 
calculation in a small , fast memory called a 
translation buffer. Since each translation can 
access a page of data (512 bytes in the VAX 
architecture) , it is likely that the translation will 
be used again in the program being executed. 
Rather than recalculating the physical address 
(PA) on those subsequent accesses, it can be 
retrieved from the TB. 

The translation buffer in the VAX 8800 pro­
cessor holds 512 system and 512 process 
address translations. The following summarizes 
the characteristics of the TB. 

Characteristics of the Translation Buffer 

• Direct Mapped 

• 1024 Lines 
- 512 System Lines 
- 512 Process Lines 

• Allocation on Translation Buffer Miss 

A common approach to the problem of data 
access latency for high-speed processors, and 
the one used in the VAX 8800 CPU, is to use a 
cache. 2 A cache is a small, fast memory located 
between the processor and the main memory 
system. If the data requested by the CPU is not 
contained in the cache , that data is accessed 
from main memory and loaded into the cache. 
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Figure 1 Block Diagram of C Box 

Thus, in the majority of cases, the cache will 
contain recently referenced data items , and 
future references to those data items will be 
fetched from the cache. The intent is to mini­
mize the number of longer latency accesses to 
the main memory subsystem. The success of a 
cache memory relies on the locality of refer­
ences in both time and space . 

The data cache in each VAX 8800 CPU holds 
64 kilobytes (KB) of both data and instructions. 
The list on the right summarizes the characteris­
tics of the cache . 

The TB and the cache are very similar in con­
cept and structure , except that the TB is used to 
accelerate address translations and the cache to 
accelerate data accesses. Each consists of a tag 
section and a data section. The tag section holds 
the unique identifier , or tag, for the data item 
held in the corresponding data section. The TB 
and the cache are direct mapped, meaning that 
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Characteristics of the Cache 

• Direct Mapped with Physical Address 

• Read Allocate Only 

• Delayed-Write Cache Update 

• Write-through Memory Update with Write Buffering 

• 1024 Blocks 

• 64-byte Block Size 

• 4-byte (one longword) Line Size 

• 32-byte (one hexword) Cache Refill Size 

each address can point to only one location; 
however, each location can potentially be allo­
cated to one of many addresses . A tag permits 
the identification of a data item in either the TB 
or a cache location . The tag in the VAX 8800 
processor is an unmodified selection of bits 
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Figure 2 Translation Buffer and Cache 
Address Mapping 

from the address of the data item being 
accessed . This concept is depicted in Figure 2. 

As mentioned earlier, a memory access is 
required if the cache does not contain a 
requested data item. In the 8800, both proces­
sors are connected to the memory and the 1/0 
subsystems through the NMI bus. All read and 
write references that go to these subsystems are 
processed by the NMI interface . This interface 
maintains a set of buffers for both read and write 
reference streams. For the read stream there are 
actually two sets of address buffers: one for data 
reads, the other for instruction reads. 

C Box Operations 
A C Box reference consists of a function code, 
an address, and in the case of writes, 32 bits of 
data. In general, that address is a 32-bit virtual 
address (VA). The VA translation process begins 
with a check to see if the PA is available in the 
TB. If the PA is available, called a TB hit, the 
data is read out and concatenated with the lower 
nine bits of the VA to form the PA. As part of the 
translation process, the TB also performs page 
access checking. If the PA that pertains to the VA 
is not in the TB , called a TB miss , then 
microcode must perform the translation. The 
microcode then writes the data into the TB for 
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subsequent use . (If the address supplied is 
already a PA, then the TB is not used.) 

Only physical addresses access the cache. If 
the data referenced is contained in the cache , 
called a cache hit, then the data can be accessed 
from there . If the cache does not contain the 
data, called a cache miss, then the data must be 
accessed from memory. 

Read Operations 
Cache-miss addresses for reads are passed to the 
NMI interface, where they are held in the read 
address buffers. A hexword read request 
(32 bytes) , with the address of the missed loca­
tion, is then made to memory. The memory data 
is passed to the requesting unit, and the address 
held in the read address buffer is used to update 
the missed cache location. A read miss is the 
only occasion upon which a cache location is 
allocated. 

There are two read streams in the C Box for 
requests to memory: the data stream, called the 
d-stream, and the instruction stream, called the 
i-stream. The i-stream requests the memory to 

send data destined for the instruction unit 
(I Box) , which interprets that data as macroin­
structions . I-stream fetches are initiated by 
microcode, which loads a C Box register called 
the physical instruction buffer address (PIBA) . 
The PIBA holds the address of the next long­
word of the i-stream to be fetched. If the execu­
tion of macroinstructions is sequential (i.e. , 
there are no branches, page crosses, etc.), the 
C Box can increment the PIBA contents automat­
ically after each fetch. However, should the pro­
gram branch or a page cross occur, microcode 
must be used to reload the PIBA. D-stream 
fetches are made only by the microcode, which 
must specify one of eight memory data (MD) 
registers as its destination . D-stream data is 
always returned to the execution unit . 

Write Operations 
In general, the performance of a cache is mea­
sured by its hit rate when reading data. The 
selection of the update mechanisms for both 
cache and memory, however, can have a major 
influence on the design of the cache . There are 
two well known strategies for updating a cache: 
write allocate , and no-write allocate . A write­
allocate scheme updates a cache location 
whether or not the write is a hit or a miss. This 
scheme is generally implemented with a write-
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back memory arrangement (discussed later). In 
a no-write allocate scheme, the cache is updated 
only if the write was a hit. The VAX 8800 pro­
cessor uses a no-write allocate scheme. 

The no-write allocate scheme does, however, 
present a problem. Since only writes that hit 
will update the cache, cache updates take two 
pipeline cycles in the C Box - the first to 

check for hit or miss, the second to update the 
cache for a hit. The C Box was designed to 
enable one read reference to complete in each 
cycle. If two consecutive cycles are needed to 
update the cache, the second cycle could block 
a read reference, thus causing a pipeline stall. 

To solve this problem, the C Box implements 
a delayed-write algorithm. This mechanism 
delays writes that must update the cache from 
doing so until the first cycle of the next write 
reference. The second cycle of the delayed 
write does not need to be the next consecutive 
cycle. 

The delayed-write algorithm in the C Box 
takes advantage of the fact that the first cycle of 
a write utilizes only the tag section of the cache 
to determine whether a hit or a miss has 
occurred. The second cycle uses only the data 
section. A write that must update the cache has 
its address and data placed into the delayed­
write address and data buffers respectively. On 
the next write access, during the cache-tag look­
up cycle, the data section of the cache will be 
updated from the address and data contained in 
those buffers, but only if the previous write 
access was a hit. Since reading a data item after 
one has been written is common, this design sig­
nificantly reduces the potential for stalls. 

Write Buffer 
All write references, whether or not they hit in 
the cache, must eventually go to memory. There 
are two general strategies in cache design with 
respect to memory updating: write-through, and 
write-back. In the write-through approach , 
write references are sent to the memory system 
immediately. Conversely, in the write-back 
approach, writes are held until the cache block 
is deallocated ( made ready to receive different 
data) . 

There are several major problems with a 
write-back strategy. First, it requires either 
microcode or hardware to accomplish all the 
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write-back functions. Adding that code or hard­
ware to the C Box would have considerably 
increased its complexity. 

Second, if there is a write miss with this 
scheme, a cache block that might be full of 
valid data could be displaced by a block whose 
only valid data was that just written to the 
cache. For a cache having a large block size, like 
the 8800 has, this action is undesirable. More­
over, in most cases microcode reads data before 
it is written; therefore, writes will generally hit 
in the cache. 

Finally, the write-back strategy requires a 
complex algorithm to maintain coherency 
between caches within a multiprocessor system. 
Therefore, for all those reasons, we chose to use 
the write-through approach in the cache. 

One disadvantage of write-through is that it 
tends to generate a lot of write traffic to the 
memory. In a shared-bus system like the 8800, 
this traffic can limit performance. To reduce 
memory-write traffic, writes in the VAX 8800 
processor are buffered in a write buffer con­
tained in the NMI interface. This write buffer is 
really a one-line , octaword , write-allocate 
cache. A write going out to the NMI bus is held 
in the write buffer. Subsequent writes to the 
same octaword update only the write buffer so 
that no memory requests are sent on the NMI 
bus. A write that is outside the octaword cur­
rently in the write buffer deallocates it; that is, 
the contents of the write buffer are sent to mem­
ory, and the next write replaces those contents 
in the buffer. 

Like the cache, the success of the write buffer 
in reducing bus traffic relies on the locality of 
programs in space and time . For example , 
sequential writes, such as pushes to the stack, 
will get collected in the write buffer even if the 
writes occurred in different macroinstructions. 
This collected "package" of writes can then be 
sent to the memory more efficiently than can 
individual writes. 

Another advantage of the write buffer is that it 
decouples the processor from memory activity. 
When the memory is busy processing transac­
tions from the other processor or from the 1/ 0 
subsystem , a processor will not stall due to 
writes. The write buffer is actually implemented 
as a two-deep buffer, which further reduces the 
potential for stalls. 
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Pipeline Stalls 
In a pipelined implementation, how well the 
pipeline performs is determined both by how 
often it is flushed clear and how often it is 
stalled . Stall conditions are generally related to 
the lack of some physical resource or data. 

In some implementations , some pipeline 
stages can take more cycles to complete than 
others for certain functions. If a shorter stage 
precedes a longer one, the longer one will be 
unable either to accept fresh data or to pass its 
result to the next stage until finished with its 
cycle . In turn, other portions of the pipeline 
cannot proceed with their operations; therefore, 
the pipeline will stall. In this stalled condition, 
all stages preceding the "bottleneck" maintain 
their input and output conditions until the stage 
responsible for the stall completes its function. 
Some implementations have a combination of 
stages that may exhibit these characteristics, 
leading to complex pipeline stall conditions. 

In the VAX 8800 CPU, the design simplicity 
of the pipeline ensures that each pipeline 
stage - except the C Box - always completes 
its function in one cycle .3 Since the C Box also 
controls data accesses, all stalls in the 8800 are 
related to the operation of this unit. The 
pipeline will experience two types of stalls: the 
MD stall, and the VA stall. 

MD Stalls 
When making a read reference, a microinstruc­
tion must specify one of eight MD registers to be 
used as its destination. When data is made avail­
able , either from the cache or from memory, it 
is written into the specified MD register. Subse­
quent microinstructions then use the data from 
this register . If a microinstruction attempts to 
use an MD register that is not "valid" (i.e., the 
data has not yet been fetched by the C Box), the 
pipeline will experience an MD stall. 

The MD stall condition is a data-dependency 
type of stall that is generally seen in pipelined 
machines. On the VAX 8800 processor, certain 
steps are taken to either avoid such stalls or 
reduce their effects. For example, consider two 
consecutive microinstructions, R and S, as illus­
trated in Figure 3. R is a microinstruction that 
performs a read and puts data into an MD regis­
ter. S then accesses and uses the data fetched by 
R. If Rand Sare adjacent, the pipeline will stall 
in the 8800 . The reason for the stall is that the 
pipeline stage accessing the MD data and the 
stage fetching that data (the C Box) are sepa­
rated by one other stage , the arithmetic and 
logic unit (ALU) . When S tries to use the MD 
data, R is just starting to make the read reference 
in the C Box. S must therefore stall the pipeline, 
waiting for data to be supplied by R. 

CYCLES 

( MD ACCESS 
FOR 
DATA 

INSTRUCTION R 

INSTRUCTION S 

MD - MEMORY DATA REGISTER 
TB - TRANSLATION BUFFER 

ALU 

~ 
MD 
ACCESS 
FOR 
DATA 

TB CACHE 

' R STARTS READ REFERENCE 

ALU TB CACHE 

~ S REQUIRES DATA READ BY A. 
'----------- MUST STALL AT LEAST ONE 
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Figure 3 Instructions R and S Are Adjacent 
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On the other hand, if Rand Sare separated by 
one other instruction, then when S attempts to 
use the data read by R, that data is just being 
made available by the C Box (assuming, of 
course, a read hit in the cache). If S were to wait 
for the MD registers to be updated before using 
the data, the pipeline would stall. To eliminate 
that type of stall, a path has been designed from 
the C Box d irectly into the input of the ALU, 
bypassing the MD registers. Therefore, the data 
coming from the cache is sent both to the MD 
registers for updating and directly to the ALU, 
where S can use the data. The net effect is that 
this bypass path removes the one-cycle latency 
that S would have experienced had it waited for 
the data to come out of the MD registers . Figure 4 
illustrates these concepts. 

Had R caused a read miss, S would still cause 
an MD stall since the C Box must make a memory 
fetch for the data. Notice that an MD stall hap­
pens only when S attempts to use an MD register. 
Therefore , a general rule for making microcode 
accesses to the C Box is to make read references 
early and to use the MD registers late. Should the 
read reference miss, some part of the memory­
fetch latency will be hidden by the microinstruc­
tions between the read and the MD register 
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access . When data returns from a read miss and 
the pipeline is either undergoing or about to 
undergo an MD stall, the bypass path can be used 
to reduce the effects of the stall or even prevent it. 

VA Stalls 
A VA stall condition occurs when the C Box can­
not process a requested reference. This can be 
due to either an invalidation cycle in the C Box 
( discussed in the final section of this paper) or 
the capabilities of the address and data buffers 
in the NMI interface being exceeded. 

As mentioned earlier, for reads there is a set of 
buffers for ct-stream and i-stream references . The 
ct-stream buffering is one deep, meaning there 
can only be one read miss outstanding in the 
C Box. However, the implementation will not 
allow the pipeline to stall should subsequent 
reads hit in the cache. I-stream reads never stall 
the pipeline as do VA and MD stalls, which stop 
the clock. The instruction buffer can "stall" if it 
does not have enough data for the decoder to 
complete the decode of the current VAX instruc­
tion operand. This condition causes the CPU to 
perform a no-operation microword. That does 
not stop the clock, however, and thus is not a 
pipeline stall. 
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The C Box can still receive commands even if 
it contains one read miss. Of course, there is the 
potential that the command being received will 
miss in the cache . That will require the NMI 
interface to request the data from memory, thus 
resulting in a VA stall. That stall lasts from the 
time the command is received until the time the 
previous read-miss data returns from memory. If 
the second command is a read that hits in the 
cache, a VA stall will be generated for the one 
cycle that it takes to determine whether or not 
there is a cache hit. The read data will then be 
taken from the cache and returned to the MD, 
after which the stall will be released. 

Since writes go to memory more than reads, 
the buffering for writes is more extensive . The 
delay-write buffer and the double buffering in 
the write buffer are used to reduce the possibility 
of write stalls. These buffers enable the C Box to 
hold a maximum of nine longwords of data 
before the pipeline will experience a VA stall on 
a write. 

Stalled and Unstalled Logic in 
the C Box 
If an instruction is stalled, the C Box has either 
not returned the data or cannot take another ref­
erence. Therefore, all stages prior to the C Box 
(the I Box and the E Box) must be stalled. The 
TB is part of the last stage of the pipeline; there­
fore, it must be capable of being stalled. When 
the pipeline stalls, the TB holds the address of 
the stalled reference. Only the NMI interface 
can resolve a stall, either by supplying the read­
miss data or by freeing up its buffers. Thus this 
interface can never be stalled . However, the 
cache , being part of the last stage of the 
pipeline, is also the path for supplying data to 
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DATA 

TRANSLA­
TION 
BUFFER 
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the stalled instruction . This situation leads to an 
interesting control characteristic of the C Box. 
One of its sections , the TB, can be stalled; 
another, the NMI interface, must never stall; and 
the third section , the cache , must remain 
unstalled but maintain stalled input and output 
conditions in its logic . Figure 5 depicts the 
logic for stalled and unstalled conditions in the 
C Box. 

Coherency Problems in the C Box 
In general , data coherency means that a read 
should always get correctly modified data when 
a series of reads and writes is made in any 
sequence. One way to maintain coherency is to 
perform all reads and writes to completion in a 
purely sequential manner, thus strictly main­
taining their sequence of reference . However, in 
a pipelined machine, not only can there be sev­
eral sources of read and write references, but 
there can also be more than one copy of the data 
item. This duplication often leads to very com­
plex solutions to achieve coherency. 

This complexity has been simplified some­
what in the VAX 8800 pipeline by having the 
C Box both control and sequence all data 
accesses . The C Box itself, however, is pipelined, 
having ad-stream and an i-stream for reads, and a 
stream for writes. This fact also presents some 
coherency problems. Coherency for the C Box 
means that two conditions must be met. 

1. After a sequence of reads and writes has 
completed, any valid blocks in the cache 
must match the data in the memory. 

2. Whenever the processor writes to a loca­
tion in memory and then reads that loca­
tion, the data has to be what was written. 
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Figure 5 Stalled and Unstalled Logic in C Box 
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Two types of coherency problems exist in the 
VAX 8800 system: coherency within a proces­
sor, and coherency between processors. 

The first type of problem in the C Box arises 
from the implementation of the delay-write 
algorithm discussed earlier. A problem occurs 
when a read is attempted to the cache location 
waiting to be updated by the write held in the 
delay-write buffers. The read will hit, but the 
cache data will be stale. One solution to this 
problem is to stall the pipeline while the cache 
is updated, performing the read for the correct 
data. The trouble here is that the sequence of 
writing to and reading from the same location is 
a common occurrence. Thus to stall would sig­
nificantly reduce the read bandwidth. 

The C Box solves this problem by comparing 
selected bits of the read and write addresses in 
the delay-write buffer. If the bits match, then 
the data content of that buffer is used as the read 
data. This solution works because, to the read, 
the delay-write buffer appears to be an exten­
sion of the cache. Since the read address 
matched the address in this buffer, the data can 
be taken directly from it. Coherency is thus 
assured, and no stall penalty is incurred. 

The second type of coherency problem occurs 
when the read is a miss and thus goes to the NMI 
interface. To assure high performance, the NMI 
interface maintains two streams of data requests, 
the read and write streams. The buffering and 
the control of these two streams operate inde­
pendently. If made to different data items, read 
and write requests can be processed to memory 
as quickly as possible, even out of sequence. 
The coherency problem is to make sure that 
subsequent reads and writes to the same data 
item result in its correct state. 

If a read request occurs that was a miss, the 
cache will send it to the NMI interface upon dis­
covering that fact. Once in the NMI interface , 
the read address is compared to the address of 
the octaword in the write buffer. If those 
addresses are different, the cache will send the 
read directly to memory. Thus the data in the 
write buffer will be unaffected. If the addresses 
match, however, the write data will be sent to 
memory, followed by the read request. Since the 
memory subsystem processes references in a 
sequential manner, the read will always access 
the correct data . (Of course , this case is fairly 
simple. A more complicated one is that in which 
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a read is sent to memory, and the processor per­
forms a write while waiting for that read.) 

If the addresses of the read and write match, 
the cache can give the processor the requested 
data but cannot mark the returned data valid in 
the cache. This situation occurs because the 
read-miss data being fetched from memory has 
been made stale for subsequent reads. 

The microcode is designed so that it will 
never read a data item and then write to it with­
out first accessing the MD registers. However, a 
cache block is 64 bytes long. The microcode 
could write to any other data item in the block 
before coming to the missed data item. There 
can be as many as three writes and two reads 
( one each for the d- and i-streams) buffered 
simultaneously in the C Box, all referencing the 
same cache block. Even worse , the C Box can 
send an arbitrary number of writes to memory 
while waiting for the data returned by the read 
to memory. To maintain coherency, the C Box 
performs a set of address matches between the 
read and write streams. Then it "remembers" 
whether or not any write addresses matched the 
outstanding reads and marks them invalid as 
appropriate. 

C Box Design for a 
Multiprocessor System 
The VAX 8800 system consists of two identical 
VAX 8800 processors on· the NMI bus connected 
to the memory and 1/0 subsystems. Within a 
processor, only the design of the C Box has been 
affected by the requirements of a multiproces­
sor arrangement . That is because the C box is 
the CPU's interface to the NMI bus and contains 
the central arbitration logic for that bus. 

There are three key issues in designing a 
memory interconnect for a multiprocessor sys­
tem: bus arbitration , bus bandwidth, and data 
coherency between processors . 

Bus Arbitration on the NM/ Bus 
Two major problems were encountered in the 
design of an arbitration scheme for the NMI bus. 
The first was the fact that between the CPUs and 
the 1/0 subsystems, called the NBis, there was a 
possibility that a high-priority device could lock 
out a low-priority device from the bus. This is 
certainly possible with a fixed priority-arbitra­
tion scheme. To address this problem, the C Box 
implements a dynamic priority-allocation 
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scheme that causes priority to be assigned 
between two groups: the 1/0 devices, and the 
CPUs. Within these groups, the priority shifts 
between the two CPUs and the two 1/0 devices. 
For example, if all four devices wanted to use 
the bus all the time, the order in which the bus 
would be granted to the devices would be 

first CPU, first 1/0, second CPU, second 1/0, 

first CPU, first 1/0, second CPU, second 1/0, 
etc. 

This scheme guarantees that all devices on the 
bus will have nearly equal access to the bus, 
thus solving the lock-out problem. 

The second problem involves the "memory 
busy" situation. Whenever the memory subsys­
tem cannot process more requests, it sends a 
" memory busy" signal. It could happen, for 
instance , that a CPU accesses the bus and 
attempts to write to memory. Upon receiving a 
memory-busy signal , the CPU will abort the 
write . When memory is released, some other 
device will access the bus and perform a write , 
thus filling the write queue in memory. Once 
again, the first CPU re-arbitrates, accesses the 
bus, and tries to write. Once again, that CPU 
receives a memory busy signal. And so on. 

The NMI arbitration scheme mentioned above 
solves this problem in which a device might get 
locked-out of memory. As implemented, the 
arbitration scheme saves the priority state at the 
time before the memory-busy signal was 
asserted. The arbitration logic then restores that 
state so that the device that received the signal 
will get the bus when the memory-busy signal is 
deasserted. 

Bus Bandwidth 
For the processors on the interconnect, bus 
bandwidth involves two components: read band­
width, and write bandwidth. The problem of 
inadequate read bandwidth is addressed by hav­
ing a high hit-rate cache. The higher the hit rate, 
the fewer the requests to memory. The problem 
of inadequate write bandwidth can be treated in 
two ways. The first way is to have a write-back 
cache like the one on the VAX 8650 processor.4 
Such a cache writes a block to memory only 
when the cache block is deallocated. This tech­
nique can significantly reduce the write band­
width requirements. 
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In multiprocessor systems like the 8800 , 
however, in which each processor has an inter­
nal cache, this technique becomes complicated. 
In these systems, a data item can exist not only 
in memory but also in all the caches. To main­
tain coherency, each write-back cache would 
have to notify the other cache when the first 
cache writes. This technique usually leads to a 
complex protocol and design implementation. 

Another approach in a multiprocessor system, 
the one used in the 8800 , is to implement 
write-through caches. In such an approach, all 
write references go directly to memory so that 
each cache on the bus can "sec" all write activ­
ity. The caches can then be invalidated. Such an 
approach greatly simplifies the protocol for 
cache coherency but, as discussed earlier, gen­
erates a high degree of write traffic . The unique 
design of the write buffer helps to reduce this 
traffic , although not as much as a write-back 
cache would. In the 8800 processor, however, 
the write buffer reduces traffic enough so that 
the two VAX 8800 processors can write at their 
maximum bandwidths on the NMI bus. 

Coherency in a Multiprocessor System 
A multiprocessor system, with internal caches, 
presents a number of interesting coherency 
issues when sharing data. Ideally, if one proces­
sor writes to a location and the other processor 
reads that location, the read will always get the 
data that was written. In practice, achieving this 
condition is difficult. Several major questions 
arise: Did the read happen before the write or 
after it? What happens if both processors write 
to the same location at the same time? Unless 
controlled, these situations can produce unpre­
dictable results. 

If programs on the processors want to share 
data, they must use the interlock instructions in 
the VAX architecture.s Only after an interlock 
instruction is processed will the memory loca­
tion be guaranteed to have the correct data. The 
general method is as follows . Processes must 
decide to share a block of memory. One mem­
ory location is called the software lock, and only 
one process at a time is allowed to write to (or 
lock) that location. This is accessed with an 
interlock instruction, for example , the branch 
on bit set and set interlocked (BBSSI) or the add 
aligned word interlocked (ADAWI) instructions. 
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Aspects of the VAX 8800 C Box Design 

Upon gaining the software lock, a given process 
can proceed to write any location in the shared 
block. Read-write coherency will be assured 
only if the other processes shari ng that data 
observe the protocol of obtaining the software 
lock before modifying the data structure . 

The VAX interlock instructions are imple­
mented using interlock microi nstructions. 
These enable a processor to lock and unlock the 
memory subsystem. Once locked, this subsys­
tem excludes further attempts to lock it until an 
unlock has occurred. Thus only one processor 
or 1/0 system can lock the memory subsystem at 
any one time. 

When each processor has an internal cache , 
there is one more mechanism that keeps the two 
processors coherent. While one processor is 
performing a write to memory and while the 
write command is on the NMI bus, the other 
processor will examine its cache store to see if 
it contains a copy of that data. If the data is 
there, it is marked invalid. The next request for 
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WRITE 
BUFFER 

WRITE INTERLOCK 
FORCES WRITE BUFFER 
CONTENTS TO MEMORY 

NMI 

this data will then result in a cache miss and a 
subsequent fetch to memory. This simple 
approach is possible because the VAX 8800 
caches are write-through. Although all writes 
are seen on the bus , the write buffer packs 
together consecutive writes within an octaword. 
Therefore , the number of invalidation cycles 
performed by a processor will be reduced . 
When an interlock write is performed, the con­
tents of the write buffer are sent to memory. 
Thus the interlock mechanism ensures that data 
coherency will work under all conditions. Fig­
ure 6 illustrates the e vents that achiev e 
coherency in the 8800. 

Summary 
The general concepts used in the design of the 
C Box are well known to computer designers. 
Our goal was to achieve a simple yet high-per­
formance design that avoided unnecessarily 
complex solutions that did not give comparable 
increases in performance. The choices made 
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Figure 6 Multiprocessor Coherency 
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have yielded a design that fully supports the 
multiprocessor concept. The VAX 8800 system 
can translate addresses and access data faster 
than any previous VAX processor. 
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The Memory System in the 
VAX 8800 Family 

The memory system in the VAX BBOOfamily can send data at 71MB per sec­
ond and receive it at 59MB per second. The 8800 and 8700 CPUs can con­
tain up to 128MB of memory, the 8550 and 8500 up to BOMB. Commands, 
addresses, and data flow between the memory interconnect (NM/ bus) 
and the memory controller, array bus, and array modules. Read, write, 
and masked-write commands are executed. The designs of the NM/ bus 
and write-through cache affected the memory system design. Although 
ECL is used in the controller, TTL is used in the array bus. The array 
modules of 4MB and 16MB contain 256K MOS dynamic RAM chips. 

All members of the VAX 8800 family of proces­
sors (the 8800, 8700, 8550, and 8500) use the 
same type of memory system. Since the 
VAX 8800 system is a multiprocessor, that mem­
ory system must connect to both CPUs and both 
1/0 adapters, called the NBIAs. The bus connect­
ing these devices is called the NMI bus, and each 
connection on the NMI bus is called a nexus . 
These connections are illustrated in Figure 1, 
which shows five nexuses: one for each CPU, one 
for each NBIA, and one for the memory system. 

CPU NBIA 

MEMORY 
SYSTEM 

NMI 

NBIA CPU 

Figure I Memory Interconnect Structure 

The memory system itself consists of three 
major parts, as depicted in Figure 2: 

• A memory controller based on ECL technology 

• A high-speed TIL bus connecting that mem­
ory controller to a maximum of eight array 
modules 

• The array modules themselves 
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The memory system can deliver 71 megabytes 
(MB) per second of read bandwidth and 59MB 
per second of write bandwidth. 

Since the VAX architecture has a 32-bit for­
mat , all datapaths in the memory system must 
also handle 32 bits . These datapaths are com­
bined by pipelined and parallel operations to 
produce the read and write bandwidths. The 
most significant occurrence of parallel operations 
is two-dimensional interleaving. The first dimen­
sion interleaves between longwords (32 bits) of 
data on a single array module; the second inter­
leaves between octawords ( 4 longwords) on dif­
ferent array modules . As many as three array 
modules can be active simultaneously with 
either a read or a write. There are three cases: 

• Each module can do one read. 

• One module can do a read while the other 
two can do as many as four writes. 

• Two modules can each do a read while the 
third can do as many as four writes. 

The selection of the array modules can be 
programmed from the console when the system 
is powered up . Thus the memory system can 
support a variety of array module sizes and 
speeds without the need to modify the hardware 
in the memory controller. Moreover, the mem­
ory controller can address 5 l 2MB of physical 
memory, the limit of the VAX architecture. The 
8800 is the first VAX sys tem to b e able t o 
address this much physical memory. 
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Figure 2 Plan of Memory System 

Owing to the limits of the existing technol­
ogy, however, the initial machine was intro­
duced with 32MB for the 8800 and 8700 sys­
tems, and 20MB for the 8500 and 8550 systems. 
The 32MB configuration consists of eight 
4MB modules with 256K MOS dynamic RAMs 
packaged in DIPs. To increase the density of the 
machine without using a different semiconduc­
tor technology, a 2MB daughter module was 
developed after the initial announcement. This 
module uses double-sided surface-mount tech­
nology and p lastic leadless chip carriers. Eight 
of these daughter modules are mounted on a 
mother module to produce a I 6MB array mod­
u I e . This new module has increased the 
machine's memory to 128MB for the 8800 and 
8700 systems, and to BOMB for the 8550 and 
8500 systems. 

Memory System Architecture 
As shown in Figures 1 and 2 , the memory con­
troller communicates with the CPUs and the 
NBIAs over the memory interconnect, called the 
NMI bus . Commands , addresses , and data 
requests are all first received by the NMI inter­
face and then passed to other sections of the 
memory controller. Addresses and data are 
stored in custom multiport RAMs, where eight 
locations are reserved for addresses and eight for 
data . The NMI interface encodes command 
information, passing it to the command-control 
portion of the memory controller. 

Since the memory controller communicates 
with the NMI bus and the array bus, the NMI 
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protocol has to be changed to that of the array 
bus. Reads and writes of data fields with various 
sizes are received by the NMI interface. The NMI 
bus supports a very robust set of commands . 
Reads and interlocked reads are supported for 
longwords (4 bytes) , octawords (4 longwords), 
and hexwords (2 octawords). Masked writes and 
masked-write unlocks are supported for long­
words, quadwords (8 bytes) , and octawords . 
Writes are supported for longwords and octa­
words. 

The r e ad-interlocked and masked-write 
unlock commands are used to implement VAX 
instructions in which mutual exclusion is 
required . For example , the VAX instructions 
ADAWI , BBCCI , BBSSI , INSQHI , INSQTI , 
INSQUE, REMQHI, and REMQTI all need these 
commands. Since an interlocked instruction 
locks the entire memory system, the interlock 
bit must reside in the memory controller. This 
bit restricts the execution of subsequent inter­
lock commands until the lock has been released 
by a masked-write unlock instruction. 

After receiving a memory request from a 
nexus, the memory controller must transfer that 
request to the appropriate array module. This 
transfer is accomplished using the array bus. 
This bus consists of 

• A unidirectional set of command and address 
lines from the memory controller to the array 
modules 

• Another unidirectional set of data lines from 
the memory controller to the array modules 
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• A set of data lines ( capable of assuming three 
states) that can be driven by any one of the 
array modules and received by the memory 
controller 

• Various status and control lines that commu­
nicate in both directions 

The array bus has a minimal repertoire of 
commands, consisting of longword reads, octa­
word reads, and longword writes, but not hex­
word reads. Since the NMI supports hexword 
reads, the memory controller must convert them 
into two octaword reads and then send them to 
the array modules. Thus the two octawords of a 
hexword read can reside on different array mod­
ules. That fact increases the memory bandwidth 
because parallel accesses can be executed. The 
array bus supports only longword writes; there­
fore, octaword writes must also be converted. As 
mentioned earlier, the array bus has one line for 
commands and addresses and another for data. 
Therefore, an octaword write , which takes five 
cycles to transfer on the NMI (one for the com­
mand, four for the data) , can be transmitted in 
five cycles on the array bus to an array module. 
Figure 3 shows the corresponding actions dur­
ing each cycle on the NMI and on the array bus. 

In addition to commands, the memory system 
must also execute maintenance tasks, including 
memory refresh, error reporting, and battery 
backup. 

Since physical memory is implemented with 
MOS dynamic RAMs, every array row must be 

CYCLE 

2 3 

COMMAND 
NMI OR DATA DATA 

ADDRESS 

ARRAY BUS 

COMMAND/ COMMAND 
ADDRESS OR 
LINE ADDRESS 

DATA 
LINE 

refreshed once every 4 milliseconds. This func­
tion can be done by refreshing one row every 
14 microseconds. To facilitate this activity, the 
memory controller sends signals to each array 
module from a 14-microsecond oscillator. Upon 
receiving a refresh signal, an array module will 
handle the refresh arbitration and execute the 
operation. 

Occasionally, a bit will be lost due to either 
alpha particles or a device failure. In that case 
the memory controller must handle those errors 
and other types in a graceful manner. To do 
that, the memory system uses a 7-bit modified 
hamming code to generate the ECC , which 
allows all single-bit errors to be corrected and 
all double-bit errors to be detected. After cor­
recting each error the memory system logs the 
error's physical page address and the bit. The 
memory system then interrupts the CPU to call 
an error service routine , which logs in a VMS 
file the necessary information to isolate the fail­
ure . The memory system can also interrupt the 
CPU to handle internal parity errors and inter­
locked time-outs. An interlocked t ime-out hap­
pens when a nexus executes a read interlock but 
never issues a masked-write unlock. The system 
software can enable or disable these interrupts. 

Battery backup, standard equipment on both 
the 8800 and 8700 systems, can power the 
refresh operation when the system is down. That 
power allows the memory system to continue to 
refresh the RAMs so that data will not be lost. 
Note that the entire system is not backed up; 
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Figure 3 Cycles on NM/ Bus and Array Bus 
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Figure 4 Datapaths in Memory Controller and Array Modules 

therefore, all components must be in quiescent 
states before the memory system enters battery 
mode. Upon sensing that power is eroding, the 
8800 will write all its data to the memory sys­
tem. The memory controller will then complete 
all commands and send signals to the array mod­
ules informing them to enter battery mode . In 
this mode only five MSI chips on the memory 
controller and approximately half the control 
logic on the array module will be active . 

Command Execution 
The execution of any command received by the 
memory system is a joint effort between the 
memory controller anq the array modules. Fig­
ure 4 depicts the datapath in each memory com­
ponent. After a nexus places a command on the 
NMI bus, the interface in the memory controller 
ascertains if the command is a valid memory ref­
erence and, if so, decodes it. The interface then 
places the command in a queue of commands 
waiting to be executed. 

Since one array module can execute multiple 
write commands simultaneously, and since mul­
tiple array modules can also execute commands, 
the memory controller must maintain the status 
of the array modules. The status control logic to 
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monitor activity must " remember" which por­
tions of which arrays are "busy." This status 
control logic can best be described by showing 
how the three basic operations, writes, reads, 
and masked writes, are executed. 

Write Commands 

For a write command, the control portion of the 
memory controller performs only three actions: 
it determines the capability of the array module 
to accept the command, it sends the command, 
and it waits for the array module to signal its 
readiness to receive another command. 

The write datapath is that portion of the logic 
responsible for the flow of data from the NMI bus 
to the array modules. This path comprises both 
electrical interconnects (buses and cables) and a 
considerable amount of logic. The major storage 
element for the datapath is a 9-bit by 32-location 
custom multi port RAM (MPR) with two ports for 
reads and two for writes. Data received from the 
NMI bus is placed in the next available location 
of the MPR. Upon determining that the required 
array module is available , the control logic sends 
the data from the MPR to that array module over 
the array bus. Each array module holds the data 
until it is strobed into the dynamic RAMs 
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(DRAMs). The array module can load four long­
words of data with their associated ECC bits on 
four consecutive cycles. 

Some writes are called masked because there 
is a 4-bit byte mask associated with each data 
word. The byte mask informs the memory sys­
tem as to which bytes are to be written. The 
memory system executes this command by first 
doing a read and correcting any single-bit errors 
that may exist. It then merges the memory data 
with the data received from the NMI bus, and 
finally does a write command. This sequence 
easily allows the implementation of longword 
and octaword masked writes. Masked writes for 
quadwords (8 bytes) are executed by perform­
ing an octaword masked write in which the data 
of two of the longwords remains unchanged. 

Read Commands 

For read commands, the memory controller per­
forms four actions: it determines if the selected 
array module is ready to accept the read , it 
sends the command, it waits for a data-ready 
response, and it transfers the data from the array 
module. lmbedded in the command field of the 
read are address bits that select the longword of 
the octaword that is required first. This action 
allows wrapped reads to be implemented. 
(Wrapped reads are described later in the sec­
tion " Impact of the Cache.") 

The read datapath originates at the DRAM, 
which sends the requested data. As in the case of 
write commands, each array module stores an 
octaword of read data. Once the data has been 
loaded into the latches, the array module signals 
to the memory controller that the data is ready. 
As mentioned earlier, the read datapath between 
the array module and the memory controller is 
tristatable. Therefore , the memory controller 
must ensure that only one array module at a 
time drives this datapath . Once the data has 
been requested by the memory controller, the 
array module must send the longwords sequen­
tially, beginning with the starting address that 
was sent with the command. This action allows 
the memory controller to request any one of the 
four longwords as the first to be read. The array­
module portion of the read datapath can transfer 
one longword of data during every cycle. 

The error-correction logic in the memory con­
troller receives each longword of data plus the 
seven ECC bits. This logic detects sing le- and 
double-bit errors, but only single-bit errors can 
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be corrected. A significant feature of this pro­
cess is that error detection and correction is per­
formed as the read data is pipelined through the 
memory controller. Thus no additional cycles 
are needed to correct read data. 

Masked-write Commands 
The execution of a masked write involves both a 
read and a write sequence. The memory con­
troller executes a masked-write command by 
first issuing a read to the selected array module. 
Assuming that there were no memory errors, the 
data returned is sent to the MPR, where the 
bytes are merged with those sent to the memory 
controller over the NMI bus. The memory con­
troller must ensure that no commands to the 
same array come between the read and write 
portions of a masked write. After all the bytes 
have been merged into the data buffer, the 
memory controller will write the data to the 
array module. The array module then generates 
new ECC data , adds it to the other data, and 
strobes the composite data into the DRAMs. 

If a single-bit error is detected, the process is 
quite similar to the one with no errors, except 
that the data must be corrected. Since corrected 
data and NMI traffic both share the same data­
path on the memory controller, the NMI inter­
face must be free to correct errors found during 
masked writes . This freedom is ensured by 
asserting a signal that stops all activity on the 
NMI bus. Once activity has stopped, the data 
can be routed through the NMI interface, cor­
rected, and then merged with the NMI data in 
the data buffer. The process then continues as it 
would have if there were no errors. 

If a double-bit error is detected, the process is 
similar to the case in which no error occurred, 
except that the write is prevented from happen­
ing. When the array location is read the second 
time, the double-bit error will still be present, 
thus alerting the system that the data is unusable. 

Memory Address Path 
The memory controller continuously latches all 
addresses from the NMI bus. Once an address is 
latched, the memory controller must verify it as 
a valid memory address. That verification is 
done by comparing the address to valid 
addresses of both the control status registers 
(CSRs) and physical memory. 

The CSR addresses are hardwired into the NMI 
interface logic; therefore, only a simple compare 
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of the addresses is required . The compare for a 
valid memory address requires a reference to a 
" decode" RAM. This RAM is loaded by console 
software when the system is powered up and is 
used to configure memory . Loading the RAM 
from software allows the memory controller to 
support several different sizes of array modules 
without modifying any hardware . 

Once the address has been verified as being 
valid, it is p laced in one of eight storage loca­
tions allocated to address buffering in the MPR. 
The address remains in that buffer until its com­
mand is sent to an array module . 

Even though eight locat ions are allocated to 
address buffering, only seven of them can be used 
for temporary storage . One location is reserved 
for the error's page address , a pointer to a physi­
cal page of memory containing an error. Since 
the location of the error page-address buffer is 
not fixed, the control logic for the address-buffer 
control must look ahead and not allow a new 
address to overwrite that error page address . 

The control of the address buffer is fur ther 
complicated by masked writes and error logging. 
Since a masked write is implemented as a read 
followed by a write , the address in the buffer 
cannot be overwritten until the write has com­
pleted. A similar situation exists for error logging 
on read transactions . Since an error is not 
detected until the read has completed , the 
address cannot be overwritten until the data has 
been checked. 

Design Requirements of the 
VAX 8800 System 

Impact of the NM/ Bus 
As stated earlier, the VAX 8800 memory system 
interfaces with the CPUs and I/ 0 systems 
through a synchronous bus called the NMI bus. 
This bus is h ighly efficient and operates in a 
pended fashion similar to the synchronous back­
plane interconnect (SBI bus) in the VAX-11/780 
processor. The NMI bus allows several transfers 
to be in progress simultaneously. 

There are four nexuses in the 8800 system 
that can require memory: the two CPUs, and the 
two NBIAs. Each nexus is allowed to have two 
commands outstanding at any time . The proto­
col supports this arrangement by allocating two 
codes in a 4-bit ID field to each nexus. 

The CPUs use one of their references for pro­
gram data, called the d-stream, and the other for 
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instructions , called the i-stream . The CPUs 
always request a hexword of data; the NBIAs may 
request either longwords or octawords. Thus 
there can be as many as eight simultaneous 
requesters of memory data. These simultaneous 
events require that the memory system buffer 
several commands while executing. In the 8800 
implementation, the memory system can access 
three array modules in parallel and store two 
commands. 

Moreover , since the memory system can 
accept multiple read commands, it must store 
the identification of the requester and the 
length of the transaction . The NMI interface 
does the actual storing and returns the identifi­
cation with the correct data. This action is possi­
ble because all commands are processed in 
sequence; therefore, the read returned first is 
the one stored the longest . However, hexword 
reads are returned to the NMI interface as two 
separate octaword reads; therefore, that inter­
face must ensure that both octawords have been 
returned before d iscarding the identification . 

To prevent a deadlock condition, the memory 
system is given the highest priority during arbi­
tration. This priority guarantees that the memory 
system will be able to return data to a requester. 
When full, the memory system notifies any poten­
tial requesters that it cannot p rocess any more 
commands and to try again later, thus preventing 
the memory system from overfilling. 

Impact of the Cache 
The design of the cache affected the design of 
the memory system. The write-through design of 
the cache guarantees there will be a large num­
ber of longword writes directed at memory.1 A 
write buffer was installed to bundle a series of 
longword writes into octaword writes; however, 
the write buffer is only effective if multiple 
longwords are written in the same octaword. 

Extra logic is always required to increase per­
formance . The extra write bandwidth for this 
memory system, however, required more logic 
than what would have been required to imple­
ment extra read bandwidth . The added com­
plexity was needed to facilitate interleaving on 
longword boundaries for write operations. 

When the 8800 project was first initiated, the 
goal of the memory system was to maximize 
read bandwidth, thus producing a relatively sim­
ple array-module design . In that design , any 
operation, regardless of its size, kept an entire 
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array module busy until the operation com­
pleted. The control logic on the array module 
was simple and required a reasonable amount of 
board space and power . When the design 
changed to the write-through concept, however, 
higher write bandwidth was required . There­
fore, the control logic in each array module had 
to be replicated for each bank (longword) of 
memory to allow independent write operations. 
This replication permitted four longwords to be 
written on four consecutive cycles to the same 
array module. 

This increase in design complexity was not 
limited to the array module . In the initial 
design, when maximum read bandwidth was 
critical, the memory control logic was relatively 
simple. It had only to track the state of an array 
module as being busy or not. However, with the 
interleaving capability required for the 
increased write bandwidth, the memory control 
logic now has to track simultaneously the status 
of as many as eight write operations in progress 
on two array modules. 

Although maximizing the longword write 
bandwidth was important, minimizing the read 
latency to the first longword required was criti­
cal. Wrapped reads were implemented to 
reduce this latency. A wrapped read is a hex­
word or octaword command that requests a 
specific longword to be returned first, with 
other longwords in that block to follow in 
"wrapped" fashion. 

Other Design Trade-offs and Options 
As in all design processes, we considered many 
trade-offs and options before committing to a 
particular design architecture . One area with 
several alternatives was the interconnect 
between the memory controller and the array 
modules. The array modules and the controller 
reside in physically separate backplanes inter­
connected by a cable. We had to decide whether 
to make this interconnect with ECL or TTL. 

The overall project goal was to make the 
8800 an all-ECL machine. Therefore, our first 
choice for this interconnect was ECL, which 
provides enhanced signal integrity , reduced 
skews, and overall speed advantages over TTL. 
As the system and memory design progressed, 
however, some real problems arose that altered 
our opinion. The first problem became apparent 
as the array-module design coalesced enough to 

58 

allow some accurate power estimates to be 
made . We found that, with an ECL bus, the array 
module would require - 5.2 Vin excess of its 
allocation . The next problem surfaced in 
response to an architectural requirement that 
the memory system function with less than eight 
array modules and , preferably, without load 
cards . This requirement made it difficult to 
implement a termination scheme for an ECL 
interconnect. 

With these problems in mind, we investigated 
a TTL interconnect, which clearly offered some 
design challenges , the least of which were 
speed and skew. Using the SPICE simulator, we 
constructed an accurate model to verify that a 
TTL electrical interconnect could indeed meet 
our signal integrity, speed, and skew require­
ments. 2 While the simulation results showed 
that a TTL interconnect could work, the associ­
ated skews certainly increased the complexity of 
the memory design. While alleviating the prob­
lems of limited - 5. 2 V power on the array mod­
ule and the termination of varied loading, this 
TTL scheme required ECL-to-TTL translators in 
the memory controller to drive the array bus. 
We finally decided to accept the added com­
plexity and use TTL for the interconnect. The 
sole exception was the clocks, which were dif­
ferential ECL, received and translated on the 
array module. 

There were logical trade-offs as well as elec­
trical ones. The original specification for the 
NMI did not support quadword masked writes. 
They were added after the implementation of 
the memory system had progressed consider­
ably. Since the array bus supported only long­
word and octaword reads , there were three 
options to support this change: 

• The first was to change the array bus proto­
col, the command generator on the memory 
controller, and the array module . 

• The second was to execute the command by 
performing two longword masked writes. 
This option would take almost twice as long 
as a quadword masked write if implemented 
like the first option, yet still require changes 
to the command generator in the memory 
controller. 

• The third was to execute an octaword masked 
write in which the data of two of the long­
words remains unchanged. 
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Since the design was well advanced, we chose 
the last method to ease the problems of imple­
mentation ; this decision actually has little 
impact on system performance . The logic to 
accomplish this addition already existed on the 
array module . Only small changes were required 
to the command generator of the memory con­
troller and the datapath control. In practice, the 
frequency of quadword masked writes i s 
extremely low since they are executed only by 
the NBIAs. 

Technology Description 
A number of different module and component 
technologies were used for the memory con­
troller, backplane, and two array modules. 

Memory Controller 
The memory controller is a 9-layer, controlled­
impedance , extended hex module ( 15 inches by 
11 inches) . The lay-up consists of 6 routing layers , 
2 power layers (- 5.2 Vand - 2 V) , and a ground 
plane . Since there is a minimal amount of TTL, 

r----- ------------~ 
I MEMORY I 

both the + 5 V power and the + 5 V battery are run 
on the surface with 50-mil etch. With the mixed 
technology on the module, we took special care 
to keep the TTL signals properly spaced from the 
ECL signals to avoid signal integriry problems. 

The logic on this module is implemented 
using nine unique macrocell-array designs from 
Motorola, Inc., and one custom ECL multiported 
RAM . There are 16 custom and semicustom 
devices on the module . It also contains some 
1 OKH MSI logic , some ECL-to-TTL converters, 
and some CMOS logic used for operating with 
battery backup. 

Array Module Backplane 
The array module backplane in the VAX 8800 
and 8700 CPUs is a 12-layer, 8-slot pressed-pin 
backplane . The one in the VAX 8550 and 8500 
CPUs is a 5-slot backplane . Since a TTL bus was 
chosen to communicate between the memory 
controller and the array modules , a good termi­
nation strategy had to be developed . Using the 
SPICE simulator , we evolved the termination 
strategies shown in Figure 5 . 
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Figure 5 Termination Strategies in Memory Controller and Array Modules 
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Figure 6 Sixteen Megabyte Array Module 

Four Megabyte Array Module Summary 
The 4MB array module was designed using an 
8-layer, controlled-impedance, printed circuit 
board. The lay-up consists of 4 routing layers, 
2 power layers, and 2 ground layers. To support 
battery backup, the module has separate power 
planes for + 5 V power and the + 5 V battery. 
Since only a limited amount of - 5.2 V and 
- 2 V power is needed, these voltages share 
space on the other power planes. To eliminate 
discontinuities that could cause unwanted 
reflections, we ensured that signals d id not cross 
the power-plane splits by surrounding the 
power planes with solid ground planes. 

Approximately half of the logic technology on 
the array module consists MOS dynamic RAMS; 
the other half is FAST MSI logic. The clock system 
is implemented in ECL to minimize the skew. 

Sixteen Megabyte Array Module 
A I6MB array module was developed to increase 
the available memory to I 28MB for the 8800 
and 8700 systems and 80MB for the 8550 and 
8500 systems. This array module consists of an 
8-layer mother board (similar to the 4MB mod­
ule) and eight 2MB surface-mounted daughter 
boards. The I 6MB array module is pictured in 
Figure 6. 
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The VAX 8800 memory system was designed to 
provide 71 MB per second of read bandwidth 
and 59 MB per second of write bandwidth to the 
multiprocessor system. The system architecture, 
processor performance needs , and high 1/0 
activity combined to make a high-performance 
memory a requirement. 

Since the 8800 contains ECL components, the 
memory system has to provide a high-speed path 
between the ECL logic in the CPUs and the high­
density dynamic RAMs used for main storage . 
Although the memory system does not play a 
direct role in the execution of a VAX instruc­
tion, its performance has to match closely that 
of the multiprocessor system. If the memory sys­
tem were under designed, the processors would 
stall frequently, thus reducing their usable per­
formance . If the memory system were over 
designed, it would contain extra complexity, 
with the attendant extra cost, that could not be 
used by the system. Thus the memory strategy 
played an important role in the price/perfor­
mance trade-offs that had to be made. 
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Floating Point in the 
VAX 8800 Family 

The processors in the VAX 8800 family were designed with particular 
emphasis on cost-effectiveness. These CPUs do not contain separate float­
ing point accelerators. Their perjonnance is not compromised, however, 
especially f or the double-precision instructions. High perfonnance is 
achieved, in part, by a custom ECL multiplier and divider unit and by 
specific hardware for exponent manipulation and nonnalization. The 
main advantages of this integrated approach are less hardware to repli­
cate and a tightly coupled interjace to each CPU, thus less time is wasted 
fetching the operands. Microcode branch problems are minimized by 
using a prediction strategy and extensive hardware assistance. 

Unlike other VAX families, the processors in the 
VAX 8800 family do not contain separate float· 
ing point accelerators (FPAs). Instead, their FPA 
is integrated into each processor's main data­
path. Therefore, no distinction is made between 
instructions that are executed in the FPA and 
those that are not: the hardware is available to 
be used for all functions. For example , the 
extended arithmetic logic unit (XALU) is also 
used as a counter for the move character instruc­
tion (MOVC). This usage differs from that in the 
VAX 8600 and VAX-11/780 systems, where the 
XALU is used only for floating point instruc­
tions . Furthermore , all the floating point 
instructions, from the most complicated (POLY 
and EMOD) to the simplest (MOVF) , have 
access to the FPA hardware. 

There are a number of advantages to this 
approach. First, logic is not duplicated; only 
one arithmetic logic unit (ALU) and one shifter 
unit is shared between the floating point and the 
normal arithmetic. Second, the design is tightly 
integrated with the rest of the computer; there 
is no overhead involved in starting the floating 
point computation. 

Clearly, since all other VAX families use FPAs, 
there are also disadvantages with our approach. 
Shared logic is more complex than specialized 
logic . Performance may also suffer since the 
design cannot be optimized toward one class of 
problem. Those d isadvantages can be overcome, 
however, as we shall relate in this paper. The 
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problem of optimization was ameliorated by 
providing dedicated hardware for the main 
operations of multiplication and addition. A cus­
tom multiplier and divider chip is provided 
together with exponent manipulation logic and 
a shifter unit optimized for floating point. These 
logic elements handle those floating point oper­
ations that take the longest times to execute . 

The floating point logic resides in the execu­
tion unit, the E Box, of the VAX 8800 CPU. That 
logic is controlled by microcode in the instruc­
tion unit, the I Box. 1 

VAX Formats and Instructions 
The VAX architecture supports four floating 
point formats: F, D, G, and H. These formats are 
discussed at length in references 2 and 3. The 
F format is 32 bits wide, the D and G formats are 
both 64 bits wide, and the H format is 128 bits 
wide . Although the D and G formats have the 
same width, the exponent field is larger in the 
G format, and its fractional field is commensu­
rately smaller. This format allows a larger range 
but with slightly lower precision. The fractions 
are always normalized and the leading bit - the 
hidden bit - is not stored. 

E Box Operation 
Physically, floating point operations are per­
formed on three modules: two slice modules 
and a shifter module. The slice modules contain 
the cache, the main ALU, and a register file . The 
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shifter module contains the custom multiplier, 
the shifter unit, the exponent manipulation 
logic (the two ALUs) , and the priority encoder. 
Figure 1 shows this partitioning . To a large 
extent, the shifter module strongly resembles an 
FPA but without the ALU and register file . 

The source operands are fetched from either 
the 64 kilobyte (KB) cache or a general-purpose 
register (GPR). The operands are sent on the 
A and B ports to the ALU on the slice modules 
and to the shifter module . All the components 
on the shifter module are driven in parallel by 
the A and B ports. 

From Figure 1 it is clear that the datapath is 
highly parallel ; the shifter, XALU, multiplier, 
and ALU can all operate simultaneously. This 
parallelism is used extensively to gain perfor­
mance and to save cost. For example, in multi­
plication operations, the XALU determines the 
exponent of the result , the multiplier multi­
plies, and the shifter absorbs the low-order bytes 

BYPASS BUS<31 :0> 

SHIFT COUNT BUS <5:0> 

of the product that are discarded each cycle by 
the multiplier. 

The main problem with designing an inte­
grated FPA is that the VAX formats for integer 
and floating point numbers must all be handled 
by the same shared units. Figure 2 shows the dif­
ferent bit orderings for two VAX formats , the 
F floating point and the integer. In the integer 
format , the bit ordering is from right to left. In 
the F format, the mantissa begins at bit 16 and in­
creases in significance to bit 31, then continues 
from bits O through 6 . The remaining bit positions 
are used to hold the exponent and the sign. 

This requirement for shared handling compli­
cates the carry path of the ALU. The carries out 
of the 16-bit word boundaries have to be 
switched into the appropriate places, as shown 
in Figure 3 . The problem with shifting is similar 
to the carry problem, except that now the carry 
path of Figure 3 represents the flow of the 
shifted bits. 

SHIFTER MODULE 

MULTIPLIER 
-DIVIDER 

A PORT 

B POAT 

SLICE MODULES 

CACHE DATA 

REGISTER FILE 

Figure 1 Block Diagram of the E Box 

Digital Technical Journal 6 3 
No. 4 February 1987 

New Products 



Floating Point in the VAX 8800 Family 

F FORMAT: 

31 

MANTISSA 
(LEAST SIGNIFICANT PART) 

BIT POSITION 

16 15 

s EXPONENT 

7 6 0 

MANTISSA 

LEAST SIGNIFICANT BIT_J MOST SIGNIFICANT BIT _J 

INTEGER FORMAT: 

31 

L MOST SIGNIFICANT BIT 

S - SIGN BIT 

0 

LEAST SIGNIFICANT BIT _J 

Figure 2 Two VAX Formats 

The ALU and the shifter unit are both 
designed to handle all integer and floating point 
formats. The multiplier expects operands to 
come only in a floating point format. Therefore, 
for integer multiplications, the data must first 
be converted into a pseudo-floating point format 
by swapping the p laces of 16-bit words within 
the integer format. This operation is performed 
by the shifter unit. 

Table 1 gives the execution times for the most 
common floating point instructions. These times 
include the overhead for fetchi ng the operands. 

D FORMAT: 

The VAX 8800 processor is designed so that 
there is little, if any, d ifference in performance 
between register and memory operands. The 
execution times vary from 2.25 to over 5 times 
the performance of the VAX-11 /780 CPU with 
an FPA for the F and D formats. For mu ltiplies, 
one 8800 CPU is 2.5 times faster in F format 
and 4.8 times faster in D format; divides are 
3.0 times faster. The gain is even more substan­
tial for the G and H formats since they are not 
accelerated on the 11/780. 

(MOST SIGNIFICANT PART) BIT POSITION 

15 7 6 

MANTISSA s EXPONENT MANTISSA 

MOST SIGNIFICANT BIT_J 

D FORMAT: 
(LEAST SIGNIFICANT PART) 

MANTISSA MANTISSA 

LEAST SIGNIFICANT BIT CARRY IN 

S - SIGN BIT 

Figure 3 Floating Point Carry for D Format 
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Table 1 Execution Times 

Instruction Execution Time (Nanoseconds) 
Register to 
Register F D G H 

ADD 315 495 540 3314 
MUL 450 675 842 6306 
DIV 1607 3197 3107 21649 

In the 8800 the D format is slightly faster than 
the G format with its longer opcode, which 
requires an extra cycle in the decoder. The single­
precision F format executes the fastest, and the 
larger 128-bit H format executes the slowest. 
However, the H format is intended as a backup 
for intermediate calculations in the D and 
G formats. Used thus, the H format ensures that 
the final calculation result has sufficient preci­
sion and avoids overflow or underflow prob­
lems. Little hardware assistance is provided for 
the H format; it is driven mostly by microcode . 

Technology 
Component technology used in the VAX 8800 
processor is an enhanced version of the macro­
cell array (MCA) used in the VAX 8600 CPU. 2 

This technology provides about 1 ,200 gate 
equivalents with a typical gate speed of 
1 nanosecond (ns) . MCAs utilize emitter-cou­
pled logic (ECL) in a 72-pin package that is 
1 square inch with a maximum power dissipa­
tion of 5.5 watts. The GPR and the multiplier 
are made with custom technology, which uses 
the same package as the MCA but contains a 
more advanced process. Around 1,800 gate 
equivalents are provided, and the gate speed is 
50 percent faster than the MCA. This higher 
performance is achieved by using the following 
features: 

• Smaller transistors and metal-oxide-walled 
resistors 

• Current mode logic instead of the slower ECL 

• Four-level logic instead of the two-level logic 
of the MCA 

At 300 by 260 mils, the size of the custom 
chip is larger than the dimensions of 221 by 
2 5 2 mils for the MCA. 

D igital Tecbnical]ournal 
No. 4 February 1987 

The shifter module contains 12 MCAs and 
8 custom multiplier parts. Some 1 OKH parts are 
used for clock distribution and for driving the 
bidirectional bypass bus. 

Arithmetic Algorithm Processing 

Addition and Subtraction 
For an addition operation, !he 32-bit words con­
taining the exponents are sent to the main ALU. 
There they are passed to the A and B ports, 
which feed the shifter module. These ports 
drive all the gate arrays in parallel. 

The exponents are then loaded into the XALU 
and the shift-amount ALU (SALU) , which com­
putes the alignment shift amount sent to the 
shifter. The SALU also generates some 20 branch 
conditions for the microcode. These conditions 
indicate the size of the alignment shift and 
whether any source operand is zero or a 
reserved operand. They also help to optimize 
the microcode flow. 

The XALU, which selects the larger exponent 
and saves it for later use, has a 12-bit datapath 
and a register to hold the exponent. The size of 
this datapath is sufficient for the F, D, and G for­
mats plus a guard bit for overflow or underflow 
detection. An ALU is provided to perform arith­
metic operations on the exponent. The SALU, 
with an 11-bit datapath, subtracts the exponents 
to determine the alignment shift amount, which 
is always positive. The sign manipulation logic 
also resides in the SALU. 

Next, the fractional part of the smaller operand 
is aligned by the shifter. This operation involves 
either one CPU cycle for F format operands or 
two CPU cycles for the D and G formats. The 
shifter unit shifts in the floating point format and 
can do a full 64-bit shift . The logic that deter­
mines the round bits is related to the alignment 
shift operation but is physically located in the 
priority encoder gate array. This gate array also 
contains some of the shifter functionality. 

Nine gate arrays are used for the shifter unit. 
Of those, eight make up the datapath, the ninth 
is the control device . The shifter can accept 
either a 64-bit operand on the A and B ports or a 
32-bit operand on either port. The shifter gener­
ates a 32-bit result that can be either the high­
order or the low-order part of the answer. The 
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shifter datapath gate arrays are identical ; each 
effectively constitutes a byte slice of the design 
and performs a bit shift of up to seven places. 
Byte shifting is then performed by sending the 
correct shifter output to the correct byte posi­
tion. This operation is facilitated by having all 
the outputs wired to the OR gates at all possible 
byte positions and by enabling the correct output. 

The shifter performs floating point, integer, 
and logical shifts, as well as a number of miscel­
laneous functions. These include converts from 
decimal-format data into integer format and vice 
versa. The masking of the exponent field and 
the insertion of the hidden bit are also done by 
the shifter. 

After the alignment shift, the output of the 
shifter is directed to the main ALU on the bypass 
bus. There, the output is added to or subtracted 
from the fraction of the larger operand. The out­
put of the ALU operation is now ready to be nor­
malized in the shifter. In most cases a small nor­
malize shift of at most one bit position left or 
right will be sufficient. The specialized hard­
ware in the shifter handles this case and then 
rounds the result. Should a larger shift be 
required, then microcode will first direct the 
ALU result to the priority encoder gate array. 
There, the position of the leading 1 is found and 
used to determine the normalize amount for the 
subsequent cycle. 

The rounding operation in the VAX 8800 CPU 
is unusual in that it is limited to the low-order 
eight bits. Therefore, a small 8-bit adder can be 
used for this operation. This adder is both faster 
and cheaper than the usual method of using a 
full 64-bit adder. The 8-bit adder is also suffi­
cient to calculate the correct answer in over 
99.5 percent of the addition operations. Should 
a carry-out be generated by this 8-bit rounding 
add, then clearly the result created is incorrect. 
In that case the computer is trapped and 
microcode invoked to correct the result. 

Multiplication 
As mentioned earlier, the 8800 contains a high­
performance, custom-designed multiplier and 
divider unit. A number of factors impelled us to 
use such a unit. First, multiplication is a very 
frequent operation that is used extensively in 
matrix manipulation. For example, in the UN­
PACK benchmark, the time-critical routine con­
tains an even mix of addition and multiplication 
operations.4 
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Second, it was not possible to succumb to the 
temptation of using the main ALU to provide the 
division operation. This desire was natural since 
division is an infrequent operation, and the use 
of an ALU in a repeated subtract and shift mode 
was appealing. For example, the VAX 8600 uses 
the ALU for just that purpose. In the 8800 the 
main ALU also computes the virtual address . 
Since this datapath is very time-critical (in the 
8800 as well as in most other computer 
designs) , it cannot be allowed to go any slower. 
Including an extra path to accommodate divi­
sion would have slowed down this critical path 
by around 5 ns, resulting in a 10 percent perfor­
mance degradation for all operations. 

Moreover, the available space for the multi­
plier and divider unit was limited since floating 
point operations are integrated with the rest of 
the machine. Approximately one-third of a mod­
ule (12 inches by 16 inches) was available . In 
contrast, the VAX 8650 CPU dedicates a full 
module to multiplication. 

The custom design of the multiplier and 
divider unit is basically a byte slice of a large 
word-sized multiplier and divider unit. The 
multiplier handles 8 bits per cycle, the divider 
handles 1 bit. Figure 4 shows the complete 
56-bit by 8-bit multiplier with its eight byte­
slice custom chips. Eight chips are used to form 
the required word size of 6 4 bits (56 data bits 
plus 8 guard bits). This arrangement is suffi­
cient to handle F, D, and G format operations. 
H format operations are performed by partition­
ing the problem into many smaller 56-bit multi­
plications under microcode control. 

The multiplicand is loaded into the MD latch 
after passing through the mask logic , which 
clears the sign and the exponent field and 
inserts the hidden bit. The PR latch and the 
PRGB are cleared at the start of the multiply. 
The PRGB contains the guard bits for the PR 
latch. At the end of a multiply, this latch will 
hold the bits required for a possible normaliza­
tion shift and also for a rounding operation. The 
least significant eight bits of the multiplier are 
loaded into the multiplier latch. The first multi­
ply cycle is now ready to be performed. 

A 56-bit by 8 -bit multiplication is performed 
between the contents of the MD and multiplier 
latches. The result is then added to the contents 
of the PR latch (which is initially zero) and then 
written back into it with a right shift of 8 b its . 
The PR latch is thus an accumulating latch and 
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MULTIPLICAND INPUT MULTIPLIER INPUT 

MASK LOGIC MULTIPLY/DIVIDE SELECT 

8-BIT SHIFT 

PR LATCH PRGB MD LATCH MULTIPLIER LATCH 

64 BITS 56 BITS 8 BITS 

56 BIT X 8 BIT MULTIPLIER BOOTH RECODE 

64-BIT ADDER 

MOST SIGNIFICANT 56 BITS OF RESULT 

LEAST SIGNIFICANT 8 BITS OF THE RESULT 

RESULT LATCH 

NORMALIZE LOGIC 

MUL Tl PLIER OUTPUT 

Figure 4 Multiplier and Divider Unit 

contains the 64-bit partial product of each mul­
tiplication operation . The next 8 bits of the 
multiplier are loaded into the multiplier latch, 
ready for the next cycle . This cycling continues 
until the multiplicand has been multiplied by 
all the multiplier bytes. This algorithm is similar 
to the one used in the VAX 8650 scheme , 
except that that processor has a narrower data­
path of 32 bits. 

Notice that the least significant byte of the 
partial product is discarded after each cycle and 
absorbed by the shifter unit. These bytes are 
required only for the H format multiply. 

Once completed , the res ult is sent out 
through the result latch, then normalized and 
rounded. The rounding carry is only propagated 
into the least significant byte of the result. This 
procedure uses less logic since only an 8-bit 
instead of a 64-bit incrementer is required. The 
8-bit incrementer will be sufficient for most 
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multiplies . Should a greater increment be 
required, then the multiplier will trap the rest 
of the machine, and the correction will be per­
formed by the main ALU. This scheme is similar 
to the one used for addition. 

The provision of a 64 -bit adder inside the 
main multiply path is unusual in a high-perfor­
mance machine. High-speed multiplier designs 
typically use carry-save adders, which do not 
propagate the carry signal but save them so they 
can be absorbed by the subsequent cycle. This 
form of adder is indeed used in the custom mul­
tiplier to perform the 56-bit by 8-bit multiply 
function illustrated in Figure 4. However, the 
8800 also uses a full 64-bit adder for the follow­
ing reasons: 

• A 64-bit adder has to be provided somewhere 
to propagate the carries from the carry-save 
adders. 

67 

New Products 



Floating Point in the VAX 8800 Family 

• With the 45-ns cycle time, the 64-bit adder 
fits in the main datapath. A faster clock for 
the multiplier would have complicated the 
clock distribution and been difficult to gener­
ate with low skew. 

• A full adder in the datapath allows the use of 
a simple nonrestoring division algorithm. 

The multiplier and divider chip contains a 
12-bit by 8-bit multiplier, two 8-bit adders, 
six latches with a total size of 72 bits, as well as 
the rounding, normalizing, and control logic. A 
comparable MCA design would require between 
three and four of these elements. 

Alternative Designs for the Multiplier 
An MCA design was certainly possible and could 
have been made to fit in the specified space. 
The performance of such a design, however, 
would not be as good as the custom design for 
multiplication but comparable for division. An 
MCA design would be 1. 7 times better than an 
11/780 with an FPA for a multiply in F format, 
whereas the custom logic chosen is 2.5 times 
better. The performance would be 2.5 times 
better for the D format, whereas the custom 
design is 4.8 times better. 

Another alternative was to use a commercially 
available multiplier. That was tempting because 
such a product has the advantage of being read­
ily available and tested. Using it would have cir­
cumvented the high risk of a custom design . 
However, there are a number of disadvantages to 
using general-purpose multipliers: 

• Extra logic is required to mask out the sign 
and exponent of the data and to insert the 
hidden bit. The output of the multiplier 
would have to be masked. 

• Most available products cannot handle divi­
sion. Thus a separate divider would have 
been required, which was expensive. Even 
division algorithms using multiplication 
require a large amount of ROM to contain the 
approximation constants. 

• Many of the available designs are intended for 
integer applications, such as FFT butterflies 
and digital signal processors. Hence, the 
designs are optimized for those applications. 
Extending these 8- or 16-bit multipliers to a 
larger word length, as required for the VAX 
architecture, was neither straightforward nor 
cost effective. Moreover, the normalization 
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and rounding of results entails either extra 
logic or additional cycles if the floating point 
hardware in the E Box is used. 

• Most designs have a clock system not consis­
tent with the rest of the machine. This fact 
introduces the complication of a special 
clock distribution and difficulties in verifying 
the design. 

• Very few designs are based on ECL technol­
ogy. Other technologies, such as TTL, would 
require a different power rail and thus an 
extra power supply. 

The closest available multiplier to the 8800 
reg uirements is the 10901 made by Motorola, 
Inc. This MCA implementation contains an 8-bit 
by 8-bit multiplier together with a 16-bit adder. 
However, no latches are included; they must 
therefore be provided externally, thus increas­
ing the cost substantially. On the other hand, 
division could be provided by repeatedly using 
the 16-bit adder of the 10901 . 

Division 
The multiplier performs a nonrestoring division 
algorithm, 1 bit per cycle, for the F, D, and 
G formats. The divider can accept a new divi­
dend bit during every cycle, thus permitting a 
128-bit by 56-bit divide. A divide of this size is 
used in the H format algorithm to form the start­
ing approximation. 

The booth recode of the multiplier is modi­
fied slightly to accommodate the division 
decode. 2 In the case of multiplication, the mul­
tiplier recode selects the correct multiples of 
the multiplicand to add to the partial product 
during each multiplication operation. In the 
case of division, the divisor is loaded into the 
MD latch, and the booth recode selects either 
+ 1 or - 1 times the divisor for each division 
step. 

In the nonrestoring division algorithm, the 
sign bit of the previous result selects the correct 
divisor multiple for the next cycle. This selec­
tion is facilitated by feeding the sign signal into 
the modified booth recode so that it will se­
lect the multiples of either + 1 or - 1 times the 
divisor. 

The quotient bit generated every cycle is sent 
to the shifter unit to be absorbed. The first quo­
tient bit generated corresponds to the most sig­
nificant bit of the answer. That bit is then nor­
malized and rounded by the shifter. 
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Microcode Design 
Being integrated into the logic in the main 
mach ine , the floating point logic is also con­
trolled by the main microcode. The VAX 8800 
CPU is an extensively pipelined d esign . 5 

Although pipelining is a well known technique 
for improving performance (for example, the 
VAX 8600 CPU) , it comes at a price: the micro­
code branch latency will increase. By that we 
mean that the microcode cannot branch on a 
condition or flag in the very next instruct ion; 
instead, it must wait a number of cycles. This 
delay is a consequence of the overlapping of the 
microi nstru c ti o ns ; each su ccessive micro­
inst ruction starts before its predecessor has 
completed. 

Figure 5 shows a typical pipeline similar to 
that used in the VAX 8800 system. The microin­
struction is subdivided into five components: 

• In NEXT ADDRESS, the address for the next 
microinstruction is computed , as well as 
those for any selected branch conditions. 

• In LOOK-UP, the microcode RAM is accessed 
to fetch the microinstruction specified by the 
current NEXT ADDRESS. 

• In READ, the register file is read to fetch the 
specified operands (e.g., fetch RO and RI ). 

• In ALU, the operation in the arithmetic logic 
unit is performed (e.g. , RO + RI). 

• In WRITE, the result of the ALU operation is 
written back to the register file . 

Thus when the next-add ress cycle has com­
pleted for the first microinstruction, A, the next­
address cycle for the microinstruction, 8, in the 
subsequent cycle is started . This cycle now 
overlaps with the look-up cycle for A. As many 
as five operations can proceed simultaneously in 
this manner. 

The branch latency of this pipel ine is gov­
erned by the first microinstruction that can 
"see" a branch condition set in an earlier cycle. 
For example, if the ALU cycle of A sets a carry 
condition, then the first instruction that can 
possibly use this signal in its next-address cycle 
is E. Thus the branch latency is three microin­
structions, as shown in Figure 5 . 

Naturally, this branch latency influenced the 
way in which we designed the logic to perform 
floating point operations. Clearly, we had to 
avoid branching whenever possible as this 
would result in an excessively slow algorithm. 
Instead, we had to adopt a strategy based on 
prediction and p rovide extensive hardware 
assistance. 

Prediction is based on the fact that the speed 
of algorithms for floating point adds are usually 
data dependent. For example, for certain data 
values, the result of a floating point add will 
require considerable normalization . That 
requirement is always present when two values 

INSTRUCTION A: 

r-CONDITION CODE SET (E.G., CARRY OUT) 

..--N- A~-,-~L-U~-r--R-E-AD~,--A- L-U~~I-W-R-IT- E--,1 

B: NA 

c: 

NA - NEXT ADDRESS 
LU - MICROCODE INSTRUCTION LOOKUP 

LU READ 

NA LU 

D: NA 

E: 

ALU I WRITE 

READ 

LU 

NA 

ALU I WRITE BRANCH 
LATENCY 

READ ALU I WRITE 

LU READ ALU WRITE 

EARLIEST INSTRUCTION THAT CAN BRANCH 
ON CONDITION CODE OF INSTRUCTION A. 

Figure 5 Five-stage Pipeline 
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of similar magnitude and large cancellation are 
subtracted. In other cases little or no normaliza­
tion is required. It is clearly preferable not to 
pay the penalty of unnecessary normalizations. 

The approach we took in the 8800 is to pro­
ceed down the most likely path, assuming that a 
small normalization will be required while wait­
ing for the result of the branch signals. The add 
and subtract algorithms in panicular are struc­
tured that way. The SALU examines the expo­
nents of the operands and other signals; then it 
sets approximately 20 branch conditions in the 
first two cycles of the add/subtract datapath. 

In cenain situations all paths may be equally 
probable. In these cases the microcode enables 
hardware signals to control the datapath. A good 
example of this processing is the selection of 
operands. For a floating point add, it is natural 
to think in terms of the larger and the smaller 
operands. For example, the smaller operand is 
the one that is always aligned . However, the 
microcode does not know which register loca­
tion holds the smaller value , and it does not 
want to wait for the whole branch-latency 
period to find out. 

Therefore, the microcode will assume that the 
larger operand is in a panicular register. Should 
this assumption be incorrect, then the SALU will 
swap the register file read addresses (thus san­
ing the operands) . Not all locations have their 
addresses modified in this manner since the 
microcode still needs to be able to read and 
write to specific locations. 

Similarly, the SALU determines if the main 
ALU is to do an add or subtract operation. At this 
point in the computation the microcode is 
unaware of which operation will be required. 
The pipeline is still within the long branch 
latency of the 8800 and cannot branch until this 
latency delay has elapsed. Note that one of the 
most frequently performed instructions is ADDF. 
That instruction will have just completed by the 
time the microcode can finally branch. There­
fore, the ADDF cannot execute any faster since it 
is limited by the branch-latency delay. Conse­
quently, those instructions that are the most 
probable cases are completely hardware driven. 

To allow fast paths in the add algorithms, it is 
necessary to know that the result cannot possi­
bly overflow since overflowed results must 
never be written. To prevent overflow the SALU 
examines the exponents of the operands. It then 
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determines if the exponent of the result could 
possibly overflow or underflow, taking into 
account any possible normalization shift. There 
is also the added complexity of a rounding oper­
ation provoking an extra normalization step. 
That would happen when the rounding incre­
ment caused a carry to propagate throughout 
the whole fraction. 

Consequently, the use of a small 8-bit incre­
menter for the round operation is possible only 
if it is known that an overflow cannot happen. 
The reason for this is that halting (trapping) the 
machine is not instantaneous (for the same rea­
son that branch latency exists); therefore, the 
result will always be written. Thus, although the 
microcode can eventually correct the result, it 
cannot prevent that result from writing. 

Petj'ormance Issues 
When a program with many floating point 
instructions - such as UNPACK - is run, its 
performance is not totally dictated by the raw 
floating point speed of the CPU. Having a more 
profound effect are other factors, such as 

• The size and organization of the cache - This 
factor is panicularly imponant for programs 
with large amounts of data because the 
operands will reside in memory . Having 
superior register-to-register performance will 
not help in this type of program. Clearly, the 
larger the cache, the greater the chance that 
the required data will be quickly available, 
thus avoiding a lengthy transaction with 
memory. 

• The performance of the integer and control 
instructions - Even programs performing 
extensive floating point operations still have 
significant amounts of integer and control 
instructions. Doing these quickly can con­
tribute substantially to the program's perfor­
mance. 

To illustrate the effect of these factors, com­
pare the performance of the VAX 8800 system 
with that of the VAX 8650 when both run 
UNPACK, as shown in Table 2.4 The 8650 has 
faster raw floating point speed, especially for 
the F format (over twice as fast). Yet the two 
systems run this benchmark with almost the 
same performance. Clearly, in programs with 
these characteristics, factors other than raw 

Digital Technical Journal 
No. 4 February 1987 



speed will have a greater influence on perfor­
mance. Of course, in applications without them, 
the raw speed advantage of the 8650 will be 
more pronounced. 

Table 2 UNPACK Performance 

Performance (MFLOPS) 

Computer 

VAX 8800 
VAX 8650 

Summary 

F Format 

1.35 
1.30 

D Format 

0.99 
0.70 

The architecture of a processor like the VAX 
8800 CPU is all a matter of trade-offs . Where 
does the performance make a difference? For 
example , we could have supplied the 8800 
with a separate floating point unit to achieve 
faster performance. Doing that, however, would 
have required at least one extra module . To 
keep the cost of the system constant, this extra 
module would have entailed removing a module 
of logic from some other part of the computer. 
Perhaps removing that module would h ave 
resulted in a smaller cache or a simpler decoder 
with no optimizations for the frequent instruc­
tions. In any case the net effect would have 
been to sacrifice the performance of the com­
puter in some other area. All things considered, 
we feel that the design is well balanced for the 
multitude of different computing tasks that cus­
tomers will perform with the VAX 8800 system. 
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The VAX 8800 Input/ Output System 
The VAXBI bus links the processors in the VAX 8800family to 1/0 devices, 
including clusters and networks. The VAX 8800 multiprocessor can sup­
port four of these 32-bit synchronous buses, each of which connects up to 
161/0 devices. Each VAXBI bus connects to the memory interconnect, the 
NM/ bus, by an NB/ adapter, which contains an interjace chip to imple­
ment the VAXBI protocol. The NB/ adapter logic handles CPU references 
and direct memory accesses to and from the I /0 devices. The adapter has 
its own 200-nanosecond clock, which is completely asynchronous with 
the 45-ns CPU clock. 

The VAX 8800 family of systems is another 
major step for Digital Equipment Corporation 
into the realm of high-performance computing. 
While increasing the computing capability of 
the VAX line for scientific and technical appli­
cations, these systems will undoubtedly play an 
important role in commercial and office mar­
kets. In these markets, the ability to connect to a 
computing cluster, service many users , and 
function in a network are as important as a fast 
CPU. Indeed, in a multiuser, multiprogramming 
system, the efficiency of "housekeeping" opera­
tions affects the perceived system performance 
as much as raw processor computing speed. 
These operations include sharing memory 
between many programs, swapping processes 
into and out of memory, paging, and responding 
to interactive user requests. 

All members of the VAX 8800 family use Digi­
tal's new VAXBI bus as their communication 
link to clusters, networks, and interactive users. 
With its ability to connect to four separate 
VAXBI channels, the VAX 8800 system in partic­
ular offers great flexibility in configuring 
peripheral devices and interfaces. This paper 
first discusses the characteristics of the system 
communication buses in the VAX 8800 system. 
Following that is a discussion of the interface, 
called the NBI adapter, linking the primary sys­
tem bus to the VAXBI input/output (1/0) bus. 
Figure 1 illustrates the various components of a 
VAX 8800 system. 

The Processor-to-Memory Bus 
The two CPUs, the 1/0 subsystem, and memory 
all share the primary system bus, called the NMI 
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bus. This bus is a limited-length , high-speed 
synchronous communications path that provides 
the data link between these four devices. The 
NMI bus is completely contained in the main 
system cabinet; its cycle time is 4 5 nanoseconds 
(ns), the same as the CPU's. The bus protocol 
handles several outstanding transactions at one 
time, thus effectively increasing the bus's uti­
lization. That is, once a device has issued a 
transaction (e.g. , a read) , that device relin­
quishes the use of the bus until the responding 
device is ready with the data. Other devices are 
then free to start other transactions. 

In this fashion , the bus usage is greatly 
increased. The two CPUs communicate directly 
with memory over the NMI bus; the 1/0 devices 
connected to the V AXBI buses access memory 
via the NBI adapters. A device on the NMI bus is 
called a "nexus." Arbitration among nexuses 
occurs in parallel with data transfers and is han­
dled by one CPU in a nearly round-robin fash­
ion. This guarantees that each nexus gains its 
fair share of the bus resource. Data transfers on 
the NMI bus occur in longword, octaword, and 
hexaword lengths (4, 16, and 32 bytes respec­
tively). Four levels of device interrupts are 
supported. 

The V AXBI Backplane Interconnect 
The VAXBI bus is used as the 1/0 bus for the 
VAX 8800 system. As shown in Figure 1 , from 
one to four V AXBI buses can be interfaced to the 
NMI bus, depending on a customer's needs and 
his desired mix of peripheral devices. Each 
VAXBI bus is a 32-bit-wide synchronous bus that 
can connect up to 16 V AXBI devices. Each V AXBI 
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device, called a " node," uses a chip called the 
VAXBI Interface Chip as its bus interface. This 
chip provides a consistent logical and electrical 
interface to the bus. The VAXBI Interface Chip 
implements most of the bus protocol for its 
node, including bus arbitration and error check­
ing. The V AXBI cycle time is 200 ns, controlled 
by an oscillator on the NBIB. 

The NBI adapter acts as both a processor and a 
memory on the VAXBI bus. The adapter pro­
vides the following three important functions: 

I . A means for the master CPU to read and 
write device registers 

2 . A window into memory for VAXBI 
devices 

3 . The facility for VAXBI devices to inter­
rupt the processsor 

VAXBI BUS 

Control of Peripheral Devices 
To gain an appreciation of the NBI adapter 
architecture, it is worthwhile to discuss the con­
trol of peripheral devices. 1 To move data from a 
disk into memory or to send program output to 
a peripheral device, a programmer must specify 
the operation to be carried out (read or write), 
a memory address to receive the data or that 
contains data to be output to a device, and the 
amount of data to be moved. In early machines, 
the processor was required to control the entire 
operation - executing instructions to move the 
data, waiting for the slower device to complete 
the operation, and then continuing in this fash­
ion until all the data had been moved. This pro­
cess wasted a great deal of processor time since 
many instructions could have been executed 
while waiting for an 1/0 operation to complete. 

UNIBUS. 

LINE 
PAINTER 

VAXBIBUS 

TO 
OTHER 

COMPUTERS 

Figure 1 VAX 8800 Configuration 
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Modern machines have 1/0 controllers, which 
are special hardware interfaces that handle 
device operations. A programmer must specify 
to the controller the attributes of the operation 
to be carried out. Once the operation is 
accepted by the controller, the processor is 
freed from the details of actually moving the 
data. In this way processing and 1/0 operations 
can be overlapped , increasing processing 
utilization. 

For slow devices, such as terminals, the con­
troller usually has a small buffer to hold the data 
to be transferred to or received from the proces­
sor. This buffer is loaded by the processor when 
it has data to be transmitted to the device. The 
device accepts the data, then signals when ready 
for more. When having data to be transmitted to 
the processor, the device loads that data into the 
buffer and then signals to the processor to 
remove the data . This process is called pro­
grammed 1/0. 

For high-speed devices, such as disks, the 1/0 
controller normally performs direct memory 
access (DMA) operatiions. The processor loads 
special registers in the controller with informa­
tion about the transfer - the amout of data to 
be moved and its location and destination. The 
processor is then freed while the controller per­
forms the transfer. In this way large amounts of 
data can be moved with miinimal processor 
intervention. 

Addressing in the VAX 8800 CPU 
The master CPU manipulates the 1/0 controllers 
with reads and writes of single lonwords to their 
control and status registers. These registers have 
addresses in physical address space and can be 
manipulated by standard VAX instructions. This 
technique contrasts with that used in many com­
puters in which special instructions control 
1/0. The address range of the VAX architecture 
is shown in Figure 2 , in which addresses are 
given in hexadecimal notation. 

Physical memory occupies the first 512 mega­
bytes of the defined address range . The 1/0 
adapter and the 1/0 controller registers 
are located in the range from 2000 0000 to 
3FFF FFFF. In the 1/0 space, the address range 
allocated for each VAXBI bus is further subdi­
vided into space for each device on the bus. 
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BYTE ADDRESS 

0000 0000 

1FFF FFFF 

2000 0000 

3FFF FFFF 

512 MEGABYTE PHYSICAL 
MEMORY SPACE 

512 MEGABYTE 1/0 SPACE 

Figure 2 VAX Address Space 

The NB/ Adapter 
An adapter provides an interface between two 
existing buses , each with its own addressing 
protocol and data-transfer protocol. The adapter 
is responsible for all communications between 
the two buses. It is a datapath for the processor 
to access device registe rs and for devices to 
access memory. This datapath is also ued to 
interrupt the processor and for initialization 
functions . 

The NBI adapter, consisting of an NBIA mod­
ule and either one or two NBIB modules, inter­
faces the VAX 8800 system to the VAXBI buses, 
which are 1/0 buses in this application. That is, 
the NBI adapter issues reads and writes on the 
VAXBI buses in response to reads and writes that 
are in the NBI address range initiated by the pro­
cessor on the NMI bus. Likewise , the NBI 
adapter issues reads and wites to memory on the 
NMI bus in response to reads and writes ini­
tiated by VAXBI devices on the VAXBI buses. 
The NBI adapter in the VAX 8800 system sup­
ports a new generation of high-performance, 
native V AXBI devices. 

Figure 3 contains a block diagram of the 
NBIA/NBIB adapter system. Basically, the data­
path of the NBIA module contains an NMI inter­
face, which provides buffering for addresses and 
data transmitted and received during NMI trans­
actions. The NMI interface is connected to a 
transaction buffer, which is a 16-location, dual­
ported ECL/TTL RAM . The transaction buffer 
provides five locations to buffer commands and 
addresses and up to four longwords of read/ 
write data for direct memory access (DMA) 
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transfers by devices on the VAXBI-0 bus. A sec­
ond group of five locations is provided for DMA 
transfers by devices on the VAXBl-1 bus. Two 
locations are used for the command/ address 
packet and the single longword of read/write 
data transferred when the processor accesses the 
VAXBI device registers . The NBIA/NBIB TTL 
datapath indicating the layout of the transaction 
buffer is shown in Figure 4. The TTL port of the 
transaction buffer connects to a set of two bi­
directional latches used to buffer commands , 
addresses, and data for transmission across the 
data-bus cable to and from an NBIB module. 

The datapath of the NBIB module consists of a 
set of four bidirectional latches used to buffer 
both DMA commands and addresses and CPU 
commands and addresses, as well as data. These 
latches connect to another set of latches known 
as the BCI data buffer (one longword deep) , 
which connects to the VAXBI Interface Chip. 
(The module side of the interface chip is known 
as the BCI .) The interface chip controls the 
enabling of data onto the BCI for data transmis­
sion onto the VAXBI bus. 

Data flows between the NMI bus and the 
V AXBI bus by moving it between these two sets 
of latches. Control logic moves data from stage 
to stage, passing control successively to the next 
stage as each part of the transfer completes. The 
VAXBI bus runs approximately four times 
slower than the VAX 8800 processor and is asyn­
chronous with it . Therefore , the additiona l 
problem exists of synchronizing control be-

NBIA 
DATA 
BUFFERS 

N 

NMI NBI 
M INTERFACE TRANSACTION 

BUFFERS BUFFERS 

NBIA 
DATA 
BUFFERS 

tween the NBIA and NBIB modules. Facilities are 
provided for delaying data transfer until a buffer 
is free, thus preventing data corruption. Another 
synchronization problem occurs when the mas­
ter processor wants to read from or write to a 
V AXBI device when that device wants to make a 
memory access. The control logic in the NBIA 
and NBIB modules is carefully designed to ref­
eree such contention problems. 

DMA Transfers 

From VAXBI Devices to Memory 
A DMA transfer to memory by a VAXBI device is 
shown in Figure 5 . 

After w inning the VAXBI bus, the device want­
ing to make a transfer initiates a command and 
address cycle. In Figure 5 , that device is a disk 
controlle r. The VAXBI Interface Chip in an NBIB 
is programmed to recognize memory addresses 
on the VAXBI bus . The chip " awakens" the 
NBIB control logic, decodes the command, and 
stores the command/ address packet, as shown in 
Figure 4 . Control logic on the NBIB then sends a 
"OMA request" signal to the NBIA. After a syn­
chronization delay on the NBIA, the NBIA TTL 
controller begins to transfer the command and 
address from the NBIB to the NBIA. 

Meanwhile, the NBIB takes the longwords of 
data as they appear on the VAXBI bus and stores 
them in the NBIB's data buffers. The NBIA stays 
approximately one cycle behind the NBIB, 
removing data from the NBIB buffers and storing 
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it in the DMA locations in the transaction buffer. 
After successfully transferring all data into the 
transaction buffer, the NBIA alerts the NBIB, 
w hich, after a synchronization delay, ends the 
transaction on the V AXBI bus. At this time the 
NBIA TTL controller passes the DMA request to 
the NMI interface in the NBIA, which then per­
forms the write to memory on the NMI bus. 

It should be noted that a DMA write transac­
tion is considered to be complete on the VAXBI 
bus before the data is actually written to mem­
ory. A VAXBI device is thus free to start another 
transaction immediately. This performance 
enhancement is known as a " disconnected 
write," in which the write operation is consid­
ered to be completed on one bus before that 
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operation has actually taken place on the target 
bus. The NBI adapter is designed in such a way 
that a write transaction could be waiting in the 
transaction buffer (e.g., while the NMI interface 
controller services the other V AXBI bus) while a 
second transaction waits in the data bus 
transceivers. Using two levels of buffering and 
the disconnected write technique allows the 
NBI adapter to support a write bandwidth of 
8 megabytes per second. 

It is interesting to note that during the data 
transfer from the NBIB to the NBIA, the NBIB 
notifies the NBIA TTL controller of the OMA 
request immediately after storing the command/ 
address packet. However, the NBIA TTL con­
troller does not pass the OMA request to the 
NBIA NMI interface controller until the com­
mand/address packet and all the write data have 
been loaded into the transaction buffer. The rea­
son for this delay is that the NMI interface con­
troller runs at the same speed as the NMI bus, or 
45 ns per cycle. 

The NBIA TTL controller runs four times 
slower, or 180 ns per cycle, to closely match 
the VAXBI cycle time of 200 ns per cycle. Thus 
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if the NBIA TTL controller were to signal the 
OMA request after loading only the command/ 
address packet into the transaction buffer, the 
NBIA NMI interface would attempt to read data 
from the transaction buffer before that data had 
been loaded. That is obviously a bad thing to do. 
Indeed , the NMI interface of the NBIA can 
empty the transaction buffer in approximately 
the time it takes for the NBIA TTL controller to 

load one longword. 

From Memory to a VAXBI Device 
A write request from a V AXBI device is similar 
to the OMA operation just described. After win­
ning the VAXBI bus, the device wanting to read 
data from memory on the NMI bus transmits 
a command and address on the VAXBI bus . 
Figure 6 depicts this transfer. 

The interface chip awakens the NBIB control 
logic, which then decodes the command and 
stores the command and address in a data-bus 
buffer location. The NBIB then passes the OMA 
request to the NBIA immediately after the com­
mand/address packet is loaded. Again similar to 
the write operation, the command or address is 
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transferred to the appropriate location in the 
transaction buffer by the NBIA TTL controller. 
However, a DMA read is unlike a write opera­
tion, in which the data is ready for transmission, 
in that the data must be fetched from memory. 
The DMA request is first passed to the NBIA NMI 
interface controller, which arbitrates for the 
NMI bus. Upon winning the bus, the interface 
controller initiates a read request to memory. 
When the the data is ready, the memory returns 
it on the NMI bus to the NBIA. Thence the data 
is transferred into the DMA locations in the 
transaction buffer, and the NBIA TTL controller 
is notified by the NBIA NMI interface that the 
data is ready. The controller then begins to 
transfer data to the NBIB, loading it into succes­
sive locations in the NBIB buffers. This process 
is illustrated in Figure 4. A " DMA Done" notifi­
cation is sent to the NBIB after the first long­
word of data, rather than all the data, has been 
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transferred. That maximizes the read bandwidth 
on the VAXBI bus. The NBI adapter has a maxi­
mum DMA read bandwidth of four megabytes 
per second. 

The DMA read transfer illustrates one funda­
mental difference between the NMI bus and the 
VAXBI bus. Referring to Figure 6 , one can see 
that the VAXBI bus is unusable while the NBIA 
and memory complete the read operation. (The 
NBIB issues stall signals to the requesting device 
during this time.) The NMI is a pended bus, but 
the VAXBI bus is nonpended, or interlocked. 
That is, the NMI bus is immediately available for 
use once a command has been transmitted and 
acknowledged, whereas the VAXBI bus must 
wait. Thus " pending" transactions are allowed 
on the NMI bus. Indeed, the NBIA NMI interface 
can respond to requests from the other VAXBI 
bus while also having an outstanding read to 
memory on behalf of the first VAXBI bus. 
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Figure 7 CPU Transfer from VAXBI Device 

CPU Transfers to and from V AXBI device controller to cause it to transfer 
V AXBI Devices large amounts of data. 

CPU transfers to and from VAXBI devices are 
similar to VAXBI transfers to and from memory, 
the obvious difference being that the transaction 
is initiated on the NMI bus. CPU transfers are 
shown in Figure 7 . 

Another difference is that CPU transactions 
are limited to longword length when accessing 
VAXBI devices. Since there is only one location 
for a command/address packet for CPU transfers 
and one location for read/write data in the trans­
action buffer, the NBI adapter can handle only 
one CPU transaction at one time. These limita· 
tions lower the CPU-to-VAXBI bandwidth as 
compared to the DMA bandwidth. An analysis of 
bus traffic , however, has shown that CPU­
initiated transactions account for under 10 per­
cent of the VAXBI traffic in a VAX 8800 system. 
This finding could be anticipated since the CPU 
must make only a small number of accesses to a 
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Synchronization 
In the earlier discussions of data transfers, the 
term "synchronization delay" was introduced. In 
genera l , some type of synchronization is 
required whenever more than one independent 
clock exists in a system. This is the case in the 
VAX 8800 system. Timing for the processors, 
memory controller, and NBIAs is derived from a 
sophisticated clock module that provides two­
phase , nonoverlapping clocks with a basic 
period of 45 ns and tightly controlled skew.2 

The V AXBI timing, on the other hand, is derived 
from an oscillator and a clock-driver circuit on 
the NBIB. This timing has a basic period of 200 ns, 
completely asynchronous to the VAX 8800 ker­
nel. The synchronization of control signals is 
thus necessary for data transfer between the 
NBIA and NBIB modules. A DMA read transfer 
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involves the synchronization of a " OMA 
request" and a " OMA complete" signal. There­
fore, the synchronization overhead can account 
for approximately 5 to 15 percent of the time it 
takes to complete the operation. 

Summary 
The performance of the 1/0 subystem is critical 
to the operation of high-performance systems 
like those in the VAX 8800 family . The 1/0 
adapter provides a communication link between 
the each processor, the memory, and the 1/0 
devices. The NBI adapter is this link for these 
systems, providing access to a new generation of 
VAXBI devices and high-performance 1/0 opera­
tion for these important new machines. 
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Paul C. Wade I 

The VAXBI Bus -A Randomly 
Configurable Design 

Th~ VAXBI bus provides a high-performance alternative to the UNIBUS 
system as Digital's general-purpose bus. The VAXBI design was completely 
specified before any hardware was built and is independent from any 
physical configuration. The designers bad to discard the traditional 
small-perturbation approach and instead used many techniques to 
specify the bus characteristics. Two custom chips, a differential driver 
and receiver, are used to clock the bus. The bus designs were tested exten­
sively with SPICE, but tests on the physical chips led to some unantici­
pated problems. Further analysis of waveforms, crosstalk, and switching 
noise led to changes that met all the original goals. 

The VAXBI bus is a new, high-performance, gen­
eral-purpose bus that provides a common inter­
face to all of Digital's new VAX products, from 
the VAX 8200 CPU to the VAX 8800 system . 
This bus can also be used for future VAX sys­
tems. The VAXBI bus is a higher-performance 
replacement for the UNIBUS system and should 
have a similarly long and productive lifetime . 

The UNIBUS system was enhanced many times 
during its long history. Since there was no for­
mal specification for this bus until 1986, these 
many de facto enhancements led to numerous 
compatibility and configuration problems. Hav­
ing learned from those problems, the VAXBI 
design team decided to make a complete design 
specification of the VAXBI bus before any hard­
ware was built. Thus compatibility problems 
should not occur if all future designs comply 
with that specification. 

One of the most important aspects of that 
specification - and the most difficult to imple­
ment - is that the VAXBI bus operates indepen­
dently from any particular physical configura­
tion . That is , the bus must be randomly 
configurable. The achievement of that specifica­
tion was the most difficult part of the electrical 
design. The techniques and solutions involved 
in solving this problem should be instructive to 
future bus designers. 
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VAXBI Bus Description 
There are several excellent references that 
describe in detail the operation of the VAXBI 
bus and the VLSI chip that implements the bus 
logic and arbitration. 1 •2·3 Therefore, only a short 
description of the bus will be given here. The 
VAXBI bus is a general-purpose bus with data 
transfer rates high enough (up to 13 .3 mega­
bytes per second) to serve as a memory bus in 
mid-range VAX systems, such as the VAX 8200 
CPU. All machines in the new generation of VAX 
systems use the VAXBI bus for all 1/0, commu­
nications, networks, and connecting adapters for 
mass storage. Those high rates also allow it to 
serve as an 1/0 bus in all sizes of VAX systems by 
using multiple VAXBI channels in the largest 
systems, such as the VAX 8800 multiprocessor, 
shown in Figure 1. 

All the machines in the new generation of 
VAX systems use the VAXBI bus for all 1/0, con­
necting adapters for mass storage, communica­
tions, and networks. A VAXBI subsystem, con­
sisting of two six-slot card cages and the 
backplanes, is shown in Figure 2 . The back­
planes are connected with flexible interback­
plane jumpers with terminators at each end. 

The key to general-purpose operation is the 
distributed nature of the VAXBI bus. All nodes 
on it contain identical interface hardware, and a 
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Figure 2 VAXBI Subsystem 

distributed arbitration scheme precludes the 
need for a processor to act as a dedicated bus 
master. The VAXBI bus can support both multi­
ple and networked processors, thus implement­
ing Digital's strategy of distributed computing. 
The synchronous operation of the bus achieves 
high performance by providing predictable 
communication delays. The distributed arbitra­
tion is embedded within each bus transaction so 
that further data transactions may follow with­
out delay. 

The VAXBI bus architecture is rigorously 
specified, and all designs that are verified to its 
specification will be fully compatible with the 
bus. The task of system designers has been greatly 
eased by the incorporation of all data-handling 
and arbitration logic in one VLSI element , the 
7873 2 chip, called the VAXBI Interface Chip. 
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That chip also performs self-test functions and 
bus error detection and handling to improve sys­
tem reliability and robustness. The physical bus 
interfaces are also rigorously specified, and the 
bus clocking is controlled by custom clock­
driver and receiver chips. Figure 3 shows the 
VAXBI corner of a module, with all the compo­
nents required for the bus interface contained in 
a standardized layout. These features free a 
designer to concentrate on his unique design 
rather than on the bus details. 

Figure 3 VAXBI Corner of a Module 

VAXBI Electrical Design 
A randomly configurable bus has many advan­
tages as a data bus in general-purpose computers 
since their physical configurations are not 
known a priori and are subject to change during 
repair or upgrading. The previous state of the 
art within Digital was to use an artificial intelli­
gence program , called XCON, to calculate a 
configuration for each unique set of UNIBUS 
options. XCON is based on an extensive set of 
bus configuration rules. Although it is a triumph 
of applied artificial intelligence , the necessity 
to use it for bus configurations was a bottleneck 
we hoped to avoid by better bus design with the 
VAXBI bus. 

The design of a randomly configurable bus 
involves essentially the design of a group of ape­
riodically loaded transmission lines. The charac­
teristics of regularly loaded transmission lines 
are well defined, but those of randomly and 
unpredictably loaded lines are less well under­
stood. The design team evolved a design proce-
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dure from their work on the VAXBI bus . 
Although this procedure was derived from the 
development rather than being planned in 
advance, it may help bus designers with their 
projects in the future. Therefore, the remainder 
of this paper describes that procedure , espe­
cially the activities and results that proved most 
significant to the project. 

The first step in designing this bus was the 
realization that the problem was not completely 
random but may be bounded. A bus is physically 
implemented as a group of transmission lines in 
a backplane. These lines are perturbed by the 
loading of connectors for modules and by the 
modules themselves. Each connector, or slot, in 
which a module may be inserted causes a small 
perturbation if empty and a larger one if popu-

~lated . A transmission line can also continue 
through cabling and connectors onto another 
backplane. In either case the transmission line is 
terminated in some manner. 

The classic method of dealing with transmis­
sion line loading is to make the characteristic 
impedance so low that perturbations will be 
trivial. In that case any reflections from these 
perturbations will be small, and the line can be 
end terminated in its characteristic impedance 
so that there is no reflection. The loading is then 
considered to be predominantly capacitive. 
Thus the loaded impedance can be calculated as 

Zo' = Z 0 / yl + Cd / Co 

Our first approach was to determine if the 
classic method could be used to deal with trans­
mission-line loading for the modules on the 
VAXBI bus. Z 0 , the characteristic impedance , 
ranges from 3 5 to 100 ohms for the standard 
dimensions of organic printed circuit boards 
made by Digital. Corresponding values of C0 , 

the intrinsic line capacitance, range from 1.8 to 
0.6 picofarads per centimeter (pf/cm) . How­
ever, Cd , the distributed loading capacitance, 
can be as much as 5 pf/cm for modules in this 
implementation. That capacitance means that 
Z 0

1
, the loaded impedance , would be in the 

range of 18 to 33 ohms, clearly a major pertur­
bation. Therefore, for modules with these char­
acteristics , the small-perturbation approach 
could not be used. 

In the case of the VAXBI bus, even if it were 
possible to produce lines whose characteristic 
impedances were low enough (Z0 < 15 ohms) , 
massive drivers would be required to supply the 
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necessary current. Therefore, bus power would 
become a significant portion of the system 
power dissipation, an undesirable situation. 
Consequently, we had to consider a design 
approach different from the classic one. 

Our alternative design approach was more 
pragmatic. Significant development investments 
had already been made in several key compo­
nents, particularly the module connector and 
the 78732 chip. Therefore, the rest of the 
design had to be as compatible as possible with 
the characteristics of those key components. 
Particular attention was paid to three areas: the 
physical layout, to keep capacitance within the 
drive capability of the 78732 chip; the clock, 
since it is the critical element in bus timing; and 
grounding, which is critical for signal integrity. 

The VAXBI data lines are driven directly by 
the 787 32 chip, which is fabricated using 
advanced MOS technology. MOS devices, how­
ever, are limited in their ability to drive current. 
Within the constraints of chip area and power 
dissipation, open-drain drivers of about 21 mil­
liamperes (ma) are the only ones available. The 
data cycle of the VAXBI is 200 nanoseconds. 
Therefore, the maximum bus length of 
1.5 meters (VAXBI specification) is short com­
pared to a wavelength, and a lumped-constant 
approximation could be used for calculating the 
delays. An RC time-constant model was used for 
this approximation, and the voltage swing was 
limited to 3 V to accommodate a smaller termi­
nating resistor for faster switching. The resulting 
resistance was 238 ohms (5 V/21 ma). 

After calculating the tolerances and worst-case 
allowances, we chose a standard value for this 
resistance of 270 ohms. By choosing an RC time 
constant equal to the maximum available propa­
gation delay (and after subtracting device delays 
and allowing for component tolerances and a 
10 percent timing margin), we calculated the 
capacitance as 410 pf. This figure became the 
maximum capacitance for each data line, 
including backplanes, interbackplane jumpers, 
connectors, modules, and bus transceivers on 
the chips. Obviously, the RC time constant is 
applicable only on the low-to-high transition, 
when the open-drain device is turning off. 
Device turn-on, which is normally much faster, 
is internally compensated for by controlling the 
rise time to minimize the transmission-line 
reflections. 
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For the clock lines, the timing requirements 
are critical enough to justify the use of very large 
drivers since only two signals are involved. We 
selected a differential configuration for clock 
signals in order to minimize the skew, which 
could degrade timing accuracy. This configura­
tion also provides noise immunity by common­
mode rejection . Since the clock frequency is 
much higher than the data frequency, ECL was 
chosen for the logic technology. The maximum 
drive capability of standard devices is 
25-ohm impedance, however, so a custom driver 
is required. We also chose to use a custom differ­
ential receiver, for the following reasons: 

• Both parts can operate from the available 
+ 5 V supply rather than the -5.2 V supply 

normally required for ECL. 

• The receiver sensitivity and common-mode 
range can be optimized for the driver. 

• The receiver input can be designed for mini­
mal bus loading capacitance. 

• The receiver output levels can be standard 
TTL levels, thus eliminating the need for a 
separate integrated circuit (IC) for level 
translation. 

Altogether, these two custom clock chips do 
the work of five standard ICs, thus saving power 
and module real estate while improving perfor­
mance. 

Since the characteristics of ECL drivers are 
well understood, we require the clock driver to 
use an output driver made from three standard 
50-ohm ECL drivers in parallel. Thus the effec­
tive drive capability is 1 7 ohms (50 ohms/3 ) . 
The design termination is intended to match the 
estimated impedance of a maximally loaded sys­
tem , approximately 2 5 ohms differential 
impedance. This impedance is composed of a 
resistor to ground from each line and a resistor 
between lines, chosen to sink the appropriate 
high- and low-state currents. The design was 
extensively modeled using the SPICE circuit 
simulator, which indicated that the driver had 
adequate current capability for this load. 4 The 
characteristic impedance of the clock lines was 
made as low as possible by maximizing the line 
width within the space constraints of a 0.1-inch 
via-hole (plated-throughhole in a printed circuit 
board) grid. To improve the common-mode 
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rejection, the two lines of each differential pair 
are located one above the other on adjacent lay­
ers with ground planes above and below the 
pairs. 

Finally, careful attention was given to the 
grou n d retu rn path for a l l VAXBI signals . 
Ground planes, to minimize inductance , are 
provided on the modules, backplanes, and inter­
backplane jumpers for data lines as well as the 
clock lines described above. The data-line 
capacitance was constrained within the 410-pf 
limit described above by controlling the line 
width and the ground-plane spacing. A particu­
larly difficult problem is the ground inductance 
of the 78732 chip. The 78732 chip can switch 
as many as 48 data lines simultaneously, with a 
total switching current of over one ampere. The 
induced voltage, V, from simultaneous switch­
ing is calculated as 

V = L X (di/dt) 

in which L is the inductance and di/ dt is the 
rate of current change. For example , if the 
ground inductance were 10 nanohenries and the 
chip switched in 10 nanoseconds, 1 volt of 
switching noise would result. Based on these 
noise calculations, we designed the package 
with an internal ground plane and 15 ground 
pins to minimize inductance and switching 
noise. 

Test Results 
When the custom clock devices became avail­
able , measurements showed that the driver 
could not power a 2 5-ohm differential load and 
still maintain the desired 700-mV amplitude 
over all conditions. Therefore , we carefully 
measured the output characteristics in both the 
high and low states to calculate an optimum ter­
mination . The TK!Solver software was used to 
solve iteratively the driver equations for the 
piecemeal linear approximations of the driver 
characteristics, which did not fit any simple 
curve. We then calculated the optimum resis­
tances and chose the nearest standard resistor 
values. We also recalculated the output voltages 
for normal tolerances of resistance, voltage, and 
temperature, and a + / - 50 percent variation in 
the internal resistance of the driver. The mini­
mum calculated amplitude was 695 mV, giv­
ing us a very high confidence of having at least 
700 mV for any actual hardware. 
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The optimized termination has a differential 
impedance of 37.6 ohms, which turns out to be 
a better match for the measured impedances of 
the rest of the hardware. An empty backplane 
has a differential impedance of approximately 
60 ohms, dropping to as low as 28 ohms when 
fully populated; a jumper cable between back­
p lanes typically has a 45-ohm differential 
impedance. The various possible VAXBI configu­
rations yield a maximum reflection coefficient 
at any point of 0 .28; probable configurations 
will have even smaller reflections. 

Reflections of this magnitude could cause sig­
nificant timing variations in single-ended sys­
tems due to a fixed receiver threshold voltage. 
However, they have no effect on a differential 
line since the reflection is the same on both lines 
of the differential pair. The only variation we 
found was caused by the differences in imped­
ances on different printed circuit layers. Subse­
quent experiments indicated that improving the 
matching of impedances by putting the differen­
tial pair on the same layer reduces the skew 
more than the common-mode noise reduction due 
to the mutual coupling of adjacent layers. Further 
experiments showed that the clock system oper­
ates at frequencies at least 25 percent higher 
than the design goal over all combinations of 
bus configuration, voltage, and temperature. 

The data lines exhibited more subtle prob­
lems. Our initial testing yielded results very 
similar to our design predictions. As sufficient 
hardware was assembled for a maximum config­
uration with heavy bus traffic , however, unex­
pected waveforms were discovered. The wave­
forms no longer exhibited the exponential 
shape of an RC time constant; instead , they 
resembled step functions with exponential ris­
ers . After due deliberation, we realized that , 
although the full time constant was fairly slow, 
the initial slope, dV / dt , was much faster. There­
fore , its higher-frequency components traveled 
down the line and were reflected several times 
during the duration of an RC time constant , 
resulting in the staircase effect. SPICE simula­
tions yielded an identical waveform when a 
transmission line, originally considered unnec­
essary, was included in the model. The overall 
timing was not affected by the reflections. Fig­
ure 4 shows this waveform with its staircase 
effect caused by incomplete termination of the 
transmission line. 
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VOLTS 

NANOSECONDS 

Figure 4 Simulated Waveform from SPICE 

A second, more significant, effect was due to 
crosstalk, or coupling between the lines. To 
meet the capacitance budget, the original physi­
cal design aimed to minimize the capacitance to 
ground. An undesired result was that the mutual 
capacitance from line to line, while still small, 
became proportionally larger, thus increasing 
the coupling from line to line. The voltage on 
one line was affected by voltages on nearby 
lines: transitions were aided by like transitions 
and slowed by opposing transitions. In the worst 
case , the magnitude of this variation was as 
much as 24 nanoseconds. 

This worst case occurred on a group of lines 
in close proximity to a "spare" line, not con­
nected or terminated, which contributed addi­
tional mutual capacitance, thus enhancing the 
coupling. This spare line, included to reduce 
the need for engineering change orders to the 
backplane , nearly needed an ECO for its 
removal, which could have delayed several new 
products. However, a timing analysis showed 
that its removal was unnecessary. It should be 
emphasized that this effect was not visible until 
actual bus traffic, consisting of random data pat· 
terns, was being transferred on a large bus con­
figuration. Test patterns were too small and too 
regular to show these significant effects. 

Simultaneous switching noise , described 
above, was also investigated because its effect 
was similar to the effect of crosstalk. All VAXBI 
data signals except one were switched simulta· 
neously, and the induced voltage was monitored 
on the remaining line, which was fixed in the 
high (inactive driver) state. Ground pins were 
then broken off one at a time, the voltage being 
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measured after the removal of each pin . As a 
result the induced voltage increased from an 
insignificant level with 15 ground pins to more 
than one volt with only 3 ground pins remain­
ing. With one more pin removed, the chip no 
longer passed self-test. These results showed 
that only a few ground pins are necessary for the 
chip to operate, but 15 are needed to prevent 
the addition of noise to the bus. 

The timing analysis involved fabricating spe· 
cial lots of 78732 interface chips with the 
fastest and slowest possible process variations. 
From these lots chips were selected at the abso­
lute specification limits. These chips were care­
fully measured in a range of configurations, 
including one beyond the specified limits. Then 
the timing margins were calculated over the 
specified range of operating conditions. When 
all possible worst-case conditions and the 
effects described above had been included, the 
calculated timing margin was reduced to 
0. 5 nanoseconds. Design verification testing on 
this worst-case system showed that it could still 
operate at a frequency 10 percent higher than 
that specified over the full operating range of 
temperature and voltage. 

Summary 
The VAXBI bus was designed to a rigorous bus­
architecture specification. After minor adjust­
ments during design verification testing, the bus 
met all the requirements of that specification. 
In particular, this testing proved that the VAXBI 
bus can operate independently of system config· 
uration. 

Several other points should be noted by bus 
designers for future products: 

1. Designing a product to a rigorous specifi· 
cation, called top-down design, can really 
work. 

2. Differential signals are recommended for 
critical timing. They are best located on 
the same printed-circuit layer on a 
module. 

3 . Testing should be performed on real 
hardware with real data, as closely as it 
can be approximated during the design 
process. Too often , the test patterns run 
on test structures yield nothing but the 
expected results . Testing should also 
reveal unexpected problems, not simply 
corroborate the design. 
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4. Ground return paths require careful con­
sideration, particularly under conditions 
of simultaneous switching. 
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A Logical Grounding Scheme for 
the VAX 8800 Processor 

The treatment of ground as a signal conductor is crucial in achieving 
high-performance computer systems. The impact of system grounding on 
signal integrity becomes even more important as systems are connected 
into networks. For the VAX 8800 CPU design, the authors.first identified 
the sources of ground-conducted noise from the four ground systems: the 
power and logic systems, and the safety and RF grounds. They then iso­
lated and defined the ground elements in order to specify an intercon­
nection strategy to guarantee the CPU's performance. Then the 1/0 
subsystem grounding was established and f inally a system-to-system 
grounding scheme was completed. 

The design of the ground interconnection is 
often given little attention in system design, at 
least until it becomes crucial to system perfor­
mance and program development schedules. 
The treatment of this interconnection as a signal 
conductor greatly affects the electrical noise 
levels. Ultimately, these noise levels are a criti­
cal factor in limiting the maximum clock speeds 
and thus machine performance . 

Field service personnel have long recognized 
that many installation problems result from the 
subtleties of grounding when cabling together 
CPUs, mass storage devices, and peripherals. 
Particularly difficult problems occur when 
equipment comes from different vendors. The 
traditional approach to solving these problems 
has been to dispatch a seasoned field service 
representative to the site with an assortment of 
ground straps and other parts. Given the injunc­
tion to "make it work," he could, with enough 
ingenuity and customer patience , bring about 
satisfactory results. 

As a consequence, early in the development 
cycle the VAX 8800 project team set a high pri­
ority on the logical design of the ground system. 
We knew that the 8800 would be used in large 
networks, thus intensifying any problems with 
ground-conducted noise. In fact, the inclusion 
of the backplane interconnect, called the VAXBI 
bus, ensured that many 1/0 ports with high 
bandwidths would exist in close electrical prox­
imity to the logic backplane . Moreover, many of 
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the applications targeted for the product would 
preclude its installation in the controlled envi­
ronment of a computer room, with its traditional 
massive copper grounding grid beneath a raised 
floor. The system components would be con­
nected for the first time at a customer's site. Our 
goal was to require minimum site preparation 
efforts; system components were designed to be 
cabled together in a "plug-and-play" manner. 

These product goals, coupled with the EMI/ 
RFI and system safety requirements of the inter­
national regulatory agencies, required an inte­
grated system philosophy for grounding and 
shielding. The approach that we followed on 
the VAX 8800 project involved three separate 
but interrelated steps: 

First, we identified the sources of ground­
conducted noise within the VAX 8800 and 
devised ways to reduce that noise to the lowest 
practical level. Next, we identified the intercon­
nections within the ground networks and con­
nected them in ways that controlled the ground 
noise. There are four ground networks: 

1 . Power return 

2. Logic return 

3. Safety, or ac power-fault ground 

4. Radio frequency shield and chassis 
ground 

Finally, we extended the concept of system 
ground in the VAX 8800 to large-system appl ica-
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tions and computer networks in an effort to 
ensure optimal overall system performance. In 
the majority of cases, these networks involve 
mature products for which it is difficult to make 
any internal configuration changes. 

Ground Conducted Noise 

Power System 
The VAX 8800 power system consists of modu­
lar units of switching power regulators operat­
ing at 50 kilohertz (KHz). The total three-phase 
ac power required for a typical application con­
figuration is about 5 kilowatts (KW). The hard­
ware implementation uses units from a family of 
products called the Modular Power System, or 
MPS, designed by Digital. These units yield low 
and tightly controlled differential (normal 
mode) noise levels for the de power that sup­
plies voltages to run logic. 

Through their high electrical efficiency of 
power conversion, such switching power sys­
tems have made possible the small sizes and low 
weights of present computers. This power cir­
cuitry, however, has current spikes (dI/dt) as 
high as 1 000 amperes per microsecond (µs) and 
voltage slew rates (dV/dt) as high as 2000 volts 
(V) per µs. These high slew rates, a conse­
quence of the pursuit of high efficiencies, can 
produce significant noise problems. The rest of 
this section discusses five of the most important 
noise sources that we identified and resolved in 
the power system. 

Noise Currents 

When high-voltage slew rates are present across 
parasitic capacitances (i.e. , unintentional capac­
itance that is present as a consequence of a 
physical metallic structure), a noise current In 
will be generated: 

In= Cp dV/dt 

in which Cp is the parasitic capacitance. 
One significant source of common-mode 

noise in the MPS regulators is the parasitic 
capacitance between the primary windings in 
the high-frequency power transformer and the 
solid-foil safety shield between the primary and 
secondary windings. The use of this shield, con­
nected to a sheet-metal "safety ground," is one 
way of complying with the international safety 
regulations. 1 
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During normal switching-converter operation, 
voltage pulses with rise times of approximately 
1000 V per µs are applied to the primary. These 
pulses cause capacitively coupled noise cur­
rents with peak amplitudes of approximately 
200 milliamperes to be sent into the system 
chassis, or safety ground. Figure 1 shows a sche­
matic representation of this process. The para­
sitic leakage inductance associated with the pri­
mary winding comprises a series-resonant 
circuit with the shield capacitance. This noise 
current has a decaying exponential waveform 
with a frequency in the range of 5 to 10 mega­
hertz (MHz) and a repetition rate of twice the 
switching frequency. Since many power con­
verters are used in the VAX 8800 system and 
they are all synchronized to a common clock, 
the noise currents tend to add. Current ampli­
tudes as high as 2 amperes were observed. 

The most practical way to reduce this noise 
source was to insert a damping resistance, Rd , 
that would reduce the Q of this resonant circuit 
at the specific frequency range. Q is tradition­
ally defined as the ratio of reactive impedance 
to resistance, and represents a measure of reso­
nant efficiency. The international safety regula­
tions, however, strictly limit the fault-current 
impedance in this path. To meet both require­
ments, we inserted a ferrite bead on the shield 
ground lead. This bead is made of ceramic ferro­
magnetic material that is electrically lossy. It 
acts as a small inductance at low frequencies 
and as a nearly pure resistance at high frequen­
cies. The bead does not block the fault currents 
from a short circuit but does reduce the noise 
current to the desired level. The noise ampli­
tude is reduced by two to four times and the 
ring frequency reduced to about 1 MHz. Thus a 
potentially serious cause of common-mode 
noise current in the system is reduced at the 
source to acceptable levels. 

In new designs , more effective schemes 
involving different shield configurations and 
interconnections could be employed. 

Power Line Filter 

One of the more subtle (and ironic) sources of 
common-mode noise current originates in the 
power filter designed to reduce the electrical 
noise emanating from the power line. Figure 2 
depicts a schematic of a typical line filter , 

89 

New Products 



A Logical Grounding Scheme for the VAX 8800 Processor 

PRIMARY 
O~~~~~~+-~~~_.L~~~+'--~~-CURRENT 

I 
I 
I 

L 

(Ip) 

PRIMARY 
VOLTAGE 
(Vp) 

NOISE 
CURRENT 
(In) 

T1 

PRIMARY I SECONDARY D1 Ls 
l.,p 

• 

~ 
I I I I I I I I 

Cs • l __ t (--J l ___ ~ (----] 
I~ I 

,----
....l-

~ D2 R, 
I C1 
L----

L,p = 1.2 x 10
6
H primary leakage inductance 

Cp = Cs = 200 x 10·
12 

picofarads primary and secondary parasitic capacitance to shield 

Rd is the damping resistance provided by a lossy ferrite bead 

Resonant frequency of In is Fo = [2..- (L,p x Cp) 
112)°1 = 10.3 MHz 

Resonant impedance Ro = (L,p/Cp)
112 

= 775 ohms 

With Rd = 0, In (peak) = Vp (peak)/Ro = 200 milliamps 

With Rd = 500 ohms@ 10 MHz, In (peak) = 118 milliamps 

Figure I Parasitic Capacitance of the Power Transformer 

including the parasitic, or leakage , inductance 
of the common-mode choke, 1 1 • The "Y" capac­
itors, Cy, are connected from either side of the 
power line to the chassis , forming a high-Q res­
onant circuit with this leakage inductance . The 
load current for this power filter is dominated 
by the discontinuous current pulses of the 
switching power converters , which provide 
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excitation for this resonant circuit. The result is 
a resonant current pulse into the chassis with 
each half-cyle of current in the power line. 

Other considerations of signa l integrity 
demand that an inductor be placed in series 
with the power ground wire in the filter before 
that wire is connected to the chassis. The resulting 
ground impedance forces the resonant common-
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Figure 2 Power Line Filter 

mode current to flow through the chassis of the 
system, probably through the logic returns. If 
the filter design has taken this parasitic reso­
nance into account, a series resistor or ferrite 
bead, Ry, may be added to lower the circuit Q. 
That reduces the common-mode current at the 
expense of filter attenuation. 

In the case of the 8800, many of the system 
components had been designed and released 
before this problem was fully appreciated. 
Therefore, our only viable strategy was to segre­
gate this noisy ground by separating the logic 
returns and chassis grounds to the greatest 
degree possible. 

Noise Voltages 

The electrical dual of the noise source just 
described is the generation of noise voltages 
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across both real and parasitic circuit induc­
tances when rapidly changing currents flow 
through them. This noise voltage is expressed as 

Vn = Lp dl/dt 

in which Lp is the value of inductance. 
The most common source of noise voltage in 

switching power converters is parasitic induc­
tances excited by the rapid rise and fall of cur­
rent in the transistor power switch and by the 
reverse charge recovery in the rectifier diodes. 
These abrupt transitions between the conduct­
ing and nonconducting states generate a very 
high dl/dt. For example, the primary reset 
diodes (D1 and D 2 in Figure 3) in the MPS con­
verters have very fast switching times of 30 to 
50 nanoseconds (ns). As the diode current 
rapidly goes to zero when the switch is turned 
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Figure 3 Parasitic Inductance of the Power 
Switching Stage 

off, the circuit parasitic inductance will ring 
with the capacitor in the switch-protective 
snubber, C, . The frequency range will be from 
10 to 30 MHz for typical circuit values. The 
result is a differential noise voltage at the con­
verter output. 

Our solution to this noise voltage source was 
to install an appropriate ferrite bead on the 
diode lead to damp the oscillations in this fre­
quency range. 

Radiated Magnetic Flux 
A substantially more difficult problem is caused 
by rapidly changing magnetic fields that radiate 
from the high-current secondary circuits in the 
power converters. The output rectifiers can be 
conducting as much as 200 amperes when they 
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switch off; the resulting di / dt can easily 
approach 1000 amperes per microsecond. As 
the current dies, the magnetic field surrounding 
the secondary windings of these high-current 
conductors will collapse. That induces a voltage 
in other conductors enclosed by this magnetic 
flux. According to Faraday's Law, this noise 
voltage is 

Vn = N d0/ dt 

in which N is the number of turns in the other 
conductors, and d 0 /dt, which is proportional 
to di/ dt , is the rate of change of magnetic flux. 
It is quite possible to develop volts of noise 
across 2 inches of circuit board etch or a sheet­
metal panel through this effect . 

The original designs of the MPS converter 
tried to minimize this noise problem by making 
the high-current loop areas as small as possible , 
thus minimizing the radiated magnetic flux. In 
addition , copper Faraday shields and ground­
plane circuit boards were used. In spite of this 
care , we encountered problems with circulating 
currents induced in the mechanical support 
structure in the VAX 8800 system design . As 
with the power-line filter , we could not reduce 
the noise at its source . Therefore , the only 
viable solution was to take great care with the 
chassis ground connection of these structures so 
that the noise currents are directed away from 
sensitive circuits. 

The Logic System 
A significant source of noise within the logic 
system is the energy radiated from the inter­
connect cables from the 1/0 bus to the disk 
controller. This noise radiates at a fundamental 
frequency of about 47 MHz. The bus itself is a 
high-speed, mass-storage parallel interface. The 
interconnect cable is composed of individual 
coaxial signal pairs that are transformer coupled 
and driven differentially . However, the 
impedance from the coaxial center conductor 
to the outer overall shield is slightly different 
from the impedance from the coaxial shield to 
the outer shield. That is, both signal conductors 
do not have equal impedances to the outer 
shield, which is grounded to the chassis at each 
end. The result is a net noise current that flows 
on the outer shield. Within the VAX 8800 pro­
cessor, this current can couple into adjacent 
cables. 
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The only practical method to minimize this 
noise coupling was careful routing and dressing 
of the interconnect cables relative to other com­
munication and power cables. 

VAX 8800 System Grounding 
This section describes the types of ground struc­
tures present in a large system like the VAX 
8800 multiprocessor. As such a computer sys­
tem expands in size and complexity, its ground 
connections also expand and their interrelation· 
ships grow in complexity. To appreciate the 
grounding scheme as a total system, the various 
components must be isolated by function and 
location. In that way the ground system can be 
broken into its constituent elements. The indi· 
vidual components can then be viewed as func­
tional blocks that require interconnection. 

Although a designer can choose how to inter­
connect the ground elements, he is always con­
strained by the existing international regulations 
in the implementation of the grounds. 

Types of Ground Topologies 
There are three choices of ground interconnec­
tion topology: single point, multipoint , and 
hybrid. The single-point ground looks like a 
wagon wheel with the ground in the center and 
the other devices connected radially around the 
hub. That center becomes the absolute ground 
point, called the zero-voltage potential refer· 
ence, for all devices. Multipoint grounding has 
each device individually connected to a single 
ground plane, all of which is at the same zero­
voltage potential. The hybrid is some mixture of 
the single-point and multipoint topologies in 
which interconnections are made based on the 
characteristic needs of the subsystem functional 
elements. 

The single-point topology is not practical to 
implement on a large system like the VAX 8800. 
The physical distances and associated im· 
pedances of the interconnects begin to domi· 
nate so much that an absolute ground point does 
not really exist. The multipoint ground requires 
a ground plane, or grid, to be effective. Again, 
in a large system, it is not practical to imple· 
ment a ground plane into the physical layout. 
The hybrid scheme has advantages over the 
other two, but it requires a detailed evaluation 
of the characteristics of each subsystem element 
before an interconnection can be designed. That 
was the approach we followed in designing the 
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interconnection for the different ground types 
in the VAX 8800 system. 

DC Power Return 
The de-to-de converters in the system required a 
de current return that presented a low 
impedance through the frequency range of de to 
200 KHz. Our primary consideration was to 
specify a conductor with a sufficiently large 
cross-sectional area to keep the IR losses and 
heating effects to a minimum. A secondary con­
sideration - often overlooked - was to mini­
mize the physical distance between the current 
feed and the return. In a large system the cur­
rents involved can exceed 400 amperes. The 
resulting flux can produce a large magnetic 
field . This field is determined by the relation­
ship 

Magnetic Flux = I X µ X A/I 

in which I is the current, µ is the permeability 
of air, and A the area and I the length of the con· 
ductor. These leakage fields can couple into 
adjacent devices, sheet metal, and cables. If the 
flux has an ac component, a current may be 
induced in adjacent conductors, as described 
earlier. 

A power supply in the MPS series used in the 
8800 has a silver-plated bus as its main output. 
That bus is mated to a large connector that is 
mechanically mounted on the power backplane. 
This connector is soldered to multiple epoxy· 
coated copper strips that are 0.050 inch thick 
by 2 inches wide. These strips are fusion welded 
to a horizontal bar that is bolted to the inner lay­
ers of the CPU backplanes. The supply and 
return straps are overlapped to minimize para­
sitic inductance and its consequent radiated 
magnetic flux. The flat, wide geometry of the 
connection is essential to minimize that flux . 
(See Figure 4.) Minimizing this stray inductance 
is also essential to obtaining rapid power-system 
response to load transients with adequate stabil­
ity (phase margins) . 

Logic Return 
The logic return provides a common signal ref­
erence for the logic within the system. To mini· 
mize noise this reference must be designed with 
a low impedance at the frequency correspond· 
ing to the logic switching speed. With logic 
operating at rise times of 1 V per ns, or 300 MHz, 
this reference is considered to be a radio 
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frequency (RF) ground and thus can be mod­
eled as a frequency-dependent impedance. The 
ground impedance at these frequencies is domi­
nated by the depth of penetration of current 
into the conductor. The magnetic field sur­
rounding the current forces the density of cur­
rent to decrease from the surface value as the 
depth into the conductor increases. In the limit­
ing case, as frequency becomes very high, the 
current will flow as a sheet of charge at the sur­
face. The result is a steadily increasing real com­
ponent of impedance (resistance) with increas­
ing frequency. The point at which the current 
density decreases to 1/E of the surface magni­
tude (approximately 37 percent) is one "skin 
depth." 

Therefore, the first step in calculating the 
ground impedance is to derive the skin depth, 
in meters, as follows: 

Skin Depth = l/y1r X F X µ 

in which Fis the frequency in Hz andµ is the per-

VAXBI POWER 
FLEX-CIRCUIT POWER BUS 

(D HORIZONTAL 
LAMINATED CPU 
POWER DISTRIBUTION 
BUS 

VAXBI - 1/0 
BACKPLANES 

CPU BACKPLANE 

NOTES: 

-5.2 V@200 A 
POWER BUS 

meability of air in siemens per meter. For exam­
ple, for copper, the skin depth is 0.0666/yFin 
meters. After the skin depth has been deter­
mined, . the impedance at the frequency of con­
cern can be found using the sheet resistance of 
the material. The specific resistance, R, is equal 
top X L /A, in which p is the specific resistance 
of the conductor, Lis the inductance, and A the 
area. For copper, p equals 1.673 microohms per 
centimeter. 

Another major factor in designing a ground 
plane is the voltage drop across the ground layer 
at low frequencies ( de to I KHz) as the total 
load current is sent from the logic modules. 
This voltage drop produces an offset in the logic 
threshold from module to module that affects 
the noise margins, or tolerance. The voltage 
drop is a function of the sheet resistance of the 
ground layer ( directly proportional to the thick­
ness) and the method of termination of the 
ground layers to the return buses. The connec­
tion geometry must be chosen to ensure a safe 
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POWER SYSTEM 
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1. The return, or logic ground rail, is connected along its entire length to the system chassis and 
represents the system single-point connection of RF (chassis) power and logic ground. 

2. MPS regulator rack is electrically isolated from chassis ground and connected through lossy 
RF chokes. 

Figure 4 Logic Power Distribution System 
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maximum current density through the ground 
layers. Current crowding, particularly at the 
connection points and plated through-holes, can 
turn the backplane into a toaster oven. 

We used the inner layers of the CPU back­
plane as the logic reference for the VAX 8800 
CPU. There are four ground layers, each 
0.003 inch thick. Figure 5 illustrates the de 
voltage-potential drop as a function of geometry 
across the CPU backplane. The return current is 
approximately 500 amperes; therefore, this CPU 
backplane was the most challenging part of the 
design. 

-5.2000 V ------.------
-7.0 mV 

-5.1930-J---"L,~:::r-J'~-;,t~7717t/A 

1 2 4 6 B 10 12 14 16 18 

BACKPLANE SLOT 

NOTE: Measurements were made from corresponding local points 
on the ground plane. It demonstrates the excellent control 
over voltage drops provided by the internal ground and 
power planes of the multilayer CPU backplane. Maximum 
current available to these -5.2 V inner layers is 400 amps. 

Figure 5 Distribution of the Backplane 
Voltage for the - 5.2 V Power 
Plane 

AC Safety Ground 
The primary function of a safety ground is to 
provide a low impedance at 60/50 Hz, thus 
allowing fault currents to follow a path with a 
low IR drop. The design and implementation of 
this path is strictly controlled by the interna­
tional regulations, to which all other uses of this 
ground must comply. The safety ground also 
acts as a signal ground in that it connects prod­
ucts to the ground grid of the building housing 
the system. This connection can be detrimental 
to the system's 1/0 signals. Thus it is advanta­
geous to add an impedance whose magnitude is 
frequency and current dependent in series with 
the safety ground. A saturating inductor meets 
those requirements. 

For a fault condition, Digital's internal design 
standards require that a current of twice the 
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product's receptacle rating flowing through the 
safety ground system must not result in a voltage 
rise of more than 4.0 V, and this level must be 
sustained for 10 minutes. With these require­
ments in mind, we used a 1.2-millihenry choke 
to isolate the VAX 8800 CPU from the building 
ground at high frequency. This choke was 
designed to saturate as described above if a fault 
occurs. 

Chassis Ground 
The RF shield comprises the chassis ground and 
the outer panels of the cabinet. The federal reg­
ulatory agencies (FCC and VOE) set and enforce 
the allowable limits of radiated emissions from 
computer equipment. Since the integrated cir­
cuits within the system are switching at high fre­
quencies, they can be modeled as RF sources. 
The interconnecting etches between integrated 
circuits that are not tightly coupled to a ground 
layer can be modeled as antennas. 

The faster the clock and edge speeds, the 
shorter the antenna needed to act as an effective 
radiator. The length, in meters, of a full wave­
length is defined as 3 X 108/F. 

Once this wavelength has been found, the 
outer panels of the cabinet can be modeled as 
an attenuator, which decreases the amount of 
radiated energy that can be transmitted from 
within the cabinet. To maintain this level of 
attenuation, all openings, such as doors, must be 
bridged with conductive gasketing or finger 
stock. The openings for air flow must be treated 
as a wave guide. The attenuation, in decibels, of 
the opening is related to its size by the follow­
ing formula: 

.0046 X l X F X \!5900 X F/gap2 - 1 

in which Fis the frequency in MHz, and l is the 
length and gap the width of the opening, both 
in centimeters. 

Ground Interconnections 
within the System 
Once the separate ground elements had been 
defined, we began to formulate an orderly inter­
connection strategy for the main computer that 
would not compromise the system's perfor­
mance. We used the same return path for both 
the logic and the de power because there was 
no dichotomy in the requirements for both 
returns. In the VAX 8800, the junction of these 
returns comes at the point where the horizontal 
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bus bar (return) is bolted to the inner layers of 
the logic backplane. (See Figure 5.) 

Digital's internal standards, which meet all 
the applicable international regulations, man­
dates that the de power return be connected to 
the safety ground . This connection must be able 
to withstand the short-circuit current of the de 
regulator output. (In certain cases it may be 
desirable to insert a frequency-dependent 
impedance in series with this connection to 
" isolate at frequency" an element of the system. 
That could be done when creating a single-point 
ground system - directly referenced to the 
chassis - or a controlled hybrid -ground 
system.) 

In the VAX 8800 CPU, the de output could, 
under fault conditions, produce approximately 
400 amperes. Thus the interconnection must 
handle this high fault current. This interconnec­
tion was accomplished by bolting the junction 
node of the combined de-power and logic 
return to the chassis for the entire length of the 
horizontal bus bar. This portion of the chassis 
was chosen as the connection point because it 
was not used as a conductor for any other high­
frequency currents. 

In summary, the grounding approach we used 
for the 8800 featured the following design 
points: 

• The logic and de return and the chassis 
ground are connected together at the hori­
zontal power-return bus. 

• The power-system outputs and the chassis 
ground are isolated from ground at RF fre­
quencies by high impedances using lossy fer­
rite inductors . DC currents and line-fre­
quency (50/60 Hz) fault currents may thus 
flow unimpeded. 

• Particular care was taken to minimize the 
flow of logic-return currents through the sys­
tem chassis, thus isolating the peripheral 
boxes (CI750 , BAI IAW, etc .) from the sys­
tem chassis ground . Insulated chassis slides, 
shunted by lossy ferrite inductors, accom­
plished that isolation . Although there are still 
common-mode currents with the ferrite 
inductors, they reduce unwanted common­
mode noise voltages that can couple into cir­
cuits through parasitic inductances. That is a 
far worse problem, as we demonstrated to our 
own chagrin. 

96 

• The 1/0 panel bulkhead and the logic and 
power returns for the VAXBI bus and memory 
backplanes are tightly bonded to the single­
point ground at the CPU power-return bus. 

• The elimination of circulating noise and logic 
currents through the chassis will maximize 
the effectiveness of the shielded cabinet as an 
attenuator of radiated energy. 

The implementation of this ap proach is 
shown in Figure 6. 

I /0 and Expansion of Grounding 
Once the main processor's grounding had been 
defined, we had to deal with grounds between 
the external elements, such as the 1/0 subsys­
tem. The VAX 8800 system can accommodate a 
large array of 1/0 devices by utilizing the VAXBI 
architecture. The H9652 EC-ED cab has provi­
sions for two expansion boxes, the CI750 and 
the BAI lAW. These boxes are self contained and 
have integral power supplies, logic backplanes, 
and interconnects. In keeping with our ground­
ing architecture, we isolated these boxes from 
the chassis ground by using low-Q inductances. 
The signal/logic ground was then established by 
means of cables to the VAXBI-to-CPU backplane. 
This scheme ensures that the chassis is not used 
as a signal/logic return . 

Sy stem to System Grounding 
Grouping systems together or networking them 
has a large impact on system noise and the sub­
sequent grounding techniques to eliminate it. In 
terms of the signal-to-noise ratio and from the 
aspect of grounding, a networked system can be · 
divided into two cases: the dense network, and 
the dispersed network. 

Dense Network 
A dense network is a group of computers or sys­
tems with associated support hardware that is 
located within one area, either an office or a 
computer room. This area is likely to contain 
systems from different vendors as well as phone­
switching networks, experimental equipment, 
or industrial controllers and monitors. All these 
devices share a common ground that could be a 
grid or simply a branch ground as part of their 
safety ground. This connection also provides a 
signal reference between interconnecting 
devices in the area through the chassis and 
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A Logical Grounding Scheme for the VAX 8800 Processor 

power line ground in a complex way. All these 
devices can generate high-frequency currents 
that flow into the ground. These currents must 
flow through the complex impedance of the 
grid where , consequently, RF voltages can 
develop. Under those conditions the ground 
would act as a noise injection point rather than 
a stable reference. 

Dispersed Network 
The dispersed network is an interconnection of 
computers or systems spread over a wide area, 
perhaps residing on different floors of a build­
ing or in different buildings altogether. Commu­
nication on this scale cannot depend on a 
mutual RF ground because it cannot be reason­
ably established. In this case, communication 
must be accomplished by means of either trans­
former-coupled circuits, optical links, or differ­
ential driver/receiver logic. 

Both types of networks illustrate the fact that 
system networking cannot, and in some cases 
should not, be accomplished by attempting to 
create an absolute ground reference to the net­
work. 

System to Peripheral Grounding 
As a system expands with the addition of periph­
eral devices, such as disk drives, printers, and 
LANs, the ground system must be viewed as a 
large hybrid arrangement. Interconnecting these 
devices must be predicated on the ground-cur­
rent characteristics (signature) and the 1/0 con­
nections of these devices to the system. 

This signature is particularly important when 
connecting devices that were designed to be 
used as small, standalone applications. Their 
designs may have involved decreased line-filter­
ing capabilities and minimally sized chokes for 
ground isolation or perhaps none at all. It is 
imperative that such factors be considered when 
connecting peripheral devices to a large system. 

Summary 
We now offer some conclusions based on our 
recent experiences with the VAX 8800 and 
other new systems. These con cl us ions take the 
form of recommendations for minimizing noise­
related problems in any computer system. 

Ground Noise Current Signature 
It is important to identify the spectrum of 
ground-conducted noise for each subsystem ele-
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ment. This noise depends on parasitic elements 
in the circuits and electromechanical structure. 
Therefore, this information is best obtained · 
empirically by measurements on the actual 
hardware. The noise current amplitudes and 
fundamental frequencies should be measured 
on cable shields, chassis grounds, 1/0 logic 
returns, and power inputs. 

Segregation of System 
Ground Networks 
A ground system schematic should be developed 
for each particular subsystem. The interconnec­
tion of ground types will be based on the 
intended system application. As a general rule, 
the ground types should be segregated to 
account for the finite amplitudes and often 
unpredictable paths of the noise currents. This 
segregation of grounds (e.g. , power, chassis, 
and safety grounds) can be accomplished by 
carefully choosing the frequency-dependent 
impedances. These impedances are lossy ferrite 
inductors placed in series with the appropriate 
ground connection. 

Appropriate Signal and 
Power Interconnect 
The optimal signal interconnections are 
designed as controlled-impedance transmission 
lines with each signal and its return path closely 
coupled and having equal impedance to the 
chassis ground. Depending on the noise sensitiv­
ity, data rate , and interconnect length , the 
implementation can range from coaxial cables 
with overall shields to ground-plane ribbon 
cables to ribbon cables with alternate ground/ 
signal pairs. Even the crudest, slowest signal 
line that relies on chassis ground for a signal 
return is doomed to failure if it is sensitive to 
noise. 

High-performance data lines should certainly 
be designed with low-impedance differential 
line drivers and rece ivers, either directly cou­
pled or transformer coupled. Single-ended line 
drivers and receivers may be acceptable within a 
subsystem in which the noise between grounds 
is low and controlled. Communication through 
unbuffered TTL outputs and inputs are never 
acceptable when leaving a subsystem back­
plane . 

The initial cost of and board space needed for 
proper line drivers and receivers are more than 
justified in today's distributed computing envi-
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ronment. Their use increases reliability and 
decreases start-up problems. The power inter­
connects should be designed with minimum 
inductance and the lowest high-frequency char­
acteristic impedance that is reasonable. The cir­
culating path of supply and return power cur­
rents should be kept as low as possible . This 
design allows better power-system transient per­
formance and ensures the existence of minimal 
radiated magnetic fields. 

Notes 

1. A short circuit between the high-voltage 
primary and the low-voltage secondary 
could produce lethal voltages referenced 
to the chassis ground at accessible points 
within the computer. With this shield, 
however, the short will produce a high 
fault current to the chassis. That current 
will open various protective devices , 
such as fuses and circuit breakers, that 
render the system safe in the event of a 
fault. 

Appendix 

Determining Skin Depth 
To calculate the impedance of a given conduc­
tor, the depth of current penetration - or skin 
depth - in a conductor must be calculated 
first. To do that, a designer must perform the 
following steps: 

1. Determine the type of metal of which the 
conductor is made (i.e ., copper, zinc, 
etc.). 

2. Look up in a reference table the magnetic 
susceptibility of the material. (The CRC 
Handbook of Chemistry and Physics 
contains tables of this nature.) Two types 
of listings of susceptibility are commonly 
used. The first type gives values of 
specific susceptibility that must be con­
verted by multiplying the value by 4 X 1r 

X density of material, called P. For cop­
per, this value would be - 0.086 X 10-6 

X 4 X 1r X 8 .89, which equals -0.960 
X 10-5 _ 

The second type uses susceptibility in 
one gram formula weight. This value 
must be converted by multiplying it by 4 
X 1r X density of material or molecular 
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weight, which for copper would be 
-5.46 X 10- 6 X 4 X 1r X 8.89/63.54, 

which equals -0.960 X 10-5 . 

3 . The resulting figure must now be con­
verted to relative permeability by add­
ing 1.0 to the susceptibility factor . For 
copper, this value would be 1.0 -0.960 
X 10-5, which equals 0 .9999904. 

4. The relative permeability must be con­
verted to permeability by multiplying the 
value from step 3 above by the perme­
ability of air (4 X 1r X 10- 7). For cop­
per , this value would be 0.9999904 
X 1.25663 X 10 - 6, which equals 
1.25662 X 10-6. 

5 . The next piece of information needed is 
the conductivity of the material used. 
This value must be in the form of siemens 
per meter, although most listings will be 
in ohms per centimeter. To convert, mul­
tiply the table entry by 1 X 10- 2 and 
then take the reciprocal. For annealed 
copper, this value is 1/1.7241 X 10- 6 

X 1 X 10 - 2 , which equals 5.8001 
x 107 . 

6 . The skin depth can then be determined 
by the relationship l/(1r X frequency of 
concern X conductivity X permeabil­
ity> 1'2. The result can be manipulated to 
the form of l/(1r X conductivity X per­
meability) 1'2 / ( frequency of concern) 112. 
For copper, this value is l/(1r X 5.8001 
X 107 X 1.25662 X 10- 6) 1'2, which 

equals 0.06608/(frequency of concern)112. 
For example, if the frequency of concern 
were 1 KHz, then the skin depth would 
be 2.089 X 10-3 meters, or 2 .089 mil­
limeters, deep. 

If the frequency of concern were 50 KHz, 
then the skin depth would be 295 micro­
meters. 

99 

New Products 



Cheryl A. Wiecek I 

The Simulation of Processor 
Performance for the VAX 8800 Family 

An effort was initiated in the fall of 1981 to simulate the performance of 
the processor design for the VAX 8800 family of computer systems. That 
simulation stayed current with the changing design and continues to be 
used today for studies associated with developing VAX processors. This 
paper discusses why this simulation was done, how it was structured, and 
what was simulated. Since the results generated are quite extensive and 
detailed, only the conclusions from these studies are presented here. 
W'bat was learned from the model and bow it affected the processor 
design are particularly emphasized. 

Many levels of simulation are done within pro­
cessor development projects well before any 
actual hardware is built. Structural models at 
the circuit and gate levels are used in tasks such 
as verifying timing and developing diagnostic 
tests . Behavioral models at the function level are 
useful for verifying processor instruction 
microcode. Another useful class of models simu­
lates performance at the microcycle level. Such 
models look at a processor's design as a collec­
tion of hardware resources that must be man­
aged. These models are most useful for gather­
ing design trade-off information and verifying 
the design performance estimates. By emphasiz­
ing the key hardware resources and how they 
interact, performance simulators can 

• Focus on how those resources are being used 

• Indicate how well they support the required 
activities 

• Provide a high-level view of the interactions 
in the processor system 

This paper describes the performance simu­
lator used on the project that developed the 
VAX 8800 family of computer systems . This 
modeling project began in the fall of 1981 , and 
the simulator continues to be used today to 
study alternatives for new VAX processor 
designs. The following two sections discuss how 
the simulator was designed and what was simu­
lated. The third section highlights the results 
and discusses what was learned from them. 
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Methodology 
The overall structure of the performance model 
mirrors the structure used previously for the 
performance simulation of a PDP-11 processor 
design . 1 The model contains three parts, all 
developed as separate entities: 

• The instruction stream that is acted on by the 
processor resources 

• The microcode that directs instruction execu­
tion 

• The simulation of the processor resources 
and timing 

These three parts are then combined to gener­
ate simulation results. The tasks performed to 
develop each part are discussed in the following 
section. 

Workload Model 
The most appropriate model for the workload 
fed to the simulator is the streams of VAX 
instructions from typical programs being exe­
cuted. Information about each executed instruc­
tion is required to obtain performance data at 
the microcycle level about the processor and its 
resources. The software used to extract these 
execution streams had already been developed 
from a previous project. That software is essen­
tially a debugger that uses the VAX T-bit to gen­
erate a software trap after the execution of each 
instruction in the traced program. 2 That tracing 
permits the collection of the next instruction's 
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operation code, the addressing modes and regis­
ters of the operand specifiers, the read and write 
references, and the operand values. 

The task of choosing which programs to trace 
was bounded by a number of requirements and 
constraints. One requirement was to provide 
some initial performance estimates for the 
VAX 8800 family processor. Those estimates 
emphasized integer, logical, and floating-point 
operations in CPU-intensive programs. Another 
requirement was to select programs that exer­
cised the processor resources that we wanted to 
model, especially the cache subsystem, where 
capturing best-case, typical, and worst-case sce­
narios was important. 

All the constraints involved the programs 
from which instructions were traced. A reason­
able length for these programs was about one­
half million VAX macroinstructions, thus per­
mitting the simulator to process them in a 
reasonable time . We avoided programs that 
required extensive microcode characterization 
for instructions that were either less frequently 
executed or too complex, such as those in the 
packed decimal group. Moreover, the trace soft­
ware was limited to processing executing pro­
grams that ran in nonprivileged user mode. Thus 
we had to avoid programs, such as editors, hav­
ing extensive operating-system service calls , 
which could only be partially traced. 

We chose six programs to drive the model. 
These included four benchmarks and two popu­
lar utilities for creating executable images on 
VAX systems. The number of iterations in the 
four benchmarks was shortened proportionally, 
keeping the mix of instructions constant to 
retain their representativeness. Three bench­
marks were written in FORTRAN : Towers of 
Hanoi , a prime-number generator, and single­
precision Whetstone ; one , called Puzzle , was 
written in PASCAL. The other two programs 
were a FORTRAN compile and a VAXjVMS link, 
both written in BLISS. For all their constraints, 
these programs exercised the model well. The 
accuracy of the performance estimates was con­
firmed later by measurements on a prototype 
machine. 

Microcode Model 
How microcoded instruction control is charac­
terized has a significant impact on both the 
speed and results of a processor performance 
simulator. For example , creating a model at a 
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very detailed level permits a finer analysis of the 
results, but takes a long time to develop and 
run. Therefore, we had to decide what the trade­
off should be between time and detail. We also 
wanted to stay current with the latest develop­
ments in the processor microcode , which we 
knew would change significantly during the 
project. With all that in mind, we decided to use 
the latest version of the actual microcode 
sources as the input to a unique process, par­
tially automated, that extracted the information 
needed by the simulator. This strategy allowed 
us to ignore details that were not required by 
the simulator , as well as to keep up with 
microcode revisions as they were released. A 
useful by-product of this approach was the abil­
ity to produce microPC histograms with the sim­
ulator . This information helped to explain how 
the microcode was being used. 

One step in modeling the microcode is to 
determine the control fields that are key to the 
processor's performance. Only a small number 
of the defined fields are actually needed. Many 
microwords are effectively no-operation instruc­
tions for the simulated processor pipeline . 
Table 1 contains the microword key for the per­
formance simulator. Each microword has three 
fields: SRC, ALU, and DST. In any microword, 
each field has a command subfield and up to 
three operand subfields. (The address operands 
generated by the trace software are actually 
extracted as both the traced program and the 
simulator are being run. The other operands and 
commands are extracted from the microcode 
prior to simulation execution.) 

Before any actual microcode had been devel­
oped, simulated microwords were written man­
ually from microcode flows provided by the 
group developing the firmware. Once the actual 
microcode was available , a significant portion of 
the performance simulation microcode was gen­
erated automatically by mapping real fields to 
the small number of fields that the simulator 
required. This automatic mapping of processor 
microcode to that used in the simulator was 
complicated by several issues. 

One problem was that the microbranching 
logic required additional information at simula­
tion runtime to decide which branch path to 
take. To solve that problem, the firmware group 
flagged microbranches by inserting comments 
in their microcode . Those comments were then 
caught by the microcode translation software , 
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Table 1 Microword Key to the Performance 
Simulator 

Field Command Description Operands 

Any No operation performed. None 

SRC Stall if the memory data ASRC, 
registers (MDRs) specified BSRC 
by ASRC and BSRC are not 
yet valid for input to the 
arithmetic logic unit (ALU). 

ALU Send a cache arbitration None 
signal and stall the pipe-
line if it is not the winner. 

DST Send the cache a read MDR 
request for x Bytes starting number, 
at Address, and set MDR Bytes, 
number to valid when the Address 
data is available. 

DST Send the ca che a write Signal, 
request with x Bytes of data Bytes, 
starting at Address. The Address 
value of Signal determines 
whether hardware or micro-
code control sends the write 
buffer data to memory. 

DST Conditionally flush the 18 Address 
and provide the cache 
with a new Address for 
prefetching IB data. 

DST Send the cache notification None 
of a new address for pre-
fetching 18 data once the 
decoder handles the 
IS-address page cross. 

DST Send the cache a read/ None 
write probe request. 

which marked them for processing at runtime. 
Another problem was that some VAX macroin­
structions had not been coded yet, and others 
were more complicated than required for simu­
lation. (Many of the VAX floating-point instruc­
tions were in this category.) In those cases 
sequences of handwritten microcode were used. 

Processor Simulation Model 
The structure of the processor simulation model 
was driven by the need to provide timely 
answers to questions asked by the designers. 
The results had to be generated, verified, and 
distributed as quickly as possible to be most 
useful in design trade-off decisions. The require­
ments we considered most important were the 
following. 
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• The simulator must have a modular structure 
that facilitates replacing, reconfiguring, and 
reusing routines while minimizing the 
runtime overhead. 

• A general-purpose control mechanism is 
needed to manage communication and syn­
chronization betw.een a number of indepen­
dent tasks running in parallel. 

• Extensive and flexible 1/0 features are 
needed to generate cycle-by-cycle traces and 
reports with simulated performance statistics. 

• The ratio of simulated time to real time must 
not be a bottleneck to obtaining results. 

We chose a structure that favored changing 
and reusing parts of the simulator, but which 
ran slower, over one that ran faster, but was 
hard to change. We did this knowing that the 
simulator would be used to try many design 
ideas that would eventually be discarded. The 
simulator also had many parameters built in so 
that different configurations and timings could 
be tried. The structure we chose could be used 
to evaluate many design alternatives. Since this 
was the first VAX processor to be modeled this 
way, we had to design and build all the software 
for the simulator; none of it could be borrowed 
from other projects. Therefore, we knew that 
producing results quickly would be difficult. 

The structure chosen required that the simu­
lated processor be partitioned into a number of 
independent components, each modeled by a 
deterministic state-machine. That machine 
defined the actions to be done when each state 
was entered, and the conditions to be evaluated 
for deciding the next state transition. This 
approach had several advantages. The hardware 
designers could relate easily to state-machine 
models of their particular designs, even though 
the states in the simulator sometimes marked 
performance-related events, not real hardware 
states. This structure also made it possible to 
replicate components and reconfigure the origi­
nal single-processor version of the simulator 
into a dual-processor version. 

A monitor is needed to control the communi­
cation, synchronization, execution, and status of 
these independent state-machine components. 
For communication between components, only 
certain types of send and receive operations are 
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used. This restriction allows the component 
interfaces to be simple and well defined. There 
are three types of send operations: 

1. A targeted send directs source informa­
tion to a single destination within the 
current cycle. 

2. A broadcasted send directs source infor­
mation to zero or more destinations 
within the current cycle. 

3. An arbitrated send directs source informa­
tion to a single destination, stalling exe­
cution of the sending component until 
the information is delivered. 

There are two types of receive operations: 

1. A targeted receive results in the delivery of 
source information from a send operation. 

2. A collection receive is limited to probing 
source information from a send opera­
tion; this information is used by the 
model to make decisions. 

The monitor keeps two queues for the com­
ponents: one for component send requests, the 
other for component receive requests. The mon­
itor also synchronizes send and receive requests 
on behalf of the components and reports errors 
when undelivered send or receive entries 
remain in the queues. 

Synchronization between components is 
achieved using the send, receive, and timing 
services built into the monitor. The send and 
receive operations allow the specification of a 
phase number so that components can send and 
receive information only at certain intervals 
within the basic microcycle clock recognized by 
the monitor. The monitor blocks components 
from executing while they wait for send or 
receive requests to be serviced. States within a 
component can be designated as time sensitive . 
When the next state to be executed within a 
component is so designated, that component is 
blocked from executing until the monitor incre­
ments the clock. 

Execution proceeds on the basis of one 
machine cycle. State-machine components are 
chosen to execute, one at a time, starting at the 
state at which each was last left. Component 
execution continues until the required send, 
receive, or timing service returns control to the 
monitor. When all components have reached 
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states in which no more activity is possible for 
the cycle, the monitor will increment the mas­
ter clock and the execution of components can 
resume. End-of-simulation and detected-error 
conditions cause the monitor to generate a 
report of results by calling each component to 
execute its report code. 

The complete model for the VAX 8800 family 
processor ran on a VAX-11/780 system and exe­
cuted about six VAX macroinstructions per CPU 
second. That translates to a ratio of simulated 
time to real time of about 90,000 to 1. The con­
trol monitor was written in PL/I; the processor 
state-machine components were written using 
VAX assembler macros. Once the ADA language 
had been added to the list of VAX-supported lan­
guages, we translated the entire processor per­
formance simulation model into that language. 
This new simulator is being used for follow-on 
processor performance studies. The ADA lan­
guage was chosen because its multitasking fea­
tures provide excellent support for the control 
monitor functions that we defined. 

Verification of the Simulation Model 
An important and often overlooked aspect of 
developing a performance simulation model is 
the effort required to verify that the model 
reflects the actual design. In the early stages of a 
project, the details of the proposed design are 
usually communicated by word-of-mouth. Con­
tinuous changes to that original design enlarge 
greatly the margin for error within a perfor­
mance simulator. Since wrong performance data 
is counterproductive, a great deal of our effort 
went into verifying that the simulation opera­
tion and results accurately reflected the current 
state of the design. 

Once the performance simulator produced 
results, the designers reviewed cycle-by-cycle 
traces of simulator activity to confirm that the 
simulator's operation matched the processor 
design. In addition, we developed a set of short 
tests that exercised certain key functions. These 
tests were rerun for each new version of the sim­
ulator, and the test results were exhaustively 
compared to those from the previous version. 
This procedure was effective in revealing unan­
ticipated interactions and errors due to changes 
made in both the simulator and the design. As 
the design progressed, we were able to compare 
our simulation results with those from a behav­
ioral model used for debugging microcode. 
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Eventually, we could compare our results with 
those from a working prototype system. Because 
the mode l tracked the design's evolution 
closely, these comparisons showed the perfor­
mance model to be an accurate representation 
of the design. 

Peifonnance Model for the 
VAX 8800 Family Processor 
This section describes the processor hardware 
resources that were modeled. For each modeled 
component, there is a short summary describing 
its function , the information communicated 
with other components, and the parameters that 
can be specified at runtime to control simula­
tion configuration and timing. Although some 
information about the VAX 8800 family proces­
sor design is included, reference 3 should be 
consulted for more detail. 

Figure 1 is an overview of the processor per­
formance simulator used for the VAX 8800 fam­
ily. The various components are represented by 
circles, the communication paths by arrows. As 
described earlier, each component is an inde­
pendent state-machine that communicates with 
other components using defined send and 
receive operations. 

MICROINSTRUCTION 

Figure 1 Performance Model for the 
VAX 8800 Family 
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Decoder 
The decoder state-machine sends the pipeline a 
microinstruction during every unstalled cycle 
and detects the end-of-simulation condition. To 
do those actions, the decoder requests bytes 
from the instruction buffer (18), using informa­
tion provided in the instruction trace. When the 
18 indicates that the requested bytes are avail­
able, the appropriate microcode flow is chosen 
to start execution. If the 18 cannot deliver the 
requested bytes, then no-operation microin­
structions are fed to the decoder. The decoder 
must also communicate with the cache control. 
For example, the decoder must resolve any 18-
address page crosses detected by the 18 prefetch 
hardware in the cache. Also kept by the decoder 
is a parameter that controls the number of VAX 
instructions executed between cache flushes 
due to context switching. 

Pipeline 
The pipeline state-machine simulates how 
microinstructions provided by the decoder are 
to be executed. During any one cycle, parts of 
three consecutively queued microinstructions 
are processed: 

• The DST field of the oldest microinstruction 

• The ALU field of the next microinstruction 

• The SRC field of the microinstruction most 
recently queued 

For every cycle that the pipeline is not 
stalled, the oldest microinstruction is retired 
after the command in its DST field has com­
pleted. The actions performed by the pipeline 
are described in Table 1. The pipeline can send 
flush requests to the 18, and processor read and 
write requests to the cache (after arbitrating and 
winning it). The pipeline also manages the vali­
dation of the memory data registers (MD Rs). 
Pipeline stalls that result from those actions are 
made known to the decoder. The only pipeline 
parameter the user must enter is the cycle time 
in nanoseconds, used for calculating perfor­
mance data at the end of simulation. 

Instruction Buffer 
The 18 state-machine simulates a first-in, first­
out (FIFO) cache for VAX instruction stream 
data. The IB accepts requests for bytes from the 
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decoder and notifies it whether or not the bytes 
are available. The IB model does not actually 
store any stream data; however, it does manage 
the count of valid bytes within IB longwords as 
that data is shifted in and out. The cache-control 
component prefetches data for the IB and also 
notifies the IB of prefetched data whenever no 
other activity is scheduled for the cache during 
a cycle. When full , the IB notifies the cache 
control of that condition. In turn, the IB is noti­
fied by the pipeline model when it needs to be 
flushed due to a change in the instruction 
stream sequence. 

The configuration of the IB is controlled by 
two parameters: the number of blocks, and the 
number of bytes per block. For the VAX 8800 
family processor, the IB has four blocks, each 
four bytes long. 

Cache Arbiter, Control, and Queues 
From the viewpoint of performance, the cache 
subsystem in the VAX 8800 family processor 
contains an important set of resources . This 
cache design was modeled in the simulator by 
three state-machine components: the cache 
arbiter, the cache control, and the cache mem­
ory-request queues. From the viewpoint of per­
formance simulation, these functions were the 
most independent ones that could be segre­
gated. 

The cache arbiter state-machine collects 
requests from the three components that require 
cache service. The first, the pipeline model , 
sends read/write arbitration signals for the pro­
cessor. The second, the cache-control model, 
sends read arbitration signals for a stalled-pro­
cessor condition. The third, the memory inter­
connect model, sends memory arbitration sig­
nals. During every cycle, the arbiter sends to the 
cache control the arbitration winner that will 
have the cache during the next cycle. There is a 
fixed priority for choosing an arbitration win­
ner. Memory has the highest priority, followed 
by processor reads and writes of various types; 
cache IB prefetching (the default) has the low­
est priority. The cache-control and memory­
request queues models also provide status infor­
mation used in deciding an arbitration winner. 
Certain types of stalls result in no winner. The 
arbiter model requires no parameters to be 
specified by a user at runtime. 
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The cache-control state-machine is the center 
of the performance simulation model in the 
sense that it communicates with all but one of 
the other state-machine components. The hard­
ware resources managed include the combined 
instruction-stream-and-data cache, and a long­
word delayed-write buffer used to hold write-hit 
data until it can be written into the cache. Like 
the IB, the cache control model keeps control 
and status information only for the cache and 
the write buffer. During every cycle, the cache 
control acts on the request chosen during the 
last cycle by the arbiter. That request can be a 
refill from memory, a read lookup and the 
appropriate cache hit or miss activity, or a write 
to the delayed-write buffer and memory. For a 
cache-write request, the data in the delayed­
write buffer is written to the cache when the 
next write request is processed, and then only if 
the address of the buffered write actually hit in 
the cache. If there are no memory or processor 
requests, data is prefetched for the IB automati· 
cally, by default. 

A. number of parameters can be specified at 
runtime within the cache control, most of them 
specifying the configuration of the cache. Such 
configuration parameters include 

• Switching the cache on or off 

• The cache size in bytes 

• The set size 

• The block size in bytes 

• The block fill size in bytes 

• The block replacement algorithm (random, 
least recently used, or FIFO) 

• The memory updating algorithm (write back 
or write through) 

• Allocation for write misses 

Control does not exist for all possible 
cache options in the processor model for the 
VAX 8800 family, but the cache routines do 
support them. The implemented cache configu­
ration is 64KB, direct mapped with 64-byte 
blocks and a 32-byte block fill (done as two sep­
arate 16-byte refill sequences) . It features write­
through memory updating and no allocation 
for write misses. For study purposes, another 
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parameter was included that allows either one­
or two-cycle read hits to the cache. The VAX 
8800 family processor design implements one­
cycle cache read hits . 

The cache memory-request queues state­
machine manages the IB read-miss queue , the 
processor read-miss queue, and the write-buffer 
queue. The IB read-miss queue has two ele­
ments , thus allowing two outstanding misses for 
IB data. A third outstanding miss will replace 
the second one, thus avoiding a pipeline stall. 
The processor read-miss queue has one element; 
therefore, two outstanding read misses will stall 
the pipeline. However, processor read hits are 
allowed to continue with one outstanding read 
miss . The write-buffer queue consists of two 
octaword ( 16-byte) elements . Consecutive 
writes within the same octaword are buffered 
until an event forces data in the write buffer to 
be sent to memory. That event can be encoun­
tering either a write that is not in the same octa­
word or a microcode control command . The 
cache control sends read -miss and write 
requests to the appropriate queue . If a queue is 
full , a signal tells the cache control that no 
more requests can be accepted. 

From the cache queues, requests to memory 
are generated and sent to the memory intercon­
nect after the arbitration for that interconnect 
has been won. These requests are prioritized to 
facilitate choosing which of three possible 
requests will be sent to the memory intercon­
nect at any point in time . To maintain the rank­
ing, a two-bit counter will increment only on 
the appearance of a write following a read. The 
request chosen is the one with the lowest rank 
count. If two requests have the same ranking, 
priority will be given first to the write, then to 
the processor read, and finally to the IB read. 
The cache queues component has one parame­
ter that can be specified at runtime: the number 
of cycles that a request ready to be sent to the 
memory interconnect must remain queued. The 
final processor implementation required only 
one cycle, although this timing was not known 
when the model was built. 

Memory Interconnect 
The memory interconnect state-machine handles 
requests between the cache queues and mem­
ory. Transactions requiring one or more cycles 
on t he bus include cache-refill data, in octa­
word packets, from memory; processor-write 
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requests of up to an octaword in size; and pro­
cessor data- or instruction-read requests for 
32 bytes (returned from memory as two octa­
word packets) . Until transmitted, each transac­
tion " owns" the bus. A one-cycle settle time is 
required between transactions as well. Arbitra­
tion for the bus occurs during every cycle to 
choose a winner for the next cycle. Priority is 
gi ven first to the current transaction holding the 
bus, then to the one-cycle settle time , then to 
memory, and finally to any pending write or 
read from the cache. A cache request to memory 
is queued during the cycle after the request was 
transmitted on the bus . The timing of subse­
quent cache requests for memory is controlled 
by the sum of two parameters specified at 
runtime . These parameters are 

• The number of cycles between the time a 
cache request transmits on the interconnect 
and the time the cache receives an acknowl­
edgment from the bus 

• The number of cycles between the time the 
cache receives the bus acknowledgment and 
the time the next cache request can transmit 
on the bus 

The VAX 8800 family processor implementa­
tion has a value of two for each parameter , 
although this timing had not been determined 
when the model was created . Several other 
parameters were included in the memory inter­
connect state-machine for study purposes. The 
one-cycle settle time can be enabled or disabled, 
and the interconnect can acknowledge configu­
rations with either one or two processors. We 
also included the capability to slow the memory 
subsystem , relative to the processor/cache 
request timing, by either two or three times. 

Memory 
We had considered modeling in detail the 
designs for both the memory controller and the 
array module . The effort required was so substan­
tial , however, that we first modeled only the 
best- and worst-case scenarios. The ensuing 
results indicated that extra detail in the model 
would not yield correspondingly enlightening 
information ; therefore , the memory state ­
machine models only best- and worst-case mem­
ory performance. The choice of best- or worst­
case is a pa rameter specified by the user at 
runtime . 
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The best-case memory model assumes memory 
is never busy and can take requests from the mem­
ory interconnect whenever they are generated. 
Thus instead of the eight memory-array modules 
the processor is limited to, this model effec­
tively simulates an infinite number of modules 
with no contention for specific ones. The only 
parameter the user must specify is the number 
of cycles between the time the read request 
reaches memory and the time memory arbitrates 
for the memory interconnect to return requested 
read data to the cache. The implementation has a 
value of approximately 14 cycles, which reflects 
the memory read latency. Write requests for 
memory are simply delivered; no further action 
has to be taken. 

The worst-case memory model assumes only 
one array module is available to handle read and 
write requests. Requests for memory are queued 
in a buffer for processing by the array module. 
When all queue elements have requests, a mem­
ory-busy signal will inhibit the memory intercon­
nect from sending additional requests until a 
queue element is available. A number of parame­
ters can be specified by the user at runtime to 
control the timing of requests within the mem­
ory controller and the array module . One 
parameter is the length of the memory-request 
queue, a value from one to eight. The processor 
design used a value of three for this queue 
length. The other parameters are the numbers of 
cycles required for various operations, as 
described below. The actual value specified for 
the processor design is contained between the 
parentheses following each parameter's descrip­
tion. These parameters are 

• The time a request must be queued before 
processing in the array module (2 cycles) 

• The time required by the array module to 
process a read ( 12 cycles) 

• The time required by the array module to 
process a write (9 cycles) 

• The time required by the array module to 
process read data for a masked write (2 
cycles) 

• The time required for a refresh of the array 
module (12 cycles) 

• The time between array refresh signals (300 
cycles) 
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Processor Resources Not Modeled 
In addition to some of the microcode and parts 
of the memory subsystem, several other parts of 
the design are not simulated. The translation 
buffer that contains virtual-to-physical address 
mappings is not modeled. (The design has a 
1024-entry, direct-mapped translation buffer, 
half of it for system-space addresses, the other 
half for process-space addresses.) 3 The logic 
and microcode that handle alignment traps are 
not modeled. Any unaligned addresses associ­
ated with processor read and write requests for 
the cache are automatically aligned by the simu­
lator. Finally, no 1/0 traffic is generated on the 
memory interconnect to compete with proces­
sor and memory traffic . These omissions could 
impact the simulated performance of some pro­
cessor designs for some workloads. However, 
their exclusion from this model did not impact 
the performance estimates generated for the 
processor with the set of workload programs 
used. 

Evolution of the Model 
Before presenting studies done with the proces­
sor performance simulator, we should examine 
how the model evolved. Our most significant 
achievement was to continue developing the 
model even as project goals changed and as the 
design materialized over time . This continual 
adjustment resulted in a model that reflected 
the latest design and could be used in new 
design studies. 

The first version of the simulator was not 
very detailed . It included the pipeline , 
the instruction buffer, the cache arbiter, a cache 
shell , and some hand-coded microcode for 
evaluating operand specifiers and for a limited 
number of VAX instructions. No lookup was 
done in the cache shell. A parameter specified 
the hit and miss percentages desired, and 
random number generation was used to decide 
the lookup results. Runs were made with 
both two and four IB longwords, and 90 and 
100 percent hit rates in the cache; the workload 
was the Towers of Hanoi benchmark . Two 
important results were indicated: first, the per­
formance was in line with the stated goals; sec­
ond, it was desirable to have more than two IB 
longwords. 
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At that point, a more aggressive set of design 
goals was set by engineering management . 
Therefore, the next version of the simulator 
modeled more of the detailed implementation 
that was evolving . This detail included the 
decoder, the cache-control and memory-request 
queues , and the memory interconnect. We 
developed microcode translation software and 
used the first base-level microcode released to 
control the model. Some custom coding was 
done to accommodate single-precision floating 
point instructions that were needed. Both hard­
ware and microcode bugs were uncovered dur­
ing the design and verification of this simulator 
version, thus increasing its value to the designers. 

Perfonnance Simulation 
Results and Studies 
Using the simulator just described , we carried 
out a number of studies to verify the processor's 
performance and to examine design alternatives . 
Since the detailed results are very extensive, this 
concluding section outlines the kinds of perfor­
mance information gathered and highlights a 
number of studies that were done. 

Performance Information Gathered 
Information provided by a performance simula­
tor falls into four areas: 

1. Measuring the performance of a program 
on an existing processor and then tracing 
that same program to drive a processor 
simulator are used to produce a relative 
performance estimate for the proposed 
processor. (Of course, this comparison is 
reasonable only if both processors are 
implementations of the same architec­
ture .) The information needed to make 
the comparison includes the following: 
the total number of instructions exe­
cuted, the execution time required, and 
the cycle time on the measured system, as 
well as the total number of instructions 
simulated, the total cycles required, and 
the proposed cycle time on the simulated 
system. The VAX-11 /780 processor was 
used as the comparison machine for gen­
erating performance estimates relative to 
the VAX 8800 family processor design . 

2. Simulating the use of resources within 
processor system components produces 
information about how efficient each 
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component is in processing requests and 
how well the components interact. 
Knowing what requests are received and 
what percent of the time component 
resources are stalled or busy (and why) 
provides insight into the overall system 
performance. We found that presenting 
this detailed information in terms of aver­
ages-per-instruction was an effective way 
of summarizing the activities. This infor­
mation helped the designers in making 
hardware design decisions at a low level. 

3 . Varying the parameter values in a simula­
tor and comparing the results produces 
useful information to evaluate high-level 
design and configuration decisions. Since 
the VAX 8800 family processor design 
was modeled, a number of studies have 
been done to evaluate schemes that could 
be used in new processor designs. 

4. Analyzing the instruction stream data from 
the trace that drives the simulator pro­
duces information about how the archi­
tecture's instruction set is used. This type 
of information helps designers decide 
which optimizations are most beneficial , 
especially in the microcode flows . Gath­
ering this information generally does not 
require processor-specific functions in 
the simulator. Therefore , the simulator 
does not produce that information. For 
our purpose , the information was gath­
ered from another package of analysis soft­
ware. 4 Only individual VAX instruction 
times that were specific to the VAX 8800 
family processor came from the simulator. 

Highlights from Simulation Studies 
Initially we used the Towers of Hanoi, the prime­
number generator , and the single-precision 
Whetstone benchmark to drive the model. From 
it we derived results indicating that the perfor­
mance of the VAX 8800 family processor was 
between 4.5 and 5.6 times that of a VAX-11/780 
processor. The designers made one change based 
on the resource utilization statistics the simula­
tor generated. Cache read hits had required two 
cycles, rather than the usual one cycle , when the 
read address also matched a valid delayed-write 
buffer address. This number was changed to one 
cycle when the simulator showed the frequency 
of this event was higher than antic ipated . 
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Once the basic processor design had been 
successfully modeled, work focused on broad­
ening the microcode coverage and simulating 
various alternatives. Better microcode coverage 
allowed more programs to be traced and run 
through the simulator. We wanted to use more 
diverse programs, like the FORTRAN compile 
and the VAXjVMS link, to exercise the design 
using the simulator. Alternatives such as cache 
flushing to simulate context switching, the 
worst-case memory model, and the dual-proces­
sor version were also added . To study the 
model's behavior, we ran many simulations , 
varying the basic processor configuration and 
comparing results to detect the effects. Even 
today, this work continues as new design ideas 
surface . 

The following list shows the VAX 8800 family 
processor simulation parameters and configura­
tions that were most sensitive from a perfor­
mance point of view: 

• Context switching, simulated by invalidating 
all cache entries every n VAX instructions, 
showed a performance degradation from 
8 percent when done every 10 ,000 instruc­
tions, to 23 percent when done every 2,000 in­
structions. We chose an interval of 5,000 in­
structions for the simulator , which is a 
conservative estimate. (The degradation was 
13 percent for 5,000 instructions.) 

• A timing requirement of two cycles for read 
hits in the cache , rather than one cycle as 
implemented in the VAX 8800 family proces­
sor design, degraded the simulated perfor­
mance by 9 percent. 

• The latency time for memory reads decreased 
performance by about 0.75 percent for each 
additional cycle of latency. 

• The worst-case model for memory, using only 
one array module, required 14 percent more 
cycles than the best-case model. (This result 
contributed to our decision to use only the 
best and worst cases.) 

• A slow memory interconnect and controller 
relative to the processor degrades the perfor­
mance gains when a faster processor is used. 
Doubling the processor speed by cutting the 
cycle time in half increased performance by 
only 1. 5 times over that of the slower proces-
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sor with the same memory. Tripling the 
speed increased performance by only 1. 7 
times. 

• Enhancements made in the FORTRAN com­
piler for generating code had a great impact 
on the instruction stream traced, as well as on 
the performance estimates derived using the 
FORTRAN benchmarks. This improvement 
was particularly noticeable for the FORTRAN 
compiler released with VMS Version 4. 

Summary 
The development of the VAX 8800 processor 
performance simulator continued throughout 
the entire project. The simulator helped to ver­
ify the attainment of performance goals and pro­
vided performance trade-off information to the 
designers. The model's results fostered discus­
sions about interfaces, helped the designers to 
find problems, and uncovered unanticipated 
interactions. The simulator continues to con­
tribute to current processor design efforts 
through its use in studying the performance 
impact of alternatives. 

ln addition, we learned a number of impor­
tant lessons that will be useful in designing 
future simulators. First, it is important to 
develop the basic processor simulation func­
tions as early as possible in a design project. 
Having a general-purpose cache model that can 
be called and controlled from different proces­
sor implementation models is one of the most 
important functions. 

Second, defining and developing a monitor to 
control the various parts of a simulator, apart 
from implementing the particular design, has 
significant implications for designers of perfor­
mance simulators. Having separate control func­
tions allows the implementor to concentrate on 
understanding the design to be modeled, as well 
as to take advantage of features provided by the 
control monitor to debug the model. Separating 
control from the simulated design, however, 
does not result in a simulator with the most 
optimized runtime performance. 
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VMS Multiprocessing on the 
VAX 8800 System 

Some features of the VAX 8800 architecture are particularly relevant to 
multiprocessor operation. Special hardware, not included in the VAX 
architecture, allows the VMS operating system to use both CPUs in an 
asymmetric, tightly controlled fashion. The processors operate in a 
master-slave relationship with one CPU handling all l/0. The hardware 
bandies interprocessor interrupts, cache coherency, and shared mem­
ory. VMS uses the interprocessor interrupt in managing operations 
between the master and slave CPUs. The VMS system also uses interlocked 
instructions, exception handlers, and traps to handle multiprocessing. 
These instructions allow events to be scheduled and executed efficiently 
on both processors. 

Every computer system is a combination of hard­
ware and software architectures, the operating 
system being a direct result of their merger. The 
same operating system can be implemented on 
different hardware systems with the same archi­
tecture, but a user can access only those features 
that each set of hardware can suppon. The most 
effective merger is the one allowing users of the 
resulting operating system to make maximum 
use of all the features designed into both the 
hardware and software architectures. 1 The 
VAX 8800 multiprocessor is an example of the 
result of such an effective merger. 

The VAX Architecture and 
Multiprocessing 
Many of the VAX 8800 hardware features impor­
tant to VMS multiprocessing are defined by the 
VAX architecture for single-processor and multi­
processor systems alike. 2 These features include 
the processor modes, 1/0 and software inter­
rupts, exception handling, asynchronous system 
traps (ASTs), and interlocked instructions. This 
section briefly describes these features, which 
are discussed in more detail later. 

Processor Modes 
The VAX architecture defines four modes in 
which a processor may execute. In order of 
decreasing levels of privilege, these modes are 
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kernel, executive, supervisor, and user. Most of 
the critical resource management code in the 
VMS system is executed in kernel mode; in fact, 
some instructions can be executed only while in 
that mode. Two examples of such instructions 
are LDPCTX and MTPR (move to processor reg­
ister). LDPCTX loads the context (stacks, page 
tables, and so on) of a process into a CPU so that 
the process can execute. MTPR is used, among 
other things, to enable, disable, or trigger cer­
tain interrupts during resource management. 

Interrupt and Exception Handling 
The VAX architecture supports the immediate 
servicing of important events by means of a 
mechanism that can transfer control away from 
the currently executing process. Events that are 
primarily relevant to and normally invoke soft­
ware in the context of the currently executing 
process are called exceptions. Events that are 
relevant to other processes, or to the system as a 
whole, are called interrupts, which are serviced 
in a system-wide context. 2 The VMS operating 
system provides a handler routine for each 
exception and interrupt defined by the VAX 
architecture. 

Upon system startup, the VMS operating sys­
tem initializes a system control block (SCB), 
which defines the locations of the various event 
handlers, as shown in Figure 1. The SCB contains 
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. . . 
TRANSLATION NOT VALID (PAGE FAULT) EXCEPTION . . . 

CHANGE MODE TO KERNEL EXCEPTION 

CHANGE MODE TO EXECUTIVE EXCEPTION 

CHANGE MODE TO SUPERVISOR EXCEPTION . . . 
INTERPROCESSOR INTERRUPT 

SOFTWARE INTERRUPT LEVEL 1 (UNUSED) 

ASYNCHRONOUS 
SOFTWARE INTERRUPT LEVEL 2 - SYSTEM TRAP DELIVERY 

SOFTWARE INTERRUPT LEVEL 3 - RESCHEDULING . . . 
SOFTWARE INTERRUPT LEVEL 15 - XDELTA 

10 MILLISECOND INTERVAL TIMER INTERRUPT 

. . . 

Figure 1 System Control Block 

an assigned longword that holds the address of 
the handler for each interrupt and exception 
serviced by the operating system. 

Interrupts and exceptions have varying 
degrees of urgency. Each event has a specific 
interrupt priority level (IPL) that designates the 
relative priority of that event. The VAX architec­
ture includes 31 IPLs, divided into 15 software 
levels (numbered, in hexadecimal , 01 to OF) , 
and 16 hardware levels (10 to IF). User appli­
cations and system services run at the process 
level, which may be thought of as IPL 0 . Inter­
rupt levels with higher numbers have higher 
priorities. That is to say, a request at an IPL 
higher than the processor ' s current IPL will 
interrupt immediately; requests at the same or 
lower levels will be deferred. 2 The interproces­
sor interrupt and the IO-millisecond (ms) inter­
val-timer interrupt are examples of hardware 
interrupts. The rescheduling interrupt and the 
AST-delivery interrupt are examples of software 
interrupts. 

Software executing in kernel mode posts a 
software interrupt by setting the appropriate bit 
in the software interrupt request register 
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(SIRR) . A bit exists in the SIRR for each software 
interrupt level. An interrupt can take place only 
when the IPL level of the CPU has been lowered 
below that of the pending interrupt. For exam­
ple, the handler for the interprocessor interrupt 
(executing at IPL 20) can post a reschedule 
event (a software interrupt at IPL 3) by setting 
the appropriate bit in the SIRR. When the CPU's 
IPL drops below IPL 3 , the IPL 3 interrupt han­
dler is invoked, which is the VMS code that ini­
tiates process rescheduling . 

This technique allows high IPL code threads 
to schedule lower IPL functions in a way that 
allows all potentially interrupted code threads 
at intermediate IPLs to complete first. Should a 
higher IPL code thread merely lower the IPL by 
force to execute the lower IPL function , any 
intermediate IPL code threads that had been 
interrupted would complete out of order, thus 
breaking the software synchronization . 

AST Delivery Mechanism 
In any mode, the VAXjVMS system can interrupt 
a code thread executing at IPL 0 , begin a new 
code thread (also at IPL 0) , and then continue 
the previously interrupted code thread. This 
mechanism is called " delivering" an AST. The 
hardware notifies the operating system that an 
AST is deliverable to the currently executing 
process by means of an interrupt at IPL 2. (Note 
that this is the only instance of the VAX hard­
ware posting a software interrupt) . Any process­
context code thread that must execute without 
interruption by an AST has to be executed at 
IPL 2 or higher. If a deliverable AST is queued to 
the current process and the IPL of the CPU 
drops below 2, then an IPL 2 interrupt will be 
generated. To execute that interrupt, the IPL 2 
interrupt handler first verifies that the AST can 
be delivered and then delivers it to the process, 
after which the new code thread associated with 
the particular AST is executed. 

An AST code thread is associated by a process 
with events that are expected to complete asyn­
chronously to the main thread of the process. An 
example of such an event is an 1/0 request that, 
once issued, is handled by the system in parallel 
with the main thread of the process. Upon 1/0 
completion, the associated AST is delivered, 
which causes the main thread of the process to 
be interrupted in favor of the AST's code-thread. 

When an AST is specified for an asynchronous 
event, it is assigned a particular processor mode. 
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When the AST is queued to a process, its delivery is 
deferred while that process is executing in a more 
privileged mode than that of the queued AST. For 
example , when an AST in supervisor mode is 
queued to a process executing in kernel mode, the 
AST will not be delivered until the context 
changes from kernel mode to at least supervisor 
mode. 

Interlock ed Instructions 
The VAX architecture includes a few instructions 
that allow synchronous access to locat ions in 
memory. Only those instructions will guarantee 
consistent results if multiple processors want 
simultaneous access to the same memory location. 

For bit manipulations, these interlocked 
instructions are 

• BBCCI - Branch on bit clear and clear inter­
locked 

• BBSSI - Branch on bit set and set interlocked 

For arithmetic manipulations , there is 
ADAWI -Add aligned word interlocked. 

For queue manipulation, the instructions are 

• INSQHI - Insert at head of queue interlocked 

• INSQTI - Insert at tail of queue interlocked 

• REMQHI - Remove from head of queue inter­
locked 

• REMQTI - Remove from tail of queue inter­
locked 

These instruct ions are used extensively in the 
operating system to provide multiprocessor syn­
chronization . They are also available to user pro­
cesses to synchronize access to shared application 
data. 

The VAX 8800 System 
The specific implementation features of the 
VAX 8800 multiprocessing system are described 
in this section. Remember that the 8800 is only 
one of many implementations of the VAX archi­
tecture. Several important hardware features pro­
vided by the 8800 are not specified in the VAX 
architecture but are required for VMS multipro­
cessing. These hardware features are 

• Primary processor access to all peripherals 

• Interprocessor interrupts 

• Shared main memory 

• Cache coherency 

VAX 8800 Implementation 
The VAX 8800 system consists of two VAX 8800 
processors that share main memory by means of a 
fast memory-system interconnect called the NMI 
bus. 3 The processor hardware is completely sym­
metric; that is, either processor can fulfill the role 
of primary processor for any booted instance of 
the operating system. Figure 2 is a block diagram 
of the VAX 8800 system. 

CONSOLE 

MEMORY 

LEFT 
CPU 

CLOCK 

NMI 

NBI 
ADAPTER 

RIGHT 
CPU 

VAXBI VAXBI 
BUS BUS 

1/0 
CONTROLLER 

1/0 

VAXBI 
BUS 

CONTROLLER 

NBI 
ADAPTER 

VAXBI 
BUS 

Figure 2 Block Diagram of VAX 8800 System 
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There is one console subsystem in the 8800, 
which is shared by the two CPUs. The console 
command language, implemented in software in 
the console subsystem, is a superset of the con­
sole functionality specified by the VAX architec­
ture . 2 Both CPUs can be controlled from the 
single console terminal . After the system is 
booted, the console terminal can be used like 
any other terminal connected to the system. 

All 1/0 devices are connected to the system 
through VAXBI buses. The 8800 can accommo­
date up to four VAXBI buses, each of which can 
accommodate up to 16 nodes, generally 1/0 
controllers. The buses are connected to the NMI 
by means of the NMl-to-VAXBI adapters, called 
the NBls. Each NBI consists of either two or 
three parts: an NBIA, which is the interface to 
the NMI; and one or two NBIBs, which are inter­
faces to the VAXBI buses. An NBIB is one of the 
16 nodes on its respective VAXBI bus. 

Under VMS multiprocessing, all peripherals 
are controlled by the first processor to be 
booted, designated the primary processor. The 
other processor, the secondary, is prevented 
from accessing any peripheral devices ( disks, 
terminals, and so on) because the code commu­
nicating with those devices runs in kerne l 
mode, an access mode that VMS utilizes only on 
the primary. Thus, all 1/0 peripherals will be 
accessed only by the primary processor. Typi­
cally, the left CPU in the VAX 8800 system is 
chosen as the primary processor. However, con­
sole commands are available to designate either 
CPU as the primary one. A change in that desig­
nation takes effect after the next INIT command 
is received by the console. 

The VAX 8800 hardware provides the capabil­
ity for one processor to interrupt the other. This 
interruption is accomplished by writing a value 
of 1 to an internal processor register on the 
interrupting CPU by means of the privileged 
MTPR instruction (from kernel mode only) . The 
VMS system uses this mechanism to synchronize 
the CPUs as different system events occur. 

The main memory contains one copy of the 
VMS software, which depends upon the memory 
subsystem and interlocked instructions for 
cache coherency and the consistency of memory 
contents. The VAX 8800 memory subsystem 
automatically handles all cache updates; no soft­
ware logic is needed to maintain consistency 
between the cache contents in each processor. 
The 8800 does implement a write buffer to 
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optimize transfers across the NMI to the memory 
subsystem. Therefore, the interlocked instruc­
tions must be issued to flush the necessary write 
data all the way out to memory. If one processor 
modifies shared data, the other needs to see the 
change in a synchronized and timely fashion. 

Multiprocessor Implementation 
Improvements 
The VAX 8800 system includes features that are 
improvements over previous multiprocessing 
VAX hardware implementations, such as the 
VAX-11/782 system. Larger amounts of physical 
memory can be used, all of which is available to 
the VMS system or the system diagnostics. More­
over, the 8800 cache provides better perfor­
mance, and the system has a smaller footprint 
and a better price/performance ratio. Perhaps 
the most significant fact from a system-manage­
ment viewpoint is that only one console subsys­
tem with one terminal is needed to control the 
entire multiprocessor. This single control point 
has ramifications for setting up the system and 
running it as a multiprocessor. 

The console subsystem has access to the mem­
ory configuration of the 8800 . With previous 
multiprocessors, the system manager had to con­
figure memory by manually determining the 
appropriate data , then entering it into cus­
tomized command procedures on specially built 
floppy disks in the console.4 

The console subsystem of the 8800 also elimi­
nates the need for operator intervention to boot 
or restart the secondary processor. The VMS sys­
tem is initially booted on the primary processor 
and subsequently directs the console subsystem 
to boot the secondary. Similarly, the console 
subsystem restarts the VMS system on the pri­
mary processor after a power failure. The oper­
ating system then directs the console to restart 
the secondary at the appropriate point in the 
power-recovery sequence. At no time must the 
operator be involved in bringing the secondary 
on line.4 

The VMS Operating Sy stem 
The multiprocessing aspects of the VAX archi­
tecture and the VAX 8800 implementation 
provide the underlying hardware support for a 
totally integrated multiprocessing computer sys­
tem. This section discusses aspects of the VMS 
software that are specifically related to multi­
processing as implemented for the 8800. (See 
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reference 5 for additional multiprocessing infor­
mation and recommended programming tech­
niques.) 

Classification 
In multiprocessing terminology, VMS multipro­
cessing is classified as " asymmetric " and 
"tightly coupled." An asymmetric system is one 
in which one CPU, called the primary, has criti­
cal system-wide responsibilities, including the 
management of all the CPU resources. The other 
CPU, called the secondary, has more restricted 
responsibilities that exclude the management of 
critical system resources (including itself) . This 
type of multiprocessing system is also referred 
to as a " master-slave" arrangement. The other 
classification, tightly coupled, means that both 
processors operate in a closely synchronized 
fashion; if they fail, they fail together. 

On a VMS multiprocessing system, both pro­
cessors share the same copy of the operating sys­
tem, although some code is executed only by 
one or the other CPU. Most of the kernel logic 
in the VMS operating system is executed only by 
the primary processor. That eliminates the need 
for the complex synchronization and locking 
mechanisms that would otherwise be required 
to protect the system 's data structures from 
access by multiple CPUs. 

History of VMS Multiprocessing 
VMS multiprocessing was introduced during the 
development of VMS Version 3.0. At that time , 
the power of a single VAX-11 /780 processor 
was insufficient to build the VMS executive in a 
reasonable amount of time . Several constraints 
were placed on the multiprocessing develop­
ment effort. It had to involve minimal changes 
to VMS kernel mode routines, use existing hard­
ware, and have minimal performance impact on 
single-processor VMS systems.6 

The first constraint above had the greatest 
impact on the chosen design of VMS Ver­
sion 3.0 . To achieve fully symmetric multipro­
cessing, changes would be required throughout 
the whole operating system to extend IPL syn­
chronization as already implemented by VMS for 
single-processor operation. Since those changes 
were too extensive to make, we chose an asym­
metric design in which the synchronization of 
critical code was achieved by limiting that activ­
ity to the primary CPU. In this context, existing 
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IPL-based techniques were sufficient to synchro­
nize the code threads in kernel mode. 

The second constraint led us to configure a 
system with two VAX-11/780 CPUs coupled by 
an MA780 shared memory. In this configuration, 
each CPU has a separate, independent console 
subsystem; neither has access to the other's con­
sole . Booting this multiprocessor requires spe­
cial console command files and operator inter­
vention for both CPUs. Similarly, the 1/0 
devices configured on one CPU are inaccessible 
on the other. Since most of the 1/0 subsystem 
code executes in kernel mode, this constraint 
has the effect of limiting the 1/0 devices usable 
by the multiprocessor to those connected to the 
primary CPU. 

The final constraint led to a design that allows 
multiprocessing code to be inserted dynamically 
into the running executive. No multiprocessing 
code is present in a single-processor configura­
tion of VAXjVMS. 

The multiprocessing capabilities in VMS 
Version 3.0 were extended to support the new 
VAX 8800 system. These extensions take advan­
tage of new functions allowed by the new VAX 
design. For example, as mentioned earlier, the 
shared console subsystem allows the secondary 
processor to be booted from the primary under 
program control ; no operator intervention is 
required. 

Division of Work between Processors 
As mentioned earlier, the VMS multiprocessing 
code is a master-slave implementation. The sec­
ondary CPU is required to do whatever work is 
assigned to it by the primary. The secondary 
CPU can execute application code only, while 
the primary CPU handles the 1/0, paging, and 
all resource management, as well as the execu­
tion of application code . Since all system ser­
vices that manage system resources are executed 
in kernel mode , only the primary CPU is 
allowed to execute those services . The sec­
ondary CPU can execute code that is in any 
other mode : user , supervisor , or executive . 
Thus, to be technically accurate in multipro­
cessing terminology, the VMS multiprocessing 
system is symmetric for code in the user, super­
visor, and executive modes, but asymmetric for 
code in kernel mode. 

The VMS boot code creates a SCB for each pro­
cessor. As described earlier, the SCB contains 
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vectors to routines that handle various interrupt 
and exception events. Many VMS interrupt and 
exception handlers are identical for both the 
primary and secondary processors. However, 
there are cases in which exceptions or inter­
rupts must be handled differently, depending 
upon which processor receives the event. The 
interprocessor interrupt and the software inter­
rupt used for rescheduling are both examples of 
system-wide events. Both are vectored through 
the SCB but require different handlers for each 
processor. (Figure 1 shows the various interrupt 
levels in the SCB.) The AST-delivery software 
interrupt and the quantum end, a scheduling 
event (described later) , are examples of pro­
cess-related events that also require different 
exception handlers in the SCB of each CPU. By 
separating the handlers into processor-specific 
SCBs, the more costly and difficult task of run­
time separation within an otherwise commonly 
executed handler is avoided. 

Typically, when an exception occurs on the 
secondary, that CPU's exception handler 
"reflects" that exception back to the primary. 
To do that, the exception handler stores both 
the address of the primary's exception handler 
and an appropriate processor status longword 
(PSL) on the stack of the current process. The 
secondary's exception handler then saves the 
context of the current process and passes the 
process back to the primary by requesting a 
rescheduling event. The process eventually exe­
cutes on the primary, whose exception handler 
will immediately get control as if the exception 
had occurred there originally. Exception pro­
cessing is therefore synchronized on a system­
wide basis by virtue of running on the primary 
processor only. 

The SCB for the primary CPU consists of mul­
tiple pages of interrupt and exception vectors. 
The format of the first page is defined by the 
VAX architecture. This page contains vectors for 
all implementation-independent exceptions and 
interrupts, and for a few implementation-depen­
dent ones. Additional pages of vectors are pro­
vided for 1/0 interrupt handlers. Under VMS 
multiprocessing, the length of the SCB for the 
secondary CPU is one page. The pages that make 
up the 1/0 subsystem portion of the SCB are not 
needed on the secondary, which will not initiate 
1/0 requests nor receive 1/0 interrupts. 
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Interprocessor Interrupts 
The VAX 8800 hardware provides a key feature 
for optimizing the VMS multiprocessing soft­
ware: the ability of one processor to interrupt 
the other. This interprocessor interrupt mecha­
nism is used extensively on each CPU by the 
VMS operating system. 

The primary processor interrupts the sec­
ondary for several reasons. First, the primary can 
request an invalidation of a translation buffer 
entry corresponding to a system-space address 
that is about to be invalidated on the primary. 
This event forces coherency between the trans­
lation buffers of both processors with respect to 
mapping changes in the shared system virtual 
address space. Second, the primary can interrupt 
because it has queued an AST, typically for 1/0 
completion, for the process currently executing 
on the secondary. This event ultimately results 
in the process being rescheduled onto the pri­
mary, where the actual delivery of the AST to 

the process can be accomplished . Finally, the 
primary can initiate and synchronize a system­
wide shutdown or a crash. 

The secondary processor will interrupt if it 
wants the primary to take back the current pro­
cess and find another process for the secondary 
to execute. The secondary will also interrupt if 
it detects a hardware error or if it wants to ini­
tiate a system-wide crash. 

Secondary State Transitions 
A state variable is maintained to record the cur­
rent state of the secondary processor. The pri­
mary processor uses this state to determine 
whether or not to schedule work for the sec­
ondary. When the secondary is booted, the state 
variable is already set to INIT. After booting, the 
secondary changes the state variable to IDLE. 
During its next reschedule operation, the pri­
mary will notice the IDLE state and attempt to 
schedule a process for the secondary to execute. 
After finding a process for the secondary, the 
primary sets the state variable to BUSY. The sec­
ondary, which has been continually checking 
the state variable for this transition, then loads 
the process's context from memory and sets the 
state to EXECUTE. 

The secondary will execute its current pro­
cess until the process either receives its quan­
tum of CPU time or is blocked by some request 
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that must be synchronized in a system-wide con­
text. (That request must be executed in kernel 
mode on the primary.) At this point, the sec­
ondary saves the process's context in memory 
and sets the state to DROP. Using the VAX 8800 
interprocessor interrupt mechanism, the sec­
ondary then interrupts the primary and requests 
another process to execute. The primary takes 
the saved process back from the secondary, set­
ting that CPU's state to IDLE. Thus, the state 
transition has made an entire circuit. 

Figure 3 shows the state transition diagram for 
the secondary CPU. The primary's paths are 
marked P and the secondary's paths are marked 
S to indicate which processor controls each tran­
sition from one state to another. The only state 
not explained above is the STOP state, used only 
when the secondary is shut down. 

p 
INIT 

p 
DROP 

s p s 

STOP 
p 

IDLE EXECUTE 

s 

p 
BUSY 

Figure 3 Secondary CPU State Transitions 

Process Scheduling under the VMS 
Operating System 
Some aspects of process scheduling were dis­
cussed in the previous section. This section 
describes in greater detail how process schedul­
ing is implemented in the VMS system and 
which of its aspects are different in a multipro­
cessing environment.6 

Single-Processor Scheduling 

The VMS scheduling algorithm implemented on 
a single processor is round-robin and preemp­
tive, with the highest priority process being exe­
cuted first. There are 31 levels of process prior-
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ity (which are not the same as interrupt priority 
levels). Thirty-one is the highest priority, one 
the lowest; process priorities are subdivided 
into real-time (priorities 16 to 31) and "nor­
mal" (priorities O to 15) ranges. The real-time 
priorities are used by time-critical applications, 
such as high-speed data acquisition. When a 
process is created, it is assigned a base priority. 
Its priority during execution is guaranteed never 
to drop below that base priority unless either 
that process or another, privileged process 
requests it to. 

Each process is allowed a quantum of CPU 
time (usually 200 ms, equivalent to 20 inter­
rupts of the 10-ms interval timer; however , a 
system manager can change the default). Each 
time the interval timer interrupts, the interrupt 
handler checks to see if the current process has 
used up its quantum. If so, quantum-end pro­
cessing is initiated. 

For a process with a priority in the real-time 
range , quantum-end processing consists of 
awarding a new quantum to the process and 
allowing it to continue execution. A reschedule 
event will occur when a normal-priority process 
has used up its quantum. In the latter case, the 
current process is placed at the end of the 
scheduling queue maintained for that process's 
priority (there is one such queue for each pro­
cess priority), and the process at the head of the 
queue is chosen to execute. 

The priority of a normal-range process is 
raised after certain blocking events have 
cleared. For example, to provide good response 
time to interactive users, a process's priority 
will be temporarily boosted after the comple­
tion of terminal input. This arrangement results 
in a tendency for compute-bound processes to 
remain at their initial priorities ( called the base 
priority) . However, 1/0-bound and interactive 
processes, which are blocked more frequently , 
usually attain priorities somewhat higher than 
their base ones. A process's priority is lowered one 
point when the process is scheduled to execute, 
unless it is already running at its base priority. 

Multiprocessor Scheduling 

The primary processor schedules all work on 
the system, for both itself and the secondary 
processor. The scheduling algorithm used for 
the primary processor is basically the same one 
used in a single-processor system (an important 
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goal in this implementation). For the multipro­
cessor scheduling algorithm, however, certain 
modifications were made to extend the effec­
tiveness of process scheduling to utilize the 
additional CPU resources that are available. The 
execution environment of the secondary proces­
sor is more constrained than that of the primary. 
Most notably, the kernel-mode code is restricted 
to the primary CPU. The multiprocessor 
scheduling algorithm attempts to keep that sec­
ondary CPU as fully utilized as possible with 
minimal scheduling overhead in the following 
ways: 

• The primary processor always schedules a 
process to run on the secondary before 
scheduling a process for itself to execute. 

• The primary processor will schedule a pro­
cess to run on the secondary only if that pro­
cess does not require immediate execution in 
kernel mode and does not have an AST 
(which requires kernel-mode execution) 
ready to be delivered. This scheduling helps 
prevent situations in which a process can 
flip-flop between processors , sometimes 
called scheduler thrashing. 

• Scheduling is preemptive on the primary pro­
cessor, but not on the secondary. Thus, if the 
secondary processor is executing one job 
when another job with higher priority 
becomes computable, the primary processor 
will not interrupt the secondary to give it the 
higher priority job. Therefore , processes exe­
cuting on the secondary processor are more 
likely to run for their entire quantum than are 
processes executing on the primary. 

This approach guarantees only that the 
highest priority process will be executing, 
not the two highest priority processes. To 
guarantee the latter would require signifi­
cantly more interprocessor interrupt traffic 
and is likely to increase thrashing on the 
entire system, and will especially affect the 
primary's ability to devote processing time to 

its own selected process. 

• If all computable processes require execu­
tion in kernel mode, then the primary proces­
sor cannot schedule a process for the sec­
ondary and will execute a process itself. 
Should that happen, an AST-delivery interrupt 
will be generated automatically after the pri­
mary processor stops executing the process 

118 

in kernel mode. The primary processor han­
dles this interrupt by performing a reschedul­
ing operation. As a result, the primary proces­
sor sends the process it was just executing, 
which is no longer in kernel mode , to the 
secondary processor in a timely fashion. The 
primary is then free to execute another pro­
cess itself. 

When there is only one computable process, 
one of the CPUs will remain idle. In this case 
the primary processor executes the process 
itself even it may be perfectly eligible to exe­
cute on the secondary. Thus the overhead 
processing associated with the post-kernel 
mode AST and the subsequent rescheduling 
of the secondary can be avoided. This case 
also has the effect of preventing future 
thrashing if the process needs access to ker­
nel-mode resources, at least until enough 
computable processes become available to 
keep both processors busy. 

• The system services7 that request event-flag 
waits (SWAITFR, SWFIAND, and SWFLOR) 
are among the most commonly executed ker­
nel-mode services. 1 If a process running on 
the secondary processor requests an event­
flag wait , the VMS operating system will 
attempt to avoid rescheduling the process 
onto the primary CPU. The system-service 
dispatcher on the secondary CPU first checks 
to see if the requested flags are already set. If 
so, the process is allowed to continue execut­
ing on the secondary without rescheduling. 

If the flags are not set, an interprocessor 
interrupt requesting that the process be 
placed into an event-flag wait state (either 
LEF or CEF) will be sent to the primary CPU. 
When that processor services the interrupt, it 
again checks to see if the wait request has 
been satisfied (the flags have been set). If so, 
the process is allowed to continue executing 
on the secondary. If the flags are still not set, 
the process is taken out of execution and 
placed into the appropriate wait state . The 
secondary processor then becomes available 
for scheduling. 

Although a process may currently be eligible 
for scheduling onto the secondary, the VMS 
operating system cannot predict whether or not 
that process will require kernel-mode services 
in the near future. If those services are needed, 
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the process would have to be rescheduled onto 
the primary. For example, utilities that perform 
interactive tasks (such as editors or the mail sys­
tem) require numerous 1/0 requests. Other 
types of programs incur many page faults. These 
processes are therefore poor candidates for exe­
cution on the secondary. Sometimes a system 
manager can predict that certain processes will 
have those characteristics, and he or she can 
take preventive measures to avoid processing on 
the secondary. 

The following VMS multiprocessing schedul­
ing features give the system manager manual 
control over the scheduling of processes onto 
the secondary CPU: 

• A SYSGEN parameter exists to limit the maxi­
mum priority of processes allowed to execute 
on the secondary.5 Recall that priority boosts 
are granted to processes after certain events, 
such as 1/0 completion. These ljO-intensive 
processes tend to stay at priorities above 
those of compute-intensive ones. Therefore, 
setting the SYSGEN parameter a point or two 
above the default base-process priority may 
effectively screen out many "unsuitable" 
processes from the secondary processor. The 
system manager can set the SYSGEN parame­
ter to O (indicating no priority screening is to 
occur) or to any value from 1 to 31, which 
sets the priority limit to the specified value. 

• A process can be made ineligible from exe­
cuting on the secondary processor by means 
of the SET PROCESS/CPU=NOATTACHED 
command. This command prevents user pro­
cesses that execute only interactive or 1/0-
bound utilities from running on the sec­
ondary. This fixed-process attribute remains 
in force until it has been changed with a SET 
PROCESS/CPU=ATTACHED command.5 

Summary 
The VAX 8800 system running the asymmetric 
VMS operating system provides the most com­
puting power currently available in the VAX 
family to execute compute-intensive applica­
tions. The 8800 represents a merger of a new 
hardware implementation of the VAX architec­
ture with preexisting multiprocessing capabili­
ties in the VMS operating system. This software 
uses features of the VAX architecture and the 
hardware for which it was originally intended. 
With the advent of new multiprocessing hard-
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ware, the software design could be modified 
to take advantage of additional capabilities 
offered by the advanced hardware design in the 
VAX 8800 CPU. 
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Steven S. Greenberg 

A Parallel Implementation of the 
Circuit Simulator SPICE on 
the VAX 8800 System 

Multiprocessors are efficient only if the added computing power can be 
used to solve specific applications. To demonstrate the VAX 8800 multi­
processor's advantages, the authors converted the circuit simulator 
SPICE into the parallel program CAYENNE. Their methodology involved 
using VAX instructions and VMS system services to create and control a 
series of master and slave processes. Other VMS instructions were used to 
synchronize these processes and to manage the critical sections. Modifi­
cations for parallel processsing were made in SPICE's load, LU factoriza­
tion, and local truncation error phases. The result was that CAYENNE, 
with two slave processes, ran 1. 7 time Jaster than SPICE. 

The realization that two processors might be 
better than one is not new. Indeed , parallel 
computing can be traced back to the n ineteenth 
century.1 The advent of very large scale integra­
tion opened a variety of new opportunities in 
the field of para llel processing for spec ific 
applications such as image processing and signal 
processing. Designing and efficiently using a 
multiprocessor for general-purpose , high-speed 
computing, however, is more complex. 

The majority of today's application programs 
are written for single-processor machines. To 
convert these programs tO run on multiproces­
sor machines and achieve close to the ideal 
speed up, linear with the number of processors, 
is not an easy task. Two approaches can be 
adopted to accomplish this conversion task. The 
first is to design specific compile rs that auto­
matically convert programs written for single 
processors into programs that run efficiently on 
multiprocessors. The second is to leave tO the 
application programmer the task of writing code 
that makes efficient use of the multiple pro­
cessors. 

The first approach is the best from a user's 
point of view; however, good multiprocessor 
compilers have yet tO be designed. The second 
approach leaves more flexibi lity to the pro­
gram mer , who can modify some of the 
algorithms in the program to have more concur-
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rency. Indeed, the two approaches should not 
be mutually exclusive: the compiler can detect 
parallelism at the instruction level whereas the 
programmer can define parallelism at the 
algorithmic level. Parallelism on the VAX 8800 
system is achieved through the second 
approach. 

We will describe in this paper the features of 
the VAX architecture and the VMS operating sys­
tem that we used tO implement our methodol­
ogy for parallel processing. We will present a 
set of FORTRAN routines we wrote to relieve 
the application programmer from having to 
know the inner workings of the VAX architec­
ture and the VMS operating system. We will then 
describe the modifications made to the circuit 
simulator SPICE2 to develop a parallel process­
ing implementation , called CAYENNE. Finally, 
we will give comparative timing results on two 
simulation examples. 

VAX/ VMS Primitives for Parallel 
Processing 
The VAX 8800 system is a shared-memory multi­
processor; all communications between proces­
sors are performed through sections of shared 
memory rather than through message passing. 
When writing parallel code on a shared-memory 
multiprocessor, a programmer must be aware of 
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two concepts: critical section and processor syn­
chronization. A critical section is a section of 
shared memory that could be accessed by sev­
eral processors at the same time if no precau­
tions were taken to prevent that. Allowing 
simultaneous access to shared memory could 
result in incorrect data. Processor synchroniza­
tion is the means by which processors proceed 
in an orderly fashion. It consists of mechanisms 
allowing processors to broadcast the beginning 
or the completion of a task or to wait until a sig­
nal is received. 

Some VAX instructions and some VMS system 
routines support the management of critical sec­
tions and processor synchronization. 3·4 We use 
three VAX instructions to control access to criti­
cal sections: 

• BBSSI - Branch on bit set and set interlocked 

• BBCCI - Branch on bit clear and clear inter­
locked 

• ADAWI -Add aligned word interlocked 

The instructions BBSSI and BBCCI are the VAX 
implementation of the atomic-test and set 
instructions that allow the control of access to 
critical sections to one process at a time . The 
instruction ADA WI performs an interlocked 
integer addition and returns a condition status 
depending on whether the result is zero or 
nonzero. 

We use three system routines of the VMS oper­
ating system to support processor synchroniza­
tion: 

• SETEF - Set event flag 

• CLREF - Clear event flag 

• WAITFR - Wait for event flag 

These routines are services provided by the 
VMS operating system to synchronize processes. 
Indeed, the significant entity in the VMS multi­
processor environment is not the processor but 
the process. A processor is a physical processing 
unit, whereas a process is a software entity cre­
ated by the VMS operating system. Multiprocess­
ing is achieved by creating several processes 
that VMS will assign to available processors . 
Only the operating system, not the user , can 
assign a given process to a given processor . 
Event flags are bits maintained by VMS. Several 
different processes can have access to the same 
event flag, and signaling between processes can 
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be achieved by setting or clearing an event flag. 
For example, the system service WAITFR places 
a process in a wait state pending the setting of 
an event flag. 

Additional VMS system routines allow the cre­
ation of processes, the creation and mapping of 
sections of shared memory, and the initializa­
tion of event flags. These system routines are: 

• CREPRC - Create process 

• CRMPSC - Create and map section of shared 
memory 

• MGLBSC - Map global section of shared 
memory 

• ASCEFC - Associate common event flag cluster 

More information on these routines can be 
found in the VAX/VMS System Services Man­
ual . 5 We used the VAX instructions and the 
VMS system routines listed above to write a set 
of routines that embeds our methodology for 
parallel processing. 

Parallel Processing Methodology 
In the next section we outline the methodology 
we use to achieve parallelism and in the process 
define some important terminology. A program 
we wish to convert for parallel processing is 
divided into serial phases. Each phase is divided 
into tasks that are executed either serially or 
concurrently. A phase whose tasks are executed 
serially is called a single-stream phase, whereas 
a phase whose tasks are executed concurrently 
is called a multiple-stream phase. The single­
stream phases are executed by a master process, 
whereas the multiple-stream phases are exe­
cuted by slave processes. The slave processes 
are idle when the master process is active and 
vice versa. Figure 1 shows this relationship. 
Master and slave processes run the same exe­
cutable file , thus leading to easier program 
maintenance. As mentioned earlier, processes 
are dynamically assigned to processors by the 
VMS operating system. 

We designed a general set of FO RTRAN 
routines for this environment. This set now has 
seven entries and implements th e critica l ­
section and process-synchronization con~epts 
defined earlier. It also performs the necessary 
initialization and provides facilities for debug­
ging a multiprocess execution. The remainder 
of this section describes the functions available 
in this set. 
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KEY: 

- ACTIVE 
IDLE 

~ SIGNAL TO PROCEED 

Figure I Synchronization of Processes 

Initialization 
Initialization is performed by a logical function 
called MASTEILPROCESS, which is set to TRUE 
if a master process runs the executable file and 
FALSE if a slave process runs it. The slave pro­
cesses have special names that differentiate 
them from the master process. An argument list 
permits the specification of the number of slave 
processes to create and the input and output 
files to use for those slave processes . Through 
this argument list a unique process number is 
returned to each calling process. 

A user can also specify the number of slave 
processes to create by using a command-line 
option when the program is run . For example, 
the program CAYENNE would be run with 
N slave processes if invoked with the command 
CAYENNE/SLAVES=N at the S prompt . If the 
calling process is a master, MASTEILPROCESS 
will create the sections of shared memory, ini­
tialize the event flags used for synchronization , 
and create the required number of slave pro­
cesses. If the calling process is a slave, the func­
tion will map the shared virtual-address space to 
the existing sections of shared memory. The sec­
tions of shared memory are FORTRAN common 
blocks defined as shared when the program is 
linked with an appropriate linker command . 
During this initialization phase, CREPRC creates 
slave processes, CRMPSC and MGLBSC create 
and map sections of shared memory respec­
tively, and ASCEFC initializes the event flags. 
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Synchronization 
Synchronization is performed by four of our 
seven subroutines: FORK, JOIN , JOIN_EXIT , 
andJOIN_FORK. These subroutines use the VMS 
system routines SETEF, CLREF, and WAITFR to 

perform the necessary interprocess signaling . 
Each subroutine accomplishes the following 
functions : 

• FORK - This subroutine is called by the 
master process to signal the slave processes to 
proceed. The master process then waits in 
this subroutine for the slaves to signal back. 

• JOIN - This subroutine is called by the slave 
processes to signal the master process to pro­
ceed. The slave processes then wait in this 
subroutine for the master to signal back. 

Only the last calling slave process signals the 
master process. The VAX instruction ADAWI 
is used to identify this last calling slave pro­
cess. 

• JOIN_EXIT - This subroutine is called by 
the slave processes to signal the master pro­
cess to proceed . However, the slave processes 
then exit instead of waiting for a signal. That 
is the way the slave processes are stopped 
when they are no longer needed . 

• JOIN_FORK -This subroutine is called by 
the slave processes to synchronize two multi­
ple stream phases with no intervening single­
stream phase . The use of this subroutine 
allows slave processes to be synchronized 
without having to signal the master process. 

These synchronization routines put a process 
that needs to wait for a signal into a wait state . 
Processes in a wait state do not use any CPU 
time. Each call to one of these synchronization 
routines , however , requires many machine 
instructions to be executed . If the application 
programmer anticipates a very short waiting 
time, an alternative to the previous method of 
synchronization is synchronization through busy 
wait. In this scheme a process will loop, execut­
ing an instruction of the form DO WHILE 
(FLAG_IS__NOLSET) ENDDO. The process will 
execute the previous instruction until the logi­
cal FLAG_ IS__NOL..SET is set to FALSE. 

The busy-wait form of synchronization needs 
to be used with care. It can lead to loss of over­
all system performance . Indeed , the process 
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executing a busy-wait instruction will use CPU 
time that might be more productively used 
by another process . In addition , the logical 
FLAG_ JS_NOT _SET , which is constantly 
checked for, is shared by all processes. There­
fore, access to this logical must be carefully con­
trolled. If several processes change this logical at 
the same time, its final value will be unknown. If 
no process updates FIAG_IS_NOT_SET, a pro­
cess may execute the busy-wait instruction 
forever, thus leading to deadlock. Deadlock 
occurs when processes are waiting to receive a 
signal that will never be sent. 

Critical Section 
Critical sections in a parallel implementation 
should be minimized. They are the bottlenecks 
of the multiple-stream phases because they can 
be accessed by only one process at a time. If a 
critical section cannot be avoided, the time 
spent to access this section should be minimized. 
Exel usive access to critical sections can be 
achieved by using either the VAX interlocked 
instructions or the VMS system services. 3 The 
former method implements a busy-wait form of 
access synchronization, the latter uses event 
flags. 

The two subroutines LOCK and UNLOCK are 
assembly language routines implementing a 
busy-wait form of access synchronization. We 
chose this method because it is faster in elapsed 
time, and the time spent by a process waiting is 
expected to be small when the access to critical 
sections has been minimized. These subroutines 
are used in the following manner to access a 
critical section: 

CALL LOCK(SECTION_ENTRY) 
CALL ACCEss_cRITICALSECTION 

CALL UNLOCK(SECTION_ENTRY) 

SECTION_ENTRY is an integer associated 
with a given critical section. This integer is set 
to I when a process is using the critical section 
and to O when no process is using the critical 
section . The two calls LOCK and UNLOCK 
ensure that only one process at a time executes 
the code ACCEss_cRITICALSECTION. We use 
these routines only once in CAYENNE for 
dynamic task allocation. 

Parallel Debugging 
Debugging parallel code is somewhat more 
complex than debugging sequential code. We 
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debug our parallel code using the following 
methodology. The functionality of our parallel 
code does not depend on the number of slave 
processes or on which specific process performs 
a particular task. Therefore, the whole code can 
be executed by the same process. For example, 
CAYENNE runs with only one process if the 
number of slave processes is specified to be 
zero. This allows most algorithmic modifica­
tions made in the code to be debugged with the 
VMS debugging facilities provided for sequen­
tial code. 

After the first debugging phase, a code section 
could still have errors when run with multiple 
processes . Our routines allow two forms of 
debugging, requested either through a flag in 
the argument list of the logical function 
MASTEILPROCESS or through a command-line 
option. The first form of debugging permits the 
assignment of a different terminal to each pro­
cess and the setting of a debugging session for 
each process on its assigned terminal. The sec­
ond form of debugging is intended to be used 
with a workstation. A different workstation win­
dow is assigned to each process, and a debugging 
session is set up for each process in its assigned 
window. The number of processes that can be 
debugged concurrently is limited to either the 
number of terminals available or the number of 
workstation windows that can be opened. 

Example 
The following example , shown in Figure 2 , 
illustrates some of the functionality of our set of 
routines. We want to compute the sum SUM of 
all integers from I to N•S. We assume that a mas­
ter process with the help of N slave processes 
does the task. Each slave process is assigned a 
unique number PROCESS_NUMBER between I 
and Nby the logical function MASTEILPROCESS. 
The section of shared memory consists of an array 
PARTIAL_SUM of size N . The slave pro ­
cesses work in parallel. Each slave process 
adds S consecutive integers and stores its re­
s u It in the shared memory location 
PARTIALSUM(PROCESS__NUMBER). 

After the slave processes have completed their 
task, the master process adds their partial sums, 
stored in the shared array PARTW.....SUM, to pro­
duce the final result SUM. The code correspond­
ing to this procedure follows. (Remember that 
master and slave process run the exact same 
executable file .) 
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PROGRAM parallel 

• 

EHD 

LOGICAL ma5ter_proce55 

I tffEGER proce55_number 

IHTEGERnumber_of_5lave5,default_number_of_5lave5 

IHTEGER debug_ flag 

PARAMETER Cdefault_number_of_5lave5zS,debu9_fla9=0) 

CDMMDH /5hared/ number_of _5 lave5 

CDMMDH I local I proce55_number 

IF Cma5ter_proce55(proce55_number,number_of_5lave5 , 

default_number_of_5lave5,'input','output',debu9_fla9)) THEH 

CALL master_code 

ELSE 

CALL 5 lave_code 

EHDIF 

SUBRDUTIHE master_code 

EHD 

IHTEGERnumber_of_5lave5 , maximum_number_of_5lave5,i 

PARAMETER Cmaximum_number_of_5lave5z10) 

IHTEGERpart i al_sum(max i mum_number_of_5lave5) , sum 

CDMMDH /5hared/ number_of _ 5laves,partial_5um 

CALL fork 

5Um • 0 
DD i • 1,number_of_5lave5 

5um=5um+partial_5um(i) 

EHDDD 

SUBRDUTI HE 5 lave_code 

EHD 

IHTEGERproce55_number , number_of_5laves , 5tart , 5,i 

IHTEGER part iaL5umC 1) 

PARAMETER Cs=200) 

CDMMDH /local/ proce55_number 

CDMMDH /5hared / number_of _s lave5, part ial_sum 

partial_5umCproce55_number) • 0 

5tart = Cproce55_number-1) • 5 

DD i • start+ 1, start+5 

partial_sum(proce55_number) = partial_5um(proce55_number) + 

EHDDD 

CALL join_exit 

Fig u re 2 PROGRAM Parallel 
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In the next section we describe how we cre­
ated parallel processing in several phases of the 
circuit simulator SPICE to produce the program 
CAYENNE. 

Modifications Made in SPICE 
Before addressing each parallel phase of 
CAYENNE, we give a brief overview of the cir­
cuit simulator SPICE. 

Overview of SPICE 
SPICE performs several types of circuit analysis: 
steady-state analysis , transient analysis, and 
small-signal analysis. The most commonly used 
analysis for digital circuits is the transient analy­
sis, which becomes increasingly time consum­
ing as the size of the simulated circuit increases. 
Figure 3 gives a global description of the 
algorithms used by SPICE for a transient analysis . 

The circuit equations form a system of ordi­
nary differential equations. This system is solved 
numerically at successive time points t1, i = 1, 
N . It is reduced at a given time point t1 into a 
system of nonlinear equations by using a dis­
cretization method. A discretization method 
approximates the time derivative of a variable at 
a given time point as a function of the value of 
the variable at that time point and at previous 
time points. This method introduces a dis­
cretization error that must be controlled and 

time• 0 

DD WHILE C time< finish time> 

di5cre.tize differential equations 

DD WHILE C not converged) 

linearize algebraic equations 

solve linear equations 

check convergence 

END DD 

IF C local truncation error too big) THE!'! 

reduce time 

ELSE 

save resul t5 at this time 

advance time 

El'IDIF 

rnDDO 

Figure 3 Transient Analysis Algorithm for 
SPICE 
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maintained below a specified threshold. This 
error is called the local truncation error. The 
resulting system of nonlinear equations is 
reduced to a system of linear equations by per­
forming a first-order Taylor expansion of the 
nonlinear elements of the circuit. This lineariza­
tion introduces another error called the lin­
earization error. The resulting system of linear 
equations is then solved exactly, using an LU 
factorization of the system matrix. 

After the solution of the system has been 
obtained, the linearization error can be esti­
mated. If this error is too big, a new lineariza­
tion is performed around the previously com­
puted solution, and the new linear system is 
solved again. Successive linearizations are per­
formed until convergence is obtained, that is, 
until the linearization error is below a specified 
threshold . When convergence is reached the 
solution of the nonlinear system is obtained, and 
the local truncation error is then checked. If 
this error is too big, the solution at time point t1 

is rejected and the system of differential equa­
tions is solved at a new time point tj so that 
t1 - 1 < tj < t1• If the error is below a specified 
threshold, the solution is accepted, and the sys­
tem is solved at a new time point t1 + 1 so that 
t1 < t1 + 1. This procedure is repeated until the 
entire transient analysis is computed. During a 
transient simulation the circuit simulator SPICE 
spends up to 90 percent of its CPU time in three 
phases of the previous algorithm. These phases 
are as follows: 

• Load Phase - This phase consists of loading 
the matrix and the right-hand side of the sys­
tem of linear equations obtained as described 
above. Device-model equations and lineariza­
tion errors are also computed in this phase. 

• LU Factorization Phase - This phase consists 
of factoring the matrix of the system of linear 
equations into the product of a lower triangu­
lar matrix and an upper triangular matrix. 
This factorization is used to solve the system 
of linear equations. 

• Local Truncation Error Phase - This phase 
consists of computing the local truncation 
error committed at each time step. 

The modifications for parallel processing made 
in these three phases are described next. 
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Load Phase 
In the load phase each circuit element com­
putes and loads all its contributions to the 
matrix and the right-hand side of the linear sys­
tem obtained from the circuit equations. Several 
distinct elements may contribute to the same 
matrix or right-hand side entry. This means that 
the matrix and right-hand side are critical sec­
tions in the load phase , and access to them 
needs to be controlled. One approach to syn­
chronize accesses to the matrix is to use a single 
lock on the whole matrix.6 In this case only one 
processor can write into the matrix at a given 
time, leading to contention for shared resources 
and decreased efficiency. 

In our approach locking the entire matrix is 
avoided by creating an additional data structure 
to store each individual element contribution . 
This structure can be viewed as a three-dimen­
sional matrix whose third dimension is used to 
store each individual element contribution to a 
given circuit-matrix entry. Figure 4 depicts such 
a matrix. There is no unused memory in this 
structure because it has a variable depth in its 
third dimension. Nevertheless , using this struc­
ture will increase the memory requirements of 
the simulator. In the design of CAYENNE it was 
necessary on many occasions to trade memory 
for speed. Our test examples show that 
CAYENNE requires an average of 20 perce nt 
more data memory than SPICE version 2G5 
requires . The contributions for each matrix 
entry are subsequently summed and loaded in 
parallel into the circuit matrix. The matrix load 
is therefore performed in two successive multi­
ple-stream phases. 

It is crucial that tasks are evenly distributed 
among slave processes so that no slave process 
stays idle whit~ others are computing . A 
dynamic task allocation was chosen for the first 
multiple-stream phase of the matrix load. That 
allocation was preferred to a static task alloca­
tion because the time needed to load each ele­
ment cannot be estimated accurately. Indeed , 
computation of device models may be bypassed 
during simulation. The model equations of a 
device are not computed at a given iteration of 
the analysis if the voltages applied to this device 
did not change significantly compared to their 
values at the previous iteration . This strategy 
saves CPU time. 

Dynamic task allocation is achieved through 
an array of tasks whose number exceeds the 
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Figure 4 Three Dimensional Matrix 

number of slave processes. A task consists of a 
list of circuit elements to be loaded. Tasks are 
defined so that each requires approximately the 
same amount of work . The amount of work 
needed to load a circuit element is estimated 
roughly by neglecting bypass and evaluating the 
CPU time needed to load the element. Dynamic 
task allocation is expected to minimize any 
imbalance that may occur during simulation 
through device model computation bypass. 

The task allocation for the second multiple­
stream phase of the matrix load is done stati­
cally since the work needed to perform this 
phase can be divided into tasks requiring the 
same amount of CPU time. The only interlocked 
access to shared memory during the matrix load 
is the one on the array index, which defines the 
next task when dynamic task allocation is used. 
This index is successively read and incremented 
by all slave processes. 
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LU Factorization Phase 
The time spent by a direct-method circuit simu­
lator in the load phase is linear in the number of 
elements, whereas the time spent solving the 
linear system of equations is superlinear in the 
size of the matrix.7 For large circuits the matrix 
solution part will therefore become more 
important and will dominate over the load 
phase . 

In SPICE the matrix-solution phase is done 
using sparse matrix LU factorization . Although 
full matrices can be factorized efficiently in par­
a ll e 1, 8 the parallel factorization of sparse 
matrices is more difficult. The LU factorization 
algorithm has a sequential dependency, and the 
amount of concurrent work that can be done at 
each step in a sparse matrix is small . 

It is possible to design algorithms that detect 
the maximum parallelism at each step of the LU 
factorization. Such algorithms have been used 
for vectorized circuit simulation .9 In our envi­
ronment synchronization is done through soft­
ware and the fine-grain parallelism used for vec­
torization may not be efficient. Based on these 
considerations, we have proposed and imple­
mented an algorithm in which particular care 
has been taken to minimize the overhead 
incurred with parallel processing. The details of 
our algorithm can be found in reference 10 . 

Local Truncation Error Phase 
The parallel computation of the time step does 
not present major difficulties since the compu­
tation of the local truncation error for each 
energy storage element is independent. Each 
slave process is assigned a set of energy storage 
elements and computes the time step required by 
this set. The master process then computes the 
minimum time step among the time steps returned 
by the slave processes . The energy storage ele­
ments are statically assigned among slave pro­
cesses so that the work among them is balanced. 

Results 
The parallel algorithms described in this paper 
have been implemented to produce the program 
CAYENNE . We now present two examples to 
compare the timing performances of SPICE and 
CAYENNE. 

The first example is the simulation of a MOS 
arithmetic logic unit (ALU) on a VAX 8800 sys­
tem. The circuit has 200 nodes and 1350 ele-
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ments. Twelve hundred Newton Raphson itera­
tions are required for the transient simulation. 
The efficiency of our parallel implementation is 
measured in this example . If a multiple-stream 
phase runs sequentially in an elapsed time T, 
and in parallel with N slave processes in an 
elapsed time Tp , we define the efficiency, E , of 
the parallel execution by 

E = (Ts - Tp)/(Ts - Ts/N) 

E represents the ratio of the actual savings in 
elapsed time to the potential savings in elapsed 
time. Table 1 gives timings and efficiencies for 
the ALU example . As a comparison, SPICE simu­
lates the same circuit in an elapsed time of 834 
seconds. 

Table 1 Timing Perfonnances and Efficiencies 

CAYENNE CAYENNE 
O Slaves 2 Slaves Efficiency 

Phase (Seconds) (Seconds) (Percent) 

Load 
LU 
LTE 

Total 
Simulation 

694 
22 
67 

867 

97 
14 
35 

529 

86 
70 
96 

The second example is the simulation of a 
MOS control store . The circuit has 160 nodes 
and 5 30 elements, and the transient simulation 
requires 14 0 4 Newton Raphson iterations . 
SPICE spends 91 percent of the simulation time 
in the three phases we modified for parallel pro­
cessing. CAYENNE executing with two slave 
processes achieves 90-percent efficiency in 
these phases and simulates the circuit 1. 7 times 
faster than SPICE. For this simulation, CAYENNE 
on a VAX 8800 runs 9 times faster than SPICE on 
a VAX-11/780 CPU. Table 2 shows these com­
parisons . 

The efficiencies of a parallel execution of 
CAYENNE depend on the size of the circuit . 
Indeed, there is a fixed overhead incurred by 

Table 2 Comparison of SPICE and 
CA VENNE Elapsed Run Times 

Case 

SPICE on VAX-11 /780 
SPICE on VAX 8800 
CAYENNE on VAX 8800 

Elapsed 
Seconds 

3990 
750 
440 

Ratio 

9.1 
1.7 
1.0 
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calling the synchronization routines JOIN, 
FORK or JOIN__FORK. The bigger the task per­
formed by the slave processes before a call to a 
synchronization routine, the smaller the relative 
cost of synchronization. The simulations of our 
examples were also run on a lightly loaded sys­
tem. Loss of efficiency occurs when processors 
have to be shared with nonrelated processes, 
and busy-wait synchronizations may waste sig­
nificant resources. A workload consisting of sev­
eral independent simulations of equal impor­
tance is already decomposed, and CAYENNE 
should be run in single-process mode. If the 
turnaround of a single, large simulation needs to 
be minimized, however, CAYENNE should be 
run with two slave processes on a dedicated or 
lightly loaded 8800. 

Summary 
We have described a general methodology for 
parallel processing on the VAX 8800 system and 
a user-friendly set of routines that embed our 
methodology. We have also presented the suc­
cessful conversion of the circuit simulator 
SPICE into the parallel program CAYENNE. New 
schemes to minimize the overhead of parallel 
processing and to balance the load among pro­
cesses contribute to the overall efficiency of our 
implementation. 
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Dennis T. Bak I 

The Impact of VAX 8800 Design 
Methodology on CAD Development 

Contributing to the success of the VAX 8800 project was an integrated 
CAD environment supporting the hardware design effort. A CAD group 
dedicated to this single project was chartered to supply a smoothly oper­
ating CAD process from initial design conception to final production. 
The CAD environment evolved through a blending of existing tools avail­
able in Digital with new tools developed outside the company. Gaps in the 
environment were filled through extensive modification of existing tools 
and new development efforts. The driving force behind the CAD process 
was a design methodology, radical for its time but second nature now. 

Past CAD Development Efforts 
Prior to the mid-1970s, logic development 
efforts within Digital Equipment Corporation 
were largely done without the extensive use of 
CAD tools. Hand-drawn schematic diagrams 
were the primary means of expressing logic 
designs. 

A major advance in design automation took 
place in the mid-1970s when the Stanford Uni­
versity Design System, or SUDS, began to be 
used within Digital. SUDS allowed the entry of 
schematics into and the extraction of net lists 
from a graphics database. Although it was a 
major step forward in the automation of design 
processes, SUDS required significant user train­
ing and experience to become an effective tool. 

Building a SUDS database capable of being 
used by a computer opened a new avenue for 
the evolving CAD groups to automate their 
design processes. These groups soon developed 
a large body of programs to support net-list 
extraction, design analysis, placement and rout­
ing, and eventually manufacturing parts-lists 
generation. Simulation tools were developed to 
help verify the operations of a design before any 
actual hardware was available. The increased 
complexity of design drove CAD developers to 
provide more powerful CAD tools. In turn, logic 
designers soon grew increasingly dependent on 
CAD tools as their capabilities increased. 

The design methodologies and the CAD tool 
suite evolved to support large-CPU designs , 
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such as the VAX 8600 family. SUDS eased the 
burden of entering and coping with design 
changes ; however , the actual contents of its 
schematics differed little from those of the ear­
lier hand-drawn ones. In large part the schemat­
ics entered by designers into SUDS correlated 
directly with the physical entity being built, 
showing all components and their pins. 

At the inception of the VAX 8800 project in 
the early 1980s, a vast collection of CAD tools, 
written by many internal groups, had sprung up. 
Most of these tools required large ASCII data 
files and significant manual intervention by CAD 
experts. Although many aids were provided to 
develop design processes, they lacked the cohe­
siveness and simplicity needed to put a process 
directly into the hands of the designers. 

At about this time , a number of significant 
advances were made in CAD technology. Engi­
neering workstations were announced at prices 
that made it practical to put them directly into 
the hands of designers. Moreover, new design 
methodologies, such as structured computer­
aided logic design, or SCALD, were also devel­
oped.1 

These methodologies could significantly 
improve the quality of design while decreasing 
the time to develop complex systems. There­
fore , Digital made a commitment to use those 
methodologies on the VAX 8800 project to pro­
duce not only the product but a more produc­
tive way of developing it. 
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Design Methodology 
The deve lopment of CAD tools for the 
VAX 8800 project was a considerable challenge 
to the CAD designers. The complexity of the 
VAX 8800 design, with its particular gate array 
implementation , demanded that the design 
quality be high before anything was committed 
to hardware. In fact, the project managers made 
a radical (for its time) commitment to simulate 
the entire design and verify its timing before 
any hardware was built . Therefore , the CAD 
process had to be designed to meet not only that 
goal but also to facili tate the rapid p roduction 
of hardware once the design had proven accept­
able . This section of the paper describes the 
methodology we followed to make the best use 
of our CAD tools. The next section describes 
those tools and how they were used. 

The tool suite that evolved, pictured in Figure 1, 
supported both logical and physical design pro­
cesses with checks and balances to ensure that 
the design topologies remained the same. Sche­
matic diagrams , captured at an engineering 

workstation, were processed into a logical net 
list that was used by the simulation and verifica­
tion tools . Once a logical design reached a cer­
tain level of maturity, it was mapped into a 
physical design. At that point a physical analysis, 
to determine delays and signal integrity, was 
performed . Placement and routing tools were 
then run to further refine the design. The part of 
the physical design database that represented 
the logical topology was then passed back to the 
logical side of the design process. There, a com­
parison was made to ensure that the physical 
and logical designs were congruent. The results 
of simulations based on the physical design 
were also passed to the logical process for com­
parison with the simulations based on the logi­
cal design . These mechanisms provided the pri­
mary checks to ensure that the logical design 
matched the physical one. 

We decided that the best way to assure suc­
cess was to develop a complete paper specifica­
tion of the machine to be built. Once the over­
all goals for the machine had been established, 

.------..-i DECSIM 1------ -

GED 

TIMING 
1-------.i VERIFIER 

DESIGNER 

STATE 
,-------1 CHECKING 

SCALDSYSTEM 1--- ~ 
,__ _ _, SOFTWARE VLS MANUFACTURING 

- LOGICAL TO PHYSICAL - REPORTS - PLACEMENT - INTERACTIVE CLEANUP 
MAPPING - DELAYS - ROUTING - MANUFACTURING RULES CHECK 

- WIRE RULE CHECK - SIGNAL INTEGRITY 
- INTERFACE FILES 

UN~ VA~ VMS 

Figure I CAD Tool Suite 
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the designers developed the specifications for 
each major logic section. This high-level logical 
design was then partitioned into functions 
required within modules and gate arrays. These 
primary interfaces were specified before any 
detailed logic was developed. As it turned out, 
that partitioning remained relatively intact 
throughout the project. 

The next step was to develop probe designs 
and abstract models for the most complex parts 
of the machine . These designs and models 
tested whether or not particular logic functions 
could be developed and timing constraints met. 
In some cases the probe designs were carried 
through to the actual fabrications of gate arrays 
or modules. This continuity allowed us to test 
the limitations of the selected ECL technology as 
well as the logic design. 

The probe designs proved useful in many 
ways to both the designers and the CAD devel · 
opers. The designers were able to verify that 
their logic implementations would work. The 
CAD developers were able to use the designs as 
test cases to develop and debug processes . 
These test cases proved to be critical to the pro­
ject's success, especially when the finished 
design was given to the manufacturing organiza­
tion . The process was so smooth, in fact, that 
designs flowed through it with few problems. 

The Influence of SCALD 
At the onset of the VAX 8800 project, we inves­
tigated the tools available within Digital for 
building a process to support the evolving 
design methodology. This study lead the CAD 
team to explore several systems being devel­
oped by other companies. One system being 
developed by Valid Logic, Inc. , the SCALDSys­
tem CAD system, was procured by Digital. This 
system put the power of dedicated engineering 
workstations directly into the hands of logic 
designers. Of equal importance was the fact that 
the SCALDSystem CAD tools were being devel­
oped by the same people who conceived the 
SCALD approach to hardware design. 

Logical schematics, requiring almost no infor­
mation about the physical design, were entered 
into the SCALDSystem database . These schemat­
ics were entered in a hierarchical manner 
through an easy-to-learn graphical system. Such 
an arrangement encouraged the designers to 
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avoid the creation of paper schematics by trans­
ferring their concepts directly to the worksta­
tion screens. 

The decomposition of the design was from the 
top down, but the actual entry of design data 
occurred simultaneously at many levels. 
A "design tree" evolved in which cells form­
ing gate arrays were merged onto modules 
that plugged into the backplane to form a sys­
tem . The logical design was entered via the 
SCALDSystem tools onto schematics. The physi­
cal implementation of that logical design was 
left to the physical design tools. 

Simulation and Timing Verification 
Simulation on the VAX 8800 project was 
approached from two different viewpoints. The 
first aimed to determine whether or not the per­
formance goals of the proposed microarchitec­
ture were within the necessary range, as speci­
fied by the project's needs. 2 This simulation 
started early in the project before any detailed 
logic design had been completed. Once those 
performance goals had been verified, the second 
level of simulation focused on the logic design 
as it evolved. 

The designers could verify that each piece of 
the design functioned as specified while that 
piece was being developed. As the design tree 
evolved, the number of logic levels given to the 
simulation tools increased until the entire logic 
design had been entered. At this point the 
designers actually had the equivalent of a soft· 
ware breadboard of the entire VAX 8800 proces­
sor. Microcoded instructions were "running" on 
this software breadboard long before any hard­
ware was available. 

The ability to run instruction streams on the 
breadboard gave the project several advantages. 
Logic designers could debug their logic concur­
rent with the microcode developers verifying 
their microcode . Moreover, the diagnostics 
engineers could write as well as debug signifi­
cant numbers of microdiagnostics much earlier 
than was usual in a design project. The early 
completion of those diagnostics allowed the 
first available hardware to be checked thor­
oughly. 

Making the design logically correct through 
simulation did not ensure that the machine 
would work at the desired cycle time. In the 
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ECL technology used in the VAX 8800, signal tim­
ing was critical. Therefore, a timing verifier, part 
of the SCALDSystem tools, was used to ascertain 
whether or not the timing goals were being met. 

It was within the timing verifier that the influ­
ence of the physical implementation on the log­
ical design was first felt . The logic designers had 
to ensure that the placement of gates and rout­
ing of signals was optimal for all critical ele­
ments. Delay information was then extracted 
from the physical design and fed back to the 
timing verifier . 

Physical Design 
As the logical design evolved, we developed a 
CAD process to convert it rapidly into a physical 
design. A set of automatic placement and rout­
ing tools, together with delay-estimation and 
signal-integrity tools, was used to give feedback 
to the designers. The important question here 
was whether or not they could build physical 
representations of their logic designs . These 
tools also passed data to the timing verifier, 
which analyzed the effect of the physical design 
on circuit timings . 

Since all the logic had to be verified before 
any hardware was fabricated, all processes had 
to be designed to handle a large number of 
designs in parallel. The relevant Digital manu­
facturing facilities and outside vendors were 
acquainted with the physical design through the 
test cases rather than through an actual proto­
type. Thus the facilities and vendors could con­
figure and debug their own manufacturing pro­
cesses before any completed physical designs 
were sent to them. 

To ensure a smooth transition into the fabrica­
tion phase, manufacturing engineers were 
assigned to work directly with the designers 
early in the design process . Thus these engi­
neers became familiar with the VAX 8800 tech­
nology and the machine as it evolved. This was 
an important step because our manufacturing 
organization was to build all the hardware, 
including the prototypes. This early acquain­
tance with the design allowed them to develop 
manufacturing processes to support the rapid 
change to full volume shipments soon after the 
VAX 8800 system was announced.3 

Computational Resources 
One of the largest VAXcluster systems ever built 
was assembled to support the VAX 8800 project. 
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This cluster consisted of 14 VAX-11/780 and 
VAX-11/785 systems with over 20 gigabytes of 
mass storage. Even this large amount of storage 
was inadequate at times to support the demands 
of the databases. Forecasting the computational 
requirements of this project proved difficult . 
The VAXcluster system provided the computa­
tional power and flexibility to grow as the 
demands increased. 

The availability of sufficient computational 
resources was critical to the success of our pro­
ject. The design methodology of extensive simu­
lation was effective only with reasonable pro­
gram run times. Once the design was verified, 
large numbers of physical designs were released 
for fabrication within a short period, which con­
sumed significant computational and storage 
resources. 

The Tool Suite 

Design Data Management 
A design data management (DDM) system was 
developed to organize the many files that con­
tained the actual design data. At the heart of that 
system was the concept of a "design object." 
This object was some functional piece of the 
design, usually conforming to the physical parti­
tioning. For example, each gate array and mod­
ule in the system was defined as a design object. 
For each object we developed a hierarchy of 
subdirectories within the VMS file system. This 
separation of data files into subdirectories 
allowed various tools within the CAD process to 
know where to find input files and to write out­
put files. 

The design database was continually churning 
with new information. To give a stable picture 
as the overall design evolved, a "snapshot" of a 
design object could be taken at any time, thus 
generating a revision of the design object. New 
subdirectory file trees were then created for 
each revision. Using this scheme a designer 
could create a "frozen" revision of a design. He 
could then use that revision for simulations or 
other activities while changes were being made 
to another revision of the design. 

The relationships between design objects 
were defined within a revision-matrix file kept 
with each file tree. This file defined the system­
level hierarchy of the machine: which design 
objects were subordinate to a given object. 
Using this file a designer worki ng on a module 
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design could select frozen revisions of the gate 
array designs on that module and be assured of 
not having them changed as he worked on it. 

Another facility provided by the DDM system 
was a user interface to the design environment. 
This interface consisted of a simple command 
language for transversing the design trees and 
for running specific tools. Since these tools 
required a large number of input variables, we 
established a system of default parameters to 
minimize user input. For cases in which those 
defaults proved inadequate, users or CAD devel­
opers could change parameters to meet the 
design's needs. 

Schematic Capture 
Using the ValidGED editor, logic schematics 
were entered directly into the workstations by 
the designers. The extracted wire lists were then 
transferred from the SCALDSystem UNIX-based 
workstation through a communications port to 
the VAXcluster system. The workstations were 
also interconnected in a networking environ­
ment, thus providing communication between 
them. To ease the burden on designers to learn 
multiple operating systems, only graphical data 
entry was permitted on the workstations. All the 
other CAD tools were run in the more native 
VAXcluster environment. 

Since the majority of a designer's time was 
spent interacting with CAD tools on the 
VAXcluster system, there was no need for each 
designer to have a dedicated workstation for 
schematic capture. The ratio of designers to 
workstations of about two to one proved ade­
quate. The easily learned GED editor supported a 
rapid increase in the number of nondesigners -
managers, secretaries, and documentation writ­
ers - in the user community. All were drawn to 
the system by the ease of graphical data creation. 
Eventually, this documentation activity 
accounted for the majority of workstation usage. 

Simulation and Timing Verification 
Another proprietary tool, called the DECSIM sys­
tem, was the primary simulator used on the pro­
ject. This system supported mixed-level simula­
tions, both structural and behavioral. The logical 
design was transferred hierarchically to the DEC­
SIM system. This system allowed the designers to 
deal with complex designs by viewing the simu­
lation in the same hierarchical form as the sche­
matics. For complex devices, such as multiplier 
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chips and RAM devices, behavioral models were 
developed. These more efficient models 
increased the overall performance of the simula­
tions. In the case of RAM devices, abstracting to a 
behavioral model also allowed the microcoded 
instructions to be loaded efficiently. 

Complementing the functional simulation 
facilities of DECSIM system was the timing veri­
fier (lV) in the SCALDSystem tools. TV analyzed 
circuit timings to ensure that the design would 
work under worst-case conditions at the desired 
clock rate. 

Wire delays are a major factor to be taken into 
account by timing verification. The placement 
of the physical gates was critical to minimize 
the wire lengths and hence the delays. Since the 
placement was not available in the initial design 
phases, statistical delays based on loading were 
used. As placement information became plenti­
ful, the latest refined delays were sent to the 
timing verifier. When the physical design had 
been completed, delays based on routed lengths 
were used. If the required timing was not met at 
any point in the process, the offending circuits 
were redesigned or the layout was changed to 
correct the problem. 

Wirelisting and State Maintenance 
The logic gates entered on schematics by the 
designers were, in general, assigned to physical 
components by the CAD process. This mapping 
occurred initially within the SCALDSystem post­
processor software using a random gate-to-com­
ponent assignment. This random packaging was 
then fed into a system called YAWL (for Yet 
Another WireLister). YAWL acted as a general­
purpose wirelister, generating interfaces to 
many tools and accepting feedback from the 
physical design tools. 

As the physical design process refined the gate 
assignment, YAWL ensured that the logical 
design topology did not change. By accepting 
feedback data from the placement and routing 
tools and the physical design system, YAWL 
caught any illegal changes that would have 
altered the logic functions. 

Eventually, the complexity of maintaining the 
state became so large that YAWL alone could not 
cope with it. Therefore, several other programs 
were placed in the feedback loop from the phys­
ical design tools to detect changes made in the 
process of manually cleaning up the physical 
design. These programs were needed since, 
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even at that late stage, a designer could still add 
logic to the design. The CAD process therefore 
had to handle these additions as well as to 
detect illegal transformations to the logic. The 
resolution of these changes took a lot of 
resources, both in terms of time and computer 
power. 

In addition to being the state maintainer, 
YAWL acted as a primary source of the design 
data needed for the remainder of the CAD pro­
cess. YAWL created many reports to inform 
designers of problems between their logical and 
physical designs. Most of the interface files in 
the CAD process were either read, written, or 
both, from YAWL, which played a key role in 
the overall process. 

Placement and Routing 
Two processes were developed for the place­
ment and routing of gate-array and module 
designs. The gate array process was highly auto­
mated, requiring a minimum of interaction by 
the designers. The process was organized to 
make several runs from which a designer could 
select the one that best optimized his logic 
design. 

The bounded problem of placement and rout­
ing within a gate array was easy to solve in com­
parison to the module designs. Here the con­
straints placed by designers, the limitations of 
tools, and the complexities of design required 
extensive human intervention. 

Analysis tools were used extensively to assist 
in determining the quality of design at the two 
design levels: gate arrays and modules. These 
tools analyzed such factors as thermal dissipa­
tion, signal integrity, and crosstalk. The con­
straints defined in these tools and in the exten­
sive design-rule checkers were met, thus 
ensuring a high-quality design. 

Most of the tools used for the physical design 
were developed within Digital. Those devel­
oped outside the VAX 8800 CAD group were 
modified, sometimes extensively, to meet the 
needs of the project. 

Physical Design and 
Manufacturing Interface 
A proprietary physical design system, called the 
VAX layout system (VLS), was used for the final 
physical design tasks. VLS took the physical 
design, as given by the placement and routing 
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tools, and added the data required to manufac­
ture the design. A layout designer, through the 
VLS interactive graphics system, could manually 
complete the routing that could not be handled 
by the automatic tools. Some additional parts 
that were necessary for fabrication, such as han­
dles for modules, were also added at this time. 
The net result was a complete design, specified 
so that it could be used to manufacture the 
product. 

The design data was then collected to form a 
release package. To keep track of the formal 
release of design data, a system called POST was 
developed by the CAD group. POST provided an 
on-line database, which any member of the pro­
ject team could query to determine the release 
status of a design. 

Problems Imposed by the 
Design Methodology 
Up to this point, we have described the basics of 
the design methodology used to develop the 
VAX 8800 system and some highlights of the 
CAD tools supporting that methodology. As 
mentioned earlier, the CAD process was placed 
directly into the hands of the designers. Thus a 
tight coupling was established between the pro­
cess of design and the design process. This cou­
pling posed several major problems, as now 
described, for the CAD group. 

Training 
With direct control of a process or tool given to 
the designers, they all now needed extensive 
training. On previous projects, one highly 
knowledgeable individual could run a tool; 
now, there were 30 or so novice users all learn­
ing to use that same tool. Extensive support for 
those users, in terms of both trainers and docu­
mentation, had to be provided. 

In most cases the designers quickly learned 
how to utilize the tools. In a few cases - the 
placement of modules in particular - placement 
experts were needed owing to the specialized 
nature of the task. In summary, the extent of the 
support required by users was greater than 
anticipated. 

State Maintenance 
The task of state maintenance proved to be 
extremely complex owing to the freedom given 
to designers to make changes at almost any point 
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in the design process. To ensure that the logical 
and physical designs matched, it was necessary 
to do a complete isomorphic comparison of the 
physical topology against the logical topology of 
the design. 

Logical Prints 
The schematics gene rated by the designers at 
their workstations represented the logical 
design, not the physical one . Certain features 
available in the SCALDSystem tools, such as vec­
torized signals and gates, allowed it to produce 
a concise representation of the logic. This came, 
however, at the expense of not putting physical 
data back onto the print set. For reasons of state 
maintenance , we were also unable to restruc­
ture a print set once mapped to a physical 
implementation. Both these factors contributed 
to a print set that appeared quite different from 
those generated by previous projects. 

Logical print sets , while initially envisioned 
as being beneficial , later caused problems in 
documenting the designs. This was particularly 
true for module-level designs for which training 
was needed so that groups outside the project 
team could interpret the new symbology. 

Cross References 
Using logical print sets alone , a technician 
could not probe a pin of the physical boards. 
Since an abstract mapping took place in the CAD 
process, it was necessary to develop an exten­
sive set of cross references showing the map­
ping of the logical to the physical design. These 
cross references proved to be cumbersome and, 
when printed, consumed vast amounts of paper. 

Libraries 
CAD tools run on libraries, and each major tool 
has its own format for library data . These 
libraries must be consistent across the entire 
process. Despite all the safeguards built into the 
process , we found that inconsistencies still 
crept back into the database. Discovering and 
e liminating those inconsistencies , many of 
which were found late in the project, consumed 
a lot of time . 

Summary 
Both the design methodology and the CAD pro­
cess supporting the VAX 8800 project were 
quite successful. The first prototype hardware 
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delivered to us worked as expected. We found 
only a small number of hardware problems dur­
ing the prototype debug phase of the project. 
Most of those problems were in areas that had 
not had extensive simulation or timing verifica­
tion. 

Some general conclusions reached from the 
VAX 8800 project can help future CAD design­
ers to improve their tools . 

• A close coupling from the start, both physi­
cally and organizationally, between all 
groups associated with the project leads to 
the development of a smooth process flow. 

• The design methodology has a direct and far­
reac hing impact on the CAD process. The 
capabilities of CAD tools directly affect the 
design methodology. 

• Extensive simulation and timing verification 
before fabrication can help to achieve a high­
quality product. 

• The impact of radical changes (e.g., in the 
data content of schematics) must be appreci­
ated and then taken into account by all pro­
ject members. 

In future projects we will focus on reducing 
the process-loop times and enhancing the capa­
bilities of the simulation and timing verification 
tools . It will be easier to function in future 
design environments, and more tools will be 
placed directly into the hands of the designers. 
The design methodology will be modified to 
make the resolution of the design state easier 
and therefore faster. 
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Andrew J. Matthews I 

On-line Manufacturing Data 
Access on the VAX 8800 Project 

Prevfously, the transition from design to manufacture involved transfer­
ring significant amounts of data on paper. To minimize product start-up 
time, the VAX 8800 project used an on-line system that eliminated much of 
the paper. The key task was transforming the data from existing CAD 
tools with different formats into manufacturing data. Two generic types 
of VMS files, DATA and DRAWING, contained data for each Part Number 
and Revision Number. VMS's subdirectory and access-control capabilities 
provided total revision control. Manufacturing engineers pulled files at 
will using DATA.files to drive their processes and viewing DRAWING.files 
from VAXstation II workstations. 

A key objective for the VAX 8800 project was to 
go from the completed design to full-volume 
manufacture in the shortest possible time. In the 
past, delays have often occurred in the transi­
tion from Design Engineering to Manufacturing. 
Therefore, to achieve our goal, we had to elimi­
nate or minimize those delays. 

We knew of a number of ways to speed up 
this transition phase. Since there is normally a 
tremendous flow of data on paper between Engi­
neering and Manufacturing, one way was to 
eliminate the paper itself. A second way was to 
accelerate the controlled revision process when 
changes were required. And a third way was to 
accelerate the query-and-response process that 
was necessary to solve specification problems. 
One can see right away that these activities 
involve many people and consume significant 
resources. Therefore, a formal project was estab­
lished to determine how best to implement the 
three ways to minimize delays. 

The project team determined that although 
the data flowing between Engineering and Man­
ufacturing was vital, the paper itself was not . 
Thus the team's goal was to find out how to 
establish a paperless, but not drawingless , 
scheme to pass that information between the 
two organizations. The team also set some con­
straints on this scheme. First, existing data tech­
niques should be used whenever possible rather 
than developing new ones. Second, Manufactur­
ing should be free to obtain data as required 

136 

rather than have Engineering "push" it to them. 
Third, any intermediate data processing func­
tions and groups, which all have priorities and 
queues of their own, should be bypassed . 
Finally, the data had to be organized in the way 
Manufacturing needed it, that is, by Part Num­
ber and Revision, among others . Therefore , 
some translation process had to take place 
between the data sources in Engineering and the 
data repositories used by Manufacturing. 

The data sources in Design Engineering are 
many and varied. Digital uses a large set of CAD 
tools in its design processes.• These tools use a 
variety of methods to gather, store, and manipu­
late data. The databases associated with these 
tools are the sources for all the specifications 
conveyed to Manufacturing as plans and draw­
ings. Manufacturing also has its own set of CAM 
tools used in various processes. 

The primary CAD and CAM process tools did 
not communicate since they were all based on 
different data formats and revision procedures. 
The primary goal of the project was to take the 
design data created by the CAD tools and, with 
as little paper as possible, turn it into manufac­
turing data that could be used by the various 
manufacturing groups. The direct way that goal 
could be accomplished was to create an inte­
grated source of data as VMS files that would be 
available on line to engineers in Manufacturing. 
This capability of data transfer was called manu­
facturing data access, or MDA. 
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As typically happens in a rapidly evolving 
technological environment, the standard data­
transfer processes already in place had rapidly 
become outdated. The result was that the stan­
dard process was handling only part of the data, 
and informal systems evolved to deliver the 
remainder. MDA had to identify all these data 
processes, regardless of their sources. Then, it 
had to provide all the data needed to build and 
test the product through a consistent on-line 
process. That task was accomplished by 
"reverse engineering" the existing processes. 
All the process managers responsible for the 
product in Manufacturing were interviewed to 
find out what data they were receiving by both 
formal and informal means. They were asked, in 
particular, what additional data they needed. 
The result was a lengthy list of data files, most 
of which existed or could be easily generated. 

One key limitation to this type of data-genera­
tion process was the availability of an appropri­
ate engineering database. For example, a visual­
inspection process might need the color of a 
component, but this data may not be in any 
engineering database. Therefore, some manufac­
turing data processes would have to continue 
using other sources, typically libraries of addi­
tional information, as well as the engineering 
database. 

The objective of MDA was to provide on line 
all the data needed for new product start-up. 
The problem, as noted earlier, was that this data 
was derived from many different files used by 
the CAD tools. These separate software tools, 
having come from many sources at different 
times, generally operate on independent VMS 
files and do not yet utilize complex, integrated 
database capabilities. Therefore , another pri­
mary goal of the MDA project was to bring 
appropriate data management to these existing 
processes, but at the same time not to require 
significant changes within them. 

Given this VMS file environment, the team 
made an early decision that the VMS system 
could provide the framework for comprehen­
sive data management and organization capabili­
ties if full advantage were taken of the possibili­
ties inherent in the system. That is, files and 
directories, subdirectory schemes, and access 
control lists had to be used effectively. The 
advantages of using VMS features for these exist­
ing files rather than implementing a specialized 
data-management scheme were numerous. This 
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procedure meant that these capabilities would 
be immediately accessible to all of Digital's VAX 
users, could be readily linked to existing read 
and write processes for CAD/CAM files, and 
would require no unique training, software, or 
hardware. 

The remainder of this paper describes the 
approach that MDA takes to achieve an inte­
grated source of manufacturing data. As a first­
generation paperless process, MDA was used on 
the VAX 8800 project with great success. We 
anticipate that MDA could evolve at a later date 
into a second-generation paperless process. In 
this process, users in Manufacturing would be 
able to selectively compose and generate any 
desired drawing from the databases. For the first 
design of MDA, however, that was too sophisti­
cated a solution to be applied to a broad manu­
facturing community still in transition from 
paper processes. 

MDA Capabilities 
We designated the files containing the data that 
drives the computer-aided processes in Manu­
facturing as DATA files. Every drawing sheet in 
the full drawing package is electronically 
released as a plot file. These on-line files, called 
DRAWING files, are effectively the master draw­
ings, and any locally generated paper prints are 
temporary working copies. DRAWING files are 
intended only for human interpretation (view­
ing or plotting); they do not have to be inter­
preted as structured data by other functional­
process software. DATA files are used for that 
purpose. 

Both DATA and DRAWING files are made 
available through a single unified process avail­
able anywhere on Digital's world-wide internal 
DECnet network. Data security is provided in 
the software by an access control list of specifi­
cally authorized users in Manufacturing. A list 
method rather than password control was cho­
sen since the VMS system has all the capabilities 
to implement list control (identifying re­
mote users). Control over access to the on­
line product database remains with the data 
managers. 

The files are organized around the Part Num­
ber and Revision Number of the physical object. 
A complete DATA and DRAWING file set is pro­
vided for each revision, thus leading to a degree 
of redundancy between files. We originally con­
sidered solving this redundant-data problem in 
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the traditional CAD/CAM way by defining sepa­
rate universal interface files and designing inte­
grated databases from which any needed file 
could be extracted. To achieve the primary goal 
of minimizing all delays in product data trans­
fers, however, we concluded that providing the 
process specific, but redundant, files needed 
directly in Manufacturing was worth the price. 

This technique eliminated all hand-off delays 
and allowed the already proven processes to 
operate efficiently. Of course, the risk was that 
data in the redundant files could in some way 
diverge. Therefore, Engineering assumed the 
responsibility of verifying that the data was con­
sistent between them. Engineering uses special 
software to verify that all files in a set, some of 
which come from different CAD tools, represent 
the identical design object and revision state. 

The DATA files utilized are those the start-up 
team identified as being directly needed for 
each manufacturing process. Our ideal target for 
DATA files was the specific data set needed by a 
"work cell" of the manufacturing plant; this 
typically includes both a computer resource and 
specific people that together receive and adapt 
the generic data to the immediate needs of their 
particular plant and process. To minimize the 
process start-up time, eliminate queues, and 
assign responsibilities clearly, MDA avoided 
using intermediate data formats. These formats 
historically required preprocessing by some 
third party before they could be used in the 
plant. We expected the plants to adapt the DATA 
files to the specific needs of their own pro­
cesses. For sophisticated data consumers with 
complex manufacturing needs, the source-data 
design fil es are also included with the on-line 
data. 

The practical r~alities of the many CAD/CAM 
processes in use first required a smoothly oper­
ating file-management process. A large number 
of files are required to support the build-and­
test processes for one designed object. A typical 
Digital part (e.g., a complex CPU logic module) 
is today completely specified by 50 to 70 DATA 
files and 30 to 50 DRAWING files. With that 
many files involved, a key to success for this 
type of file management is total data acquisi­
tion. Thus the process was made mandatory (not 
voluntary); that is, it could not depend on some­
one's remembering to do something. The only 
way to acco mplish complete data acquisition 
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was to integrate the data-management process 
with the CAD tools that generated the source 
files. 

The principal MDA implementation concept 
was to use the extensive VMS subdirectories that 
"belonged" to each object and revision and 
then collect all the appropriate files into the 
appropriate directories. This technique makes 
possible a user data-access process based 
directly on the VMS system in which a user can 
answer several questions about the object or 
revision for which data is needed. MDA then 
provides him with a directory containing the 
files relevant to the requested object or revision. 
This directory represents the bounded set of 
data. Within that set each DATA and DRAWING 
file is "named" so that it is completely identi­
fied even if moved later to other manufacturing 
locations. The file-naming scheme is also not 
cryptic so that manufacturing users can specify 
and recognize the particular files they need. 

An underlying objective of the MDA program 
was to provide an environment in which a 
released data file was perceived as being as sta­
ble as an approved and released paper drawing. 
Whenever a set of DATA and DRAWING files for 
a given revision of an object are released, that 
set of data becomes "read-only" and is placed 
under strict control. The engineering group will 
not modify any file within the set belonging to 
that revision, and subsequent revisions of that 
object do not overwrite prior revisions. 

MDA allows users to pull data selectively as it 
is needed rather than pushing it automatically to 
predetermined receivers. The strategy here is to 

deliver not data, but automatically generated 
notification messages on Digital's electronic 
VAXmail system. The generation of mail is tied 
to the design-management functions of the hard­
ware designers and the coordinators for engi­
neering change orders (ECOs). The mail mes­
sages are sent to designated representatives in 
any of the manufacturing plants around the 
world to inform them to pull whatever data they 
require from the on-line system. Data users in 
Manufacturing are notified by automatic mes­
sages whenever new data is issued or when the 
status of existing data changes. This method 
takes advantage of the existing VMS Mail facili­
ties for identifying remote users. A user access­
control list has been implemented, and all user 
transactions are logged . These techniques con-
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firm that new data has been received by users 
and provide an audit trail of who accessed par­
ticular data in case an error is discovered later. 

Much of the data provided for the product is 
intended for the specific assembly and test pro­
cesses implemented by the start-up team. Provi­
sion of this data is made possible by the close 
coupling of the Engineering Design and start-up 
team efforts and the sophistication of the data­
driven fabrication and test processes. In other 
words, the designs of high-technology products 
are now aimed at specific manufacturing pro­
cesses for assembly and test . Except for simple 
dimensional data, much of this product data can 
no longer be '' post processed '' (by software 
means only) onto a different manufacturing pro­
cess. A major process alteration might require 
reconvening the start-up team and adapting the 
design and data for the new process. 

Revision Management 
Each revision of a part means that that physical 
design object has changed in some way. In the 
MDA process a complete set of DATA and DRAW­
ING files is provided for every revision; there is 
no implied or referenced data. All active revi­
sions still being built remain on line, and subse­
quent revisions do not overwrite earlier revi ­
sions . If the same DRAWING file applies to 
different revisions, it will be provided with each 
of those revisions. We were concerned initially 
that this simplified approach would generate a 
large number of redundant files, particularly 
DRAWING files. However, an analysis of the 
completed sets showed that , with the CAD 
design processes in use, only 10 to 20 percent 
of the files were unchanged from one physical 
revision to the next . Our conclusion now is that 
having some redundant files is a cheap price for 
the benefit and simplicity of having full data 
sets. Thus no data set has to reference data from 
another set, and old revisions can be readily 
archived. 

The MDA process currently has one significant 
limitation. Unlike the existing procedures for 
paper drawings, there is no standard control 
process for putting a formal revision on a DATA 
file. On the other hand, it is not clear that a con­
trol process is sufficiently valuable in a product 
environment that is totally data driven . Tradi­
tionally, when necessary, a paper drawing can 
be changed separate from the physical revision 
of the object itself. That cannot currently be 
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done for DATA files since there are no standard 
procedures that are equivalently recognized for 
naming them or for controlling revisions. If the 
DATA files really define the physical product, 
then an erroneous data file defines the wrong 
physical product. In that case, it can be argued, 
the right way to signify the change is to update 
the revision of the object itself. At the present 
time, if an incorrect DATA file is included in the 
released data set, the only unequivocal way to 
correct that problem is to advance the physical 
revision and generate a new set of data. 

Within the MDA process, the status of any file 
is specifically marked. (The mere existence of 
the file within the process does not imply any 
particular status.) Typical categories of status 
are verified, issued, released, and obsolete . A 
status is implemented by using the file-owner­
ship capabilities within the VMS system . As its 
name implies, MDA provides on-line access to 
all needed data and drawings for any and all 
revisions. However, the formal status (prelimi­
nary, released, etc.) of each part and revision 
available on line is controlled and specified by 
other existing standard procedures. That status 
is confirmed by MDA but cannot be determined 
solely from the status information that MDA pro­
vides on line with the data. 

The MDA process is not directly coupled to 
the control procedures in Manufacturing, but is 
linked directly with status-setting activities in 
Engineering. For example, the issued status is 
set by a procedure run by the product's ECO 
coordinator when he issues an ECO package to 
his counterpart in the manufacturing plant . 
Therefore , the data users in Manufacturing are 
advised to use the displayed status only as con­
firmation of a change; they will continue to be 
notified first through the existing ECO control 
procedures. 

Thus, MDA has on-line data available for a 
manufacturing activity when Manufacturing is 
notified, by means external to the MDA process, 
that they should be building a particular revi­
sion . Also, MDA provides no on-line information 
about such things as the interactions and rela­
tionships between revisions, which revisions of 
the modules go together, and which revisions 
go with which backplane revisions. Therefore, 
although MDA is a comprehensive data-manage­
ment and access process, it is not also a true 
configuration-control and revision-management 
process. 
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Directories and File Names 
Within the MDA process, the DATA and DRAW­
ING files are managed by grouping them in VMS 
subdirectories for the object that these files 
specify. The subdirectories are tied to a com­
mon-root directory to facilitate the management 
of the overall physical data on the host (e.g. , 
moving various directory structures between 
disk drives). The directory files themselves are 
owned by the data-management process . They 
may not be read directly over the network; the 
access process provided must be used. In picto­
rial form, the directory structure is described in 
Figure 1. 

COMMON ROOT 

I ... , 
PART PART PART PART 
NUMBER NUMBER NUMBER NUMBER 

I ... I 
VARIATION VARIATION VARIATION VARIATION 

REVISION REVISION REVISION REVISION 

~ 
DATA FILES DRAWING FILES 
(50 - 70) (30 - 50) 

Figure I VMS Directory Structure 

The name of each DRAWING file is tied 
directly to the Digital drawing number plotted 
by that file. For multisheet drawings , a plot file 
is made for every sheet in the complete drawing 
package , so there is a one-to-one correspon­
dence between DRAWING files and drawing 
sheets. The files are named to match exactly the 
title block of the drawing sheet. A typical 
DRAWING file name is depicted in Figure 2. 

For DATA files, a different strategy for file 
names was necessary since , unlike the DRAW­
ING files, a one-to-one linkage does not exist. A 
DATA file relates to the physical object it 
defines ; therefore , the file name defines the 
exact part to which that file applies as well as 
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SHEET SIZEJJE-\L_'JA_F

2

00S_O_O_~~-rt,m ,oRMA> 

DRAWING CODE ~ SHEET 2 

DRAWING NUMBER SHEET REVISION 

Figure 2 Typical DRAWING File Name 

the file ' s specific content and format. File 
names must also continue to completely iden­
tify the files after they have been extracted from 
the MDA management process and moved to 
Manufacturing. Therefore , part of the file name 
is actually redundant with the MDA directory 
name. These file names can become extremely 
long, and although reading them is not a prob­
lem, typing them is. Thus the file names are 
automatically generated, and users can select 
them from menus. The name of a typical DATA 
file is structured as in Figure 3 . 

Since there were many DATA and DRAWING 
files, the file -naming scheme also permits the 
creation of a typical VMS "wild card" directory 
listing for specific types of DATA or DRAWING 
files. For DATA files, the specific type of process 
activity supported by that file is included as a 
unique field in the file name. For DRAWING 
files, the drawing code is included in the file 
name, which also implies the likely uses. These 
fields within file names are then used in Manu­
facturing to obtain file listings specific to an 
activity; wild-card directory listing is by far the 
most common style of use. 

PART NO:~:s-r!!J-ICT -"CA,ODEL_QXVZO 11 . Hrn 

VARIATION~ 

REVISION 

CATEGORY OF DATA 
(IN_ CIRCUIT TEST) 

DETAILED TYPE OF DATA ___ _, 
(MCA MODEL) 

(FOR QXYZ MCA, LOGICAL REVISION 011) 

DATA FORMAT-------------~ 

Figure 3 Typical DAT A File Name 
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On-line Data Access 
Since all DATA and DRAWING files for each revi­
sion of a Part Number are accessible on line, it 
is a simple process for authorized users to 
access them. A user first logs on to a captive 
(limited function) account on a specific host 
CPU from any system on the Digital 's DECnet 
network. Since this process is controlled by a 
list of authorized users , no password is neces­
sary. The user never sees the VMS prompt level 
but is immediately presented with a menu of 
MDA functions . He is then asked a short series of 
questions about either the Part Number or Revi­
sion Number and is provided with a directory of 
applicable files. 

All user transactions with the data-access pro­
cess are automatically logged. This logging pro­
vides several important capabilities: 

• An accurate summary of the actual on-line 
data usage (which has showed that our initial 
assumptions were quite incorrect as to who 
would use what data, and how much access 
traffic there would be) 

• A degree of additional security by tracking all 
data accesses 

• A means to notify all users who have utilized 
any file in which an error has been found 

Electronic Drawing Access, Plotting, 
and Management 
At the present time, most DRAWING files are in 
the VMS data format of FILE_NAME.PLO since 
.PLO is the data format that can be released elec­
tronically to Digital's on-line drawing-microfilm 
service . A variety of software packages using this 
data format are available in each manufacturing 
plant. We expect to make a transition to a new 
industry standard when it comes into general 
use . 

Providing each separate drawing sheet as a 
separate file was the first step toward a paperless 
process. The second step was to give Manufactur­
ing the ability to view a drawing on a VAXstation 
workstation, manage drawings, annotate them, 
send those annotations back to the engineer, and 
make plots. These basic functions permit Manu­
facturing to do on line what they would have 
done previously with paper drawing sheets. 
Engineering provided some necessary software 
tools for these functions to expedite the transi­
tion to a paperless process in Manufacturing. 
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The workstation used is the VAXstation II sys­
tem. The software provides the following capa­
bilities: 

• Access drawings directly from the on-line 
data process 

• Create windows for the drawing, and zoom 
around it 

• Annotate a copy of the drawing for use with 
specific processes 

• Return a copy with questions for the respon­
sible engineer 

• Submit plot requests automatically for the 
whole drawing or any se lected window 
to either a large electrostatic plotter or an 
LN03 Plus printer, both accessible on a local 
Ethernet link 

The process of making snap-shot window 
plots of specific areas of interest on the LNO 3 
Plus printer has proven to be a very effective 
capability, and shows some of the possibilities 
of replacing large sheet paper plots within the 
Manufacturing functions. 

Summary 
The MDA process has been operational since the 
first prototypes of the VAX 8800 system were 
built. MDA presently maintains approximately 
three gigabytes of VAX 8800 product data on 
line , including both prototype and produc­
tion revisions . More than one hundred users 
from ten different locations in both Manufactur­
ing and Field Service have logged an average of 
two hundred transactions per week. Although 
MDA contains significant amounts of control and 
verification software , there has been little for­
mal user training . The simplicity of the MDA 
process allows the on-line Help information to 
be an effective source of primary documenta­
tion. 
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