
PATHWORKS: PC Integration Software

Digital Technical] ournal
Digital Equipment Corporation

Volume 4 Number 1

Winter 1992

Cover Design
The red and blue threads woven together in our cover design

represent the many PC clients and server systems that are inte­

grated in a network environment by the outstanding "thread"

of PATHWORKS software. PATHWORKS software for the integration

of PCs over fANs and WANs is the featured topic in this issue.

The cover was designed by Kathryn Cimis of the Corporate

Design Group.

Editorial
Jane C. Blake, Editor
Kathleen M. Stetson, Associate Editor
Helen L. Patterson, Associate Editor

Circulation
Catherine M. Phillips, Administrator
Sherry L. Gonzalez

Production
Mildred R. Rosenzweig, Production Editor
Margaret L. Burdine, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Robert M. Glorioso
John W McCredie
Mahendra R. Patel

Richard]. Hollingsworth
Alan G. Nemeth
F. Grant Saviers

Victor A. Vyssotsky Gayn B. Winters

The Digital Technical journal is published quarterly by Digital
Equipment Corporation, 146 Main Street ML01-3/B68, Maynard,
Massachusetts 01754-2571. Subscriptions to the journal are $40.00
for four issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering
and computer science fields receive complimentary subscriptions
upon request. Orders, inquiries, and address changes should be
sent to the Digital Technical journal at the published-by address.
Inquiries can also be sent electronically to DTJ®CRL.DEC.COM.
Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 1 Burlington
Woods Drive, Burlington, MA 01830-4597

Digital employees may send subscription orders on the ENET to
ROVAX::JOURNAL or by interoffice mail to mailstop ML01-3/B68.
Orders should include badge number, site location code, and
address. All employees must advise of changes of address.

Comments on the content of any paper are welcomed and may
be sent to the editor at the published-by or network address.

Copyright© 1992 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in educational institutions by faculty members and are not
distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted.
All rights reserved.

The information in the journal is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in the journal.
!SSN 0898-901X Documentation Number EY-J825E-DP

The following are trademarks of Digital Equipment Corporation:
ALL·lN-1, DEC, DEC EtherWorks, DECnet, DECperformance,
DECquery, DECwindows, Digital, the Digital logo, DNA,
eXcursion, LAT, PATHWORKS, ULTR!X, VAX, VAX C,
VAX Performance Advisor, VAX 4000, VAX 6000, VAXcluster,
VAXstation, and VAX.

3Com is a registered trademark of 3Com Corporation.

Apple, AppleShare, AppleTalk, LocaiTalk, and Macintosh are
registered trademarks and QuickStart is a trademark of Apple
Computer, Inc.

Code View, Microsoft, MS, and MS-DOS are registered trademarks
and Windows is a trademark of Microsoft Corporation.

CRAY is a registered trademark of Cray Research, lnc.

i386, i486, and Intel are trademarks of Intel Corporation.

IBM, Micro Channel, and OS/2 are registered trademarks of
International Business Machines Corporation.

Motif is a registered trademark of Open Software Foundation, Inc.

Motorola and 68000 are registered trademarks of Motorola, Inc.

NetWare and Novell are registered trademarks of Novell, Inc.

Network General and Sniffer are registered trademarks of
Network General Corporation.

NFS and Sun are registered trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X/Open is a trademark of X/Open Company Limited.

Book production was done by Digital's Database Publishing Group
in Northboro, MA.

I Contents

6 Foreword
Joseph A. Carchidi

PATHWORKS: PC Integration Software

8 An overview of the PATHWORKS Product Family
Alan Abrahams and David A. Low

15 PATHWORKS for VMS File Server
Edward W Bresnahan and Siu Yin Cheng

24 The Development of an optimized PATHWORKS
Transport Inteiface
Philip]. Wells

31 Design of the PATHWORKS for ULTRIX File Server
Anthony]. Rizzolo, Elizabeth A. Brewer, and Martha A. Chandler

40 DECnet Transport Architecture
Mitchell P. Lichtenberg and Jeffrey R. Curless

47 Microsoft Windows Network Virtual Device Drivers
in PATHWORKSfor DOS
Andrew W Nourse

56 eXcursion for Windows:
Integrating Two Windowing Systems
Dennis G. Giokas and Andrew T. Leskowitz

68 Capacity Modeling of PATHWORKS
Qient-Server Workloads
Christopher E. Methot

1

I Editor's Introduction

Jane C. Blake
Editor

The integration of personal computers in a net­
work environment is the subject of this issue of the
Digital Technical Journal. The software products
that bring about this integration are known collec­
tively as PATHWORKS and are derived from Digital's
Personal Computing Systems Architecture. The
engineering challenge for developers was to inte­
grate a variety of client (PC) and server systems­
DOS, Windows, OS/2, Macintosh, VMS, and ULTRIX­
and to ensure that the intricacies of the meshing
of these systems remained transparent to PC users.

In the opening paper, Alan Abrahams and David
Low provide background for the papers that follow
by describing the technical aspects of the various
hardware and software platforms, physical net­
works, and protocols that had to be addressed by
PATHWORKS developers. They also present an over­
view of the PATHWORKS components which allow
PC users to access network resources.

Among the capabilities PATHWORKS enables, PC
access to files on server systems is one of the most
important for users. Two file servers, one for VMS
and another for ULTRIX, were developed for this
purpose. A paper on the development of the first of
these, written by Ed Bresnahan and Siu Yin Cheng,
contains an architectural overview of the VMS file
server. The authors also detail the mapping done to
bridge the differences between DOS, OS/2, and VMS
operating systems. In a related paper, Phil Wells
describes performance improvements made in ver­
sion 4.0 of the file server which were achieved by
optimizing the transport interface and the data
buffering algorithm. He discusses the analysis of
server performance for various interface models,
the implementation of the algorithm in the VMS
server, and test results.

Like the VMS file server, the PATHWORKS software
for ULTRIX systems integrates PC clients with a

2

server system on a LAN. However, as Anthony
Rizzolo, Beth Brewer, and Martha Chandler explain
in their paper, a multiple process model was cho­
sen rather than the single process used in the VMS
file server. The authors give their reasons for this
different approach as part of a general discussion of
the server design and implementation.

The network is key to the exchange of data in the
PATHWORKS environment, and as is the case for
the server software, multivendor systems must be
addressed to ensure smooth integration. Mitch
Lichtenberg and Jeff Curless describe how Digital
has extended Microsoft's LAN Manager across a LAN
or a WAN by using the DECnet transport protocol
as the transport layer. In addition, they present the
reasoning behind the design of the transport com­
ponent for DOS and OS/2 products, and review
steps taken to reduce memory usage and improve
performance.

Further details on the integration of DECnet and
LAN environments are provided in the paper on two
network virtual device drivers for the Microsoft
Windows environment. As Andy Nourse explains,
these drivers manage DECnet and NetBIOS opera­
tions and enable the Windows operating system
to support peripheral devices, memory resources,
and software applications. Andy first gives readers
background on the Windows operating modes, and
then describes the development of the two virtual
device drivers.

A significant new application in the PATHWORKS
family, called excursion, brings together the capabil­
ities ofX Windows, DECnet, and the Microsoft envi­
ronment, resulting in the display of both Windows
and X Windows on the same screen. Dennis Giokas
and Andy Leskowitz present the integration philos­
ophy behind the display server and the implemen­
tation of the server architecture. They also relate
how designers approached the mapping of the win­
dows in the X and Windows environments.

The issue concludes with a paper by Chris
Methot on capacity modeling of PATHWORKS
client-server workloads. Chris describes a queuing
analytical model used to understand resource con­
sumption on the server and the special modeling
process required in the client-server environment.
The paper works through a specific example of the
model's identification of bottlenecks in the system.

The editors thank Star Dargin and Camel Hoover
for their help in preparing this issue.

Biographies

Alan Abrahams Alan Abrahams is a consultant engineer in the Personal Com­
puting Systems Group Technical Office. He develops management and security
strategies for integrating PCs into enterprise-wide networks. Alan joined Digital
in 1982 and designed and implemented the PRO/Communications package. Since
1985, he has been the architect responsible for integrating Microsoft's LAN
Manager into Digital's PCSA and helped design Digital's NetBIOS emulation and
remote boot of MS-DOS systems. Alan received B.S degrees in computational and
statistical science and in mathematics from the University of Liverpool.

Edward W. Bresnahan Senior software engineer Edward Bresnahan has been
developing the PATHWORKS for VMS software since joining Digital's PCSG Server
Engineering Group in 1988. He is currently responsible for the design and devel­
opment of a high-performance data cache to be used in future PATHWORKS
server products. Prior to this, he was a co-op student at General Electric
Company and at Charles Stark Draper Laboratory. Ed holds a B.S.C.S. (1988, hon­
ors) from Northeastern University and is pursuing an M.S.C.S. part-time.

Elizab eth A. Brew er Beth Brewer is a supervisor in the PCIE Server Develop­
ment Group-Open Systems. Beth served as project leader for the PATHWORKS
for ULTRIX version 1.0 product as well as the principal architect and implemen­
tor of the PATHWORKS for ULTRIX administration process. She also worked for
the PCIE Client Development Group-PC DECwindows. Beth joined Digital in
1987 after receiving a B.S. in mathematics with a minor in computer science
from the University of Massachusetts at Lowell.

Martha A. Chandle r A senior software engineer in the PCIE Server Develop­
ment Group-Open Systems, Martha Chandler was project leader for the
PATHWORKS for ULTRIX version 1.1 product. She designed and implemented the
management interface for the PATHWORKS for ULTRIX server. Prior to this work,
Martha maintained MS-Windows terminal emulation for the PCIE Client Develop­
ment Group. Before joining Digital in 1988, she received a B.S. in mathematics
with a minor in computer science from the University of Massachusetts at
Lowell.

I

3

Biographies

J

4

Siu Yin Cheng Since joining Digital in 1987, Siu Yin Cheng has worked on
server software in the Personal Computing Systems Group. As a senior software
engineer, she is responsible for the design and development of the server config­
uration utility for future PATHWORKS products. Siu Yin designed and developed
the server collector process to extract performance data from the file server;
she also worked on server development. Prior to this, she led the system testing
of PATHWORKS server V2.0-2.2. Siu Yin received a B.S.C.S. (1987, honors) from
Brown University.

Jeffrey R. Curless As a principal software engineer in the Personal Com­
puting Systems Group, Jeff Curless worked on the OS/2 data link driver and on
the PATHWORKS token ring implementation. He is currently developing a new
configuration utility to support the future direction of the PATHWORKS product
set. Since joining Digital in 1986, he has contributed to the development of
PATHWORKS software under both the DOS and OS/2 operating systems. Jeff holds
a B.S. in computer science from the University of New Hampshire.

Dennis G. Giokas Dennis Giokas is the group technical lead for PCSG's Net­
work Client Engineering and the engineering manager for its New User Interface
Group. His primary responsibility is technical lead for the next generation of the
PATHWORKS client. Prior to this work, Dennis contributed to PC DECwindows
development. Before joining Digital in 1984, he was employed by Arco Oil & Gas
and The Foxboro Company. Dennis holds a B.M. (1974) from the University of
Massachusetts at Lowell, an M.M. (1976) from the New England Conservatory,
and an M.S.C.S. (1989) from Boston University. He has two patents pending.

Andrew T. Leskowitz A principal software engineer in the PCSG X Server
Development Group, Andy Leskowitz is the project leader for the excursion
display server. Since coming to Digital in 1987, he has contributed to various
X development projects and designed the PATHWORKS LANSESS component.
Andy's prior experience includes engineering positions at Datatrol, The
Foxboro Company, and Raytheon Company. He has a B.S. (1976) in biology from
Swarthmore College. Andy has applied for a patent related to his x server devel­
opment work.

Mitchell P. Lichtenberg Mitch Lichtenberg is a principal software engineer
in the Personal Computing Systems Group. He is responsible for the design and
implementation of the PATHWORKS network client transport architecture and
for various other aspects ofDigital's PATHWORKS PC integration products. Before
joining Digital in 1986, he was employed by the Xerox Palo Alto Research Cen­
ter as a software engineer in the Xerox Artificial Intelligence Systems Division.
Mitch holds a B.S. (1986) from Worcester Polytechnic Institute.

David A. Low David Low is a consultant engineer in the Personal Computing
Systems Group. Since joining PCSG in 1988, David has worked in a variety of
advanced development tasks involving PC networking technology. He is cur­
rently concerned with assessing approaches for pen-based computing and wire­
less PC networking. David has an A.B. in mathematics and an M.A.S. in computer
science from Boston University. He is a member of AAAS, IEEE, and ACM.

Christopher E. Methot Chris Methot has been analyzing client-server per­
formance since joining Digital in 1986. He has worked in performance charac­
terization ofLAVc systems and has contributed to VAX Performance Summaries.
Currently, he supervises capacity/performance engineering in the Personal
Computing Systems Group. In addition to developing the PATHWORKS client­
server modeling process, his group is developing a standard performance test
for Macintosh servers and has benchmarked many of Digital's hardware servers.
Chris holds a B.S. (1967) in industrial design from the University of Cincinnati.

Andrew W. Nourse Principal software engineer Andrew Nourse has worked
on network software for the PATHWORKS and DECnet-DOS products for the past
six years. He developed Microsoft Windows and non-Windows networking
applications, libraries, and drivers. Prior to this, he wrote network utilities for
DECSYSTEM-20, DECsystem-IO, and RSTS/E products. Andy received a B.S. in elec­
trical engineering and computer science from the Massachusetts Institute of
Technology in 1974 and joined Digital in 1976.

Anthony J. Rizzolo A principal software engineer in the PCIE Server Develop­
ment Group-Open Systems, Anthony Rizzolo designed and implemented the
PATHWORKS for ULTRIX file server process. He also designed the data link and
port driver layers for the PATHWORKS for DOS product. Prior to this work, Tony
was a member of the Internal Software Support Group and the TOPS-10 Engineer­
ing Group, where he designed and implemented the data link layer for the KLNI
Ethernet adapter. Tony joined Digital in 1981. He received a B.S.E.E. from Stevens
Institute of Technology.

Philip]. Wells Phil Wells is the PATHWORKS server architect and is responsi­
ble for coordinating the design and implementation of the PATHWORKS server
products. In previous positions at Digital, Phil worked for Corporate Tele­
communications designing Digital's internal network, the EASYNET, and helped
support data centers and networks while in the Internal Software Services
Group. Phil joined Digital in 1976 as a computer operator in the Corporate Data
Center.

I

5

I

6

Foreword

Joseph A. Carchidi
Group Engineering Manager,
PC Integration

In the 1990s, a major shift is occurring in personal
computing, from isolated, individual work on desk­
tops to work in groups whose members are located
throughout an enterprise. To support this impor­
tant change, Digital has developed a family of prod­
ucts, called PATI-IWORKS, that enables personal
computer users to make the shift from the stand­
alone machine to the network environment and the
resources of larger computer systems.

The roots of PATI-IWORKS were in place as early
as 1980. Digital's engineering management recog­
nized that a significant part of the growth in the
computer industry would be redirected from
minicomputer to microcomputer products. As the
80s progressed, we learned from our experience
in personal computer hardware development and
from the direction taken by the growing and highly
competitive microcomputer market that industry
standard-based products were more important
than unique technologies; that is, open systems,
comprising standard devices and interconnects,
were what customers wanted, not more propri­
etary systems.

Digital's VAXmate personal computer, intro­
duced in 1987, was built on the industry standard
model. Moreover, it offered something no other
PC offered at that time: the VAXmate had the net­
work built in. With foresight, engineering manage­
ment determined that our microcomputer business
would tie to our long-standing strength in building
networks. Our strategy thus changed from a focus
on hardware development to the development of
microcomputer software.

The critical question then asked-and the one
that lead to PATHWORKS development within Engi­
neering-was whether to provide customers with
an upgrade path similar to those of competitors
in the PC LAN business at that time, i.e., file and
print services, or a network environment that
embraced the primary technologies used by cus­
tomers, i.e., a complete set of networking appli­
cations that included file and print services, mail,
X servers, and terminal emulators. The strategy that
took hold was the latter; we would develop a broad
set of products that recognized customers' invest­
ments in a range of personal computer and net­
work software. Unlike other single-product PC LAN
offerings, this set of products would be engineered
to couple large server systems based on CISC and
RISC technologies with the primary microcomputer
systems and would support operation over a local
or wide area network. Furthermore, the mapping

between the disparate systems would have to be
transparent to users, and without concessions on
performance.

This chosen strategy, of course, was not the eas­
ier of the two to implement. One of our initial tasks
was to select which operating systems to support
among the many microcomputer operating sys­
tems available in the market. We decided to define
the scope of our early development work by sup­
porting the most widely popular personal comput­
ers, which are those based on the DOS, OS/2, and
Macintosh operating systems. Another important
decision was the choice of a network transport that
would serve as the basis for the interconnection of
the systems selected. We selected Microsoft's LAN
Manager software as this transport. MS-NET, the
predecessor to LAN Manager, had the advantage of
being network transport independent, thus allow­
ing us to utilize the DECnet network to extend the
PC LAN software to a wide area network.

In the papers in this issue, you will read about
some of the extensive work that has been accom­
plished since we first embarked upon this software
effort. Engineers have designed and implemented
file servers and network transports that allow PCs
to access files, applications, storage, and print

I
services on the larger VMS and ULTRIX server
systems. Further, a PATIIWORKS application, called
excursion, brings together the X Window System,
the Windows environment, and the DECnet net­
work. The effect is to link X-so important to users
of UNIX systems-with the PC DOS system environ­
ment. These combined efforts represent a hallmark
in Digital's progress toward open, heterogeneous
computing.

Our achievement in the Personal Computing Sys­
tems Group has been our steady progress toward
providing customers the open computing environ­
ment they need. The breadth of our product offer­
ing has taken on clear definition within the last
year, and we will now begin the work of adding
depth to the PATIIWORKS product set. The possibili­
ties for future developments are truly astounding.
Looking ahead five years from now, client work­
stations will have the power of supercomputers,
and the dramatic progress in parallel computing
will bring additional opportunities for data sharing
and application developments which are in embry­
onic stages today. Our challenge in software engi­
neering will be to make all these systems work
together in a well-integrated, easy-to-use, well­
deployed computing environment.

7

Alan Abra hams
DavidA. Low

An Overview of the PATHWORKS
Product Family

As the number of personal computers continues to grow, so does the demand for
networking products and services to allow these PCS to share networked resources.
Digital's Personal Computing Systems Architecture enables the integration of
PCs into Digital's enterprise-wide network systems. The software products devel­
oped using this architecture are referred to as the PATHWORKS product family.
PA1HWORKS products support a variety of PC platforms and operating systems, and
accommodate different physical networks and transport and service protocols. This
flexibility allows PC users to access resources outside their PC environment, such as
remote files, printers, databases, and electronic mail.

When the IBM Corporation introduced its first
personal computer in 1981, few could have fore­
seen that by 1992 millions of PCs would have been
sold worldwide, radically changing the computer
market in the process. The term PC usually implies
an Intel 80x86 family or a Motorola 68000 series
processor, sized to fit under a desk or smaller
and commonly priced under $5000. The low price
has helped to fuel an explosive growth in the
number of hardware products and software appli­
cations available for PC platforms. PCs are now
ubiquitous and represent the largest class of net­
worked computers.

Even before the introduction of the PC, small
computers were being networked together to
share data and hardware resources. In 1990, as
many as 40 percent of the installed PCs were net­
worked.1 By 1994, an estimated 75 percent of the
increasing number of PCs will be linked together
with products from many networking vendors.
These vendors provide services that commonly
include transparent access to remote files, printers,
databases, and electronic mail.

Digital Equipment Corporation is a worldwide
leader in networking services. Since 1986, we have
been developing the Personal Computing Systems
Architecture (PCSA) to meet the growing needs of
PC client-server applications in local and wide area
network systems. Many technical obstacles were
met and overcome in the design and development
of PC integration products. The PATHWORKS prod­
uct family, derived from PCSA, reflects the diversity

8

of Digital's customers' needs and environments.
PATHWORKS software products support a variety of
PC platforms and operating systems, and accommo­
date different physical networks and transport and
service protocols.

To help the reader comprehend the scope of the
PATHWORKS offerings, we begin this paper with a
basic discussion of PC hardware and software, fol­
lowed by information about the various protocols
used in PC networking. We then describe how
Digital's PATHWORKS product set allows integration
of PCs into network systems.

PC Hardware
This section describes the PATHWORKS Intel and
Macintosh client platforms and introduces related
PATHWORKS services.

Intel Platforms
The most popular operating systems in the world,
IBM's PC-DOS, Microsoft's MS-DOS, and Microsoft
Windows, are designed to take advantage of the fea­
tures of the family of Intel chips that includes the
8086, 80286, i386, and i486 microprocessors.

The 80x86 memory architectures have evolved
from 16-bit addressing with implicitly referenced
64-kilobyte segments in the 8086 processor, to
32-bit addressing with a paged virtual memory in
the i386 or higher processors. Recent Intel pro­
cessors have features previously associated with
minicomputers. The i486 chip, for example, has

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

an integrated floating-point processor, instruction
and data caches, and hardware support for multi­
tasking. This range of processor capacity highlights
a major concern of the designers of Digital's
PATHWORKS products, i.e., how to efficiently accom­
modate the range of differing functionality found in
the installed Intel-based PCs.

Although this PC market has had little de jure
regulation, IBM's market presence has shaped the
de facto interface standards. The industry standard
architecture (ISA) system bus and the video graph­
ics array (VGA) display technologies are examples of
such standards.

The most common system bus, the ISA bus, pro­
vides 16-bit data access to a 24-bit (i.e., 16-megabyte)
address space. Physical and electrical interface con­
ventions have been established and thousands of
interface boards are available. IBM introduced the
ISA bus and later developed the Micro Channel
Architecture (MCA) bus, which provides 32-bit data
access to a 32-bit (i.e., 4-gigabyte) address space,
automatic bus sizing, and accelerated data transfer
mechanisms. The MCA bus is not compatible with
the ISA bus. Consequently, a number of manufactur­
ers other than IBM joined forces and devised the
extended ISA (EISA) bus, with features analogous
to those of the MCA bus. Even though Digital's PCs
use either the ISA or EISA bus, we support our cus­
tomers' MCA bus machines through software and
peripheral device offerings.

Graphical user interfaces (GUis) such as the one
provided by the Microsoft Windows software are
becoming the rule rather than the exception. IBM's
color graphics adapter (CGA) display was an early
standard at 320 columns by 200 rows and a range
of 4 colors. VGA is a more recent standard, with
variants that can generate a screen up to 1024 by
768 in 256 colors. There is no widely accepted dis­
play standard beyond VGA, and it may be sufficient
for manufacturers of innovative display technolo­
gies to provide device drivers for transparent use
by Microsoft Windows applications. For example,
the PATHWORKS excursion for Windows display
server, which implements the X Window System
protocol and operates in the Microsoft Windows
environment, uses the display drivers supplied
with the Windows software. The excursion server
thus leverages any new display technologies with
which Windows drivers are supplied. However, the
standalone DOS-based x Window System servers
supplied with the PATHWORKS software must be
modified to use a new display technology.

Digital TecbnicalJournal Vol. 4 No. 1 Winter 1992

An Oven;iew of the PATHWORKS Product Family

Network interface cards (NICs) provide access
to local area network (LAN) systems. NICs that
adhere to ISA, MCA, and EISA standards are avail­
able from dozens of manufacturers for many net­
working topologies. Digital manufactures NICs
for thick, thin, and twisted-pair Ethernet connec­
tions. PATHWORKS products support the Network
Datalink Interface Specification (NDIS) and thus
accommodate Ethernet and token ring cards from
other vendors. NDIS also permits the use of parallel
transport stacks in the PATHWORKS for DOS and
PATHWORKS for OS/2 products. Digital also supplies
NetWare drivers for its DEC EtherWORKS cards for
use on Novell networks.

Macintosh Platforms
The Apple Macintosh PC embodies an integrated
hardware and software system architecture that has
not been cloned by competitors and thus has fewer
variants than the Intel-based PCs. Macintosh PCs use
the Motorola 68000 series microprocessor. The
later versions of these microprocessors provide
32-bit operations on a 32-bit address bus, with
virtual paged memory. Application programmers
are largely shielded from the underlying hardware
by an extensive operating system application pro­
gramming interface (API).

All current Macintosh PCs are equipped with bit­
mapped graphics, sound-generating hardware, a
desktop bus for keyboard and mouse connection,
and an AppleTalk network communications port.
Some Macintosh PCs have system buses that permit
peripheral card extensions. All Macintosh PCs allow
communication by means of the AppleTalk family
of protocols over the LocalTalk LAN.2 Ethernet/
LocalTalk bridges and routers are available from
several vendors. Digital's PATHWORKS product fam­
ily includes VMS AppleTalk transport stacks and an
AppleTalk/DECnet gateway.

PC operating Systems
The PATHWORKS product set supports several
client operating systems, namely MS-DOS, Microsoft
Windows, Apple Macintosh, and OS/2, a joint effort
of IBM and Microsoft.

MS-DOS Operating System
Microsoft's MS-DOS (and IBM's PC-DOS) operating
system evolved as a collection of services for a
single-tasking, Intel-based PC. In addition to file
and print services, DOS provides a simple frame­
work for 1/0, memory management, and other

9

PATHWORKS: PC Integr atio n Software

system services. A command line interpreter is used
to load an application, which may invoke DOS ser­
vices or take over various hardware functions on its
own. Although DOS is evolving in the direction of
providing a protected virtual machine environ­
ment, applications may bypass or subvert systems
services provided by current DOS versions. This
complicates the design of DOS client systems ser­
vices such as PATHWORKS networking software.

Microsoft Windows Environment
Microsoft Windows software operates over the
DOS operating system to provide a protected
multitasking (nonpreemptive scheduling) virtual
machine operating environment and a graphical
user interface. Unlike DOS, the Windows environ­
ment imposes severe constraints on application
structure and interface design, and on the design of
system support software such as PATHWORKS net­
work drivers. Although much of the success of
the Windows software is due to its ability to multi­
task traditional DOS applications, there is a rapidly
growing number of Windows-specific applications
that take advantage of the graphical environment,
such as the PATHWORKS excursion for Windows
server.

Macintosh Client Software
The first Macintosh client was an integrated multi­
tasking hardware and software system with a
well-defined application structure and interface
definition. Subsequent hardware and software
development has refined and extended operating
system services. The Macintosh Communications
Toolbox, for instance, defines an API that is used
by the PATHWORKS Macintosh client to enable
Macintosh PCs to participate in a DECnet network.

OS/2 Operating System
OS/2 was conceived by Microsoft and IBM as a
protected-mode operating system. OS/2 software
features preemptive multitasking, process threads,
interprocess communication, and an extensive
GUI. OS/2 provides only limited support for DOS
applications, partly because of the constraints of
the Intel 80286 microprocessor, and has yet to
achieve its anticipated popularity. However, OS/2
remains a powerful operating system and applica­
tions development environment, and IBM is address­
ing perceived inadequacies. Digital's PATHWORKS
family includes OS/2 LAN Manager server and client
offerings.

10

PC Networks
Even before IBM coined the term PC, microprocessor­
based machines were using networks to share
expensive hard disks. Sales of networks on which
PCs act as both servers and clients have under­
gone tremendous growth and have outpaced mini­
computer networks in the last several years. The
most common service offered by PC networks is
transparent access to remote files and printers,
which permits PC applications to share resources
provided by a network server.

The popularity of PC networks has also spawned
a variety of distributed applications such as data­
base, electronic mail, and group productivity prod­
ucts. Most PC client-server applications are simply
PC applications that simultaneously share files
stored on a remote file server. These applications
use a file server to achieve their distributed nature.

PC networks are implemented over more than
a dozen underlying physical layers; Digital's
PATHWORKS products support Ethernet, token ring
networks, and asynchronous lines. All mini­
computer and mainframe vendors have products
that permit PCs to obtain services from their
enterprise-wide networks. Digital's PATHWORKS
for VMS and PATHWORKS for ULTRIX products pro­
vide transparent file and print services to DOS,
Windows, OS/2, and Macintosh PC clients. PC files
stored on the VMS or ULTRIX operating system may
be accessed by other PCs or by users of the host
operating system. In addition, PATHWORKS prod­
ucts provide database access, x Window System
support, terminal emulation, electronic mail, and
many other services familiar to those in a Digital
environment.

As noted above, PC networks use many physi­
cal networking protocols. In the following sec­
tions, we describe PC transport protocols and the
application-level service protocols used to encode
the remote service primitives.

Transport Protocols
Commercial PC networks use a wide variety of
transport and service protocols. Although mini­
computer transports are available to meet some
needs, most vendors have introduced their own to
address concerns such as performance and size,
which are critical in competitive concerns such as
performance and code size.

The network basic 1/0 system (NetBIOS) soft­
ware, developed by IBM, defines an interface to a
connection-oriented transp ort, a connectionless

Vol. 4 No. 1 Winter 1992 Dtgttal Technical Journal

datagram service, and a name service API.3 In addi­
tion to being the Microsoft LAN Manager transport
interface, NetBIOS has become a widely accepted
standard for PC applications communicating
directly with transports.

Figure I shows that NetBIOS can be implemented
by PC network vendors over a variety of underlying
transports. Digital's PATHWORKS products have
NetBIOS interfaces to the DECnet protocol and the
transmission control protocol/internet protocol
(TCP/IP).4.5 Other popular commercial transports
incorporating NetBIOS interfaces are the internet
packet exchange (IPX), the Xerox Network System
(XNS), and the NetBIOS extended user interface
(NetBEUI). Many of these transports also have a
native transport API that allows the application to
make use of features not available through the
NetBIOS interface.

The TCP/IP protocol family is beginning to
achieve some visibility in the PC network market.
At first largely associated with UNIX and ULTRIX net­
works and Sun Microsystems' Network File Service
(NFS) protocol, TCP/IP has been lately offered as
an underlying transport for NetBIOS in several ven­
dors' products, including Digital's PATHWORKS fam­
ily. In addition to transparent file and print services,
PC users of TCP/IP require access to a variety of
tools and utilities, such as mail and terminal emula­
tion, which may resemble UNIX or ULTRIX tools and
utilities. Digital's PATHWORKS family has adopted
the approach of maintaining parallel TCP/IP and
DECnet implementations, both of which have a
PC-centric rather than a host-centric orientation.

The PATHWORKS TCP/IP implementation operates
over either an Ethernet or a token ring network,

APPLICATION

NETBIOS APPLICATION
PROGRAM INTERFACE

TRANSPORTS

NATIVE TRANSPORT
APPLICATION PROGRAM
INTERFACE, e.g., SOCKETS

Figure 1 NetB/05 and Native Application
Program Inteifaces

Digital Technical Journal Vol. 4 No. I Winter 1992

An Overview of the PATHWORKS Product Family

and provides a file transfer protocol (FTP) utility, a
TELNET terminal emulator, and a Berkeley Software
Distribution (BSD)-like socket interface for applica­
tion developers.

Many of Digital's customers have extensive
DECnet networks. Digital's PATHWORKS product
family provides PC clients with full Phase IV end­
node functionality, including file access listener
(FAL), network file transfer (NFT), command termi­
nal (CTERM), and network utilities. PATHWORKS
products also support a NetBIOS implementation
that uses the DECnet protocol as a transport. The
PATHWORKS DECnet implementation operates over
either an Ethernet or a token ring network and pro­
vides a BSD-like socket interface for application
developers.

NetWare software from Novell Corporation is a
popular family of PC network services. The internet
packet exchange protocol is Novell's derivative of
the Xerox internet datagram protocol. IPX is the
network transport that underlies SPX, a sequenced
reliable protocol. IPX is also used by the NetWare
core protocol, NCP. Novell also supplies an imple­
mentation of the NetBIOS interface over the IPX
protocol. Digital supports the IPX/SPX protocol on
DOS clients through the PATHWORKS for NetWare
coexistence product, and has announced plans to
integrate NetWare protocols into PATHWORKS prod­
ucts in a way that parallels current use of LAN
Manager protocols.

The AppleTalk family of protocols employed by
Macintosh PCs accommodates three hardware lay­
ers: token ring, Ethernet, and LocalTalk. AppleTalk
includes a datagram delivery protocol, routing and
name binding protocols, and several session-level
and service protocols.

For efficiency, many PC network vendors have
invented their own protocols. For example, both
the IBM/Microsoft NetBEUI and the 3Com Corpora­
tion NBP transport protocols have been optimized
to work on LAN topologies.6 Digital's PATHWORKS
software provides the local area transport (LAD
and local area system transport (LASD protocols on
several of its client platforms; these protocols are
used to access terminal services and InfoServer
disk services.

Service Protocols
Service protocols encode high-level service
requests at the application layer; these protocols
are often vendor-specific. Typically, an application
issues a standard 1/0 request, such as "open file," to

11

PATHWORKS: PC Integration Software

a systems interface to obtain transparent access to a
remote file or print service. The request may be
either intercepted (e.g., in Novell's NetWare soft­
ware on DOS) or channeled through the operating
system (e.g., in the Microsoft LAN Manager or Apple
Macintosh software) to a redirector or shell soft­
ware module that encodes it into a service protocol
packet. The redirector then sends the service
request to the local transport. When the response
packet arrives from the service provider, the redi­
rector interprets the service protocol and provides
the application with the appropriately formatted
response. The redirector may also provide an API
for access to nontransparent services such as peer­
to-peer communication and management of a
remote server. Figure 2 illustrates the role of ser­
vice protocols in fulfilling a client request.

The Microsoft LAN Manager redirector software
uses the server message block (SMB) protocol to
access remote file and print services.7 This proto­
col may run over multiple transports, each trans­
port accessed by means of a NetBIOS interface. The
redirector also provides a client API over the SMB
protocol for many nontransparent services such as
peer-to-peer communications via named pipes, a
messaging service, and remote server management.

Novell's NetWare software uses the NCP protocol
to access remote file and print services. This popu·
lar service protocol runs only on the IPX transport
stack. The NetWare shell provides client APis over
NCP for many nontransparent services such as trans­
action tracking, semaphores, and remote server
management.

Apple's AppleShare software uses the AppleTalk
suite of protocols. These protocols include the
AppleTalk filing protocol (AFP) and printer access

LOCAL
STORAGE

12

APPLICATION

FILE 1/0

SERVICE
PROTOCOL

SERVER

.-~ ~---. TRANSPORT ~~ ~~
CLIENT PROTOCOL SERVER
TRANSPORT TRANSPORT

Figure 2 Service Protocols

protocol (PAP), which permit transparent file and
printer redirection.

Sun's NFS system has widespread multivendor
support in UNIX and ULTRlX environments. There
are a variety of PC products that work over the
IP protocol family to provide file services from a
standard UNIX or ULTRlX NFS server.

PATHWORKS Product Family
Commensurate with Digital's role as a network
integrator, the PATHWORKS product family is large
and diverse. In the following sections we character­
ize the PATHWORKS family by its client platforms,
server platforms and services, and physical net­
works and network protocols. Table 1 shows the
history of the PATHWORKS product family.

Since its introduction in 1986, the PATHWORKS
product family has continued to expand the list of
client platforms, servers, and transports it sup­
ports. The most popular client platforms are Intel­
based and operate under DOS and/or Microsoft
Windows. These clients can be serviced by VMS,
ULTRIX, and OS/2 servers. The Macintosh clients
can be serviced by VMS servers.

The PATHWORKS product family offers transparent
file and print services through two technologies:
the Microsoft LAN Manager is used for DOS, OS/2,
and Windows client platforms; AppleShare is used
for Macintosh platforms. In addition, on DOS and
Windows platforms a dual-service stack approach
is used to allow these platforms to access native
NetWare services through the PATHWORKS for
NetWare Coexistence product. Table 2 shows how
clients and servers can be connected by means of dif­
ferent transports. The first column is a list of the sup­
ported servers; each cell shows the transports that
can be used to connect the client and the server.

The Macintosh client also supports the DECnet
transport. However, file and print services are only
available through the AppleTalk stack. Clients also
have access to a number of transport gateways,
including AppleTalk-DECnet, X.25, and the System
Network Architecture (SNA), the latter two through
Digital network products.

The default PATHWORKS network protocol is the
DECnet protocol. TCP/IP is available as an optional
add-on to the base platform. The DECnet protocol
allows the user to access the following services in
addition to the transparent file and print services:

• A full set of management tools (e.g., the DECnet
network control program for managing the
transport).

Vol. 4 No. 1 Winter 1992 Dtgttal Technical Journal

Table 1 Product History

Area Supported

File and Print Service

Server

Transport

Network

Clients

1986-89

LAN Manager
AppleShare

VMS

DECnet

Ethernet

DOS

Table 2 Client-Server Transports

Server Supported DOS

VMS DECnet
TCP/IP
LAST

ULTRIX DECnet
TCP/IP

05/2 DECnet

An Overview of the PATHWORKS Product Family

1990 1991

LAN Manager LAN Manager
AppleShare

VMS VMS
ULTRIX ULTRIX
05/2 05/2
DECnet DECnet
Apple Talk AppleTalk
TCP/IP TCP/IP

NetBEUI

Ethernet Ethernet
LocalTalk LocalTalk

Token Ring

DOS DOS
05/2 Macintosh
Macintosh 05/2

Windows3.0
NetWare Coexistence

Client Platforms
Windows 05/2 Macintosh

DECnet DECnet AppleTalk
TCP/IP TCP/IP
LAST

DECnet DECnet
TCP/IP TCP/IP

DECnet DECnet
TCP/IP TCP/IP TCP/IP
NetBEUI

• The NFT utility for transferring files to systems
that do not have server software.

• A remote disk (as opposed to remote file) mecha­
nism over the LAST protocol. This mechanism
allows access to Digital's InfoServer products
that support networked CD-ROMs, i.e., read-only
optical disks.

• DOS and Windows terminal emulators operating
over the LAT or CTERM protocols, as well as asyn­
chronous lines. The LAT protocol may also be
used to attach a local PC printer to a VMS print
queue.

• A DOS-based x Window System server that allows
the PC to act as a display device for Motif or
DECWindows applications.

• A low-end electronic mail utility that provides a
PC front end to the VMS and ULTRIX mail systems.

Digital Technical Journal Vol. 4 No. I Winter 1992

NetBEUI NetBEUI

• Development tools in the form of programming
libraries for access to peer-to-peer communica­
tion with remote applications.

The TCP/IP protocol allows the user access to the
following services in addition to those listed above:

• The FTP utility for file transfer

• The ability to use the base terminal emulator to
allow operation over TELNET

• The ability to run the DOS-based x Window
System server over TCP/IP as well as over the
DECnet protocol

Every Macintosh PC includes software to access
basic file and print services over the AFP. The
PATHWORKS Macintosh product family provides
those services on server platforms, but also pro­
vides a set of transport protocols and utilities on

13

PATHWORKS: PC Integration Software

the Macintosh client. In particular, PATHWORKS
products supply a DECnet stack with file transfer
and management utilities, a LAT implementation
and terminal emulator, and an x Window System
server implementation that operates over the
DECnet or an optional TCP/IP stack. The PATHWORKS
Macintosh client includes a programming tool for
access to remote databases on Digital platforms.

The PATHWORKS OS/2 client provides a LAN
Manager redirector and SMB access to basic file
and print services over the DECnet protocol or an
optional TCP/IP stack, and a collection of tools and
utilities similar to those for the PATHWORKS DOS
client. Some features, such as an x Window System
serve~arelacking.

In addition to the applications included in the
base PATHWORKS product, the following client
applications are available as layered products:

• excursion for Windows, a Microsoft Windows/
x Window System server application that allows
x Window client applications to share the PC dis­
play device with native Windows applications

• x.400 mail, which provides PC front-end access
to Digital's x.400 mail server products

• Conferencing, which provides a PC front end to
VAX Notes

• Videotex, which provides a PC front end to
Digital's Videotex servers

• DECquery software, which provides a PC front
end to structural query language (SQL) services

Digital also provides development tools for
building distributed applications on the
PATHWORKS base system. These development tools
include database access to a host-based SQL server
by means of the SQL services and distributed trans­
action processing through the DECtp for ACMS
product.

Summary
The PATHWORKS product family provides direct
access to the local and wide area enterprise envi­
ronment from desktop devices. Clients can access
multiple file and print servers, gateways, database
servers, transaction processing systems, and elec­
tronic mail systems on a variety of server platforms
in a consistent manner from multiple desktop
platforms.

The services provided by the PATHWORKS prod­
uct set are the foundation for the integration of

14

desktop applications with host system services
such as those available with the VMS, ULTRIX, and
OS/2 systems. PATHWORKS network software makes
it possible to develop front-end processors for
today's host-based applications and to design new
distributed applications. Hence, PATHWORKS prod­
ucts allow the existing computing infrastructure to
progressively evolve towards a distributed model.

References

1. B. Baldwin, Local Area Communication Service,
Metric Note LAN 40 (Stamford, CT: Gartner
Group, Inc., December 1991).

2. G. Sidhu et al., Inside AppleTalk, 2nd ed.
(Reading, MA: Addison-Wesley, 1990).

3. IBM NetBJOS Application Development Guide
(Armonk, NY: IBM Corporation, Document No.
S68X-2270-00, 1987).

4. Protocol Standard for NetBJOS Service on a TCP/
UDP Transport: Concepts and Methods, Internet
Engineering Task Force RFC 1001 (March 1987).

5. Protocol Standard for NetBIOS Service on a TCP/
UDP Transport: Detailed Specification, Internet
Engineering Task Force RFC 1002 (March 1987).

6. Local Area Network-Technical Reference
(Armonk, NY: IBM Corporation, Document No.
SC30-3383-2, November 1988).

7. X/Open Developer's Specification-Protocols for
X/Open PC Interworking: SMB (Reading, U.K.:

X/Open Company Limited, Document No.
XO/DEV/91/010, 1991).

Vol. 4 No. 1 Winter 1992 Digital TechntcalJournal

Edward W. Bresnahan
Siu Yin Cheng

PATHWORKSfor VMS File Server

The PATHWORKS for VMS file server integrates industry-standard personal com­
puters with VAX VMS systems over a communications network. It implements
Microsoft's server message block (SMB) core protocol, which provides resource shar­
ing using a client-server model. The server provides transparent network access to
VAX VMS FILES-11 files from a PC's native operating system. The architecture sup­
ports multiple transports to ensure interoperability among all PCs connected on
an open network. Due to the performance constraints of many PC applications,
data caching and a variety of other algorithms and heuristics were employed to
decrease request response time. The file server also implements a security model to
provide VMS security mechanisms to PC users.

Coupled with the PATHWORKS for DOS or
PATHWORKS for OS/2 product, PATHWORKS for VMS
creates a distributed computing environment,
based on a client-server model. This environment
allows personal computer (PC) users to access VMS
system resources transparently. PC clients access
the system server from their native operating sys­
tems, typically MS-DOS, as if it were local to the
PC. The VAX VMS system resources to be shared, i.e.,
files or printers, are offered as services over the
network to PC clients. The computer systems
providing the shared resources are referred to as
servers; and the PCs requesting the resources as
clients. The SMB protocol from the Microsoft
Networks/OpenNET (MS-NET) Architecture was
chosen to provide file sharing from a VAX VMS sys­
tem to MS-DOS and OS/2 clients. 1 The SMB protocol
is a command/response application-layer protocol
designed to provide file sharing in a PC network.
Since SMB is an application-layer protocol, it is
transport independent and thus can be imple­
mented over heterogeneous networks.

Central to this environment is the file server, the
component that processes the SMB requests to pro­
vide file and print sharing along with management
functions. The file server maps SMB file requests to
the appropriate calls for the VAX VMS FILES-11 file
system interface and honors applicable security
mechanisms. MS-DOS and VAX VMS systems have dif­
ferent file systems and security models. To integrate
these different environments, mapping policies,
along with an architecture appropriate for the VMS
system, had to be developed and implemented.

D igital TechnicalJour ual Vol. 4 No. I Winter 1992

This paper describes the design and implemen­
tation of a nondedicated personal computer file
server (PCFS) on a VAX VMS computer system. It
details the PATHWORKS for VMS file system and
discusses its transport layer interface and perfor­
mance considerations, including data caching
effects and disk space allocation. The paper then
explains file sharing among server processes in a
cluster environment and concludes with a discus­
sion of the server configuration and management
interface.

File Server Architecture
The file server is implemented as a single, multi­
threaded, nonblocking detached process with an
associated permanent DECnet object. This user­
mode process is privileged and has a high priority.
Figure 1 shows the architecture of the server. Only
one file server process exists on any one computer
to handle all client requests. An alternative choice
would be to have multiple processes service the
clients. The use of a single process reduces system
resource requirements and eliminates the latency
that is incurred from context switches among the
multiple server processes. Also eliminated is the
latency that results from process creation at the
time a client connects.

A threads package with multiple independent
threads of execution within a single process sup­
ports multiple clients and periodic operations
within the file server. The file server creates a
thread for a client when it requests establishment
of a virtual circuit to the file server. The thread is

15

PATHWORKS: PC Integration Software

VMS LOCK
MANAGER

VMS FILE
SYSTEM

PCFS SERVICE
DATABASE

USER
AUTHORIZATION
FILE DATABASE

JOB
CONTROLLER

MANAGEMENT
INTERFACE

PERSONAL COMPUTER FILE SERVER

LAST TCP/IP DECNET

TOKEN
ETHERNET RING

Figure I Server Architecture

deleted when the client terminates its connections.
A client's thread carries out the operation specified
in the request SMB without blocking the process.
With this scheme, processing SMB requests is sychro­
nous with respect to the client, yet asynchronous
with respect to the file server process.

Since a server process may be processing the
requests of hundreds of clients simultaneously, the
server operates in real-time. The threads package
contributes to these goals by providing an envi­
ronment in which the process never enters a wait
state and a client thread is safe from CPU starvation.
Preventing the process from blocking is accom­
plished by performing all file 1/0 asynchronously
and by calling operating system routines asynchro­
nously when possible. Starvation is prevented by
scheduling clients using a nonpreemptive first-in,
first-out (FIFO) scheduling algorithm. With this pol­
icy, a thread executes until it voluntarily yields, usu­
ally due to an 1/0 operation or an operating system
call. Using a nonpreemptive scheduling algorithm
also eliminates the latency that would result from a
thread switch in a preemptive environment.

PATHWORKS File System
A file server needs to provide transparent file access
to a VMS file system and ensure file accessibility
between DOS and VMS users. Since these operating
systems have different file systems, PATHWORKS for
VMS must store the files in VAX VMS FILES-11 format
and provide a mapping algorithm to bridge the
two operating systems. Because the OS/2 and DOS

systems use the same file system, the mappings per-

16

formed to address the difference between the DOS

and VMS systems can be applied to support trans­
parent file access from an OS/2 client.

File Name Mapping
DOS and VMS FILES-11 support different naming syn­
taxes. DOS supports 8.3 naming format; that is, the
file name is composed of a maximum of eight char­
acters with a maximum of three characters as the
extension. In contrast, the VMS FILES-11 file name
supports 39.39 format and includes a third compo­
nent, the file generation number. In addition, the
legal character set for a file name is larger in DOS

than it is in the VMS system.
The PATHWORKS file server does not include a

mapping algorithm to convert a 39.39 VMS file nam­
ing syntax to be accessible to DOS. Any VMS file that
DOS system users need to share must be created
with a file name that conforms to DOS 8.3 format.
Since the 8.3 naming format maps directly to the
39.39 format, no mapping algorithm is required to
guarantee a VMS system user access to files named
by a DOS system user.

To overcome the difference in character sets, a
comprehensive mapping algorithm was written to
ensure shareability and transparency. Since neither
operating system is case sensitive, the file server
changes the file name to uppercase before any oper­
ation is performed on the file. The legal character
set for VMS FILES-11 file names includes uppercase
alphanumerics, dollar sign, hyphen, and under­
score. The character set in DOS includes all noncon­
trol characters with the exception of a few special

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

signs. The PATHWORKS server maps the character
sets based on the following rules:

• All alphanumeric characters are changed to
uppercase letters; any character that is valid in
a VMS file name is passed through unchanged.

• All other characters are changed to two under­
scores, followed by two hexadecimal digits that
represent the ASCII code of the character being
mapped.

VMS FILES-11 allows multiple versions of a file to
be generated and stored in a directory. These files
are identified by the numeric component, which
represents the version number, of a file name.
There is no equivalent concept in the DOS system.
The PATHWORKS server maps the highest version
(or most recent generation) to be accessible to DOS.

Similarly, the server, when creating a file on behalf
of a DOS client, generates the file with a version
limit of 1. To preserve and honor the version limit
information for the VMS environment, the server
preserves the VMS file attributes of previous ver­
sions of the file. Consequently, if the file is created
by a VMS user, and is later updated by a DOS user, a
new version of the file is generated, and the version
limit information is preserved.

Directory Mapping
The VMS system requires a directory name to end
with "dir" as an extension, but the DOS system does
not post any restriction in this area. PATHWORKS

maps directory names in DOS by including the
".ext" characters as part of a directory name. Since
the period is not a legal character for a DOS direc­
tory, it is mapped using the double underscore fol­
lowed by the hexadecimal digit rule. Any directory
name in DOS that conforms to the VMS directory
naming syntax is passed through untouched.

DOS File Attribute Mapping
Both file systems associate a set of attributes to the
files, but the file attributes on a DOS file do not have
a one-to-one correspondence with those on a VMS

file. A DOS file has four types of file attributes:
archive, system, hidden, and read-only. The con­
cepts of archive, system, and hidden are not recog­
nized in the VMS file system. PATHWORKS software
stores the DOS file attributes in an application
access control entry when creating a file on behalf
of a PC workstation. Furthermore, the read-only
attribute of a DOS file is mapped to the read-only bit

Digital Techn ical Journal Vol. 4 No. I Winter 1992

PATHWORKS for VMS File Server

of the record management services (RMS) protec­
tion field for system, owner, and group.

File Organization
A DOS file is organized as a byte stream, but a VMS

file is organized as collections of records. Although
the VMS system supports a form of stream file, most
VMS files are stored in record format. Furthermore,
a VMS file with a stream record format does not
map directly to a DOS stream format. This poses
an interesting problem in integrating VMS and DOS

file systems.
Since PATHWORKS software provides transparent

access to the VMS host system, a DOS client views all
files on file services as streams of bytes, just as if
these files were stored locally. When the server cre­
ates a file on behalf of a PC, it specifies the file orga­
nization as sequential with stream record format.
Thus, the byte stream characteristic of the DOS sys­
tem is preserved.

The more complex part of the problem is to
resolve the shareability issues between VMS and
DOS applications. The PATHWORKS server is imple­
mented to provide the necessary conversion
between VMS and DOS file organization on stream
files. The file server views a file as stream if it can
read and write the file without regard to any record
boundaries. This includes any files with file organi­
zation as sequential and record format as stream,
stream_cr, stream_lf, and undefined, as well as
fixed. If a sequential file has fixed record format, it
must conform to record size and attributes as fol­
lows: even with no record attribute; 512 with no
block_span; and power of 2 with no block_span.
Thus, an RMS overhead in reading and writing these
files is avoided.

Any file that does not meet the criteria of the
stream category is said to be nonstream. The
PATHWORKS server provides read-only access to any
VMS nonstream file. This is achieved by using a VAX

c run-time library call that provides stream file
semantics and a conversion algorithm to properly
map any carriage return and line feed information.
The file server cannot support writing to these files
because the SMB protocol does not preserve record
boundary information. Thus, the protocol makes
it impossible for the file server to guarantee data
integrity when updating a nonstream file.

Byte Range Locking
The MS-NET architecture allows for concurrent
access to server-based files by multiple clients. PC

17

PATHWORKS: PC Integration Software

applications acquire this functionality through the
MS-DOS byte range locking calls. These calls allow
PC applications to lock and unlock ranges of bytes
in a file and to detect conflicts. Conflicts occur
when part or all of a range specified to be locked
has been locked from a previous call. In contrast,
the approach taken by RMS provides locking on a
record basis. RMS uses the VMS distributed lock
manager to implement this functionality. Unfortu­
nately, the lock manager is not well suited to imple­
menting byte range locks because the byte range is
represented in a form that allows the lock manager
to arbitrate access. Therefore, the file server imple­
ments its own lock database and arbitrates access
to shared files. Internally, the server process main­
tains a list of locks for each file the server has open
and arbitrates access based on these lock struc­
tures. Files opened by the file server cannot be
shared with other VMS processes because the file
server has an exclusive mode lock on each file it has
open through the VMS lock manager. The exclusive
mode lock guarantees protection from other VMS
processes.

Open Mode Mapping
The DOS file system defines open access modes to
allow applications to synchronize shared access to
a file. The open modes are deny _none, deny _read,
deny_write, deny_read_write, and compatibility.
Each provides a different level of file sharing capa­
bility. Although these modes do not map directly to
the VMS file system, no mapping is needed to han­
dle the differences.

The PATHWORKS server opens a file that is being
accessed by a client with exclusive access on the
VMS system. It assumes the responsibility to arbi­
trate shared access among multiple clients. The
server supports DOS open access modes by imple­
menting the shared access resolution algorithm
described in the SMB protocol specification.

PATHWORKS Transport Layer
Interface
The PATHWORKS for VMS product supports multiple
transports through a common transport layer inter­
face. These include the local area system transport
(LASl), the transmission control protocol/internet
protocol (TCP/IP), and the DECnet transport proto­
col over Ethernet and token ring networks. This
well-defined, uniform mechanism dynamically
adds support for network transports and protocols.

18

By conforming to this specification, transports can
be added to a server platform without upgrading or
changing the existing file server.

The performance goals of the file server had
an impact on the development of the transport
layer interface. The file server utilizes an optimized
transport layer interface that reduces buffer copies
and eliminates some of the standard VMS 1/0 paths.
This optimized interface is used with the LAST trans­
port and is described in detail in "The Development
of an Optimized PATHWORKS Transport Interface"
paper in this issue. 2

Performance Considerations
Achieving an acceptable level of performance from
a nondedicated file server layered on a general­
purpose operating system proved to be a challeng­
ing task. One of the performance goals for the file
server was that it perform tasks within 10 to 20 per­
cent of the speed of a dedicated PC file server run­
ning on a similarly sized CPU performing the same
tasks. This goal was achieved by employing a variety
of caches, algorithms, and heuristics. Many of these
heuristics were based on the analysis of the SMB
messages passed between the server and the client
for typical PC applications. As discussed in this sec­
tion, the response time of the server is improved if
the memory contains the information necessary to
satisfy a request when it arrives.

Data Caching
An obvious approach to implementing the read and
write functions in the file server is to issue these
operations to the FILES-11 file system, wait for their
completion, and then send a response to the client.
This method is simple and persistent, but does not
perform well due to the bottleneck formed at the
FILES-11 interface and disk. The file server imple­
ments a software write-behind data cache to
reduce this bottleneck and to eliminate waiting
for disk writes to complete before returning a
response to the client. Caching is a technique used
to decrease access time to information by using a
faster intermediate medium to store the most com­
monly accessed pieces of information. The caching
algorithm implemented by the server is a logical
block cache. The cache is a region of memory that
is segmented into fixed-sized buffers. Each file
opened by the server has a dynamic set of buffers
that increase and decrease based on a least recently
used (LRU) algorithm.

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

Effects on Client Read Requests Although this is
an optimal environment for servicing read
requests, reserving data in memory to satisfy all
read requests is not practical. A number of mecha­
nisms were implemented to approach the ideal.
The data cache retains recently accessed data in
memory with the expectation that it will be refer­
enced again soon. This is based on the concept of
locality of reference, both spatial and temporal.
Once the server receives a read request, it deter­
mines if the buffers associated with the read
request are in the cache by using a hashing algo­
rithm for the lookup function. If the data to satisfy
the read request is in memory, it is immediately
returned to the client, and the file system access is
eliminated. If some of the data needed to satisfy the
request is not in the cache, then reads are started on
each of the cache buffers needed to satisfy the
request. Once all data is read into cache memory, a
response is formed and returned to the client.

Effects on Client Write Requests When the server
receives a client write request, three processes are
performed. The cache buffers needed for the
specified write range are located, the client data is
copied to the cache buffers, and a response is sent
to the client. The data copied to the cache
is written to the disk at a later time. This write­
behind scheme allows write requests to be ser­
viced quickly because the response is returned to
the client before the write to disk completes. By not
synchronizing on-disk write completions before
returning a response, the turnaround time of client
write requests is greatly reduced. The cache is also
optimized when a client write request is received
and a disk read operation is in progress for the
range. In this case, the data being written to the
cache is copied into an intermediate buffer and
merged with the data from disk after the read oper­
ation completes. These intermediate buffers are
known as ghost buffers, since they are not visible
from the buffer hash table.

Writing Data to Disk Since the file server acknowl­
edges write requests before performing the write
operation, a mechanism is needed to write the
cache buffers to disk and ensure data integrity.
The file server implements a permanent thread,
the flush thread, dedicated to this task. The flush
thread starts disk write operations on buffers that
contain modified data. Flushing data to disk occurs
(1) periodically, based on a user-configurable

D igital Teclm icalJour11 a / Vol . 4 No. 1 \Vinter 1992

PATHWORKS for VMS File Seroer

interval; (2) when a file is closed; (3) when the
ratio of dirty to free cache buffers reaches a
user-configurable threshold; and (4) when cache
buffers are not available to support the current
request.

On the VMS system, RMS also employs a write­
behind algorithm similar to the one used by the file
server. RMS is not used by the file server for disk
reads and disk writes for performance reasons. The
crossing of the VMS architectural boundary that
occurs during RMS calls adds an unacceptable
amount of processing time to the read and write
paths. The file server uses the VMS queued 1/0

(QIO)/extended QIO processor (XQP) interface,
which is below the RMS layer, to read and write data
to disk.

Disk Space AJ,/ocation
Sufficient disk space must be available for any
write operation that is performed as a background
operation. To allow sufficient space, any disk allo­
cation must be completed when the write request
is received. This restriction slows down write oper­
ations which, in turn, results in file expansion.
Performance testing in this area shows that such
expansion operations can reduce the server's
response time in the overall operating environ­
ment. To alleviate this problem, the PATHWORKS
server preallocates a fixed amount of disk space,
often much greater than required, to complete the
current write request, in anticipation of further
file expansion. This mechanism greatly reduces
the system overhead incurred in disk allocation;
thus it improves the overall response time to write
operations.

Read Ahead
Another mechanism used by the file server to
improve the turnaround time of read requests is
read ahead. As with data caching, the goal is to
increase the probability that data referenced in the
near future will be in the cache. Read ahead is the
process of prefetching previously unreferenced
data from the disk into the cache. Data is pre­
fetched into cache memory under several condi­
tions. When a file is opened, the first two cache
buffers of the data are read from the disk into the
cache. Data is also prefetched when the server
detects that the file is being accessed sequentially.
The SMB protocol also supports read ahead. The
protocol provides a field in the read request that

19

PATHWORKS: PC Integration Software

specifies the amount of data that the client intends
to read in the future. This advisory field is used
by the server to initiate prefetches.

Directory Search-ahead Cache
A DOS directory operation can translate to multiple
exchanges of request and response operations
between the server and client. This behavior is
inherent to the SMB protocol definition. The file
server initiates a search-ahead thread when the first
request is received. While the PC is processing the
first response, the search-ahead thread accumu­
lates directory information in a circular buffer.
Thus, this information is available in memory for
subsequent requests.

Open-file Cache
Operations, such as create, open, and close, impact
performance in the VMS system. Benchmark tests
show that these operations become blocking fac­
tors for a fast performance server. This problem is
compounded by the inherent behavior of many PC
applications because they often use the result of
an open operation as a deterministic tool on file
accessibility. Frequently, files are opened and
closed and reopened in consecutive requests. To
minimize the overhead incurred for these opera­
tions, the PATHWORKS server implements a cache to
store opened file information. This open-file cache
maintains the file header information after the file
has been closed by the user for a short duration. If a
user requests to open a file that is already cached,
no request to VMS FILES-11 system is required. This
greatly reduces the response time of the server on
the second open request.

Furthermore, many DOS database applications
use index files to synchronize data access. These
files are frequently accessed by many DOS users
when working in an networked office environ­
ment. Open-file caching is beneficial to this envi­
ronment because it incurs a minimal amount of
open requests to the VMS file system.

Byte Range Locking Back-off Algorithm
The file server implements an algorithm to improve
overall performance of the server and network
when PC applications are sharing files and using
byte range locking to arbitrate access. The analysis
of many networked PC database applications
revealed that a client typically entered a tight retry
loop when it detected a lock conflict. This spinning
produces an excessive amount of lock-related

20

network traffic, especially for very fast clients. The
server also has to spend a significant amount of
time processing these numerous lock requests. The
server attempts to regulate this lock traffic and
reduce its lock processing time by deferring the
return of the response when a lock conflict is
detected. If a request to lock a range conflicts
with a previous lock, the server makes repeated
attempts to access the range using a pseudorandom
exponential back-off algorithm to determine the
retry interval. If the lock conflict is not resolved
after a user-configurable time period, the server
returns a response indicating a lock conflict. By
deferring this response to the client, the server
exercises flow control over clients spinning on
locked regions of the file. The implementation of
the pseudorandom exponential back-off algorithm
prevents the server from using an excessive
amount of CPU time to determine if the locked byte
range has been unlocked.

Security
The VMS operating system offers a well-defined
security architecture, but DOS has no comparable
security scheme. Since the PATHWORKS file server is
implemented as a privileged process, it is necessary
to control file access on the VMS host system from a
DOS client. There is no one-to-one correspondence
between a DOS user and a VMS user. That is, in the
PATHWORKS environment, each network client,
much like a terminal in this respect, can be multi­
ple VMS users. The problem is to ensure maximum
shareability among PC clients and maintain the
desired level of VMS security.

The PATHWORKS file server implements two
types of securities: share and user. It makes use of
the PCFS$SERVICE_DATABASE to control access to a
share area; and the VMS user authorization file (UAF)
database to control access to directories and files
based on a VMS user account. A share, referred to
as file service, is a VMS directory that can be
accessed by PATHWORKS clients. PATHWORKS soft­
ware defines three types of file services: system/
application, common, and personal. Access to file
services is based on VMS user account information.
A privileged system manager must explicitly grant
user access to system/application and common ser­
vices. The system manager must also specify the
types of access: read, write, or create. This infor­
mation is stored in the PCFS$SERVICE_DATABASE.
Access to personal service is implicit with the exis­
tence of a user account.

Vol. 4 No. J Winter 1992 Digital TeclmicalJournal

To provide maximum shareability among PC
clients, PATHWORKS software includes a default
user account. When accessing a file service that has
been granted to the default account, each PC
assumes the identity of the default account. Thus
the access, though it might be issued by different PC
users, is viewed as the same user. This mechanism
provides a "share level" of security.

A more restrictive environment is achieved by
providing access to a share area based on individual
user account. When a PC client establishes access
to a service, it presents a user account and its corre­
sponding password. This information is authenti­
cated based on information returned by the
sys$getuai system service call. The PATHWORKS
server then verifies that this user has been granted
access to the service.

Access to a file service does not necessarily imply
access to any individual files. In order to preserve
the desired level of VMS security, PATHWORKS
honors access control entries. The server ensures
access to a share area as defined in the database
by mapping the access types to two identifiers:
pcfs$read and pcfs$update. These identifiers are
added to the root directory of a share area, and to
any files that are created, when appropriate. As the
server impersonates the user, the appropriate iden­
tifier is associated when access privilege to files and
directory is checked. This security implementation
is not applicable when servicing a personal area.
Access to files stored in a personal area is based on
RMS protections mask.

To ease system management tasks, PATHWORKS
software implements "group" support. A group is
a collection of users. A PATHWORKS group has
no dependency on user group identification code.
When a share is granted to a group, each member
of the group gains access. Note that authentication
is still performed based on an individual user
account.

Since a DOS client can gain access to the VMS
environment, it is imperative that the file server
support the VMS system 's break-in evasion mecha­
nism. The server honors the login-related system
parameters. These parameters are read at the file
server start-up, and the values are in effect for the
duration of the server process. The server tallies
any failed or unsuccessful login attempts. When the
file server receives a connection (login) request to
service, the file server extracts the related counter
information from the UAF and adds it to its internal
counter to determine whether evasive action is to

Digital Tecbnical]ou r u a l Vol. 4 No. 1 Winter 1992

PATHWORKS for VMS File Server

take place. When a break-in is detected, the server
takes the appropriate evasive action and signals the
condition in the server log file.

Printing Support
The server process also implements the printing
functionality specified in the SMB protocol. The file
server implements the print-related commands
by using $SNDJBC and $GETQUI system services to
communicate with the VMS job controller. Each
print service available to clients has a VMS print
queue associated with it.

The VMS system has a much richer printing envi­
ronment than the one provided to the PC clients
through the SMB protocol. The PATHWORKS server
provides VMS printing features to the clients by
extending the SMB protocol to accommodate
PATHWORKS needs. These protocol extensions
are described in the section Digital Protocol
Extensions.

File Shar ing among Server Processes
Each node on a VAXcluster system can be a host for
the PATHWORKS server process. One of the more
challenging problems in supporting VAXcluster
systems is the synchronization of file access by
multiple server processes. As stated earlier, the
PATHWORKS file server requires exclusive access to
files that are opened by PCS in order to support byte
range locking in DOS. Furthermore, in a cluster,
each server process needs the ability to provide
identical access to the same resources.

PATHWORKS software implements its own lock
management algorithm to resolve file access
conflicts in a VAXcluster system. Although multiple
server processes are allowed in the environment,
only one process can handle the requests to a file
that is accessed by PC clients. By using the VMS lock
manager, the server process that services the first
open request acquires an exclusive mode lock on
the file. It thus becomes the master of the file and is
responsible for synchronizing access requests to
the file. When a server process is requested to ser­
vice a file that has another PATHWORKS server as its
master, it makes a network connection to the mas­
ter process and forwards the requests. This process
serves as the routing agent. It communicates both
requests and responses between the master server
process and the PC client. The master releases own­
ership when no outstanding open file handles are
on the file . File mastering is established on a per
file basis.

21

PATHWORKS: PC Integration Software

The rerouting mechanism uses the DECnet trans­
port because its existence on the remote server
host is guaranteed in a cluster environment. To min­
imize the number of required DECnet sessions, the
routing agent funnels all forwarding SMBs through
an existing session. The forwarding packets include
information that the master process can use to dif­
ferentiate among the clients' access requests.

PATHWORKS Server Configuration
The multithreaded PATHWORKS file server can be
considered a small operating system in which each
PC is a process (or a thread). In addition to the basic
resource requirement that the server be activated,
the server requires a set of process resources to
support each client thread. These resources can be
mapped to VMS process parameters which, in turn,
translate into system parameters.

The amount of VMS system resources which the
file server consumes is a function of the number of
clients and the workload generated by the individ­
ual PC. Mapping the PC resource requirement to the
appropriate VMS process and system parameters
proves to be a complex problem. Since the PC work­
load profile is unknown at the time of server initial­
ization, the amount of required system resources
for the server process can only be estimated.

PATHWORKS system managers include users with
little VMS system management experience. The
level of VMS system expertise required to configure
(or set up) a PATHWORKS server is minimized by
the addition of a "configurator." This part of the
management functionality is implemented to gen­
erate information on required system and process
resources when the desired configuration is sup­
plied. During the server start-up phase, the
configurator checks for availability of necessary
resources and provides appropriate run-time
parameters for the launching of the server process.

Management Inteiface
To provide integration between different file sys­
tems, the file server utilizes PATHWORKS specific
databases (such as the service database), standard
VMS databases (such as the UAF and DECnet data­
bases), and VMS security mechanisms. These enti­
ties must work in harmony and be consistent with
each other to provide the desired integration. The
PCSA_MANAGER utility was designed to manage
this environment. It allows users to perform all
management tasks related to PATHWORKS software
through one utility from a menu-driven user

22

interface or a command line interface. The
PCSA_MANAGER utility allows system administra­
tors to manage the following objects: users, ser­
vices, print queues, logical user groups, the event
logger, and the server process. The file server uses
interfaces supported by VMS to manipulate VMS
specific databases, private interfaces to access
PATHWORKS specific databases, and SMB protocol
extensions to interact with a server process.

Digital Protocol Extensions
Management of a running server requires a method
to send and receive well-defined messages between
the server and other processes. The PCSA_MANAGER
utility sends a management request to the server;
the server processes it, and sends an appropriate
response back to the PCSA_MANAGER. The commu­
nication channel used for server management is a
DECnet logical link. The PCSA_MANAGER issues a
connection request to the DECnet object associated
with the file server process. The file server receives
this request and creates a virtual circuit with a cor­
responding thread to process requests for this man­
agement session. This is similar to a client session.

Since the SMB protocol does not provide com­
mands sufficient to manage a PATHWORKS server, a
Digital proprietary protocol was developed to pro­
vide this functionality. This protocol is merely an
extension of the SMB core protocol; that is, the mes­
sages developed for server management have valid
SMB headers with command codes that are mean­
ingful only to a PATHWORKS server. This implemen­
tation allows remote management of the file server.
To manage a server, a management utility only has
to establish a virtual circuit and exchange these
extended SMBs. Protocol extensions are also used to
integrate the VMS print system with PATHWORKS
clients, along with other PATHWORKS specific
utilities.

Event Logging
The PATHWORKS server includes an event logging
mechanism to provide an error and event reporting
facility to assist system management. Events are cat­
egorized based on server operations, including
errors, protocols, security, management, and file­
related functions (open/close, read/write). The
server uses an event code to determine whether a
given event is to be recorded. A Digital extended
SMB command toggles these event codes dynami­
cally. The event messages are logged to the file
server log file. The overhead is minimized by each-

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

ing the event messages in a data buffer, which is
periodically written out to the log file. A thread is
created at server start-up to handle the log file
update function. The scheduling of this thread
is based on a time interval, with a default value of
60seconds.

Summary
The PATHWORKS for VMS file server integrates the
DOS, OS/2, and VMS operating system environ­
ments on a network. The server architecture
achieves transparent integration of PCs connected
on an open network over multiple transports. Data
caching, algorithms, and heuristics were used to
increase performance. The PATHWORKS for VMS
file server provides PC users with access to the VMS
system's resources and security environment.

Acknowledgments
We thank the people, past and present, who con­
tributed to the design and development of the

Digital Tecbnical]ournal Vol. 4 No. 1 Winter 1992

PATHWORKS for VMS File Seroer

PATHWORKS for VMS file server. We specifically
acknowledge Robert Praetorius for his contribu­
tion in the design and implementation of the cache
component, Phil Wells for his design and imple­
mentation of the network interface and transport
support, and Jon Campbell for his design and
implementation of the network interface. We also
acknowledge Frank Caccavale for his work on per­
formance analysis, Alan Abrahams for his direction
as architect, and Mark Olson for his leadership of
the PATHWORKS for VMS project.

References

1. X/Open Developer's Specification-Protocols
for X/Open PC Interworking: SMB (Reading, U.K. :

X/Open Company Limited, Document No.
XO/DEV /91/010, 1991).

2. P). Wells, "The Development of an Optimized
PATHWORKS Transport Interface," Digital
Tecbnicaljournal, vol. 4, no. 1 (Winter 1992, this
issue): 24-30.

23

Philip J Wells I

The Development of an
Optimized PATHWORKS
Transport Interface

Digital's Personal Computing Systems Group developed an optimized transport
interface to improve the performance of the PATHWORKS for Vil1S version 4. 0 server.
The development process involved selecting a transport protocol, designing appro­
priate interface test scenarios, and measuring server performance for each trans­
port interface model. The engineering team then implemented the optimized design
in the server and performed benchmark testing for specified server workloads.
Using an optimized transport interface improved server performance by decreasing
the time required to complete the test while maintaining or decreasing the percent
CPU utilization.

The PATHWORKS family of network integration soft­
ware products includes file servers that provide
file and print services to personal computers in
local area networks (LANs). Developed by the
Personal Computing Systems Group (PCSG), the
PATHWORKS for VMS version 4.0 server supports the
Microsoft LAN Manager network operating system.
This server allows PC clients transparent access
to remote VMS files. With each new release of
the PATHWORKS for VMS product, the PCSG engineer­
ing team improved server performance and thus
accommodated an increasing number of time­
critical PC applications. In version 2.0, we intro­
duced disk services as an alternative to file services
for read-only files. We included data caching in ver­
sion 3.0 of our file server.

For version 4.0, our goal was to increase file
server performance by optimizing the transport
interface and the data buffering algorithm. To
achieve this goal, we evaluated several transport
interface designs and measured server perfor­
mance for various server workloads. We started
with the premise that using the standard buffered
interface results in increased overhead for each
transaction and thus decreases overall CPU avail­
ability. Figure 1 illustrates this interface design.
The server copies a user data buffer in process con­
text across the kernel service interface to a system
buffer in system context, before transferring the
data to the network layer.

24

KERNEL
SERVICE
INTERFACE ~

Figure 1

USER
BUFFER

DATA
COPY

SYSTEM
BUFFER

SERVER

TRANSPORT

PROCESS
CONTEXT

SYSTEM
CONTEXT

Data Copy with a Buffered 1/0
Interface

Prior analysis of PATHWORKS server performance
over the DECnet transport protocol revealed that
when the file server request sizes were large, i.e.,
4 to 8 kilobytes (KB), file server performance met
or exceeded the performance of other vendors'
transports. However, when the transfer sizes were
small, i.e., less than 256 bytes, file server perfor­
mance degraded significantly. Also with small
request sizes, our server did not ramp well when
many clients were supported in this environment.
As illustrated in Figure 2, incremental increases in
server workload cause dramatic increases in CPU
utilization once a certain workload is reached, i.e.,
at the knees of the curves, denoted by points A and
B. We wanted our server performance to approach
that represented by the curve containing point B.

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

The Development of an Optimized PATHWORKS Transport Interface

SERVER WORKLOAD

Figure 2 CPU Utilization as a Function
of Server Workload

In this way, we could support more clients at the
same or less CPU utilization.

Server Peiformance Analysis
We based our analysis of PATHWORKS server perfor­
mance on two initial hypotheses:

• The CPU overhead associated with a buffered
interface significantly degrades the performance
of the server.

• The variable transaction response times inher­
ent in using the standard queued 1/0 (QIO) inter­
face results in inefficient server performance.

Protocol Selection
To begin our performance analysis, we needed to
choose a transport protocol. We considered the
DECnet and the local area system transport (LASl)
protocols and selected the LAST protocol for the
following reasons:

• An advanced development effort on the DOS
client software showed that file and print ser­
vices over the LAST protocol decrease the client
memory usage by one-third.

• The PATHWORKS engineering team maintains the
LAST protocol and thus, can make any required
modifications.

• The VMS operating system implementation of
the LAST transport protocol is called LASIDRIVER.
LASIDRIVER serves our purpose because it pre­
sents a buffering model that permits the passing
of multiple noncontiguous data buffers as a sin­
gle, logically contiguous buffer. Figure 3 shows
two physical data buffers, of sizes N and M, being

Digital Technical Journal Vol. 4 No. 1 Winter 1992

BUFFER DESCRIPTORS

DATA BUFFERS

Figure 3 IAS1VRJVER Buffering Model

passed to LASTDRIVER as a single message. The
second buffer descriptor contains a zero in the
next buffer descriptor pointer word. This value
indicates the end of the data stream.

Test Scenarios
After selecting the LAST transport protocol, we cre­
ated four test scenarios to measure server per­
formance. The first scenario, the kernel model,
required developing a VMS device driver that was
layered on top of LASTDRIVER. In this model, when
the driver receives request data, the data is immedi­
ately transmitted back to the client. The driver does
not copy buffers and does not schedule a process.
This model represents the optimum in perfor­
mance, because absolutely no work is performed in
relation to the request.

The second test scenario required that we
develop a user-mode test program. This model per­
forms similarly to the kernel model in that it loops
receive data directly back to the client without per­
forming any copy operations. This model differs
from the first model in that the driver schedules a
VMS process to loop the data back to the client. We
then developed the following variations on this test
scenario to accommodate three transport inter­
faces to the VMS process. The second and third sce­
narios represent optimized transport interfaces
with regards to two aspects of a request: the initial­
ization and the completion.

• A standard VMS QIO interface model. This model
uses the standard interface provided with the
VMS operating system.

• A model that incorporates the standard VMS QIO
interface with a process wake-up completion
notification. This QIO/WAKE model uses the stan­
dard QIO interface to initiate a transport request.

25

PATHWORKS: PC Integration Software

However, the transport queues 1/0 completion
notification directly to the receiving process by
means of a shared queue and a process wake-up
request. The purpose of this optimization was to
avoid the standard postprocessing routines of
the VMS operating system.

• A model that includes kernel mode initializa­
tion and wake-up completion notification. This
CMKRNL/WAKE model uses the transport com­
pletion technique of the previously described
model. However, we created an entry point into
the driver for the test program to call, thereby
initiating transport requests. The test program
uses the change-mode-to-kernel (CMKRNL) sys­
tem service to call the driver entry point. This
optimization was made to avoid the standard
QIO interfaces.

To support the optimized transport interfaces,
the test program allocates a buffer in process con­
text and divides it into two sections: the first con­
tains shared queues for moving data between
process context and system context; the second
contains the test program's shared data buffers. The
driver issues a call to the system to double map
the shared buffer into system context. Figure 4
shows this double-mapped buffer. Since the buffer
is contiguous, the difference between the start of
the shared data region in process context and the
start of the shared region in system context is a con­
stant, and is used as an offset. The test program
accesses the shared region by using a process vir­
tual address (PVA); device drivers access the region
by adding the offset to the PVA to compute a system
virtual address (SVA), as shown in Figure 5. To
accomplish completion notification, the driver
inserts the data into the shared queue and issues a
process wake-up request for the test program.

PROCESS
CONTEXT
BUFFER

SHARED
QUEUES

SHARED
DATA
BUFFERS

Figure 4 Double-mapped Buffer

26

SYSTEM
CONTEXT
BUFFER

x~~~:I: ___ __,] OFFSET

SYSTEM
VIRTUAL
ADDRESS

Figure 5 Virtual Address Space

Peiformance Measurements
Our hardware platform was a VAXstation 3100 work­
station. We measured server performance as the
difference between the request arrival time and
the response departure time, as observed on the
Ethernet. Times were measured in milliseconds
using a Network General Sniffer. Table 1 presents
the test results.

As Table 1 shows, we decreased server response
time by using an optimized transport interface. The
kernel model yields the best possible performance
results. As we move from the standard VMS QIO
interface to more optimized interfaces, there is a
decrease in transaction response time which repre­
sents improved server performance.

Data collected during initial performance testing
supported our decision to optimize the transport
interface. Occasionally while testing the interfaces,
server throughput dropped dramatically, i.e., 30 to
50 percent, for a short time interval, i.e., one to
two seconds, and then resumed at its prior rate.
Initially, we thought there was a problem with our
code. However, the anomaly persisted throughout
the development period, so we decided to investi­
gate the cause of the dip in performance.

The VAXstation 3100 system that we used to per­
form the testing had a graphics controller card
installed, but did not include the graphics monitor.

Table 1 Server Performance over
Various Interfaces

Server Performance
Interface (milliseconds}

Kernel Model

Standard VMS QIO Model

QIO/WAKE Model

CMKRNUWAKE Model

0.8
2.2
1.7

1.6

Vol. 4 No. 1 Winter 1992 Digital Technical Jour,ial

The Development of an Optimized PATHWORKS Transport Interface

Since the system included a graphics card, the
DECwindows login process frequently tried to
display the initial DECwindows login screen. This
attempt failed because there was no monitor.
Therefore, the process was deleted and restarted a
few minutes later. We concluded that the tempo­
rary drop in server performance we had observed
was the effect of the DECwindows start-up process.

The significance of this observation became
apparent when we optimized the transport inter­
face, and the effect of this background process
activity decreased to less than 10 percent. We con­
cluded that the optimized interface was less suscep­
tible to concurrent 1/0 than was the standard QIO
interface.

Implementation
Once the initial testing of prototypes was com­
plete, we decided to implement the double-mapped
buffering algorithm with shared queues. The VAX
architecture provides inherent queuing instruc­
tions that allow the sharing of data across dissimilar
address spaces. It accomplishes this by storing the
offset to the data, rather than the address of the
data, in the queue header. This technique permits
us to insert a system virtual address into a queue in
system context and later remove the address in pro­
cess context as a process virtual address. A second
function that these instructions perform is to inter­
lock the queue structure while modifying it. This
procedure precludes concurrent access by other
code and thus allows the interface to support sym­
metrical multiprocessing.

We modified the file server to support this new
optimized transport interface. To ease the imple­
mentation, the QIO interface emulates the DECnet
interface in all aspects except one. Since the client­
server model is essentially a request/response
model, we developed a transmit/receive (trans­
ceive) operation that allows the server to issue
read buffer and write buffer requests at the same
time. This variation reduces the number of system
boundary crossings. When the server transmits
buffers, these buffers return to the server process
by way of a transmit complete queue. When the
server receives a new request message, the associ­
ated buffer is transferred to the server process via a
receive complete queue. To facilitate a transceive
operation, we defined a work element data struc­
ture. As shown in Figure 6, a work element permits
the passing of two distinct data streams: one for
transmit and one for receive.

Dtgltal Techt1ical]oun1al Vol. 4 No. 1 Witlter 1992

WORK
ELEMENT

TRANSMIT

RECEIVE

BUFFER
DESCRIPTORS

DATA BUFFERS

Figure 6 Work Element Data Structure
for a Transceive Operation

As development of the client and server software
modules continued, we encountered some inter­
esting problems. The following three sections
describe several of these problems and how we
addressed them.

Microsoft IAN Manager Redirector
l/0 Behavior
When the Microsoft LAN Manager redirector, i.e.,
the DOS client protocol equivalent of the VMS file
server, generates a read request, it first writes the
request for service to the network. The redirector
then issues a read request and uses a short buffer to
receive only the protocol header of the response
message. After verifying that the response was suc­
cessful, the redirector issues a second read request
to receive the data associated with the response
message.

This behavior requires lower protocol layers to
buffer the response data until the redirector issues
a read request to receive the data. In order to buffer
the response data for the client, the transport layer
needs to allocate an 8KB buffer. An alternative
approach to maintaining a dedicated transport
buffer is to use the inherent buffering capacity of
the Ethernet data link software and the Ethernet
controller card, which maintain a cache of receive
buffers. This technique requires the transport layer
to retain data link receive buffers while the redirec­
tor verifies the response message protocol header
and posts the actual receive buffer. Once the redi­
rector issues the second read request, the remain­
ing data is copied and the Ethernet buffers are
released.

27

PATHWORKS: PC Integration Software

One problem with this approach is that each ven­
dor's Ethernet card has different buffering capaci­
ties. In some cases, the capacity is less than the
size of the maximum read request. To support
such inadequate buffering capability, we inserted a
buffer management protocol (BMP) layer between
the file server and the redirector. The resulting pro­
cess is as follows:

The client module communicates its data link
buffering capacity to the server module in the ses­
sion connect message. When the application gener­
ates data requests, the DOS redirector packages a
server message block (SMB) protocol message and
passes it to the BMP layer. This layer adds a small
buffer management header to the message and pass
it to the transport layer to transmit to the server.

To complete the operation, the file server pro­
cesses the request, formats an SMB response mes­
sage, and passes it to the BMP layer. At this interface,
the size of the response message is indicated by
the transmit buffer descriptors, and a protocol
header that describes the response packet is cre­
ated. If the response message is larger than the
client's data link buffering capacity, the driver soft­
ware segments the response packet into smaller
messages and passes these messages to the server
transport to transmit to the client. The client mod­
ule copies the header to the redirector's short
buffer and completes the redirector's read request.
The BMP layer then waits for the second read to
copy the remaining data to the redirector's buffer
and releases the data link buffers. At this point, the
client can request more data from the server.

Response Buffering
The LAST protocol does not acknowledge the
receipt of messages because it relies on the
integrity of the underlying LAN to deliver data­
grams without error. Consequently, the BMP layer
must buffer all response data transmitted to the
client to protect against packets that are lost or
discarded. In such a case, the BMP layer transmits
the original response message back to the client
without sending the message to the server process.

For instance, consider the two cases shown in
Figures 7 and 8. In Figure 7, a client generates a read
request at time Tl. The server processes the request
and generates a response at time T2. The response
is lost due to congestion, so the client requests the
same data again, as indicated at time T3. The server
rereads the file and generates a new response. Since
the read operation is naturally idempotent, i.e., it

28

T1

T2

T3

T4

T1

T2

T3

T4

CLIENT SERVER

READ BLOCK 1

SUCCESSFUL READ,
------ UNSUCCESSFUL RESPONSE-

,.---- PACKET LOST

READ BLOCK 1

SUCCESSFUL READ,
SUCCESSFUL RESPONSE

Figure 7 Idempotent Request

CLIENT SERVER

DELETE FILE 1 --------

SUCCESSFUL DELETE,
------ UNSUCCESSFUL RESPONSE-

,.---- PACKET LOST

DELETE FILE 1 -------

..,_ ____ UNSUCCESSFUL DELETE,
SUCCESSFUL RESPONSE
(EVEN THOUGH THE FILE
WAS DELETED)

Figure 8 Nonidempotent Request

can be repeated without changing the result, the
operation completes successfully.

In the case depicted in Figure 8, we changed the
operation from a disk read to a delete file. Here, the
client makes the delete request at time Tl, and
the server successfully deletes the file at time T2.
The response message is again lost. When the client
reissues the delete file request at time T3, the server
fails in its attempt to perform the operation
because the file no longer exists. The delete opera­
tion is not idempotent; thus, repeating the opera­
tion yields a different outcome.

We cannot determine in advance the actual idem­
potency of any given request. Therefore, the BMP

layer must cache all response buffers. If a response
message is lost, the server transmits the original
response message instead of retrying the entire
operation. If, as in the second example, the server is
able, at time T4, to transmit the actual buffer used
at time T2 to store the response message, the oper­
ation can complete successfully.

To facilitate the buffering of response data, the
transport provides a transaction identifier for
request and response messages. This identifier is set
by the client BMP layer whenever a new request is
received from the redirector. The server stores this

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

The Development of an Optimized PATHWORKS Transport Interface

identifier and verifies it against the identifier of the
next request. If a received request has a duplicate
identifier, the request must be a retransmission and
the server transmits the message in the cached
response buffer. If the identifier is unique, the
cached buffer is returned to the server by means of
the shared queues, and a new request is created.
The client's single-threaded nature ensures that
the transaction identifier method is successful in
detecting a retransmission.

NetBIOS Emulation
The PATHWORKS transport interface implementa­
tion relies on the request/response behavior of the
DOS redirector. However, the redirector uses the
standard DOS network basic 1/0 system (NetBIOS)
interface to communicate with transports, and this
interface does not exhibit request/response behav­
ior. Therefore, our implementation is not a true
NetBIOS emulation and can prevent common
NetBIOS applications from operating correctly.

To resolve this problem, we developed a com­
mon NetBIOS interface between the DECnet and
LAST transports. After receiving a request, the client
first tries to connect over the LAST transport. If the
connection attempt fails, the request passes to the
DECnet transport. Thus, standard NetBIOS applica­
tion requests operate over the DECnet transport;
only redirector requests are processed over the
LAST transport.

Final Benchmarks
At the completion of the project, we performed
benchmark tests to measure server performance
for varied workloads and for a directory tree copy.
Table 2 shows the results for varied workloads. The
first column of the table describes the test per­
formed. ALL 1/0 represents a raw disk 1/0 test in
which the measured client issues read and write

requests of various buffer sizes ranging from
128 bytes to 16KB. TP represents a transaction pro­
cessing test that measures random read and write
requests of small units of data. This test emulates a
typical database application. The workload value
indicates the number of client systems used in the
test to produce a background workload. As one
might expect, as the workloads increase, the per­
formance of the measured client degrades.

The entries in each row of the table are the
elapsed time and percent CPU utilization for the
given test. We measured server performance over
the LAST protocol using our optimized interface
and over the DECnet protocol using the standard
VMS QIO interface. For the ALL 1/0 tests, the resul­
tant elapsed time is the actual time it took to com­
plete the test. For the TP tests, the performance
numbers are the average of all the PCs tested.
As Table 2 shows, we were able to decrease the
elapsed time for each benchmark while maintain­
ing the same or decreased CPU utilization.

The two graphs in Figures 9 and 10 illustrate
these results. In the ALL 1/0 test, CPU utilization
using the optimized interface increases steadily as
the workload increases. Using the standard QIO
interface, CPU utilization increases at a faster rate
once a specified workload is reached. Although the
TP graph in Figure 10 contains only two data points,
it is evident that CPU utilization is proportionally
higher for five workloads than it is for one. We per­
formed multiple tests to verify that the results
could be reproduced consistently.

The final benchmark test performed was a direc­
tory tree copy using the DOS XCOPY utility. In this
test, the utility copies the directory tree first from
the server to the client and then from the client to
the server. The bottleneck in this test is known to
be the file creation time on the server. Therefore,
we expected a more efficient transport interface to

Table 2 Final Benchmark Test Results for Varied Workloads

LAST Protocol r=-- DECnet Protocol
Elapsed CPU Elapsed CPU

Time Utilization Time Utilization
Test Description (seconds) (percent) (seconds) (percent)

All 1/0 O Workloads 840 4 961 4
All 1/0 2 Workloads 943 69 1074 75
All 1/0 4 Workloads 1091 100 1434 100
TP 1 Workload 59 39 79 50
TP 5 Workloads 163 83 21 2 93

Digital Technical Journal Vol. 4 No. 1 Winter 1992 29

PATHWORKS: PC Integration Software

0 2
NUMBER OF WORKLOADS

KEY:

____

4

..___....... LAST PROTOCOL WITH OPTIMIZED INTERFACE

._ - __. DECNET PROTOCOL WITH STANDARD 010 INTERFACE

Figure 9 AU 1/0 Test Results

NUMBER OF WORKLOADS

KEY:

..___....... LAST PROTOCOL WITH OPTIMIZED INTERFACE

._ - __. DECNET PROTOCOL WITH STANDARD 010 INTERFACE

Figure IO TP Test Results

Table 3 Final Benchmark Test Results for a Directory Tree Copy

LAST Protocol
Test Elapsed Time
Description (seconds)

XCOPY to Client 115
XCOPY to Server 11 9

have no effect on server performance. The test
results in Table 3 support our theory. The 1/0 rate
and the elapsed time over both the DECnet protocol
(using the standard transport interface) and the
LAST protocol (using the optimized transport inter­
face) are nearly the same.

30

DECnet Protocol
1/0 Rate Elapsed Time 1/0 Rate
(KB/sec) (seconds) (KB/sec)

39 15 39
38 121 37

Acknowledgments
I wish to thank Jon Campbell for incorporating the
interface design modifications into the file server,
Alpo Kallio for developing the client software, and
Alan Abrahams for designing the combined DECnet/
LAST NetBIOS interface and for his encouragement
and support.

Vol. 4 No. I Winter 1992 Digital Technical Journal

Anthony J. Rizzolo
Elizabeth A Brewer
Martha A Chandler

Design of the PATHWORKS
for ULTRIX File Server

The PATHWORKS for ULTRIX product integrates personal computers with the ULTRIX
operating system on a local area network. The software supports both the TCP/IP
protocol and the DECnet transport stacks. The design and implementation of the
PATHWORKS for ULTRIX file server is based on a client-server model. The server pro­
vides file, print, mail, and time services to client PCs on the network. Network file ser­
vice management is accessed through a PC-style menu intetface. The file server's
petformance was optimized to allow parallelism to occur when the client is gener­
ating data at the same time the server is writing the data to disk.

The PATIIWORKS for ULTRIX file server connects
industry-standard personal computers running
Microsoft's server message block (SMB) protocol
to Digital computers running the ULTRIX operat­
ing system. The server provides a network operat­
ing system for PC integration among users of the
ULTRIX, DOS, and OS/2 operating systems.

The PATHWORKS for ULTRIX server provides file,
print, mail, and time services to client PCs on the
network. The software is layered on VAX systems
and on reduced instruction set computer (RISC)
hardware. It supports both the transmission con­
trol protocol/internet protocol (TCP/IP) and the
DECnet transport stacks. The base product also
provides centralized server-based management
accessed through a PC-style menu interface.

In addition, the PATHWORKS for ULTRIX server
implements a network basic 1/0 system (NetBIOS)
naming service that allows clients on the network
to obtain the DECnet node address of the server in
the DECnet environment or the TCP/IP address of
the server in the TCP/IP environment. The DECnet
NetBIOS naming service conforms to Digital's speci­
fication for a DECnet NetBIOS interface. The TCP/IP
NetBIOS implementation conforms to the requests
for comment specifications, RFC 1001 and RFC
1002.1•2

This paper discusses the considerations for
designing and implementing a PC local area network
(LAN) server in an ULTRIX system environment. It
describes the multiple process model and its com­
ponent processes that coordinate management
activities and server requests. It then presents our

Digital Technical journal Vol. 4 No. I Winter 1992

design of a management interface and our selection
of a network interface. Finally, the paper describes
the PATIIWORKS file system, printing, performance
considerations, and the server configuration.

Process Model
The process model selected for the PATHWORKS
for ULTRIX server differed substantially from the
process model chosen for the PATHWORKS for VMS
product. The PATHWORKS for VMS server uses a sin­
gle process model in which all client requests are
processed by a single process, the VMS server. The
PATHWORKS for ULTRIX server, in contrast, uses a
multiple process model, in which one client is ser­
viced by one server process.

Certain characteristics of the ULTRIX operating
system environment determined the choice of a
multiple server process model. First, the ULTRIX
operating system constrains a process to 64 simul­
taneously open files. Therefore, with multiple server
processes, each client connection is allowed access
to 64 open files. In a single process model, a pool of
64 file descriptors is provided which limits access
to 64 open files, regardless of how many clients
connect. In addition, the multiple server process
model has the advantage of being able to run in a
multiprocessor environment.

Within the context of the multiple process model,
we required a central administrative entity-the
administration process-that would coordinate
management activities and server requests. The
administration process communicates with both
the server and management processes through

31

PATHWORKS: PC Integratio n Software

message queues. This process model is depicted in
Figure 1 and is described in the following sections.

Administration Process
The administration process is known as pcsaadmd.
As the central administrative entity, this process is
responsible for initialization and start-up of the
server, and for data management while the server is
running. Starting the PATHWORKS for ULTRIX server
is accomplished through execution of the adminis­
tration process from within the re.local file when
the ULTRIX system is booted, or from the manage­
ment menu when the management interface is run.
Initialization of the server environment is neces­
sary before any server management or connections
can be established.

Initialization involves starting the NetBIOS pro­
cess (pcsanbud), parsing the configuration file
(lanman.ini), creating and initializing a shared
memory segment, creating semaphores and a mes­
sage queue, parsing the services database, clearing
statistics, defining objects on the DECnet objects,
and establishing signals. The main task of the
administration process is processing requests from
the management interface (pcsamgr) and file server
processes (pcsafs). The initialization procedure
occurs in the following sequence.

To simplify server start-up, the NetBIOS process
is started from the administration process. At start­
up, the NetBIOS process claims the server name and
responds to name queries from clients during
establishment of a session connection . It also pro-

MANAGEMENT
INTERFACE

I MESSAGE
QUEUES

MESSAGE
QUEUES FILE

vides for sending datagram and broadcast messages
on the LAN. These two tasks are initiated by the
user through the management interface by means
of the Send and Broadcast Message functions. All
management requests are processed through the
administration process. Request handling is dis­
cussed in more detail later in this section.

The administration process parses the lanman.ini
file to obtain server configuration parameters such
as maximum number of sessions, connections, and
open files. The administration process uses these
parameters to establish the size of the shared mem­
ory segment it creates. The shared memory segment
includes a session database, a connection database, a
file database, common variables, and a locking data­
base. Once shared memory is created, the adminis­
tration process initializes it to a known state that
includes clearing and date stamping the server
statistics portion of the segment. The administration
process creates semaphores to attain data integrity
in the shared memory segment, since multiple file
server processes read and write to memory.

The services database tracks file and print ser­
vice creation from one execution of the server to
another. This database is read at initialization, and
the directories offered by the file service defined,
as well as printer information, are verified.

The last step required at initialization is the cre­
ation of a message queue to process incoming
requests from the management interface and file
server processes. As said earlier, request process­
ing is the main task of the administration process.

ONE PROCESS
PER CLIENT FILE ADMINISTRATION

PROCESS SERVER ---------- SERVER
PROCESS PROCESS

I ULTRIX
SOCKET

SEMAPHORES I I lockf() system() I

TCP/IP AND DECNET SHARED LOCK LINE
NETBIOS MEMORY FACILITY PRINTER
IMPLEMENTATION DAEMON

I
DECNET

TCP/IP

Figure 1 PATHWORKS for ULTRIX Process Model

32 Vol. 4 No. 1 Winter 1992 Digital TechnicalJournm

Message queues are used as the interprocess com­
munication mechanism. Early in the process devel­
opment, we investigated other options: named
pipes, sockets, and packet passing through shared
memory. Only message queues offered administra­
tive control. Initially, we used one response mes­
sage queue for each file server process and one
queue for the management interface. This was
unacceptable because the default number of mes­
sage queues on the ULTRIX system is 40 without
reconfiguring the kernel. Therefore, we chose to
combine the messages on one response queue from
all the file server processes and retain a separate
response queue for the management interface.
Since the number of requests from file server pro­
cesses is small, this method was acceptable. The
administration process reads requests on one mes­
sage queue and replies to a message queue defined
in the message. The request queue is established
with an ID known by all processes so they can
attach to the queue at start-up. The administration
process handles requests for session establishment
and connection from file server processes as well as
requests for system management/administration
from the management interface.

File Server Process
The PATHWORKS for ULTRIX file server is started
through one of two mechanisms, depending on
which transport is used. The dnet_spawner process
starts the file server process in a DECnet environ­
ment, and the inet_spawner starts the server in a
TCP/IP environment. The server process is initially
started as a root process, since it may need to run
on behalf of several users. When a client issues a
connection request, a server process is initiated.
The server then sends a message to the administra­
tion process message queue requesting a session
connection. After the session connection is granted
by the administration process, the file server com­
pletes its initialization by connecting to shared
memory and waiting for incoming client requests.

During the design phase of the multiple server
process model, it became clear that using a slow
interprocess communication mechanism has a
detrimental impact on the overall performance of
the server. For this reason, we decided to use shared
memory for all time-critical shared data. Because
the amount of shared memory is somewhat limited,
all data that is not time critical is communicated
across message queues. As can be seen in Figure 1,
the file server and administration processes use

Digital Technical Journal Vol. 4 No. 1 Winter 1992

Design of the PATHWORKS for ULTRIX File Server

shared memory as well as message queues for
communication.

Since multiple processes can simultaneously
update and access shared memory, a method was
needed to guarantee data integrity. The methods
chosen varied among the databases, depending on
the type and speed of the access required to the
database. Obviously, the easiest and also the slow­
est way was single-process management of access
to shared memory. This worked well in the case of
allocating connection data blocks, since the admin­
istration process had to be notified of connections.
The open and read-write paths for the file and
locking database, however, would be significantly
affected by an incorrect decision. For this reason, we
decided to protect these databases with an ULTRIX
semaphore. In effect we single threaded all the
paths through the open path as well as the locking
update path. Use of this semaphore caused little or
no degradation in performance. With our system
processes and mechanisms established, we now had
to consider the needs of the system administrator.

Management Interface
Our primary goal in designing a management inter­
face for the PATHWORKS for ULTRIX server was to
provide an application that could run unaltered
on any type of terminal. The management inter­
face also had to be consistent in presentation and
manipulation of screens; and most importantly, it
had to be easy to use when managing file and print
services, workstation registration, and ULTRIX sys­
tem users and groups. Other design considerations
included performance, the ability to extend the
functionality provided, and the ability to port the
application to future platforms.

The management interface was designed to
incorporate X/Open Curses software, which is a set
of c library routines. X/Open Curses is provided
by the ULTRIX operating system and is used to opti­
mize screen management. X/Open Curses code
uses the terminfo database, a collection of terminal
definitions and characteristics that enables the
application writer to perform terminal-dependent
functions in a terminal-independent manner.
Through X/Open Curses software and its use of
the terminfo database, the PATHWORKS for ULTRIX
management interface can support any type of
terminal.3

The next step was to design an easy-to-use appli­
cation that requires minimal knowledge of ULTRIX
system management. We chose a PC-style format

33

PATHWORKS: PC Integration Software

that uses pulldown menus, input forms, scroll
regions for displaying information, and screen­
sensitive help. Default input information is dis­
played whenever possible to provide sample data
and to minimize the amount of input required.

The design of the management interface was
structured into three layers: screen manipulation,
data validation and presentation, and application
programming interface (API).

Screen Manipulation
The first layer of the management interface is the
X/Open Curses software. All screen manipula­
tion routines reside at this level. X/Open Curses
encompasses the implementation of reverse video
attributes for highlighted text, cursor movement,
window updates, and the creation of menus, forms,
and scrolling regions. Any type of screen inter­
action is performed and managed by this layer of
code. As a result, the screen manipulation layer is
portable to any environment in which X/Open
Curses is supported.

Data Validation and Presentation
At the data validation and presentation layer, data
obtained from the screen interface is validated. The
data is then packaged and processed by the API
layer. Information returned by the API layer is
unpacked and formatted for screen presentation.

Application Programming Inteiface
The API layer is responsible for all communication
with the administration process. The management
interface does not store or manipulate server man­
agement data directly. Instead it makes requests of
the administration process in the form of APls
through message queues. Each request requires a
response and does not complete until a response is
received.

Network Inteiface
When designing an application that must commu­
nicate on a network, one of the important deci­
sions is how to control access to the network. The
Berkeley Software Development version 4.3 of the
UNIX kernel, upon which the ULTRIX operating sys­
tem is based, provides two network interfaces.

The first network interface is known as the socket
interface. It uses a socket structure to identify the
endpoint of an ULTRIX network connection. Under
the ULTRIX system, the socket interface is the pri­
mary interface to the network.

The second network interface in the ULTRIX sys­
tem is the X/Open transport interface (XTI). This
transport service interface is not restricted to
either the DECnet or the TCP/IP transport. A com­
mon interface to the network allows either trans­
port to be accessed transparently. With XTI the
communication endpoint is identified by a local file
descriptor. On the ULTRIX system, the XTI interface
is provided through a library that converts the XTI
calls into socket calls. Since performance was one
of our primary concerns, we decided to use the
socket interface because it connects directly to the
ULTRIX operating system.

Multiple Transport Support
In order to support both the TCP/IP and the DECnet
transports, we needed to overcome the differences
between a message-based protocol (DECnet) and
a stream-based protocol (TCP/IP). With a message­
based protocol, data received from the network
arrives in compact packets. With a stream-based
protocol, message boundaries are not preserved;
the data flows in a stream. Since Microsoft's SMB
protocol is a message-based protocol, the server
needs to re-create these message boundaries. As a
result, the server must identify the transport
provider. This information is provided by the
socket layer when the server process is started. The
server can re-create the message boundaries by
combining this information with message size
information provided in the TCP/IP NetBIOS header.
With the message boundary information, the server
can re-create the message. The c pseudocode frag­
ment in Figure 2 shows the instructions to re-create
message boundaries.

PATHWORKS File System
The PATHWORKS file system provides an application
layer that attempts to emulate the DOS file system.
Several trade-offs and restrictions were required in
order to implement this file system on the ULTRIX
file system. This section describes these trade-offs
and restrictions and explains our design choices.

File Name Mapping
The file name space in the ULTRIX system is not
restricted to the 8.3 naming format supported by
DOS. DOS limits file names to eight characters fol­
lowed by an optional period and an optional three­
character extension. This is referred to as DOS 8.3
file name format. DOS file names are uppercase char­
acters and are case insensitive. Under the ULTRIX

Vol. 4 No. I Winter 1992 Digital Technical Journal

Design of the PATHWORKSfor ULTRIX File Server

I* SMBptr - Pointer to SMB netbios header*/
I* rdlen - Number bytes read from network*/
/* BytesRcvd - Bytes already received *I
I* Bytesleft - Bytes left in current message *I

rdlen=read(network,SMBpt r);
BytesRcvd=rdlen;
Bytesleft=sizeof(netbios header);
Bytesleft+=ntohs(EXT16(SMBptr->nb.length)-bytes_rcvd;

I* We will wait until we receive all the data in the msg */
/* before we terminate this loop. This loop will only be*/
I* entered if we are running TCP/IP. */

while (Bytesleft! = 0) {
rdlen=read(network,&SMBptr[BytesRcvd]);

/* If we don't get any data it means the client must have *I
I* torn down the session so abort */
/* our session. Note AbortSession() must exit and*/
I* not return here.*/

if (rdlen<=O) AbortSession();

I* Update the counters to account for what we just read *I

}

Bytes Rcvd +=rdlen;
Bytesleft -= rdlen;

!* If this is a SESSION_REQUEST message, then send the ACK*/

i f (SMBptr->nb. t ype == SESSION_REQUEST) SendSessionAck();

!* If this is a SESSION_MESSAGE, then handle the SMB */

if (SMBptr->nb.type == SESSION_MESSAGE) DispatchSMB();

Figure 2 Receiving Stream Data Code Fragment

system, the file name is a 32-character string in
which the period (.) is a legal character. The ULTRIX
file system is case sensitive and supports both upper­
case and lowercase characters in the file name.

only uppercase file names that follow the DOS 8.3
format.

To resolve this incompatibility between operat­
ing systems, we mapped the DOS file name space into
the ULTRIX file name space. DOS, being case insensi­
tive, views the world of file names in uppercase,
but ULTRIX file names are typically lowercase char­
acters. We chose to map all DOS file names to the
equivalent lowercase name. Any file on the host
ULTRIX operating system that meets our criteria,
i.e., lowercase names and 8.3 format is visible to the
DOS client.

This approach was suitable in all environments
except International Standards Organization (ISO)
9660 CD·ROM file systems. These file names con­
form to the DOS uppercase, 8.3 file naming format.
When the file server determines that one of the
services is on an ISO 9660 CD·ROM file system, the
file-name mapping algorithm is changed to allow

Digital TechnicalJournal Vol. 4 No. I Winter 1992

DOS Attribute Mapping
The DOS file system provides file attributes that
do not necessarily map to ULTRIX file attributes.
The challenge was to preserve these DOS attributes
within the ULTRIX file system without impacting
the host system user who might also be sharing the
file . The DOS attributes consist of read-only, hidden,
archive, and system.

The DOS read-only attribute maps directly to
the ULTRIX directory attributes mask. If the write
attribute is turned off under the ULTRIX system, the
files change to read-only status.

The DOS hidden attribute specifies that a file
should not be displayed on a normal directory
search/lookup. We mapped this bit to the ULTRIX
set user ID bit.

The DOS archive attribute specifies that a file
has been changed since the last time the archive

35

PATHWORKS: PC Integration Software

attribute was set. It is generally used by the backup
program to determine which files have changed
since the last backup. We mapped the archive
attribute to the ULTRIX set group ID bit.

The DOS system attribute specifies a special sys­
tem file that is normally not displayed on a direc­
tory listing, and in some cases is not backed up. We
mapped the DOS system attribute to the Owner
execute bit. If this bit is set, the server cannot
include these files on a normal directory search,
unless requested.

Byte Range Locking
The most noticeable difference in byte range lock­
ing between the ULTRIX operating system and the
DOS operating system is that byte ranges under the
ULTRIX system are purely advisory. Advisory lock­
ing works as a mechanism to signal that a byte range
is currently in use. The ULTRIX system, however,
does not enforce the locks; therefore it is possible
to read/write a byte range that is locked simply by
ignoring the lock.

On the other hand, DOS has mandatory locking.
If a byte range is locked, the user can neither read
nor write a locked byte range. We needed to con­
vert the ULTRIX lock manager into a mandatory lock
manager from the DOS clients' point of view. To do
this, the ULTRIX lock manager has to check for a
lock on a byte range on every read or write from the
file server. If any portion of the byte range is locked,
the client receives a lock failure message.

In the initial release of the server, we believed
that the standard ULTRIX lock manager would
provide enough performance and granularity to
allow DOS client software to function correctly and
quickly. We learned that this was not always the
case. For example, in a network file system (NFS)
environment, additional time for granting or deny­
ing the lock request was needed to resolve a lock on
the network. In addition, the ULTRIX lock manager
viewed the byte range as a signed integer, but the
DOS lock manager viewed the byte range to be
locked as an unsigned integer. This disparity led to
problems with applications that used byte range
locks with the sign bit set to provide synchroniza­
tion for database updates. We found that the ULTRIX
lock manager was deficient in the DOS client envi­
ronments. For these reasons, we decided to write a
private lock manager for applications that could
not use the ULTRIX lock manager.

To resolve locking problems among these appli­
cations, we designed a private lock manager for the

36

PATHWORKS for ULTRIX server. We provided a high­
performance lock manager that could lock byte
ranges used by DOS applications. In other words,
the server lock manager would treat the lock range
as an unsigned number instead of a signed number.
We also provided the option of passing the lock
information to the ULTRIX lock manager for those
applications that needed this functionality.

Open File Mode Locking
The DOS client provides a mechanism for control­
ling access to opened files. It allows the client who
initially opens a file to control access to the file
by other clients. The DOS client allows files to be
opened in one of four modes:

• DENY _NONE mode allows all types of files to be
opened by all users.

• DENY _READ mode allows other users to open
the file for writing but not reading.

• DENY_ WRITE mode allows other users to open
the file for reading but not writing.

• DENY_READ_WRITE mode does not allow other
users to open the file.

The ULTRIX operating system, on the other hand,
has only two modes for a shareable file lock. The
first is SHARED_ACCESS mode, which allows multi­
ple readers and writers and is therefore equiva­
lent to the DENY_NONE mode. The other mode is
EXCLUSIVE_ACCESS mode, which does not allow
multiple accesses to the same file and therefore is
equivalent to DENY _READ_ WRITE mode under DOS.

Because of these differences, we attempted to
map the two modes not covered by the ULTRIX file
lock manager, the DENY_READ and DENY_WRITE
modes. After some investigation, we decided map­
ping was not necessary. If a file was opened in
one of these two modes, we specified that the
ULTRIX server should open the file in ULTRIX
SHARED_ACCESS mode. We reasoned that an ULTRIX
application that was cooperating with a DOS appli­
cation would not use these two modes to open the
file since they are not available under the ULTRIX
system. Obviously these two modes need to be sup­
ported among DOS-based PCs on the server. Each
time a user opens a file, the list of currently opened
files is scanned to enforce the open mode and to be
sure that the ULTRIX operating system conforms to
the DOS interpretations of these modes. Therefore,
only the half deny modes being passed through to
the operating system are not enforced. This design

Vol. 4 No. I Winter 1992 Digital Technical journal

decision should pose no danger to applications
sharing data.

Directory Search Implementation
The DOS file search algorithm and the SMB mes­
sages that provide support for directory searches
were difficult to implement on the ULTRIX file
server. The core SMB protocol provides only two
states for a search context, begin new search and
continue a previous search. However, the server
needs to be informed that the client has completed
a directory search context. Then the server would
be able to free local data associated with the search
context. The implementation of this SMB posed two
challenges: how to control the amount of memory
required and how to map a search continuation
identifier.

To minimize the amount of memory required to
maintain search contexts, we designed a table of
search context structures that contains a local
timing value. If the table becomes full and a block
(structure and time value) needs to be reused, the
oldest block is deemed reusable. This approach effi­
ciently manages the unpredictable memory require­
ments of an SMB search.

The search continuation provides a directory
information structure which contains a four-byte
field that determines the point at which the search
is to continue. This four-byte field is well suited to
the ULTRIX file system. The gnode field, a longword,
can be used for the four-byte field's search continu­
ation ID. Given this ID, the server has the ability to
parse the contents of the directory until it finds a
file with a matching gnode; it then continues the
search from that point.

PATHWORKS for ULTRIX Printing
In addition to file services for DOS and OS/2 system­
based clients, PATI-IWORKS for ULTRIX provides print
services for these PC clients. Our design objective
was to allow the PC clients access to all the function­
ality on the native ULTRIX print queue in a transpar­
ent manner. A second objective was to implement
the functionality provided by NET PRINT, the client
utility for printing, on the native ULTRIX line printer
daemon (LPD).

Although the LPD provided all the basic printing
capabilities, it did not provide timed scheduling of
print jobs. To enable timed scheduling, we added
the /AFTER switch to the server through a mecha­
nism within the ULTRIX operating system. When a
I AFTER switch is detected in one of the extended

D igita l TeclmlcalJournal Vol. 4 No. 1 Winter 1992

Design of the PATHWORKS/or ULTRIX File Seroer

printing SMBs, a batch job is run at the time speci­
fied in the print request.

The ULTRIX print spooler provides spooling for
all types of printers, e.g., those attached locally
as well as network printers and reverse Local Area
Transport (LAT) printers connected to PCs. Reverse
LAT printing is very important in our environment
because most PCs have printers attached and most
installations have a need to share those printers
among several PCs.

The ULTRIX print spooler provides print filters
which translate files to various printers. Print filters
conceptually sit between the LPD and the actual file
to be printed. During printing, the LPD reads a
"printcap" file to determine if a print filter is associ­
ated with this queue. The print filter is started in a
forked process with its standard output device (std­
out) pointing to the printer and its standard input
device (stdin) pointing to the input file stream. The
print filter is responsible for converting the file
from the input stream (stdin) into a device-specific
output that is usable by the printer (stdout). This
feature allows the PATIIWORKS for ULTRIX server to
support printing on a wide variety of third-party
printers.

The design of the ULTRIX printing subsystem
enabled the PATIIWORKS for ULTRIX server to pro­
vide an interface to many different printers and
printer configurations easily and efficiently.

Per:fonnance Considerations
As part of the design process, we observed the per­
formance of the file server during interactions with
the client. We needed to compare various conflict­
ing alternatives and their effects on the overall per­
formance of the server. Some of the alternatives we
studied were the advantages of using the ULTRIX sys­
tem cache versus implementing our own cache. We
also studied the issue of persistent lock requests on
the network and the server. These alternatives are
discussed in this section.

Filel/0
Since the ULTRIX operating system provides a
kernel-based, disk cache mechanism, we designed
the operating system's cache manager to perform
all caching globally. The cache manager updates
the cache buffers, performs read ahead on data
streams, and flushes the cache buffers from data
written to disk.

The file server performs disk writes as write
behinds. When a request to write data is received

37

PATHWORKS: PC Integration Software

from a client, the server responds by acknowledg­
ing success before the write is attempted (assuming
the client has proper write access to the file). This
optimization allows parallelism to occur between
the client and the server because the client is gener­
ating more data at the same time the server is writ­
ing the data to disk. If the write fails, however, the
server notes that the last write failed and returns
the error on any subsequent access to the file.

Heuristics
We found that certain applications would continu­
ally flood the server with lock requests even
though the lock requests kept failing. These persis­
tent lock requests from applications used valuable
CPU time on the server system as well as network
bandwidth. For this reason, the ULTRIX server needs
to determine if a client is being persistent and
continually requesting locks which are failing.
When the server detects continuous lock requests,
it delays the lock request for a random period of
time and then checks if the lock has become avail­
able. The server then either grants access if the lock
is available, or returns the error at that time. This
procedure reduces lock request traffic, since most
locks are of short duration.

Security
Connection requests between client and server
require a security check. Since PATHWORKS for
ULTRIX was designed to be layered on the ULTRIX

operating system, we were able to take advantage
of its security features. When a client attempts to
connect to the server, a username and password
can be passed as part of the connect message. If
these are supplied, the user is validated through
system calls to obtain the password file entry for
that user. If the user is not found in the /etc/passwd
file or if the password is invalid, the user is denied
connection. If the ULTRIX system is running in
enhanced security mode, further checks are made
to ensure the account has not been disabled or the
password expired. In either of these cases, the con­
nection would be denied. If a username is not sup­
plied, a default guest account may be used to
establish privileges.

VAX versus RISC Considerations
During the development of the PATHWORKS for
ULTRIX file server, we did not anticipate that our
code would have to differentiate between VAX and

38

RISC architectures. We expected that code written
for an ULTRIX system in a RISC environment would
be recompiled on a VAX system. For the most part,
our assumptions were correct, except in the areas
of memory allocation.

On the VAX system, shared memory maps
directly after the data segment in memory. This
implementation prohibits the allocation of mem­
ory above a shared memory segment. In the RISC

implementation, shared memory is allocated at the
very top of the memory image; therefore a great
deal more memory can be allocated before the bot­
tom of the shared memory segment is reached. The
difference in shared memory allocation between
the RISC and VAX systems is shown in Figure 3.

To increase the data segment size in the VAX sys­
tem, we replaced all malloc()calls in the server
modules with the following pseudocode:

Disconnect from shared memory malloc()
Reconnect to shared memory

Since this code is required only in a VAX environ­
ment, it is compiled when the server is built.

PATHWORKS Server Configuration
The PATHWORKS for ULTRIX file server allows the
system manager to configure the server environ­
ment to make the most efficient use of shared mem­
ory. The following parameters included in the
lanman.ini file are the determining factors that
enable shared memory to be scaled.

• maxsessions: The maximum number of PC work­
stations that can be simultaneously connected
to the PATHWORKS for ULTRIX server.

• maxconnections: The maximum number of con­
nections PC workstations can make to the ser­
vices offered.

SHARED MEMORY

TOP OF
MEMORY SHARED MEMORY

1-----------<I- TOP OF CODE - 1--------1

DATA, CODE, AND DATA
STACK

DATA. CODE.
STACK

(a) VAX System (b) RISC System

Figure 3 Image Memory Layout

Vol. 4 No. I Winter 1992 Digital Technical Journal

• maxopens: The maximum number of files the
server can have open simultaneously.

• uniqueopenfiles: The maximum number of
unique open files the server can have open
simultaneously.

• maxserverlocks: The maximum number of byte
range locks the server can lock simultaneously.

To help the user apply these parameters to a par­
ticular system, the "pcsa memory" command acts
as a shared memory sizing calculator. It allows
the user to input the parameters and then either
indicates that the new parameters will fit in the
current system, or that the system shared memory
parameters need to be changed to support the new
configuration.

Information Logging
PATHWORKS for ULTRIX information logging was
designed for the ULTRIX system manager as well as
writer/users of the LAN Manager application. It pro­
vides event and error logging information in two
distinct formats. The first format uses the ULTRIX
system log file: syslog. This log file is typically mon­
itored by ULTRIX system managers. All processes
which comprise PATHWORKS for ULTRIX submit con­
figuration information and error conditions to this
file. The file server process also logs information
regarding service usage, sessions, and connections.

The second form of event logging is performed
entirely by the server process. The server pro­
cess logs error and audit events to LAN Manager­
compatible log files: error log and audit log. These
log files are accessible through the management
interface as well as through the LAN Manager API
interface provided with DOS and OS/2 LAN Manager
implementations. These files contain information
on session logon/logoff, password errors, connec­
tions started/rejected, resource access granted/
denied, and server status changes.

Summary
The PATHWORKS for ULTRIX file server, together
with the PATHWORKS for DOS and PATHWORKS for
OS/2 products, provides a distributed computing
environment. The file server is based on a client­
server model that offers transparent access to
ULTRIX system resources from PC clients. It pro­
vides the necessary tools to integrate these two
diverse computing environments in a manner that
is both efficient and easy to manage.

Digital TechnicalJournal Vol. 4 No. I Winter 1992

Design of the PATHWORKS for ULTRIX File Seroer

Acknowledgments
Many people were involved in the design and build­
ing of the PATHWORKS for ULTRIX file server from its
inception to its shipment. We wish to thank all
those people: Paul Messier and Jim Flaherty, who
guided our efforts; Dan Smith, who designed and
implemented the NetBIOS layer; Ken Cardinale,
who wrote the product documentation; Marlene
Steger, who ensured that the product shipped on
time; and the many individuals who successfully
brought this product to market.

References

1. Protocol Standard for NetBIOS Sero ice on a TCP/

UDP Transport· Concepts and Methods, Internet
Engineering Task Force (IETF) RFC 1001 (March
1987).

2. Protocol Standard for NetBIOS Seroice on a TCP/

UDP Transport· Detailed Specification, Internet
Engineering Task Force (IETF) RFC 1002 (March
1987).

3. ULTRIX-32 Guide to Curses Screen-Handling,
ULTRIX Document Set, Software Development,
vol. 2 (Maynard: Digital Equipment Corporation,
Order No. AA-MF07 A-TE, 1988).

39

Mitchell P. Lichtenberg
Jeffrey R. Curless

DECnet Transport Architecture

The PATHWORKS family of software products includes an implementation of the
DECnet transport protocol to allow Intel-based personal computers access to net­
work resources. This implementation, the DECnet Network Process (DNP) trans­
port component, provides basic file and print services, terminal emulation, and
application services. The new DNP component for the version 4.1 release of the
PATHWORKS for DOS client software is written in assembly language to improve
performance and reduce memory usage. The DOS and OS/2 versions of the compo­
nent contain the same base source code, thus decreasing the development and
maintenance costs.

Digital's PATHWORKS family of software products
provides the means to integrate personal com­
puters into the Digital network environment.
The PATHWORKS for DOS client software includes
device drivers, network transports, utility pro­
grams, and applications that allow PCs full access
to the resources available in local and wide area net­
works (LANs and WANS). Transparent file sharing,
electronic mail, and terminal emulation are exam­
ples of services supported by PATHWORKS client
software.

The DECnet protocol suite is implemented in
Digital's standard set of software for interconnect­
ing VAX and reduced instruction set computer
(RISC) systems. DECnet software, which is included
in the PATHWORKS client software, enables PC inte­
gration. The DECnet protocols allow PATHWORKS
products to use the infrastructure of existing
Digital networks and to provide common utility
programs and network management capabilities.

However, integrating PCs into a network sys­
tem presents many design challenges to software
developers. They must provide network access
without limiting the functionality of the PCs and
without compromising the compatibility of the
existing PC software and peripherals. Since the PC
architecture has limited memory resources and few
built-in features for networking, PC network soft­
ware architectures must be as transparent as pos­
sible, reducing memory usage and emulating local
peripherals and software interfaces.

To implement this transparent architecture, the
PATHWORKS products comply with PC-related
industry standards. Most such standards result from

40

popular vendor software applications or hardware.
For example, Microsoft's LAN Manager software
product influenced the acceptance of the industry­
standard server message block (SMB) protocol. This
session layer protocol, implemented over a variety
of transports, is used in the LAN Manager redirector
for transparent file sharing and peripheral emula­
tion. Digital licenses the LAN Manager software in
order to provide these services as features of the
PATHWORKS product family. Digital extended the
LAN Manager across a LAN or a WAN system by using
the DECnet transport protocol as the transport layer
in its PATHWORKS products.

In this paper we first present our rationale
behind the design of the DECnet transport compo­
nent in PATHWORKS for DOS version 4.1, as well as in
PATHWORKS for OS/2 version 2.0. We then describe
the new component's internal structure, follow a
typical network operation through the compo­
nent, and compare this version of the software
component with previous versions.

PATHWORKS Qient Software and the
DNP Component
Since its initial release, the PATHWORKS product
family has implemented the DECnet transport pro­
tocol to provide access to basic file services and
printer sharing, terminal emulation, and applica­
tion services. This network software implementa­
tion is called the DECnet Network Process (DNP)
transport component. Figure 1 illustrates the rela­
tionship between the DNP transport component
and the other memory-resident PATHWORKS client
software components.

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

DECnet Transport Architecture

DOS APPLICATIONS

APPLICATION
PROGRAMS

I
NETBIOS
APPLICATIONS

I
DECNET
APPLICATIONS
(IOCB INTERFACE)

--- --------------__ - - - -----
SYSTEM
PROGRAMS

DOS OPERATING_ MICROSOFT LAN n_ SYSTEM MANAGER

DECNET
NETWORK

I PROCESS (DNP)

I
PC TIMER AND
INTERRUPT_ SCHEDULER

HARDWARE (SCH) .._ DATA LINK
LAYER (DLL)

I
LAN HARDWARE

Figure I PATHWORKS Client Components

Goals for PATHWORKS Client Software
PC network software products are judged primarily
on two criteria: performance, usually measured
with popular benchmark programs, and resident
memory usage, a limited resource that may restrict
other applications. Increasing p erformance and
decreasing memory usage are major goals for all
new releases of the PATHWORKS client software. In
the PATHWORKS version 4.1 client software, Digital
sought to double the performance of the DNP
transport component for small data transfers,
while decreasing the size of the code by 50 percent.
Another goal was to significantly reduce mainte­
nance costs in order to free engineering resources
for future project development.

Before describing how we went about achieving
these performance, memory, and development cost
goals in PATHWORKS version 4.1, we review the func­
tionality of the DECnet DNP implementation . We
also discuss the component in relation to other
PATHWORKS client components to give the context
in which our design decisions were made.

The DNP Component Functionality
Application programs can use DNP transport ser­
vices through one of two software interfaces: the
network basic 1/0 system (NetBIOS) interface and
the 1/0 control block (IOCB) interface. The widely
accepted NetBIOS interface is used by applications

Digital Technical Jor,rnal Vol. 4 No. 1 Winter 1992

and drivers that comply with industry-standard
specifications to provide peer-to-peer transport
services on a LAN. The IOCB interface is specific to
Digital's DECnet transport implementation of the
DECnet protocols. IOCB provides a socket interface
similar to the one used by the ULTRIX operating
system. This IOCB interface is used by DECnet­
specific application programs.

To communicate with the network, the DNP
transport component calls the data link layer (DLL)
software interface. The DLL component is used
by all PATHWORKS client components to send and
receive packets on the LAN. This component
demultiplexes incoming packets based on their
protocol type (e.g., local area transport [LAT], local
area system transport (LAST], or DECnet transport)
and delivers these packets to the corresponding
PATHWORKS client component. The DLL compo­
nent also transmits packets on the LAN, either
directly or indirectly by calling standards-based
network drivers. To reduce memory consumption,
the DLL component provides a global buffer pool
that the DNP and other transport components can
use for building network packets or for storing
unacknowledged data.

To provide timing and background process ser­
vices, the DNP component calls the PATHWORKS
real-time Scheduler (SCH) component. The SCH
communicates directly with the DOS operating

41

PATHWOR.KS: PC Integration Software

system and the PC's timer and interrupt hardware to
create a simple cooperative process environment.
This e nvironment includes sleep and wake calls,
and periodic interval timers. The fu nctions of the
SCH component are similar to those performed by
true multitasking operating systems, such as the
OS/2 system, which use preemptive scheduling.

Considerations for a New DNP
Component Design
In previous PATHWORKS client software, separate
teams implemented and maintained the DOS and
OS/2 versions of the DNP transport component. We
decided to use the same base source code for both
versions and thus reduce development and mainte­
nance costs. We then proceeded to consider our
design options.

Originally, the DNP component was written in
the c programming language. The internal architec­
ture remained basically unchanged during the five
years following its release. This stable code should
have been easy to port between operating systems.
However, the internal architecture of the OS/2 sys­
tem was never considered in the original design
because this system was not available until 1988.
Retrofitting the DOS version of the DNP component
for the OS/2 operating system was difficult, and we
were not able to maintain a common source code
base.

To achieve the performance, memory, and devel­
opment cost goals described earlier in this section,
we considered the following three approaches:

1. Rewrite the current DNP transport component

2. Write a new DNP transport component inc

3. Write a new DNP transport component in assem­
bly language

Rewriting the current DNP component would
not have produced a desirable amount of code com­
mon to the DOS and OS/2 versions. In add ition, this
approach would have resulted in only minimally
improving the maintainability of the code. Writing
a new transport component in C would have
yielded a more portable code, but the performance
and memory usage would not have compared favor­
ably with other vendors' transports. We decided to
write the new transport component in assembly
language to make optimal use of the limited mem­
ory available on today's personal computers.

PATHWORKS Version 4.1 DNP
Transport Component Design
Internally, the DNP transport component com­
prises various modules that correspond approxi­
mately to the layers of the DECnet protocol suite,
as shown in Figure 2. Later in this section, we
describe the major DNP modules and how they
cooperate.

APPLICATIONS
USER REQUESTS

SCHEDULER
TIMER TICKS

EXECUTIVE
DISPATCHER

IOCB
INTERFACE

NETWORK SERVICES PROTOCOL

DECNET PHASE IV ROUTING

DATA LINK CONTROL

DATA LINK LAYER
RECEIVED DATA
PACKETS

NETWORK
MANAGEMENT

Figure 2 In ternal Architecture of the DECnet Network Process Component for PATHWORKS Version 4. 1

42 Vol. 4 No. 1 Winter 1992 Digital Technical Journal

Three types of events can cause the DNP compo­
nent to respond or to "wake up": user requests,
received packets, and timer ticks. All of these events
are asynchronous, since they are generated by hard­
ware interrupts or user actions that are not man­
aged by the operating system. Each time the DNP

component processes an event, variables and data
structures internal to the component change. In
designing the component, we had to ensure that
the events would not interrupt one another.

To protect the data structures in a generic way,
all versions of the PATHWORKS DNP component use
a queuing system called the executive. Asynchro­
nous events are queued to the executive module,
where a semaphore guards the dispatching and pro­
cessing routines. The queue and the semaphore
guarantee the following: the receipt of a new event
does not interrupt ongoing processing, and events
are processed in the order in which they arrive.

Under the DOS operating system, the main loop
of the executive module uses the PATHWORKS

SCH component to "sleep," process pending events,
and sleep again. Events that arrive while the main
loop is executing are simply placed on the queue.
Operating under the DOS system, on which no
background processing services exist, the DNP

component uses the PATHWORKS SCH component.
Since the OS/2 operating system does provide a
background processing environment, the corre­
sponding version of the DNP component uses the
native background processing and scheduling func­
tions of the OS/2 operating system to perform the
same tasks.

Data Structures
The DNP transport component uses three primary
data structures to manage network links and to
transfer data: the request (REQ) data structure, the

REQUEST QUEUE

H DATA ~~
USER
REQUEST

r
NETWORK NETWORK NCBOR
PACKET PACKET IOCB

DECnet Transport Architecture

link status block (LSB) data structure, and the large
data buffer (LOB) data structure.

To queue events for processing, the REQ data
structure is allocated from a global pool. Pointers
to a user request or to network data are stored in
the REQ structure and then placed on the executive
dispatcher queue. The REQ structure is also used to
describe unacknowledged data and to store events
in the event log. Using the same pool for different
purposes saved memory and decreased the overall
complexity of the component. Figure 3 illustrates a
typical request queue to the executive dispatcher.

The executive module reads each event, i.e., col­
lection of messages or user requests, from the
request queue and dispatches the event to the
appropriate handler routine, according to event
type. The routine then further dispatches the event
to specific subroutines to handle the individual
messages or requests. The lowest-level routines
keep network links active and transfer data to and
from the remote system.

In previous versions of the DNP component, the
REQ data structure consumed 48 bytes of memory.
We reduced its size to 22 bytes by creating variant
records that contained only those data fields neces­
sary to identify the type of request.

The LSB data structure maintains the current sta­
tus of a logical link. In addition to the network ser­
vices protocol (NSP) variables, the LSB structure
stores other data, including the queue of unac­
knowledged data and the queue of outstanding
transmit and receive requests. Figure 4 illustrates
the contents of the LSB and associated data struc­
tures for an active logical link.

The user requests are attached to queues on
the logical link. For storage of unsent or unacknowl­
edged data, the DNP component uses a REQ data
structure to point to an LOB data structure. The LOB

EXECUTIVE
DISPATCHER

EVENT-HANDLER ROUTINES

PROCESS IOCB REQUESTS

PROCESS NETBIOS REQUESTS

PROCESS RECEIVED DATA PACKETS

PROCESS TIMER TICKS

PROCESS CONTROL MESSAGES

Figure 3 DNP Executive Dispatcher Module and Incoming Request Queue

Digital Techuicaljournal Vol. 4 No. 1 Winter 1992 43

PATHWORKS: PC Integration Software

APPLICATION
MEMORY

SYSTEM
MEMORY LINK STATUS BLOCK (LSB)

USER DATA
BUFFER

NCB USER
REQUEST

USER DATA
BUFFER

NCB USER
REQUEST

t----.i TRANSMIT t------- M TRANSMIT
t--T_R_A_N_S_M_IT_Q_U_E_U_E---t REQUEST (REQ) REQUEST (REQ)

RECEIVE QUEUE

UNACKNOWLEDGED
DATA

,__ ___ , DATA REQUEST DATA REQUEST
(REQ) (REQ)

RECEIVED DATA

NETWORK SERVICES
PROTOCOL STATE
VARIABLES

LARGE DATA
BUFFER (LDB)

LARGE DATA
BUFFER (LOB)

Figure 4 Link Status Block and Associated Data Structures

structures belong to the Ethernet or token ring data
link component and are shared by other protocols.
Before transmitting data, the DNP component allo­
cates first an LDB data structure and then a REQ data
structure that points to the LDB. The REQ structure
is placed on the outgoing message queue of the LSB
structure, and the NSP layer eventually transmits
the REQ data.

Internal DNP Modules
The DNP transport component consists of various
modules. We now describe the data link control
(DLC) module, the NSP module, and the NetBIOS
and IOCB modules.

The DLC module is responsible for communica­
tion with the Ethernet or token ring data link com­
ponent. Only the DLC module calls the data link,
and the differences between the DOS and OS/2 ver­
sions are hidden in the DLC module to present a
consistent software interface to the rest of the DNP
component.

To make the NSP and DECnet Phase IV routing
modules as operating-system independent as possi­
ble, we developed a simplified software interface to
communicate with the Ethernet or token ring DLC
module. The DLC module calls the data link that is
specific to the operating system. Providing the soft-

44

ware interface allowed us to use common code for
all of the modules that do not directly access the
data link.

The NSP module manages the transport protocol,
including the buffering, flow control, and error
recovery mechanisms. In PATHWORKS version 4.1,
we changed the buffering and flow control algo­
rithms to match more closely the types of traffic
that PC network applications are likely to generate.

Most users of the NetBIOS interface post receive
requests before transmitting a request for data from
a server. Some implementations of the NetBIOS
interface do not buffer received or transmitted data
inside the transport component, so applications
must prepare to receive before requesting data
from the server. To best manage the incoming data,
the DNP component of PATHWORKS version 4.1 uses
XON/XOFF flow control for NetBIOS logical links
and segment flow control for logical links that use
the IOCB interface. The previous version used seg­
ment flow control for both the NetBIOS and IOCB
interfaces. XON/XOFF flow control causes fewer
messages to be transmitted on the wire, especially
in request/response session layer protocols, and is
most successful when the receiving node has a
buffer ready to accommodate the incoming data.
Segment flow control is more robust and allows

Vol. 4 No. I Winter 1992 Digital Technical Journal

the DNP component to better regulate the rate of
incoming data. This method of flow control can
be especially useful for non-request/response
protocols such as those used in the DECwindows
software.

The NetBIOS and IOCB modules form the session
layers for the DNP component. In previous versions
of the DNP component, the NetBIOS module was
layered on top of the IOCB interface. However, as
we mentioned earlier in the paper, most popular
network applications use the NetBIOS interface. We
decided to increase the performance of those appli­
cations by designing the new DNP component in
such a way that the NetBIOS module directly calls
the NSP module.

We recognized another element of the DNP design
that could be improved. Earlier DNP versions copied
the user's NetBIOS request into a local data struc­
ture for easy access. The extra resources required
to store and copy the user requests diminished
the overall performance of the DNP component. To
improve performance, the DNP component now
stores a pointer to the original user's request and
manipulates the request directly.

NetBIOS compatibility is one problem that many
vendors face when writing network transport com­
ponents. The NetBIOS software interface is defined
in several different specifications, and many appli­
cations depend on quirks and bugs in the design.
The PATIIWORKS NetBIOS interface must emulate
these bugs completely for certain applications to
work properly. We paid careful attention to the bug
reports from customers in previous versions of the
PATHWORKS software when rewriting the NetBIOS
layer to provide complete compatibility.

A Typical Network operation
To illustrate the sequence of events through the
DNP component for a typical network operation,
consider the transmission of 64 kilobytes (KB) of
data through the NetBIOS interface. The application
that wishes to send the data constructs a NetBIOS
control block (NCB) data structure and submits it
to the NetBIOS software interface. The DNP com­
ponent receives control, creates a queue entry for
the NCB structure, and then wakes the SCH compo­
nent. Waking the SCH component causes the main
loop of the DNP component to begin execution.
The executive module checks the request type and
dispatches the entry to the NetBIOS module where
the transmit request is placed on the logical link's
transmit request queue. The transmit request ini-

Digital Technical Journal Vol. 4 No. I Winter 1992

DECnet Transport Architecture

tially points to the user's NCB and the beginning of
the user's data buffer.

The NSP module copies data into the LOB data
structures and queues these LDBs onto the unac­
knowledged data queue. The amount of data
copied depends on the size of the transmit pipe­
line, which is a network management parameter.
Each time data is copied into an LOB data structure,
the pointer advances in the transmit request queue.
When all of the data is copied into the LOBs, the
user's transmit request is completed, allowing the
application to continue execution while the DNP
component transmits the queued data.

If the flow control mechanism permits sending
data, the NSP module calls the routing layer to add
routing headers. The data link control module then
transmits the packets on the LAN. The remote net­
work system responds with acknowledgment mes­
sages, which are placed on the request queue and
processed when the DNP component returns to the
main loop. An acknowledgment message causes the
LDBs to be returned to the data link control module
and makes space available on the transmit pipeline.
The NSP module can then refill the transmit pipe­
line by copying more user data into the LOB data
structures and restart the transmit process.

Results
We achieved our project goals for the DNP transport
component in PATIIWORKS version 4.1 client soft­
ware. The new design allowed us to reduce mem­
ory usage, improve performance, and reduce
maintenance cost.

Memory Usage
We reduced the resident size of the DNP compo­
nent from 53KB to 33KB. The reduction in the size
of the internal data structures freed up enough
memory resources to allow the DNP component
to handle over 200 concurrent network links.
Previously, the DNP component was limited to
64 links.

Perfonnance
By coding in assembly language, and optimizing
the path for sending data messages to the network,
performance was nearly doubled for small data
transfers. Small data transfers account for the
majority of transfers in database applications.

The graph shown in Figure 5 represents DECnet
performance, measured in messages transferred

45

PATHWORKS: PC Integration Software

per second, as a function of message size, ranging
from 64 to 65,500 bytes. We include data for ver­
sions 4.0 and 4.1 of the DNP component. As the mes­
sage size increases, the curves converge because
the Ethernet adapter's performance becomes the
limiting factor for throughput. Smaller message
sizes are typical in many industry-standard PC
benchmark programs and applications.

The benchmark program used to calculate
DECnet performance transfers data from one PC
to another as fast as possible, using fixed message
sizes. The hardware used in these tests consisted
of 20-megahertz Intel 80386 microprocessors with
16-bit DEC EtherWORKS Turbo (DE200) adapters
running on a private Ethernet segment.

Maintenance Costs
Debugging the common source code base for the
DOS and OS/2 versions is much simpler than for the
previous version of the DNP component. Since the
OS/2 version uses the memory protection features
of the PC's Intel microprocessor, invalid memory
references under the OS/2 version cause system
traps that would not have been detected under the
DOS version. Nearly 90 percent of the code is com­
mon to the DOS and OS/2 versions of the DNP com­
ponent. The number of source lines was reduced
from 73,000 (the DOS version only) in PATHWORKS
version 4.0 to 53,000 (the DOS and OS/2 versions
combined) in PATHWORKS version 4.1. Rewriting
the component also improved its compatibility
with third-party NetBIOS applications.

600

0 z 500
0
(.)

~ 400
a:
w
o.. 300
Cl)
w

~ 200
Cl)
Cl)

~ 100

ol---~--~~+-~-+__:;::::¥=:::0:==0-
128 512 2,048 8,192 32,768

64 256 1,024 4,096 16,384 65,500

MESSAGE SIZE (BYTES)
KEY:

• DNP COMPONENT IN PATHWORKS VERSION 4.1

o DNP COMPONENT IN PATHWORKS VERSION 4.0

Figure 5 DECnet Network Process Component
Throughput

Debugging features were added to the DNP com­
ponent in PATHWORKS version 4.1 that allow cus­
tomers to adjust their DECnet configuration easily
and precisely. The DNP component now collects
statistics on the maximum number of REQ, LSB, and
LOB structures allocated, and on the size of each
pool. Using this feature, we found that the ver­
sion 4.0 DNP component allocated nearly twice as
many REQ data structures as it needed under
normal client workloads. As a result, we lowered
the default allocations to further reduce memory
consumption.

Conclusion
The DECnet transport component project for the
version 4.1 release of the PATHWORKS client soft­
ware was a success; we came very close to our orig­
inal goals for memory, performance, and software
development costs. In addition, many of the tech­
niques, algorithms, and data structures used for this
effort can be applied to future network transport
development.

General References

IBM NetBJOS Application Development Guide
(Armonk, NY: International Business Machines Cor­
poration, 1987).

Microsoft/3Com Network Driver Interface Specifi­
cation, version 2.0.1 (Redmond, WA: Microsoft Cor­
poration, 1990).

PATHWORKS Programmer's Reference, version 4.1
(Maynard, MA: Digital Equipment Corporation,
1991).

DECnet Phase JV General Description (Maynard,
MA: Digital Equipment Corporation, Order No.
AA-Nl49A-TC, 1983).

Microsoft MS-DOS Programmer's Reference (Red­
mond, WA: Microsoft Corporation, 1990).

Microsoft OS/2 Device Driver Reference (Redmond,
WA: Microsoft Corporation, 1989).

46 Vol. 4 No. 1 Winter 1992 Digital Technical Journal

Andrew W. Nourse I

Microsoft Windows Network
Virtual Device Drivers in
PATHWORKSfor DOS

Digital's PATHWORKS for DOS version 4.1 personal computer integration software
includes two network virtual device drivers for the Microsoft Windows environ­
ment. These drivers allow Windows applications operating in a protected processor
mode and standard DOS applications in a virtual machine to concurrently access
services designed to run in real mode under the DOS operating system. The network
virtual device drivers, available only in Microsoft Windows enhanced mode, man­
age DECnet and NetBIOS operations and permit the full use of these interfaces.

Microsoft Windows virtual device drivers are load­
able software modules that extend the Windows
operating system and enable it to support periph­
eral devices, memory resources, and software
applications. Some of these modules allow applica­
tions that operate in different processor modes
with corresponding differences in memory access
to communicate with one another in a network sys­
tem. Digital's PATIIWORKS products make it possible
to integrate personal computers into local or wide
area network systems. The PATIIWORKS for DOS soft­
ware includes two network virtual device drivers,
which manage DECnet and network basic 1/0 sys­
tem (NetBIOS) operations in the Microsoft Windows
environment for PCs.

This paper begins with a discussion of the
Microsoft Windows environment for which the
PATIIWORKS for DOS product provides network
virtual device drivers. The basic processor operat­
ing modes and the Microsoft Windows operating
modes are described, preparatory to an explana­
tion of Microsoft Windows enhanced mode. This
explanation is essential because virtual device
drivers operate only in enhanced mode.

Next, the paper details the capabilities of virtual
device drivers, such as providing the means for
Windows and DOS applications to communicate.
The focus then turns to the environment for devel­
oping Microsoft Windows virtual device drivers and
concludes with a description of the structure and
functionality of the two network device drivers
included in the PATIIWORKS for DOS software.

D igital TecbntcalJournal Vol. 4 No. I Winter 1992

Microsoft Windows Environment
The Microsoft Windows environment is a graphical,
multiapplication system for personal computers
that use the Intel 80286 or higher microprocessor.
For 80286-based systems, the Windows system
operates in its standard mode, using the real and
protected processor modes. On the 80386 or higher
microprocessor, the Windows system can also oper­
ate in its enhanced mode, using both protected and
virtual processor modes. Enhanced mode allows
the Windows system to fully utilize processor fea­
tures such as virtual memory and multiple virtual
machines. Virtual device drivers are available only
in this enhanced mode.

Basic Processor Operating Modes
All members of the 80x86 family, including the
80386 microprocessor, calculate addresses in mem­
ory by using a segment register and an offset.
However, the method for calculating the physical
address varies, depending on the processor mode.
The basic processor operating modes are real mode,
protected mode, and virtual mode.

Real Mode This mode is used by the DOS operat­
ing system exclusively and by most DOS applica­
tions. The processor calculates physical addresses
by shifting the contents of a 16-bit segment register
left by 4 bits and adding a 16-bit offset. Therefore,
only the first 1 megabyte (MB) plus 65,519 bytes of a
PC's physical memory are directly accessible in this
mode.

47

PATHWORKS: PC Integration Software

The basic layout of PC memory is shown in
Figure 1. The first megabyte of physical memory is
known as conventional memory. This area may
include the PATHWORKS implementation of the
DECnet transport protocol, namely the DECnet
Network Process component, as well as other mem­
ory-resident software. In addition, conventional
memory may contain the DOS operating system and
DOS applications. The next 65,519 bytes are called
the high memory area. Bank-switched memory,
known as expanded memory, may also be available.
In real mode, memory protection and virtual mem­
ory are not available, illegal instructions are gener­
ally ignored, and 1/0 instructions are always
allowed.

Protected Mode In this mode, a segment register
contains a selector. Part of the selector is an index
into a descriptor table maintained by the hardware.
A flag in the selector indicates which of two
descriptor tables to use, the local descriptor table
or the global descriptor table. The processor adds

1088KB

1024KB

640KB

48

EXTENDED MEMORY

HIGH MEMORY AREA

VIDEO MEMORY
EXPANDED MEMORY PAGE

FRAME
ADAPTER MEMORY

AVAILABLE

DOS APPLICATION

OTHER RESIDENT SOFTWARE

DECNET NETWORK PROCESS

DOS OPERATING SYSTEM

CONVENTIONAL
MEMORY

Figure 1 Basic PC Memory Layout

the offset to the linear address obtained from the
appropriate descriptor table. The 80386 implemen­
tation differs from that of the 80286 because the
80386 processor offers both 16- and 32-bit general
registers and offsets, whereas the 80286 processor
has 16-bit general registers and offsets.

In protected mode, if paging is disabled, the lin­
ear address is the physical address. If paging is
enabled, the linear address is decoded into a page
directory entry, a page table entry, and an offset.
The page directory entry identifies a page table, and
the page table entry provides a physical address.

Protected mode is used by applications that use
DOS extenders to access memory beyond that
which is accessible from real mode. 80386 proces­
sors operating in protected mode may use virtual
memory. In this mode, an illegal instruction causes
a processor trap, and 1/0 instructions may be selec­
tively allowed or trapped.

Virtual Mode This mode implements a virtual
machine that emulates the behavior of an 8086
microprocessor. Address calculation in this mode
is similar to that in real mode, except that in vir­
tual mode the result of the shift-and-add opera­
tion is a linear address. The processor converts
this address to a physical address, as in protected
mode. Processors operating in virtual mode may
use virtual memory. Also, each virtual machine can
have a separate page directory, an illegal instruc­
tion causes a processor trap, and 1/0 instructions
may be allowed or trapped.

Microsoft Windows Operating Modes
The Microsoft Windows environment supports sev­
eral operating modes.

Windows Real Mode Similar to previous versions
of the Windows system, Windows 3.0 can operate in
real mode, i.e., use conventional memory, expanded
memory, and the high memory area. This mode is
not supported in Windows 3.1.

Windows Standard Mode Windows 3.0 and 3.1 can
operate in standard mode on the 80286 or higher
microprocessor. This mode uses the protected
processor mode, but does not take advantage of
the 32-bit features of the 80386 processor. The
Windows system and Windows applications are
located outside conventional memory, except for
code necessary to provide the communication
links with DOS and other resident software.

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

Standard DOS applications run in real mode and
occupy the full screen, as if the Windows system
were not present. Switching between Windows
and non-Windows applications is accomplished by
performing a sequence of keystrokes in exactly the
same manner as under the MS-DOS version 5.0 task
switcher. Virtual device drivers are not used in stan­
dard mode.

Windows Enhanced Mode In enhanced mode, the
Microsoft Windows system provides each non­
Windows application a virtual machine in which to
operate. These machines are preemptively multi­
tasked, so even compute-bound, non-Windows
applications can run in the background. The
Windows system and all Windows applications
share a single virtual machine so they can commu­
nicate with each other.

The Microsoft Windows system uses the pro­
tected and virtual modes of the 80386 processor.
Paging is always enabled. The first lMB plus 65,519
bytes of the linear address space is mapped to the
first lMB plus 65,519 bytes of memory belonging to
the virtual machine currently executing. This map­
ping allows each DOS application its own block of
memory in which to run.

Some data must be shared among the virtual
machines. Whenever all or most of the data in a
page is shared, a global page is used. Most resident
software that was loaded before the Windows sys­
tem start-up is stored in global pages. Selected data
within these global pages may be maintained sepa­
rately for each virtual machine. This practice is
called instancing and may be requested by the resi­
dent software.

To support operations requested by virtual
machines, virtual device drivers extend the
Microsoft Windows kernel. The drivers are loaded
at Windows initialization and effectively become
part of the kernel.

The Microsoft Windows enhanced mode kernel
uses 32-bit registers and offsets. The segment regis­
ters are loaded with selectors that allow access to
all of memory when the kernel is operating and
eliminate the need to break code and data into
64-kilobyte (KB) segments of memory. This mem­
ory model is known as the flat model.

Although the Windows enhanced mode kernel is
written to use 32-bit registers and offsets, most of
the remaining libraries supplied with the Windows
system and nearly all applications are written to
use 16-bit registers and offsets. The Windows appli-

Digital Technical Journal Vol. 4 No. J Winter 1992

cations run in protected mode, whereas virtual
mode provides support for the DOS applications,
which need not even be aware that the Windows
environment exists.

Virtual Device Driver Capabilities
Virtual device drivers provide the means for
Windows and DOS applications to communicate,
support asynchronous operations, virtualize hard­
ware ports and interrupts, and directly handle hard­
ware and software interrupts. These capabilities
are described in the following section.

Communication between Protected-mode
and Real-mode Software Applications
A virtual device driver provides a bridge between
Windows applications running in protected mode
and DOS terminate and stay resident (TSR) applica­
tions written to run in real mode with no knowl­
edge of protected mode. A Windows application
that calls an application programming interface
(API) passes it a valid protected-mode address.
Without virtual device drivers, the real-mode soft­
ware would interpret this address as a real-mode
address, usually pointing to a location within the
DOS operating system. A virtual device driver can
map the memory into conventional memory and
change the addresses so that the real-mode soft­
ware correctly accesses the caller's data. The vir­
tual device driver should enter a critical section to
avoid task switching while calling real-mode soft­
ware that is not reentrant.

Communication between Transient DOS
Application Software and Global Resident
DOS Software
Most DOS application software and DOS TSR soft­
ware is not designed to run in the Microsoft
Windows environment. While executing, a DOS

application is mapped into conventional memory.
If the application calls resident software, and a task
switch occurs while an operation is in progress,
data would be delivered to the wrong application.

There are two ways to handle this situation. The
virtual device driver can enter a critical section to
disable task switching until the operation is com­
plete. This approach works well for synchronous
operations that never take a perceptibly long time
to complete.

However, the system does not respond to most
user input while the virtual device driver is in a

49

PATHWORKS: PC Integration Software

critical section. Consequently, for long synchro­
nous operations, the end user of the application
may believe that the system is hung. If the real­
mode software supports asynchronous operations,
the virtual device driver can convert the operation
to an asynchronous call. Handling the situation in
this manner requires that a critical section be
entered only for the time it takes to queue the
call, and then only if the real-mode software is not
reentrant.

Support for Asynchronous Operations
Asynchronous operations, whether in real or pro­
tected mode, require that the virtual device driver
be able to buffer data in a memory pool that is
mapped into every virtual machine. In addition, the
driver must set up a completion callback routine to
wake up the virtual machine that made the request,
deliver the data to that virtual machine, and trans­
fer control to a caller-specified callback routine, if
necessary.

Virtualization of Hardware Ports
and Interrupts
Another function of virtual device drivers is to vir­
tualize hardware ports and interrupts so that the
Windows system can successfully emulate several
8086-based machines at once. Each virtual machine
runs a DOS application that assumes it has sole use
of a machine. DOS is a minimal operating system
and does not provide much of the functionality
required by applications. Therefore, most DOS appli­
cations bypass the operating system except to
access the file system. It is common for an applica­
tion to set up its own interrupt handlers and to read
and write hardware ports. If several applications
in separate virtual machines were to attempt these
operations at the same time, the applications would
interfere w ith one other. A virtual device driver can
trap access to hardware 1/0 ports and regulate
access to the actual hardware.

Direct Handling of Hardware or Software
Interrupts
The virtual device driver can provide the function­
ality ofreal-mode software. If the user has no need
to run this software outside the Windows environ­
ment, the software can be removed from memory.
Removing the real-mode software reduces the need
for context and mode switching, mapping, and copy­
ing, and thus offers a considerable performance

so

advantage. If the resident software is removed,
more memory is then available to DOS applications
running in the Windows environment.

Development Environment
The Microsoft Windows system includes virtual
device drivers. Microsoft also has a device driver
development kit specifically for developing virtual
device drivers. 1 This section describes the envi­
ronment for developing and debugging this driver
software.

Development Tools
Currently, virtual device drivers are written in
assembly language because higher-level language
compilers generally lack the ability to generate
code with 32-bit offsets and registers. A special
32-bit assembler and linker are provided with the
Microsoft Windows device driver development kit.

Debugging Tools
Virtual device drivers are debugged using the
WDEB386 software module. This debug tool
requires that a terminal or equivalent be connected
to one of the communication ports on the PC; the
debugger performs its 1/0 to that communications
port. Symbols are available in the debugger, but
source-level debugging is not provided.

To take full advantage of the WDEB386 capabili­
ties, the debug version of the Microsoft Windows
WIN386.EXE module should be used. This version
contains many features essential for investigating
the behavior of the Windows system and, in par­
ticular, for debugging virtual device drivers. The
features include commands to display the registers,
the stack, and the control blocks for each virtual
machine. Many of the virtual device drivers
included with the Windows system, and the two
included in the PATIIWORKS for DOS product, have a
debug entry point that may be invoked by entering
the period keyboard character, followed by the
name of the virtual device driver. Two particularly
useful debug entry points are .VMM and :V86MMGR,
which provide detailed information about memory
usage for each virtual machine, including the use of
expanded memory and the high memory area.
WDEB386 can be used successfully in the Windows
environment to debug virtual device drivers and to
diagnose bugs in the read-only memory basic 1/0
system (ROM BIOS) and other resident real-mode
software.

Vol. 4 No. I Winter 1992 Digital Technical Journal

Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

The CodeView for Windows debug tool is
intended for debugging applications and dynamic
link libraries, not for debugging virtual device
drivers. However, the Code View and WDEB386 tools
can be used simultaneously to diagnose problems
that occur when applications cause the Windows
system to fail.

The Network Virtual Device Drivers
The PATHWORKS for DOS software provides two
APis for task-to-task network communications.
One is a DECnet socket-based interface, which uses
an argument block called an 1/0 control block
(IOCB). The other is the industry-standard PC net­
working interface, NetBIOS, with some extensions
provided by Digital to support wide area networks.
The NetBIOS interface uses an argument block
called the NetBIOS control block (NCB). Both inter­
faces are fully supported in Windows enhanced
mode.

Digital's PATHWORKS for DOS version 4.1 includes
two virtual device drivers to support networking:
VDNET.386, which handles DECnet socket calls,
and VNETBIOS.386, which handles NetBIOS calls.
Although they support different APis, these two vir­
tual device drivers are similar in structure. The dis­
cussion in this section applies to both drivers
unless otherwise noted. These drivers are included
with the current PATHWORKS version 4.1 prod­
uct and with Windows version 3.1. To identify
Digital Equipment Corporation as the developer
of the drivers, Microsoft requested that the module
names VDNET.386 and VNETBIOS.386 be changed
to DECNET.386 and DECNB.386, respectively, in
Windows version 3.1. In this paper, the nomencla­
ture VDNET and VNETBIOS is used to refer to these
two modules.

The drivers invoke the real-mode network soft­
ware in the virtual machine that requested the
operation. Creating a "network virtual machine"
to which the driver would route all network activ­
ity would have allowed most of the network soft­
ware to be loaded into a single virtual machine
and thus freed up conventional memory for non­
Windows applications. However, using this design
would have incurred the overhead of switching on
virtual machines for every network access, timer
tick, and network hardware interrupt. In addition,
creating a network virtual machine would have
required that the data link layer and the DECnet
scheduler be capable of performing the virtual
machine switch. Finally, this design would be prac-

D igital Technical Journal Vol. 4 No. 1 Winter 1992

tical only for those users who access the net­
work exclusively while operating in a Microsoft
Windows environment.

Initialization
Virtual device drivers are called several times dur­
ing Windows initialization. While the Windows sys­
tem is still operating in real mode, the VDNET and
VNETBIOS modules check to see if the resident
network software is loaded. If it is not, there is no
reason to load these drivers. A value is returned that
aborts the loading of the drivers but directs the
Windows system to continue loading.

After the Windows system enters protected
mode, the drivers are called again during each suc­
cessive phase of initialization. Each virtual device
driver takes control of the software interrupts used
for its respective API, reserves space in the control
block of each virtual machine, obtains parameters
from the SYSTEM.IM file, and allocates a pool of
global memory for communication with the real­
mode resident networking software. Figure 2 illus­
trates a system virtual machine and a virtual
machine running a DOS application. The figure
shows the pool of conventional memory that the
virtual device driver allocates as global memory.

The drivers perform a "sanity check" to verify
that the virtual device driver can distinguish global
memory from memory that is local to a single vir­
tual machine. However, the Windows function to
perform this check can fail when running on some
common unsupported software configurations.
At this point, if the sanity check fails, the driver
displays a message to advise the user to exit the
Windows system.

Virtualization of the Network AP/s
When an application issues a software interrupt for
a DECnet or NetBIOS call, the appropriate virtual
device driver gains control. If the application mak­
ing the call is in protected mode, the virtual device
driver always maps the call in memory. Otherwise,
the driver software checks the control block (i.e.,
the IOCB or the NCB) and the buffer addresses to
determine if they are stored in global memory, i.e.,
mapped identically in every virtual machine. If so,
the virtual device driver does not map the call,
because it will execute properly without mapping.

AP! Mapping If the control block and the buffer
addresses are not stored in global memory, map­
ping is necessary. The virtual device driver

51

PATHWORKS: PC In tegration Software

SYSTEM VIRTUAL MACHINE

I
I
I
I
I
I

WINDOWS APPLICATION I
I
I
I

VIRTUAL MACHINE
RUNNING A
DOS APPLICATION

I
I
I
I
I
I
I
I
I

EXTENDED
MEMORY

VDNET.386 VIRTUAL DEVICE DRIVER

1088KB

1024KB

640KB

HIGH MEMORY AREA

VIDEO MEMORY
EXPANDED MEMORY PAGE

FRAME
ADAPTER MEMORY

AVAILABLE

DOS APPLICATION

HIGH MEMORY AREA

VIDEO MEMORY
EXPANDED MEMORY PAGE

FRAME
ADAPTER MEMORY

AVAILABLE

DOS APPLICATION

TOP OF CONVENTIONAL

w AVAILABLE HOOK I
CONTROL BLOCKS

GLOBAL MEMORY
MEMORY

MAPPING AREA

OTHER RESIDENT SOFTWARE

DECNET NETWORK PROCESS

DOS OPERATING SYSTEM

Figure 2 Microsoft Windows Initialization

allocates a hook control block to the operation.
This control block resides in global memory and
includes an IOCB or NCB, which the virtual device
driver passes to the resident networking software.
The driver globally maps the caller's buffers in
the mapping-space pool allocated at initialization.
The IOCB or NCB embedded in the hook control
block contains addresses changed to point to the
remapped address in the mapping-space pool. The
callback (post) address is set to the callback routine
in the virtual device driver, so the driver is called
when the operation is complete.

Optionally, if the operation is a blocking call that
takes a long time to complete, the virtual device
driver may convert the operation to an asynchro­
nous call. In this case, the driver sets an internal
flag, HF_Suspend_Until_POST, and does not return
control to the calling application until the opera-

52

tion is complete. All other virtual machines con­
tinue to run while the network 1/0 is in progress.
This design prevents the operation from monopo­
lizing the entire system.

Asynchronous Calls If the call is asynchronous or
has been converted to an asynchronous call, the vir­
tual device driver must establish a callback in order
to be notified when the call completes. Because the
virtual device driver runs in protected mode and
the resident network runs in virtual mode, a spe­
cial type of callback is required. The virtual device
driver uses the Windows Allocate_ V86_Callback
service to obtain a real-mode pointer to an instruc­
tion in global memory that causes a trap when exe­
cuted in virtual . mode. The Windows system
handles this trap and transfers control to the virtual
device driver in protected mode.

Vol. 4 No. 1 Winter 1992 Digital Technical Jour,ial

Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

Invoking the Network Process The virtual device
driver is now prepared to pass the call to the real­
mode networking software. The driver enters a
critical section to avoid reentrance problems and
calls the Simulate_Real-Mode_lnterrupt service to
invoke the network process as if it were being
invoked in real mode. The virtual device driver
leaves the critical section when the simulated inter­
rupt returns. If the operation is not asynchronous,
the caller's IOCB or NCB is updated, buffers are
unmapped, and the hook control block is freed.
Figure 3 shows a Microsoft Windows call to the
network, intercepted by the virtual device driver
and passed to the network process.

Callback Routine The device driver checks the
HF_Suspend_Until_POST flag to determine if the
call was a blocking call that the virtual device

ARGUMENT
BLOCK
PASSED

SYSTEM VIRTUAL MACHINE

WINDOWS APPLICATION -

I CALLBACK I

I CALLBACK I

driver converted to an asynchronous call. If so,
control must not return to the calling application
until the operation is complete. Normally, the call­
back routine in the driver is called at this time.
However, certain NetBIOS error conditions cause
the operation to return immediately without call­
ing the callback routine. Therefore, the NetBIOS vir­
tual device driver checks the status of the call.

If the call is still in progress, the requesting vir­
tual machine relinquishes its allocated time and
retries when the process wakes up. This design pro­
tects the process from being awakened prema­
turely by another virtual device driver. Also, some
NetBIOS request errors cause the NetBIOS software
interrupt to return immediately and do not transfer
control to the callback routine. Ordinarily, the pro­
cess is only awakened by the callback routine in the
virtual device driver on completion of the call.

VIRTUAL MACHINE
RUNNING A
DOS APPLICATION

-- --- -j->---, CALL TO
:_.,.....---- THE

I I NETWORK

I :
I

I :
I
I

1088KB i--~~~~~~~~~--. -.-~ ~~.,......~~~~ ~~---t
HIGH MEMORY AREA

1024KB 1-------------1
HIGH MEMORY AREA

VIDE¢ MEMORY
EXPANDED MEMORY PAGE

FRAME

VIDEO MEMORY
EXPANDED MEMORY PAGE

FRAME
ADAPTER MEMORY A~ER MEMORY

640KB 1-------------1
AVAILABLE AVAILABLE

TOP OF
GLOBAL
MEMORY

DOS APPLICATION

AVAILABLE HOOK
CONTROL BLOCKS

MAPPING AREA

ALLOCATED HOOK 1-1-- -+-I
CONTROL BLOCK I

I
t.- - -~---1

OTHER RESIDENT SOFTWARE1

DECNET NETWORK PROCESS

DOS OPERATING SYSTEM

Figure 3 Invoking the Network Process

Digital Teclmtcal Jour,1al Vol . 4 No. 1 Winter 1992

BUFFER

53

PATHWORKS: PC Integration Software

The Suspend_ VM service can be used to block a
virtual machine during such a call. However, sus­
pending a virtual machine requires that the system
call every Windows virtual device driver to notify
it of the suspension. The notification process con­
stitutes a high-overhead operation and is therefore
unsuitable for this use.

If the operation is asynchronous, the system
transfers control to the virtual device driver call­
back routine when the operation is complete, as
shown in Figure 4. This routine calls the Windows
scheduler to wake up the virtual machine that
requested the operation. The Windows event ser­
vices are also called to invoke the event-handler
routine in the virtual device driver when the
requesting virtual machine is scheduled. In this
way, the virtual device driver regains control. This

SYSTEM VIRTUAL MACHINE

WINDOWS APPLICATION

11/0 1-I CALLBACK I
CONTROL .i

BUFFER I BLOCK I
I I

I

•

I
I
I
I
I
I
I
I
I
I

process restores the caller's context before updat­
ing the caller's data.

As shown in Figure 4, the event routine updates
the user's argument block and calls the user's call­
back routine. Finally, the virtual device driver
unmaps the buffers, frees up the hook control block,
and returns control to the calling application.

Virtual Machine Termination
When a virtual machine terminates, all virtual
device drivers are called to perform cleanup. The
network virtual device drivers check for outstand­
ing network operations to the virtual machine that
is being terminated. All such operations are can­
celed, and a warning message is displayed to the
user. Windows applications execute in the system
virtual machine, so their outstanding network

VIRTUAL MACHINE I RUNNING A
DOS APPLICATION I

I
I
I
I
I
I
I

I ~ALLBACK ,_
VDNET.386 VIRTUAL DEVICE DRIVER

1088KB

1024KB

640KB

TOP OF
GLOBAL
MEMORY

..
HIGH MEMORY AREA HIGH MEMORY AREA

VIDEO MEMORY I VIDEO MEMORY I
EXPANDED MEMORY PAGE EXPANDED MEMORY PAGE

FRAME I FRAME
ADAPTER MEMORY

I
ADAPTER MEMORY I

AVAILABLE I AVAILABLE

A
I

DOS APPLICATION1 DOS APPLICATION
I
I
I

I ij AVAILABLE HOOK I ' ALLOCATED HOOK I I BUFFER I CONTROL BLOCKS ~ - - CONTROL BLOCK

MAPPING AREA
I
I

OTHER RESIDENT SOFTWARE

DECNET NETWORK PROCESS

DOS OPERATING SYSTEM

Figure 4 Callback Routine

54 Vol. 4 No. 1 Winter 1992 Digital Tecbnical]ournal

Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

operations, if any, are canceled when the user exits
from the Windows system. Network operations by
resident software are not canceled when a virtual
machine terminates.

Debugging Entry Points
The VDNET and VNETBIOS network virtual device
drivers provide debugging entry points for use by
the Windows kernel debugger. These entry points
give a formatted display of the hook control block
for each hooked network call in progress. The
display includes the requested function, buffer
address, the handle of the virtual machine from
which the call was requested, the virtual-machine­
specific address of the caller's argument block, and
flags. The flags included in the debugging display
indicate the state of the operation, as shown in
Table 1.

Spedal AP! Entry Point
The VDNET network virtual device driver provides
an API entry point that allows application software
to determine what version of the VDNET driver is
loaded. This function is available to both protected­
mode and real-mode applications.

Summary
PATHWORKS network virtual device drivers extend
the Microsoft Windows enhanced mode environ­
ment to support most hardware that can be
installed in a personal computer. These drivers
also support all software that can run under the
DOS operating system, including software that
bypasses the operating system to access the hard­
ware directly. Network virtual device drivers make

Table 1 Flags Included in the Debugging Display

Flag Indication

network services available to the Windows kernel,
to Windows and non-Windows applications, and
to other virtual device drivers. The virtual device
drivers included in the PATHWORKS for DOS soft­
ware product permit full use of the DECnet and
NetBIOS APis, including Digital-specific extensions
to the NetBIOS interface, in the Microsoft Windows
enhanced mode environment.

Reference

1. Microsoft Windows Device Development Kit­
Virtual Device Adaptation Guide (Redmond,
WA: Microsoft Corporation, 1990).

General References

Intel 80386 Hardware Reference Manual (Santa
Clara, CA: Intel Corporation, 1987).

Intel 80386 Programmer's Reference Manual (Santa
Clara, CA: Intel Corporation, 1987).

Intel 80386 System Writer's Guide (Santa Clara, CA:
Intel Corporation, 1987).

HF_Wait_For_lRET Cleared when the DECnet Network Process component returns to the virtual
device driver.

HF _Wait_For_POST

HF _Wait_For_Sim_POST

HF_POST_Crit

HF_From_PM

HF _Canceled

HF _Canceling

HF _Suspend_Until_POST

Set if the virtual device driver callback is required; cleared when the virtual
device driver callback is called.

Set if the caller requested callback; cleared when the caller's callback returns.

Set while in a critical section.

Set if the caller was in protected mode.

Set if the operation was canceled.

Set if the operation is being canceled.

Set if the operation is a blocking call that is being simulated using an
asynchronous call. Do not return to caller until the operation is complete.

Dtgttal Technical Journal Vol. 4 No. 1 Winter 1992 55

D ennis G. Giokas
Andrew T. Leskowitz

excursion for Windows:
Integrating Two Windowing Systems

Digital's excursion for Windows display seroer is an application for Microsoft
Windows. The excursion for Windows product is based on the X Wtndow System
and allows X client applications to display output, receive input, and exchange
data in the Microsoft Windows environment. The excursion software visually
integrates the X and Microsoft Windows environments-applications from both
environments display on a single screen and have the same appearance. A key com­
ponent of Network Applications Support (NAS) and Digital's PC integration pro­
gram, the excursion for Windows display server enables information exchange
among PC users and non-PC users linked throughout a network.

The excursion for Windows software is a display
server based on the X Window System version 11,
release 4 protocol and implemented as an appli­
cation for Microsoft Windows software. excursion
allows Xll client applications based on any Xll

toolkit to display output and receive input in the
Microsoft Windows environment. The two window
environments are seamlessly integrated. Microsoft
Windows software provides the window manage­
ment for x Window System applications. The
excursion display server smoothly handles the dis­
play and user input for the X applications along
with data exchange between the applications.

This paper first establishes the relationship of the
excursion display server to the x Window System
and Microsoft Windows environments. It then pre­
sents the personal computing integration philoso­
phy behind the development of the excursion
product. This paper then relates the design philoso­
phy and implementation architecture of the server.
It concludes with a discussion of resource usage.

Overview
The DECWindows architecture integrates the user
and graphical interfaces of the VMS, ULTRIX, and
DOS operating system and desktop environments.
The x Window System client-server architecture,
on which the DECWindows system is based,
provides the means to achieve this integration.
The X architecture, as implemented by Digital's
DECwindows Motif program, is shown in Figures 1

56

and 2. This architecture is hardware and software
system independent. It allows x applications, or
clients, to execute on any processor and display on
any device in a distributed network.

x applications are linked with toolkits and
libraries that include windowing controls, user inter­
face objects, and graphics capabilities. The x tool­
kits also include interprocess communications
capabilities that provide data interchange between
the application clients. Figure 2 presents some of
the libraries in the DECWindows environment.

These applications communicate with an x Win­
dow System display server over a network through
the x protocol. The x protocol is independent of

NETWORK

VMS
HOST

]

ULTRIX
HOST

Figure 1 X Applications Running on Remote
Nodes and Displayed on a PC

Vol. 4 No. 1 Winter 1992 Digital TechntcalJournal

excursion for Windows: Integrating Two Windowing Systems

APPLICATION

OTHER
GRAPHICS AND
TOOLKIT LIBRARIES

XLIB

EXTENSION
LIBRARIES
• PEX CLIENT
• POSTSCRIPT
•IMAGING

TRANSPORT MECHANISM

~ X11 PROTOCOL

TRANSPORT MECHANISM

I
EXTENSIONS

X SERVER KERNEL • PEX
• POSTSCRIPT SERVER
• IMAGING

Figure 2 X Client-Server Architecture

operating system, network transport, and network
wiring technology and topology. The display server
provides basic windowing, graphics rendering, and
user input services for X applications.

eXcursion Implementation
The excursion application implements the x Win­
dow System display server on Microsoft Windows.
The excursion software allows the windows of the
x applications, running on a remote host, to dis­
play on a personal computer. The two environ­
ments are visually integrated-applications from
both environments display on a single screen and
have the same visual appearance. The two environ­
ments use the same mechanisms to manage win­
dows and thus present a consistent user interface.
In addition, excursion uses metaphors and mecha­
nisms familiar to the user of Windows. A control
panel is employed to handle configuration and
customization of the excursion application. The
Windows Program Manager is employed to trans­
parently invoke applications on remote hosts.

Figure 3 shows the excursion control panel, the
Windows calendar, and the DECWindows Motif cal­
endar as viewed on a desktop device. The Windows
Program Manager is also displayed to show the
excursion program group with icons installed.
Users can simply double click the icons in the pro­
gram group to start applications on a remote host.

Digital TecbnicalJour11al Vol. 4 No. 1 Winter 1992

excursion-A Component of PC
Integration
One of the goals of Digital's PC integration program
is to integrate PCs throughout a network so they
may share resources. In a local area network (IAN)
or a wide area network (WAN), PCs share files and
printers through a file server. Traditionally, Digital
has provided terminal emulation software for
interaction with a time-sharing system on the net­
work. The X Window System distributes another
resource load throughout the network, namely
application services. X applications can be run on a
special-purpose host, such as a CRAY system, or on
a general-purpose host such as a VAX system. The
applications share the CPU, memory, disk, and print
resources of that host. Thus, the optimal or appro­
priate device can provide the application services.
The excursion product is an x display server
through which the PC user can access the x Win­
dow System class of application.

Because it enables information exchange among
PC users and non-PC users throughout a network,
the excursion software is a key component of
Digital's Network Applications Support (NAS) and
Digital's PC integration program in the Personal
Computing Systems Group.

Design Philosophy
As in any software development project, a number
of very important design goals and decisions were
established for the excursion for Windows product
which affected the implementation. The excursion
application had to be extremely compatible with
the Microsoft Windows environment. There were
important reasons for this decision.

First, it was critical that excursion run on any PC,
with any combination of devices that the standard
Microsoft Windows environment supports. Typi­
cally, the manufacturer that builds the hardware is
responsible for writing the Windows-compatible
drivers. The devices that most affect excursion are
keyboard, pointing device, and display.

Second, a tremendous amount of development
effort has been invested in the functionality and
performance of the Windows product. We wanted
to apply that functionality and not duplicate it in
the x server. For example, Windows software has a
bit block transfer (BitBlt) routine that can more
effectively handle that operation than excursion.
It is one of the operations that Microsoft has opti­
mized. In addition, it is one of the operations that

57

PATHWORKS: PC Integrat ion Software

.Settin gs l',pplication):jelp

5 @: At1 i ~
~ Message Log Fonts Access - t) m IL

Keyboard Mouse Po.ssword Session

netr1·01f .. c1 ,,1t Transmit • Receive •

file _Qptions Y,'indow):jelp

Q

:x
excursion

41
Release Notes

~
ULTRC><Moil

mm
Accessories

eXcurslon

" ~ ~
Setup VMS Pe.int ULTRIX Cole

(9 ii • Sun Clock UL TRIX Calendar Sun Mo.iltool

~ ~
DGl!a
llllllll
lllliltl

ULTRIX Pe.int UL TRD< Notepad UL TRIX Puzzle

Fo'5'5l
~

Windows Applications

_1_1:00 _! ---
30 :

12:00 :
----------·---------------·----·----·---------·----·---------·--------------·----· 1

2:21pmj

10:00 Meeting with Joe
11:00
12:00 PM
1:00
2:00
3:00
4:00
5:00
6:00

Figure 3 Windows Display with excursion

can be customized and optimized for the PC's graph­
ics adap ter. If the graphics adapter can handle
BitBlt operations with built-in hardware, it is more
likely that the operation can be performed faster
with that hardware than with the CPU. Therefore,
excursion is completely insulated from the hard­
ware and benefits from functions that have been
optimized for specialized hardware.

The third reason for developing excursion as a
well-behaved Windows application is indepen­
dence from the internals of the underlying window­
ing system. We might have been able to do a slightly
better job of integration of the Microsoft Windows
and X Window System environments if we had
obtained a source code license from Microsoft and
truly blended the two environments into one. How­
ever, the cost, development resources, and time
needed to implement this type of integration were
prohibitive.

Fourth, the excursion application had to share
the PC system resources of display, pointing device
(mouse), keyboard, sound subsystem, memory, and

58

network with another windowing system and its
applications. The first five resources were all owned
and managed by Microsoft Windows. We had to use
its application programming interfaces (APis) to
correctly share those resources. The network
resource was shared among many networked appli­
cations through its APis as well.

Use of Windows Resources
A substantial portion of the design debate centered
on the way excursion would use the Microsoft
Windows resources. We needed to determine how
to map the windows, graphics contexts, fonts, and
color maps of the X environment to the windows,
device contexts, fonts, and color maps of the
Microsoft Windows environment.

The major dilemma was: Should each X window
be created as a Microsoft Windows window and
thus be known to both environments? Or should
only the top-level X windows-those which were
parented by the Windows desktop or root win­
dow-be created as windows in the Microsoft

Vol. 4 No. 1 Winter 1992 Digital Tecbnicaljour,ial

excursion for Windows: Integrating Two Windowing Systems

Windows environment, with all other windows
created strictly as X windows and known only to
excursion?

The first proposal was certainly easy to imple­
ment and it led to consistency throughout the
X server. The Windows environment had an API
rich enough to make this plan feasible. In addition,
Windows would handle all the window stacking
and clipping for excursion fairly transparently.
Despite these reasons, the alternative plan was
proven more workable during our prototyping
phase.

The X Window System was designed to employ
many windows since they are considered to be
inexpensive resources.1 Servers use little memory
for each window. x windows are fast to create,
map, unmap, and destroy; and they can navigate
quickly through the window tree. Thus, X-based
toolkits, such as Motif, employ many windows.
When we tested our initial proposal, we discovered
that both windowing systems maintained window
trees, which resulted in a performance problem.
For example, when certain operations such as
graphics were performed, some of the clipping
was done twice, once by excursion and once
by Microsoft Windows. In addition, Microsoft
Windows limited the number of windows that
could be created, by the 64 kilobyte (KB) memory it
reserved for these and other system resources.

Functionally, the x Window System graphics con­
texts (GCs) mapped fairly well to the Microsoft
Windows device contexts (DCs). However, the way
X applications employ GCs is significantly differ­
ent from the way Microsoft Windows employs Des.
x applications store many GCs; each is set up
uniquely with different values for the drawing state
variables. Sometimes many GCs are used for one
window and often a different GC is used for each
window. The use of many GCs can significantly
reduce the communication between the X server
and application, since graphics state is communi­
cated only once. Microsoft Windows applications
use one DC for all window painting, modifying it as
needed. Some innovative caching algorithms in the
excursion product were used to address this mis­
match in usage style.

Font resources were also efficiently mapped
between the two windowing environments. A
substantial portion of the graphics done by an
application in a windowing environment is text.
Microsoft recognizes this and optimized the text
output routines in Windows. Thus, the optimal

Digital Technical Journal Vol. 4 No. 1 Winter 1992

way of drawing text was through Windows. There­
fore, the X server's font resources were compiled
into Windows-compatible font file resources so
Windows could do all the text drawing. For each
x font resource, we included a second file for the
font and glyph metrics that did not map to the
Windows font file resource. Some of the excursion
font file resources were modified to resolve incon­
sistencies between the two environments and
make excursion compatible with Windows. For
example, unlike X, Windows does not allow text
drawing outside the characters' bounding box.

Color maps are another resource Windows
shares with excursion. Microsoft Windows version
3.0 with standard video graphics array (VGA) hard­
ware (a 640 by 480 resolution device with 16 colors
supported) pre-allocates all 16 colors in the color
table for the Windows environment. For excursion,
this is effectively the X Window System static color
visual, where the color map is read-only. With
enhanced VGA cards that support 256 simultaneous
colors, Windows pre-allocates 20 entries in the
color table. For excursion, the X Window System's
pseudocolor visual can be supported with only
236 entries for allocation in the color table. Again,
it was important that excursion was well behaved
with respect to color-map allocation and use
within the Windows environment.

Petformance Considerations
Performance of the excursion product is a continu­
ing area of concern, investigation, and develop­
ment. Many performance concerns were remedied
by efficient code paths and innovative algorithms;
others need to be addressed by the user in the form
of trade-offs. In this section we discuss some major
architectural differences between Microsoft Win­
dows and the X Window System that leave X perfor­
mance at a disadvantage when it is layered on
another windowing system.

First and foremost, excursion has to translate
x requests into Windows APis as well as translate
Windows events, API return values, and API errors
into x events, x request replies, and X request error
events, respectively. The disadvantage, of course, is
the increased processing time excursion needs to
complete these translation tasks. Since our design
goal was to layer a foreign window system on the
desktop device's native windowing system, we had
to accept this performance penalty.

Second, x employs a client-server model. All
x protocol requests of the X client (X application)

59

PATHWORKS: PC Integration Software

to the X display server have to be encoded into the
X protocol and transmitted to the server through an
interprocess communication mechanism. For the
excursion product, this mechanism is a network
because the client and server are always on differ­
ent systems. Operations in X, e.g., menu sweeping
and resizing of objects, always involve both the
client and the server. These operations in particu­
lar have to be fast because they affect the user's per­
ception of the windowing system's performance.
Thus these code paths had to be efficient.

Third, x has strict pixelization rules. These rules
determine which pixels must be included in the
rendering of a graphics object. In general, all the
interior points of an object are rendered, but only
certain points on the outer boundary of the object
are rendered. If the area of the pixel below and to
the right of the center point is touched, then the
pixel is included; otherwise it is not. 2 Thus, a rect­
angle has its top and left edges included, but not its
right and bottom edges. The pixelization rules for
the x protocol were strictly specified to satisfy the
technical market's graphics requirements, such as
CAD/CAM. If one were to tessellate polygons in the
x environment, one would be guaranteed that each
pixel is included once and only once.

The Microsoft Windows environment was
designed with a business graphics presentation
model. The pixelization rules are not widely known
and may change.

Based on these facts, we chose to adhere to the
x protocol and its pixelization rules. We believed
most users would run office productivity applica­
tions. For these applications, pixelization rules do
not affect the operation or functionality of the
application. In a majority of cases, the user is never
able to see the subtle differences in the rendering
of a graphics object. As part of excursion's cus­
tomization, we allow the user to select the way
graphics are rendered-optimized for performance
or optimized for correctness. This choice is analo­
gous to printing draft (fast) mode for proof copies
or letter-quality, high-resolution mode (high qual­
ity but slow speed) for final copy. The user can
change this parameter at any time in excursion
and force a redraw by the X application, e.g. ,
through an iconify/deiconify procedure, to render
the graphics in the other mode.

Seamless Integration
One of our design goals was the seamless integra­
tion of excursion into the Microsoft Windows

60

environment to the greatest extent possible. Two
important areas to integrate were window manage­
ment and data exchange.

Window Management We believed that Micro­
soft Windows should provide window management.
Top-level windows in the two environments are
peers and should be visually and functionally iden­
tical. With this capability the user does not have to
run a remote window manager or learn and remem­
ber a second user interface.

We wanted the outer frame of the windows in
X to look like the windows in Microsoft Windows.
Furthermore, we wanted Windows to provide all
of the end-user window management functional­
ity-move, resize, iconify, deiconify, stacking, and
focus. The windows for these operations had to con­
tain the same user interface objects found in the
Microsoft Windows environment. We did violate
this design principle in one case. In place of the stan­
dard Microsoft Windows system menu icon in the
upper left corner of the window frame, we placed
an "X" (see Figure 3). This object visually cued the
user that the window represented an X Window
System application running remotely but display­
ing within the Microsoft Windows environment.

On the other hand, X servers are not aware if the
graphics object being rendered is a component of
a scroll bar, command button, radio button, check
box, text entry field, etc. For this reason, excursion
cannot make graphics objects look like and func­
tion as the equivalent objects in the Microsoft
Windows environment. Unfortunately, the user has
to deal with these inconsistencies between the two
windowing environments.

The excursion product had to conform to
the X Consortium's Inter-Client Communications
Conventions Manual (ICCCM) specification for win­
dow management within the Windows environ­
ment. Window properties such as name, icon
name, size, and position on a top-level window
must be recognized by excursion and must be set
using the appropriate Microsoft Windows APis.3

Data Exchange We believed users should be able
to seamlessly exchange text and bit-map data
between the Microsoft Windows and X Window
System environments. For example, the user should
be able to use the standard application mechan­
isms to select data and cut or copy it from one
environment, move to an application in the other
environment, and use the standard application

Vol. 4 No. 1 Winter 1992 Digital Technical journal

excursion for Windows: Integrating Two Windowing Systems

mechanisms to paste the data. No special user inter­
vention between these two operations would be
acceptable.

To enhance the data integration capabilities of
excursion, we did implement a special feature to
capture any part of an x window as bit-map data
and save it in the Microsoft Windows clipboard.
Microsoft Windows applications could then paste
that data.

Cross-cultural Compatibility
excursion functions as any other Microsoft Win­
dows application and conforms to its style guide in
three areas-installation, configuration, and help.

The installation design principles are quite sim­
ple. Installation has to be performed through a
Microsoft Windows application and has to allow
the user to run the initial application without fur­
ther configuration. Only two configuration param­
eters, fonts and keyboard, must be specified by
the user. In addition, a user in the VMS, ULTRIX, or
Sun OpenWindows environment has easy access
to the standard applications of the operating sys­
tem. The installation procedure installs icons that
represent all of the standard DECwindows applica­
tions for the VMS and ULTRIX systems and standard
Sun OpenWindows applications in the Microsoft
Windows Program Manager. A user can invoke the
application on the remote host using the stan­
dard Program Manager mechanisms, such as a dou­
ble click of the program icon with the pointing
device.

We devoted significant engineering resources
to the configuration for excursion. Since the con­
figuration was for a windowing environment, we
decided to use the control panel metaphor that
is common to other windowing environments,
such as the Macintosh and Microsoft Windows.
The excursion control panel (partially shown in

Figure 3), provides access to all the user preference
features and configuration parameters. Another
important design principle was the immediate acti­
vation of configuration parameters or user prefer­
ence features whenever it was technically feasible.
We did not want the user to exit all the x applica­
tions or restart the x server to activate configura­
tion parameters.

The excursion control panel also allows users
to customize their x application environments. The
excursion control panel provides a mechanism to
build an applications menu within the control
panel and install application start-up commands in
the Microsoft Windows Program Manager as icons
for easy invocation of remote applications.

On-line help also conforms to the Windows style
guide. Our design goal was to supply a concise
Quick Start card with all the information a user
needed to determine the prerequisites for install,
install the product, and invoke the first application.
All of the remaining end-user documentation is
available on line. The only other printed documen­
tation is the reference manual.

For install, configuration, and help, human fac­
tors engineers provided usability evaluations, and a
graphics designer assisted in the final design of the
user interface.

X Seroer Internal Architecture
The Xll release 4 MIT sample server implementa­
tion provided the baseline for our development
effort. This architecture is depicted in Figure 4. The
sample server architecture has three distinct layers:
device-independent X (DIX), operating system (OS),
and device-dependent X (DDX). The DIX layer is pri­
marily concerned with high-level decision making.
The OS layer connects the X server to its underlying
network transport. The DDX layer translates a
client's request into a pixel display. To conform to

WINDOWS MESSAGE PROCESSING

X SERVER
APPLICATION

-----------------------,-------- --------
DEVICE-INDEPENDENT X

I
OPERATING SYSTEM I

I

-------------------1
DEVICE-DEPENDENT X

DECNET
WINDOWS USER, GRAPHICS MS-DOS (TOX
DEVICE INTERFACE, AND KERNEL CLIENT)

MS-WINDOWS DEVICE DRIVERS

Figure 4 excursion X Server Internal Architecture

Digital Technical Journal Vol. 4 No. 1 Winter 1992 61

PATHWORKS: PC Integration Software

the Windows application model, our implemen­
tation adds a fourth layer, the Windows message
processing layer.

Device-independent X
The DIX layer consists of modules that provide
high-level server data structure manipulation,
x request vectoring, and server task scheduling.
Every attempt was made during the development
process to change as little as possible in this layer,
and to maintain the firewall between the DIX layer
and the underlying DDX layer. The DIX layer's most
important task is the dispatch loop, the scheduler
for excursion processing of all asynchronous client
requests. Requests fall into three categories:

1. Edits to internal data structures such as the cur­
rent procedure vector for drawing wide, dashed
lines

2. Queries on internal resources such as available
fonts and their metrics

3. Drawing requests such as rendering of text and
lines

The DIX layer maintains the current state of the
window tree and all its comJ-'Onents, as well as the
graphics contexts and all of their associated data.
DIX code dynamically alters the processing paths
chosen for x request completion based on the
current states of these data structures. For exam­
ple, suppose that a GC is being used to draw a series
of single-width, solid lines in a window. Now the
X client wishes to begin drawing with 10-pixel­
wide, tile-filled lines. DIX then reads the client
requests dealing with the GC state changes, and
updates its data to reflect the new drawing condi­
tions for lines. DIX changes the drawing vector and
updates the GC data structure. (Device-specific
drawing operations are performed in the DDX layer.)

Windows Message Processing
The Windows message processing layer is the inter­
face to the user's input devices, the mouse and key­
board. Actions taken by a user result in Windows
messages containing information on the message
type, conditions, and parameters being sent to the
application's Windows message procedure. Here
the data must be modified and translated into some­
thing that an X client can understand, an X event.
Event processing is done by the DIX layer, and the
event data is then shipped to the client by the OS
layer.

62

Operating System
Data transferred on the X wire is arbitrated in
the OS layer. When an X client application makes a
server request, the underlying network code
receives it, packages it, and makes it available to the
OS layer. The excursion product runs layered above
one of two entirely distinct network transports
(either the DECnet or the TCP/IP protocol) and must
provide some mechanism for passing data back and
forth between the real mode of the network inter­
face and the protected mode of a Windows applica­
tion. For this reason, we chose to interface the
server to the network by means of a generic OS
module. Since all server-generated calls are now
network-independent, the server is freed from any
network-specific decisions.

Data conversions from real mode to protected
mode are provided by a group of Windows dynamic
link libraries (DUS). Functions in Dils are called
directly from a Windows application (in this
case, excursion). The DLLs in turn use Windows'
extended memory manager to make DOS protected
mode interface (DPMI) calls to pass the data to the
network stack which runs in real mode. For exam­
ple, assume excursion is running the TCP/IP proto­
col, and the user presses a mouse button in an
excursion window. The data comprising the
x event is assembled, packaged, and presented to
the OS layer for shipment to the remote x client.
The server makes its "send data" call into the
generic OS module. This module makes a call into
a common, shared DLL, and passes the data
unchanged. The generic DLL acts as the network
arbitrator. It knows about the underlying net­
work transport and vendor since it performed
a network installation check at start-up. There­
fore, the generic DLL calls into the vendor-specific
excursion Dll to modify the data, pack it into the
format required by the network stack, and ship it
to the real mode stack.

This implementation strategy requires several
DUS, but it completely shields the server, and more
importantly the user, from the underlying network.
The DLLs are simply copied once into the excursion
execution path and forgotten. There is no need to
reconfigure excursion if the underlying network
changes.

Device-dependent X
All the visually recognizable work takes place in the
DDX layer. DDX translates a client's X request into
pixel manipulation on the screen. The sample

Vol. 4 No. I Winter 1992 Digital Technical Journal

excursion for Windows: Integrating Two Windowing Systems

server implementation that provided our starting
point came with a DDX layer designed for mono­
chrome frame buffer (MFB) devices. We replaced
the MFB device-specific code in the DDX layer with
implementation-specific code for Windows.

Our baseline sample server implementation also
provided a machine-independent DDX mechanism
(MI). The MI modules manipulate the video termi­
nal as a virtual device: video memory is emulated
and all drawing operations take place into this vir­
tual space until the final output renders the bits
onto the screen. The MI manipulates bits and per­
forms logical operations until it achieves a final rep­
resentation of the requested operation. This final
drawing requires two distinct functions: fill spans
and push pixels. The fill spans function renders
drawing output in single scan lines, making
repeated calls to Windows BitBlt. The push pixels
function does much the same thing, but at a more
complex level-it pushes bits through a mask or
filter before they appear on the screen. These
mechanisms are required for proper text rendition
when tile or stippled filled text characters are
requested with unaltered character outlines and
backgrounds. These mechanisms are, by definition,
clumsy and inefficient, but they provide pixel per­
fect renditions. excursion uses these MI functions
when any of the following conditions must be met.

1. Drawings are complex filled areas.

2. Tile and stipples used are not 8 by 8 pixels in
size. (Windows is optimized to handle this one
case, and breaks down easily for all other sizes.)

3. All operations require pixel perfection, such as
display of a CAD application.

Using Windows APis
We designed a set of Windows-specific modules
that filled the hardware-dependent space provided
by MFB. These functions are called by the DIX layer's
request dispatcher through the request vectors set
up in the server's main data structures (screen, win­
dow, GC; see Figure 5 for examples). All x relative
drawing requests are translated here into Windows
operations, and Windows APis are called to satisfy
them.

As described previously, we decided to match
window trees by creating a Windows window for
each top-level X window only. X child windows are
handled as if they are rectangular areas of their
parents, thereby saving room in the finite (64KB
total size) pool of Windows resources available for
other objects. This decision led to a difficult prob­
lem that needed a solution: How do we handle win­
dow clipping?

Window Clipping
Clipping is accomplished in X by maintaining a list,
for each window in the system, of the rectangles
into which drawing is allowed. Clipping in Windows
is accomplished essentially the same way, but
it requires allocation of another resource, a region.
We implemented clipping by adhering to the
X model, letting the server code do as much of the
work as possible.

The DIX code manipulates and maintains a "clip
list" for each X window. When a Windows window
is created and used, Windows expects this clipping
information to reside in the window's DC if some­
thing is to be drawn in the window. To get the X clip
list into the Windows DC, we allocated a small pool

if (gc.lineWidth == 0) {
switch (gc.lineStyle) {
{

}
}

case Solid:

case OnOffDash:

gc.line
break;
gc.line
break;

else
switch (gc.lineStyle) {
{

case Solid:

case OnOffDash:

}

gc.line
break;
gc.line
break;

GPXZerolineSolid;

GPXZerolineDashed;

GPXWidelineSolid;

GPXWidelineDashed;

Figure 5 Modifying Data Structures to Change Drawing Algorithms

Digital Technical Journal Vol. 4 No. 1 Winter 1992 63

PATHWORKS: PC Integr atio n Software

of cached Windows regions. A DC (and X parallel GC)
used for a drawing operation must be validated to
ensure that all components are up-to-date. If the
DC does not have a copy of the clip list, a Windows
region is built from the rectangles in the X clip list
and installed as the clipping region of the DC. When
the drawing takes place, the clip list is installed.
As long as the window is not moved, resized, or
obscured, the region remains unchanged and fur­
ther region validation is unnecessary. When the
number of visible windows exceeds the cache lim­
its, the least recently used DC is "thrown out" of the
cache, and must be revalidated if it is used again.
This mechanism allows smooth, efficient output
to multiple windows without extensive use of
Windows precious region resources.

Windows places a further restriction on resource
usage. In addition to being created, a resource must
be selected into a DC before it can be used.
Deselected, old resources are deleted to save space.
If a request asks for one of the deleted resources, it
must be re-created and selected again. The caching
and updating of DCs in Windows is handled by the
same function that validates and refreshes GCs in X.

When an X request results in a GC change, it may
also result in a DC change. For example, if the line
drawing mode changes from single-pixel-wide,
solid fill to multiple-pixel-wide, tile fill, the GC is
updated with new procedure vectors and data
fields. At the same time, the DC must be updated so
the next line drawing request results in a wide, tile­
filled line. A Windows bit map is created for the
X tile, and it is selected into the DC as the pattern.
Any line then drawn using the DC results in a wide,
tile fill. This method is used to update the DC when­
ever any GC object with a parallel Windows object
is changed. The cache ensures that Windows
objects can be allocated.

Drawing AP/s
The Windows environment contains a rich collec­
tion of APis designed to accomplish many types of
drawing. The excursion application takes full
advantage of these drawing AP!s. Wherever x and
Windows share drawing rules and conditions, the
appropriate Windows API is called quickly to maxi­
mize performance. This mechanism is utilized
when the user selects the "optimized for p erfor­
mance" drawing mode. When the rules between
X and Windows differ, excursion calls the most
appropriate API for the more common variants,
again , to maximize performance. For example,

64

since a wide, solid, horizontal line is rectangular,
excursion calls the Windows FillRect API to draw it.
Only rarely is the MI code path required.

Pixmap Manipulation
The X pixmap presented us with a major challenge.
Since it is a bitwise representation of a visual
object, its bit values must be maintained regardless
of its use. Pixmaps can be used in a variety of ways
by complex X client applications. Pixmaps can hold
off-screen copies of window contents, or they
can hold a pattern for a window background. They
can provide a mask through which a color or pat­
tern can be squeezed to give a stencil-like filling
effect. They can also contain text characters prior
to output.

The real challenge, however, lies in how pixmaps
are manipulated. There are monochrome pixmaps,
color pixmaps, pixmaps presented as an array of
bits one color plane at a time, or packed to present
each color plane for one pixel in succession. For
these myriad forms and presentations we created a
set of pixmap manipulation routines that translate
back and forth between X and Windows. Since
Windows provides a set of APis for manipulating
device-independent bit maps (DIBs) , we stored the
bit map internally in one, generic form regardless
of its X representation. excursion extracts the bits,
modifies them, and sends them to the client when it
requests them in another format. One of the biggest
performance bottlenecks in excursion lies in the
pixmap format conversions which are constantly
taking place under the surface. Since we have
stored all pixmaps in device-independent format,
the performance penalty is low.

Font Compiler
The x and Windows environments include a sec­
tion dedicated to information about the font met­
rics and a section for the character bit maps.
However, their font storage methods are different.
Furthermore, since excursion is a compatible
Windows application, it uses Windows fonts to
draw text.

We designed a font compiler to create Windows­
usable fonts from an X font file input. The font com­
piler takes a bit-map distribution format (.BDF)
(X Window System font files are supplied in this
ASCII readable format) and produces two output
files. One, called the X font file (.XFN), contains the
X metrics readable by the server without having to
load the character bit maps themselves. The other,

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

excursion for Windows: Integrating Two Windowing Systems

a Windows font file (.FON), contains the character
glyphs used by the Windows APis. excursion's
x-specific code uses the .XFN file to match avail­
able fonts with those requested, and to calculate
string sizes, positions, character offsets, ascents,
descents, and anything else related to the location
and position of the characters. The .FON file is
loaded as a Windows resource, selected into a DC
as described above, and used for any drawing oper­
ations since it contains the actual character repre­
sentations. The font compiler can generate custom
fonts; any font compiled with it produces a
Windows font file suitable for use in any other, non­
x, Windows application. For example, any of the
supplied excursion fonts could be used with Word
for Windows.

Handling Input Devices
In the section Seamless Integration, we described
our design strategy for excursion to handle draw­
ing requests from x clients. In this section we dis­
cuss requests from the user.

When a user clicks a mouse button, or moves the
mouse, or types on the keyboard, Windows gener­
ates messages which are shipped to excursion's
Window message processing function. Interrupt
processing is not needed since Windows shields
excursion from the underlying hardware. In fact,
excursion has generic input handlers that work
with any hardware configuration supported by
Windows.

The message processor translates the data into
a format understood by X, then packages and trans­
mits it over the x wire as an x event. Since these
user-initiated actions are asynchronous events,
excursion calls the Windows PeekMessage() func­
tion when it has finished processing an X request,
or when it is in the idle loop.

Windows and x share the same coordinate
mapping conventions. When excursion receives
a mouse move message, it does not perform trans­
lations on the x and y coordinates; it merely
reports in which window the pointer resides.
Furthermore, when excursion creates a window in
Windows, it stores the corresponding X win­
dow's handle in the extra data area of the Windows
window structure. It can retrieve the handle of a
matching X window at any time with the Windows
API GetWindowLong(). Since excursion always
matches a Windows window to a top-level X win­
dow, the combination of the top-level window
handle and the x and y coordinates of the pointer

Digital Technical Journal Vol. 4 No. 1 Winter 1992

allows excursion to scan the x window tree and
determine which child window holds the pointer.

When a user presses a mouse button, the same
kind of activity is used to determine which window
contains the pointer. The x event data structure is
filled in and shipped to the client for further action.

When a user presses a key on the keyboard,
much the same processing takes place. Windows
sends excursion all the information needed to
build an event data structure containing the key
state, the scan code of the key, and the key modifier
state (whether Alt, Ctrl, or Shift is depressed).
excursion then packages and ships the data struc­
ture to the client application.

excursion loads a keysym file at start-up. The file
contains the keyboard mapping of hardware scan
codes to keysym definitions for the user's keyboard.
It permits custom configuration for a user's key­
board. The keysym compiler in excursion takes an
ASCII text, keyboard mapping file as its input, and
produces a binary keysym file as its output. As long
as the user follows the layout of the input ASCII file,
any key can be remapped in any way desired.

Manipulating Application Windows
As stated previously, excursion uses the Microsoft
Windows window manager to manage and manipu­
late windows. Whenever the user moves, resizes,
iconifies, maximizes, or closes a window, either by
the Windows system menu or the mouse, Windows
sends the excursion window procedure a message
with specific parameters. For example, a message
sent when a window is resized contains the old and
new sizes and origins of the window. excursion
translates every Windows input message into an
x event and sends it to the x client.

Individual messages from Windows generally
correspond to X event types that provide data
to clients. However, complications arise when
Windows generates multiple messages for a single
action. For example, when a user presses a button
to select an item from a menu, a new window is cre­
ated, mapped, sized, placed on the screen, acti­
vated, and given the input focus-all as a result of
the single user action. Windows messages are gen­
erated for each of these operations, yet the user has
provided no further action.

To handle this extremely complex web, we
benefited from our initial design decision to create
only top-level Windows. We eliminated literally
hundreds of Windows messages for each child win­
dow, simply by not creating them. Messages are

65

PATHWORKS: PC Integratio n Software

sent only to the top-level window, and excursion
can quickly determine which child (if any) needs
attention. On the other hand, we had to observe
and study window stacking, configuration, repar­
enting, activation, and window focus before we
arrived at the final implementation. Only through
extensive prototyping and empirical testing were
we able to eliminate poor design choices and arrive
at the best ones. As a result, every possible window
manipulation action, whether initiated by the user
or directed by a client, requires a translation from
Windows to x and a careful selection of Windows
function calls to keep the delicate balance between
X and Windows.

Cutting and Pasting Data
To cut and paste data between x and Windows
applications, we merged the Windows clipboard
mechanism with the X selection mechanism by
incorporating the cut/paste "pseudo-client" into
excursion. This module watches for data cut­
and-paste requests from x clients, as well as those
from any Windows applications running on the PC.
When it notices an X client gaining control of a
selection, it asks the controlling client for the
selected data, which it then puts into the Windows
clipboard. The data thus becomes available to any
Windows application with access to the clipboard.
When a Windows application cuts or copies data
into the Windows clipboard, the pseudo-client is
notified, at which point it informs all x clients that
it now owns the clipboard selection. X clients can
then request the data from the pseudo-client by
selecting paste from their edit menus.

Accessing Remote Applications
The user initiates remote X client applications
through an application launching mechanism that
provides several starting options.

1. Selection of an application from the excursion
control panel's application pull-down menu

2. Selection from a dialog box of defined appli­
cations

3. Selection of the "Start x Application" dialog box

4. Double clicking on an icon installed for the appli­
cation in the Windows Program Manager

The most interesting option, double clicking on
an installed icon in the Windows Program Manager,
allows the user to start up an x application without
any knowledge of the current state of excursion.
The double click activates XREMOTE.EXE, the

66

remote application launcher. XREMOTE sends
out a Windows message, with an identification
known only to excursion. If excursion responds,
XREMOTE passes it the command line for appli­
cation start-up. If excursion does not respond
within a short timeout period, XREMOTE issues
a WinExec call, requesting start-up of excursion
itself. Windows starts up excursion, passing it the
command line string for the selected application
start-up sequence. XREMOTE then terminates until
the next start-up request.

Obviously, security is a major concern for any
system that requires and handles account pass­
words; excursion application activation is no
exception. Users log into their accounts by activat­
ing an x application such as DECterm. Two distinct
passwords are required: (1) the excursion global,
session password and (2) individual, application
account password.

The excursion session password is optionally
selected and set by the user from a control panel
dialog box. It is stored as an encrypted string in the
initialization file, and is used as the decryption key
for the individual application account passwords,
also stored in the initialization file. This design pre­
vents an unauthorized person from using some­
one's .INI file to obtain access to an account. The
user is prompted for the session password w hen
excursion starts up. If an incorrect value is entered,
the server terminates and application activation is
impossible. A further level of security is provided
by the "Prompt for Password" option, which the
user can select for any application start-up.

Summary
The excursion for Windows display server seam­
lessly integrates the Microsoft Windows and
x Window System environments. It provides a
desktop integration tool that allows the user to dis­
play and interact with applications designed for
both windowing systems at the same time. Data
can be exchanged between them and desktop
resources shared. A user is no longer required to
work with two incompatible desktop devices in
order to complete work assignments.

Acknowledgments
The authors would like to thank everyone who
worked on the product during its development. In
particular we would like to thank the other full- or
part-time members of the software development
team: Ray Shapiro, John Freitas, Mike Pfeffer, Lee
Karge, Alice Chen, Mary Vanleeuwen, and Andy

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

excursion for Windows: Integrating Two Windowing Systems

Nourse. Two other members of the PC DECwindows
Group who work on the DOS-based X server, John
Wasser and Jim Peterson, provided some valuable
assistance. We are also indebted to the following for
their support and contributions: Emilie Schmidt,
Camel Hoover, Kathy Maxham, Andre Fontaine,
Alice Chen, and Tracey Wernett. This great group
of people made this project a joy to work on and a
success.

References

I. R. Scheifler,]. Gettys, and R. Newman, X Win­
dow System C Library and Protocol Reference
(Bedford, MA: Digital Press, 1988): xvii.

2. R. Scheifler, X Window System Protocol (Cam­
bridge: MIT Laboratory for Computer Science,
1989): 37.

Digital Technical Journal Vol. 4 No. 1 Winter 1992

3. D. Rosenthal, Inter-Client Communication Con­
ventions Manual (Cambridge: MIT Laboratory
for Computer Science, 1989): 18-36.

General References

Digital Technical journal, vol. 2, no. 3 (DECWindows
Program, Summer 1990).

R. Scheifler,]. Gettys, and R. Newman, X Window
System C Library and Protocol Reference (Bedford,
MA: Digital Press, 1988).

Microsoft Windows Software Development Kit
Reference, vols. 1 and 2 (Redmond, WA: Microsoft
Corporation, 1990).

Microsoft Windows Software Development Kit
Guide to Programming (Redmond, WA: Microsoft
Corporation, 1990).

67

Christopher E. Methot I

Capacity Modeling of
PATHWORKS Qient-Server
Workloads

PATHWORKS network operating system software runs on the remote server com­
puter that accesses files on behalf of clients connected to a network. The PATHWORKS

file server provides clients with centralized backup, printing, and security. Popular
desktop applications can be used in a manner that consumes large or small
amounts of server resources. Capacity planning seeks to determine which network
filing system is appropriate to current workloads and to predict capacity needs as
the PATHWORKS client-server environment changes. The desktop industry lacks
standardized performance tests. Digital bas developed a general process that
can be applied to any workload, including those in which the number of users caus­
ing the server process's resource consumption are unknown to a data collector.
DECperformance Solution software was the primary tool used in the modeling
process. Its analytical queuing model was used to predict performance and help
de.fine con.figuration alternatives.

The PATHWORKS network operating system soft­
ware provides remote file service to desktop com­
puting devices across a local area network (LAN).

Integration of personal computers (PCs) on a net­
work allows users to share applications, files, and
printers. Most applications available on the desktop
can be used in a manner that consumes widely vary­
ing amounts of that single-point resource known as
the file server.

Some of this variation is due to the intentional
part-time nature of the server's resource utiliza­
tion, and some is caused by innocent changes in
the user community's work techniques. Since desk­
top applications are used by novices and experts
alike, small changes in the levels of skill, experi­
ence, and thus technique can significantly affect the
performance of the server.

Capacity planning is a method of estimating
the changing hardware needs for a computer sys­
tem due to changes in workload. It can also be
used to explore "what-if" alternatives for existing
workloads.

Changes in user work habits such as running
macros can increase a server computer's response
time by as much as an order of magnitude. In addi-

68

tion, simplistic rules of estimating the consump­
tion of server resources, such as number of users
per VUP (VAX-llnBO unit of performance), can be
very misleading. The use of applications in ways
that increase individual productivity can slow
server response time for the user community.
These issues should be considered when selecting
a file server system. Because the number of active
users is often unknown in client-server environ­
ments and the user application technique may vary,
capacity planning uses a model of the actual work­
load to predict server performance and help define
configuration alternatives.

This paper describes a queuing analytical model
that was used to gain knowledge about resource
consumption on the PATHWORKS server computer.
The paper discusses the special modeling process
required for the client-server environment. It
describes data capture and workload classification
using DECperformance Solution software. Finally,
the paper presents the results of a performance
analysis of a PATHWORKS server with response-time
constraints.

Some of the terms found in this paper have spe­
cific definitions. Many of the "correct" terms for

Vol. 4 No. I Winter 1992 Digital 1echntcal Journal

Capacity Modeling of PATHWORKS Client-Server Workloads

network file serving are not the terms used by users
of these systems. Network file serving has acquired
the name "networked." Server computers are often
referred to as "the network," and getting access to
one's files on the server is usually called logging
into "the network." In this paper, we refer to
MS-DOS-based PCs and Macintosh computers gener­
ically as desktop computing devices. In addition,
the word "workload" refers to the cause of the
resource consumption, which is the combination
of client application and user technique within that
application. The term "workload class" has a spe­
cific definition in DECperformance Solution soft­
ware. It refers to a group of VMS processes that
the modeler wants to manipulate differently from
other processes.

Defining the Question
PC users on an integrated PATHWORKS network
need to determine which server computer system
is appropriate to their workloads today, and which
will be appropriate as their numbers increase in
the future. The system they choose must deliver
sufficient performance today and allow a method to
plan for expanded needs in the future. Users of desk­
top computing devices, which are not networked,
can benefit from a series of anecdotal model case
studies which describe other workloads and the file
servers which were recommended. This paper
gives the results of our efforts to gain insight into
the reasons for and symptoms of server resource
exhaustion (bottlenecks) on PATHWORKS file server
systems.

Analytical Models
PATHWORKS software takes advantage of the
expanded computational power of the client­
server architecture, which requires special model­
ing techniques. Two of Digital's analytical modeling
tools can be used in our capacity modeling process,
however, DECperformance Solution was the pri­
mary tool. The model was used to answer questions
about the need to enhance file server computer
resource requirements as a result of changes in
hardware or workload.

Performance models can answer at least two
questions. 1 First, "How is performance affected
if we change either the number of users or the
amount of hardware?" Second, "How can we main­
tain performance if we add users doing the same
kinds of tasks?" Of the two, the second question

Digital Tech11ica/Jour11al Vol. 4 No. I Winter 1992

is the one we seek to answer when we model
PATHWORKS client-server workloads.

Data Collection
Data can be collected with the VAX Performance
Advisor (VPA) version 2.1 or the DECperformance
Solution version 1.0 or later. DECperformance
Solution software is an integrated product set that
provides performance and capacity management
capabilities for computing systems. This layered
software product runs on the VAX VMS operating
system and uses a queuing analytical model to
answer questions. This process requires collection
of two kinds of information.

1. A detailed record of the cause of resource con­
sumption, including which process is causing
each disk or CPU activity. Processes should be
combined into like groups, called workload
classes, which may be manipulated indepen­
dently. For example, some workload classes may
be reduced or eliminated and some may be
increased.

2. As detailed a record as possible of the effect of
resource consumption, including the effect on
multiple remote clients. Changes in perfor­
mance are typically measured by the elapsed
time from the carriage return to the return of the
prompt. In the case of a timeshare user, this is a
closed loop since almost the entire process is
visible to the data collector.

In a PATHWORKS environment, such data capture
is not possible. A data collection device running on
the server computer cannot determine the number
of users for whom the PATHWORKS server process is
consuming resources. Furthermore, the collector
cannot detect the response time seen by the users
of the desktop devices.

We have developed a general process that can
be applied to all client-server workloads. These
include applications such as vrx or VAX Notes, in
which the number of users initiating the server
process' resource consumption are unknown to a

· data collector.
Figure 1 illustrates a simplified closed queuing

model of a PATHWORKS transaction. The user initi­
ates the transaction through a keyboard or pointing
device. The application running on the desktop
computer performs the initial local processing and
issues a call to the server requesting 1/0. The server
performs some remote computing, and the 1/0

69

PATHWORKS: PC Integration Software

request is satisfied when the server transmits
either the data or acknowledgment that the data
has been written. This travels back to the user's
desktop device and some further computing leads
to a graphic indication to the user to proceed to the
next step.

If these three sequential queues-client, network,
and server computer- were equal in response time,
the server would have only a one in three influence
on the responsiveness the desktop user sees. Of
course in reality the three queues are never equal,
and the two local queues are highly dependent on
the local desktop computer's capabilities. Each
queue can have a request backlog if the service time
is not faster than the arrival rate. The response time
of any queue is the queue wait time plus the actual
time to be serviced. The total response time of the
workload class, as modeled on the server, is the ana­
lytic sum of all its queues' response times.

In reality, the analytical model of the PATI-IWORKS

environment is more complex than the one
shown in Figure 1 and involves disk, memory, and
CPU queues. The response time calculated for a
PATI-IWORKS server computer workload class is the
calculated sum of the response times of all server
process queues for that workload class. As stated
earlier, this is only an indicator of a desktop user
response time.

Cause and Effect
A data collector, running on the server computer is
not aware of the response time perceived by the
user at the desktop device , nor can the server's data
collector process know how many users are gener­
ating the current workload. Server response time is
a subset of the response time as seen at the desktop;

RETURN
KEY

DESKTOP
COMPUTER

CLIENT NETWORK SERVER

Figure 1 Simple PATHWORKS Queuing Model

70

and if the server's response time improves, the
user's will improve as well, as shown in Figure 1.

A model that is built from a data collector which
has only a partial definition of the whole loop (i.e.,
the server computer portion as shown in Figure 1)
is called an open model. 2 The models described in
this paper are open models. Since the most likely
bottleneck is the shared resource known as the
server, this is a useful way to model client-server
workloads.

Uniform Service Level
Model analysis of a PATHWORKS client-server com­
puter workload cannot predict the increase or
decrease in response time seen by the user. A
model can determine the effect of any change in
hardware configuration or arrival rate (number of
users). Capacity planners can use this method to
add more users by incrementing arrival rates. Then
hardware can be upgraded until an equal or faster
server response time is reached. This method can
be used to increase the number of users at the same
performance or split users into smaller groups
with the same or better performance. 1

Not all desktop transactions require server inter­
vention. In fact, the success of the client-server
architecture depends on infrequent access to
servers. Obviously, file servers are required when
a file is saved. However, many applications per­
form disk 1/0 without any obvious or explicit user
action. For example, WordPerfect software pro­
vides a temporary file that is a type of journal file.
Periodically, the application updates this file with
data stored in memory. When a user's input reaches
a predefined buffer limit, the next keystroke causes
the file to be written. The capabilities of this appli­
cation, and many others, must be considered when
planning the capacity of a PATHWORKS file server
installation. In this example , the load per client on
the server can be significantly reduced by placing
the temporary file on a local hard disk.

Performance of a file server computer can also
be affected when expert users employ macro tech­
niques or when users generate automated output.
Macros read each instruction from the macro file
one record at a time, thereby continuously doing
1/0. Most expert users provide a save as the last
instruction in the macro, which allows them to be
absent when the work is being accomplished and
then saved. This increases server 1/0 as well. Most
desktop applications permit automated output.
For example, some allow form letter generation;

Vol. 4 No. 1 Winter 1992 Digital Tecb,llcalJournal

Capacity Modeling of PATHWORKS Client-Server Workloads

some computer-aided design (CAD) applications
provide Bills of Materials. This capability also
increases server 1/0.

The use of either macro techniques or automated
output can impact server computer utilization.
A server that was intended to be a part-time file
server can become a full-time 1/0 device which can
rapidly exceed its capacity.

To illustrate how a small change in environment
can affect file server performance, we employed
a Markov model, using a SHARPE queuing model of
a server environment. Figures 2 and 3 show the
results. We asked the question "Ifwe had 120 users
each randomly filing once an hour and each file
action took 5 seconds, how often would a user
wait for another user to complete a file trans­
action?" We discovered that only 14 percent of the
time another transaction would be running in the
server process. Then we asked, "What would hap­
pen if 5 of the 120 users started running a macro
and this macro did 1/0 for 5 minutes at random
intervals within the hour?" The remaining 115 users
continued working as before. In this case the possi­
bility increased to 28 percent that a job request
would be on the queue, 24 percent that two job
requests were waiting, and 20 percent that three
job requests were present.

In the same study, less than 5 percent of the
users changed the way they were working. None of
the applications was changed. Almost any PC or
Macintosh application can reasonably be used in
this way. As the smaller group of users became more
productive, the other 95 percent experienced a sig­
nificant delay in response time. The system capac­
ity must be sized to allow for a situation in which
user activity lessens overall response time.

Modeling Process
The modeling process we describe in this paper
was developed over a two-year period. Before dis-

IDLE

THREE JOB
~==::=~,.. --- REQUESTS

TWO JOB
REQUESTS

ONE JOB
REQUEST

Figure 2 Low Use with Infrequent Saves

Dtgttal TechntcalJournal Vol. 4 No. I Winter 1992

ONE JOB
REQUEST

TWO JOB
REQUESTS

IDLE

THREE JOB
REQUESTS

Figure 3 High Use with Few Macros Running

cussing the modeling procedures, we list the bene­
fits and limitations of the process.

Benefits
• Determinations can be made as to the numbers

of PATHWORKS and new workload class users
required to maintain the same performance.

• Single-function server computer models, with
only PATHWORKS workload classes, can have non­
PATHWORKS workload classes added for a more
complex environment.

• The server can be upgraded to maintain the per­
formance level of growing user communities.

• Larger user communities can be divided between
two standalone servers to maintain an acceptable
level of performance.

• Stable user communities can be reduced to pro­
vide equal levels of performance with two
smaller servers.

• Hardware trade-offs can be explored. For exam­
ple, some users can be moved to another disk.

• Local site management can be made aware of the
magnitude of daily workload variation; under­
standing this variation is also part of the model
process.

Limitations
• The model cannot predict response time changes

at the client, due to changes in server loading.

• Information about the number of users generat­
ing the applied workload must be collected
by methods other than using DECperformance
Solution software. These methods are detailed in
the section Capturing Workloads.

• Although memory can be modeled, the model
cannot anticipate the increased PATHWORKS

71

PATHWORKS: PC Integration Software

read or record management services (RMS) cache
requirements. When adding users to a
PATHWORKS server computer, adequate spare
memory must be allowed to provide the same or
better cache hit rates. The RMS cache hit rates
can be determined, without software tools, by
executing a program at the Digital command
language (DCL) prompt: @SYS$UPDATE:AUTOGEN
SAVPARAMS TESTFILES FEEDBACK, and then read­
ing SYS$SYSTEM:AGEN$PARAMS.REPORT.

• Available modeling tools only allow PATHWORKS
workloads to be modeled onto VAX VMS servers.

• Prior to data collection, the server must be
checked to see if it is tuned for use today and for
the future, or the recommended server system
may be incorrectly sized. 1

Capturing Workloads
DECperformance Solution software requires VAX
Performance Advisor version 2.1 or later collector
files named nodename_date.CPD. In addition, either
a VPA$SCHEDULE.DAT or a PSDC$SCHEDULE.DAT file
is required to define the cluster configuration and
collection schedule. Either a VAX Performance
Advisor version 2.1 or DECperformance Solution
version 1.0 Data Collector, or the DECperformance
Solution Service Delivery Software kit may be used
to collect data. All three require a license and prod­
uct authorization kit.

Enough data must be collected to represent the
range of a typical workload. The sum of the subjec­
tive user opinion of performance must be collected
as well as the tasks the users were performing.
If this data is not collected, the planner may mis­
takenly model equal levels of user dissatisfaction
rather than equal levels of user satisfaction. Sub­
jective performance evaluation is always gathered
by interviewing or monitoring users.

Collections should be made over a series of nor­
mal workdays to avoid gathering misleading data.
We have observed two normal workdays with only
a 5 percent difference in the number of desktop
users logged into the server, yet five times more
server resources were used.

Additional data on user activity that is con­
suming resources must be collected by methods
other than the DECperformance Solution collector.
Both the Macintosh and MS-DOS server products
have interactive DCL software utilities that provide
some information about the condition of the cur­
rent server process. Command procedures can call

72

these utilities with a brief DCL command string.
For example, ADMIN/PC SHOW FILE COUNTERS dis­
plays the current cache misses and request rates,
and ADMIN/PC SHOW FILE SESSIONS shows the
client device ID, client connections, and open files.
The size of the server process cache configuration
can be gathered using the ADMIN/PC SHOW FILE
CHARACTERISTICS command. If analysis is per­
formed offsite, a DCL procedure can gather infor­
mation about volumes and system logical names,
which allows user disk assignments to be defined.
Finally, user authorization resource limits on the
server process can be extracted from the system.
The Macintosh server software has similar com­
mands using the ADMIN/MSA SHOW CONNECTION
command.

When the size of the user community is
unknown, the above data must be used to charac­
terize the number of users being modeled. Specific
customers with large installations or many remote
sites need quantitative user characterization. In all
cases the cause of the observed performance char­
acteristics must be determined at some quantita­
tive level.

The data gathered by using the ADMIN/PC SHOW
FILE COUNTERS and ADMIN/PC SHOW FILE SESSIONS
commands can be invalidated if desktop devices
include automated procedures to attach to file ser­
vices when the desktop device is booted. The sim­
ple act of activating the client power switch should
not count that user as explicitly intending to use
the server computer. On the other hand, explicitly
connecting to file services and being interrupted
for an unexpected event should not exclude that
user from the total active user count. Ultimately, a
combination of the total possible and the total
active connections is needed.

Defining Workload Classes
With the DECperformance Solution data collector,
workload classes are defined prior to starting the
modeling process. They are defined either by speci­
fying the anticipated logical divisions or by deter­
mining them from the observed performance data.
DECperformance Solution software provides many
ways to group processes, e.g., user identification
code (UIC), resource usage, image name.3

The DECwindows interface to the performance
tool DECperformance Solution provides an excel­
lent way to review the data.4 The graphic display of
the server process by day along with the subjective
user characterization can help select the day or

Vol. 4 No. I Winter 1992 Digital Technical Journal

Capacity Modeling of PATHWORKS Client-Server Workloads

days to be modeled. The same method can be used
to determine peak usage hours. Finally, this tech­
nique can help categorize workload classes by
applicable processes. Table I lists the workload
class groupings we used.

Workload families are groups of workload classes
that the data collector can expect to see. The
PW _DOS workload family characterizes a system as
a PATHWORKS file service environment. It includes
PATHWORKS server processes, required system
overhead functions, and processes needed to col­
lect data that are not normally part of the system.
All other processes are automatically placed in a
category called "other." This suits the needs of our
general-case, single-function PATHWORKS server
computer, but any server can be used for tasks
unrelated to the PATHWORKS print and file service.
If the tasks in the default (other) category need to
be subdivided for separate scaling, the workload
class definitions have to be added to a family which
calls each workload class explicitly, as indicated for
the PW _LAD workload class family in Table 1.

For example, consider the question "As groups of
ALL-IN-I system users change to PCs, how many

Table 1 Workload Class Groupings

Workload
Name Image Name Selection Criteria

FILESVS NETBIOS, PCFS_*, PCSA$*

OVERHEAD

ABNORMAL

MAC_FILESVS

LAD

OTHER

Workload
Family

PW_DOS

PW_MAC

PW_BOTH

PW_LAD

PW_THREE

AUDIT _SERVER, NETACP, EVL,
ERRFMT, OPCOM, JOBCTL,
REMACP, CONFIGURE, IPCACP,
TPSERVER, FILESERV, CSP,
SMISERVER

PSDC*, VPA$DC_V5, DECC*, SPM,
MONITOR

ATK*, MSAP*, MSAD*, MSAF*

LAD$KERNEL

(All Else)

Workload Member(s)

FILESVS, OVERHEAD, ABNORMAL

MAC_FILESVS, OVERHEAD,
ABNORMAL

FILESVS, MAC_FILESVS,
OVERHEAD,ABNORMAL

LAD, FILESVS, OVERHEAD,
ABNORMAL

LAD, FILESVS, MAC_FILESVS,
OVERHEAD, ABNORMAL

Digital Tech11icalJour11al Vol. 4 No. I Winter 1992

users can the PATHWORKS server computer sup­
port?" This determination requires defining another
workload class by UIC for the ALL-IN-I system users.
The workload class could be moved by UIC to the
FILESVS workload class. This method assumes the
current collection of FILESVS workload classes
reflects the mix of the remaining ALL-IN-I system
users.

Even before the model building step takes place,
the PSDC$DATABASE logical must be pointing to
the location of the VPA$SCHEDULE.DAT and the
VPA$PARAMS.DAT files. The model building step
generates a model with the workload class group­
ings given in Table 1. The workload class and family
definitions are made using the DCL command
ADVISE PLAN EDIT in the VPA/VME (VAX Performance
Advisor/VAXcluster Modeling Environment) utility
and are written to a file named VPA$PARAMS.DAT.
(If the DECperformance Solution tool is used,
the files are named PSDC$SCHEDULE.DAT and
PSDC$PARAMS.DAT.)

If this logical is defined while using the
DECperformance Solution DECwindows interface
invoked from the session manager, the logical may
not take effect in the DCL session in which the
model is to be built. The command to generate a
model can include the time selected to be represen­
tative and the workload class family definition
name. A report can be generated which describes
the newly built model. The command used is:
ADVISE PLAN BUII.D/CLASS=(USER=PW _DOS)/BEGIN=
9-DEC-I99I: 10:30-/END=9-DEC-I99I: 11 :30/REPORT/
OUTPUT=MYMODEL.RPT MYMODEL.MDL. 3

At this point the model must be validated by typ­
ing ADVISE PLAN REPORT MYMODEL.MDL VALIDATION/
OUTPUT=MYMODEL_ VALID.RPT at the DCL prompt.
All predicted values should be within 10 percent
of the calculated values. 2,3 A CPU validation report
for a collected workload includes data on through­
put, queue length, average service time, average
response time, and percent of utilization. For the
FILESVS workload, the measured utilization was
677 percent as compared to 64.7 percent for the
model. This 3 percent difference is 4.4 percent of
the measured value and thus well within the 10 per­
cent range.

Normalizing the Environment
The next step is to return the system to the normal
environment. Even though data collectors are typi­
cally designed to utilize a small amount of sys­
tem resources, they are not normally part of the

73

PATHWORKS: PC Integration Software

server workload. Grouping abnormal processes
into a workload makes it easier to remove them dur­
ing the DECperformance Solution model process.
Access to the DECperformance Solution model
interface is achieved through the command ADVISE
PLAN MODEL MYMODEL.MDL.3

Recording Response Times
The next step is to solve the model and view the cal­
culated response times for the remaining workload
classes. These are FILESVS, OVERHEAD, OTHER, and
any custom-defined classes. The OTHER workload
class can be used as a defined workload class pro­
vided it contains no unexpected processes that
are using significant resources. The calculated
response times for the remaining workload classes
should be considered maximum times, and model
manipulations should always seek to attain these
numbers or less.

If the intention is to capture the PATHWORKS
workload class for use elsewhere and if the same
system had significant OTHER workload classes,
these classes should be removed (turning the
server computer into a single-function PATHWORKS
server).3 This reduces the response times of the
remaining workload classes and requires increasing
the PATHWORKS workload class until the response
time returns to the observed value. The increase in
throughput is proportional to the increase in
PATHWORKS users accommodated at the same per­
formance, without the competition of the OTHER
workload class.

Model Manipulation
Basically, the response time can be manipulated
(1) by decreasing the usage of a significant resource
(model resource utilization percentages help
locate the bottlenecks) or (2) by increasing the
capacity of that resource.

There are two ways of decreasing the resource uti­
lization. If the resource is single-threaded on the crit­
ical path, as a CPU would be in a non-symmetrical
multiprocessor (SMP) machine, the method is to
reduce the number of users by decrementing their
arrival rate (called throughput or transactions per
second [TPS] in various menus) or by increasing the
speed of the bottlenecked device.

The model allows for workload class manipula­
tion to remove arrival rates of the workload class.
As this is being done, the original arrival rate must
be noted so the same changes can be applied to the
number of users that caused the workload.

74

If the bottleneck is not on a single path, its capac­
ity can be increased by spreading the load across
another similar device. This can be achieved with
multiple disks.

In the ALL-IN-I system case discussed earlier,
100 percent of the workload class from the first
UIC group of ALL-IN-I system users can be removed
from the model.3 If the model is solved at this point,
all the workload class's response times should
diminish. If the FILESVS workload class throughput
is incremented in proportion to the additional
PATHWORKS users and the model is solved again,
the response times of all workload classes increase.

The question is: "Has the removal of the ALL-IN-I
system users decreased critical resource usage
sufficiently that their addition to the PATHWORKS
FILESVS workload class does not increase any of the
remaining workload class's response times beyond
their target?" The answer depends on the per capita
usage of the critical resource of each workload
class. The nature of each workload class may be
different. For example, PATHWORKS workloads do
not scale well over SMP processors. The workload
class being removed may use more CPU time per
user than the PATHWORKS FILESVS workload class.

Findings
We analyzed a large PATHWORKS workload class
from a VAX 6000 model 510 system whose CPU uti­
lization averaged 72 percent. The subjective user
evaluation was that this system was very near
performance capacity limits, and a fair amount of
dissatisfaction was associated with the level of per­
formance. The question was asked "Could this com­
munity be split in half across two VAX 4000 model
300 systems with the same or better performance?"
We immediately agreed this would work, but went
about proving it with a model. After the workload
class was normalized and the response times were
noted, the workload class arrival rate was reduced
by 50 percent and the CPU and disk systems were
changed to the VAX 4000 model 300. The new model
was solved, and the response times were signifi­
cantly worse than with the VAX 6000 model 510 sys­
tem. The workload class was halved again, and the
resulting response time was still slightly over the
target.

This finding was difficult to understand since the
VAX 4000 model 300 system CPU was now down to
36 percent utilized, and only one quarter of the
users remained. The reason for the inadequate
response time was found by studying the queuing

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

Capacity Modeling of PATHWORKS Client-Server Workloads

model. Figure 4 is a simplified model showing two
CPUs and their queues displayed on a time scale.
The first is a slower CPU and the second a faster one.
Since we did not allow the response time (total
queue plus service time) to vary, the queue length
(measured in number of waiting jobs) on the slower
CPU was shorter. The service time of the slower CPU
was larger, in proportion to its queue wait time, and
therefore an interruption by an overhead process
caused significant loss of processing time (response
time) to be available for the critical workload class.5

Therefore, the general rule became: Slower CPUs
will be less utilized at the same workload class
response time. This result has been seen on two dif­
ferent customers' workload classes (one with DOS
and one with Macintosh clients) which were mod­
eled by different engineers using different model­
ing tools.

Another surprising result became evident in the
day-to-day variation at a customer's installation.
The same two workload classes were analyzed
across several days to examine typical workday vari­
ations in workload class resource utilization. Two
normal workdays were selected by the customer.
The most intense hours of these two days were dif­
ferent by a significant factor. On one workday, three
to five times as many users applied the same work­
load class as on the other day, yet all experienced
the same response times. This wide variation is typ­
ical of client-server workloads.

Library of Workload Classes
After we had captured a series of data, we created a
small library of real workloads that represented var­
ious conditions. The actual workloads consist of a

SERVICE TIME I I

--1111 I}--r-- RESPONSE TIME ---.i
~IIIIIIIIIIIIIIID-

SERVICE TIME ___J I.-

Figure 4 Server Queue Comparison on
Different CPUs

D igita l Tecl:mica l Jou. r11 a l Vol. 4 No. 1 Winter 1992

model file that is devoid of user-specific infor­
mation. Other non-PATHWORKS workloads can be
added to these models. Alternatively, the numeric
workload characterization can be added to existing
models. Using the above methodology, the model
can be manipulated to determine what system is
appropriate for this more complex environment.
As additional installations are analyzed, their model
files will be added to the library.

With either the DECperformance or DEC Capacity
Planner modeling tool, the process is the same:
Change the hardware and modify the throughput to
maintain or lower the response times of the model
during iterations. The changes to throughput are
then applied to the original number of users to
determine the acceptable number of users in terms
of server computer capacity.

Although both modeling tools exhibit similar
mapping of the quantitative workload class charac­
terization, we do not know the units of some of the
key metrics used. Therefore, entering a workload
class captured in one model to another model is not
recommended.

Sum mary
The PATHWORKS network operating system soft­
ware provides remote file service to desktop com­
puting devices across a local area network.
Capacity planning of client-server environments
requires the use of special modeling techniques.
DECperformance Solution software provides per­
formance and capacity management capabilities
for computing systems; it uses a queuing analytical
model to answer resource consumption questions.
The modeling process depends on the collection of
enough data to represent the range of a typical
workload. Additional data on user activity that con­
sumes server resources must also be collected.
Analysis of workload models reveals the reasons for
and symptoms of bottlenecks. Capacity planning
depends on the results of these analyses to predict
server response times.

Acknowledgments
I would like to thank Prashant Bhabhalia, who
helped me ensure that the modeling process is
correct, and Dick Dunnington, who checked my
queuing theory. Also, I would like to thank
Frank Caccavale, who helped me understand
the PATHWORKS server architecture. Melur
Raghuraman helped me grope toward the Uniform
Service Level model described here. Karl Friedrich,

75

PATHWORKS: PC Integration Software

Ann Bousquet, and Lindsey Stephens helped me
transition to DECperformance Solution software.
Finally, I would like to thank Pete Stoddard for
applying his technical reviewer skills to this paper.

References

I. Guide to DECcp Methodology (Maynard: Digital
Equipment Corporation, Order No. AA-NA34A-TE,
1989).

2. R. Jain, The Art of Computer Systems Perfor­
mance Analysis (New York: John Wiley & Sons,
1991).

3. DECperformance Solution Capacity Planner
User's Guide (Maynard: Digital Equipment Cor­
poration, Order No. AA-PH6LA-TK, August 1991).

4. DECperformance Solution Performance Advisor
User's Guide (Maynard: Digital Equipment Cor­
poration, Order No. AA-PH6SA-TK, August 1991).

5. F. Hiller and G. Lieberman, Operations Research
(San Francisco: Holden Day, 1967).

76 Vol. 4 No. 1 Winter 1992 Dtgttal Technical Journal

I Further Readings

The Digital Technical Journal
publishes papers that explore
the technological foundations
of Digital's major products. Each
Journal focuses on at least one
product area and presents a
compilation of papers written
by the engineers who developed
the product. The content for
the Journal is selected by the
Journal Advisory Board.
Digital engineers who would
like to contribute a paper
to the Journal should contact
the editor at RDVAX::BI.AKE.

Topics covered in previous issues of the Digital
. Technical Journal are as follows:

Image Processing, Video Terminals,
and Printer Technologies
Vol. 3, No. 4, Fall 1991

Availability in VAXcluster Systems/
Network Performance and Adapters
Vol. 3, No. 3, Summer 1991

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. 1, Winter 1991

VAX 9000 Series
Vol. 2, No. 4, Fall 1990

DECwindows Program
Vol. 2, No. 3, Summer 1990

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990

Compound Document Architecture
Vol. 2, No. 1, Winter 1990

Distributed Systems
Vol. 1, No. 9, June 1989

Storage Technology
Vol. 1, No. 8, February 1989

CVAX-based Systems
Vol. 1, No. 7, August 1988

Software Productivity Tools
Vol. 1, No. 6, February 1988

Digital Technical Journal Vol. 4 No. I Winter 1992

VAXcluster Systems
Vol. 1, No. 5, September 1987

VAX 8800 Family
Vol. 1, No. 4, February 1987

Networking Products
Vol. 1, No. 3, September 1986

MicroVAX II System
Vol. 1, No. 2, March 1986

VAX 8600 Processor
Vol. 1, No. 1, August 1985

Subscriptions to the Digital Technical Journal are
available on a yearly, prepaid basis. The subscrip­
tion rate is $40.00 per year (four issues). Requests
should be sent to Cathy Phillips, Digital Equipment
Corporation, MLOl-3/868, 146 Main Street, Maynard,
MA 01754, U.S.A. Subscriptions must be paid in U.S.

dollars, and checks should be made payable to
Digital Equipment Corporation.

Single copies and past issues of the Digital
Technical Journal can be ordered from Digital
Press at a cost of $16.00 per copy.

Technical Papers by Digital Authors

R. Al-Jarr, "Performance Modeling of Computer
Systems: The Petri Net Approach;' Computer
Measurement Group Conference (December
1991).

S. Angebranndt, R. Drewry, and T. Newman,
"Writing Tailorable Software: The Xll Sample
Server," Software (October 1991).

P. Anick, "Lexicon Assisted Information Retrieval
for the Help-Desk," Eighth IEEE Conference on
Artijidal Intelligence Applications (March 1992).

N. Arora and M. Sharma, "Modeling the Anomalous
Threshold Voltage Behavior of Submicrometer
MOSFETs," IEEE Electron Device Letters (February
1992).

S. Bazydola, "An Experimental Investigation of a
Staggered Array of Heatsinks in the Hydrodynamic
and Thermal Entrance Regions of a Duct;'
/-THERM ///(February 1992).

D. Bhavsar, "An Architecture for Extending the
IEEE Standard 1149.1 Test Access Port to System
Backplanes," IEEE International Test Conference
(October 1991).

77

Further Readings

E. Braginsky, "The X/Open DTP Effort," Fourth
International Workshop on High Performance
Transaction Systems (September 1991).

X. Cao, "An Introduction to Ensemble-Average
Importance Sampling of Markov Chains;'
Proceedings of the Thirtieth IEEE Conference
on Decision and Control (December 1991).

R. Cembrola, "Analytical Chemistry in Support
of Microelectronics Technology," Boston Section
Meeting of the American Chemical Society
(November 1991).

Z. Cvetanovic and E. Freedman, "Efficient
Decomposition and Performance of Parallel
PDE, FFT, Monte Carlo Simulations, Simplex, and
Sparse Solvers," The Journal of Supercomputing,
vol. 5 (1991).

S. Denker, "A Common Sense Approach to Improv­
ing the Design and Management of Electronics
Manufacturing Processes;' International Confer­
ence on Automated Materials Handling (1990).

B. Doyle, R. O'Connor, K. Mistry, and G. Grula,
"Comparison of Trench and LOCOS Isolation for
Hot-Carrier Resistance," IEEE Electron Device
Letters (December 1991).

B. Fishbein, D. Krakauer, and B. Doyle, "Measure­
ment of Very Low Tunneling Current Density in
Si02 Using the Floating-Gate Technique," IEEE
Electron Device Letters (December 1991).

W Harris, H. Smith, and A. Pelillo, "SIMS Test
Structures for Analyses of Semiconductor Product
Wafers;' American Vacuum Society Thirty-eighth
National Symposium (November 1991).

D. Heimann and W Clark, "Process-Related
Reliability-Growth Modeling-How & Why,"
IEEE Reliability and Maintainability Symposium
(January 1992).

S. Heng, H. Pei, and]. Watson, "Closed-Loop Cool­
ing for Computers-Opportunities for the 90s;'
National Electronic Packaging and Production
Conference (June 1991).

S. Knecht, "Integrated Matrix Creep: Application
to Lifetime Prediction of Eutectic PbSn Solder
Joints," Materials Research Society Symposium
Proceedings (November 1990).

L. Lee and B. Mirman, "Bonding Quality and
Bending Stiffness;' International Electronics
Packaging Society Conference (September 1991).

78

M. Lefebvre, "Test Generation: A Boundary Scan
Implementation for Module Interconnect Testing,"
IEEE International Test Conference (December
1991).

R. Jain, "The Art of Computer Systems Performance
Analysis," Computer Measurement Group Confer­
ence (December 1991).

J. McGrath and]. Derosa, "3-D Solid Modeling for IC
Assembly," IEEE Advanced Semiconductor Manu­
facturing Conference Proceedings (October 1991).

J. McPhee, T. O'Toole, and M. Yedvabny, "Cooling
the VAX 9000," Electro/90 Conference Record
(May 1990).

J. McWha and P. Kouklamanis, "A Product Informa­
tion Access System for Verification, Test, Diagnosis
and Repair of Electronic Assemblies," IEEE Inter­
national Test Conference (October 1991).

B. Mirman, "A Way to Avoid Stress Singularities
in Multimaterial Elastic Bodies," Transactions
of Annual Meeting of the American Society of
Mechanical Engineers (December 1991).

T. Moore, "A Workstation Environment for Bound­
ary Scan Interconnect Testing;' IEEE International
Test Conference (October 1991).

C. Pietras, "Cognitive Models of Planning in the
Design of Project Management Systems;' Proceed­
ings of the Human Factors Society Thirty-fifth
Annual Meeting (September 1991).

K. Ramakrishnan, "Dynamics of Congestion Con­
trol and Avoidance of Two-Way Traffic in an OSI
Testbed," ACM Computer Communications Review
(April 1991).

S. Rege, R. Kalkunte, R. Edgar, and A. Russo,
"A High Performance FDDI Adapter for VAX

Systems," Thirty-seventh IEEE Computer Society
International Conference (February 1992).

M. Register, A. Rewari, and M. Swartwout,
"The CANASTA Experience: Key Management and
Technical Decisions in a Hybrid Expert System
Project;' IEEE ACM International Conference
on Developing and Managing Expert System
Programs (September-October 1991).

K. Symonds, M. Bahrami, and P. Skerry, "Functional
Failure Analysis Using Photoemission Microscopy,"
Proceedings of the Seventeenth International
Symposium for Testing and Failure Analysis
(November 1991).

Vol. 4 No. I Winter 1992 Digital Technical Journal

Digital Press

Digital Press is the book publishing group of
Digital Equipment Corporation. The Press is an
international publisher of computer books and
journals on new technologies and products for
users, system and network managers, program­
mers, and other professionals. Proposals and ideas
for books in these and related areas are welcomed.

The following book descriptions represent a
sample of the books available from Digital Press.

BITNET FOR VMS USERS
Michael A. Moore and Ronald M. Sawey, 1992,
softbound, 176 pages, Order No. EY-L464E-DP-EEB
($25.95).

Designed to help people who have never used
a national computer network, this book also
provides an invaluable reference for those already
familiar with accessing BITNET from the VMS
operating system of Digital Equipment Corpora­
tion. This first exclusive coverage of BITNET details
many aspects from electronic mail to searching
remote databases to carrying on RELAY conversa­
tions with people halfway around the world. More
experienced computer users will appreciate the
appendixes which contain more detailed infor­
mation. Specific programs and listings of more
popular mailing lists, digests, and electronic
magazines available will help people get the most
out of BITNET.

FDDI: Fiber Distributed Data Interface
for Local Area Networks
Wendy H. Michael, William J. Cronin, Jr.,
and Karl F. Pieper, 1992, softbound, 180 pages,
Order No. EY-J840E-DP-EEB ($17.95).

Based upon the primer of the same name that
received a 1991 Award for Excellence from the
Society of Technical Communications (STC), this
is the first book devoted to this new standard.
A concise and thorough technical introduction to
the subject, this book covers all aspects of the FDDI
standard from its protocols to its implementation
in real world local area networks. Written and
designed for rapid comprehension, this fully
illustrated text presents FDDI technology and
applications without mention of Digital's FDDI
products. Brief chapter summaries promote
skimming and review, and the extensive glossary
defines key networking, LAN, and FDDI terms.

Digital Technical Journal Vol. 4 No. 1 Winter 1992

DIGITAL AT WORK:
Snapshots from the First Thirty-five Years
Edited by Jamie Parker Pearson, 1992, softbound,
225 pages, Order No. EY-J826E-DP-EEB ($19.95).

Though not a formal history, Digital at Work
tells the story of the first thirty-five years of
Digital Equipment Corporation and illuminates
the origins of its unique culture. First-person
accounts from past and present members of the
Digital community, industry associates, board
members, and friends trace the company's evolu­
tion from the 1950s to the 1990s. Designed for
browsing and selective reading, this book provides
real stories in the words of real people. Photo­
graphs from Digital's archives make the stories
more vivid.

ALL-IN-1: A Technical Odyssey
Tony Redmond, 1992, softbound, 550 pages,
Order No. EY-H952E-DP ($44.95).

I

This extensive treatment of Digital Equipment
Corporation's office automation tool addresses the
needs of system managers, application program­
mers, and technically oriented users who work
with ALL-IN-1. Based on the author's ten years of
experience in developing ALL-IN-1 subsystems and
in customizing its application to specific customer
sites, the presentation extends beyond the product
documentation to explore the deep and distant
corners of the product. The wealth of examples of
actual installation and customization experiences
help communicate how to best use ALL-IN-1 on
VAX, DOS PC, and Apple Macintosh computers.

The Third Edition ofX WINDOW SYSTEM:
The Complete Reference to Xlib, X Protocol,
ICCCM, XI.FD X Version 11, Release 5
Robert W Scheifler and James Gettys, 1992,
softbound, 1000 pages, Order No. EY-J802E-DP-EEB
($49.95).

Written by the designers of the x Window System,
this major revision brings clarity to both new and
retained material and integrates new descriptions
of the features of Version 11, Release 5, into one
convenient-to-use volume. This single volume
is in essence a fully integrated and indexed four­
book reference library of the MIT X Consortium's
standard specifications for the x Window System.
Release 5 adds four major components: device­
independent color support, internationalization
support, new resource manager functions, and

79

Further Readings

scalable fonts. Two appendixes on Bitmap Distri­
bution Format and Compound Text Encoding
extend the usefulness of this volume.

MOTIF PROGRAMMING:
The Essentials ... and More
Marshall Brain, 1992, softbound, 632 pages,
Order No. EY-J816E-DP-EEB ($29.95).

A straightforward and easy-to-understand intro­
duction to Motif application development, this
book will ease you into Motif programming as
smoothly and quickly as possible. It starts with
an introduction to event-driven programming
and proceeds to discuss three concepts essential
to Motif programming: resources, callbacks, and
containers. Advanced topics will expose the reader
to all of the Motif widgets, the capabilities of the
x and Xt layers, the x drawing model, and the
process of application design in Motif.

To receive a copy of our latest catalog or further
information on these or other publications from
Digital Press, please write:

Digital Press
Department EEB
1 Burlington Woods Drive
Burlington, MA 01803-4597

Or, you can order a Digital Press book by calling
DECdirect at 800-DIGITAL (800-344-4825). When
ordering be sure to refer to Catalog Code EEB.

80 Vol. 4 No. 1 Winter 1992 Digital Tee/mica I Journal

-J825E-DP/92 05 02 18.0 DBP/NRO Copyright © Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	An Overview of the PATHWORKS Product Family
	PATHWORKS for VMS File Server
	The Development of an Optimized PATHWORKS Transport Interface
	Design of the PATHWORKS for ULTRIX File Server
	DECnet Transport Architecture
	Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS
	eXcursion for Windows: Integrating Two Windowing Systems
	Capacity Modeling of PATHWORKS Client-Server Workloads
	Further Readings
	Back cover

