
ical Journal
uipment Corporation

Cover Design
The DECchip 21064, the first implementation

of Digital's Alpha AXP computer architecture,

is the world's fastest single-chip microprocessor.

Represented on our cover by tbe AXP logo, the

DECchip takes its place among symbols of other

devices from computing history, incltuting

the vacuum tube, a punch card, sketches of

Babbage's Analytical Engine, a wheel from the

Pascaline, and an abacus.

The cover was designed by Deborah Falck of

Digital's Corporate Human Factors Group with

the help of Kaza Design.

Editorial
Jane C. l.llake, Editor
Helen L. Parrerson, Associate Editor
Kathleen M. Stetson, Associate Editor

Circulation
Catherine M. Phillips, Administrator

Sherry L. Gonzalez

Production
Terri Autieri, Production Editor
AnneS. Karzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald z. Harbert
Richard]. Hollingsworth
Alan G. Nemeth

Jeffrey H. Rudy
Stan Smits
Michael C. Thurk
Gayn B. Winters

The Digital Technical journal is published quarterly by Digital Equipment Corporation,
146 Main Street ML01-3/B68, Maynard, Massachusetts 01754-2571. Subscriptions to the

joumal are $40.00 for four issues and must be prepaid in U.S. funds. University and col­
lege professors and Ph.D. students in the electrical engineering and computer science
f ields receive complimentary subscriptions upon request. Orders, inquiries, and address
changes should be sent to the Digital Technicatjoumal at the published-by addre�s.
Inquiries can also be sent electronically to DTJ@CRL.DEC.COM. Single copies and back
issues are available for $16.00 each f rom Digital Press of Digital Equipment Corporation,
I Burlington Woods Drive, Burlington, MA 01830-4597.

Digital employee� may send subscription orders on the ENET to ROVAX::JOURNAL
or by interoffice mail ro mailstop ML01-3/B68. Orders should include badge number,
sire location code, and address. All employees must advise of changes of address.

Comments on rhe content of any paper are welcomed and may be sent to the editor
at the published-by or network address.

Copyright © 1993 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty
members and are not distributed for commercial advantage. Abstracting with credit
of Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in thejouma/ is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in the journal.

ISSN 0898-901X

Documentation Number EY.J886E-DP

The following are trademarks of Digital Equipment Corporation: ACMS, ALL·IN·l, Alpha
AXP, the AXP logo, AXP, DEC, DEC 3000 AXP, DEC 4000 AXP, DEC 6000 AXP, DEC 7000 AXP,

DEC 10000 AXP, DEC DBMS for Open VMS, DEC Fortran, DEC OSF/ I A.-'(P, DEC Pascal,
DEC RALLY, DEC Rdb for Open VMS, DECchip 21064, DECnet, DECnet for Open VMS A.,'<P,
DEC net for OpenVMS VAX , DECnet/OSI, DECnet-VAX, DECstation, DECstation 5000,

DECwindows, DECWORLD, Digital, the Digital logo, DNA, OpenVMS, OpenVMS AXP,
Open VMS RMS, Open V MS VAX, PDP-II, Q-bus, ThinWire, TURBOchannel, lJLTRlX, VAX ,
VAX-11/780, VAX 4000, VA.,'(6000, VAX 7000, VAX 8700, VA.,'< 8800, VAX 10000, VAX Fortran,
VA.,'(Pascal, VMS, and VMScluster.

CRAY-1 is a registered trademark of Cray Research, Inc.

HP is a registered trademark of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines, Inc.

LSI Logic is a trademark of LSI Logic Corporation

Macintosh is a registered trademark of Apple Computer, Inc.

MIPS is a trademark of MIPS Computer Systems, Inc.

Motorola is a registered trademark of Motorola, Inc.

OSF/1 is a registered trademark of Open Software Foundation, Inc.
PAL is a registered trademark of Advanced Micro Devices, Inc.

SPEC, SPECfp, SPECint, and SPECmark are registered trademarks of the Standard
Performance Evaluation Cooperative.

SPICE is a trademark of the University of California at Berkeley

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Windows and Windows NT are trademarks of Microsoft Corporation.

Book production was done by Q uantic Communications, Inc.

I Contents
17 Foreword

Robert M. Supnik

19 Al.pha AXP Architecture
Richard L. Sites

Alpha AXP Architecture and Systems

35 A 200-MHz 64-bit Dual-issue CMOS Microprocessor
Daniel W. Dobberpuhl, Richard T. Witek, Randy Allmon, Robert Anglin,
David Bertucci, Sharon Britton, Linda Chao, Robert A. Conrad, Daniel E. Dever,
Bruce Gieseke, Soha M.N. Hassoun, Gregory W. Hoeppner, Kathryn Kuchler,
Maureen Ladd, Burton M. Leary, Liam Madden, Edward). Mclellan, Derrick R. Meyer,
James Montanaro, Donald A. Priore, Vidya Rajagopalan, Sridhar Samudrala,
and Sribalan Santhanam

51 The Al.pha Demonstration Unit: A High-performance
Multiprocessor for Software and Chip Development
Charles P. Thacker, David G. Conroy, and Lawrence C. Stewart

66 The Design of the DEC 3000 AXP Systems, Two High-p erformance Workstations
Todd A. Dutton, Daniel Eiref, Hugh R. Kurth, James). Reisert, and Robin L. Stewart

82 Design and Performance of the DEC 4000 AXP Departmental
Server Computing Systems
Barry A. Maskas, Stephen F. Shirron, and Nicholas A. Warchol

100 Technical Description of the DEC 7000 and DEC 10000 AXP Family
Brian R. Allison and Catharine van Ingen

111 Porting OpenVMSfrom VAX to Al.pha AXP
Nancy P. Kronenberg, Thomas R. Benson, Wayne M. Cardoza, RavindranJagannathan,
and Benjamin). Thomas III

121 The GEM Optimizing Compiler System
David S. Blickstein, Peter W. Craig, Caroline S. Davidson, R. Neil Fairnan,Jr., Kent D. Glossop,
Richard B. Grove, Steven 0. Hobbs, and William B. Noyce

137 Binary Translation
Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G. Robinson

153 Porting Digital's Database Management Products to the Al.pha AXP Platform
Jeffrey A. Coffler, Zia Mohamed, and Peter M. Spiro

165 DECnet for OpenVMS AXP: A Case History
James V. Colombo, Pamela). Rickard, and Paul Benoit

181 Using Simulation to Develop and Port Software
George A. Darcy III, Ronald F. Brender, Stephen). Morris, and Michael V. lles

Alpha AXP Program Management

193 Enrollment Management, Managing the AJ.pha AXP Program
Peter F. Conklin

I Editor's Introduction

Jane C. Blake
Editor

i''

This special issue of the Digital Technical journal
presents the computer architecture that Digital
believes will become the universal platform for
computing over the next 25 years. A significant
milestone in the company's history, the Alpha AXP
architecture arises out of Digital's extensive engi­
neering experience and puts into place a cohesive,
flexible framework for high-performance 64-bit
RISC computing. This issue contains papers repre­
sentative of the scope of the program across
Digital's Engineering organization, including hard­
ware systems, an operating system, compilers,
binary translators, network and database software,
and simulators.

The results of the engineering efforts discussed
in these papers reflect three primary goals for
the Alpha AXP architecture: high performance,
longevity, and easy migration from the 32-bit VAX
VMS computer line. Dick Sites, one of the chief
Alpha AXP architects, has written a definitive paper
that explains how key architectural decisions were
made relative to the goals. He reviews the similari­
ties and differences between the AXP architecture
and other RISC architectures, and then presents
details of the design, including data and instruction
formats. In his conclusion, he projects evolutionary
changes in the architecture and the resulting per­
formance increases of a thousandfold over the next
25 years.

The first implementation of the Alpha AXP archi­
tecture is the DECchip 21064 microprocessor, which
can execute up to 400 million operations per
second. Dan Dobberpuhl and members of the
Alpha chip team offer an overview of the CMOS pro­
cess technology, the chip microarchitecture, and
the external interface. They then detail the circuit
implementation and explain the design choices
directed toward meeting architectural performance

2

requirements and to allow application flexibility.
The result of their design efforts is a microproces­
sor that operates at speeds up to 200 MHz-the
fastest commercially available chip in the industry.

Early implementations of this chip became part of
a prototype system, the Alpha Demonstration Unit.
As Chuck Thacker, Dave Conroy, and Larry Stewart
explain in their paper, the prototype served the
overall Alpha AXP program by giving software devel­
opers early access (ten months) to AXP-compliant
hardware. Because of the architectural emphasis on
multiple processors, prototype designers focused
on delivering a robust multiprocessing system. The
authors discuss the significance of the choice of a
backplane interconnect for a multiprocessor, com­
pare different approaches to cache coherence, and
describe the system modules and packaging.

With constraints different from those of the pro­
totype, the hardware product projects are repre­
sented here by three different implementations:
desktop, departmental, and data center systems. In
the desktop area, the DEC 3000 AXP family of work­
stations are balanced uniprocessor systems. Todd
Dutton, Dan Eiref, Hugh Kurth, Jim Reisert, and
Robin Stewart review the decision to replace the
traditional common system bus with a crossbar
system interconnect constructed of ASICs. This new
interconnect allowed the designers to meet the
goals of low memory latency, high memory band­
width, and minimal CPU-1/0 memory contention in
a cost-competitive manner.

The DEC 4000 AXP system is a departmental
server that implements the IEEE Futurebus+ stan­
dard. Barry Maskas, Stephen Shirron, and Nick
Warchol present the reasoning behind the system
architecture and technology decisions that resulted
in the achievement of optimized uniprocessor per­
formance, dual-processor symmetric multiprocess­
ing, and balanced 1/0 throughput. Details of the
subsystems that make up this expandable modular
system are also provided.

The DEC 7000 and DEC 10000 systems are power­
ful mid-range and mainframe platforms intended
for large commercial applications and designed to
utilize multiple future generations of the DECchip.
Described by Brian Allison and Catharine van
Ingen, the heart of these systems is a high-perfor­
mance interconnect that allows communications
between multiple processors, memory arrays, and
1/0 subsystems. The authors review each of the
modules and the 1/0 subsystem design, which
includes interfaces for XMI and Futurebus. Notably,
a 32-bit VAX CPU module has been designed to the

requirements of the high-performance system
interconnect. Users who wish to migrate from the
VAX system to Alpha AXP need only swap module
boards.

Migration to Alpha AXP from other architectures,
in particular from VAX VMS, is one of the major goals
set by the Alpha architects. Existing software­
operating systems, languages, programs-must be
adapted to run effectively on 64-bit RISC systems. A
paper by Nancy Kronenberg, Tom Benson, Wayne
Cardoza, Ravindran Jagannathan, and Ben Thomas
addresses the challenges of porting the OpenVMS
operating system-originally developed specifi­
cally for 32-bit VAX systems-to Alpha AXP systems.
To deal with the huge amount of code, the project
team developed a compiler that treats VAX assembly
language (VAX MACR0-32) as a source language to be
compiled. The authors also discuss the major archi­
tectural differences in the kernel, performance, and
some future directions for the system.

The GEM compiler system is the technology
Digital is using to build state-of-the-art compiler
products. GEM is described here by David
Blickstein, Peter Craig, Caroline Davidson, Neil
Faiman, Kent Glossop, Rich Grove, Steve Hobbs,
and Bill Noyce. A significant achievement in the
development of this compiler is that a single opti­
mizer is used for all languages and platforms.
Developers of compilers will find in-depth informa­
tion in the authors' discussions of optimization
techniques, code generation, compiler engineer­
ing, and future enhancements.

Binary translation is another means of moving
complex software applications from one architec­
ture and operating system to another architecture
and operating system. Two binary translators are
the subject of a paper by Dick Sites, Anton Chernoff,
Matthew Kirk, Maurice Marks, and Scott Robinson.
The authors discuss the alternatives to translators,
performance issues, and the development of the
translators, VEST and mx, and the complementary
run-time environments. VEST translates OpenVMS
VAX images to OpenVMS AXP images, and mx trans­
lates ULTRIX/MIPS images to DEC OSF/1 AXP images.

An easy migration path to Alpha AXP for two
database management systems used in large com­
mercial applications is the subject of a paper by Jeff
Coffler, Zia Mohamed, and Peter Spiro. The authors
define the issues involved in porting the complex
VAX DBMS and Rdb/VMS products to the AXP plat­
form. Adding to the challenge but balanced by its
advantages was the decision to have a common
source, or single code, base. The authors review

this design approach and provide details of the
individual porting efforts.

The process of porting DECnet-VAX to the
OpenVMS AXP operating system is described by Jim
Colombo, Pam Rickard, and Paul Benoit. They dis­
cuss the DECnet features supported in the operat­
ing system, the software techniques used, and the
importance of the decision to build common code
for the VAX and Alpha AXP systems. The authors
share details of the port and lessons learned that
can be applied to future porting efforts.

Complementary to the previously mentioned
prototype hardware system are four software simu­
lators that enabled engineers to develop software
for Alpha AXP concurrently with hardware develop­
ment. Described by George Darcy, Ron Brender,
Steve Morris, and Mike Iles, the Mannequin simu­
lator was used by the OpenVMS group to boot
the entire operating system and debug utilities;
the ISP simulator was used by the DEC OSF/1 group
with similar success. A major section of the paper
focuses on the Alpha User-mode Debugging Envi­
ronment in which user-mode code being devel­
oped for Alpha AXP platforms can be compiled and
executed as Alpha AXP code.

The closing paper is an unusual one for the
Journal because it addresses engineering manage­
ment, not strictly technical issues. Peter Conklin
offers insights into the reasons for the success of
one of the largest engineering programs under­
taken in the industry. He defines the enrollment
management model used for the Alpha AXP pro­
gram and explains key concepts, including the
program office and project "cusps."

The editors are very grateful for the help of Bob
Supnik, Vice President and Corporate Consultant,
in planning this special issue and for writing its
Foreword.

We are also pleased to note that four papers
in this issue are being copublished with the
Communications of the ACM, including those on
the Alpha AXP architecture, the Alpha Demon­
stration Unit, Open VMS AXP, and binary translation.
Barbara Watterson from Digital's semiconductor
organization; Diane Crawford, Executive Editor of
the CACM; the DlJ editors; and the authors cooper­
ated so that these informative papers could be
made available to a broad technical audience.

3

I Biographies

4

Brian R. Allison Brian Allison is a senior consultant engineer for Digital's
mid-range VAX/Alpha AXP systems group and is the system architect responsible
for the coordination of the VAX and DEC 7000 and 10000 system definition and
design. Prior to this work, he served as system architect for the VAX 6000
product. Brian holds a B.S.E.E. and a B.S.C.S. from Worcester Polytechnic Institute
(1977).

Randy Alhnon After receiving a B.S. degree in electrical engineering from
the University of Cincinnati, Randy Allmon joined Digital in 1981. As a circuit
designer in the Semiconductor Engineering Group, he has contributed to the
development of numerous high-performance CMOS processors. Currently,
Randy is responsible for the technical design and management of a next-genera­
tion processor based on the Alpha AXP architecture. He is the coauthor of four
high-performance processor papers given at ISSCC and has one patent pending.

Robert Anglin Robert Anglin received S.B. and S.M. degrees in electrical engi­
neering in 1989 from the Massachusetts Institute of Technology. In the same
year, he joined Digital's Semiconductor Engineering Group, where he has
worked on the design of high-performance microprocessors. Robert is a mem­
ber of Sigma Xi. He is currently pursuing an M.B.A. degree at Harvard University.

Paul Benoit Paul Benoit is a principal software engineer in the Networks and
Communications Group. He is the project/technical leader for the DECnet for
OpenVMS AXP project; the team received an Alpha Achievement Award for early
completion of project commitments. Previous to this, Paul led the DECnet-VAX
Phase IV effort. He holds an M.S.S.E. (1991) from Boston University and a B.S.C.S.
(1986) from the University of Lowell. Paul is a member of ACM and IEEE
Computer Society.

Thomas R. Benson A consulting engineer in the OpenVMS AXP Group, Tom
Benson was the project leader and principal designer of the VAX MACR0-32 com­
piler. Prior to his Alpha AXP contributions, he led the VMS DECwindows File View
and Session Manager projects and brought the Xlib graphics library to the VMS
operating system. Earlier, he supported an optimizing compiler shell used by
several VAX compilers. Tom joined Digital's VAX Basic project in 1979, after
receiving B.S. and M.S. degrees in computer science from Syracuse University. He
has applied for four patents related to his Alpha AXP work.

David Bertucci David Bertucci received a B.S.E.E. degree in 1982 from Wayne
State University and an M.S.E.E. degree in 1988 from Michigan State University.
He joined Digital's Semiconductor Engineering Group in 1989 and worked on
advanced CMOS microprocessor design. Currently, he is employed at Sun
Microsystems, Inc.

David S. Blickstein Principal software engineer David Blickstein has worked
on optimizations for the GEM compiler system since the project began in 1985.
During that time, he designed various optimization techniques, including induc­
tion variables, loop unrolling, code motions, common subexpressions, base
binding, and binary shadowing. Prior to this, David worked on Digital's PDP-11
and VAX APL implementations and led the VAX-11 PL/I project. He received a B.A.
(1980) in mathematics from Rutgers College, Rutgers University, and holds one
patent on side effects analysis and another on induction variable analysis.

Ronald F. Brender Ron Brender is a senior consultant software engineer,
contributing to the GEM compiler back-end project in the Software
Development Technologies Group. He has worked on compilers and program­
ming language definition for Alpha AXP, VAX, PDP-11, and PDP-10 systems, includ­
ing Ada, FORTRAN and BLISS. A member of various standards committees since
the mid-1970s, Ron is now responsible for VAX and Alpha AXP calling standards.
He joined Digital in 1970, after receiving a Ph.D. in computer and communica­
tion sciences at the University of Michigan.

Sharon Britton Sharon Britton received a B.S.E.E. degree from Boston
University in 1983 and an M.S.E.E. degree from the Massachusetts Institute of
Technology in 1990. She joined Digital in 1983 to work on the design and devel­
opment of 80186-based controllers for read-only and write-once optical disk
drives. Sharon's graduate research involved the development of an integrated
content addressable memory system with error detection capability. Currently a
member of the Semiconductor Engineering Group, she is involved in the design
and implementation of high-performance CMOS microprocessors.

Wayne M. Cardoza Wayne Cardoza is a senior consultant engineer in the
OpenVMS AXP Group. Since joining Digital in 1979, he has worked in various
areas of the Open VMS kernel. Wayne was also one of the architects of PRISM, an
earlier Digital RISC architecture; he holds several patents for this work. More
recently, Wayne participated in the design of the Alpha AXP architecture and was
a member of the initial design team for the OpenVMS port. Before coming to
Digital, Wayne was employed by Bell Laboratories. Wayne received a B.S.E.E. from
Southeastern Massachusetts University and an M.S.E.E. from MIT.

11

5

Biographies

6

Linda Chao Linda Chao received a B.S.E.E. degree from the Massachusetts
Institute of Technology in 1987. Since joining Digital in the Semiconductor
Engineering Group/Advanced Development in 1987, Linda has been engaged in
the design of microprocessors based on the VAX and Alpha AXP architectures.
She is currently pursuing master's degrees in electrical engineering and manage­
ment through the MIT Leaders for Manufacturing Program.

Anton Chernoff Anton Chernoff is a member of the technical staff at Digital
Equipment Corporation, working in the Alpha AXP Migration Tools Group. He
joined Digital in 1991, but also worked at Digital between 1973 and 1981 as proj­
ect leader and developer of the RT-11 and RSTS/E operating systems. Anton spent
1982 through 1991 at Liant Software Corporation as a senior consulting engineer
in compiler and debugger development.

Jeffrey A. Coffler A principal software engineer in the Database Systems
Engineering Group, Jeff Coffler led the effort to port DBMS to the Alpha AXP plat­
form. Prior to this, Jeff worked on the DBMS and Rdb backup/restore facility and
on new DBMS features and maintenance. He is currently working on the project
to port Rdb for OpenVMS to operating systems such as Windows NT and OSF/1.
He has also contributed to the RSTS/E operating system, WPS-PLUS porting, and
workflow management projects. Jeff joined Digital in 1984 and holds a B.s.c.s.
(1983) from California State University at Northridge.

J ames V. Colombo Project/technical leader James Colombo is currently
responsible for the next release of DECnet/OSI for OpenVMS for the VAX and
Alpha AXP computing environments. Prior to this, he led the port of DECnet-VAX
Phase IV to the OpenVMS AXP operating system; the team received an Alpha
Achievement Award for early completion of the project. Jim also led the DECnet
for OS/2 Vl.0 and various PATHWORKS product efforts. Before coming to Digital
in 1983, Jim worked at Prime Computer, Inc. and Computer Devices, Inc. He
holds a B.S.C.S. from Boston University and is a member of IEEE.

Peter F. Conklin Peter Conklin is director of Alpha AXP Systems Develop­
ment. Since joining Digital in 1969, he has held engineering management posi­
tions in large and small systems and terminals groups, direct hardware and
software engineering, product management, base product marketing, quality
management, and advanced development. Peter was the first software engineer
on the VMS project in 1975, ran the VAX architecture team, and was instrumental
in developing the key architectures and products for the VAX VMS layered prod­
uct set. Peter received an A.B. in mathematics from Harvard University in 1963.

Robert A. Conrad Robert Conrad received a B.S. degree in electrical and com­
puter engineering from the University of Cincinnati in 1984 and an M.S. degree in
electrical and computer engineering from the University of Massachusetts in
1992. In 1981 he joined Digital's Semiconductor Engineering Group, where he
worked as a co-op student in the Architecturally Focused Logic Group. Since
1984 Rob has been engaged in the research and development of VLSI micro­
processors, including the MicroVAX CPU, a SO-MHz RISC CPU, and most recently
the DECchip 21064 microprocessor.

David G. Conroy Dave Conroy received a B.A.Sc. degree in electrical engi­
neering from the University of Waterloo, Canada, in 1977. After working briefly
in industrial automation, Dave moved to the United States in 1980. He cofounded
the Mark Williams Company and built a successful copy of the UNIX operating
system. In 1983 he joined Digital to work on the DECtalk speech synthesis
system and related products. In 1987 he became a member of Digital's
Semiconductor Engineering Group, where and has been involved with system­
level aspects of RISC microprocessors.

Peter W. Craig Peter Craig is a principal software engineer in the Software
Development Technologies Group. He is currently responsible for the design
and implementation of a dependence analyzer for use in future compiler prod­
ucts. Peter was a project leader for the VAX Code Generator used in the VAX c and
VAX PUI compilers, and prior to this, he developed CPU performance simulation
software in the VAX Architecture Group. He received a B.S. E.E. (magna cum
laude, 1982) from the University of Connecticut and joined Digital in 1983.

George A. Darcy III As a senior software engineer in the Alpha Migration
Tools Group, George Darcy has worked on the Mannequin Alpha AXP simulator,
the VEST binary translator, and the Translated Image Environment (TIE) run-time
library. In his ten years at Digital, he has also developed a virtual disk driver for
the OpenVMS VS.O SMP operating system, software behavioral models of a high­
end VAX processor, and various simulation and CAD software tools. George
received a B.S.C.E. (cum laude, 1984) from Boston University, where he was an
Engineering Merit Scholar and a member of Tau Beta Pi.

Caroline S. Davidson Since joining Digital in 1981, Caroline Davidson has
contributed to several software projects, primarily related to code generation.
Currently a principal software engineer, she is working on the GEM compiler
generator project and is responsible for the areas of lifetimes, storage allocation,
and entry-exit calls. Caroline is also a project leader for the Intel code generation
effort. Her prior work involved the VAX FORTRAN for ULTRIX, VAX Code
Generator, and FORTRAN IV software products. Caroline has a B.S.C.S. from the
State University of New York at Stony Brook.

I

7

Biographies

8

Daniel E. Dever Dan Dever received a B.S.E.E. degree in 1988 from the
University of Cincinnati. He joined Digital's Semiconductor Engineering Group
in 1988, where he worked on the design and logic verification of CMOS VAX
microprocessors. Since 1990 he has been involved in the design of RISC architec­
ture microprocessors, including the floating-point unit of the DECchip 21064
microprocessor. Dan is currently involved in the design of integer arithmetic
logic for the next-generation processor based on the Alpha AXP architecture.

Daniel W. Dobberpuhl Dan Dobberpuhl received a B.S.E.E. degree from the
University of Illinois in 1967. Subsequent to positions with the Department of
Defense and General Electric Company, he joined Digital's Semiconductor
Engineering Group in 1976. Since that time, he has been active in the design of
four generations of microprocessors, including the first single-chip PDP-11 and
the first single-chip VAX. Most recently, Dan was the project leader for the first
VLSI implementation of Digital's new 64-bit Alpha AXP computing architecture.
He is coauthor of the text, The Design and Analysis of VLSI Circuits.

Todd A. Dutton A principal hardware engineer, Todd Dutton was responsible
for the overall design integration and timing verification of the DEC 3000 AXP
Model 500. Prior to this, he led a team in developing vector processor hardware
in the Advanced VAX Development Group. Todd joined Digital in 1987. Pre­
viously, he was employed at Numerix Corporation and at Signal Processing
Systems, Inc. Todd has a B.S. degree in computer science from the Massachusetts
Institute of Technology and was elected to Tau Beta Pi. He holds a patent on vec­
tor processor technology and has published two papers on vector processors.

Daniel Eiref Dan Eiref joined Digital in 1987 after receiving B.S. and M.S.
degrees in electrical engineering from Columbia University. At Columbia he was
elected to Tau Beta Pi and was awarded the Steven Abbey Outstanding Student­
athlete Award. He is currently attending Harvard Business School. A principal
hardware engineer, Dan was responsible for the design of the memory and clock
systems of the DEC 3000 AXP Model 500. He also designed the workstation's
SIJCE and ADDR ASICs. Prior to this project, he worked as an ECL hardware
designer in the Advanced VAX Development Group.

R. Neil Faiman, Jr. Neil Faiman is a consultant software engineer in the
Software Development Technologies Group. He was the primary architect of the
GEM intermediate language and a project leader for the GEM compiler optimizer.
Prior to this work, he led the BUSS compiler project. Neil came to Digital in 1983
from MDSI (now Schlumberger/Applicon). He has B.S. (1974) and M.S. (1975)
degrees in computer science, both from Michigan State University. Neil is a mem­
ber of Tau Beta Pi and ACM, and an affiliate member of the IEEE Computer
Society.

Bruce Gieseke Bruce Gieseke received a B.S. degree in electrical engineering
from the University of Cincinnati in 1984, and an M.S. degree in electrical engi­
neering from North Carolina State University in 1985. In 1986 he joined Digital's
Semiconductor Engineering Group, where he has been engaged in the imple­
mentation and circuit design of RISC microprocessors.

Kent D. Glossop Kent Glossop is a principal engineer in the Software
Development Technologies Group. Since 1987 he has worked on the GEM com­
piler system, focusing on code generation and instruction-level transformations.
Prior to this, Kent was the project leader for a release of the VAX PL/I compiler
and contributed to version 1 of the VAX Performance and Coverage Analyzer.
Kent joined Digital in 1983 after receiving a B.S. in computer science from the
University of Michigan. He is a member of IEEE.

Richard B. Grove Senior consultant software engineer Rich Grove joined
Digital in 1971 and is currently in the Software Development Technologies
Group. He has led the GEM compiler project since the effort began in 1985, con­
tributing to the code generation phases. Prior to this work, Rich was the project
leader for the PDP-11 and VAX FORTRAN compilers, worked on VAX Ada VI, and
was a member of the ANSI X3J3 FORTRAN Committee. He is presently a member
of the design team for Alpha AXP calling standards and architecture. Rich has B.S.
and M.S. degrees in mathematics from Carnegie-Mellon University.

Soha M.N. Hassoun Soha Hassoun received a B.S.E.E. degree from South
Dakota State University in 1986, and an S.M.E.E. degree from the Massachusetts
Institute of Technology in 1988. From August 1988 to August 1991 she was
employed at Digital as a custom design engineer in the Semiconductor
Engineering Group. She contributed to the design of the floating-point unit of
the DECchip 21064 processor. Soha was the recipient of a Digital Minority and
Women's Scholarship in 1991 and is pursuing a Ph.D. degree at the University of
Washington, Seattle, Computer Systems Engineering Department.

Steven 0. Hobbs A member of the Software Development Technologies
Group, Steven Hobbs is working on the GEM compiler project. In prior contribu­
tions at Digital, he was the project leader for VAX Pascal, the lead designer for the
global optimizer in VAX FORTRAN, and a member of the Alpha AXP architecture
design team. Steve received his A.B. (1969) in mathematics at Dartmouth College
and while there, helped develop the original BASIC time-sharing system. He has
an M.A. (1972) in mathematics from the University of Michigan and has done
additional graduate work in computer science at Carnegie-Mellon University.

I

9

Biographies

10

Gregory W. Hoeppner Gregory Hoeppner graduated with distinction from
Purdue University in 1979. His research topic was ion-implanted optical wave­
guides. In 1980 he worked at General Telephone and Electronics Research
Laboratory, where he performed basic properties research on GaAs for fabrica­
tion of submicrometer FETs. From 1981 to 1992 he held a number of positions at
Digital Equipment Corporation's Hudson, MA site, including co-implementation
leader ofDigital's DECchip 21064. He is currently employed as a senior engineer
at IBM, Advanced Workstation Division.

Michael V. Iles Michael Iles is a senior technology consultant at the UK Alpha
AXP Migration Centre. Since joining Digital in 1975, Mike has worked in various
field positions, in Advanced VAX development as a microcoder, and for VMS engi­
neering as a software engineer. He worked on the migration of Open VMS VAX to
the Alpha AXP platform, designing and implementing a user-mode simulation
environment that became AUD. Mike has a B.Sc. in electrical engineering (hon­
ors, 1973) from City University, London, and holds a patent for digital speech
synthesis techniques. He has several patents pending for AUD.

RavindranJagannathan RavindranJagannathan is a principal software engi­
neer in the OpenVMS Performance Group currently investigating OpenVMS AXP
multiprocessing performance. Since 1986, he has worked on performance anal­
ysis and characterization, and algorithm design in the areas of OpenVMS ser­
vices, SMP, VAXcluster systems, and host-based volume shadowing. Ravindran
received a B.E. (honors, 1983) from the University of Madras, India, and M.S.
degrees (1986) in operations research and statistics and in computer and sys­
tems engineering from Rensselaer Polytechnic Institute.

Matthew B. Kirk Matthew Kirk is a senior software engineer in the SEG/AD
AXP Migration Tools Group, where he works on binary translator development,
testing, and support. He joined Digital in 1986 and has also d~signed and devel­
oped automated architectural test software for pipelined VAX hardware and the
CI computer interconnect. Matthew holds a B.S. in computer science (1986)
from the University of Massachusetts.

Nancy P. Kronenberg Nancy Kronenberg joined Digital in 1978 and has
developed VMS support for several VAX systems. She designed and wrote the VMS
CI port driver and part of the VMScluster System Communications Services. In
1988, Nancy joined the team that investigated alternatives to the VAX architec­
ture and drafted the proposal for the Alpha AXP architecture and for porting the
OpenVMS operating system to it. Nancy is a senior consulting software engineer
and technical director for the OpenVMS AXP Group. She holds an A.B. degree in
physics from Cornell University.

I

Kathryn Kuchler Kathryn Kuchler received a B.S. degree in electrical engi­
neering from Cornell University in 1990. Upon graduation, she joined Digital's
Semiconductor Engineering Group, where she worked on the first implementa­
tion of a RISC microprocessor based on the Alpha AXP architecture.

Hugh R. Kurth Hugh Kurth joined Digital in 1986 after receiving a B.S.
degree in electrical engineering, computer engineering, and mathematics from
Carnegie-Mellon University. At Carnegie-Mellon, he was elected to Eta Kappa Nu
and was awarded the David Tuma Undergraduate Laboratory Project Award.
A senior hardware engineer, Hugh designed the TCDS ASIC and SCSI subsystem
for the DEC 3000 AXP Model 500. Prior to this work, he designed floating-point
hardware for two projects in the Advanced VAX Development Group.

Maureen Ladd Maureen Ladd received a B.S. degree in computer engineering
from the University of Illinois in 1986. She then joined the Semiconductor
Engineering Group within Digital and worked on a 32-bit RISC microprocessor.
Maureen received an M.S.E. degree in electrical engineering from the University
of Michigan in 1990 through Digital's Graduate Engineering Education Program.
Upon her return to Digital, she worked on the implementation of the first micro­
processor based on the Alpha AXP architecture.

Burton M. Leary Mike Leary is currently a consulting engineer in the
Semiconductor Engineering Group/Advanced Development Memory Group. He
designed the instruction and data caches for the DECchip 21064 CPU and is cur­
rently working on the design of advanced memory products. Mike joined Digital
in 1980 after receiving a B.S.E.E. degree from the University of Massachusetts.

Liam Madden Liam Madden joined Digital in 1984 and has since designed
both CISC and RISC microprocessors and contributed in the area of CMOS process
development. He is currently a consultant engineer in Digital's CPU Advanced
Development Group and his interests include circuit design and CMOS tech­
nology development. Prior to joining Digital, Liam designed industrial micro­
controllers for Mahon and McPhillips, Ireland, and worked for Harris
Semiconductor. He received a B.S. degree from University College Dublin in 1979
and an M.E. degree from Cornell University in 1990.

II

11

Biographies

12

Maurice P. Marks Maurice Marks is a senior engineering manager in the
Semiconductor Engineering Advanced Development Group. He currently man­
ages the AXP Migration Tools Group and contributed to the design and imple­
mentation of the translators. In Maurice's twenty years with Digital, he has led
compiler, operating system, hardware and software tools, CAD, system, and chip
projects. He holds B.Sc. and B.E. degrees from the University of New South Wales
and has published papers on transaction processing, software portability, and
CAD technology Maurice is a member of the Australian Computer Society

Barry A. Maskas Barry Maskas is the project leader responsible for architec­
ture, semiconductor technology, and development of the DEC 4000 AXP system
buses, processors, and memories. He is a consulting engineer with the Entry
Systems Business Group. In previous work, he was responsible for the architec­
ture and development of custom VLSI peripheral chips for VAX 4000 and MicroVAX
systems. Prior to that work, he was a codesigner of the MicroVAX II CPU and mem­
ory modules. He joined Digital in 1979, after receiving a B.S.E.E. from Pennsylvania
State University. He holds three patents and has eleven patent applications.

Edward J. McLellan Ed Mclellan is a principal engineer in the Semi­
conductor Engineering Group. He has contributed to the design of several pro­
cessor chips. Ed joined Digital in 1980 after receiving a B.S. degree in computer
and systems engineering from Rensselaer Polytechnic Institute, where he was
elected to Eta Kappa Nu. He holds three patents in computer design and has one
application pending.

Derrick R. Meyer Dirk Meyer joined Digital's Semiconductor Engineering
Group in 1986. He was initially involved in the design of the cache and memory
systems for a chilled CMOS VAX processor. He has since been involved in the
development of microprocessors based on the Alpha AXP architecture. Prior to
joining Digital, he was employed at Intel Corporation, where he was involved in
the design of various CMOS microcontrollers, including the 80C51 and 80Cl96.
Dirk received a B.S. degree in computer engineering from the University of
Illinois in 1983.

Zia Mohamed Zia Mohamed has been a member of the Database Systems
Group since joining Digital in 1989. He works in the area of query optimization
for the DEC Rdb for OpenVMS products; his contributions involve cost-based
optimization of database queries and algorithms for execution of optimized
query plans. He has developed dynamic OR optimization techniques, refinement
of cost-model, and algorithms for better access plans for views. Zia holds a B.S.
degree in electrical engineering from Bangalore University, India, and an M.S.
degree in computer science from Texas Tech University.

I

James Montanaro James Montanaro received B.S.E.E. and M.S.E.E. degrees
from the Massachusetts Institute of Technology in 1980. He joined Digital
Equipment Corporation in 1982. He was a circuit designer on the floating-point
chip for the LSI nn4 and a MicroVAX peripheral chip. He led the physical imple­
mentation of the uPRISM CPU, a 70-MHz prototype RISC CPU completed in 1988.
James also led the physical implementation of the first CPU chip based on the
Alpha AXP architecture and then contributed as a circuit designer for the
DECchip 21064 CPU. He is currently with Apple Computer, Inc.

Stephen). Morris Stephen Morris is a consultant software engineer in the
Semiconductor Engineering Advanced Development Group. In addition to writ­
ing the Alpha ISP simulator, he wrote the OpenVMS and OSF PALcode for the
Alpha AXP program. In previous work, Stephen designed the control sections of
the instruction prefetch and translation look-aside buffer for an experimental
Digital RISC chip. He also worked on the MicroVAX chip team, doing console and
debug work, and in the RSTS/E operating system group. Stephen joined Digital
after receiving a B.A. in biology from the University of Rochester in 1977.

William B. Noyce Senior consultant software engineer William Noyce is a
member of the Software Development Technologies Group. He has developed
several GEM compiler optimizations, including those that eliminate branches. In
prior positions at Digital, Bill implemented support for new disks and proces­
sors on the RSTS/E project, led the development of VAX DBMS VI and VAX
Rdb/VMS Vl, and designed and implemented automatic parallel processing for
VAX FORTRAN/HPO. Bill received a B.A. (1976) in mathematics from Dartmouth
College, where he implemented enhancements to the time-sharing system.

Donald A. Priore After receiving an S.M. degree in electrical engineering and
computer science from the Massachusetts Institute of Technology, Donald
Priore joined Digital in 1984. Initially, he worked on device characterization,
yield enhancement, and yield modeling of NMOS and CMOS processes in manu­
facturing. Subsequently, he joined a CMOS design group, working first with
low-temperature CMOS technology and later with conventional CMOS in high­
performance microprocessor design. His interests include signal, clock, and
power integrity in the on-chip environment.

Vidya Rajagopalan Vidya Rajagopalan received a B.E. degree in electronics
engineering from Visvesvaraya Regional College of Engineering, Nagpur, India,
in 1986, and an M.S. degree in electrical engineering from the University of
Maryland in 1989. She was with Norsk Data India Ltd. from 1986 to 1987 as a
systems design engineer. In 1989 she joined Digital's Semiconductor Engineer­
ing Group and was a member of the design team of the DECchip 21064 RISC
microprocessor. Vidya is currently involved in the design of high-performance
microprocessors.

13

I

Biographies

14

James J. Reisert A senior hardware engineer, Jim Reisert designed the TC ASIC
for the DEC 3000 AXP Model 500. Prior to this project work, he designed instruc­
tion parsers/decoders for two VAX implementations. Jim holds a patent for his
design of a method for replaying instructions after a microtrap. Before joining
Digital in 1986, he received an S.B. in electrical engineering from the Massa­
chusetts Ins ti tu te of Technology. He is currently in charge of timing verification
for another AXP workstation.

Pamela}. Rickard Principal software engineer Pam Rickard is a member of
the team porting DECnet/OSI for OpenVMS to the Alpha AXP platform. As the ini­
tial member of the DECnet for OpenVMS AXP porting team, Pam took responsi­
bility for creating an effective team, ported NETDRIVER and other MACR0-32
code, and debugged major portions of the ported product. Since joining Digital
in 1978, she has contributed to PATHWORKS for OS/2 and led the console,
microcode, and system test activities of the VAX-11/785 project. Pam received a
B.S. (1970) in mathematics and computer science from the University of Denver.

Scott G. Robinson Scott Robinson is a software engineering manager in the
AXP Migration Tools Group. He contributed to the design and implementation of
the binary translators, particularly the VAX translated image environment. Scott
has also developed implementations of DECnet and CAD/CAM systems to design
VAX processors. Prior to joining Digital in 1978, Scott worked on a variety of
Digital hardware and software implementations. He holds a B.S. in electrical engi­
neering from the University of Arizona and is a member of IEEE.

Sridhar Samudrala Sridhar Samudrala is a consulting hardware engineer in
the Semiconductor Engineering Group, where he is currently working on a new
CPU chip. He joined Digital in 1977. Since that time, he has worked on the design
and verification of PDP-11/23 chips, VAX 8200 microcode development, and on
the architecture and design of floating-point chips. He holds two patents and has
three patent applications pending, all on floating-point design. Sridhar received
an M.Sc. (Tech) degree from Andhra University, India, and an M.S.E.E. degree from
the University of Wisconsin.

Sribalan Santhanam Sri Santhanam received a B.E. degree in electrical engi­
neering from Anna University, Madras, India, in 1987, and an M.S.E. degree in com­
puter science and engineering from the University of Michigan in 1989. Upon
graduation, he joined Digital as a design engineer for the Semiconductor
Engineering Group, responsible for the full-custom design and development of
high-performance CMOS VLSI processors. Sri worked on the design of the float­
ing-point unit of the DECchip 21064 CPU. He is currently involved in the design of
another high-performance microprocessor.

Stephen F. Shirron Stephen Shirron is a consulting software engineer in the
Entry Systems Business Group and is responsible for OpenVMS support of new
systems. He contributed to many areas of the DEC 4000, including PALcode, con­
sole, and OpenVMS support. Stephen joined Digital in 1981 after completing B.S.
and M.S. degrees (summa cum laude) at Catholic University. In previous work, he
developed an interpreter for VAX/Smalltalk-SO and wrote the firmware for the
RQDX3 disk controller. Stephen has two patent applications and has written a
chapter in Smalltalk-BO: Bits of History, Words of Advice.

Richard L. Sites Dick Sites is a senior consultant engineer in the Semicon­
ductor Engineering Group, where he is working on binary translators and the
Alpha AXP architecture. He joined Digital in 1980 and has contributed to various
VAX implementations. Previously, he was employed by IBM, Hewlett-Packard,
and Burroughs, and taught at the University of California. Dick received a B.S. in
mathematics from MIT and a Ph.D. in computer science from Stanford University
He also studied computer architecture at the University of North Carolina. He
holds a number of patents on computer hardware and software.

Peter M. Spiro Peter Spiro, a consulting software engineer, is presently the
technical director for the Rdb and DBMS software products. Peter's current focus
is database performance for Alpha AXP systems and very large database issues.
Peter joined Digital in 1985, after receiving M.S. degrees in forest science and
computer science from the University of Wisconsin-Madison. He has four
patents related to database journaling and recovery, and he has authored two
papers for earlier issues of the Digital Technical Journal.

Lawrence C. Stewart Larry Stewart received an S.B. in electrical engineering
from MIT in 1976, followed by M.S. (1977) and Ph.D. (1981) degrees from Stanford
University, both in electrical engineering. His Ph.D. thesis work was on data com­
pression of speech waveforms using trellis coding. Upon graduation, he joined
the Computer Science Lab at the Xerox Palo Alto Research Center. In 1984 he
joined Digital's Systems Research Center to work on the Firefly multiprocessor
workstation. In 1989 he moved to Digital's Cambridge Research Lab, where he is
currently involved with projects relating to multimedia and AXP products.

Robin L Stewart Robin Stewart joined Digital in 1986 after receiving a B.S. in
electrical engineering from the University of Vermont. She is in the process of
obtaining an M.B.A. degree from Boston College. A senior technology (hardware)
engineer, Robin had responsibility for the integrated circuit technology in the
DEC 3000 AXP Model 500 workstation. Prior to this project work, she was a com­
ponent engineer in Digital's Semiconductor Business Organization.

I

15

Biographies

16

Charles P. Thacker Chuck Thacker has been with Digital's Systems Research
Center since 1983. Before joining Digital, he was a senior research fellow at the
Xerox Palo Alto Research Center. His research interests include computer archi­
tecture, computer networking, and computer-aided design. He holds several
patents in the area of computer organization and is coinventor of the Ethernet
local area network. In 1984, Chuck was the recipient (with 8 . Lampson and R.
Taylor) of the ACM Software System Award. He received an A.B. degree in physics
from the University of California in 1967. He is a member of ACM and IEEE.

Benjamin}. Thomas III Benjamin Thomas joined the OpenVMS AXP project
in 1989 as project leader for 1/0 subsystem design and porting. In this role, he has
also contributed to the 1/0 architecture of current and future AXP systems. Ben
joined Digital in 1982 and has worked in the VMS group since 1984. In prior
work, he was the director of software engineering at a microcomputer firm. Ben
is a consulting engineer and has a B.S. (1978) in physics from the University of
New Hampshire and an M.S.C.S. (1990) from Worcester Polytechnic Institute.

Catharine van Ingen A consulting software engineer, Catharine van Ingen
was co-system architect for the VAX and DEC 7000 products. Catharine is cur­
rently on leave from Digital and is working on engineering document manage­
ment in large heterogeneous systems. Before joining Digital in 1987, she worked
on data acquisition systems for two large physics detectors at the Fermi National
Accelerator Laboratory and Stanford Linear Accelerator Center. She holds sev­
eral degrees in civil engineering, including a B.S. and an M.S. from the University
of California and a Ph.D. from the California Institute of Technology.

Nicholas A. Warchol Nick Warchol, a consulting engineer in the Entry
Systems Business Group, is the project leader responsible for 1/0 architecture
and 1/0 module development for the DEC 4000 AXP systems. In previous work,
he contributed to the development of VAX 4000 systems. He was also a designer
of the MicroVAX 3300 and 3400 processor modules and the RQDX3 disk con­
troller. Nick joined Digital in 1977 after receiving a B.S.E.E. (cum laude) from the
New Jersey Institute of Technology. In 1984 he received an M.S.E.E. from
Worcester Polytechnic Institute. He has four patent applications.

Richard T. Witek Rich Witek joined Digital in 1977 to work on DECnet
network architecture during Phase II. In 1982 he joined Digital's Semiconductor
Engineering Group where he worked on CAD development, MicroVAX VLSI

chips, and a variety of internal RISC projects. Rich was a codesigner of the Alpha
AXP architecture and the principal microarchitect of the DECchip 21064 CPU
chip. He received a B.A. degree in computer science from Aurora College. Rich is
currently employed by Apple Computer, Inc.

I Foreword

Robert M. Supnik
Corporate Consultant,
Vice President
Technical Director,
Engineering

It all started with eight people in a conference
room.•

The time was the summer of 1988. Digital
Equipment Corporation had just closed the best
fiscal year in its history, with record revenues and
profits. Digital's VAX systems were the most widely
used timesharing systems in the industry and were
the "blue-ribbon standard" for mid-range comput­
ing. Digital was the second-largest workstation ven­
dor. The company had just introduced the VAX 6000
system, its first expandable multiprocessor, was
developing a true VAX mainframe, and had decided
on a rapid thrust into RISC workstations to capital­
ize on that growing market. What could possibly go
wrong?

Nonetheless, senior managers and engineers saw
trouble ahead. Workstations had displaced VAX VMS
from its original technical market. Networks of per­
sonal computers were replacing timesharing.
Application investment was moving to standard,
high-volume computers. Microprocessors had sur­
passed the performance of traditional mid-range
computers and were closing in on mainframes. And
advances in RISC technology threatened to aggra­
vate all of these trends. Accordingly, the Executive
Committee asked Engineering to develop a long­
term strategy for keeping Digital's systems compet­
itive. Engineering convened a task force to study
the problem.

The task force looked at a wide range of potential
solutions, from the application of advanced pipe­
lining techniques in VAX systems to the deployment
of a new architecture. A basic constraint was that

the proposed solution had to provide strong com­
patibility with current products. After several
months of study, the team concluded that only a
new RISC architecture could meet the stated objec­
tive of long-term competitiveness, and that only the
existing VMS and UNIX environments could meet
the stated constraint of strong compatibility. Thus,
the challenge posed by the task force was to design
the most competitive RISC systems that would run
the current software environments.

Key groups in Engineering responded to this
challenge. A cross-functional team from hardware
and software defined the basic architecture.
Advanced development teams began work on the
knotty engineering problems: in the semiconduc­
tor group, the specification and design of a fast
microprocessor, and the automatic translation of
executable binary images; in the operating systems
groups, on the porting of ULTRIX and of VMS (which
was not portable!); and in the compiler group, on
superscalar code generation. In the fall of 1989,
Alpha became an officially sanctioned advanced
development program. t In the summer of 1990, it
transitioned to product development.

From the original core in semiconductors, oper­
ating systems, and compilers, work expanded
throughout Engineering. The server and work­
station hardware groups specified and started
designing a family of systems, from desktop to data
center. The networks group began porting DECnet,
TCP/IP, X.25, LAT, and the many other network­
ing products. The layered software group inven­
toried the existing portfolio of products and
prioritized the order and importance of delivery.
The research group pitched in by designing an
experimental multiprocessor as a software devel­
opment testbed.

In parallel with the engineering work, market­
ing, sales, and service teams worked closely with
business partners and customers to shape the deliv­
erables and messages to meet external require­
ments. These teams briefed key customers and
partners early in the development process and

'The Corona Borealis conference room in the LTNI facility in
Littleton, Mass. LTNI was chosen because it was the geographic
epicenter of the arc of Digital engineering facilities on Massa­
chusetts Route 495, the Corona Borealis because it was the
only conference room with windows.

'After going through more than one name change. The original
study team was called the "RISCy VAX Task Force." The
advanced development work was labeled "EVAX." When the
program was approved, the Executive Committee demanded a
neutral code name, hence "Alpha."

17

Foreword

incorporated their advice into the development
program. Ongoing partner and customer advisory
boards provided regular feedback on all aspects
of the program and helped shape two critical
extensions of the original concept: the open licens­
ing of Alpha technology, and the porting of
Windows NT.

Taken together, the scope of the Engineering
effort, the need for Marketing, Field, and Service
involvement, and the high degree of customer and
business partner participation, posed unique man­
agement challenges. Rather than organize a large­
scale hierarchical project, the company chose to
manage Alpha as a distributed program. A small
program team used enrollment management prac­
tices and strict operational discipline to coordinate
and inspect activities across the company. This net­
worked approach to management gave the program
both flexibility and resiliency in the face of rapidly
changing business and organizational conditions.

18

The work of Engineering, Manufacturing, Mar­
keting, Sales, and Service came together in Novem­
ber 1992 with the announcement of the Alpha AXP
systems family: seven systems, three operating sys­
tems, six languages, multiple networks, migration
tools, open licensing of technology, hardware and
software partnerships, and more than 2000 com­
mitted applications. Today, Alpha AXP embodies a
fundamental repositioning of Digital Equipment
Corporation to be the technology and solutions
leader in twenty-first century computing: a com­
pany dedicated to meeting customers' needs with
the best computing, business, and service technol­
ogy available. The delivery of Alpha AXP required
the largest engineering program in Digital's history,
spanning more than twenty Engineering groups
worldwide. This issue of the Digital Technical
Journal documents just a few of the hundreds of
projects involved in bringing Alpha to fruition;
future issues will continue the story.

Richard L. Sites I

AlphaAXP Architecture

The Alpha AXP 64-bit computer architecture is designed for high performance and
longevity. Because of the focus on multiple instruction issue, the architecture does
not contain fadlities such as branch delay slots, byte writes, and precise arithmetic
exceptions. Because of the focus on multiple processors, the architecture does con­
tain a careful shared-memory model, atomic-update primitive instructions, and
relaxed read/write ordering. The first implementation of the Alpha AXP architec­
ture is the world's fastest single-chip microprocessor. The DECchip 21064 runs multi­
ple operating systems and runs native-compiled programs that were translated
from the VAX and MIPS architectures.

Thus in all these cases the Romans did what all
wise princes ought to do; namely, not only to look
to all present troubles, but also to those in the
future, against which they provided with the
utmost prudence.

-Niccolo Machiavelli, The Prince

Historical Context
The Alpha AXP architecture grew out of a small task
force chartered in 1988 to explore ways to preserve
the VAX VMS customer base through the 1990s. This
group eventually came to the conclusion that a new
reduced instruction set computer (RISC) architec­
ture would be needed before the turn of the cen­
tury, primarily because 32-bit architectures will run
out of address bits. Once we made the decision to
pursue a new architecture, we shaped it to do
much more than just preserve the VMS customer
base.

This paper discusses the architecture from a
number of points of view. It begins by making the
distinction between architecture and implementa­
tion. The paper then states the overriding archi­
tectural goals and discusses a number of key
architectural decisions that were derived directly
from these goals. The key decisions distinguish the
Alpha AXP architecture from other architectures.
The remaining sections of the paper discuss the
architecture in more detail, from data and instruc­
tion formats through the detailed instruction set.
The paper concludes with a discussion of the
designed-in future growth of the architecture. An
Appendix explains some of the key technical terms
used in this paper. These terms are highlighted
with an asterisk in the text.

Digital Tecbntcaljournal Vol. 4 No. 4 Special issue 1992

Architecture Distinct
from Implementations
From the beginning of the Alpha AXP design, we
distinguished the architecture from the implemen­
tations, following the distinction made by the IBM
System/360 architects:

Computer architecture is defined as the attributes
and behavior of a computer as seen by a machine­
language programmer. This definition includes the
instruction set, instruction formats, operation
codes, addressing modes, and all registers and
memory locations that may be directly manipu­
lated by a machine-language programmer.
Implementation is defined as the actual hardware
structure, logic design, and data-path organization
of a particular embodiment of the architecture.1

Thus, the architecture is a document that
describes the behavior of all possible implementa­
tions; an implementation is typically a single com­
puter chip.2 The architecture and software written
to the architecture are intended to last several
decades, while individual implementations will
have much shorter lifetimes. The architecture must
therefore carefully describe the behavior that a
machine-language programmer sees, but must not
describe the means by which a particular imple­
mentation achieves that behavior.

A similar approach has been used with much
success in specifying the PDP-11 and VAX families of
computers. An alternate approach is to design and
build a fast RISC* chip, then wait to see if it is suc­
cessful in the marketplace. If so, successive imple­
mentations are often forced to reproduce accidents
of the initial design, or to introduce slight software
incompatibilities. This approach works, but with
varying success.

19

Alpha AXP Architecture and Systems

Architectural Goals
When we started the detailed design of the Alpha
AXP architecture, we had a short list of goals:

1. High performance

2. Longevity

3. Capability to run both VMS and UNIX operating
systems

4. Easy migration from VAX and MIPS architectures

These goals directly influenced our key decisions
in designing the architecture.

In considering performance and longevity, we
set a 15- to 25-year design horizon and tried to avoid
any design elements that we thought could become
limitations during this time. In current architec­
tures, a primary limitation is the 32-bit memory
address. Thus we adopted a full 64-bit architecture,
with a minimal number of 32-bit operations for
backward compatibility.

We also considered how implementation perfor­
mance should scale over 25 years. During the past
25 years, computers have become about 1,000
times faster. Therefore we focused our design deci­
sions on allowing Alpha AXP system implementa­
tions to become 1,000 times faster over the coming
25 years. In our projections of future performance,
we reasoned that raw clock rates would improve by
a factor of 10 over that time, and that other design
dimensions would have to provide two more fac­
tors of 10.

If the clock cannot be made faster, then more
work must be done per clock tick. We therefore
designed the Alpha AXP architecture to encourage
multiple instruction issue• implementations that
will eventually sustain about ten new instructions
starting every clock cycle. This aggressive tech­
nique of starting multiple instructions distin­
guishes the Alpha AXP architecture from many
other RISC architectures.

The remaining factor of 10 will come from multi­
ple processors. A single system will contain per­
haps ten processors and share memory. We
therefore designed a multiprocessor memory
model and matching instructions from the begin­
ning. This early accommodation for multiple pro­
cessors also distinguishes the Alpha AXP
architecture from many other RISC architectures,
which try to add the proper primitives later.

To run the OpenVMS AXP and the DEC OSF/1
AXP-and now the Microsoft Windows NT -operat­
ing systems, we adopted an idea from a previous

20

Digital RISC design called PRISM.3 We placed the
underpinnings for interrupt delivery and return,
exceptions, context switching, memory manage­
ment, and error handling in a set of privileged
software subroutines called PALcode. These sub­
routines have controlled entry points, run with
interrupts turned off, and have access to real hard­
ware (implementation) registers. By including dif­
ferent sets of PALcode for different operating
systems, neither the hardware nor the operating
system is burdened with a bad interface match, and
the architecture itself is not biased toward a partic­
ular computing style.

To run existing VAX and MIPS binary images, we
adopted the idea of binary translation,• as described
in a companion paper.4.s.6 The combination of
PALcode and binary translation gave us the luxury
of designing a new architecture. Other than the fun­
damental integer and floating-point data types,
there are no specific VAX or MIPS features carried
directly into the Alpha AXP instruction-set architec­
ture for compatibility reasons.

Key Design Decisions
This section presents the design decisions that dis­
tinguish the Alpha AXP architecture from others.

RISC
The Alpha AXP architecture is a traditional RISC
load/store architecture. All data is moved between
registers and memory without computation, and all
computation is done between values in registers.
Little-endian byte addressing and both VAX and IEEE
floating-point operations• are carried over from the
VAX and MIPS architectures. 7 We assumed that most
implementations would pipeline instructions, i.e.,
they would start execution of a second, third, etc.
instruction before the execution of a first instruc­
tion completes. We assumed that the implementa­
tion latency of many operations would be
important. Latency is the number of cycles a pro­
gram must wait to use the result of a preceding
instruction. We assumed that the vast majority of
memory operands would be aligned. An aligned
operand of size 2**N bytes• has an address with N
low-order zeros. Other memory operands are
termed unaligned.

Full 64-bit Design
The Alpha AXP architecture uses a linear• 64-bit vir­
tual address space. Registers, addresses, integers,
floating-point numbers, and character strings are

Vol. 4 No. 4 Special Issue 1992 Digital Tecbntca/Journal

all operated on as full 64-bit quantities. There are
no segmented addresses.•

Register File
In choosing the register file design, we considered
both a single combined register file and split integer
and floating-point register files. We chose a split
register file to support aggressive multiple issue. A
combined file is somewhat more flexible, espe­
cially for programs that are heavily skewed toward
integer-only or floating-point-only computation. A
combined file also makes it easier to pass a mixture
of integer and floating-point subroutine parameters
in registers. However, split files allow graceful two­
chip implementations and smaller integer-only
implementations. They also need fewer read/write
ports per file to sustain a given amount of multiple
instruction issue.

We also considered whether each file should con­
tain 32 or 64 registers. We chose 32, largely because

1. Thirty-two registers in each file are enough to
support at least eight-way multiple issue.

2. Two valuable instruction bits are better used to
make a 16-bit displacement field in memory­
format instructions.

More registers might seem better, but excess reg­
isters consume chip area and access time,
save/restore speed across subroutines and context
switches, and instruction bits that might be put to
better use. Compilers can deliver substantial per­
formance gains when given 32 registers instead of
16, but there is no clear evidence of similar gains
with 64 registers. Demand for registers is likely to
increase slowly in the future, but a number of
implementation techniques, such as short latency
pipelines and register renaming, should satisfy this
demand.

Multiple Instruction Issue
Our design sought to eliminate any mechanism that
would hinder aggressive multiple instruction issue
implementations. Therefore we tried to avoid all
special or hidden processor resources.8 Thus, the
Alpha AXP architecture has no condition codes, no
global exception enables, no multiplier-quotient or
string registers, no branch delay slots, no sup­
pressed instructions or skips, no precise arithmetic
exceptions, and no single-byte writes to memory
All of these features, found in some RISC architec­
tures, have the effect of hindering multiple instruc­
tion issue, or hindering pipelining of multiple

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

Alpha AXP Architecture

instances of the same instruction. For example, a
dedicated string register makes it hard to have three
unrelated string operations in the pipeline at once.

To illustrate the performance loss associated
with special or hidden processor resources, con­
sider a dual-issue implementation with a four-cycle­
deep pipeline. At the beginning of each cycle, up to
six prior instructions are partially executed and
two more are about to be issued. Six prior instruc­
tions can have six pending writes to result regis­
ters, plus six sets of side effects on special or
hidden processor resources. The next two instruc­
tions can specify a total of four operand registers,
two more result registers, and two more sets of side
effects on special or hidden resources. The decision
to issue 0, 1, or 2 of the next instructions involves
36 simple comparisons of pairs of register numbers
and 12 complex comparisons of sets of side effects.
The number of such comparisons increases as a
function of the issue width, the pipeline depth, and
the number of special or hidden processor
resources. The complexity of these comparisons
can limit the clock rate. The register-number com­
parisons are unavoidable, therefore we tried to
limit special or hidden processor resources.

Branch Delay Slots The Alpha AXP architecture
has no branch delay slots. The branch delay slots
found in some RISC architectures require exactly
one following instruction to be executed after a
conditional branch. In 1988 this was, perhaps, a
good idea for overlapping branch latency in a sin­
gle-issue chip with a one-cycle instruction cache. In
1995, however, it will not scale well to a four-way
issue chip with a two-cycle instruction cache.
Instead of one instruction, up to eight instructions
would be needed in the delay slot. Branch delay
slots also introduce a restart problem if the instruc­
tion in the delay slot faults: one restart program
counter is needed for the delay slot and another one
for the actual branch target.

Suppressed Instructions The Alpha AXP architec­
ture has no suppressed instructions, whereby the
execution of one instruction conditionally sup­
presses a following one. Suppressed (or skipped)
instructions are found in other RISC architectures.
The suppression bit(s) represent nonreplicated
hidden state, so multiple instruction issue is diffi­
cult for more than one potential suppressor. If an
interrupt is taken between a suppressor and sup­
pressee, or if the suppressee takes a restartable
exception (e.g., page fault), the correct version of

21

Alpha AXP Archi tecture and System s

the suppression state must be saved and restored.
There are also definitional problems with this
approach: Are exceptions ever reported for sup­
pressed instructions? What happens if the sup­
pressed instruction suppresses a third instruction?

Byte Load or Store Instructions The Alpha AXP
architecture has no byte load or store instructions
and no implicit unaligned accesses. There also are
no partial-register writes. The byte load/store
instructions and unaligned accesses found in some
RISC architectures can be a performance bottle­
neck. They require an extra byte shifter in the
speed-critical load and store paths, and they force a
hard choice in fast cache design. The partial-regis­
ter writes found in other RISC architectures can also
be a performance bottleneck because they require
masking and shifting in the fundamental operation
of accessing a register.

On a previous project involving a MIPS implemen­
tation, we found the shifter for the load-left/load­
right instructions to be a direct cycle-time
bottleneck. Also, the VAX 8700 implementation
(circa 1986) removed the byte shifter in the
load/store hardware in favor of a faster microcycle,
with 2 cycles for a byte load and 6 cycles for an
unaligned 32-bit access. This decision achieved a
net performance gain. Our experience encouraged
us to avoid byte load/store.

An additional problem with byte stores is that an
implementer may easily choose only two of the
three design features: fast write-back cache, single­
bit error correction code (ECC), or byte stores.

Byte stores are straightforward in simple byte­
parity write-through cache implementations.
Except for the expensive design of four or five ECC
bits for every eight bits of data, a byte store to a fast
ECC write-back cache involves

1. Reading an entire cache word*

2. Checking the ECC bits and correcting any single­
bit error

3. Modifying the byte

4. Calculating the new ECC bits

5. Writing the entire cache word

This read-modify-write sequence requires hidden
sequencer hardware and hidden state to hold the
cache word temporarily. The sequencer tends to
slow down ordinary full-cache-word stores. The
need for byte stores tends to ripple throughout
the memory subsystem design, making each piece

22

a little more complicated and a little slower. With
nonreplicated hidden state, it is difficult to issue
another byte store until the first one finishes.
Finally, the existence of a byte store instruction has
led to programs and library routines for other RISC
implementations with single-byte move and com­
pare loops. String manipulation on Alpha AXP
implementations is up to eight times faster by pro­
cessing eight bytes at a time.9

Instead of including byte load/store, we followed
the RISC philosophy of exposing hidden computa­
tion as a sequence of many simple, fast instructions.
In the Alpha AXP architecture, a byte load is done as
an explicit load/shift sequence; a byte store as an
explicit load/modify/store sequence. We tuned the
instruction set to keep these sequences short. The
instructions in these sequences can be intermixed,
scheduled, and issued as multiples with other com­
putation, as can the rest of the instructions in the
architecture. Table 1 gives a summary of the Alpha
AXP instruction set.

Arithmetic Exceptions The Alpha AXP architec­
ture has no precise arithmetic exceptions.
Reporting an arithmetic exception (e.g., overflow,
underflow) precisely means that instructions
subsequent to the one causing the exception
must not be executed. This is straightforward
in a slow implementation that runs a single instruc­
tion to completion before starting the next one,
but becomes substantially more difficult to do
quickly in a pipelined four-way issue implemen­
tation. There are standard techniques available
for delivering precise exceptions while run­
ning quickly (checking exponents, suppressing
register writes, exception silos and backout), but
these techniques consume substantial design
time and can cost some performance. They appear
not to scale well with wider multiple issue or
faster clocks.

Exceptional cases are just that-exceptional, or
rare, events. Based partly on customer requests, we
decided to emphasize the performance of normal
operations at the expense of exceptional cases.
Rather than an implicit exception ordering
between every pair of instructions, we adopted the
Cray-I model of arithmetic exceptions-in which
exceptions are reported eventually-plus an
explicit trap barrier (TRAPB) instruction that can be
used to make exception reporting as precise as
desired. 10 We also documented a code-generation
design that needs one trap barrier per branch (at
most) to give precise reporting. Using TRAPB

Vol. 4 No. 4 Spedal Issue 1992 Digital Technical Journal

Alpha AXP Architecture

Table 1 Alpha AXP Architecture Instruction Set Summary

Load/Store, Byte Manipulation CMPLT Compare signed quadword <
CMPLE Compare signed quadword $

LDA Load address CMPULT Compare unsigned quadword <
LDAH Load address high CM PULE Compare unsigned quadword $
LDL Load sign-extended longword MULL Multiply longword
LDO Load quadword MULO Multiply quadword
LDO_U Load unaligned quadword UMULH Multiply quadword high, unsigned
LDL_L Load sign-extended SUBL Subtract longword

longword, locked S4SUBL Subtract longword, scale by 4
LDO_L Load quadword locked SBSUBL Subtract longword, scale by 8
STL_C Store longword, conditional SUBO Subtract quadword
sro_c Store quadword, conditional S4SUBO Subtract quadword, scale by 4
STL Store longword SSSUBO Subtract quadword, scale by 8
sro Store quadword AND AND logical
sro_u Store unaligned quadword BIS OR logical
EXTBL Extract byte low XOR XOR logical
EXTWL Extract word low BIC AND-NOT logical
EXT LL Extract longword low OR NOT OR-NOT logical
EXTOL Extract quadword low EOV XOR-NOT logical
EXTWH Extract word high SLL Shift left, logical
EXTLH Extract longword high SRL Shift right, logical
EXTOH Extract quadword high SRA Shift right, arithmetic
INSBL Insert byte low CMOVEO Conditional move if reg = 0
INSWL Insert word low CMOVNE Conditional move if reg * 0
INSLL Insert longword low CMOVLT Conditional move if reg < 0
INSOL Insert quadword low CMOVLE Conditional move if reg $ 0
INSWH Insert word high CMOVGT Conditional move if reg > 0
INSLH Insert longword high CMOVGE Conditional move if reg ~ 0
INSOH Insert quadword high CMOVLBC Conditional move if reg low
MSKBL Mask byte low bit clear
MSKWL Mask word low CMOVLBS Conditional move if reg low
MSKLL Mask longword low bit set
MSKOL Mask quadword low CMPBGE Compare bytes, unsigned
MS KWH Mask word high ZAP Clear selected bytes
MSKLH Mask longword high ZAPNOT Clear unselected bytes
MSKOH Mask quadword high

Integer Branch
Floating Point Load/Store

BEO Branch if reg = 0
LDF Load F format r,JAX single) BNE Branch if reg * 0
LDG Load G format r,IAX double) BLT Branch if reg < 0
LDS Load S format (IEEE single) BLE Branch if reg $ 0
LDT Load T format (IEEE double) BGT Branch if reg > 0
STF Store F format r,JAX single) BGE Branch if reg ~ 0
STG Store G format r,JAX double) BLBC Branch if low bit clear
srs Store S format (IEEE single) BLBS Branch if low bit set
STT Store T format (IEEE double) BR Branch

BSR Branch to subroutine
Address/Constant JMP Jump
LDA Load address JSR Jump to subroutine
LDAH Load address high RET Return from subroutine

Integer Computation and Conditional Move
JSR_COROUTINE Jump to subroutine, return

ADDL Add longword
Floating Point Branch

S4ADDL Add longword, scale by 4 FBEO FP branch if = O
S8ADDL Add longword, scale by 8 FBNE FP branch if * 0
ADDO Add quadword FBLT FP branch if < 0
S4ADDO Add quadword, scale by 4 FBLE FP branch if $ O
S8ADDO Add quadword, scale by 8 FBGT FP branch if > 0
CMPEO Compare signed quadword = FBGE FP branch if ~ 0

continued on next page

Dtgttal TecbntcalJournal Vol. 4 No. 4 Special Issue 1992 23

Alpha AXP Architecture and Systems

Table 1 Alpha AXP Architecture Instruction Set Summary (continued)

Floating Point Computation
and Conditional Move

CPYS Copy sign
CPYSN Copy sign, negate
CPYSE Copy sign and exponent
CVTQL Convert quadword to longword
CVTLQ Convert longword to quadword
FCMOVEQ FP conditional move if reg = 0
FCMOVNE FP conditional move if reg *- 0
FCMOVLT FP conditional move if reg < 0
FCMOVLE FP conditional move if reg $ 0
FCMOVGT FP conditional move if reg > 0
FCMOVGE FP conditional move if reg ;:,: 0
MF_FPCR Move from FP control register
MT_FPCR Move to FP control register
ADDF Add F format C'/AX single)
ADDG Add G format C'/AX double)
ADDS Add S format (IEEE single)
ADDT Add T format (IEEE double)
CMPGEQ Compare G format =

C'/AX double)
CMPGLT Compare G format <

C'/AX double)
CMPGLE Compare G format $

C'/AX double)
CMPTEQ Compare T format =

(IEEE double)
CMPTLT Compare T format <

(IEEE double)
CMPTLE Compare T format $

(IEEE double)
CMPTUN Compare T format

unordered (IEEE double)
CVTGQ Convert G format to quadword

CVAX double)
CVTQF Convert quadword to F format

C'/AX single)
CVTQG Convert quadword to G format

CVAX double)
CVTDG Convert D to G format

C'/AX double/double)
CVTGD Convert G to D format

C'/AX double/double)

instructions in the first Alpha AXP implementation
lowers performance 3 percent to 25 percent in real
floating-point programs and less than 1 percent in
integer programs, but improves cycle time approxi­
mately 10 percent.

In contrast to arithmetic exceptions, memory
management exceptions, such as page faults, are
reported precisely. This is not as much of a burden
on implementers as precise arithmetic exceptions
would be, and lack of precise memory management
faults would be a severe burden on software
writers.

24

CVTGF Convert G to F format
CVAX double/single)

CVTTQ Convert T format to quadword
(IEEE double)

CVTQS Convert quadword to S format
(IEEE single)

CVTQT Convert quadword to T format
(IEEE double)

CVTTS Convert T to S format
(IEEE double/single)

CVTST Convert S to T format
(IEEE single/double)

DIVF Divide F format CVAX single)
DIVG Divide G format CVAX double)
DIVS Divide S format (IEEE single)
DIVT Divide T format (IEEE double)
MULF Multiply F format CVAX single)
MULG Multiply G format CVAX double)
MULS Multiply S format (IEEE single)
MULT Multiply T format (IEEE double)
SUBF Subtract F format CVAX single)
SUBG Subtract G format CVAX double)
SUBS Subtract S format (IEEE single)
SUBT Subtract T format (IEEE double)

System

CALL_PAL Call privileged architecture
library

TRAPB Trap barrier (precise exception)
FETCH Prefetch (cache) date hint
FETCH_M Prefetch (cache) data,

modify hint
MB Memory barrier (serialize)
WMB Memory barrier (serialize) write
RPCC Read process cycle counter
RC Read and clear
RS Read and set

PALRESO PALcode reserved opcode O
PALRES1 PALcode reserved opcode 1
PALRES2 PALcode reserved opcode 2
PALRES3 PALcode reserved opcode 3
PALRES4 PALcode reserved opcode 4

Shared-memory Multiprocessing
The Alpha AXP architecture 's shared-memory
multiprocessing model is an integral part of the
design. It is not the add-on found in other RISC
architectures.

The underlying primitive for safe updating of
a multiprocessor-shared memory location is a
sequence of RISC instructions: load-locked, in-regis­
ter modify, store-conditional, test. If this sequence
completes with no interrupts, no exceptions, and
no interfering write from another processor, then
the store-conditional stores the modified result,

Vol. 4 No. 4 Special Issue 1992 Digital Technical journal

and the test indicates success: an atomic update
was in fact performed.

If anything goes wrong, the store-conditional
does not store a result, and the test indicates fail­
ure. The program must then retry the sequence
until it succeeds. We chose this primitive sequence
(quite similar to the MIPS R4000 chip design5)

because it can be implemented in a way that scales
up with processor performance. In the absence of
an interfering write, the entire sequence can be
done in an on-chip write-back cache, and hundreds
of chips can do noninterfering sequences simulta­
neously. The sequence can also be used to achieve
byte granularity* of writes in shared memory.6

The Alpha AXP architecture has no strict multi­
processor read/write ordering, whereby the
sequence of reads and writes issued by one proces­
sor in a multiprocessor configuration is delivered
to all other processors in exactly the order issued.
Strict order is simple, but has a problem similar to
that of byte stores. An implementer may easily
choose only two of the three design features:
pipelined writes, bus retry, or strict read/write
ordering.

If one processor starts a write to location A and a
write to location B, then discovers that the write to
A has failed (bus parity error, etc.) and retries it suc­
cessfully, then a second processor will observe the
writes out of order: B, then A.

Before Alpha AXP implementations, many VAX
implementations avoided pipelined writes to main
memory, multibank caches, write-buffer bypassing,
routing networks, crossbar memory interconnect,
etc., to preserve strict read/write ordering. The
Alpha AXP architecture's shared-memory model
instead specifies no implicit ordering between the
reads and writes issued on one processor, as viewed
by a different processor. This programming model
is an enabling technology for a wide variety of high­
performance implementation techniques. Strict
ordering can be specified when needed by insertion
of explicit memory barrier (MB) instructions, quite
similar to the IBM System/370 serialization design. 11

Data Representation
and Processor State
This section describes the fundamental Alpha AXP
data types and their representation in memory and
registers. It also describes the complete hardware
register state for each processor and outlines
the additional state maintained by operating­
system-specific PALcode routines. The Alpha AXP

Dtgttal TecbntcalJournal Vol. 4 No. 4 Special Issue 1992

Alpha AXP Architecture

architecture differs from other RISC architectures
by carefully specifying a canonical form for 32-bit
data in 64-bit registers. A canonical form is a stan­
dardized choice of data representation for redun­
dantly encoded values. Since 32-bit operations
assume canonical operands and give canonical
results, very few explicit conversions between 32-
and 64-bit representations are needed.

The fundamental unit of data in the Alpha AXP
architecture is a 64-bit quadword.• As shown in
Figure 1, quadwords may reside in memory or regis­
ters. For backwards compatibility, 32-bit long­
words• may also be stored in memory.

There are three fundamental data types: integer,
IEEE floating point, and VAX floating point; each
is available in 32-bit and 64-bit forms. 4. 12 VAX floating­
point values in memory have 16-bit words swapped,
for compatibility with VAX (and PDP-11) formats.
The VAX floating-point load and store instructions
do word swapping• to give a common register
order. The 32-bit load instructions expand values to
64-bit canonical form, and the 32-bit store instruc­
tions contract 64-bit values back to 32. 13 All register­
to-register operations are thus done on full 64-bit
values in a common integer or floating-point for­
mat. No partial-register reads or writes are done.

The canonical form of a 32-bit value in a 64-bit
integer register has the most significant 33 bits all
equal to bit<31>. In essence, bit<31> is kept as a
"fat bit." This allows signed integer values to be
used directly in 64-bit arithmetic and branches.
This canonical form is maintained as a closed
system (even for 32-bit data considered to be
"unsigned") by using a combination of 64-bit oper­
ates, 32-bit add/subtract/multiply, and two-instruc­
tion sequences for shifts.

The canonical form of a 32-bit value in a
64-bit floating-point register has the 8-bit exponent
field expanded to 11 bits and the 23-bit mantissa
field expanded to 52 bits. Except for IEEE denor­
mals, • this allows single-precision floating-point
values to be used directly in double-precision arith­
metic and branches. This canonical form is main­
tained as a closed system by using single-precision
instructions.

Bytes and words (16-bit quantities) are not funda­
mental data types. They may be transferred
between memory and registers with short
sequences of instructions and manipulated in regis­
ters using normal arithmetic and the byte-manipu­
lation instructions described in the Operate
Instructions section.

25

Alpha AXP Architectu re and Systems

63
QUADWORD INTEGER (MEMORY)

0 63
QUADWORD INTEGER (REGISTER)

0

8 I 8 IRX

1 63 63

63
IEEE T-FLOATING POINT (MEMORY)

0 63
IEEE T-FLOATING POINT (REGISTER)

0

:s EXP MANTISSA I 8 EXP MANTISSA IFX

1 11 52 11 52

63
VAX G-FLOATING POINT (MEMORY)

63
VAX G-FLOATING POINT (REGISTER)

0

M4 M3 EXP ,.., ~ EXP
IM11

M2 M3

16 16 16 11 4 11 52

M4 IFX

LONGWORD INTEGER (MEMORY)

~I
63

LONGWORD INTEGER (REGISTER)
0

IRX I sssssssssssssssssss ... s fl
1 31 32 1 31

IEEE $-FLOATING POINT (MEMORY)
3

... ~ ... I _E_x_P_.I ___ M_A_N_T1_s_s_A _ __.

0

1 r: 1xxl EXP I
1 8 23 1 11

IEEE $-FLOATING POINT (REGISTER)

MANTISSA 00000000000000000 ... o

52

VAX F-FLOATING POINT (MEMORY) VAX F-FLOATING POINT (REGISTER)

3~1 ____ __,,...,..-...~----06 ~3;,-..---.,...... ----------...... ----------------...... 0

... 1 ____ M_2 ____ _.~ ... , ... ··_EX_ P__.I_ M_1 ... I j sJxxl EXP I M1 I M2 00000000000000000 ... o IFx

16 1 8 7 1 11 52

Figure 1 Data Representation

The hardware processor state, shown in Figure 2,
includes 32 integer registers RO .. R31 of 64 bits each;
R31 is always zero. There are also 32 floating-point
registers FO .. F31 of 64 bits each; F31 is always zero.
Writes to R31 and F31 are ignored.

A 64-bit program counter (PC) contains a long­
word-aligned virtual byte address (i.e., the low 2
bits of the PC are always zero). The VAX architecture
keeps the PC in general register 15, where it is
directly used for PC-relative memory addressing. In
the Alpha AXP architecture, however, code and data
pages are usually separated by 64 kilobytes (KB) or
more to allow separate memory protection, but the
16-bit displacement in load/store instructions can­
not span more than 64KB.

The hardware processor state includes a lock flag
and a locked physical address for the load­
locked/store-conditional sequence. It also has a
floating-point control register containing the IEEE
dynamic rounding mode.*

26

Hardware implementations may optionally
include a pair of state registers for memory
prefetching (FETCH/FETCH_M instructions), and an
optional interrupt flag for use only by translated
VAX OpenVMS AXP programs that reproduce com­
plex instruction set computer (CISC*) instruction
atomicity using a sequence of RISC instructions.6

In addition to the above hardware state, the privi­
leged architecture library routines for the various
operating systems implement additional state. This
state may be maintained by hardware or (PALcode)
software, at the option of the implementer, and it
varies from one operating system to another.
Typical PALcode state includes a processor status
(PS) word, kernel and user stack pointers, a process
control block base for context switching, a process­
unique value for threads, and a processor number
for multiprocessor dispatching. Additional PALcode
state may include a floating-point enable bit, inter­
rupt priority level, and translation look-aside

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Alpha AXP Architecture

HARDWARE STATE

63 0 63 0 !..--------:-~ ------=,I !;;,;;....---~-~ -------..::,1

' ' il----------ll
R30 (STACK POINTER) _ F30 _
R31 (ALWAYS ZERO) F31 (ALWAYS ZERO)

PC lo! D IEEE FLOATING-POINT DYNAMIC ROUNDING MODE
63 20

LOCKED_PHYSICAL_ADDRESS D LOCK_FLAG

OPTIONAL HARDWARE STATE

PREFETCH STATE A PREFETCH STATE B

D INTR_FLAG

TYPICAL PALCODE STATE

PS

KERNEL STACK POINTER

PROCESS CONTROL BLOCK BASE

WHO AM I (PROCESSOR NUMBER)

D FLOATING-POINT ENABLE (FEN)

~ INTERRUPT PRIORITY LEVEL

I
T

I-STREAM TRANSLATION BUFFER 1
T

l
T

USER STACK POINTER

PROCESS-UNIQUE VALUE

D-STREAM TRANSLATION BUFFER 1
T

Figure 2 Per-processor State

buffers for mapping instruction-stream and data­
stream virtual addresses. All of this state is soft in
the sense that it is defined only in relationship to
the PALcode routines for a specific operating
system. In a multiprocessor implementation, all of
the above state is replicated for each processor.

Memory Access
Alpha AXP memory is byte addressed, using the low­
est-numbered byte of a datum. Only aligned long­
words or quadwords may be accessed: an aligned
longword is a four-byte datum whose address is a
multiple of four; an aligned quadword is an eight­
byte datum whose address is a multiple of eight.
Normal load or store instructions that specify an
unaligned address take a precise data alignment
trap to PALcode (which may do the access using

Digital Technical]our11al Vol. 4 No. 4 Spedal Issue 1992

two aligned accesses or report a fatal error, depend­
ing on the operating system design).

Alpha AXP implementations allow data to be
accessed using either a little-endian• view (byte O is
the low byte of an integer), or a big-endian* view
(byte O is the high byte of an integer). As described
in the Load/Store Instructions section , there is a
one-instruction bias in the sequences for little- and
big-endian byte manipulation.

Virtual addresses are a full 64 bits; implementa­
tions may restrict addresses to have some number
of identical high-order bits, but must always distin­
guish at least 43 bits. Virtual addresses are mapped
in an operating-specific way to physical addresses,
using fixed-size pages. Memory protection is done
on a per-page basis. Address mapping errors (e.g.,
protection, page faults) take precise traps to

27

Alpha AXP Architecture and Systems

PALcode. Each page may also be marked to provide
a fault on each read, write, or instruction-fetch.

Virtual addresses may be further qualified by
address space numbers (ASNs), to allow multiple
disjoint addresses spaces. The choice of disjoint or
common mapping across all processes is done on a
per-page basis.

The virtual- to physical-address mapping is done
on a per-page basis. Each implementation may have
a page size of 8KB, 16KB, 32KB, or 64KB. The 64KB
upper bound allows a linker to allocate blocks of
memory with differing protection or ASN proper­
ties far enough apart to work on all implementa­
tions. The virtual- to physical-address mapping can
be many to one, i.e., synonyms are allowed. In a
multiprocessor implementation, shared main mem­
ory locations have the same physical address on all
processors. Per-processor unshared locations are
also allowed.

Memory has longword granularity: two proces­
sors may simultaneously access adjacent longwords
without mutual interference. The load-locked/
store-conditional sequence discussed previously can
be used to achieve multiprocessor byte granularity.

Input/output is memory mapped: some phys­
ical memory addresses may refer to 1/0 device
registers whose access triggers side effects (such
as the transfer of data). Side effects on reads are
discouraged.

Instruction Formats
Four fundamental instruction formats-operate,
memory, branch, and CALL_PAL- are shown in
Figure 3. All instructions are 32 bits wide and reside
in memory at aligned longword addresses. Each
instruction contains a 6-bit opcode field and zero
to three 5-bit register-number fields, RA, RB, and RC.

OPERATE FORMAT

31 26 21 1312 5 0

The remammg bits contain function (opcode
extension), literal, or displacement fields. To mini­
mize register file ports in fast implementations, RB
is never written, and RC is never read.

All the operate instructions are three-operand
register-to-register, calculating RC= RA operate RB.
In integer operates, the opcode and a 7-bit function
field specify the exact operation. Integer operates
may have an 8-bit zero-extended literal instead of
RB. In floating-point operates, the opcode and an
11-bit function field specify the exact operation.
There are no floating-point literals.

Memory format instructions are used for loads,
stores, and a few miscellaneous operations. Loads
and stores are two-operand instructions, specifying
a register RA and a base-displacement virtual byte
address. The effective address calculation sign
extends the 16-bit displacement to 64 bits and adds
the 64-bit RB base register (ignoring overflow). The
resulting virtual byte address is mapped to a physi­
cal address. The miscellaneous instructions make
other uses of the RA, RB, and displacement fields.

Branch format instructions specify a single regis­
ter RA and a signed PC-relative longword displace­
ment. The branch target calculation shifts the 21-bit
displacement left by 2 bits to make it a longword
(not byte) displacement, then sign extends it and
adds it to the updated PC. Conditional branch
instructions test register RA, and unconditional
branches write the updated PC to RA for subroutine
linkage. The large longword displacement allows a
range of ±4MB, substantially reducing the need for
branches around or to other branches.

The CALL_PAL instruction has only a 6-bit opcode
and a 26-bit function field . The function field is a
small integer specifying one of a few dozen privi­
leged architecture library subroutines.

BRANCH FORMAT

31 26 21 0

LITERAL 1 FUNG. INTEGER, LITERAL I OP I RA I DISPLACEMENT I
OP RA RB ff f O FUNG. RC INTEGER, REGISTER 6 5 21

RB FUNG. FLOATING POINT CALL_PAL FORMAT
31 26 0

OP I FUNCTION I
6 26

6 5 5 11 5

MEMORY FORMAT
26 21 16 0

I RA I RB I DISPLACEMENT

5 5 16

Figure 3 Instruction Formats

28 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Operate Instructions
There are five groups of register-to-register operate
instructions: integer arithmetic, logical, byte­
manipulation, floating-point, and miscellaneous.
All instructions operate on 64-bit quadwords
unless otherwise specified.

Integer Arithmetic Instructions The integer arith­
metic instructions are add, subtract, multiply, and
compare. Add, subtract, and multiply have variants
that enable arithmetic overflow traps. They also
have longword variants that check for 32-bit over­
flow (instead of 64) and force the high 33 bits of the
result to all equal bit<31>. Add and subtract also
have scaled variants that shift the first operand left
by 2 or 3 bits (with no overflow checking) to speed
up simple subscripted address arithmetic. The
UMULH instruction (from PRISM) gives the high 64
bits of an unsigned 128-bit product and may be
used for dividing by a constant. There is no integer
divide instruction; a software subroutine is used to
divide by a nonconstant. The compare instructions
are signed or unsigned and write a Boolean result (0
or 1) to the target register.

Logical Instructions The logical instructions are
AND, OR, and XOR, with the second operand
optionally complemented (ANDNOT, ORNOT,
XORNOT). The shifts are shift left logical, shift right
logical, and shift right arithmetic. The 6-bit shift
count is given by RB or a literal. The conditional
move instructions test RA (same tests as the branch­
ing instructions) and conditionally move RB to RC.
These can be used to eliminate branches in short
sequences such as MIN(a,b).

Byte-manipulation Instructions The byte-manip­
ulation instructions are used with the load and
store unaligned instructions to manipulate short
unaligned strings of bytes. Long strings should be
manipulated in groups of eight (aligned quad­
words) whenever possible. The byte-manipulation
instructions are fundamentally masked shifts. They
differ from normal shifts by having a byte count
(0 .. 7) instead of a bit count (0 .. 63), and by zeroing
some bytes of the result, based on the data size
given in the function field.

The extract (EXTxx) instructions extract part
of a 1-, 2-, 4-, or 8-byte field from a quadword
and place the resulting bytes in a field of zeros. A
single EXTxL instruction can perform byte or word
loads, pulling the datum out of a quadword and

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

Alpha AXP Architecture

placing it in the low end of a register with high­
order zeros. A pair of EXTxl/EXTxH instructions can
perform unaligned loads, pulling the two parts of
an unaligned datum out of two quadwords and
placing the parts in result registers. A simple OR
operation can then combine the two parts into the
full datum.

The insert (INSxx) and mask (MSKxx) instruc­
tions position new data and zero out old data in reg­
isters for storing bytes, words, and unaligned data.
If the Alpha AXP architecture were a four-operand
one, inserting and masking could have been com­
bined into a single instruction.

The compare-byte instruction allows character­
string search and compare to be done eight bytes at
a time. The ZAP instructions allow zeroing of arbi­
trary patterns of bytes in a register. These instruc­
tions allow very fast implementations of the C
language string routines, among other uses.

Floating-point Arithmetic Instructions The float­
ing-point arithmetic instructions are add, subtract,
multiply, divide, compare, and convert. The first
four have variants for IEEE and VAX floating-point,
and single- and double-precision data types. They
also have variants that enable combinations of arith­
metic traps and that specify the rounding mode.
The single-precision instructions write canonical
64-bit results, but do exponent checking and
rounding to single-precision ranges. The compare
instructions write a Boolean result (0 or nonzero)
to the target register. The convert instructions
transfer between single and double, floating-point
and integer, and two forms of VAX double (D-float
and G-float). A combination of hardware and soft­
ware provides full IEEE arithmetic. Operations on
VAX reserved operands,• dirty zeros,• IEEE denor­
mals, infinities," and not-a-numbers* are done in
software.

There are also a few floating-point instructions
that move data without applying any interpretation
to it. These include a complete set of conditional
move instructions similar to the integer conditional
moves.

Miscellaneous Instructions The miscellaneous
instructions include: memory prefetching instruc­
tions to help decrease memory latency, a read cycle
counter instruction for performance measurement,
a trap barrier instruction for forcing precise arith­
metic traps, and memory barrier instructions for
forcing multiprocessor read/write ordering.

29

Alpha AXP Architecture and Systems

Load/Store Instructions
The load and store instructions only move data.
They never apply an interpretation to the data and
therefore never take any data-dependent traps. This
design allows moving completely arbitrary bit pat­
terns in and out of registers and allows completely
transparent saving/restoring of registers.

The integer load and store quadword unaligned
(LDQ_U, STQ_U) instructions ignore the low three
bits of the byte address and always transfer an
aligned quadword. These instructions are used
with the in-register byte manipulation instructions
to operate on byte, word, and unaligned data by
short sequences of RISC instructions.

Example 1 in Figure 4 shows a two-instruction
sequence for loading a byte into the low end of a
register, using little-endian byte numbering.
Example 2 shows a similar sequence for loading a
byte into the high end of a register, using big-endian
byte numbering. Example 3 shows a sequence for
storing a byte (the first two and last two instruc­
tions might issue simultaneously on the first Alpha
AXP implementation). Example 4 shows a sequence
for an explicit unaligned load quadword (no data
alignment trap).

The integer load-locked and store-conditional
(LDQ_L, LDL_L, STQ_C, STL_C) instructions are
included in the architecture to facilitate atomic
updates of multiprocessor-shared data. As
described above, they can be used in short
sequences of RISC instructions to do atomic read­
modify-writes. Example 5 shows a sequence for
doing a multiprocessor test-and-set. Note that
changing the LDQ_U/STQ_U in Example 3 to
ANO/LDQ_USTQ_C/BEQ gives a byte-store sequence
that is safe to use with multiprocessor-shared data.

There are two related load address instructions.
LOA calculates the effective address and writes
it into RC. LOAH first shifts the displacement
left 16 bits, then calculates the effective address
and writes it into RC. LOAH is included to give a sim­
ple way of creating most 32-bit constants in a
pair of instructions. (Because LOA sign-extends
the displacement, some values in the range
000000007FFF8000 .. 000000007FFFFFFF require
three instructions.) Constants of 64 bits are loaded
with LOQ instructions.

Branching Instructions
The branch instructions include conditional
branches, unconditional branches, and calculated
jumps. In addition to the previously described

30

conditional moves, the architecture contains hints
to improve branching performance.

The integer conditional branches test register RA
for an opcode-specified condition (>0 >=0 =0 !=O
<=0 <0 even odd) and either branch to the target
address or fall through to the updated PC address.
The floating-point conditional branches are the
same, except they do not include even/odd tests.
Arbitrary testing (and faulting on VAX or IEEE nonfi­
nite values) can be done by sequences of compare
instructions and branch instructions. Logical or
arithmetic instructions can combine compare
results without using branches.

Unconditional branches write the updated PC to
RA for subroutine linkage and branch to the target
address. RA = R31 may be used if no linkage is
needed.

Calculated jumps write the updated PC to RA and
jump to the target address in RB. Calculated jumps
are used for subroutine call, return, CASE (or
SWITCH) statements, and coroutine linkage.

The architecture specifies three kinds of branch­
ing hints in instructions. The hints need not be
correct, but to the extent that they are, implementa­
tions may perform faster.

The first form of hint is an architected static
branch prediction rule: forward conditional
branches are predicted not-taken, and backward
ones taken. To the extent that compilers and hard­
ware implementers follow this rule, programs can
run more quickly with little hardware cost. This
hint does not eliminate the use of dynamic branch
prediction in an implementation, but it may reduce
the need to use it.

The second form describes computed jump tar­
gets. Unused instruction bits are defined to give the
low bits of the most likely target, using the same tar­
get calculation as unconditional branches. The 14
bits provided are enough to specify the instruction
offset within a page, which is often enough to start
a fastest-level instruction-cache read many cycles
before the actual target value is known.

The third form describes subroutine and corou­
tine returns. By marking each branch and jump as
call, return, or neither, the architecture provides
enough information to maintain a small stack of
likely subroutine return addresses within an imple­
mentation. This implementation stack can be used
to prefetch subroutine returns quickly.

The conditional move instructions (discussed
previously in the Logical Instructions section and
the Floating-point Arithmetic Instructions section)

Vol. 4 No. 4 Special Issue 1992 Digital Tee/mica/ Journal

Alpha AXP Architecture

EXAMPLE 1: LOAD BYTE (UNSIGNED, LITILE-ENDIAN)

7 6
~ 4

3 2 0

LDQ_U R2,0(R1) II I B'vTE""" IIR2

7 6 5 4 3 2 0

EXTBL R2,R1,R2 I 0 IBYTEI R2

EXAMPLE 2: LOAD BYTE (SIGNED, BIG-ENDIAN)

0 ~ 3 4 5 6 7
LDO_U R2,0(R1) [!BYTE ! !R2

SUBQ R31 ,R1 ,R3 -2 R3

0 2 3 4 5 6 7
EXTQH R2,R3,R2 I@ !R2

EXAMPLE 3: STORE BYTE (LITILE-ENDIAN)

7 6 ~ 4 3 2 0
LDQ_U R2,0(R1) r I OLD I I R2

7 6 5 4 3 2 0
INSBL RO,R1 ,R3 I I NEW I R3

7 6 5 4 3 2 0
MSKBL R2,R1 ,R2 r "] l R2

7 6 5 4 3 2 0
OR R2,R3,R2 I . I 1 NEW I R2

7 6 5 4 3 2 0
STO_U R2,0(R1) I ! NEW l o(R1)

EXAMPLE 4: EXPLICIT LOAD QUADWORD (UNALIGNED, LITILE-ENDIAN)

7 6 ~ 4 3 2 0
LDO_U R2,0(R1) I LOW PART ! R2

15 14 13 (12) 11 10 9 8
LDQ_U R3,7(R1) I HIGH PART ! R3

7 6 5 4 3 2 0
EXTOL R2,R1,R2 I LOW PART !IR2

7 6 5 4 3 2 0
EXTOH R3,R1 ,R3 I HIGH PART !R3

7 6 5 4 3 2 1 0

OR R2,R3,R2 r HIG!-f PART LOVVPART I R2

EXAMPLE 5: MULTIPROCESSOR TEST-AND-SET

LDQ_L R2,0(R1) FLAG ! R2

BNE R2,FLAG_SET FLAG I R2

ORR2,#1,R2 0 - >d R2

STQ_C R2,0(R1) 1 O(R1)

BEQ R2,CONTENTION ! STORED? ! R2

Figure 4 Load/Store Instructions

Digital Technical Journal Vol. 4 No. 4 Spedal Issue 1992 31

Alpha AXP Architecture and Systems

and the branching hints eliminate some branches
and speed up the remaining ones without compro­
mising multiple instruction issue.

Supervision
The actions underpinning an operating system are
performed in PALcode subroutines and are a flexi­
ble part of the architecture. All asynchronous
events, such as interrupts, exceptions, and machine
errors, are mediated by PALcode routines. PALcode
establishes the initial state of the machine before
execution of the first software instruction. PALcode
routines mediate all accesses to physical hardware
resources, including physical main memory and
memory-mapped 1/0 device registers.

This design allows implementers to craft a set of
PALcode routines that closely match an operating
system design, not only for traditional operating
systems, but also for specialized environments such
as real-time or highly secure computing. As new
computing paradigms are adopted and new operat­
ing systems are created, the Alpha AXP architecture
may well prove flexible enough to accommodate
them efficiently.

Future Changes
The Alpha AXP architecture will surely change
during its lifetime. In addition to the PALcode
flexibility discussed above, explicit performance
flexibility and instruction-set flexibility exist in
the architecture.

Architectural fields that are too small can limit
performance. The Alpha AXP architecture there­
fore has many fields deliberately sized for later
expansion.

Although initial implementations use only 43
bits of virtual address, they check the remaining
21 bits, so that software can run unmodified on
later implementations that use (up to) all 64 bits.
Furthermore, although initial implementations use
only 34 bits of physical address, the architected
page table entry (PTE) formats and page-size
choices allow growth to 48 bits. By expanding into
a 16-bit PTE field that is not currently used by map­
ping hardware, another 16 bits of physical address
growth can be achieved, if ever needed.

Initial implementations also use only 8KB pages,
but the design accommodates limited growth to
64KB pages. Beyond that, page table granularity
hints allow groups of 8, 64, or 512 pages to be
treated as a single large page, thus effectively
extending the page-size range by a factor of over

32

1,000. Each architected PTE format also has one bit
reserved for future expansion.

Several other soft PALcode registers, such as the
PS or ASN, that need only a few bits today are allo­
cated a full 64 bits for future expansion.

Exception processing can limit performance.
PALcode routines deliver exceptions to an operat­
ing system, so the design can be gradually
improved. In fact, PALcode routines for the data
alignment have been improved in the Open VMS AXP
and DEC OSF/1 AXP operating systems. Some cur­
rently specified software exceptions (such as IEEE
denormal arithmetic) could be moved into PALcode
or hardware.

There are a number of areas of instruction-set
flexibility designed into the architecture. Four of
the 6-bit opcodes are nominally reserved for
adding integer and floating-point aligned octa­
word* (128-bit) load/store instructions. 14 Nine more
6-bit opcodes remain for other expansion. Within
each opcode, the function field contains room for
further expansion. For example, the scaled add/sub­
tract functions were added between prototype
chip and product chip. The fact that the function
fields are not fully policed is a mistake.

Within the IEEE floating-point function field,
code points are nominally reserved for double­
extended* precision (128-bit) arithmetic. Within
the memory barrier instruction group, three code
points were reserved for subset barriers. One of
these has already been redefined as a write-write
barrier.

Not all changes involve growth. There are subset­
ting rules defined for removing either one or both
(IEEE and VAX) floating-point data types. If both are
removed, the floating-point registers can also be
removed. The AMOVxx PALcode routines and RS/RC
instructions are defined as optional and can be
deleted when the transition of translated VAX code
is completed. Other unneeded PALcode routines
can also be removed eventually.

Summary
The goals that shaped the Alpha AXP architecture
design have largely been realized. For high perfor­
mance, the first implementation (the DECchip
21064 microprocessor) is listed in the October 1992
Guinness Book of Records as the world's fastest sin­
gle-chip microprocessor. It is too early to measure
longevity, but the fact that we had designed-in flexi­
bility in places that changed during development is
at least encouraging. Open VMS AXP, DEC OSF/1 AXP,

Vol. 4 No. 4 Spedal Issue 1992 Digital Technical journal

and Windows NT operating systems all run on
Alpha AXP implementations today. Programs from
the VAX and MIPS architectures transport easily to
Alpha AXP implementations and run quickly. Many
of the ideas in the Alpha AXP design are now being
adopted by other architectures in the industry.

Appendix
Binary translation- A software technique to
change an executable program written for one
architecture/operating-system pair into an equiva­
lent program for a different architecture/operating­
system pair.

Big-endian memory addressing-A view of mem­
ory in which byte O of an operand contains the
most significant (sign) bit of an integer. Compare lit­
tle-endian memory addressing.

Byte-An 8-bit datum.

Byte granularity-The appearance that two pro­
cessors can update adjacent bytes in memory with­
out interfering with each other.

CISC-Complex instruction set computer, charac­
terized by variable-length instructions, a wide vari­
ety of memory addressing modes, and instructions
that combine one or more memory accesses with
arithmetic. CISC designs express computation as a
few complex steps.

IEEE denormalized number (denormal)-A float­
ing-point number with magnitude between zero
and the smallest representable normalized number.
Numbers in this range are typically not repre­
sentable in other floating-point arithmetic systems;
such systems might signal an underflow exception
or force a result to zero instead.

IEEE double-extended format-A loosely specifed
floating-point format with at least 64 significant
bits of precision and at least 15 bits of exponent
width; typically implemented using a total of 80 or
128 bits.

IEEE dynamic rounding mode-One of four differ­
ent rounding rules.

IEEE floating-point-A form of computer arith­
metic specified by IEEE standard 754. 12 IEEE arith­
metic includes rules for denormalized numbers,
infinities, and not-a-numbers. It also specifies four
different modes for rounding results.

IEEE infinity-An operand with an arbitrarily large
magnitude.

Dig ital Technical Journal Vol. 4 No. 4 Special issue 1992

Alpha AXP Architecture

IEEE not-a-number (NaN)-A symbolic entity
encoded in a floating-point format. The IEEE stan­
dard specifies some exceptional results (e.g., 0/0)
to be NaNs.

Linear addressing-A memory addressing tech­
nique in which all addresses form a single range,
from O to the largest possible address. Subscript cal­
culations can create any address in the entire range.

Little-endian memory addressing-A view of
memory in which byte O of an operand contains the
least significant bit of an integer. The terms little­
endian and big-endian are borrowed from
Gulliver's Travels in which religious wars were
waged over which end of an egg to break.

Longword-A 32-bit datum.

Multiple instruction issue-A high-performance
computer implementation technique of starting
more than one instruction at once. An implementa­
tion that starts (up to) two instructions at once is
called dual-issue; four instructions, quad-issue or
four-way issue; etc.

Octaword-A 128-bit datum.

Quadword-A 64-bit datum.

RISC-Reduced instruction set computer, charac­
terized by fixed-length instructions, simple mem­
ory addressing modes, and a strict decoupling of
load/store memory access instructions from regis­
ter-to-register arithmetic instructions. RISC designs
express computation as many simple steps.

Segmented addressing-A memory addressing
technique in which addresses are broken into two
or more parts (segments). Subscript calculations
can only be done within a single segment, and elab­
orate software techniques are needed to extend
addressing beyond a single segment.

VAX dirty zero-A zero value represented with a
non-zero faction; must be converted to a true zero
result.

VAX floating-point- A form of computer arith­
metic specified by the VAX architecture manual.4

VAX arithmetic includes rules for reserved
operands and dirty zeros.

VAX reserved operand-A non-number that signals
an exception when used as an operand in VAX float­
ing-point arithmetic.

VAX word swapping-The rearrangement needed
for the 16-bit pieces of a VAX floating-point number

33

Alpha AXP Architecture and Systems

to put the fields in a more usual order; this is an arti­
fact of the PDP-11 16-bit architecture.

Word-A 16-bit datum.

Acknowledgments
Hundreds of people have worked on the Alpha AXP
architecture, hardware, and software. Many Alpha
AXP architectural ideas came from the PRISM
design, most notably the PALcode idea.3 The archi­
tecture work was done in the rich environment of
dozens and later hundreds of bright, thoughtful,
and outspoken professional peers. Ellen Batbouta,
Dileep Bhandarkar, Richard Brunner, Wayne
Cardoza, Dave Cutler, Daniel Dobberpuhl, Robert
Giggi, Henry Grieb, Richard Grove, Robert
Halstead, Jr., Michael Harvey, Nancy Kronenberg,
Raymond Lanza, Stephen Morris, William Noyce,
Charles Nylander, Dave Orbits, Mary Payne, Audrey
Reith, Robert Supnik, Benjamin Thomas, Catharine
van Ingen, and Rich Witek all contributed directly
to the written specification. Rich Witek is co-archi­
tect and is the other half of the term "we" used in
this paper.

References and Notes

1. G. Amdahl, G. Blaauw, and E Brooks, Jr.,
"Architecture of the IBM System/360," IBM

Journal of Research and Development, vol. 8,
no. 2 (April 1967): 87-101.

2. R. Sites, ed., Alpha Architecture Reference
Manual (Burlington, MA: Digital Press, 1992).

3. R. Conrad et al., "A 50 MIPS (Peak) 32/64b
Microprocessor," ISSCC Digest of Technical
Papers (February 1989): 76-77.

4. R. Brunner, ed., VAX Architecture Reference
Manual Second Edition (Bedford, MA: Digital
Press, 1991).

5. G. Kane and]. Heinrich, MIPS RISC Architec­
ture (Englewood Cliffs, NJ: Prentice-Hall,
1992).

6. R. Sites, A. Chernoff, M. Kirk, M. Marks, and
S. Robinson, "Binary Translation;• Digital
Technical journal, vol. 4, no. 4 (1992, this
issue): 137-152.

7. The little-endian bias is very slight; both big­
and little-endian Alpha AXP systems and soft­
ware are in fact being built.

8. There are two special-resource anomalies in
the architecture that we were unable to avoid:
the dedicated state for the load-locked
instruction and the dynamic rounding-mode
register required for full IEEE conformance.

9. This is borne out in a large customer's recent
C string manipulation benchmark result, run­
ning 3 to 6 times faster than the customer's
expectation (which was based solely on clock
rate ratios).

10. Cray-I Computer System Reference Manual,
Form 2240004 (Minneapolis: Cray Research,
Inc., 1977).

11. IBM System/370 Principles of Operation,
Form GA22-7000-4 (Armonk, NY: IBM Corpo­
ration, 1974): 28.

12. Institute of Electrical and Electronics Engi­
neers, "Binary Floating-point Arithmetic for
Microprocessor Systems," Standard Number
IEEE-754 (New York, 1985).

13. The careful reader will notice that Alpha AXP
implementations require a longword shifter
in the load/store path for 32-bit operands.
Although we briefly considered a design with
no 32-bit operands, we decided to keep 32-bit
load/store support for good business reasons.
Similarly, Alpha AXP implementations require
a word swapper in the load/store path for VAX
floating-point operands. We decided to keep
VAX floating-point support for good business
reasons. Depending on market needs, VAX
floating-point support can be removed in the
future.

14. Many commercially successful architec­
tures have grown to double-width memory
implementations in mid-life: the IBM 709
series from 36 to 72 bits; the IBM System/ 360
series from 32 to 64 bits; the Digital PDP-11
series from 16 to 32 bits; and the Digital
VAX series from 32 to 64 bits. This trend is
likely to continue.

34 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Daniel W. Dobberpuhl
Richard T. Witek

Randy AUmon
Robert Anglin

David Bertucci
Sharon Britton

Linda Chao

Robert A. Conrad
Daniel E. Dever
Bruce Gieseke

Soha M.N. Hassoun
Gregory W. Hoeppner

Kathryn Kuchler
Maureen Ladd

Burton M. Leary

A 200-MHz 64-bit Dual-issue
CMOS Microprocessor

Liam Madden
Edward) McLellan

Derrick R. Meyer
James Montanaro

Donald A. Priore
Vtdya Rajagopalan

Sridhar Samudrala
Sribalan Santhanam

A 400-mips/200-MFLOPS (peak) custom 64-bit VLSI CPU chip is described. The chip is
fabricated in a 0. 75-µ,m CMOS technology utilizing three levels of metalization and
optimized for 3.3-V operation. The die size is 16.8 mm x 13.9 mm and contains 1. 68
million transistors. The chip includes separate 8KB instruction and data caches and
a fully pipelined floating-point unit that can handle both IEEE and VAX standard
floating-point data types. It is designed to execute two instructions per cycle among
scoreboarded integer, floating-point, address, and branch execution units. Power
dissipation is 30 Wat 200-MHz operation.

A reduced instruction set computer (RISC)-style
microprocessor has been designed and tested that
operates up to 200 megahertz (MHz). The chip
implements a new 64-bit architecture, designed to
provide a huge linear address space and to be devoid
of bottlenecks that would impede highly concur­
rent implementations. Fully pipelined and capable
of issuing two instructions per clock cycle, this
implementation can execute up to 400 million oper­
ations per second. The chip includes an 8-kilobyte
(KB) I-cache, 8KB D-cache and two associated trans­
lation buffers, a four-entry, 32-byte-per-entry write
buffer, a pipelined 64-bit integer execution unit
with a 32-entry register file, and a pipelined floating­
point unit (FPU) with an additional 32 registers. The
pin interface includes integral support for an exter­
nal secondary cache. The package is a 431-pin pin
grid array (PGA) with 140 pins dedicated to ~nl~s
(power supply voltage/ground). The chip is fabri­
cated in a 0.75-micrometer (µm) n-well comple­
mentary metal-oxide semiconductor (CMOS)
process with three layers of metalization. The die
measures 16.8 millimeters (mm) x 13.9 mm and con­
tains 1.68 million transistors. Power dissipation is
30 watts (W) from a 3.3-volt (V) supply at 200 MHz.

© IEEE.Reprinted, with permission, from the IEEE]ournal of
Solid-State Circuits, volume 27, number 11, pages 1555 to 1567,
November 1992.

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

CMOS Process Technology
The chip is fabricated in a 0.75-µm, 3.3-V, n-well
CMOS process optimized for high-performance
microprocessor design. Process characteristics are
shown in Table 1. The thin gate oxide and short
transistor lengths result in the fast transistors
required to operate at 200 MHz. There are no
explicit bipolar devices in the process as the incre­
mental process complexity and cost were deemed

Table 1 Process Description

Feature size

Channel length

Gate oxide

Vi/Vip
Power supply

Substrate

Salicide

Buried contact

Metal 1

Metal 2

Metal 3

0.75µm

0.5µm

10.5 nm

0.5V/-0.5 V

3.3V

P-epitaxial with n-well

Cobalt-disilicide in diffusions
and gates

Titanium nitride

0.75-µm AICu, 2.25-µm pitch
(contacted)

0.75-µm AICu, 2.625-µm
pitch (contacted)

2.0-µm AICu, 7.5-µm pitch
(contacted)

35

Alpha AXP Architecture and Systems

too large in comparison to the benefits provided­
principally more area-efficient large drivers such as
clock and 1/0.

The metal structure is designed to support
the high operating frequency of the chip. Metal 3
is very thick and has a relatively large pitch. It
is important at these speeds to have a low-resis­
tance metal layer available for power and clock
distribution. It is also used for a small set of special
signal wires such as the data buses to the pins
and the control wires for the two shifters. Metal 1
and metal 2 are maintained at close to their maxi­
mum thickness by planarization and by filling metal
1 and metal 2 contacts with tungsten plugs. This
removes a potential weak spot in the electromi­
gration characteristics of the process and allows
more freedom in the design without compromising
reliability.

Alpha AXP Architecture
The computer architecture implemented is a 64-bit
load/store RISC architecture with 168 instructions,
all 32 bits wide. 1 Supported data types include
8-, 16-, 32-, and 64-bit integers and both Digital and
IEEE 32- and 64-bit floating-point formats. Each of
the two register files, integer and floating point,
contains 32 entries of 64 bits with one entry in each
being a hardwired zero. The program counter and
virtual address are 64 bits. Implementations can
subset the virtual address size, but are required to
check the full 64-bit address for sign extension.
This ensures that when later implementations
choose to support a larger virtual address, pro­
grams will still run and not find addresses that have
dirty bits in the previously "unused" bits.

The architecture is designed to support high­
speed multi-issue implementations. To this end the
architecture does not include condition codes,
instructions with fixed source or destination regis­
ters, or byte writes of any kind (byte operations are
supported by extract and merge instructions
within the CPU itself). Also there are no first-gener­
ation artifacts that are optimized around today's
technology, which would represent a long-term lia­
bility to the architecture.

Chip Microarchitecture
The block diagram (Figure 1) shows the major func­
tional blocks and their interconnecting buses, most
of which are 64 bits wide. The chip implements
four functional units: the integer unit (IRF plus

36

I-CACHE

l
E-BOX F-BOX

- I-BOX

BIU
IRF FRF

A-BOX

~ WRITE BUFFER

D-CACHE

Figure I CPU Chip Block Diagram

E-box), the floating-point unit (FRF plus F-box), the
load/store unit (A-box), and the branch unit (dis­
tributed). The bus interface unit (BIU), described in
the next section, handles all communication
between the chip and external components. The
microphotograph (Figure 2) shows the boundaries
of the major functional units. The dual-issue rules
are a direct consequence of the register file ports,
the functional units, and the I-cache interface. The
integer register file (IRF) has two read ports and one
write port dedicated to the integer unit, and two
read and one write port shared between the branch
unit and the load/store unit. The floating-point reg­
ister file (FRF) has two read ports and one write
port dedicated to the floating unit, and one read
and one write port shared between the branch unit
and the load/store unit. This leads to dual-issue
rules that are quite general:

• Any load/store in parallel with any operate

• An integer operate in parallel with a floating
operate

• A floating operate and a floating branch

• An integer operate and an integer branch

except that integer store and floating operate and
floating store and integer operate are disallowed as
pairs.

Vol. 4 No. 4 Special Issue 1992 Digital Tech'1ical Jourttal

A 200-MHz 64-bit Dual-issue CMOS Microprocessor

Figure 2 Microphotograph of Chip

As shown in Figure 3a, the integer pipeline is
7 stages deep, where each stage is a 5-nanosecond
(ns) clock cycle. The first four stages are associated
with instruction fetching, decoding, and score­
board checking of operands. Pipeline stages O
through 3 can be stalled. Beyond 3, however, all
pipeline stages advance every cycle. Most arith­
metic and logic unit (ALU) operations complete in
cycle 4, allowing single-cycle latency, with the
shifter being the exception. Primary cache accesses
complete in cycle 6, so cache latency is three cycles.
The chip will do hits under misses to the primary
D-cache.

The I-stream is based on autonomous prefetch­
ing in cycles O and 1 with the final resolution of
I-cache hit not occurring until cycle S. The
prefetcher includes a branch history table and a

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

subroutine return stack. The architecture provides
a convention for compilers to predict branch deci­
sions and destination addresses, including those for
register indirect jumps. The penalty for branch mis­
predict is four cycles.

The floating-point unit is a fully pipelined 64-bit
floating-point processor that supports both VAX

standard and IEEE standard data types and rounding
modes. It can generate a 64-bit result every cycle
for all operations except divide. As shown in Figure
3b, the floating-point pipeline is identical and
mostly shared with the integer pipeline in stages O
through 3; however, the execution phase is three
cycles longer. All operations, 32- and 64-bit (except
divide) have the same timing. Divide is handled by a
nonpipelined, single bit per cycle, dedicated divide
unit.

37

Alpha AXP Architecture and Systems

0
IF

CACHE
ACCESS

1
SW

SWAP
PREDICT

2
10

DECODE

3
11

ISSUE
RF READ

4
A1

ALU1

PC GEN

VA GEN

5 6
A2 WR

WRITE

}BYPASS

ALU2

ITB I-CACHE
HIT/MISS

OTB D-CACHE
HIT/MISS

(a) Integer Unit Pipeline Timing

0 1 2 3 4 5 6 7 8 9

I BYPASS
IF SW 10 11 F1 F2 F3 F4 FS FWR

CACHE DECODE ADD L1D SHIFT ADD/AND FRFWRITE
ACCESS

3X MUL1 MUL2 ADD/AND FRFWRITE
SWAP ISSUE
PREDICT RF READ

(b) Floating-point Unit Pipeline Timing

KEY:

PC GEN GENERATE NEW PROGRAM COUNTER VALUE
VA GEN GENERATE NEW VIRTUAL ADDRESS
ITB INSTRUCTION TRANSLATION BUFFER
OTB DATA TRANSLATION BUFFER

Figure 3 Pipeline Timing

In cycle 4, the register file data is formatted to
fraction, exponent, and sign. In the first-stage
adder, exponent difference is calculated and a 3 x
multiplicand is generated for multiplies. In addi­
tion, a predictive leading 1 or O detector using
the input operands is initiated for use in result nor­
malization. In cycles 5 and 6, for add/subtract,
alignment or normalization shift and sticky-bit cal­
culation are performed. For both single- and dou­
ble-precision multiplication, the multiply is done in
a radix-8 pipelined array multiplier. In cycles 7 and
8, the final addition and rounding are performed in
parallel and the final result is selected and driven
back to the register file in cycle 9. With an allowed
bypass of the register write data, floating-point
latency is six cycles.

The CPU contains all the hardware necessary to
support a demand paged virtual memory system. It
includes two translation buffers to cache virtuaI-to­
physical address translation. The instruction trans­
lation buffer contains 12 entries, 8 that map 8KB

38

pages and 4 that map 4-megabyte (MB) pages. The
data translation buffer contains 32 entries that can
map 8KB, 64KB, 512KB, or 4MB pages.

The CPU supports performance measurement
with two counters that accumulate system events
on the chip such as dual-issue cycles and cache
misses or external events through two dedicated
pins that are sampled at the selected system clock
speed.

External Interface
The external interface (Figure 4) is designed to
directly support an off-chip backup cache that can
range in size from 128KB to 8MB and can be
constructed from ordinary SRAMs. For most opera­
tions, the CPU chip accesses the cache directly
in a combinatorial loop by presenting an address
and waiting N CPU cycles for control, tag, and data
to appear, where N is a mode-programmable num­
ber between 3 and 16 set at power-up time. For
writes, both the total number of cycles and the

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

A 200-MHz 64-bit Dual-issue CMOS Microprocessor

a r < : > d h 33 5

RAM_ctl sys_RAM_ctl

~---!--I B-CACHE f- -!- -- -I

I SYSTEM DEPENDENT LOGIC
I
I I

I ! ! l l ! ! I

I TAG

~
DATA/ I

I CTL CHECK I
CPU I

RAM
M

RAM I MEMORY

CHIP SYSTEM L __ --- ---- __ I
INTERFACE

tagctlV,S,D,P

tag_h<33:n> -
data_h<127:0>, check_h<27:0>

misc_out

misc_in

OSC<2> sysClk
(400 MHz)

iAdr_h<12:5>

Figure 4 CPU External Interface

duration and position of the write signal are
programmable in units of CPU cycles. This allows
the module designer to select the size and access
time of the SRAMs to match the desired price/
performance point.

The interface is designed to allow all cache pol­
icy decisions to be controlled by logic external to
the CPU chip. There are three control bits associ­
ated with each backup cache CB-cache) line: valid,
shared, and dirty. The chip completes a B-cache
read as long as valid is true. A write is processed by
the CPU only if valid is true and shared is false.
When a write is performed, the dirty bit is set to
true. In all other cases, the chip defers to an exter­
nal state machine to complete the transaction. This
state machine operates synchronously with the
SYS_CLK output of the chip, which is a mode-con­
trolled submultiple of the CPU clock rate ranging
from divide by 2 to divide by 8. It is also possible to
operate without a backup cache.

As shown in the diagram, the external cache
is connected between the CPU chip and the sys­
tem memory interface. The combinatorial cache
access begins with the desired address delivered
on the adr_h lines and results in ctl, tag, data,
and check bits appearing at the chip receivers
within the prescribed access time. In 128-bit
mode, B-cache accesses require two external data
cycles to transfer the 32-byte cache line across

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

the 16-byte pin bus. In 64-bit mode, it is four cycles.
This yields a maximum backup cache read band­
width of 1.2 gigabytes per second (GB/s) and a write
bandwidth of 711MB/s. Internal cache lines can
be invalidated at the rate of one line per cycle
using the dedicated invalidate address pins,
iAdr_h<12:5>.

In the event external intervention is required, a
request code is presented by the CPU chip to the
external state machine in the time domain of the
SYS_CLK as described previously. Figure 5 shows
the read miss timing where each cycle is a SYS_CLK
cycle. The external transaction starts with the
address, the quadword within block and instruc­
tion/data indication supplied on the cWMask_h
pins, and READ_BLOCK function supplied on the
cReq_h pins. The external logic returns the first
16 bytes of data on the data_h and error correct­
ing code (ECC) or parity on the check_h pins. The
CPU latches the data based on receiving acknowl­
edgment on rdAck_H. The diagram shows a stall
cycle (cycle 4) between the request and the return
data; this depends on the external logic and could
range from zero to many cycles. The second 16
bytes of data are returned in the same way with
rdAck_h signaling the return of the data and cAck_h
signaling the completion of the transaction. cReq_h
returns to idle and a new transaction can start at
this time.

39

Alpha AXP Architecture and Systems

sysCLKOut_h

adr_h ~---------VA_L_ID ________ c
cWMask_h ___ ... X._ _______ v_A_L_,D ______ __,X._ __ _

cReq_h

;i~1~~~ _________,X VALID X ... __ ..,X VALID X ... __ _

rdAck_h / _ _ __.., \.____,! \.____
cAck_h

Figure 5 CPU External Timing

The chip implements a novel set of features sup­
por ting chip and module test. When the chip is
reset, the first action is to read from a serial read­
only memory (SROM) into the I-cache via a private
three-wire port. The CPU is then enabled and the
program counter (PC) is forced to 0. Thus with only
three functional components (CPU chip, SROM, and
clock inp ut), a system is able to begin executing
instructions. This initial set of instructions is used
to write the bus control registers inside the CPU

chip to set the cache timing and to test the chip and
module from the CPU out. After the SROM loads the
I-cache, the pins used for the SROM interface are
enabled as serial in and out ports. These ports can
be used to load more data or to return status of test­
ing and setup.

Circuit Implementation
Many novel circuit structures and detailed analysis
techniques were developed to support the clock
rate in conjunction with the complexity demanded
by the concurrence and wide data paths. The clock­
ing method is single wire level sensitive. The bus
interface unit operates from a buffered version of
the main clock. Signals that cross this interface are
deskewed to eliminate races. This clocking method
eliminates dead time between phases and requires
only a single clock signal to be routed throughout
the chip.

40

One difficulty inherent in this clocking method
is the substantial load on the clock node, 3.25
nanofarad (nF) in our design. This load and the
requirement for a fast clock edge led us to take par­
ticular care with clock routing and to do extensive
analysis on the resulting grid. Figure 6 shows the
distribution of clock load among the major func­
tional units. The clock drives into a grid of vertical
metal 3 and horizontal metal 2. Most of the loading
occurs in the integer and floating-point units that
are fed from the more robust metal 3 lines. To
ensure the integrity of the clock grid across the
chip, the grid was extracted from the layout and the
resulting network, which contained 630,000 RC ele­
ments, was simulated using a circuit simulation
program based on the AWEsim simulator from
Carnegie-Mellon University. Figure 7 shows a three­
dimensional representation of the output of this
simulation and shows the clock delay from the
driver to each of the 63,000 transistor gates con­
nected to the clock grid.

The 200-MHz clock signal is fed to the driver
through a binary fanning tree with five levels of
buffering. There is a horizontal shorting bar at the
input to the clock driver to help smooth out possi­
ble asymmetry in the incoming wave front. The
driver itself consists of 145 separate elements, each
of which contains four levels of prescaling into a
final output stage that drives the clock grid.

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

A 200-MHz 64-bit Dual-issue CMOS Microprocessor

INT UNIT
1129 pF

WRITE
BUFFER
82pF

I-CACHE
373pF

FPU
803pF

D·CACHE
208 pF

TOTAL BYPASS CAPACITANCE= 128 nF

Note: Total effective switching capacitance= 12.5 nF

Figure 6 Clock Load Distribution

• < 2.93E+01

• 5.86E+01

300 8.79E+01
cii
E, 200
>-cu D 1.17E+02

"'iii c 100
1.47E+02

0

1.76E+02

2.05E+02

LOCK DRIVER_ <~ 2.34E+02 ,,....:
,-i.~

_,
_,,..<'· ' 2.64E+02 _,,,,

,~~ _/~

'
'o~ • < 2.93E+02

fo~ ~~"'
:(''\.

I>,~
~.;,,<s

Figure 7 CPU Clock Skew

The clock driver and predriver represent about
40 percent of the total effective switching capaci­
tance determined by power measurement to be
12.5 nF (worst case including output pins). To
manage the problem of di/dt on the chip power
pins, explicit decoupling capacitance is provided

Digital Tee/mica./ Jou r nal Vol . 4 No. 4 Sflecial lss11e 1992

on-chip. This consists of thin oxide capacitance
that is distributed around the chip, primarily under
the data buses. In addition, there are horizontal
metal 2 power and clock shorting straps adjacent
to the clock generator, and the thin oxide decoup­
ling cap under these lines supplies charge to

41

Alpha AXP Architecture and Systems

the clock driver. di/dt for the driver alone is about
2 x 1011 amperes per second. The total decoupling
capacitance as extracted from the layout measures
128 nE Thus the ratio of decoupling capacitance
to switching cap is about 10: 1. With this capacitance
ratio, the decoupling cap could supply all the charge
associated with a complete CPU cycle with only a 10
percent reduction in the on-chip supply voltage.

Latches
As previously described, the chip employs a single­
phase approach, with nearly all latches in the core
of the chip receiving the clock node, CLK, directly.
A representative example is illustrated in Figure 8.
Notice that Ll and L2 are transparent latches
separated by random logic and are not simultane­
ously active; Ll is active when CLK is high and L2
is active when CLK is low. The minimum number of
delays between latches is zero and the maximum
number of delays is constrained only by the cycle
time and the details of any relevant critical paths.
The bus interface unit, many data-path structures,
and some critical paths deviate from this approach
and use buffered versions and/or conditionally buf-

CLK

LOGIC

(a) Latching Schema

CLK

L 1 OPAQUE L2 OPAQUE
L2 TRANSPARENT L1 TRANSPARENT

(b) Latch Timing

Figure 8 Chip Latches

42

fered versions of CLK. The resulting clock skew is
managed or eliminated with special latch structures.

The latches used in the chip can be classified into
two categories: custom and standard. The custom
latches were used to meet the unique needs of data­
path structures and the special constraints of criti­
cal paths. The standard latches were used in the
design of noncritical control and in some data-path
applications. These latches were designed prior to
the start of implementation and were included in
the library of usable elements for logic synthesis. All
synthesized logic used only this set of latches.

The standard latches are extensions of previously
published work, and examples are shown in Fig­
ures 9 to 11.2 To understand the operation of
these latches, refer to Figure 9a. When CLK is high,
Pl, Nl, and N3 function as an inverter complement­
ing INl to produce X. P2, N2, and N4 function as a
second inverter and complement X to produce
OUT. Therefore, the structure passes INl to OUT.
When CLK is low, N3 and N4 are cut off. If INl, X,
and OUT are initially high, low, and high respec­
tively, a transition of INl falling pulls X high
through Pl causing P2 to cut off, which tristates
OUT high. If INl, X, and OUT are initially low, high,
and low respectively, a transition of INl rising
causes Pl to cut off, which tristates X high leaving
out tristated low. In both cases, additional transi­
tions of INl leave X tristated or driven high with
OUT tristated to its initial value. Therefore, the
structure implements a latch that is transparent
when CLK is high and opaque when CLK is low.
Figure 9c shows the dual circuit of the latch just dis­
cussed; this structure implements a latch that is
transparent when CLK is low and opaque when
CLK is high. Figures 9b and 9d depict latches with
an output buffer used to protect the sometimes
dynamic node OUT and to drive large loads.

The design of the standard latches stressed three
primary goals: flexibility, immunity to noise, and
immunity to race-through. To achieve the desired
flexibility, a variety of latches like those in Figures 9
to 11 in a variety of sizes were characterized for the
implementors. Thus the designer could select a
latch with an optional output buffer and an embed­
ded logic function that was sized appropriately to
drive various loads. Furthermore, it was decided to
allow zero delay between latches, completely free­
ing the designer from race-through considerations
when designing static logic with these latches.

In the circuit methodology adopted for the imple­
mentation, only one node, X (Figure 9a), poses

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

CLK

IN1 --ct-- OUT

P5

OUT

(a) Noninverting Active-high Latch

IN1

CLK

IN1+0UT

CLK ---+--+------+-----<i-+----

(c) Noninverting Active-low Latch

OUT

Figure9

inordinate noise margin risk. As noted above, X
may be tristated high with OUT tristated low when
the latch is opaque. This maps into a dynamic node
driving into a dynamic gate that is very sensitive to
noise that reduces the voltage on X, causing leakage
through P2, thereby destroying OUT. This problem
was addressed by the addition of PS. This weak
feedback device is sized to source enough current
to counter reasonable noise and hold P2 in cutoff.
NS plays an analogous role in Figure 9c.

Race-through was the major functional concern
with the latch design. It is aggravated by clock skew,

Digital TechnicalJoun,al Vol. 4 No. 4 Special Issue 1992

A 200-MHz 64-bit Dual-issue CMOS Microprocessor

CLK

IN1 --cto- OUT

(b) Inverting Active-high Latch

CLK

IN1-i}- OUT

P4
IN1

CLK--+---ti+-----+--1r+----

(d) Inverting Active-low Latch

Basic Latches

the variety of available latches, and the zero delay
goal between latches. The clock skew concern
was actually the easiest to address. If data propa­
gates in a direction that opposes the propagation of
the clock wave front, clock skew is functionally
harmless and tends only to reduce the effective
cycle time locally. Minimizing this effect is of con­
cern when designing the clock generator. If data
propagates in a direction similar to the propagation
of the clock wave front, clock skew is a functional
concern. This was addressed by radially distrib­
uting the clock from the center of the chip. Since

43

Alpha AXP Architecture and Systems

CLK

IN1~0UT
IN2--y;--

OUT

(a) Two-input AND Active-high Latch

CLK

IN1~0UT
IN2~

IN1

CLK--+---1+---+--+--IH---.--

IN2

OUT

(c) Two-input AND Active-low Latch

CLK

IN1~0UT
IN2~

(b) Two-input NAND Active-high Latch

IN1

CLK

IN1~0UT
IN2~-

P2

CLK --+---f+--- +--+--IH---.--

N2

IN2

(d) Two-input NAND Active-low Latch

Figure JO AND/NAND Latches

the clock wave front moves out radially from the
clock driver toward the periphery of the die, it is
not possible for the data to overtake the clock if the
clock network is properly designed.

To verify the remaining race-through concerns, a
mix-and-match approach was taken. All reasonable
combinations of latches were cascaded together
and simulated. The simulations were stressed by
eliminating all interconnect and diffusion capaci­
tance and by pushing each device into a corner
of the process that emphasized race-through.

44

Then many simulations with varying CLK rise and
fall times, temperatures, and power supply volt­
ages were performed. The results showed no
appreciable evidence of race-through for CLK rise
and fall times at or below 0.8 ns. With 1.0-ns rise
and fall times, the latches showed signs of failure.
To guarantee functionality, CLK was specified and
designed to have an edge rate of less than 0.5 ns.
This was not a serious constraint since other
circuits in the chip required similar edge rates of
the clock.

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

CLK

IN1~0UT
IN2~

(a) Two-input OR Active-high Latch

CLK

IN1 ---r4\._ OUT
IN2~

OUT

(c) Two-input OR Active-low Latch

Figure 11

A last design issue worth noting is the feedback
devices, NS and PS, in Figures lOc, lOd, lla, and
llb. Notice that these devices have their gates tied
to CLK instead of OUT like the other latches. This
difference is required to account for an effect not
present in the other latches. In these latches, a
stack of devices is connected to node X, without
passing through the clocked transistors P3 or N3.
Referring to Figure lla, assume CLK is low, X is
high, and OUT is low. If multiple random transitions
are allowed by INl with IN2 high, then coupling

A 200-MHz 64-bit Dual-issue CMOS Microprocessor

CLK

IN1~0UT
IN2~-

(b) Two-input NOR Active-high Latch

CLK

IN1~0UT
IN2~

(d) Two-input NOR Active-low Latch

OR/NOR Latches

through Pl can drive X down by more than a
threshold even with weak feedback, thereby
destroying OUT. To counter this phenomenon, PS
cannot be a weak feedback device and therefore
cannot be tied to OUT if the latch is to function
properly when CLK is high. Note that taller stacks
aggravate this problem because the devices
become larger and there are more devices to partic­
ipate in coupling. For this reason, stacks in these
latches were limited to three high. Also, note that
clocking P5 introduces another race-through path

Digital Technical]o11n,al Vol. 4 No. 4 Special Issue 1992 45

Alpha AXP Architecture and Systems

since X will unconditionally go high with CLK
falling, and OUT must be able to retain a stored ONE.
So there is a two-sided constraint: P5 must be large
enough to counter coupling and small enough not
to cause race-through. These trade-offs were ana­
lyzed by simulation in a manner similar to the one
outlined above.

64-bit Adder
A difficult circuit problem was the 64-bit adder por­
tion of the integer and floating-point ALUs. Unlike a
previous high-speed design, we set a goal to
achieve single-cycle latency in this unit.3 Figure 12
has an organizational diagram of its structure. Every
path through the adder includes two latches, allow­
ing fully pipelined operation. The result latches are
shown explicitly in the diagram; however, the input
latches are somewhat implicit, taking advantage of
the predischarge characteristics of the carry chains.
The complete adder is a combination of three meth­
ods for producing a binary add: a byte long carry
chain, a longword (32-bit) carry select, and local
logarithmic carry select.4 The carry select is built as
a set of n-channel metal-oxide semiconductor
(NMOS) switches that direct the data from byte
carry chains. The 32-bit longword lookahead is
implemented as a distributed differential circuit
controlling the final stage of the upper longword
switches. The carry chains are organized in groups
of eight bits.

Carry chain width was chosen to implement a
byte compare function specified by the architec­
ture. The carry chain implemented with NMOS tran­
sistors is shown in Figure 13a. Operation begins
with the chain predischarged to Vss, with the con­
trolling signal an OR of CLK and the kill function.
Evaluation begins along the chain length without
the delay associated with the l;;s -V, threshold found
in a chain precharged to Vvv· An alternative to a pre­
discharged state was to precharge to Vvv-V,, but the
resulting low noise margins were deemed unac­
ceptable. From the least significant bit to the most
significant bit, the width of the NMOS gates for each
carry chain stage is tapered down, reducing the
loading presented by the remainder of the chain.
The local carry nodes are received by ratioed invert­
ers. Each set of propagate, kill, and generate signals
controls two carry chains, one that assumes a carry
in and one that assumes no carry in. The results
feed the bit-wise data switches as well as the carry
selects.

46

The longword carry select is built as a distributed
cascode structure used to combine the byte gen­
erate, kill, and propagate signals across the lower
32-bit longword. It controls the final data selection
into the upper longword output latch and is out of
the critical path.

The NMOS byte carry select switches are con­
trolled by a cascade of closest neighbor byte carry
outs. Data in the most significant byte of the upper
longword is switched first by the carry-out data of
the next lower byte, byte 6, then by byte 5, and
finally byte 4. The switches direct the sum data
from either the carry-in channel or the no-carry
channel (Figure 13b). Sign extension is accom­
plished by disabling the upper longword switch
controls on longword operations and forcing the
sign of the result into both data channels.

1/0 Circuitry
To provide maximum flexibility in applications, the
external interface allows for several different
modes of operation all using common on-chip cir­
cuitry. This includes choice of logic family (CMOS/
transistor-transistor logic [TTL] or emitter-coupled
logic [ECL]) as well as bus width (64/128 bits), exter­
nal cache size and access time, and BIU clock rate.
These parameters are set into mode registers dur­
ing chip power-up. The logic family choice pro­
vided an interesting circuit challenge. The input
receivers are differential amplifiers that utilize an
external reference level which is set to the switch­
ing midpoint of the external logic family. To main­
tain signal integrity of this reference voltage, it is
resistively isolated and RC-filtered at each receiver.

The output driver presented a more difficult
problem due to the 3.3-V Vvv chip power supply. To
provide a good interface to ECL, it is important that
the output driver pull to the Vvv rail (for ECL opera­
tion Vvv = 0 V, Vss = -3.3 V). This precludes using
NMOS pull-ups. P-channel metal-oxide semicon­
ductor (PMOS) pull-ups have the problem of well­
junction forward bias and PMOS turn-on when
bidirectional outputs are connected to 5-V logic
in CMOS/TTL mode. The solution, as shown in Fig­
ure 14, is a unique floating-well driver circuit that
avoids the cost of series PMOS pull-ups in the final
stage, while providing direct interface to 5-V
CMOS/TTL as well as ECL. 5

Transistors QI , Q2, and Q6 are the actual output
devices. QI and Q2 are NMOS devices arranged in
cascade fashion to limit the voltages across a single

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

R
E

S
U

LT

R
E

S
U

LT

R
E

S
U

LT

R
E

S
U

LT

LA
T

C
H

LA

T
C

H

LA
T

C
H

LA

T
C

H

R
E

S
U

LT

LA
T

C
H

2

M
U

X

R
E

S
U

LT

LA
T

C
H

LA
T

C
H

A

N
D

 X
O

R

IN
P

U
T

 O
P

E
R

A
N

D
S

IN

P
U

T
 O

P
E

R
A

N
D

S

IN
P

U
T

 O
P

E
R

A
N

D
S

IN

P
U

T
 O

P
E

R
A

N
D

S

IN
P

U
T

 O
P

E
R

A
N

D
S

IN

P
U

T
 O

P
E

R
A

N
D

S

B
Y

T
E

 7

B
Y

T
E

 6

B
Y

T
E

 5

B
Y

T
E

 4

B
Y

T
E

 3

B
Y

T
E

 2

F
ig

u
re

 1
2

6
4

-b
it

 A
d

d
e

r B
lo

c
k
 D

ia
g

ra
m

R
E

S
U

LT

LA
T

C
H

LA
T

C
H

A

N
D

 X
O

R

LO
O

K

A
H

E
A

D

IN
P

U
T

 O
P

E
R

A
N

D
S

B
Y

T
E

1

R
E

S
U

LT

LA
T

C
H

LA
T

C
H

A

N
D

 X
O

R

IN
P

U
T

 O
P

E
R

A
N

D
S

B
Y

T
E

 O

Alpha AXP Architecture and Systems

VDD

VF_WELL

48

VDD

Voo

VDD VDD VDD VDD

(a) Adder Carry Chain

VDD

GENERATE
DEVICE

VD/

PROPAGATE
DEVICE

SUM_OUT _ASSUMING_CARRY

SUM_OUT _ASSUMING_NO_CARRY

C1 GETS C1

C1 GETSC1 L

CO GETS COL

CO GETS CO

SUM_IN_ASSUMING_NO_CARRY

SUM_IN_ASSUMING_CARRY

(b) Adder Carry-select Switches

Figum 13 Adder Carry

TO
PAD

transistor to no more than 4 V Q6 is a PMOS pull-up
device that shares a common n-well with Q7
through QlO, which have responsibility for supply­
ing the well with a positive bias voltage of either
Yan or the 1/0 pin potential, whichever is higher. Q3
through Q5 control the source of voltage for the
gate of Q6-either the output of the inverter or the
1/0 pad if it moves above Von· Rl and R2 provide
50-ohm series termination in either operating mode.

Caches

Figure 14 Floating-well Driver

The two internal caches are almost identical in con­
struction. Each stores up to 8KB of data (D-cache)
or instruction (I-cache) with a cache block size of
32 bytes. The caches are direct mapped to realize
a single cycle access, and can be accessed using

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

untranslated bits of the virtual address since the
page size is also 8KB. For a read, the address stored
in the tag and a 64-bit quadword of data are
accessed from the caches and sent to either the
memory management unit for the D-cache or the
instruction unit for the I-cache. A write-through
protocol is used for the D-cache.

The D-cache incorporates a pending fill latch
that accumulates fill data for a cache block while
the D-cache services other load/store requests.
Once the pending fill latch is full, an entire cache
block can be written into the cache on the next
available cycle. The I-cache has a similar facility
called the stream buffer. On an I-cache miss, the
I-box fetches the required cache block from mem­
ory and loads it into the I-cache. In addition, the
I-box will prefetch the next cache block and place it
in the stream buffer. The data is held in the stream
buffer and is written into the I-cache only if the data
is requested by the I-box.

Each cache is organized into four banks to reduce
power consumption and current transients during
precharge. Each array is approximately 1,024 cells
wide by 66 cells tall with the top two rows used
as redundant elements. A six-transistor, 98-µ.m 2

static RAM cell is used. The cell utilizes a local inter­
connect layer that connects between polysilicon
and active area, resulting in a 20-percent reduction
in cell area compared to a conventional six-transis-

CLK

DISPLACEMENT
ADD

CACHE
WORD-LINE

CACHE DATA/
TAGS OUT

REGISTER FILE
WRITE PORT

ALU BYPASS IN

3 4

A 200-MHz 64-bit Dual-issue CMOS Microprocessor

tor cell. A segmented word line is used to accom­
modate the banked design, with a global word line
implemented in third-level metal and a local word
line implemented in first-metal layer. The global
word line feeds into local decoders that decode the
lower two bits of the address to generate the local
word lines. As shown in Figure 15, the word lines
are enabled while the clock is high, and the sense
amplifiers are fired on the falling edge of the clock.

Summary
A single chip microprocessor that implements a
new 64-bit high-performance architecture has been
described. By using a highly optimized design style
in conjunction with a high-performance 0.75-µ.m
technology, operating speeds up to 200 MHz have
been achieved.

The chip is superscalar degree 2 and has 7- and
10-stage pipelines for integer and floating-point
instructions. The chip includes primary instruction
and data caches, each 8KB in size. In each 5-ns
cycle, the chip can issue two instructions to two of
four units, yielding a peak execution rate of 400
mips and 200 MFLOPS.

The chip is designed with a flexible external
interface providing integral support for a sec­
ondary cache constructed of ordinary SRAMs. The
interface is fully compatible with virtually any
multiprocessor write cache coherence scheme,

PIPELINE STAGE

5 6 7 8

Figure 15 D-cache Timing Diagram

Dtgttal Tecbntcal Journal Vol. 4 No. 4 Special Issue 1992 49

Alpha AXP Architecture and Systems

and can accommodate a wide range of timing
parameters. It can interface directly to standard rn
and CMOS as well as IOOK ECL technology.

References

1. Alpha Architecture Handbook (Maynard: Digital
Equipment Corporation, Order No. EC-Hl689-10,
1992).

2.]. Yuan and C. Svensson, "High-Speed CMOS
Circuit Techniques," IEEE Journal of Solid-State
Circuits, vol. 24, no. 1 (February 1989).

50

3. R. Conrad et al., "A 50 MIPS (peak) 32/64b
Microprocessor," ISSCC Digest of Technical
Papers (February 1989): 76-77.

4.]. Sklansky, "Conditional-Sum Addition Logic,"
IRE Transactions on Electronic Computing,
vol. EC-9 (1960): 226-231.

5. H. Lee et al., "An Experimental lMb CMOS SRAM
with Configurable Organization and Operation,"
ISSCC Digest of Technical Papers (February
1988): 180-181.

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Charles P. Thacker
David G. Conroy

Lawrence C. Stewart

The Alpha Demonstration Unit:
A High-performance Multiprocessor
for Software and Chip Development

Digital's first RISC system built using the 64-bit Alpha AXP architecture is the
prototype known as the Alpha demonstration unit or ADU it consists of a backplane
containing 14 slots, each of which can hold a CPU module, a 64MB storage module,
or a module containing two 50MB/s I/0 channels. A new cache coherence protocol
provides each processor and I/0 channel with a consistent view of shared memory.
Tbirtyfive ADU systems were built within Digital to accelerate software develofr
ment and early chip testing.

There is nothing more difficult to take in hand,
more perilous to conduct, or more uncertain in its
success, than to take the lead in the introduction of
a new order of things.

-Niccolo Machiavelli, The Prince

Introducing a new, 64-bit computer architecture
posed a number of challenges for Digital. In
addition to developing the architecture and the
first integrated implementations, an enormous
amount of software had to be moved from the VAX

and MIPS (MIPS Computer Systems, Inc.) architec­
tures to the Alpha AXP architecture. Some software
was originally written in higher-level languages and
could be recompiled with a few changes. Some
could be converted using binary translation tools.•
All software, however, was subject to testing and
debugging.

It became clear in the early stages of the program
that building an Alpha demonstration unit (ADU)
would be of great benefit to software developers.
Having a functioning hardware system would moti­
vate software developers and reduce the overall
time to market considerably. Software develop­
ment, even in the most disciplined organizations,
proceeds much more rapidly when real hardware is
available for programmers. In addition, hardware
engineers could exercise early implementations of
the processor on the ADU, since a part as complex
as the DECchip 21064 CPU is difficult to test using
conventional integrated circuit testers.

For these reasons, a project was started in early
1989 to build a number of prototype systems as

D igital Technical Journal Vol. 4 No. 4 Special Issue 1992

rapidly as possible. These systems did not require
the high levels of reliability and availability typical
of Digital products, nor did they need to have low
cost, since only a few would be built. They did need
to be ready at the same time as the first chips, and
they had to be sufficiently robust that their pres­
ence would accelerate the overall program.

Digital's Systems Research Center (SRC) in Palo
Alto, CA had had experience in building similar pro­
totype systems. SRC had designed and built much of
its computing equipment. 2 Being located in Silicon
Valley, SRC could employ the services of a number
of local medium-volume fabrication and assembly
companies without impeding the mainstream
Digital engineering and manufacturing groups,
which were developing AXP product systems.

The project team was deliberately kept small.
Two designers were located at SRC, one was with the
Semiconductor Engineering Group's Advanced
Development Group in Hudson, MA, and one
was a member of Digital's Cambridge Research
Laboratory in Cambridge, MA. Although the project
team was separated both geographically and organ­
zationally, communication flowed smoothly
because the individuals had collaborated on similar
projects in the past. The team used a common set of
design tools, and Digital's global network made it
possible to exchange design information between
sites easily. As the project moved from the design
phase to production of the systems, the group
grew, but at no point did the entire team exceed ten
people.

51

Alpha AXP Architecture and Systems

Since multiprocessing capability is central to the
Alpha AXP architecture, we decided that the ADU
had to be a multiprocessor. We chose to implement
a bus-based memory coherence protocol. A high­
speed bus connects three types of modules: The
CPU module contains one microprocessor chip, its
external cache, and an interface to the bus. A stor­
age module contains two 32-megabyte (MB) inter­
leaved banks of dynamic random-access memory
(DRAM). The 1/0 module contains two 50MB per
second (MB/s) 1/0 channels that are connected to
one or two DECstation 5000 workstations, which
provide disk and network 1/0 as well as a high­
performance debugging environment. Most of the
logic, with the exception of the CPU chip, is emit­
ter-coupled logic (ECL), which we selected for its
high speed and predictable electrical characteris­
tics. Modules plug into a 14-slot card cage. The card
cage and power supplies are housed in a 0.5-meter
(m) by 1.1-m cabinet. A fully loaded cabinet dissi­
pates approximately 4,000 watts and is cooled by
forced air. Figures 1 and 2 are photographs of the
system and the modules.

In the remaining sections of this paper, we dis­
cuss the backplane interconnect and cache coher­
ence protocol used in the ADU. We then describe
the system modules and discuss the design choices.
We also present some of the uses we have found for
the ADU in addition to its original purpose as a soft­
ware development vehicle. We conclude with an
assessment of the project and its impact on the
overall Alpha AXP program.

Figure I The Alpha Demonstration Unit

52

(a) CPU Module

(b) Storage Module

(c) 1/0 Module

Figure 2 ADU Modules

Vol. 4 No. 4 Special Issue 1992 Digital Tech11icalJournal

Backplane Interconnect
The choice of a backplane interconnect has more
impact on the overall design of a multiprocessor
than any other decision. Complexity, cost, and per­
formance are the factors that must be balanced to
produce a design that is adequate for the intended
use. Given the overall purpose of the project, we
chose to minimize complexity and maximize per­
formance. System cost is important in a high-vol­
ume product, but is not important when only a few
systems are produced.

To minimize complexity, we chose a pipelined
bus design in which all operations take place at
fixed times relative to the time at which a request is
issued. To maximize performance, we defined the
operations so that two independent transactions
can be in progress at once, which fully utilizes the
bus.

We designed the bus to provide high bandwidth,
which is suitable for a multiprocessor system, and
to offer minimal latency. As the CPU cycle time
becomes very small, 5 nanoseconds (ns) for the
DECchip 21064 chip, the main memory latency
becomes an important component of system per­
formance. The ADU bus can supply 320MB/s of user
data, but still is able to satisfy a cache read miss in
just 200ns.

Bus Signals
The ADU backplane bus uses ECL IOOK voltage lev­
els. Fifty-ohm controlled-impedance traces, termi­
nated at both ends, provide a well-characterized
electrical environment, free from the reflections
and noise often present in high-speed systems.

Table 1 lists the signals that make up the bus. The
data portion consists of 64 data signals, 14 error
correction code (ECC) signals, and 2 parity bits. The
ECC signals are stored in the memory modules, but
no checking or correction is done by the memories.
Instead, the ECC bits are generated and checked
only by the ultimate producers and consumers of
data, the 1/0 system and the CPU chip. Secondary
caches, the bus, and main memory treat the ECC as
uninterpreted data. This arrangement increases
performance, since the memories do not have to
check data before delivering it. The memory mod­
ules would have been less expensive had we used
an ECC code that protected a larger block. Since the
CPU caches are large enough to require ECC and
since the CPU requires ECC over 32-bit words, we
chose to combine the two correction mechanisms
into one. This decision was consistent with our goal

Digital Technical Journal Vol. 4 No. 4 Special issue 1992

The Alpha Demonstration Unit

Table 1 Bus Signals

Signal Name Pins Use

-Data[63 .. 00] 64 Data
-ECC0[6 .. 0] 7 ECC on Data[31 .. 00]
-ECC1[6 .. 0] 7 ECC on Data[63 .. 32]
-P[O] 1 Even Parity over

Data[31 .. 00], ECC0[6 .. 0]
-P[1] 1 Even Parity over

Data[63 .. 32], ECC1 [6 .. 0]

8-shared Cache coherence
8-dirty Cache coherence

Retry 1 Storage module busy
Error 1 Data or address parity error

ArbRequest 8 Arbitration for the bus

Clock 2 100 MHz differential clock
Phase 1 50 MHz Reset 1

nTypeClk 1 Module identification
nType 1 Module identification
nld 4 Module slot number (0 .. 13)

set by backplane wiring

of simplifying the design and improving perfor­
mance at the expense of increased cost. The parity
bits are provided to detect bus errors during
address and data transfers. All modules generate
and check bus parity.

The module identification signals are used only
during system initialization. Each module type is
assigned an 8-bit type code, and each backplane slot
is wired to provide the slot number to the module it
contains. Each module in the system reports its
type code serially on the nType line during the 8 X
slot number nTypeClk cycles after the deassertion
of system reset. A configuration process running
on the console processor toggles nTypeClk cycles
and observes the nType line to determine the type
of module in each backplane slot.

The 100-megahertz (MHz) system clock is dis­
tributed radially to each module from a clock gen­
erator on the backplane. Constant-length wiring
and a strictly specified fan-out path on each mod­
ule controls clock skew. Since a bus cycle takes two
clocks, the phase signal is used to identify the first
clock period.

Addressing
The bus supports a physical address space of 64
gigabytes (236 bytes). The resolution of a bus address
is a 32-byte cache block, which is the only unit
of transfer supported; consequently, 31 address
bits suffice. One-quarter of the address space is
reserved for control registers rather than storage.

53

Alpha AXP Architecture and Systems

Accesses to this region are treated specially: CPUs
do not store data from this region in their caches,
and the target need not supply correct ECC bits.

The method used to select the target module of
a bus operation is geographic. The initiator sends
the target module's slot number with the address
during a request cycle. In addition to the 4-bit slot
number, the initiator supplies a 3-bit subnode iden­
tifier with the address. Subnodes are the unit of
memory interleaving. The 64MB storage module,
for example, contains two independent 32MB sub­
nodes that can operate concurrently.

The geographic selection of the target means that
a particular subnode only needs to compare the
requested slot and subnode bits with its own slot
and subnode numbers to decide whether it is the
target. This reduces the time required for the deci­
sion compared to a scheme in which the target
inspects the address field, but it means that each ini­
tiator must maintain a mapping between physical
addresses and slot and subnode numbers. This map­
ping is performed by a RAM in each initiator. For
CPU modules, the RAM lookup does not reduce per­
formance, since the access is done in parallel with
the access of the module's secondary cache. The
slot-mapping RAMs in each initiator are loaded at
system initialization time by the configuration pro­
cess described previously.

Bus Operation
The timing of addresses and data is shown in Figure 3.
All data transfers take place at fixed times relative
to the start of an operation. Eight of the backplane
slots can contain modules capable of initiating
requests. These slots are numbered from O to 7, but
are located at the center of the backplane to reduce
the transit time between initiators and targets.

A bus cycle starts when one of the initiators arbi­
trates for the bus. The arbitration method guaran­
tees that no initiator can be starved. Each initiator

monitors all bus operations and must request only
those cycles that it knows the target can accept.
Initiators are allowed to arbitrate for a particular
target nine or more cycles after that target has
started a read, or ten or more cycles after the target
has started a write. To arbitrate, an initiator asserts
the ArbRequest line corresponding to its current
priority. Priorities range from O (lowest) to 7 (high­
est). If a module is the highest priority requester
(i.e., no higher priority ArbRequest line than its
own is asserted), that module wins the arbitration,
and it transmits an address and a command in the
next cycle. The winning module sets its priority to
zero, and all initiators with priority less than the ini­
tial priority of the winner increment their priority
regardless of whether they made a request during
the arbitration cycle. Initially, each initiator's prior­
ity is set to its slot number. Priorities are thus
distinct initially and remain so over time. This algo­
rithm favors initiators that have not made a recent
request, since the priority of such an initiator
increases even if it does not make requests. If all ini­
tiators make continuous requests, the algorithm
provides round-robin servicing, but the implemen­
tation is simpler than round robin.

An arbitration cycle is followed by a request
cycle. The initiator places an address, node and
subnode numbers, and a command on the bus.
There are only three commands. A read command
requests a 32-byte cache block from memory. The
target memory or a cache that contains a more
recent copy supplies the data after a five-cycle
delay. A write command transmits a 32-byte block
to memory, using the same cycles for the data trans­
fer as the read command. Other caches may also
take the block and update their contents. A victim
write is issued by a CPU module when a block is
evicted from the secondary cache. When such an
eviction occurs, any other caches that contain the
block are guaranteed to contain the same value, so

CYCLE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ARB REQUEST
DATA
B-SHARED, B-DIRTY
ERROR

R1
A1

E1

R2 R3 R4

A2. D1 D1 01 01 A3 02 02 02 02 A4 031 03 D3 D3
81 82 83 84

E2 E3 E4

This figure shows the contents of the bus during four read cycles. If requests are made at full rate, the bus is fully occupied
with addresses and data. B-shared and B-dirty are sent in the fifth cycle after the arbitration request. If any module detects a
parity error during an address cycle, it asserts error two cycles later.

Figure 3 Bus Timing

54 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

they need not participate in the transfer at all. The
block is stored in memory, as in a normal write.

Cache Coherence
In a multiprocessor system with caches, it is essen­
tial that writes done by one processor be made
available to the other processors in the system in
a timely fashion. A number of approaches to the
cache coherence problem have appeared in the lit­
erature. These approaches fall into two categories,
depending on the way in which they handle proces­
sor writes. Invalidation or ownership protocols
require that a processor's cache must acquire an
exclusive copy of the block before the write can be
done.3 If another cache contains a copy of the
block, that copy is invalidated. On the other hand,
update protocols maintain coherence by perform­
ing write-through operations to other caches that
share the block. 2 Each cache maintains enough
state to determine whether any other cache shares
the block. If the data is not present in another
cache, then write through is unnecessary and is
not done.

The two protocols have quite different perfor­
mances, depending on system activity.4 An update
protocol performs better than an invalidation pro­
tocol in an application in which data is shared (and
written) by multiple processors (e.g. , a parallel
algorithm executing on several processors). In an
invalidation protocol, each time a processor writes
a location, the block is invalidated in all other
caches that share it. All caches require an expensive
miss to retrieve the block when it is next refer­
enced. On the other hand, an update protocol per­
forms poorly in a system in which processes can
migrate between processors. With migration, data
appears in both caches, and each time a processor
writes a location, a write-through operation
updates the other cache, even though its CPU is no
longer interested in the block. Larger caches with
long block lifetimes exacerbate this problem.

Coherence Protocol
The coherence protocol used in the ADU is a hybrid
of an update and an invalidation protocol, and like
many hybrids, it combines the good features of
both parents. The protocol depends on the fact that
the CPU chips contain an on-chip cache backed by
a much larger secondary cache that monitors all
bus operations. Initially, the secondary caches use
an update protocol. Caches that contain shared
data perform a write-through operation to update

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

The Alpha Demonstration Unit

the blocks in other caches whenever the associated
CPU performs a write. If no other cache shares
a block, this write through is unnecessary and is
not done. When a secondary cache receives an
update (i.e., it observes a write on the bus directed
to a block it contains), it has two options. It can
invalidate the block and report to the writer that
it has done so. If it is the only cache sharing the
block, subsequent write-through operations will
not occur. Alternatively, it can accept the update
and report that it did so, in which case the cache
that performed the write-through operation con­
tinues to send updates whenever its CPU writes the
block.

The actions taken by a cache that receives an
update are determined by whether the block is in
the CPU's on-chip cache. The secondary cache con­
tains a table that allows it to determine this without
interfering with the CPU. If the block is in the on­
chip cache, the secondary cache accepts the
update and invalidates the block in the on-chip
cache. If the block is not in the on-chip cache, the
secondary cache block is invalidated. If the block is
being actively shared, it will be reloaded by the CPU
before the next update arrives, and the block will
continue to be shared. If not, the block will be inval­
idated when the second update arrives.

Implementation of the Protocol
The implementation of the coherence protocol is
not complex. The five possible states of a secondary
cache block are shown in Figure 4. Initially, all
blocks in the cache are marked invalid. Misses in
the CPU's on-chip cache cause a bus read to be
issued if the block is not in the secondary cache. If
the cache block is assigned to another memory loca­
tion and is dirty (i.e., has been written since it was
read from memory), a victim write is issued to evict
the block, then a read is issued. Other caches moni­
tor operations on the bus and assert the block­
shared (B-shared) signal if they contain the block.
If a cache contains a dirty block and it observes
a bus read, it asserts B-shared and B-dirty, and
supplies the data. B-dirty inhibits the memory's
delivery of data.

The CPU's on-chip cache uses a write-through
strategy. A CPU write to a shared block in the sec­
ondary cache initiates a bus write to update the
contents of other caches that share the block.
Memory is written, so the block becomes clean. If
another cache takes the update, it asserts B-shared,
and the initiator's state becomes Shared not (-)

55

Alpha AXP Architecture and Systems

C-READ

C-WRITE

C-READ
C-WRITE

- SHARED
-DIRTY C-WRITE -B-SHARED

- SHARED
DIRTY

C-WRITE
(-B-SHARED) B-WRITE, INC;

B-READ

B-WRITE , INC

B-WRITE,
-INC

B-READ

SHARED
- DIRTY B-WRITE , INC; C-WRITE (B-SHARED)

SHARED
DIRTY

C-WRITE (B-SHARED)
C-READ
B-WRITE, INC
B-READ

C-READ
B-READ

Transitions occur as a result of CPU reads and writes (C-read, C-write) and bus operations
initiated by other caches or 1/0 controllers (B-read, B-write). A C-read or C-write to an invalid
block causes a B-read; a C-write to a shared block causes a B-write. The B-shared response
indicates that some other cache contains the block. INC indicates that the block is in the CPU's
on-chip cache.

Figure 4 Secondary Cache Line States

Dirty. If no other cache takes the update, either
because it does not contain the block or because it
decides to invalidate it, then the B-shared signal is
not asserted, and the initiator's state becomes
-Shared - Dirty. The B-shared and B-dirty signals
may be asserted by several modules during cycle
five of bus operations. The responses are ORed by
the open-emitter ECL backplane drivers. More than
one cache can contain a block with Shared = true,
but only one cache at a time can contain a block
with Dirty = true.

Designing the bus interconnect and coherence
protocol was an experiment in specification. The
informal description required approximately 15
pages of prose to describe the bus. The real specifi­
cation was a multithreaded program that repre­
sented the various interfaces at a level of detail
sufficient to describe every signal, but, when exe­
cuted, simulated the components at a higher level.

56

By running this program with sequences of simu­
lated memory requests, we were able to refine the
design rapidly and measure the performance of the
system before designing any logic. Most design
errors were discovered at this time, and prototype
system debugging took much less time than usual.

System Modules
In this section, we describe the system modules
and the packaging of the ADU. We discuss the
design choices made to produce the CPU module,
storage modules, and 1/0 module on schedule. We
also discuss applications of the ADU beyond its
intended use as a vehicle for software development.

CPU Module
The ADU CPU module consists of a single CPU chip,
a 256-kilobyte (KB) secondary cache, and an inter­
face to the system bus. All CPU modules in the

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

system are identical. The CPU modules are not self­
sufficient; they must be initialized by the console
workstation before the CPU can be enabled.

The CPU module contains extensive test access
logic that allows other bus agents to read and write
most of the module's internal state. We imple­
mented this logic because we knew these modules
would be used to debug CPU chips. Test access logic
would help us determine the cause of a CPU chip
malfunction and would make it possible for us to
introduce errors into the secondary cache to test
the error detection and correction capabilities of
the CPU chip. This logic was used to perform almost
all initialization of the CPU module and was also
used to troubleshoot CPU modules after they were
fabricated.

The central feature of the CPU module (shown
in Figure 5) is the secondary cache, built using 16K
by 4 BiCMOS static RAMs. Each of the 16K half­
blocks in the data store is 156 bits wide (4 long­
words of data, each protected by 7 ECC bits). Each
of the SK entries in the tag store is an 18-bit address
(protected by parity) and a 3-bit control field
(valid/shared/dirty, also protected by parity). In
addition, a secondary cache duplicate tag store,
consisting of an 18-bit address and a valid bit
(protected by parity), is used as a hint to speed pro­
cessing of reads and writes encountered on the
system bus. Finally, a CPU chip data cache duplicate
tag store (protected by parity) functions as an

CPU

READ
LATCH

CACHE

BYPASS

DATA STORE

The Alpha Demonstration Unit

invalidation filter and selects between update and
invalidation strategies.

The system bus interface watches for reads and
writes on the bus, and looks up each address in the
secondary cache. On read hits, it asserts B-shared
on the bus, and, if the block is dirty in the sec­
ondary cache, it asserts B-dirty and supplies read
data to the bus. On write hits, it selects between the
invalidate and update strategies, modifies the con­
trol field in the secondary cache tag store appropri­
ately, and, if the update strategy is selected, it
accepts data from the system bus.

Unlike most bus devices, the CPU module's
system bus interface must accept a new address
every five cycles. To do this, it is implemented as
two independent finite state machines connected
together in a pipelined fashion.

The tag state machine, which operates during
bus cycles 1 through 5, watches for addresses, per­
forms all tag store reads (in bus cycle 4, just in time
to assert B-shared and B-dirty in bus cycle 5), and
performs any needed tag store writes (in bus cycle
5). If the tag state machine determines that bus data
must be supplied or accepted, it enables the data
state machine, and, at the same time, begins pro­
cessing the next bus request.

The data state machine, which operates during
bus cycles 6 through 10, moves data to and from
the bus and handles the reading and writing of the
secondary cache data store. The highly pipelined

CONTROL
REGISTERS

BUS DATA
SYSTEM

WRITE CPU DATA BUS

LATCH

BUS DATA BUS TAG
ADDRESS ADDRESS

Figure 5 CPU Module

D igital Technical Journal Vol. 4 No. 4 Special Issue 1992 5 7

Alpha AXP Architectu re and System s

nature of the system bus makes reading and writing
the data store somewhat tricky. Figure 6a shows
a write hit that has selected the update strategy
immediately followed by a read hit that must supply
data to the bus. High performance mandates
the use of clocked transceivers, which means the
secondary cache data store must read one cycle
ahead of the bus and must write one cycle behind
the bus, resulting in a conflict in bus cycle 11.
However, the bus transfers data in a fixed order,
so the read will always access quadword O of
the block, and the write will always access quad­
word 3 of the block. By implementing the data
store as two 64-bit-wide banks, it is possible to han­
dle these back-to-back transactions without creat­
ing any special cases, as shown in Figure 6b. This
example is typical of the sty le of design used in the
ADU, which eliminates extra mechanisms wherever
possible.

The CPU interface handles the arbitration for the
secondary cache and generates the necessary reads
and writes on the system bus when the CPU sec­
ondary cache misses.

The CPU chip is supplied with a clock that is not
related to the system clock in frequency or phase.
This factor made it easier to use both the 100-MHz
frequency of the DC227 prototype chip and the
200-MHZ frequency of the DECchip 21064 CPU. It
also allowed us to vary the operating frequency
during CPU chip debugging. However, the data
buses connecting the CPU chip to the rest of the
CPU module must cross a clock-domain boundary.
Perhaps more significant, the secondary cache tag
and data stores have two asynchronous sources of
control, since the CPU chip contains an integrated
secondary cache controller.

CYCLE 0 2 3 4 5 6 7 B 9

WRITE CYCLE WO W1 W2 W3 W4 W5 W6 W7 WB W9

READ CYCLE RO R1 R2 R3 R4

CACHE W7 WB

CYCLE 0 2 3 4 5 6 7 B 9

WRITE CYCLE WO W1 W2 W3 W4 W5 W6 W7 WB W9

READ CYCLE RO R1 R2 R3 R4
CACHE EVEN W7

CACHE ODD WB

10

W10

R5

W9

10

W10

R5
W9

The bidirectional data bus of the CPU chip is con­
verted into the unidirectional data buses used by
the rest of the CPU module by transparent cutoff
latches. These latches, which are located in a ring
surrounding the CPU, also convert the quasi-ECL lev­
els generated by the CPU chip into true ECL levels
for the rest of the CPU module. These latches are
normally held open, so the CPU chip is, in effect,
connected directly to the secondary cache tag and
data RAMs. Control signals from the CPU chip's inte­
grated secondary cache controller are simply ORed
into the appropriate secondary cache RAM drivers.

These latches are also used to pass data across
the two-clock-domain boundary. Normally all
latches are open. On reads, logic in the CPU chip
clock domain closes all the latches and sends a read
request into the bus clock domain. Logic in the bus
clock domain obtains the data, writes both the sec­
ondary cache and the read latches, and sends an
acknowledgment back into the CPU chip clock
domain. Logic in the CPU chip clock domain
accepts the first half-block of the data, opens the
first read latch, accepts the second half-line of the
data, and opens all remaining latches. Writes are
similar. Logic in the CPU chip clock domain writes
the first half-line into the write latch, makes the
second half-line valid (behind the latch), and sends
a write request into the bus clock domain. Logic in
the bus clock domain accepts the first half-line of
data, opens the write latch, accepts the second half­
block of data, and sends an acknowledgment back
into the CPU chip clock domain.

Logic in the CPU chip clock domain controls all
latches. Only two signals pass through synchroniz­
ers: a single request signal passes from the CPU chip
clock domain to the bus clock domain, and a single

11 12 13 14 15 Figure 6a shows a conflict for access
to the secondary cache RAMs caused
by back-to-back cycles. In the marked

R6 R7 RB R9 R10
cycle, the cache writes the bus data

W10 RB R9 R10
that arrived in cycle W10, but it also

R7 needs to read data to supply it during

t cycle R7.

11 12 13 14 15 Figure 6b shows how this conflict can
be resolved by treating the cache as
two independent banks (even and odd).

R6 R7 RB R9
R7 R9 R10

W10 RB R10

Figure 6 CPU Timing

58 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

acknowledge signal passes from the bus clock
domain to the CPU chip clock domain.

The secondary cache arbitration scheme is
unconventional because the system bus has no stall
mechanism. If a read or a write appears on the
system bus, the bus interface must have uncondi­
tional access to the secondary cache; it cannot wait
for the CPU to finish its current cycle. In fact, the
bus interface cannot detect if a cycle is in progress
in the CPU chip's integrated cache controller.

Nevertheless, all events in the system bus inter­
face occur at fixed times with respect to bus arbi­
tration cycles. As a result, the system bus interface
can supply a busy signal to the CPU interface, which
allows it to predict the bus interface's use of the
secondary cache in the immediate future. The CPU
interface, therefore, waits until the secondary
cache can be accessed without conflict and then
performs its cycle without additional checking.
This waiting is performed by the CPU chip's inte­
grated secondary cache controller for some cycles,
and by logic in the CPU interface running in the bus
clock domain for other cycles. To reduce latency,
the CPU reads the secondary cache while waiting,
and ignores the data if it is not yet valid.

All operations use ownership of the system bus
as an interlock. For example, if the CPU writes to a
location in the secondary cache that is marked as
shared, the CPU interface acquires the system bus,
and then updates the secondary cache at the same
time as it broadcasts the write. This does not elimi­
nate all race conditions; in particular, it allows a
dirty secondary cache block to be invalidated by
a system bus write while the CPU interface is wait­
ing to acquire the bus to write the block to memory.
This is easily handled, however, by having the CPU
interface generate a signal (always_update) that
insists that the system bus interface select the
update strategy.

The combination of arbitration by predicting
future events and the use of the system bus as an
interlock makes the CPU module's control logic
extremely simple. The bus interface and the CPU
interface have no knowledge of one another
beyond the busy and always_update signals. Since
no complicated interactions between the CPU and
the bus exist, no time-consuming simulations of the
interactions needed to be performed, and we had
none of the difficult-to-track-down bugs that are
usually associated with multiprocessor systems.

The CPU module contains a number of control
registers. The bus cycles that read and write these

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

The Alpha Demonstration Unit

registers are processed by the system bus inter­
face as ordinary, but somewhat degenerate, cases.
The local CPU accesses its local registers over the
system bus, using ordinary system bus reads and
writes, so no special logic is needed to resolve race
conditions.

To keep pace with our schedule, we arranged for
most of the system to be debugged before the CPU
chip arrived. By using a suitably wired integrated
circuit test clip, we could place commands onto
the CPU chip's command bus and verify the control
signals with an oscilloscope. The results of these
tests left us fairly confident that the system worked
before the first chip arrived.

We resumed testing the CPU module after the
CPU chip was installed. We placed short (three to
five instructions) programs into main memory,
enabled the CPU chip for a short time, then
inspected the secondary cache (using the CPU mod­
ule's test access logic) to examine the results.

Eventually we connected an external pulse gen­
erator to the CPU chip's clock and an external
power supply to the CPU chip. These modifications
permitted us to vary both the operating frequency
and the operating voltage of the CPU chip. By using
a pulse generator and a power supply that could be
remotely controlled by another computer, we were
able to write simple programs that could run CPU
chip diagnostics, without manual intervention,
over a wide range of operating conditions. This
greatly simplified the task of collecting the raw data
needed by the chip designers to verify the critical
paths in the chip.

Storage Modules
The ADU's storage modules must provide high
bandwidth, both to service cache misses and to
support demanding 1/0 devices. More important,
they must provide low latency, since in the case of a
cache miss, the processor is stalled until the miss is
satisfied. It is also important to provide a modest
amount of memory interleaving. Although the bus
protocol allows only two memory subnodes to be
active at once, higher interleave increases the prob­
ability that a module will be free when a memory
request is issued.

Each storage module is organized as two
independent bus subnodes, so that even in a sys­
tem with one module, memory is two-way inter­
leaved. Each of the subnodes consists of four banks,
each of which stores two longwords of data
and their associated error correction bits. With

59

Alpha AXP Architecture and Systems

I-megabit (Mb) RAM chips, the capacity of each
module is 64MB. Figure 7 shows the organization
of the storage module. The module consists of
two independent subnodes, each with four banks
of storage. Control signals are pipelined through
the banks so that the module can deliver or accept
a 64-bit data word (plus ECC) every 20 ns. With
the exception of the DRAM interface signals, all
signals are ECL levels. The G014 gallium arse­
nide (GaAs) driver chip improves performance
by allowing parallel termination of the DRAM
address lines.

A memory cycle consists of a five-bus-cycle
access period followed by four bus cycles of data
transfer. Each data transfer cycle moves two 39-bit
longwords between the module and the backplane
bus, for a total of 32 data bytes per memory cycle.
This is the size of a CPU module cache block. A read
operation takes 10 bus cycles to complete, but a
write requires 11 cycles.

Since a data rate of 1 word every 20 ns is beyond
the capabilities of even the fastest nibble-mode
RAMs, we needed an approach that did not require
each RAM to provide more than 1 bit per access.

--------------------------,
I B~A_N_K_3~~~

60

I 1M BY 39-BIT G014 1M BY 39-BIT I
I STORAGE CARD CHIP STORAGE CARD I

I
I
I

TRANSCEIVER

DATA +
ECG (39)

1M BY 39-BIT
STORAGE CARD

1M BY 39-BIT
STORAGE CARD

1M BY 39-BIT
STORAGE CARD

1M BY 39-BIT
STORAGE CARD

1M BY 39-BIT
STORAGE CARD

1M BY 39-BIT
STORAGE CARD

1M BY 39-BIT
STORAGE CARD

1 M BY 39-BIT I
STORAGE CARD I ____________]

------------,
1M BY 39-BIT
STORAGE CARD

I
I

1 M BY 39-BIT I
STORAGE CARD I ____________]

------------,
1M BY 39-BIT
STORAGE CARD

I
I

1 M BY 39-BIT I
STORAGE CARD I ____________]

------------,
1M BY 39-BIT
STORAGE CARD

I
I

1 M BY 39-BIT I
STORAGE CARD I ____________]

ADDRESS

BANK ENABLES

SUBNODE 1 ,__ __ _, SUBNODE 2

BACKPLANE

CONTROL CONTROL

CONTROL

MODULE ENABLES TRANSCEIVER

DATA + ECG,
ADDRESS (39)

Figure 7 ADU Storage Module

Vol. 4 No. 4 Special Issue 1992 Digital Technical Jounwl

We chose to pipeline the four banks of each sub­
node. Each of the four banks contributes only one
7S-bit word to the block. The banks are started
sequentially, with a one-cycle delay between each
bank.

The high performance of the storage module
is achieved by maintaining ECL levels and using
ECL IOOK components wherever possible. The
RAM 1/0 pin levels are converted to ECL levels by
latching transceivers associated with each bank.
Fortunately, the timing of accesses to the two sub­
nodes of a module makes it possible to share these
transceivers between the same banks of the mod­
ule's two subnodes.

The DRAM chips are packaged on small daughter
cards that plug into connectors on both sides of the
main array module. There are 2 daughter cards for
each bank within a subnode, for a total of 16 daugh­
ter cards per module. The DRAM address and con­
trol lines are carried on controlled impedance
traces. Since each of the 39 DRAMS on an address
line represents a capacitive load of approximately S
picofarads, the loaded impedance of the line is
about 30 ohms.

The usual approach to driving the address and
control lines of a RAM array uses series termination,
as shown in Figure Sa. This arrangement has the
advantage that the driver current is reduced, since
the load impedance seen by the driver (Rs + Z

0
is

twice that of the loaded transmission line (Z
0
).

Unfortunately, the RAM access time is increased,
because the signal from the driver(~) must propa­
gate to the far end of the line, be reflected, and
return to the driver before the first RAM on the line
sees a full-amplitude signal. Since the capacitive
loading added by the RAM pins lowers the signal
propagation velocity in addition to reducing the
impedance, the added delay can be a significant
fraction of the overall cycle time.

Since low latency was a primary design goal, we
chose parallel termination of the RAM address and
control lines, as shown in Figure Sb. Each address
line is terminated to +3 volts with a series resistor
(Rs) of 33 ohms, slightly higher than the line
impedance. In this configuration, each line's driver
must sink a current of almost 0.1 ampere. Since no
commercial chip could meet this requirement at
the needed speed, we commissioned a semicustom
GaAschip.5

As shown in Figure 9, each GaAs chip contains a
register for eight address bits, row/column address
multiplexing and high current drivers for the RAM

Digital TecbntcalJournal Vol. 4 No. 4 Special Issue 1992

The Al,pha Demonstration Unit

DRAM DRAM ••• DRAM

B

v~,?_____________i­vs: Vh/_:r--
0

Vh

VC: O __J
-+i 1- 21

Zo C

Series termination results in a half-amplitude signal at the first
RAM on the line until the signal reflects from point C.

DRIVER

Vh
VA:

0

A

Vh

VC: O __J

(a) Series Termination

DRAM DRAM • • • DRAM

Zo c

-+i I+- t

Parallel termination saves one line transit time, but increases
driver current.

(b) Parallel Termination

Figure 8 Address Line Termination

address lines, and a driver for one of the three RAM
control signals (RAS, CAS, Write). To reduce the cur­
rent switched by each chip, each address bit drives
two output pins. One pin carries true data, and the
other is complemented. The total current is there­
fore constant. Each pin drives one of the two RAM
modules of a bank. A total of three GaAs chips
is required per bank. In the present module, with
IM- by I-bit RAM chips, only 10 of the 12 address
drivers are used, so the system can be easily
expanded to make use of 16M RAMs.

The storage module contains only a small
amount of control logic. This logic generates the
control signals for the RAMs and the various
transceivers that route data from the backplane to
each bank. This logic also generates the signals

61

Alpha AXP Architecture and Systems

A30
I A3
I -A3

A31 I
I
I

A20 I
A2

A21 I
-A2

I I
I I
I I

A10 I
A1
- Al

A11 I
I I
I I

AOO
I

I AO
I -AO

A01 I
I
I

AEN
I I

SELIN:
I
SE LOUT

I I CTRLA
I CTR LB

CTRLIN CTR LOUT

CLK I
-CLK I L _____________ I

Figure 9 Address and Control Driver

needed to refresh the RAMs and to assert the retry
signal if another node attempts to access the mod­
ule while it is refreshing itself.

1/0Module
The 1/0 module for the ADU contains two 50MB/s
1/0 channels and a local CPU subsystem. The 1/0
channels connect to one or two DECstation 5000
workstations, which act as 1/0 front -end proces­
sors and also provide console and diagnostic func­
tions. The local CPU subsystem is used to provide
interval timer and time-of-day clock services to ADU
processors.

The original specification for the ADU 1/0 system
required support only for serial line, small com­
puter systems interface (SCSI) disk, and Ethernet
1/0 devices. We knew that the ADU would be used

62

to exercise new CPU chips and untested software.
With this in mind, we organized the 1/0 system
around a DECstation 5000 workstation as a front­
end and console processor. This reduced our work
considerably, as all 1/0 is done by the workstation. A
TURBOchannel module connects the DECstation
5000 over a 50MB/s cable to the 1/0 module in the
ADU. We selected 50MB/s in order to support the
simultaneous, peak-bandwidth operation of two
SCSI disk strings, an Ethernet, and a fiber dis­
tributed data interface (FDDI) network adapter. The
1/0 module contains two of these channels, which
allows two DECstation 5000 workstations to be
attached.

At the hardware level, the 1/0 system supports
block transfers of data from the main memory of
the workstation to and from ADU memory. In addi­
tion, the 1/0 module includes command and door­
bell registers, which are used by ADU processors to
attract the attention of the 1/0 system.

In software, 1/0 requests are placed by ADU pro­
cessors into command rings in ADU memory. The
memory address of a command ring is placed into
an 1/0 control register, and the associated doorbell
is rung. The doorbell causes a hardware interrupt
on the front-end DECstation 5000, which alerts the
1/0 server process that action is needed. The 1/0

server reads the command ring from ADU memory
and performs the requested 1/0. 1/0 completion sta­
tus is stored into ADU memory, and an interrupt is
sent to the requesting ADU processor.

In addition to its role as an 1/0 front -end proces­
sor, the DECstation 5000 workstation acts as a diag­
nostic and console processor. When an ADU is
powered on, diagnostic software is run from the
workstation. First, the correct functioning of the
1/0 module is tested. Then the ADU module identifi­
cation process determines the types and locations
of all CPU and storage modules in the system.
Diagnostics are then run for each module.

Once diagnostic software has run, the console
software is given control. This software is responsi­
ble for loading privileged architecture library (PAL)
and operating system software. Once the operating
system is running, the workstation becomes an 1/0
server.

The presence of the DECstation 5000 gave the
chip team and operating system developers a stable
place to stand while checking out their own com­
ponents. In addition, the complete diagnostic capa­
bility and error checking coverage of the ADU
hardware helped to isolate faults.

Vol. 4 No. 4 Spedal Issue 1992 Digital Techt1lcal Jour,ial

The central features of the VO module, shown in
Figure 10, are two lK- by 80-bit register files built
from 5-ns ECL RAMs. These memories are cycled
every 10 ns to simulate dual-ported memories at the
20-ns bus cycle rate. One memory is used as a stag­
ing RAM for block transfers from the 1/0 processors
to ADU memory. The other memory is shared
between use as command register space for the 1/0

system and a staging RAM for transfers from ADU
memory to the 1/0 system.

On the bus side, the register files are connected
directly to the backplane bus transceivers. On the
1/0 side, the register files are connected to a shared
40-ns bus that connects to the two I/0 channels.

The buses are time-slotted to eliminate the
need for arbitration logic. As a consequence, the
1/0 module control logic is contained in a small
number of programmable array logic chips that
implement the 1/0 channel controllers and a

TO
CHANNEL DECSTATION
INTERFACE

LOCAL CPU
MC68020 +
RAM+
ROM

TO CHANNEL
DECSTATION INTERFACE

The Alpha Demonstration Unit

block-transfer state machine that handles bus
transfers.

Each 1/0 channel carries 32 bits of data plus 7 bits
of ECC in parallel on a SO-pair cable. Each data word
also carries a 3-bit tag that specifies the destination
of the data. The cable is half-duplex, with the direc­
tion of data flow under the control of software on
the DECstation. Data arriving from the DECstation is
buffered in lK FIFOs. These FIFOs carry data across
the dock-domain boundary between the 1/0

system and the ADU and permit both 1/0 channels
to run at full speed simultaneously.

Each 1/0 channel interface also has an address
counter and a slot-mapping RAM, which are loaded
from the workstation. The slot-mapping function
sets the correspondence between ADU bus
addresses and the geographically addressed storage
and CPU modules. The address and slot map for
each channel are connected to a common address

ADDRESS
DATA PATH

OUTGOING
REGISTER
FILE

CONTROL
BUS AND INTERFACE STATUS

INCOMING
REGISTER
FILE SYSTEM

BUS

INTERRUPT
REGISTER

(a) ADU 1/0 Module

TURBO­
CHANNEL

TURBO­
CHANNEL
INTERFACE

OUTBOUND FIFO

INBOUND FIFO

CHANNEL
INTERFACE

(b) TURBOchannel 1/0 Module

Figure JO 1/0 Module

TO ADU

Dtgttal Tecbntcal Journal Vol. 4 No. 4 Special Issue 1992 63

Alpha AXP Architecture and Systems

bus. This bus bypasses the register files and directly
drives the backplane transceivers during bus
address cycles.

The far end of the 1/0 cable connects to a single­
width TURBOchannel module in the DECstation
5000. This module contains ECC generation and
checking logic, and FIFO queues for buffering data
between the cable and the TURBOchannel. The FIFO
queues also carry data across the clock-domain
boundary between the 1/0 channel and the
TURBOchannel modules.

The 1/0 module has a local CPU subsystem con­
taining a 12-MHz Motorola 68302 processor, 128KB
of erasable programmable read-only memory
(EPROM), and 128KB of RAM. The CPU subsystem
also includes an Ethernet interface, two serial
ports, an SCSI interface, an Integrated Services
Digital Network (ISDN) interface, and audio input
and output ports. When in use, the local CPU sub­
system uses one of the 1/0 channels otherwise avail­
able for the connection of a DECstation 5000.
Although the local CPU on the 1/0 module is capable
of running the full ADU 1/0 system, in practice we
use it for supplying interval timer and real-time
clock service for the ADU.

The 1/0 module was somewhat overdesigned for
its original purpose of supplying disk, network, and
console 1/0 service for ADU processors. This capa­
bility was put to use in mid-1991 when the demand
for ADUs became so intense that we considered
building additional systems. Instead, by using the
excess 1/0 resources, the slot-mapping features of
the hardware, and the capabilities of PALcode, we
were able to use a three-processor ADU as three
independent virtual computers. Independent
copies of the console program shared the 1/0 hard­
ware through software locking and were allocated
one CPU and one storage module each.
Multiprocessor ADUs now routinely run both
OpenVMS AXP and DEC OSF/1 AXP operating sys­
tems at the same time.

Packaging
Simplicity was the primary goal in the design of the
ADU package. Our short schedule demanded that
we avoid innovation and use standard parts wher­
ever possible.

The ADU's modules and card cage are standard 9U
(280 millimeter by 367 millimeter) Eurocard com­
ponents, which are available from a number of ven­
dors. The cabinet is a standard Digital unit, usually

64

used to hold disks. Power supplies are off-the-shelf
units. Three supplies are required to provide the
4,000 watts consumed by a system containing a full
complement of modules. A standard power condi­
tioner provides line filtering and distributes pri­
mary AC to the power supplies. This unit allows the
system to operate on 110-volt AC in the United
States, or 220-volt AC in Europe.

Cooling was the most difficult part of the packag­
ing effort. The use of ECL throughout the system
meant that we had to provide an airflow of at least
2.5 m/s over the modules. After studying several
alternatives, we selected a reverse impeller blower
used on Digital's VAX 6000 series machines. Two of
these blowers provide the required airflow, while
generating much less acoustic noise than conven­
tional fans.

Since blower failure would result in a catas­
trophic meltdown, airflow and temperature sen­
sors are provided. A small module containing a
microcontroller monitors these parameters as well
as all power supply voltages. In the event of failure,
the autonomous controller can shut down the
power supplies. This module also generates the
system clock.

Conclusions
Sometimes it is better to have twenty million
instructions by Friday than twenty million instruc­
tions per second. -Wesley Clark

One hundred CPU and storage modules and 35 1/0

modules have been built, packaged as 35 ADU sys­
tems, and delivered to software development
groups throughout Digital. Not just laboratory
curiosities, these systems have become part of the
mainstream AXP development environment. They
are in regular use by compiler development groups,
operating system developers, and applications
groups.

The ADU also provided a full-speed, in-system
exerciser for the chips. By using the ADU, the chip
developers were able to detect several subtle prob­
lems in early chip implementations.

The ADU project was quite successful. ADU sys­
tems were in the hands of developers approximately
ten months before the first product prototypes.
The systems exceeded our initial expectations for
reliability, and provided a rugged, stable platform
for software development and chip test. The proj­
ect demonstrated that a small team, with focused
objectives, can produce systems of substantial com­
plexity in a short time.

Vol. 4 No. 4 Sp ecial Issue 1992 Digital Teclmtcat Joun,a/

Acknowledgments
John Dillon designed the power control subsystem
and the package. Steve Morris wrote the ADU con­
sole software. Andrew Payne contributed to ADU
diagnostics. Tom Levergood assisted with the physi­
cal design of the l/0 modules. Herb Yeary, Scott
Kreider, and Steve Lloyd did module debugging and
testing at Hudson and at SRC. Ted Equi handled proj­
ect logistics at Hudson, and Dick Parle was respon­
sible for material acquisition and supervision of
outside vendors at SRC.

References

1. R. Sites, A. Chernoff, M. Kirk, M. Marks, and
S. Robinson, "Binary Translation," Digital
Technical journal, vol. 4, no. 4 (1992, this issue):
137-152.

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

The Alpha Denionstration Unit

2. C. Thacker, L. Stewart, and E. Satterthwaite, Jr.,
"Firefly: A Multiprocessor Workstation,"
IEEE Transactions on Computers, vol. 37,
no. 8 (August 1988): 909-920.

3. R. Katz, S. Eggers, D. Wood, C. Perkins, and
R. Sheldon, "Implementing a Cache Consistency
Protocol," in Proceedings of the 12th Interna­
tional Symposium on Computer Architecture
(IEEE, 1985).

4. J. Archibald and L. Baer, "Cache Coherence Pro­
tocols: Evaluation Using a Multiprocessor Simu­
lation Model," ACM Transactions on Computer
Systems, vol. 4 (November 1986): 273-298.

5. 1991 GaAs IC Data Book and Designer's Guide
(GigaBit Logic, Newbury Park, CA, 1991): 2-39.

65

Todd A. Dutton
Daniel Eiref

Hugh R. Kurth
JamesJ. Reisert
Robin L. Stewart

The Design of the DEC 3000 AXP
Systems, Two Highperformance
Workstations

A family of high-performance 64-bit RISC workstations and servers based on the
new Digital Alpha AXP architecture is described. The hardware implementation
uses the powerful new DECchip 21064 CPU and emplays a sophisticated new system
interconnect structure to achieve the necessary high bandwidth and low-latency
cache, memory, and 1/0 buses. The memory subsystem of the high-end DEC 3000
AXP Model 500 provides a 512KB secondary cache and up to 1 GB of memory. The l/0
subsystem of the Model 500 has integral two-dimensional graphics, SCSI, ISDN, and
six TURBOchannel expansion slots.

The DEC 3000 AXP system family consists of both
workstations and servers that are based on Digital's
Alpha AXP architecture.' The family includes the
desktop (DEC 3000 AXP Model 400) and desk-side
and rack-mounted (DEC 3000 AXP Model 500) sys­
tems. The available operating systems are the DEC
OSF/1 AXP and the OpenVMS AXP systems. All sys­
tems use the DECchip 21064 microprocessor. 2

Table 1 gives the specifications for the three DEC
3000 AXP systems.

The DEC 3000 AXP systems are designed to be sig­
nificantly faster than all previous Digital work­
stations and to offer performance competitive with
that of other reduced instruction set computer
(RISC) workstations currently available. In general,
RISC systems have larger code sizes and conse­
quently require more instruction-stream band­
width than complex instruction set computer
(CISC) systems. Further, 64-bit machines require
more data-stream bandwidth than 32-bit machines.
To complement the power of the DECchip 21064
microprocessor, the systems need a balanced
system architecture, including a high-bandwidth,
low-latency memory system and an efficient, high­
performance 1/0 subsystem.

Traditional workstation designs that use a com­
mon system bus exhibit increased memory latency
and reduced memory bandwidth due to system bus
contention. This is a special concern for designs

66

using a large number of high-performance 1/0
devices. Increased latency can also result from the
additional levels of buffering and system bus load­
ing common to traditional architectures. Many
system buses also exhibit multiplexing between
address and data, leading to further performance
degradation.

To meet the goals of low memory latency, high
memory bandwidth, and minimal CPU-1/0 memory
contention in a cost-competitive manner, the
designers implemented the DEC 3000 AXP system
architecrure in an unusual way. They chose to build
the system interconnect from inexpensive applica­
tion-specific integrated circuits (ASICs), as shown
in Figure I. The ASICs act as a crossbar between the
CPU, memory, and 1/0 buses. Addresses and data are
switched independently by the crossbar.

The system block diagram in Figure 2 shows the
system architecture of the DEC 3000 AXP systems.
The system crossbar in the center of the diagram is
composed of six ASICs, consisting of the ADDR ASIC,
the TIJRBOchannel (TC) ASIC, and four SLICE ASICs.
The ADDR ASIC switches addresses between
the CPU, the memory, and the TC ASIC. The four
SUCE ASICs switch data between the CPU, the mem­
ory, and the TC ASIC. The TC ASIC switches I/0
addresses and data between the ADDR and SLICE
ASICs and the TIJRBOchannel bus. Connected to the
TIJRBOchannel bus are the various 1/0 controllers,

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

The Design of the DEC 3000 AXP Systems, Two High-performance Workstations

Table 1 DEC 3000 AXP Family Specifications

Desk-side
Specifications Model500

Height, inches 24.7
Width, inches 12.75

Depth, inches 29.7
Maximum DC power 480

output, watts

Memory
Standard, MB 32
Maximum, MB 1024

Internal hard disk
Standard, MB 1050
Maximum, MB 4200

Serial ports 2
ISDN port 1

SCSI ports* 2
Ethernet portst 2
TURBOchannel slots 6

Removable media* 2

Integral graphics accelerator Yes
Audio Yes

Notes:
• One internal and one external.
t AUi (thick wire) and 1 OBase-T (twisted pair).
* 5.25-inch half-height slots.

CPU MEMORY

I
CACHE

SYSTEM - 1/0
CROSSBAR

Figure 1 Simple Crossbar

including the dual small computer systems inter­
face (SCSI) controller ASIC, the general 1/0 con­
troller ASIC, and the two-dimensional graphics
accelerator ASIC (not present in DEC 3000 AXP
Model 400 systems). In addition, six TIJRBOchannel
option slots are available for expansion (three slots
in DEC 3000 AXP Model 400 systems).

CPU Module
The DEC 3000 AXP systems are composed of two
primary modules, the CPU module and the 1/0 mod­
ule. The CPU module contains the processor,

Dtgttal Tecbntcal Journal Vol. 4 No. 4 Special Issue 1992

Rack-mount Desktop
Model500 Model 400

15.75 5
17.5 20

27 16.75

480 295

32 32
1024 512

1050 426
4200 2100

2 2

1 1
2 2

2 2

6 3

2 1

Yes No
Yes Yes

secondary cache, control logic, TURBOchannel
interface and, in the Model 500, the two-dimen­
sional graphics subsystem. It has connectors for the
1/0 module, four memory mother boards, a lights
and switches module (LSM), three TIJRBOchannel
options, and the power supply. Figure 3 shows the
layout of the module.

CPU
The DECchip 21064 microprocessor is the CPU of
the DEC 3000 AXP systems. On the Model 500, the
CPU runs at 150 megahertz (MHz), and on the Model
400, it runs at 133 MHz. The processor is a super­
scalar, fully pipelined implementation of the Alpha
AXP architecture.2 It contains two on-chip 8-kilo­
byte (KB) direct-mapped caches, one for use as an
instruction cache, the other as a data cache. Both
the integer and floating-point units are contained
on-chip.

B-cache Subsystem
The system employs a second-level cache (B-cache)
to help minimize the performance penalty of
misses and write throughs in the two relatively

67

D
E

C
C

H
IP

21

06
4

C
P

U

I
_

.,
..

,.
 .

..
_

"
'"

'"
'"

'"
'"

'"
'

"
'"

'"
'.

,.
_

i
I

"
'"

'"
'"

'"
'"

'"
'.

,.
.,

..
,.

 "
'"

'"
'"

'"
'"

'_
i

I"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'_
.

1'
"'

'"
'"

'"
'"

'.
,.

.,
..

,.
.,

..
,.

.,.
 "

'"
'"

'"
'"

'"
'_

1

I
"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'.
)

I
"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'"
'"

'.
.I

S
IM

M
S

S

IM
M

S

F
O

U
R

 M
E

M
O

R
Y

 M
O

T
H

E
R

 B
O

A
R

D
S

M
E

M
O

R
Y

A

D
D

R
E

S
S

B

U
S

M
E

M
O

R
Y

D

A
T

A

B
U

S

/
E

IG
H

T
 L

O
N

G
W

O
R

D
S

,--
-

-
-

__
__

__
__

 ,
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
,

I

.,
.1

,.
..

,.
.,

..
,.

.,
.

.,.
 .

..
..

..
..

..
..

..
..

..
..

I

.,.
1.

, .
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.
I

I
.,

.I
_

.,
..

,.
.,

..
,.

.,
..

,.
 ..

. .
,.

 ..
..

..
..

..
..

I

I
I

...
 L

 .
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.
I

I
I

I
...

 L
 .

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

I
I

I
I

I
I

1
1

1
1

1
1

I
1

1
1

1
1

1

[
I

I
ul

C
P

U
 A

D
D

R
E

S
S

,
T

A
G

, A
N

D

I

I
~

C
A

C
H

E
 P

R
O

B
E

 B
U

S
E

S

,
C

P
U

,
1/0

, O
M

A

•
1/

0
A

D
D

R
E

S
S

 B
U

S

I
q

;

:
TC

: :

 :
:lJ

:

O
P

T
IO

N
S

: :

lJ

C
P

U

D
A

T
A

 B
U

S

I

C
A

C
H

E

A
D

D
R

E
S

S

•
I

I
-1

 BUF
F

E
R

IN
G

I

L I
8

I
1~

00

:::
:,:

:::
,

I
A

D
D

A
 A

S
IC

E

C
G

, P
A

R
IT

Y

A

I

I-
CD

C

H
E

C
K

 A
N

D

I
G

E
N

E
R

A
T

E

-
"T

I
I

I
1

/0
D

A
T

A

I
/

1
_

C
P

U
,

1/0
,

O
M

A

B
U

S

I

'
"

• _
_

_
_

_
_

_
_

_
_

_
_

_
 J

S
C

S
I

T
C

D
S

 A
S

IC

1-

-_s
_c:

....:
s:..

.1 _
-
4

S
F

B
A

S
IC

(M

O
D

E
L

5
0

0

O
N

LY
)

G
R

A
P

H
IC

S

D
A

T
A

v

F
O

U
R

/

I
I B

U
F

F
E

R
IN

G

11
T

C
 A

S
IC

I

/
O

N
E

 L
O

N
G

W
O

R
D

LO
N

G
W

O
R

D
S

 I
JJ

I
E

T
H

E
R

N
E

T

~ ~S
~

E
~

C
~

O
~

B
~

R
 -

-
-

_:
_o

.'.:
_R

 ~
u

:_
E

 ~
S

l~
S

 -
-

-
-

-
-

-
-

-
-

-
-

-
-
J

I
LJ

 IOC
T

L
A

S
IC

S

E
R

IA
L

LI
N

E
S

L..

.....
y'I

T

O
Y

 C
L

O
C

K

I
7

IS
D

N
 A

N
D

 A
U

D
IO

F
ig

u
re

 2

S
ys

te
m

 B
lo

c
k
 D

ia
g

ra
m

The Design of the DEC 3000 AXP Systems, Two High-performance Workstations

MEMORY
CONNECTORS

MEMORY CLOCK TC
CONNECTORS SUBSYSTEM CONNECTOR O

1/0MODULE
CONNECTOR

TC
CONNECTOR 1

Figure 3 CPU Module

small 8KB primary caches of the DECchip 21064
processor. The B-cache is a 512KB, direct-mapped,
write-back cache. A direct-mapped cache elimi­
nates the logic needed to choose among the multi­
ple sets of a set-associative cache, resulting in a
faster cache cycle time. A write-back protocol was
selected because it reduces the amount of write
traffic from the B-cache to main memory, leaving
more main memory bandwidth available for other
memory transactions.

Digital Technical Journal Vol. 4 No. 4 Speciallssue 1992

The block size of the B-cache is 32 bytes, match­
ing the block size of the primary caches. The cache
block allocation policy used is to allocate on both
read miss and write miss. Hardware keeps the cache
coherent on direct memory access (DMA) trans­
actions; DMA reads probe the cache and DMA writes
update the B-cache (and invalidate the primary data
cache).

The DEC 3000 AXP systems are designed to be
uniprocessor systems, which simplifies the cache

69

Alpha AXP Architecture and Systems

controller design in a number of ways. For example,
since no other CPU's cache can contain a copy of a
cache block, there is no need to implement cache
coherency constructs such as a shared bit. Further,
by loading the B-cache during the power-up
sequence and keeping it coherent during DMA by
using an always-update protocol, cache blocks in
the B-cache are always guaranteed to be valid. This
method eliminates stale data problems without
needing to use a valid bit.

In addition to the cache memory, the subsystem
consists of the cache controller, the main memory
controller, and the protocol control logic for mem­
ory access arbitration. A block diagram of the CPU
and B-cache subsystem is shown in Figure 4.

The B-cache is alternately controlled by the CPU
and the external cache controller. When controlled
by the CPU, the cache may be read by the CPU in five
CPU cycles. The cache data bus width is 16 bytes;
therefore two reads are necessary to fill a cache

CPU ADDRESS BUS

I I
'\.21 MUX/

I
I

block. The Model 500 has a maximum cache read
bandwidth of 480 megabytes per second (MB/s).
The cache may be written by the CPU with an initial
tag probe latency of five CPU cycles followed by up
to two write cycles of five CPU cycles each. The
Model 500 has a cache write bandwidth of 320 MB/s.

When a CPU probe misses in the B-cache, or
when the CPU accesses the external lock register,
control of the cache is turned over to the external
cache controller. This logic controls filling the
cache with the required data from main memory,
handing the data to the CPU during reads, merging
CPU write data into the cache on writes, and main­
taining the contents of the external cache tag and
tag control store. In addition, this logic maintains
the architecturally defined lock flag and locked
physical address register, which can be used to
implement software semaphores and other con­
structs normally requiring atomic read-modify­
write memory transactions.

DMA CACHE INDEX

CACHE DATA/ECC CACHE TAG/PARITY CACHE TAG CONTROU
STORE STORE PARITY STORE

DECCHIP
512KB 16K x 11-BITTAGS 16K x 2-BIT CONTROL

21064
16K x 32-BYTE BLOCKS TAGS SYSTEM

MICROPROCESSOR CROSSBAR

CPU DATA BUS I
CPU TAG BUS

)

CPU TAG CONTROL BUS

CPU/CACHE _J
CONTROL LOGIC
AND MEMORY CONTROL
SEQUENCERS SIGNALS

CPU STATUS SIGNALS ~ CROSSBAR STATUS SIGNALS

CPU CONTROL SIGNALS CROSSBAR CONTROL SIGNALS

CYCLE DECODER

~
1/0 CONTROLLER STATUS
SIGNALS

1/0 CONTROLLER CONTROL
SIGNALS

MAIN SEQUENCER

Figure 4 CPU and B-cache Block Diagram

70 Vol. 4 No. 4 Special Issue 1992 Dtgttal Technical Journal

The Design of the DEC 3000 AXP Systems, Two High-petformance Workstations

The control logic for the B-cache consists of two
interlocking state machines. These state machines
control arbitration and decoding of processor and
1/0 subsystem requests. They also generate the con­
trol signals needed to execute these requests to the
CPU, B-cache, and main memory

The state machines prioritize and arbitrate
requests from various sources, including the CPU,
the 1/0 subsystem, and the memory refresh logic.
Arbitration is done according to a fixed priority.
First priority goes to DMA requests from the 1/0 sub­
system. Second priority goes to memory refresh
requests. Lowest in priority are requests made by
the CPU. The one exception to this scheme occurs
at the conclusion of a DMA transaction. In this case,
the first arbitration cycle following the DMA
changes the priority to memory refresh first, CPU
request second, and DMA last. This guarantees that
requests for CPU and memory refreshes are granted
during heavy DMA traffic.

The larger state machine, or main sequencer,
examines the command generated by the smaller
state machine, or cycle decoder, and initiates the
control flow necessary to perform that command.
Fifteen unique flows are implemented by the main
sequencer. They are

• Read cacheable memory with/without victim
block

• Write cacheable memory with/without victim
block

• Write noncacheable memory (diagnostic use
only)

• Full block write cacheable memory with/with-
out victim block

• Tag space write (diagnostic use only)

• Programmed VO read/Write

• Load lock hit

• Store conditional hit

• Memory refresh

• DMA read/write

When a cache miss occurs and the new cache
block replaces a cache block that has been modi­
fied, as indicated by the "dirty" status bit, the dis­
placed data is referred to as a "victim block" or
"victim data."

The many variants of cacheable reads and writes
provide optimized flows that maximize the paral­
lelism of cache accesses and memory accesses. For

Digital Technical Journal Vol. 4 No. 4 Special issue 1992

example, during the "read cacheable memory with
victim block" flow, the main sequencer reads the
victim block from the B-cache and stores it in che
SLICE ASICs in parallel with reading the new block
from main memory. The same flow without a vic­
tim block makes use of the main memory access
time to update the tag store. The control flows for
writes to cacheable memory also take advantage of
this parallelism. A further write optimization is
used when the cycle decoder determines that the
entire cache block will be written; in this case the
data from memory is completely overwritten, and
therefore it is never fetched from memory

DMA flows are entered upon request of the DMA
controller in the 1/0 control section. DMA control
flows start by asserting a "hold request" to the CPU,
causing the CPU to cease B-cache operations within
a specified time, after which it asserts a "hold
acknowledge" signal. It should be noted that the
CPU will continue to execute instructions inter­
nally until such time as it experiences a miss in one
of its internal caches, or it requires some other
external cycle.

Each DMA write to memory results in a probe of
the B-cache for the DMA target block, with a hit
resulting in the B-cache block being updated in par­
allel with main memory and the corresponding pri­
mary data cache block being invalidated. DMA reads
cause main memory to be read in parallel with
probes and reads of the B-cache. If a cache probe
hits, the B-cache data is used to fill the DMA read
buffer in the SLICE ASICs; otherwise the main mem­
ory data is used. In this manner, cache coherence is
maintained.

Memory System and System Crossbar
The DEC 3000 AXP Model 400 and Model 500 archi­
tecture supplants the traditional system bus with a
system crossbar constructed from ASICs. Tightly
coupled to the crossbar is the system memory Three
types of ASICs- SLICE, ADDR, and TC- form the
crossbar. SLICE and ADDR are discussed next and TC
is discussed in the 1/0 Subsystem Interface section.

SLICEASICs
The four SLICE ASICs are used strictly for data path;
together they form a 32-byte bus to main memory, a
16-byte bus to the CPU and cache, and a 4-byte bus
to the TC ASIC. It is helpful to think of the SLICE
ASICs as a train station for data with the data buses
as train tracks. Data can come and go on any track,
different tracks have different speeds and widths,

71

Alpha AXP Architectu re and Systems

and data can find temporary storage in the ASICs.
The SLICE ASICs provide the systems with a location
to buffer DMA, 1/0 read, 1/0 write, and victim data
while the data waits to travel the next leg of its jour­
ney. The use of the SLICE ASICs also eliminates one
to two levels of buffering between the dynamic ran­
dom-access memories (DRAMS) and the CPU, thus
decreasing latency and improving bandwidth.

A key design decision was determining the width
of the memory data bus. A conventional design
would have matched the width of the memory bus
to the width of the cache bus (16 bytes). However,
to reduce the memory latency of the second half of
the cache block (cache line size is 32 bytes), the
system reads the entire cache block from memory
at once using a 32-byte memory bus. This technique
elin1inates the additional latency from a second
page-mode read.

The DEC 3000 AXP Model 500 returns the entire
block to the cache and CPU with an average latency
of only 180 nanoseconds (ns) from the CPU memory
request. In contrast, a less aggressive preliminary
design using a system bus and 16-byte-wide mem­
ory bus yielded an average memory latency of 320
ns. The 32-byte memory bus costs little more than a
16-byte bus-two low-cost ASICs, resistor packs,
and some address fan-out parts.

ADDR ASIC
The ADDR ASIC is a crossbar for addresses. ADDR
sends addresses from the CPU to memory (CPU
reads and writes), from the CPU to 1/0 (1/0 reads
and writes), and from the 1/0 to CPU and memory
(DMA reads and writes). ADDR selects between CPU

~ DRAM I
DRAM I

-~ DRAM I
DRAM I

SIMM SIMM

, .

read, victim write, and DMA addresses to send to
memory. A counter that increments DMA addresses
on long TURBOchannel DMAs also resides in ADDR.

ADDR provides a home to the memory configura­
tion registers. At power-on time, the boot firmware
writes and reads memory space, determines the
memory configuration, and writes the configura­
tion registers. At run time, each memory address
maps into a unique bank, regardless of the type and
order of the single in-line memory modules (SIMMS)
installed.

ADDR also provides a home for miscellaneous
functions such as tag parity checking, refresh
counter, and the locked physical address register. It
generates the cache probe index to check the cache
tags for a hit or a miss on DMA probes.

Memory Mother Board and SIMMs
The memory system is composed of memory
mother boards (MMBs) that rise from the system
card, and SIMMs. This arrangement is a good solu­
tion to the problem of limited space on the system
module. It allows for a wide data bus and for good
signal integrity for short propagation times on the
memory data bus.

As shown in Figure 5, an MMB module supports
up to eight SIMMs at a time (four SIMMS in Model 400
systems). A minimum of two SIMMS is required for
each board. A system always contains four MMBs.
The MMBs act as a carrier for the SIMMs and also con­
tain drivers for address and control signals.

A total of 8, 16, 24, or 32 SIMMS (maximum of 16 in
Model 400 systems) can be plugged into the system.
SIMMS may be single- or double-sided with 10 DRAMS

1 TO 8 DRAMS INSTALLED

~ DRAM I
DRAM I

-~ DRAM I
DRAM I

SIMM SIMM

I
MEMORY MOTHER BOARD

I CACHE RAM I
-11 CACHE DATA BUS

MEMORY DATA BUS -l)
SLICE ASIC I CPU I

Figure 5 Memory and Cache Data Bus

72 Vol. 4 No. 4 Special Issue 1992 Digital Tecb11ical Journal

The Design of the DEC 3000 AXP Systems, Two High-performance Workstations

per side. Each side of a SIMM constitutes one-eighth
of a bank. Eight SIMMS must be plugged in to com­
plete a bank; hence the 320-bit-wide data bus (4 bits
per DRAM by 10 DRAMS per SIMM by 8 SIMMS). One
megabit (Mb), 4Mb, and 16Mb DRAMS are sup­
ported, and users are allowed to populate banks in
any order. In this way, the DEC 3000 AXP Model 500
can support from 8MB to 1 gigabyte (GB) of mem­
ory, and the DEC 3000 AXP Model 400 can support
8MB to 512MB of memory.

Main memory is protected by a single-bit-correct,
double-bit-detect error-correcting code (ECC). In
addition, the arrangement of data bits allows the
detection of any number of errors restricted to a
single DRAM chip. ECC corrections for CPU trans­
actions are performed by the CPU, and corrections
for 1/0 transactions are done in the TC ASIC.

Memory Transactions
When data is stored in the B-cache by the CPU, it is
not immediately sent to memory. Data is written to
main memory only when a dirty block in the cache
is replaced. Data destined for the cache is read from
main memory only on cache misses. Reads to main
memory, whether from the CPU or from DMA,
always return 32 bytes. On CPU reads of main
memory, data is returned to the cache and CPU in
two halves by the SLICE ASICs. Likewise when the
B-cache control writes victim data to main mem­
ory, two reads are made of the cache, but only one
write is made to main memory.

On DMA writes, 4 bytes of data arrive from the
TURBOchannel interface ASIC each cycle and are
stored in the SLICE ASICs. The SLICE ASICs can buffer
up to 128 bytes of data prior to writing the data to
main memory using page-mode writes, 32 bytes at a
time. To maintain cache/memory coherence, data is
also provided to the cache RAMs so that it may be
written in the case of a cache hit. On DMA reads, up
to 128 bytes of data are read page mode out of main
memory and buffered in the SLICE ASICs. Data flows
out to the TC ASIC and the TURBOchannel bus at the
rate of 4 bytes per cycle (IOOMB/s). In the event of a
cache hit, data is taken preferentially from the
cache.

The crossbar employs a technique that permits
simultaneous transactions from CPU to main mem­
ory and DMA. The TURBOchannel bus supports DMA
transactions of up to 512 bytes in length. Once the
DMA starts, the system must be able to provide or
receive data without any gaps. However, while the
DMA buffer in the SLICE ASICS is sufficiently full (for

Digital Tee/mica/ Journal Vol. 4 No. 4 SjJecial Issue 1992

DMA reads) or empty (for DMA writes), the CPU is
allowed to use memory. When the 1/0 controller
detects that the buffer is too full or too empty, it
requests memory time to service the DMA buffer.
At this time, further CPU requests are temporarily
ignored. This technique prevents the CPU from
being locked out of main memory, even during long
DMA transactions and even though DMA has priority
over CPU transactions.

The crossbar also permits simultaneous write
transactions from the CPU to main memory and
from the CPU to an 1/0 device. SLICE and ADDR ASICS
can buffer one 1/0 write transaction of up to 32
bytes in size. Once the ASICs have accepted the data
and address, the cache and crossbar are free to pro­
cess other CPU transactions, which can include
cache and main memory reads and writes. If the
CPU issues an 1/0 write while a previous write
is still pending in the ASICs, the cache controller
simply stalls.

1/0 Subsystem Interface/
TURBOchannelASIC
The 1/0 system is based on the TURBOchannel, a 32-
bit high-performance, bidirectional, multiplexed
address and data bus developed by Digital for work­
stations. 3 The DEC 3000 AXP supports up to six
plug-in options, as well as the integral smart frame
buffer (SFB) graphics ASIC, the 1/0 controller
(IOCTL) ASIC, and the TURBOchannel dual SCSI
(TCDS) ASIC. The TURBOchannel bus is synchronous
and requires only five control signals in each direc­
tion between the system and the option cards.

The system interfaces to the TURBOchannel bus
by a data-path TC ASIC and control logic contained
in a number of programmable array logic devices
(PALs). The TC ASIC completes the system crossbar
by passing addresses between the TURBOchannel
bus and the address ASIC, and passing data between
the TURBOchannel bus and the SLICE ASICs.
Furthermore, the TC ASIC checks and generates par­
ity on the TURBOchannel, and checks, corrects, and
generates ECC on the data bus to the SLICE ASICs.
Parity checking of TURBOchannel data is optional
and is enabled on a per-option basis through a con­
figuration register in the TC ASIC. Finally, the TC
ASIC contains a number of counters for tracking
DMA progress, as well as configuration and error
registers. All control logic was implemented in PALs
to minimize the impact to the project schedule of
any design changes. The TURBOchannel interface
block diagram in shown in Figure 6.

73

Alpha AXP Architecture and Systems

ADDRASIC

ADDRESSING
LOGIC

1/0 ADDRESS TC ASIC

! PHYSICAL PAGE
NUMBER

~--~---• SG RAMS
(32K ENTRIES)

SLICE ASICS

11/0 BUFFER
VIRTUAL
ADDRESS

1/0 DATA BUS

TURBOCHANNEL

ERRORS

I DMA BUFFER I
COUNTERS 6{jl

CONTROL REQUEST SFB
DMA TCDS

ACKNOWLEDGE ARBITRATION

DMA REQUEST

CONTROL STATUS SELECT

CONTROL 1/0 CONTROL READY

STATE MACHINES TC
AND DECODE LOGIC OPTIONS

Figure 6 TURBOchannel Interface Block Diagram

There are two types of TIJRBOchannel opera­
tions: the system initiates 1/0 reads and writes, and
the options initiate DMA reads and writes. On an
1/0 operation, the system sends the 1/0 address
from the ADDR ASIC to the TC ASIC, and from there
to the TIJRBOchannel. For 1/0 reads, the option
returns data on the TIJRBOchannel. This data passes
through the TC ASIC and over the bus to the SLICE
ASICs. The system includes some special hardware
for byte masking of 1/0 read data. This hardware is
used to provide support for VMEbus adapters.

For 1/0 writes, the system sends data from
the SLICE ASICs across the data bus to the TC ASIC.
The TC ASIC then sends it to the option over the
TIJRBOchannel. The DEC 3000 AXP workstation
supports a block write extension to the original
TIJRBOchannel protocol. In this mode, the system
supplies a single address followed by multiple
consecutive data transfers for improved 1/0 write
performance. This extension is also configurable
on a per-option basis through the TC configuration
register.

The TIJRBOchannel protocol specifies that before
any option can use the bus for DMA, it must issue a

74

request to the system. The DEC 3000 AXP architec­
ture employs an arbitration scheme using rotating
priority that prevents any option from being locked
out. After being granted the bus, the option sup­
plies a DMA address on the TIJRBOchannel bus. This
address routes through the TC ASIC and onto the
address ASIC. In the case of a DMA write, data imme­
diately follows the address on the TIJRBOchannel.
This data passes through the TC ASIC and onto the
data bus to the SLICE buffers.

DMA reads are more complicated than writes
because the TIJRBOchannel bus does not transmit
ahead of time the number of bytes of data to be read
from memory. Instead, it continues to assert its
read request signal for as long as it is requesting
data. The SLICE buffers begin to fill up with DMA
data, and only when they can guarantee that there
will be no gaps in the DMA will the data transfer
start. The TC ASIC receives the read data from the
SLICE ASICs and sends it onto the TIJRBOchannel to
the requesting option.

Virtual DMA allows the system to map non­
contiguous regions of physical address space into
contiguous regions of virtual address space. This

Vol. 4 No. 4 Special Issue 1992 Digital Technical]ounral

The Design of the DEC 3000 AXP Systems, Two High-performance Workstations

method allows TURBOchannel options to transfer
large blocks of DMA data without knowledge of how
that data is mapped in the physical address space in
main memory. Virtual DMA enhances operating
system performance because the memory mapping
is performed before the transfer of DMA data.

The DEC 3000 AXP workstation supports virtual
DMA through the use of a scatter/gather (SG) map,
which acts as a translation buffer. SG mapping is
enabled on a per-option basis through the configura­
tion register in the TC ASIC. The SG map is organized
as 32K 24-bit entries. Each entry contains a 17-bit
physical page number (PPN), parity, and valid bit.
Software sets up the map through VO space reads
and writes. DMA byte address bits [27:13] index the
SG map, which produces a 17-bit PPN (bits [29: 13]) to
append to the virtual DMA byte address bits [12:0].
The resulting 30-bit physical DMA byte address can
then address all lGB of the possible system address
space. An SG map is shown in Figure 7.

1/0 Subsystem
Most of the 1/0 subsystem is implemented on
its own module. This VO module, shown in Figure
8, contains the connectors for attachment unit

EXTERNAL SCSI

interface (AUi) Ethernet, lOBase-T Ethernet,
Integrated Services Digital Network (ISDN), alter­
nate console/serial printer, mouse/keyboard, com­
munications, internal and external SCSI, three
TURBOchannel options, and audio module port.
The various 1/0 controllers interface to the
TURBOchannel through one of three ASICs. These
ASICs are the smart frame buffer (SFB) on the CPU
module and the TURBOchannel dual SCSI (TCDS)
ASIC and the 1/0 controller (IOCTL) ASIC on the 1/0

module.

VIRTUAL DMA BYTE ADDRESS FROM TURBOCHANNEL

33 28 27 1312 0

UNUSED VIRTUAL PAGE BYTE

29 1312 0

PPN BYTE

PHYSICAL DMA BYTE ADDRESS TO MEMORY SYSTEM

Figure 7 Scatter/Gather Mapping

MOUSE/
KEYBOARD ISDN AUi

TPIC
CONNECTOR

INTERNAL SCSI TC CPU MODULE TC REAL-TIME FLASH TC AUDIO
CONNECTOR 5 CONNECTOR CONNECTOR 4 CLOCK MEMORY CONNECTOR 3

Figure 8 1/0 Module

D igital Tech nica l j ournal Vol. 4 No. 4 Special Issue 1992 75

Alpha AXP Architecture and Systems

I/0 Module-IOCTL ASIC
A key 1/0 subsystem design decision was to reduce
time-to-market by eliminating unnecessary new
hardware and software development. To support
most of the 1/0 functionality, the designers chose
the IOCTL ASIC developed for the DECstation 5000
Model 240.

The IOCTL ASIC provides an interface to a 16-bit,
general-purpose 1/0 bus, which supports the fol­
lowing devices: two Zilog Z85C30 serial communi­
cations controllers (SCCs), an AMO 7990 local area
network controller for Ethernet (LANCE), a Dallas
semiconductor DS1287 real-time clock, an AMD
79C30A ISDN data controller (JDC), a SCSI con­
troller, and an AMO 27C020 256KB erasable pro­
grammable read-only memory (EPROM).

The secs implement the keyboard, mouse, alter­
nate console/printer, and communications ports.
The mouse and keyboard do not use OMA. The alter­
nate console/printer and the communications port
douseDMA.

The LANCE implements the Ethernet interface,
which connects to the local area network (LAN)
through either the AUi (thickwire) or IOBase-T
(twisted-pair interconnect [TPIC]) connectors. Soft­
ware controls which one of these interfaces is
enabled.

The real-time clock provides time-of-year (TOY)
reference and 50 bytes of nonvolatile RAM. A
lithium battery supplies power in the event of
system power-off or failure .

The JDC implements both an ISDN interface and
telephone-quality audio. The audio connects to the
audio interface module (AIM), which provides the
audio 1/0 in the Model 500. Audio 1/0 in the Model
400 is on its 1/0 module.

The AIM on the Model 500 supports audio input
through either a Ya-inch minijack for microphone
input, a 4-pin modular jack (MJ) connector for use
of a telephone handset, or an RCA-style phonograph
jack used as a line-in input. Output is provided by
the MJ connector as well as by a Ya-inch stereo­
phonic jack. The stereophonic jack accepts only a
stereophonic plug. If monophonic headphones are
used, a mono-to-stereophonic adapter is required.
On the Model 400, audio input and output is imple­
mented using a 4-pin MJ connector.

Analysis of the complete audio system in a Model
500 shows a frequency response of 145 Hz to 3,500
Hz, with typical distortion in the 0.8 percent to 1.9
percent range for the microphone and 0.4 percent
to 1.5 percent for the telephone handset. The

76

signal-to-noise ratio ranged from 24 decibels with a
minimal signal input to 58 decibels with a high­
level signal input.

I/0 Module-TCDS ASIC
Although the IOCTL ASIC contains an interface
to a SCSI controller, the DEC 3000 AXP systems
implement their SCSI interface using the TCDS
ASIC. This design has several advantages. First, the
TCDS ASIC supports two SCSI ports rather than
the one supported by the IOCTL ASIC, permitting
separate internal and external SCSI chains. Second,
this design eliminates contention between the
Ethernet controller and the SCSI controller for the
IOCTL bus. Third, the TCDS ASIC supports much
longer TURBOchannel OMA bursts (64-byte bursts
rather than 16-byte bursts). Finally, the resulting
ASIC design is used to implement a dual SCSI
TURBOchannel option module.

The TCDS ASIC implements two separate SCSI
ports using two NCR 53C94 advanced SCSI con­
trollers (ASCs). The TCDS allows both controllers to
have OMA transfers in progress simultaneously.

TCDS TIJRBOchannel DMA transactions are
aligned 64-byte blocks. Starting DMA addresses that
are not aligned to these boundaries begin with a
smaller OMA transaction. This technique aligns the
address so that succeeding transactions are aligned
64-byte blocks. Large, aligned transactions increase
both TIJRBOchannel and memory access efficiency.

The TCDS ASIC and the ASCs provide odd parity
protection on major data paths. This protection
includes 8-bit parity on the 16-bit bus between the
TCDS and the ASCs, 32-bit parity on TCDS DMA buffer
entries, and 32-bit parity on TIJRBOchannel trans­
actions, both 1/0 and OMA.

Graphics
The graphics subsystem on the Model 500 sys­
tem card provides integral 8-plane graphics with
hardware enhancements for improved frame buf­
fer performance. These enhancements increase
the performance of stipple, line drawing, and copy
operations. The graphics system consists of an SFB
ASIC, 2MB video RAM, and the Brooktree Bt459
RAMDAC chip for sourcing the 8-plane RGB data.
The user can select either a 66-Hz or a 72-Hz moni­
tor refresh rate through a switch on the back of the
workstation. The graphics subsystem can draw
615K two-dimensional vectors per second and can
perform copy operations at 31.SMB/s.

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

The Design of the DEC 3000 AXP Systems, Two High-performance Workstations

The graphics subsystem is available separately as
the TURBOchannel HX graphics option card. In addi­
tion, high-performance two-dimensional and three­
dimensional graphics accelerators are available
through the TURBOchannel bus for all systems.

Clock System
The input clock circuitry to the DECchip 21064 CPU
contains a differential 300-MHz oscillator (266 MHz
for the Model 400), which drives an alternating cur­
rent (AC) decoupling circuit and the CPU chip. The
CPU chip divides down the input clock frequency
by a factor of two and operates internally at 150
MHz. The DEC 3000 AXP Model 500 is capable of sup­
porting a 200-MHz CPU with a 400-MHz oscillator.

The entire system, with the exception of some
1/0 devices, runs synchronously. The master system
clock is generated by the CPU chip at a frequency of
25 MHz (22 MHz for the Model 400), resulting in
system clock cycles of 40-ns duration. This master
system clock is duplicated and distributed with
differential pseudo-emitter coupled logic (PECL)
to maintain minimum skew and to improve noise

CRYSTAL

ID
300MHZ

3.3-V
-----. CMOS ITL

CPU LEVELS LEVELS

25 MHZ DELAY
SYSCLK LINES

CMOS-TO­
PECL
CONVERSION

EGL
PECL CLOCK
LEVELS BUFFER

CHIP

EGL
CLOCK
BUFFER
CHIP

margin. The PECL clocks are converted to transistor­
transistor logic (TfL) in the last stage of the clock
fan-out tree.

Two stages of system clock fan-out are used as
shown in Figure 9. Two MC100Elll ECL clock buffer
chips (PECL input and output) provide 18 low­
skew differential copies of the clock. Seventeen
MC l00H641 ECL-to-TfL converters (PECL input, TfL
output) are distributed throughout the system and
1/0 boards to provide more than 100 clock lines. All
clock lines are length matched to reduce skew, and
PECL wires are separated from TfL. Worst-case
SPICE simulation indicates a skew between typical
components such as PALs to be 1.5 ns. Actual skews
measured in the lab are approximately 0.5 ns.

To give designers maximum flexibility, four
phases of the system clock are generated, one every
10 ns. Delay lines are used to generate an offset of 10
ns. By swapping the high and low differential inputs
to selected MC100H641 converters, the 20- and 30-
ns delayed clocks are generated. The master system
clock is delayed using delay lines so that the even­
tual system clock is synchronous with the CPU chip.

PECL
LEVELS

10-NS
DELAY
LINES

CLK
PAL

GA

'-------o FLOP

CLK
PAL

DELAYED ,------,
CLK

PAL

Figure 9 Clock Distribution

Dtgttal Tecbntcal Journal Vol. 4 No. 4 special Issue 1992 77

Alpha AXP Architecture and Systems

Technology
The goal in choosing semiconductor devices was to
select mature silicon technologies and then push
those technologies to the limit. Module- and chip­
level signal integrity was verified by correlating
silicon bench characterization data to device simu­
lation modules. CAD tools were used to perform
worst-case module timing and signal integrity sim­
ulation. This methodology minimized device costs,
reduced risks, and shortened time-to-market.

The nine ASICs in a DEC 3000 A.XP workstation
use six unique LO-micrometer complementary
metal-oxide semiconductor (CMOS) designs. (See
Table 2.) Plastic quad flat packs (PQFP) are used as
the packaging technology to limit device cost.
Because the ASICs are 1/0 limited and the PQFPs do
not have ground planes, the effects of simultaneous
switching outputs (SSOs) were a concern. The
potential effects of ssos in CMOS output buffers
include corrupted data and undesirable oscil­
lations. Simulation and bench characterization
were used to quantify the sso effects, and in some
cases ssos were reduced by staggering output
driver timing.

Although ASICs were chosen for the data path,
PALs were used for control logic due to their greater
flexibility and faster turnaround time. A total of 63
20XX (5 ns) and 22VIO (10 ns) PALs with 57 different
codes was used. Exhaustive system-level simula­
tion and bench characterizations were performed
to understand device behavior in the many differ­
ent loading scenarios.

The CPU board technology proved moderately
difficult for system-level assembly due to the large
distance between the fine-pitch (25 mil) compo­
nents. There are 19 fine-pitch components on the
14- by 16-inch CPU board, with a maximum distance
of 14 inches between any two devices. With this
large distance, an aggressive, true positional diam­
eter (TPD) tolerance requirement of 6 mils was

implemented. TPD is defined as the total diameter
of permissible movement from a theoretical exact
location around the true position of the pads. This
TPD requirement ensures proper positional accu­
racy between the solder paste stencil apertures and
the surface-mount features. In addition, solder
mask between pads on the fine-pitch components
is used to reduce manufacturing defects.

To reduce power and cost, the slower DEC 3000
AXP Model 400 design substitutes CMOS technology
for the BiCMOS cache SRAMs and for many of the
bipolar PALs.

Power and Packaging
The following fixed disk drive options are currently
available.

• RZ25 3.5-inch half-height 426MB disk drive

• RZ26 3.5-inch half-height 1050MB disk drive

The following removable media options are also
available.

• RRD42 5.25-inch half-height 600MB CD-ROM drive

• RX26 3.5-inch half-height 2.8MB floppy disk drive

• TZKIO 5.25-inch half-height 525MB QIC tape
drive

• TIZ06 5.25-inch half-height 4000MB DAT drive

The Model 500 has a 480-watt output, off-line,
switching regulated power supply, which includes
a capacitor-input, automatic voltage-selecting cir­
cuit to permit worldwide operation without a volt­
age-select jumper for 120 or 240 volt (V) input. The
power supply provides five outputs to the load:
+3.3 V, +5.1 V-CPU, +5.1 V-turbo, + 12.1 V, and -12.1 V.

The power supply also provides power for three
external fans. Temperature-sensing fan speed con­
trol is provided to reduce system noise. The power

Table 2 ASICs Used on the DEC 3000 AXP Workstations

Total Number Number of Number of Used Available
Chip of Pins Pins Used Signal Pins Gates Gates

SFB 184 184 150 21.6K 54K

TC 184 182 144 12.1K 44K

SLICE 184 184 153 11.2K 44K

ADDA 184 183 148 5.7K 44K

TCDS 120 120 94 26.5K 68K

IOCTL 160 160 126 11 .2K 44K

78 Vol. 4 No. 4 Spedal Issue 1992 Digital TecbnicalJounial

The Design of the DEC 3000 AXP Systems, Two High-performance Workstations

supply senses tachometer outputs from the fans,
and when a fan fails, it shuts down and illuminates
an indicator.

Manufacturability/ Testability
The designers provided several debugging features,
including test points on the module, tristate out­
puts on ASICs and PAL<i, an on-board diagnostic
ROM, and programmable console ROM. Since the
module is composed almost exclusively of surface­
mount devices, the designers specified as many vias
as possible for use as test points. Consequently, all
wires on the board have test points, which allows
for 100 percent short-circuit coverage and 94 per­
cent open-circuit coverage.

The DEC 3000 AXP workstation takes full advan­
tage of the serial ROM port on the DECchip 21064
CPU. This port allows code to be directly loaded
into the instruction cache. During prototype devel­
opment, designers loaded special debug programs
into the CPU through this port. However, the real
innovation is in also wiring this port to the output
of a 64K by 8 EPROM on the module to provide 8
programs that are individually selectable by moving
a jumper on the module. On system reset, serial
program data from the selected EPROM output is

Table 3 System Performance

CPU speed
B-cache size
B-cache read bandwidth
B-cache write bandwidth

Maximum main memory
CPU memory latency (average)
CPU memory read bandwith
CPU read with victim write

memory bandwidth

TURBOchannel peak bandwidth
1/0 read bandwidth 8 bytes
1/0 write bandwidth 8 bytes
Block 1/0 write bandwidth 32 bytes
Block 1/0 write bandwidth 32 bytes with CPU

read and victim write memory bandwidth

DMA read bandwidth 512 bytes
64 bytes

DMA write bandwidth 512 bytes
64 bytes

64-byte DMA write bandwith with
CPU reads from memory

Digital Tecb11icalJour11al Vol. 4 No. 4 Special Issue 1992

loaded into the instruction cache. These programs
include power-up code for loading the real console,
a miniconsole, and five diagnostic programs for
testing memory and the graphics subsystem. Other
tests are available by replacing the EPROM. These
programs are of great value in the manufacturing
debug environment.

Two flash EPROMs contain the console code for
the system. On power-up, code in the serial ROM
loads the console code into memory and begins
executing it. Users can easily update the console
ROMs (for example, to provide PAL code enhance­
ments) through a special utility booted off a CD­
ROM connected to the system. Field service can
update the console code in the system remotely
through the Ethernet.

Conclusions
The primary goal of this project was to design a bal­
anced system that exhibited low memory latency,
high memory bandwidth, and minimal CPU-1/0
memory contention in a cost-effective manner.
Table 3 gives the measured peformance numbers
for these characteristics. Except where noted, all
numbers are for sustained performance. Of particu­
lar note are the numbers showing that the CPU

DEC3000AXP
Model 500

150 MHz
512KB
480MB/s
320MB/s

1GB
32 bytes/1 80 ns
114MB/s
160MB/s

100MB/s
13MB/s
33MB/s
67MB/s
110=53MB/s
MEM=107MB/s

91MB/s
57MB/s
93MB/s
59MB/s
DMA=59MB/s
CPU=30MB/s

DEC3000AXP
Model 400

133 MHz
512KB
426MB/s
284MB/s

51 2MB
32 bytes/203 ns
101 MB/s
141 MB/s

89MB/s
12MB/s
29MB/s
59MB/s
110=47MB/s
MEM=95MB/s

81 MB/s
51 MB/s
82MB/s
52MB/s
DMA=52MB/s
CPU=27MB/s

79

Alpha AXP Architecture and Systems

receives significant memory bandwidth even in the
presence of heavy block 1/0 and DMA traffic.

Another goal of the project was to offer per­
formance that is competitive with RISC worksta­
tions available from other vendors. The benchmark
performance of any system derives from the inter­
dependent performance of the hardware, the oper­
ating system, and the compilers that generate the
application code. The benchmark performance
should improve as each element matures. Table 4
shows the performance of the DEC 3000 AXP sys­
tems on a selected set of benchmarks as of the
announcement dates of these products. Table 5
compares the performance of the DEC 3000 AXP
Model 500 to the published performance of several
currently available competitive systems.4

Acknowledgments
The DEC 3000 AXP Model 500 design was a team
effort-more people were involved than can be
acknowledged in this space. Recognition is due to

Table 4 Benchmark Performance

Clock (MHz)

SPECmark89

Dhrystones
V1 .1 (Dhrystones per second)
V2.1 (Dhrystones per second)

UNPACK 64-bit double precision
100 x 100 (MFLOPS)*
1000 x 1000 (MFLOPS)

X11PERF
Two-dimensional vectors per second
Two-d imensional pixels per second

Note: "Million floating-point operations per second

Table 5 Competitive Comparison

DEC 3000
Model500

SPECmark89 121.5

Dhrystones
V1 .1 (Dhrystones per second) 257.7K
V2.1 (Dhrystones per second) 281.2K

UNPACK 64-bit double precision
100 x 100 (MFLOPS) 26.4
1000 x 1000 (MFLOPS) 79.9

those who contributed to the design of original
hardware: Dave Archer, Mark Baxter, John DeRosa,
Chris Gianos, Leon Hesch, Dave Laurella, Bob
McNamara, Dick Miller, Rick Rudman, Dave
Senerchia, Petr Spacek, Bob Stewart, Ned Utzig,
Debbie Vogt, and John Zurawski. The tight schedule
could not have been met without the special efforts
of the Power and Packaging, Console, Qualifi­
cation, Proto Management, and Technology and
Operating Systems Groups. The design team for the
DEC 3000 AXP Model 400 project is also recognized:
John Day, Jamie Pierce, Dennis Rainville, and Ken
Ward. The thorough device evaluations by Rob
Zahara contributed significantly to the success of
the projects. We would also like to acknowledge
the contributions by FXO personnel. The Electronic
Storage Development Group was responsible for
the design of the DEC 3000 AXP Model 500 memory
module. Significant efforts by the Maynard TME,

Albuquerque, and Ayr Manufacturing Plants should
be recognized for delivering quality hardware

DEC 3000AXP DEC3000AXP
Model 400 Model500

133 150

108.1 121.5

228.3K 257.7K
249.6K 281.2K

26.4 30.2
70.8 79.9

564.0K 636.0K
27.4M 31.0M

IBM RS6000 HP9000
Model 580 Model750

126.2 86.6

n/a 133.7K
n/a 122.3K

38.1 23.7
84.0 n/a

80 Vol. 4 No. 4 Spectallssue 1992 D igital Tecbntcal]ournal

The Design of the DEC 3000 AXP Systems, Two High-performance Workstations

during the development and production phases; a
special thanks to Jim Ersfeld for his significant
efforts in this regard.

References

1. R. Sites, ed., Alpha Architecture Reference
Manual (Burlington, MA: Digital Press, Order
No. EY-L520E-DP, 1992).

2. D. Dobberpuhl et al., "A 200-MHz 64-bit Dual­
issue CMOS Microprocessor," IEEE Journal of
Solid-State Circuits, vol. 27, no. 11 (November

Dtgttal Tecbntcal Journal Vol. 4 No. 4 Special Issue 1992

1992): 1555-1567 and Digital Technical journal,
vol. 4, no. 4 (1992, this issue): 35-50.

3. TIJRBOchannel Specifications, Version 2C (Palo
Alto, CA: Digital Equipment Corporation,
TRI/ADD Program, Order No. EK-TCDEV-DK-004,
September 1991).

4. Alpha AXP Workstation Family Performance
Brief-OpenVMS, Second Edition (Maynard:
Digital Equipment Corporation, Order No.
EB-N0102-51, November 20, 1992).

81

Barry A. Mask.as
Stephen F. Shirron

Nicholas A. Warchol

Design and Performance of the
DEC 4000 AXP Departmental
Server Computing Systems

DEC 4000 AXP systems demonstrate the highest performance and functionality
for Digitals 4000 series of departmental server systems. DEC 4000 AXP systems
are based on Digitals Alpha AXP architecture and the IEEEs Futurebus+ profile B
standard. They provide symmetric multiprocessing performance for Open VMS AXP
and DEC OSF/1 AXP operating systems in an office environment. The DEC 4000
AXP systems were designed to optimize the cost-performance ratio and to include
upgradability and expandability. The systems combine the DECchip 21064 micro­
processor, submicron CMOS sea-of gates technology, CMOS memory and 1/0 periph­
erals technology, a high-performance multiprocessing backplane interconnect, and
modular system design to supply the most advanced functionality for performance­
driven applications.

The goal of the departmental server project was to
establish Digital's 4000 family as the industry's most
cost-effective and highest-performance depart­
mental server computing systems. To achieve this
goal, two design objectives were proposed for the
DEC 4000 AXP server. First, migration was necessary
from the VAX architecture, which is based on a com­
plex instruction set computer (CISC), to the Alpha
AXP architecture, which is based on a reduced
instruction set computer (RISC). Second, for expan­
sion I/0 in an upgradable office environment enclo­
sure, migration was necessary from the Q-bus
to the Futurebus+ 1/0 bus. 1 In addition, the new
system had to provide balance between processor
performance and 1/0 performance. Maintaining
customer investments in VAX and MIPS applications
through support of OpenVMS AXP and DEC OSF/1
AXP operating systems was implicit in the archi­
tecture migration objective. Migration, porting,
and upgrade paths of various applications were
defined.

This paper focuses on the design of the DEC 4000
AXP hardware and firmware. It begins with a discus­
sion of the system architecture and the selection of
the system technology. The paper then details the
CPU, I/0, memory and power subsystems. It con­
cludes with a performance summary.

82

System Overview
The DEC 4000 AXP system provides supercomputer
class performance at office system cost. 2 This com­
bination was achieved through architecture and
technology selections that provide optimized
uniprocessor performance, low additional cost
symmetric multiprocessing (SMP), and balanced
1/0 throughput. High 1/0 throughput was accom­
plished through a combination of integrated con­
trollers and a bridge to Futurebus+ expansion 1/0.
The system uses a modular, expandable, and
portable enclosure, as shown in Figure I. With
current technologies, the system supports up to

2 gigabytes (GB) of dynamic random-access mem­
ory (DRAM), 24GB of fixed mass storage, and 16GB
of removable mass storage. The DEC 4000 AXP
system is partitioned into the following modular
subsystems:

• Enclosure (BA640 box)

• CPU module (DECchip 21064 processor)

• 1/0module

• Memory modules

• Mass storage compartments and storage device
assembly (brick)

Vol. 4 No. 4 Spedal Issue 1992 Digital Technical Journal

Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems

I _____ ___,..

, _____ -.

Figure I DEC 4000 AXP System Enclosure

• Futurebus+ Expansion 1/0, Futurebus+ con­
troller module (FBE)

• Power supply modules - universal line front-end
unit (FEU)

- Power system controller (PSC)

- DC-DC converter unit 5.0 volt (V) (DC5)

- DC-DC converter unit 2.1 V, 3.3 V, 12.0 V (DC3)

• Cooling subsystem

• Centerplane module

• Operator control panel (OCP)

• Digital storage systems interface (DSSI) and small
computer systems interface (SCSI) termination
voltage converter (VTERM)

Figure 2 shows these subsystems in a functional
diagram. The subsystems are interconnected by a
serial control bus, which is based on Signetic's 12C
bus.3

System Architecture
From the beginning of the project, it was apparent
that the 1/0 subsystem had to be equal to the

Dtgttal Tecbntcal Journal Vol. 4 No. 4 Special Issue 1992

increased processing power provided by the
DECchip 21064 CPU. Although processing power
was taking a revolutionary jump in performance
with no cost increase, disk and main memory tech­
nology were still on an evolutionary cost and per­
formance curve. The metrics that had been used
for VAX systems were difficult, if not impossible, to
meet through linear scaling within a fixed cost
bracket. These metrics were based on VAX-11/780
units of performance (VUPs); they give main mem­
ory capacity in megabytes (MB)/VUP, disk-queued
1/0 (QIO) completions in QIO/s/VUP, and disk data
rate in MB/s/VUP. As an example, Table 1 gives
the metrics for a VAX 4000 Model 300 scaled lin­
early to 125 VUPs and then nonlinearly scaled
for the DEC 4000 AXP system implementation.
Performance modeling of the DECchip 21064 CPU
suggested that 125 VUPs was a reasonable goal for
the DEC 4000 AXP.

Without an Alpha AXP architecture customer
base, we did not know if these metrics would scale
linearly with the processor performance. The
DECchip 21064 processor technology has the poten­
tial for attracting new classes of compute-intensive
applications that may make these metrics obsolete.
We therefore chose a nonlinear extrapolation of the
metrics for our initial implementation. By trading
off disk and memory capacity for 1/0 throughput
performance, we kept within established cost and
performance goals. The implementation metrics
were not limited by the architecture; further scal­
ing up of metrics was planned. Of the four metrics,
the disk capacity metric has the most growth
potential.

To ensure compliance with both the Alpha AXP
architecture and the Futurebus+ specifications, the
system was partitioned as shown in Figure 2. The
bridge between the CPU subsystem and the
Futurebus+ subsystem afforded maximum design
flexibility to accommodate specification changes,
modularity, and upgradability. The 1/0 module was
organized to balance the requirements between
CPU performance and 1/0 throughput rates. The
DEC 4000 AXP system implementation is based on
open standards, with a six-slot Futurebus+ serving
as the expansion 1/0 bus and the system bus serving
to interconnect memory, CPUs, and the 1/0 module.
The modularity of the system enables module swap
upgrades and configurability of the 1/0 subsystem
such that performance and functionality may be
tailored to user requirements. The modularity
aspects of the system design extend into the storage

83

Alpha AXP Architecture and Systems

CONNECTION
MODULE

VTERM

I CPU SUBSYSTEM

I
I
I
I
I
I
I
I
I

OPERATOR
CONTROL
PANEL

SERIAL CONTROL BUS

PROCESSOR
MODULEO

SYSTEM BUS

MEMORY
MODULEO

128-BIT AND LONGWORD PARITY

ASYNCHRONOUS SERIAL LINE
(AUXILIARY WITH MODEM CONTROL) I MODEM I

ASYNCHRONOUS SERIAL LINE
(CONSOLE LINE) CONSOLE

TERMINAL

1/0
MODULE

FUTUREBUS+ 2

OPTION
MODULE 1

6
I
I
I
I
I
I
I
I

FUTUREBUS+ I
I 1/0 EXPANSION _J
-----------I MASS STORAGE COMPARTMENT I

I
I DSSI/SCSI O

DSSI/SCSI 1

DSSI/SCSI 2

DSSI/SCSI 3

I

lc~~====:>1
I

DSSI/SCSI 4

FIXED D
MEDIA
DEVICE

FIXED D
MEDIA
DEVICE

FIXED D
MEDIA
DEVICE

REMOVABLE
MEDIA
DEVICE

I REMOVABLE
I MED~
I I DEVICE

I ._ - - - - - - - - - - _ I
!<...._~ __ E_TH_E_R_N_E_T _PO_R_T_1_.J,>O

I ETHERNET PORT o TO ETHERNET

I K ~
L-------------~-- -- _-j

r-------, r-------,
POWER SUBSYSTEM I I COOLING SUBSYSTEM I

n---d DODD :i ~ ~ : ACPOWER ~~
CABLE I _______ _J I _______ _J

KEY:

D EXTERNAL PORT CONNECTION

Figure 2 DEC 4000 AXP System Functional Partition

TO STORAGE
EXPANSION
DEVICES

84 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems

Table 1 Extrapolated VAX Metrics

Memory capacity

Disk capacity

Disk QIO rate

1/0 data transfer rate

VAX4000
Model300
Metrics

60 MB/VUP

1.65 GB/VUP

49 QIO/s/VUP

1.4 MB/s/VUP

compartment where each brick has a dedicated
controller and power converter. Support for DSSI,
SCSI, and high-speed lOMB/s SCSI provides maxi­
mum flexibility in the storage compartment. The
modular mass storage compartments enable user
optimization for bulk storage, fast access, or both.

The cost of SMP was a key issue initially, since
Digital's SMP systems were considered high-end sys­
tems. Pulling high-end functionality into lower­
cost systems through architecture and technology
selection was managed by evaluation of perfor­
mance and cost through trial designs and software
breadboarding. Several designs of a CPU module
were proposed, including various organizations of
one or two DECchip 21064 CPUs per module inter­
faced to 1/0 and memory subsystems. Optimization
of complexity, parts cost, performance, and power
density resulted in a CPU module with one proces­
sor that could operate in either of two CPU slots on
the centerplane. Consequently, a system bus had to
be developed that could be interfaced by proces­
sors, memory, and 1/0 subsystems in support of the
shared-memory architecture.

As development of the DECchip 21064 processor
progressed, hardware engineers and chip designers
established a prioritized list of design goals for the
system bus as follows:

1. Provide a low-latency response to the CPU's
second-level cache-miss transactions and 110
module read transactions without pending
transactions.

2. Provide a low-cost shared-memory bus, based
on the cache coherence protocol, that would
facilitate upgrades to faster CPU modules. This
provision implied a simple protocol, synchro­
nous timing, and the use of transistor-transistor
logic (TIL) levels rather than special electrical
interfaces.

3. Provide 1/0 bandwidth enabling local 1/0 to
operate at 25 megabytes per second (MB/s) and
the Futurebus+ to operate at lOOMB/s.

Digital Technical Journal Vol. 4 No. 4 Special issue 1992

Scaled
Linearly
to 125 VUPs

7.5GB

206 GB

6,125 QIO/s

175 MB/s

Scaled
Nonlinearly
for DEC 4000 AXP

2 GB

100 GB

>4,000 QIO/s

210 MB/s

4. Provide scalable memory bandwidth, based on
protocol timing of 25 nanoseconds (ns) per
cycle, which scales with improvements in DRAM
and static memory (SRAM) access times.

5. Use module and connector technology consis­
tent with Futurebus+ specifications.

The cache coherence protocol of the system bus
is designed to support the Alpha AXP architecture
and provide each CPU and the 1/0 bus with a consis­
tent view of shared memory. To satisfy the band­
width and latency requirements of the processor's
instruction issue rate, the processor's second-level
cache size, 128-bit access width, and 32-byte block
size were optimized to avoid bandwidth limits to
performance. The block size and access width were
made consistent with the system bus, which satis­
fied the 1/0 throughput metrics. Consideration was
given to support of a 64-byte block on the 128-bit­
wide bus. Such support would have resulted in a 17
percent larger miss penalty and higher average
memory access time for the CPU and 1/0, more stor­
age and control complexity, and hence higher cost.

Simplicity of the bus protocol was achieved by
limiting the number and variations of transactions
to four types-read, write, exchange, and null. The
exchange transaction enables the second-level
cache of the CPU to exchange data, that is, to per­
form a victim write to memory at the same time as
the replacement read transaction. This avoided the
coherence complexity associated with a lingering
victim block after the replacement read transaction
completed.

To address the issue of bandwidth requirements
over time as faster processors become available, an
estimate of 40 percent bus utilization for each pro­
cessor with a lMB second-level cache was obtained
from trace-based performance models. The utiliza­
tion was shown to be reduced by using a 4MB sec­
ond-level cache or by using larger caches on the
DECchip 21064 chip. This approach was reserved as
a means to support future CPU upgrades.

85

Alpha AXP Architecture and Systems

Figure 3 is a block diagram of the length-limited
seven-slot synchronous system bus. To achieve
tight module-to-module clock skew control for this
single-phase clock scheme, clocks are radially dis­
tributed from the CPU 1 module to the seven slots.
This avoided the added cost of a separate module
dedicated for radial clock distribution, and enabled
the bus arbitration circuitry to be integrated onto
the CPU 1 module.

Arbitration of the two CPU modules and the 1/0

module for the system bus is centralized on the CPU
1 module. To satisfy the 1/0 module's latency
requirements, the arbitration priority allows the
1/0 module to interleave with each CPU module. In
the absence of other requests, a module may utilize
the system bus continuously. Shared-memory state
evaluations from the bus addresses during continu­
ous bus utilization causes CPU "starvation" from
the second-level cache. To avoid CPU starvation
from the second-level cache, the arbitration con­
troller creates one free cycle after three consecu­
tive bus transactions.

Technology Selection
The primary force behind technology selection was
to realize the full performance potential of the
DECchip 21064 microprocessor with a balanced 1/0

subsystem, weighted by cost minimization, sched­
ule goals, and operation in an office environment.
SPICE analysis was used to evaluate various module
and semiconductor technologies. A technology
demonstration module was designed and fabri­
cated to correlate the SPICE models and to validate
possible technology. Based on demonstrations, the
project proceeded with analytical data supported
by empirical data.

The 25-watt DECchip 21064 CPU was designed in
a 3.3-V, 0.75-micrometer complementary metal­
oxide semiconductor (CMOS) technology and was
packaged in a 431-pin pin grid array (PGA). The CPU
was the only given technology in the system. The
power supply, air cooling, and logical and electrical
CPU chip interfacing aspects of the CPU module and
system bus designs evolved from the DECchip 21064
specifications. System design attention focused on
powering and cooling the CPU chip. Compliance
with power and cooling specifications was deter­
mined to be achievable through conventional volt­
age regulation and decoupling technology and
conventional fan technology.

To address system integrity and reliability
requirements, all data transfer interconnects and

86

storage devices had to be protected. The DECchip
21064 CPU's data bus and second-level cache are
longword error detection and correction (EDC) pro­
tected. The system bus is longword parity pro­
tected. The memory subsystem has 280-bit-wide
EDC-protected memory arrays. The Futurebus+ is
longword parity protected.

System, Bus Clocking
To establish the 25-ns bus cycle time, analog models
of the interconnect were developed and analyzed
for 5.0-V CMOS transceivers. Assuming an edge-to­
edge data transfer scheme, the modelers evaluated
the timing from a driver transition to its settled sig­
nal, including clock input to driver delay, receiver
setup time, and module-to-module clock skew. The
cycle time and the data transfer width were com­
bined to determine compliance with low latency
and bandwidth. Further analysis revealed that the
second-level cache access timing was critical for
performing shared-memory state lookups from the
bus. One solution to this problem was to store
duplicate tag values of the second-level cache. This
was evaluated and found to be too expensive to
implement. However, the study did show that a
duplicate tag store of the CPU's primary data cache
had a performance advantage and was affordable if
implemented in the CPU module's bus interface unit
(BIU) chips.

To evaluate second-level cache access timing,
a survey of SRAM access times, density, availabil­
ity, and cost was taken. Results showed that a lMB
cache using 12-ns access time SRAMs was optimal.
With a 12-ns access time SRAM, the critical timing
could be managed through the design of the BIU
chips. The SRAM survey also showed that a 4MB
second-level cache could be planned as a follow-on
boost to performance, as SRAM prices declined.
Trace-based performance simulations proved that
these cache sizes satisfied performance goals of 125
VUPs. This clock rate required a bus stall mecha­
nism to accommodate current DRAM access times
in the memory subsystem, which will enable future
enhancements as access times are reduced.

The system bus clocks are distributed as positive
emitter-coupled level (PECL) differential signals;
four single-phase clocks are available to each slot.
Each module receives, terminates, and capacitively
couples the clock signals into noninverting and
inverting PECL-to-CMOS level converters to provide
four edges per 25-ns clock cycle. System bus hand­
shake and data transfers occur from clock edge to

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

1/
0

M
O

D
U

LE

t:.1
 NVR

 A
M

I

12
8K

B

~
S

C
R

IP
T

 S
R

A
M

v~
I

S
C

S
I/D

S
S

I
1~

12

c
M

A
S

T
E

R

I TR
A

N
S

C
E

IV
E

R
 t

~
_I

C

O
N

S
O

LE

I
S

LU

~ E
T

H
E

R
N

E
T

 I
 I-

I
8K

B

I
E

E
 R

O
M

32

I 51
2K

B

I-
I

I
C

O
N

S
O

LE

T
O

Y
 C

L
O

C
K

F

E
 P

R
O

M

p ,u,u
ae

au
s.

B

R
ID

G
E

4

~
I

I

~
II

B
U

F
F

E
R

B

U
F

F
E

R

I M
A

IL
B

O
X

II
M

A
IL

B
O

X

I
B

IU
)[

4
0

M
M

C
P

U
 2

 M
O

D
U

LE

C
P

U
 1

 M
O

D
U

LE

M
E

M
O

R
Y

M

O
D

U
L

E
 1

2
~

1
N

V
R

A
M

I

2
~

1
N

V
R

 A
M

I

~I
N

V
R

A
M

I

M
IC

R
O

C
O

N
T

R
O

L
L

E
R

M

IC
R

O
C

O
N

T
R

O
L

L
E

R

32
K

B

D
E

C
C

H
IP

32

K
B

D

E
C

C
H

IP

S
E

R
IA

L

S
E

R
IA

L
P

R
O

M

2
1

0
6

4
C

P
U

P

R
O

M

2
1

0
6

4
C

P
U

D
R

A
M

S

I 1MB
O

R
4

M
B

I

I 1MB
O

R
4

M
B

I

B
A

C
K

U
P

B

A
C

K
U

P

C
A

C
H

E

C
A

C
H

E

28
0

v 1
46

14
6

I BU
S

D

R
A

M

C
O

N
T

R
O

L

C
LO

C
K

S

I
B

IU

I
I

B
IU

l

B
IU

~

~

~

0 ...
J

...
J

...
J

en

4
0

M
M

en

2

0
M

M

en

F
ig

u
re

 3

D
E

C
 4

0
0

0
 A

X
P

 S
ys

te
m

 B
u

s

M
E

M
O

R
Y

M

O
D

U
L

E
2

~
N

V
R

A
M

D
R

A
M

S

28
0

D
R

A
M

C

O
N

T
R

O
L

B
IU

~

...
J

2
0

M
M

en

M
E

M
O

R
Y

M

O
D

U
LE

 3

~I
N

V
R

A
M

I

D
R

A
M

S

II

28
0

D
R

A
M

C

O
N

T
R

O
L

B
IU

~

9
2

0
M

M

en

M
E

M
O

R
Y

M

O
D

U
L

E
 4

g D
R

A
M

S

2
8

0

D
R

A
M

C

O
N

T
R

O
L

B
IU

2
0

M
M

~

Alpha AXP Architecture and Systems

clock edge and utilize one of two system bus
clocks. A custom clock chip was implemented to
provide process, voltage, temperature, and load
(PVIl) regulation to the pair of application-specific
integrated circuit (ASIC) chips that compose each
BIU. The clock chip achieves module-to-module
skews of less than 1 ns.

Our search for a clock repeater chip that could
minimize module-to-module skew and chip-to­
chip skew on a module, and yet directly drive high
fan-out ASIC chips with CMOS-level clocks, led us
to Digital's Semiconductor Operations Group. Such
a chip was in design; however, it was tailored
for use at the DEC 6000 system bus frequency.
The Semiconductor Operations Group agreed to
change the chip to accommodate the DEC 4000 AXP
system bus frequency.

l/0 Bus Technology
Because of technology obsolescence, 1/0 buses
have a 21-year life cycle divided into 3 phases.
During the first 7 years of acceptance, peripherals
and applications are developed and supported.
Sustained acceptance takes hold in the next 7 years
as peripherals and applications are enhanced. In
the last 7 years, a phase out or migration of periph­
erals and applications occurs. For the DEC 4000 AXP
systems, our first priority was selection of an open
expansion 1/0 bus in the first third of its life cycle.
In addition, we wanted to select an open IEEE stan­
dard bus that would attract third-party developers
to provide 1/0 solutions to customers. The follow­
ing prioritized criteria were established for the
selection of a new 1/0 bus:

1. Open bus that is an accepted industry standard
in the beginning third of its life cycle

2. Compatibility with Alpha AXP architecture

3. Minimum data rate of IOOMB/s

4. Scalable features that are performance-exten­
sible through architecture (e.g., bus width),
and/or through technology improvements
(e.g., semiconductor device performance and
integration)

5. Minimum 64-bit data path

6. Support of bridges to other 1/0 buses

7. Minimal interoperability problems between
devices from different vendors

88

After examination of several 1/0 buses that satis­
fied these criteria, the Futurebus+ was selected. At
the time of our investigation, however, the
Futurebus+ specification was in development by
the IEEE and a wide range of interest was evident
throughout the industry. By providing the right sup­
port to the Futurebus+ committee, Digital was in a
position to help stabilize and bring the specifica­
tion to completion.

A Digital team represented the project's interests
on the IEEE P896.2 Specification Committee and
proposed standards as the DEC 4000 AXP system
design evolved. This team achieved its goal by help­
ing the IEEE Committee define a profile that
enabled the Futurebus+ to operate as a high-perfor­
mance 1/0 expansion bus. To mitigate schedule
impact due to instability of the Futurebus+ specifi­
cations, the 1/0 module's Futurebus+ interface was
architected to accommodate changes through a
more discrete, rather than a highly integrated
implementation. Compliance with the Futurebus+
specifications influenced most mechanical aspects
of the module compartment design, as is evident
from the centerplane, card cage, module construc­
tion and size, and power supply voltage specifica­
tions and implementations.

Module Technology
Module technology was selected to maximize sig­
nal density within the fewest layers with minimal
crosstalk and to provide a uniform signal distribu­
tion impedance for any module layer. Physical-to­
electrical modeling tools were used to create SPICE
models of connectors, chip packages, power
planes, signal lines of various lengths and
impedances (based on the module construction
technology), and multiple signal lines. Because the
placement of components affects signal perfor­
mance and quality and system performance (e.g., in
the second-level processor cache), module floor
plans and trial layouts were completed. A module
layout tool was used to ensure producibility com­
pliance with manufacturing standards as well as sig­
nal routing constraints. The module layout process
was iterative. As sections of the module routing
were completed, SPICE models of the etch were
extracted. These extracted models were connected
to SPICE models of chip drivers and run. Analysis
was completed and required changes were imple­
mented and analyzed again. The process continued
until the optimal specification conformance was
achieved for all signals.

Vol. 4 No. 4 Special Issue 1992 Digital Technical journal

Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems

Module size was estimated based on system func­
tionality requirements and a study of the size and
power requirements of that functionality. To simpli­
fy the enclosure design, module size specifications
are consistent with the Futurebus+ module specifi­
cations. To achieve lower system costs, the proces­
sor, memory, and 1/0 modules are based on the
same ten-layer controlled impedance construction.

Chip engineers avoided the specification of fine­
pitch surface-mount chips when possible. Compo­
nent choices and module layouts were completed
with a view toward manufacturability. Cost analysis
showed that mixed, double-sided surface-mount
components and through-hole components had
insignificant added cost when fused tin-lead mod­
ule technology and wet-film solder-mask technol­
ogy were used. The required layer construction and
impedances of 45, 70, and 100 ohms could easily be
achieved within cost goals through this technology.
Solder-mask over bare copper technology was also
evaluated to determine if fine-pitch surface-mount
components achieved higher yield through the sol­
der reflow process. This evaluation showed fused
tin-lead technology was better suited, based on
defect densities, for the manufacturing process.
Consequently, all DEC 4000 AXP modules are imple­
mented with fused tin-lead module technology and
wet-film solder-mask technology.

Semiconductor Technology
As a result of a performance, cost, power, and mod­
ule real estate study, CMOS technology was used
extensively. The custom-designed PVTL clock chips
were developed in LO-micrometer CMOS technol­
ogy to supply CMOS-level signals for driving directly
into the BIU chips. Each module's BIU used the same
0.8-micrometer ASIC technology and die size to
closely manage clock skews. Each system bus mod­
ule's BIU is implemented by two identical chips
operated in an even and an odd slice mode. Chip
designers invented a method for accepting 5.0-V
signals to be driven into their 3.3-V biased DECchip
21064 CPU. Consequently, the selection and imple­
mentation of 5.0-V ASIC technology were easier.
ASIC vendor selection was based on (1) perfor­
mance of trial designs and timing analysis of parity
and EDC trees, (2) SPICE analysis of 1/0 drivers with
direct-drive input clock cells, and (3) a layout abil­
ity to support wide clock trunks and distributed
clock buffering to effect low skews.

All memory chips on the CPU module, memory
module, and 1/0 module were implemented in

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

submicron CMOS or BiCMOS technology. All the 1/0

and power subsystem controller chips such as the
SCSI and DSSI controllers, Ethernet controllers,
serial line interfaces, and analog-to-digital convert­
ers were implemented in CMOS technology.

Speed or high drive is critical in radial clock dis­
tribution, Futurebus+ interfacing, or memory mod­
ule address and control signal fan-out. In these
special cases, lOOK ECL operated in positive mode
(PECL) or BIPOLAR technology was employed.

System Bus Protocol and Technology
The cache coherence protocol for the shared-mem­
ory system bus is based on a scheme in which each
cache that has a copy of the data from memory also
has a copy of the information about it. All cache
controllers monitor or snoop on the bus to deter­
mine whether or not they have a copy of the shared
block. Hence the system bus protocol is referred to
as a snooping protocol, and the system bus is
referred to as a snooping bus.4

The 128-bit-wide synchronous system bus pro­
vides a write update 5-state snooping protocol for
write-back cache-coherent 32-byte block read and
write transactions to system memory address space.
Each module uses a 192-pin signal connector-the
same connector used by Futurebus+ modules. Each
module interfaces between the system bus and its
back port with two 299-pin PGA packages contain­
ing CMOS ASIC chips, which implement the bus pro­
tocol. A total of 157 signals and 35 reference
connections implement the system bus in the 192-
pin connector (6 interrupt and error, 8 clock and
initialization, 128 command and address or data, 4
parity, 11 protocol). All control/status registers
(CSRs) are visible from the bus to simplify the data
paths as well as to support SMP.

To simplify the snooping protocol, only full
block transactions are supported; masking or sub­
block transactions occur in each module's BIU.
Transactions are described from the perspectives
of a commander, a responder, and a bystander. The
address space is partitioned into CSR space that can­
not be cached, memory space that can be cached,
and secondary 1/0 space for the Futurebus+ and 1/0
module devices. Secondary 1/0 space is accessible
through an 1/0 module mailbox transaction, which
pends or retries the system bus when access to very
slow 1/0 controller registers conflicts with direct
memory access (DMA) traffic. This software­
assisted procedure also provides masked byte read
and write access to 1/0 devices as well as a standard

89

Alpha AXP Architecture and Systems

software interface. The use of 32-bit peripheral
DMA devices avoided the need to implement hard­
ware address translators. The software drivers pro­
vide physical addresses; hence mapping registers
are not necessary.

The I/0 module drives two device-related inter­
rupt signals that are received by both CPU modules
due to SMP requirements. One interrupt is associ­
ated with the Futurebus+, and the other is associated
with all the device controllers local to the I/0 mod­
ule. The 1/0 module provides a silo register of
Futurebus+ interrupt pointers and a device request
register of local device interrupt requests. CPU 1 or
CPU 2 is the designated interrupt dispatcher mod­
ule. Privileged architecture library software sub­
routines, known as PALcode, run on the primary
CPU module and read the device interrupt register
or Futurebus+ interrupt register to determine
which local devices or which Futurebus+ device
handlers are to be dispatched.

The enclosure, power, and cooling subsystems
are capable of interrupting both processors when
immediate attention is required. A CPU can obtain
information from subsystems shown in Figure 2
through the serial control bus. The serial control
bus enables highly reliable communications
between field replaceable subsystems. During
power-up, it is used to obtain configuration infor­
mation. It is also used as an error-logging channel
and as a means to communicate between the CPU
subsystem, power subsystem, and the OCP. The
nonvolatile RAM (NVRAM) chip implemented on
each module allowed the firmware to use software
switches to configure the system. The software
switches avoided the need for hardware switches
and jumpers, field replaceable unit identification
tags, and handwritten error logs. As a result, the
hardware system is fully configured through
firmware, and fault information travels with the
field replaceable unit.

The five-state cache coherence protocol assumes
that the processor's primary write-through cache is
maintained as a subset of the second-level write­
back cache. The BIU on the CPU module enforces
this subset policy to simplify the simulation verifi­
cation process. Without it, the number of verifica­
tion cases would have been excessive, difficult
to express, and difficult to simulate and check for
correctness. The I/0 module implements an invali­
date-on-write policy, such that a block it has read
from memory will be invalidated and then re-read
if a CPU writes to the block. The 1/0 module parti-

90

cipates in the coherency policy by signaling shared
status to a CPU read of a block it has buffered. The
five states of the cache coherence protocol are
given in Table 2.

The cache coherence protocol ensures that only
one CPU module can return a dirty response. The
dirty response obligates the responding CPU mod­
ule to supply the read data to the bus, since the
memory copy is stale and the memory controller
aborts the return of the read data. Bus writes always
clear the dirty bit of the referenced cache block in
both the commander module and the module that
takes the update.

A CPU has two options when a bus transaction is
a write and the block is found to be valid in its
cache. A CPU either invalidates the block or accepts
the block and updates its copy, keeping the block
valid. This decision is based on the state of the pri­
mary cache's duplicate tag store and the state of the
second-level cache tag store. Acceptance of the
transaction into the second-level cache on a tag

Table 2 Five States of the Cache
Coherence Protocol

State Remarks

1 NOT VALID

2 VALID
NOT SHARED
NOT DIRTY

3 VALID
NOT SHARED
DIRTY

4 VALID
SHARED
NOT DIRTY

5 VALID
SHARED
DIRTY

Block is invalid.

Valid for read or write, this
cached block contains the only
copy of the block; the copy is
identical to the memory copy.

Valid for read or write, this
cached block contains the
only cached copy of the block.
The cached copy has been
modified more recently than
the memory copy.

Block is valid for read or write,
but a write must broadcast to
the bus. This block may be in
another cache, but the memory
copy is identical.
Block is valid for read or write,
but a write must broadcast to
the bus. This block may be in
another cache, but the contents
have been modified more
recently than the memory copy.
This is a transitional state that
occurs when arbitrating for the
bus to broadcast a write or
when an unshared dirty block is
returned to a bus read
transaction.

Vol. 4 No. 4 Special Issue 1992 Digital Technical journal

Design and Performance of the DEC 4000 AXP Departmental Seroer Computing Systems

match is called conditional update. When the com­
mander is the 1/0 module, the write is accepted by a
CPU only if the block is valid. Depending on the
state of the primary data cache duplicate tag store,
two types of hit responses can be sent to an 1/0
commander-1/0 update always and 1/0 conditional
update. In the case of either 1/0 or CPU commander
writes, if the valid block is in the primary data
cache, the block is invalidated. The two acceptance
modes of 1/0 writes by a CPU are programmable
because accepting writes uses approximately 50
percent more second-level cache bandwidth than
invalidating writes.

To implement the cache coherence protocol, the
CPU module's second-level cache stores informa­
tion as shown in Figure 4 for each 32-byte cache
block.

Figure 5 shows the cycle timing and transaction
sequences of the system bus. Write transactions
occur in six clock cycles. Read, null, and exchange
transactions occur in seven clock cycles. A null
transaction enables a commander to nullify the
active transaction request or to acquire the bus and
avoid resource contention, without modifying
memory. The arbitration controller monitors the
bus transaction type and follows the transactions,
cycle by cycle, to know when to rearbitrate and sig­
nal a new address and command cycle. Additional
cycles can be added by stalling in cycle 2 or cycle 4.
Transactions begin when the arbitration controller
grants the use of the CPU module's second-level

caches to a commander module. The controller
then signals the start of the address and command
cycle O (CA). The commander drives a valid address,
command, and parity (CAD) in cycle 1. A comman­
der may stall in cycle 2 before supplying write data
(WD) in cycles 2 and 3.

Read data (RD) is received in cycles 5 and 6. The
addressed responder confirms the data cycles by
asserting the acknowledge signal two cycles later.
The commander checks for the acknowledgment
and, regardless of the presence or absence, com­
pletes the number of cycles specified for the trans­
action. Snooping protocol results are made
available half way through cycle 3. As shown in
Figure 5, the protocol timing from valid address to
response of two cycles is critical. A responder or
bystander may stall any transaction in cycle 4 by
asserting a stall signal in cycle 3. The bus stalls as
long as the stall signal is asserted. Arbitration is
overlapped with the last cycle of a transaction, such
that tristate conflict is avoided.

A 29-bit lock address register provides a lock
mechanism per cache block to assist with software
synchronization operations. The lock address regis­
ter is managed by each CPU as it executes load from
memory to register locked longword or quadword
(LDx_L) and store register to memory conditional
longword or quadword (ST:x_C) instructions.s The
lock address register holds an address and a valid
bit, which are compared with all bus transaction
addresses. The valid bit is cleared by bus writes to a

LWO CKO LW1 CK1 LW2 CK2 LW3 CK3
LW4 CK4 LW5 CK5 LW6 CK6 LW7 CK?

• TAG consists of 9 physical address bits with a 4MB second-level cache, or 11 physical
address bits with a 1 MB second-level cache.

• TAG PARITY (TP) bit indicates even parity.

• VALID (V) bit indicates whether or not this block can be considered for a response to the
snoop transaction.

• SHARED (S) bit indicates whether or not this block may also be resident in another
module's cache.

• DIRTY (D) bit indicates whether or not this block has been modified by this processor.

• CONTROL PARITY (CP) bit indicates even parity.

• DATA (LW) bits organized as two 128-bit-wide half blocks; each 128-bit block is composed
of four longwords.

• CHECK (CKO through CK?) bits detect errors for each longword.

Figure 4 Second-level Cache Structure

Digital Technical jour nal Vol. 4 No. 4 Speciallssue 1992 91

Alpha AXP Architecture and Systems

WRITE
CYCLE

ARBITRATE

COMMAND

ADDRESS

ACKNOWLEDGE

SHARED

DATA

READ, NULL,
EXCHANGE CYCLE

ARBITRATE

COMMAND

ADDRESS

ACKNOWLEDGE

SHARED/DIRTY

DATA

KEY:

CA COMMAND
CAD ADDRESS
WO WRITE DATA
RD READ DATA

6

GRANT

5

GRANT

0 1 2

CA

CAD CAD

WD1

0 1 2

CA

CAD CAD

WD1

3 4 5 0 1

GRANT

CA

CA WD1 WD2
CAD

WD2

3 4 5 6 0

GRANT

CA

CA WD1 WD2

CAD

WD2 RD1 RD2

Figure 5 System Bus Transaction Sequences

matching address or by CPU execution of STx_C
instructions. The register is loaded and validated by
a CPU's LDx_L instruction. This hardware and soft­
ware construct, as a means of memory synchroniza­
tion, statistically avoids the known problems with
exclusionary locking schemes. Exclusionary lock­
ing schemes create resource dead locks, transaction
ordering issues, and performance degradation as
side effects of the exclusion. This construct allows
a processor to continue program execution while
hardware provides the branch conditions. The lock
fails only when it loses the race on a write collision
to the locked block.

A bus transaction address that hits on a valid lock
address register must return a snooping protocol
shared response, even if the block is not valid in the
primary and second-level caches. The shared
response forces writes to the block to be broadcast,
and STx_C instructions to function correctly. The
NULL transaction is issued when a STx_ C write is
aborted due to the failure of the lock to avoid
system memory modification.

CPU Module Subsystems
Each CPU module consists of a number of subsys­
tems as shown in Figure 3. The CPU module's sub­
systems are

92

1. DECchip 21064 processor

2. IMB or 4MB physically addressed write-back
second-level cache

3. BIU chips containing write merge buffers, a
duplicate tag store of the processor's 8-kilobyte
(KB) data cache for invalidate filtering and write
update policy decisions, an arbitration con­
troller, a system bus interface, an address lock
register, and CSRs

4. System bus and processor clock genera­
tors, clock and voltage detectors, and clock
distributors

5. System bus reset control

6. 8KB serial ROM for power-up software loading
of the processor

7. Microcontroller (MC) with serial system bus
interface and serial line unit for communication
with the processor's serial line interface

8. NVRAM chip on the serial control bus

Since a CPU module has to operate in either CPU I
or CPU 2 mode, the CPU 2 connector was designed
to provide an identification code that enables or dis­
ables the clock drivers and configures the CSRs'

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems

address space and CPU identification code. As a
result, arbitration and other slot-dependent func­
tions are enabled or disabled when power is applied.

A reliability study of a parity-protected second­
level cache showed that the SRAMs contributed 44.7
percent of the failure rate. By implementing EDC on
the data SRAM portion of the second-level cache, a
tenfold improvement in per processor mean time to
failure was achieved. Consequently, six SRAM chips
per processor were implemented to ensure high
reliability.

The multiplexed interface to the second-level
cache of the CPU module allows the processor chip
and the system bus equal and shared access to the
second-level cache. To achieve low-latency memory
access, both the microprocessor and the system
bus operate the second-level cache as fast as pos­
sible based on their clocks. Hence the second­
level cache is multiplexed, and ownership defaults
to the microprocessor. When the system bus
requires access, ownership is transferred quickly
with data SRAM parallelism while the tag SRAMs are
monitored.

Many of the CPU module subsystems are found in
the interface gate array called the O chip. Two of
these chips working in tandem implement the BIU
and the second-level cache controller. Write merge
buffers combine masked write data from the micro­
processor with the cache block as part of an allo­
cate-on-write policy. Since the microprocessor has
write buffers that perform packing, full block write
around the second-level cache was implemented as
an exception to the allocate-on-write policy. To
meet schedule and cost goals with few personnel,
one complex gate array was designed rather than
several lower-complexity gate arrays. Hence the
data path and the control functions were parti­
tioned such that the microprocessor could operate
as an even or odd member of a pair on the CPU 1 or
the CPU 2 module.

The system bus clock design is somewhat inde­
pendent of the processor clock, but the range is
restricted due to the implementation of the snoop­
ing protocol timing, the multiplexed usage of the
second-level cache, and the CPU interface hand­
shake and data timing. Therefore, the system bus
cycle time is optimized to provide the maximum
performance regardless of the processor speed.
Likewise, the processor's cycle time is optimized to
provide maximum performance regardless of the
bus speed. Considerable effort resulted in a second­
level cache access time that enabled the CPU's read

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

or write accesses to complete in four internal clock
cycles, called the four-tick loop timing of the sec­
ond-level cache. To realize both optimizations, the
CPU's synchronous interface is supported by an
asynchronous interface in the BIU. Various timing
relationships between the processor and the
system bus are controlled by programmable timing
controls in the BIU chips.

To achieve the tight, four-tick timing of the sec­
ond-level cache, double-sided surface-mount tech­
nology was used to place the SRAM chips physically
close together. This minimized address wire length
and the number of module vias; hence the driver
was loaded effectively. This careful placement was
combined with the design of a custom CMOS
address fan-out buffer and multiplexer chip (CAB)
to achieve fast propagation delays. The CAB chip
was implemented in the same CMOS process as the
DECchip 21064 CPU to obtain the desired through­
put delay. Combined with 12-ns SRAM chips, the CAB
chip enabled optimization of the CPU's second-level
cache timing as well as the system bus snooping
protocol response timing.

1/0 Module, Mass Storage, and
Expansion 1/0 Subsystems
The 1/0 module consists of a local 1/0 subsystem
that interfaces to the common I/0 core and a bridge
to the Futurebus+ for 1/0 options. By incorporating
modularity into the design, a broad range of appli­
cations could be supported. To satisfy the disk per­
formance and bulk storage metrics given in Table 1,
mass storage was configured based on applications
requirements. Fast access times of 3.5-inch disks
and multiple spindles were selected for applica­
tions with results in QIO/s. The density of 5.25-inch
disks was selected for applications requiring more
storage space. As indicated in Table 1, the metrics of
greater than 4,000 QIO/s determined the perfor­
mance requirements of the storage compartment.
Each of the four disk storage compartments in the
system enclosure can hold a full-size 5.25-inch disk
if cost-effective bulk storage is needed. If the need
is for the maximum number of I/Os per second,
each compartment can hold up to four 3.5-inch
disks in a mini array.

Configurations of3.S-inch disks in a brick enable
optimization of throughput through parallelism
techniques such as stripe sets and redundant array
of inexpensive disks (RAID) sets. The brick con­
figuration also enables fault tolerance, at the
expense of throughput, by using shadow sets. With

93

Alpha AXP Architecture and Systems

this technique, each storage compartment is inter­
faced to the system through a separate built-in con­
troller. The controller is capable of running in
either DSSI mode for high availability storage in
cluster connections with other OpenVMS AXP or
VMS systems, or in SCSI mode for local disk storage
available from many different vendors. For applica­
tions in which a disk volume is striped across multi­
ple drives that are in different storage cavities, the
benefit from the parallel seek operations of the
drives combines with the parallel data transfers
provided by the multiple bus interfaces. The main
memory capacity of the system allows for disk
caching or RAM disks to be created, and the process­
ing power of the system can be applied to managing
the multiple disk drives as a RAID array. With cur­
rent technology, maximum fixed storage is 8GB
with 5.25-inch disks and 24GB with 3.5-inch disks. If
the built-in storage system is inadequate, connec­
tion to an external solution can occur through the
Futurebus+.

The BIU is implemented by two 299-pin ASIC
chips. The bridge to the Futurebus+ and the inter­
face to the local 1/0 devices are provided with sepa­
rate interfaces to the system bus. Each interface
contains two buffers that can each contain a hex­
word of data. This allows for double buffering of 1/0

writes to memory for both interfaces and for the
prefetching of read data by which the bridge
improves throughput. These buffers also serve to
merge byte and longword write transaction data
into a full block for transfer over the system bus. In
this case, the write to main memory is preceded by
a read operation to merge modified and unmodi­
fied bytes within the block.

The Ethernet controllers and SCSI and DSSI
controllers can handle block transfers for most
operations, thus avoiding unnecessary merge trans­
actions. As shown in Figure 3, the 1/0 module inte­
grates the following:

1. Four storage controllers that support SCSI,
high-speed SCSI, or DSSI for fixed disk drives
and one SCSI controller for removable media
drives

2. 128KB of SRAM for disk-controller-loadable
microcode scripts

3. Two Ethernet controllers and their station
address ROMs, with switch-selectable
ThinWire or thick-wire interfaces

4. 512KB flash erase programmable ROM
(FEPROM) for console firmware

94

5. Console serial line unit (SLU) interface

6. Auxiliary SLU interface with modem control
support

7. Time-of-year (TOY) clock, with battery backup

8. 8KB of electrically erasable memory (EEROM)
for console firmware support

9. Serial control bus controller and 2 kilobits of
NVRAM

10. 64-bit-wide Futurebus+ bridge

11. BIU, containing four hexwords of cache block
buffering, two mailbox registers, and the
system bus interface

The instability of the Futurebus+ specifications
and the use of new, poorly specified controller
chips presented a high design risk for a highly inte­
grated implementation. Therefore the Futurebus+
bridge and local 1/0 control logic were imple­
mented in programmable logic to isolate the
high risk design areas from the ASIC development
process.

Memory Subsystem
As shown in Figure 3, up to four memory modules
can reside on the system bus. This modularity of
the memory subsystem enabled maximum configu­
ration flexibility. Based on the metrics listed in
Table I, 2GB of memory were expected to satisfy
most applications requirements. Given this 2GB
design goal, the available DRAM technology, and the
module size, the total memory size was configured
for various applications.

The memory connectors provide a unique slot
identification code to each BIU, which is used to
configure the CSRs' address space based on the slot
position. Memory modules are synchronous to the
system bus and provide high-bandwidth, low­
latency dynamic storage. Each memory module
uses 4-bit-wide, 1- and 4-megabit-deep DRAM tech­
nology in various configurations to provide 64MB,
128MB, 256MB, or 512MB of storage on each module.

To satisfy memory performance goals, each
memory module is capable of operating alone or in
one of numerous cache block interleaving configu­
rations with other memory modules with a read­
stream capability. A performance study of stream
buffers revealed an increase in performance from
memory-resident read-stream buffers. The stream
buffers allow each memory module to reduce the

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems

average read latency of a CPU or 1/0 module. Thus
more bandwidth is usable on a congested bus
because the anticipated read data in a detected
access sequence is prefetched. The stream buffer
prefetch activity is statistically determined by bus
activity.

Overall memory bandwidth is also improved
through exchange transactions, which use victim
writes with replacement read parallelism. Intel­
ligent memory refresh is scheduled based on bus
activity and anticipated opportunities. Write trans­
actions are buffered from the bus before being writ­
ten into the DRAMs to avoid stalling the bus.

Data integrity, memory reliability, and system
availability are enhanced by the EDC circuitry. Each
memory module consists of 2 or 4 banks with 70
DRAM chips each. This enables 256 data bits and 24
EDC bits to be accessed at once to provide low
latency for the system bus. A cost-benefit analysis
showed a savings of DRAM chips when EDC is imple­
mented on each memory module. The processor's
32-bit EDC requires 7 check bits as opposed to the
128-bit EDC, which requires 12 check bits and uses
fewer chips per bank. The selected EDC code also
provides better error detection capability of 4-bit­
wide chips than the processor's 32-bit EDC.

To improve performance, separate EDC logic
is implemented on the write path and read path
of each memory module's BIU. The EDC logic
performs detection and correction of all single­
bit errors and most 2-bit, 3-bit, and 4-bit errors in
the DRAM array. The EDC's generate function can
detect certain types of addressing failures associ­
ated with the DRAM row and column address bits,
along with the bank's select address bits. Failures
associated with these addressing fields can be
detected, thus improving data integrity. Software
errors can be scrubbed from memory by the CPU
when requested through use of PALcode subrou­
tines, which use the LDx_L and STx_ C synchroniza­
tion construct without having to suspend system
operations.

Enclosure and Power Subsystems
The DEC 4000 AXP enclosure seen in Figure 1 is
called the BA640 box and is 88.0 centimeters (cm)
high, 50.6 cm wide, and 76.2 cm deep. It weighs 118
to 125 kilograms fully configured. The enclosure is
designed to operate in an office environment from
10 to 35 degrees Celsius. The power cord can con­
nect to a conventional wall outlet which supplies
up to 20 amperes at either 120 v AC or 240 v AC.

Digital Technical Journal Vol. 4 No. 4 Special issue 1992

The DEC 4000 AXP system is a portable unit that
provides rear access and simplified installation and
maintenance. The system is mounted on casters
and fits easily into an open office environment.
Modular design allowed compliance with stan­
dards, ease of manufacturing, and easy field servic­
ing. Constructed of molded plastics, the chassis
is sectioned into a card cage, a storage compart­
ment, a base containing four 6-inch variable-speed
DC fans and casters, an air plenum and baffle assem­
bly, front and rear doors, and side panels. The
mass storage compartment supports up to 16
fixed-storage devices and 4 removable storage
devices. Expansion to storage enclosures is sup­
ported for applications that require specialized
storage subsystems.

Feedback from field service engineers prompted
us to omit useless light-emitting devices (LEDs) in
each subsystem, since access to most electronics is
from the rear. As a result, the OCP was made com­
mon to all subsystems through the serial control
bus and made visible inside the front door of the
enclosure. It provides DC on/off, halt, and restart
switches, and eight LEDs, which indicate faults of
CPU, 1/0, memory, and Futurebus+ modules. The
fault lights are controlled either by a microcon­
troller on either CPU module or by an interface on
the 1/0 module.

Futurebus+ slot spacing was provided by the IEEE
specification. The system bus slot spacing for each
module was determined by functional require­
ments. For example, the CPU module requires 300
linear feet of air flow across the DECchip 21064
microprocessor's 3-inch square heat sink, as seen in
Figure 1, to ensure the 25-watt chip could be
cooled reliably. Since VAX 4000 systems provide this
same air flow across modules, cooling was not a
major design obstacle. The module compartment's
Futurebus+, system bus, and power subsystems can
be seen in the enclosure back view of Figure 6.

All electronics in the enclosure, as shown in
Figure 7, are air cooled by four 6-inch fans in the
base. Air is drawn into the enclosure grill at the top
front, guided along a plenum and baffle assembly
and down through the module compartment and
power supply compartment to the base. Air is also
drawn through front door louvers and across the
storage compartments and down to the base.
Electronics connected to the power subsystem
monitor ambient and module compartment
exhaust temperatures. Thus the fan speed can be
regulated based on temperature measurements,

95

Alpha AXP Architecture and System s

FUTUREBUS+ SYSTEM BUS

POWER

Figure 6 DEC 4000 AXP Enclosure Rear View

reducing acoustic noise in an air-conditioned office
environment.

The centerplane assembly consists of a storage
backplane, a module backplane, and an electromag­
netic shield. This implementation avoids depen­
dence on cable assemblies, which are unreliable
and difficult to install and repair. Defined connec­
tors and module sizes allowed the enclosure devel­
opment to proceed unencumbered by module
specification changes. The shielded module com­
partment provides effective attenuation of signals
up to 5 gigahertz. There are six Futurebus+ slots,
four memory slots, two CPU slots, one 1/0 slot, and
four central power module slots, which include the
FEU, PSC, DC5, and DC3 units.

The storage compartment contains six cavities,
as seen in the enclosure front view of Figure 8.
Two cavities are for removable media, and four

96

are for fixed storage bricks. A storage brick consists
of a base plate and mounting hardware, disk drives,
local disk converter (LDC), front bezel assembly,
and wiring harnesses. The LDC converts a dis­
tributed 48.0 V to 12.0-V and 5.0-V supplies and a
5.0-V termination reference for the brick to ensure
compliance with voltage regulation specifications
and termination voltage levels of current and future
disks.

The 20-ampere power subsystem can deliver
1,400 watts of DC power divided across 2.1 V, 3.3 V,
5.0 V, 12.0 V, and 48.0 V The enclosure can cool
1,500 watts of power and can be configured as a
master or a slave of AC power application. Use of a
universal FEU eliminates the need for selecting
operating voltages of 120 V or 240 V AC. The FEU
converts the input AC into 385 V DC, which is dis­
tributed to provide 48 V DC to two step-down DC­
to-DC converters, which work in parallel to share
the load current. The combined 48 V DC output
from these converters is delivered to the rest of the
system.

Control of distributed power electronics is diffi­
cult and expensive with dedicated electronics. A
cost-effective alternative was use of a one-chip
CMOS microcontroller, surrounded with an array of
sensor inputs through CMOS analog-to-digital con­
verters, to provide PSC intelligence. Decision-mak­
ing ability in the power subsystem enabled
compliance with voltage-sequencing specifications
and fail-safe operation of the system. The micro­
controller can control each LDC and communicate
with the CPU and OCP over the serial control bus. It
monitors over and under voltage, temperature, and
energy storage conditions in the module and stor­
age compartments. It also reports status and failure
information either to the CPU or to a display on the
PSC module, which is visible inside the enclosure
back door.

Firmware
The primary goal of the console interface is to
bootstrap the operating system through a process
called boot-block booting. The console inter­
face runs a minimal 1/0 device handler routine
(boot primitive) to read a boot block from a device
that has descriptors. The descriptors point to the
logical block numbers where the primary boot­
strap program can be found, and the console
interface loads it into system memory. To accom­
plish this task, the firmware must configure and

Vol. 4 No. 4 Spedal Issue 1992 Digital Technical Journal

Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems

OCP DC3 DCS CENTERPLANE FBE

VT ERM PSC MEMORY 1/0 CPU

Figure 7 DEC 4000 AXP Modular Electronics

test the whole system to ensure the boot process
can complete without failures. To minimize the
bootstrap time, a fast memory test executes in the
time necessary to test the largest memory module,
regardless of the number of memory modules. If
failures are detected after configuration is com­
pleted, the firmware must provide a means for diag­
nosis, error isolation, and error logging to facilitate
the repair process. The DEC 4000 AXP system pro­
vides a new console command interface as well as
integrated diagnostic exercisers in the loadable
firmware.

The firmware resides on two separate entities, a
block of serial ROM on the CPU module and a block
of FEPROM on the 1/0 module. The serial ROM con­
tains software that is automatically loaded into the
processor on power-up or reset. This software is
responsible for initial configuration of the CPU
module, testing minimal module functionality, ini­
tializing enough memory for the console, copying
the contents of the FEPROM into this initialized

Dtgttal Technical Journal Vol. 4 No. 4 Special Issue 1992

console memory, and then transferring control to
the console code.

The FEPROM firmware consists of halt dispatch,
entry/exit, diagnostics, system restart, system boot­
strap, and console services functional blocks.

PALcode subroutines provide a layer of software
with common interfaces to upper levels of sofware.
PALcode serves as a bridge between the hardware
behavior and service requirements and the require­
ments of the operating system. The system takes
advantage of PALcode for hardware-level interrupt
handling and return, security, implementation of
special operating system kernel procedures such as
queue management, dispatching to the operating
system's special calls, exception handling, DECchip
21064 virtual instruction cache management,
virtual memory management, and secondary 1/0
operations. Through a combination of hardware­
and software-dependent PALcode subroutines,
OpenVMS AXP, DEC OSF/1 AXP, and future operating
systems can execute on this hardware architecture.

97

Alpha AXP Architecture and Sys tems

Figure 8 DEC 4000 AXP System
Enclosure Front View

Per:formance Summary
The DEC 4000 AXP Model 610 system's performance
numbers as of November 10, 1992 are given in Table
3. Its performance will continue to improve.

Summary
DEC 4000 AXP systems demonstrate the highest
performance and functionality for Digital's 4000
series of departmental server systems. Based on
Digital's Alpha AXP architecture and the IEEE's
Futurebus+ profile B standard, the systems provide
symmetric multiprocessing performance for
Open VMS AXP and DEC OSF/1 AXP operating systems
in an office environment. The DEC 4000 AXP systems
were designed to optimize the cost-performance
ratio and to include upgradability and expandabil­
ity. The systems combine Digital's CMOS technol­
ogy, 1/0 peripherals technology, ahigh-performance
multiprocessing backplane interconnect, and mod­
ular system design to supply the most advanced
functionality for performance-driven applications.

98

Acknowledgments
Development of a new system requires contribu­
tions from individuals throughout the corporation.
The authors wish to acknowledge those who con­
tributed to the key aspects of the DEC 4000 AXP
system. Centerplanes: Henry Enman, Jim Padgett;
CPU: Nitin Godiwala, George Harris, Jeff Metzger,
Eugene Smith, Kurt Thaller; Firmware: Dave Baird,
Harold Buckingham, Marco Ciaffi, John DeNisco,
Charlie Devane, Paul LaRochelle, Keven Peterson;
Futurebus Exerciser: Philippe Klein, Kevin Ludlam,
Dave Maruska; Futurebus+: Barbara Archinger,
Ernie Crocker, Jim Duval, Sam Duncan, Bill
Samaras; 110: Randy Hinrichs, Tom Hunt, Sub Pal,
Prasad Paranjape, Chet Pawlowski, Paul Rotker,
Russ Weaver; Management: Jesse Lipcon, Gary P.
Lidington; Manufacturing: Mary Doddy, Al Lewis,
Allan Lyall, Cher Nicholas; Marketing: Kami
Ajgaonkar, Charles Monk, Pam Reid; Mechanical:
Jeff Lewis, Dave Moore, Bryan Porter, Dave Simms;
Memory: Paul Goodwin, Don Smelser, Dave
Tatosian; Operations: Jeff Kerrigan; Operating
Systems: AJ Beaverson, Peter Smith; Power: John
Ardunio, Robert White; Simulation: Paul
Kinzelman; Systems: Vince Asbridge, Mike Collins,
Dave Conroy, Al Deluca, Roger Gagne, Tom Orr,
Eric Piip; Thermal: Steve Cieluch, Sharad Shah.

References and Note

I. IEEE Standard for Futurebus+-Pbysical Layer
and Profile Specification IEEE Standard P896.2-
1991 (New York: The Institute of Electrical and
Electronics Engineers, April 24, 1992).

2. Supercomputer performance as defined by the
composite theoretical performance (CTP) rating
of 397, with the DECchip 21064 operated at 6.25
ns, as established by the U.S. export regulations.

3. Inter-Integrated Circuit Serial Bus Specifi­
cation (PC Bus Specification), (Sunnyvale, CA:
Signetics Company, 1988).

4.). Hennessy and D. Patterson, Computer
Architecture: A Quantitative Approach (San
Mateo, CA: Morgan Kaufmann Publishers, Inc.,
1990): 467-474.

5. R. Sites, ed., Alpha AXP System Reference
Manual, Version 5.0 (Maynard: Digital
Equipment Corporation, 1992).

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems

Table 3 CPU Performance Summary for the DEC 4000 AXP System

Futurebus+ Performance

Peak
Read
Write

Local Bus Performance

Peak
Read
Write

System Bus Performance

Peak
Read
Write
Exchange

Latency

16 bytes/1 00 ns
16 bytes/182 ns
16 bytes/133 ns

Latency

4 bytes/80 ns
4 bytes/160 ns
4 bytes/160 ns

Latency

16 bytes/25 ns
32 bytes/175 ns
32 bytes/150 ns
64 bytes/175 ns

Internal Cache Miss, Second-level Cache Hit (Four-tick) Performance

Latency

Read
Write

CPU Second-level Cache Miss Performance

Read
Write
Exchange

16 bytes/25 ns
16 bytes/25 ns

Latency

32 bytes/275 ns
32 bytes/200 ns
64 bytes/275 ns

DEC 4000 Model 610 SPECmark89 and SPECthruput89* Estimated CPU Performance Summary

Note:

Integer (INT) Benchmarks Ratio

GCC 61.58
ESPRESSO 82.91
LI 93.05
EQNTOTT 103.46

Floating-point (FP) Benchmarks

SPICE2G6 72.58
DODUC 113.81
NASA? 229.27
MATRIX300 1019.17
FPPPP 180.32
TOMCAlV 128.70

SPEC mark > 136.23 SPECthruput >
SPEC int > 83.73 SPECintthruput >
SPECfp > 188.45 SPECfpthruput >

UNPACK - double precision 100 X 100 36.8 MFLOPS
UNPACK - double precision 1000 x 1000 78.4 MFLOPS
Dhrystone 165.0 MIPS

Ratio
1@ 54.80
1@ 81.76
1@ 92.19
1@ 100.76

1@ 68.19
1@ 113.53
1@ 221.56
1@ 963.81
1@ 177.89
1@ 123.25

1@ 131.18
1@ 80.32
1@ 181.92

Bandwidth

160MB/s
88MB/s

120MB/s

Bandwidth

50MB/s
25MB/s
25MB/s

Bandwidth

640MB/s
182MB/s
213MB/s
365MB/s

Bandwidth

640MB/s
640MB/s

Bandwidth

116MB/s
160MB/s
232MB/s

Ratio

2@ 50.78
2@ 78.33
2@ 92.18
2@ 97.94

2@ 64.95
2@ 108.95
2@ 197.80
2@948.66
2@ 175.83
2@ 105.90

2@ 124.40
2@ 77.41
2@170.68

*Version 1.0 OpenVMS AXP operating system, 160-MHz clocked DECchip 21064 microprocessor, 1 MB second-level cache. Notice the 1.9
scaling of the second CPU.

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 99

Brian R. Allison
Catharine van Ingen

Technical Description
of the DEC 7000 and
DEC 10000 AXP Family

The DEC 7000 and DEC 10000 products are mid-range and mainframe Alpha AXP
system offerings from Digital Equipment Corporation. These machines were
designed to meet the needs of large commercial and scientific applications and
therefore are higl.rperformance, expandable systems that can be easily upgraded.
The DEC 7000 and 10000 systems utilize the DECchip 21064 microprocessor operat­
ing at speeds up to 200 MHz. The higl.rspeed chips, large caches, multiprocessor
system architecture, higl.rperformance backplane interconnect, and large memory
capacity combine to create mainframe-class performance with a cost and size pre­
viously attributed to mid-range systems.

The design of the DEC 7000 and 10000 systems pro­
vides a high-end platform and system environment
for multiple generations of Alpha AXP chips. This
platform, combined with a multiprocessor archi­
tecture, yields a multidimensional upgrade capabil­
ity that will allow the system to meet users' needs
for several years. System upgrade can take place by
adding processors, replacing existing processors
with next-generation processors, or both. This
upgrade capability ensures stability to the system
in terms of the physical and fiscal aspects of the end
user's computing environment.

The DEC 7000 and DEC 10000 systems are
the logical follow-on products of the highly suc­
cessful VAX 6000 family. 1 The new systems are capa­
ble of supporting either VAX processors or Alpha
AXP processors. The capability to upgrade from
a VAX processor to an Alpha AXP processor with­
out changes to the system is essential for mini­
mal disruption of large commercial applications.
Most features of the VAX 6000 systems have
been carried forward to the DEC 7000 and DEC
10000 products, and any deficiencies have been
corrected.

The DEC 7000 and DEC 10000 products are
derived from the same system design. The DEC
10000 is a more fully configured system and
includes an n+ 1 uninterruptible power system,
additional 1/0 subsystems, and 1/0 expansion cabi­
nets. The DEC 7000 uses a 182-megahertz (MHz)

100

DECchip 21064 whereas the DEC 10000 uses a 200-
MHz DECchip 21064.

A very important goal for the project that encom­
passed the development of the DEC 7000 and 10000
systems was to provide a similar pair of systems
based on a VAX microprocessor. A VAX microproces­
sor, called NVAX+, was designed to be pin com­
patible with the DECchip 21064 (the Alpha AXP
microprocessor). 2,3 The system was designed to be
somewhat microprocessor independent, and both
VAX and Alpha AXP versions of the systems were
implemented. The VAX products (VAX 7000 and VAX
10000) were introduced in July 1992 and can be
upgraded to DEC 7000 and DEC 10000 systems by a
simple swap of CPU modules.

System Architecture
The DEC 7000 system consists of CPU(s), memory,
an 1/0 port controller, and 1/0 adapters, as shown in
Figure 1. The system is configured in a variety of
ways, depending on the size and function of the
system. A system backplane consists of nine slots
and houses CPUs, memory, and an 1/0 port con­
troller. The 1/0 port controller resides in a fixed
slot, and CPUs and memories occupy the remaining
eight slots. The initial system offerings allow up to 6
CPUs. (Architecturally, the system may support up
to 16 CPUs.) Up to 14 gigabytes (GB) of memory can
be supported if only 1 CPU module is present and
all remaining slots contain memory

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Technical Description of the DEC 7000 and DEC 10000 AXP Family

ALPHA AXP OR VAX
PROCESSOR(S)

MEMORY ARRAY
64, 128, 256, 512MB
2GB

<::....-~~~-s_v_s_T_EM~Bu_s~i~6-4_0M_B_1_s~~~~::>

1/0 PORT CONTROLLER

XMI FUTUREBUS+

Note: All four 1/0 ports are identical. Any combination of XMI,
Futurebus+, or "custom" interfaces may be configured.

Figure 1 DEC 7000 and DEC 10000
System Architecture

The 1/0 subsystem consists of an 1/0 port con­
troller and four 1/0 ports which have been adapted
to the XMI or the Futurebus+. The 1/0 ports are
generic and may be adapted to other forms of inter­
connect in the future. The system backplane,
power system, and up to two 1/0 backplanes are
housed in the system cabinet. Additional 1/0 back­
planes (up to a system total of four) may be config­
ured in expansion cabinets.

Technology
The DEC 7000 system is built primarily of CMOS
(complementary metal-oxide semiconductor) com­
ponents. The DECchip 21064 microprocessor is
built using Digital's 0.75-micrometer CMOS-4 pro­
cess. All modules utilize LSI Logic LCAlOOK series
gate arrays for the system bus interface and for
on-board logic functions. The LSI Logic LCAlOOK
features up to 235K two-input NAND gates. All
modules use the same custom 1/0 driver circuit
within their respective gate arrays to drive and
receive the system bus. A custom 419-pin pin grid
array (PGA) package was developed to house all bus
interface gate arrays. Unlike the VAX 6000 series, a
common bus driver part is not used in order to min­
imize the number of levels of buffering in the
system.

Module technology is standard 10-layer construc­
tion with 4 signal layers, 4 power layers, and top
and bottom cap layers. Double-side, surface-mount
construction is used extensively throughout the

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

system. Etch width is 5 mils with 7.5-mil minimum
spacing. Via sizes down to 15 mils are used. A mix­
ture of physical component technologies is used
with all large VLSI (very large-scale integration)
parts in 100-mil PGA packages. Most standard logic
utilizes 50-mil surface-mount technology. Module
interconnect to the backplane is made through a
340/420-connection, four-row, 100-mil-spaced pin
and socket type connector. Forty-eight-volt power
is distributed throughout the system; local regula­
tion is provided on the module for specific voltages
required.

System Interconnect
The heart of the DEC 7000 system is a high-perfor­
mance system interconnect, called the I.SB, which
allows communications between multiple proces­
sors, memory arrays, and 1/0 subsystems. It pro­
vides a low-latency, high-bandwidth data path
among all components. A common shared view of
memory is maintained by means of the system inter­
connect and cache logic on processor modules.

Three types of modules are defined for the I.SB.

• Processor modules, which contain the CPU chip,
cache subsystem, and console functions. The ini­
tial DEC 7000 design has the capacity for a maxi­
mum of six processor modules.

• Memory modules, which contain dynamic ran­
dom-access memory (DRAM) chips and a mem­
ory controller. A system can contain up to seven
memory modules, each with a capacity of 64
megabytes (MB) to 2GB.

• 1/0 interface modules, which provide access to
1/0 buses and 1/0 adapters. Only a single 1/0 port
controller module may reside in the system. The
1/0 port controller module can arbitrate at a
higher priority than CPU nodes to improve 1/0

direct memory access (DMA) latency and provide
atomic DMA writes of data less than a cache
block in size.

The LSB is a limited-length, non-pended, pipe­
lined, synchronous, 128-bit-wide bus with distrib­
uted arbitration. All transactions occur in a set of
fixed cycles relative to an arbitration cycle. Up to
three transactions can be in the pipeline at a given
time, enabling the full capability of the bus to be
realized. Arbitration occurs on a dedicated set of
control signals and may be overlapped with data
transfer. Data and address are multiplexed on the
same set of signals. The bus protocol supports

101

Alpha AXP Architecture and Systems

write-back caches, and all memory transfers are 64
bytes in length. The cycle time of the bus is 20
nanoseconds (ns), providing an overall data rate of
800MB per second and a utilized system bandwidth
of 640MB per second.

The LSB transmits 40-bit physical addresses, pro­
viding a physical address space of 1 terabyte. Given
the current rate of DRAM technology evolution, the
LSB will have a useful life of 8 to 10 years before
physical address space is exhausted. A 40-bit physi­
cal address was chosen to minimize the data path
width in the processor bus control gate array.

A non-pended pipelined bus was chosen instead
of a traditional pended bus to allow for simple node
interface designs. Transactions start and finish at
precisely defined times. A "stall" function may be
used if a given transaction cannot be completed
within the system timing constraints. The "stall"
function freezes the bus pipeline, maintaining the
order of all transactions. Consequently, nodes can
be designed with no queuing between the bus
interface and local storage (DRAMs for main mem­
ory or static RAMs [SRAMs] for cache memory). The
maintenance of strict bus transaction ordering also
alleviates many potential lockout conditions expe­
rienced on pended buses.

Digital's previous mainframe systems have used a
switch-based system interconnect instead of a bus.
This interconnect was typically required because
these systems were based on emitter coupled logic
(ECL) with only a small, single-level cache sub­
system; therefore, high bandwidth was required
between main memory and the processor. The
CMOS design of the DEC 7000 allows a large (4MB)
second-level cache to complement the 16-kilobyte
(KB) on-chip cache. The large amount of cache
minimizes the need for memory bandwidth. A
bus-based design was chosen over a switch-based
design to minimize memory latency, minimize
design complexity, and reduce system cost.

ARBITRATE

COMMAND

CONFIRMATION

SHARE/DIRTY

DATA

- I I- BUS CYCLE TIME = 20 NS

1 2 3
1 2 3

1 2

1 2

1 1

4

3

1 1

1-- BUS ACCESS TIME= 340 NS --j

Bus Data Rate = 16 bytes per 20 ns = SOOMB/s

4

3

All LSB transactions consist of a single command
cycle and four data cycles. These five cycles appear
in fixed cycles relative to the arbitration cycles. Up
to three transactions may be pipelined, as shown in
Figure 2.

The LSB uses a distributed arbitration scheme.
Ten request wires are driven by the CPUs or the 1/0
module that wishes to use the bus. Eight request
lines are allocated to the eight potential CPU mod­
ules. The remaining two request lines are used by
the 1/0 controller module. All modules indepen­
dently monitor the request wires to determine
whether a transaction has been requested, and if so,
which module wins the right to send a command
cycle to start the transaction.

The arbitration scheme employs a least-recently­
used rotating priority algorithm for CPU modules
and a fixed high/low scheme for the 1/0 port con­
troller. The 1/0 port controller arbitrates using the
highest and lowest priority levels, arbitrating high
six times then low two times. This arrangement
ensures that the 1/0 port controller can utilize
greater than 50 percent of the available system bus
bandwidth while still ensuring the CPUs some
access to the system bus. The 1/0 port controller
also uses its unique arbitration scheme to ensure
atomic read/modify /write sequences on the bus
necessary for performing writes of less than a full
naturally aligned 64-byte quantity. The 1/0 port
controller does the read at its next scheduled prior­
ity and then immediately follows up with the write
at highest priority. This scheme ensures that no
other node can access the data between the read
and the write.

All command/address and control/status register
(CSR) cycles are protected with parity. Data cycles
to and from memory are protected with error cor­
rection code (ECC). Transmit check is used by all
modules to verify that what a given module is
asserting on the bus is actually being seen on the

5 6
5 6

4 5 6
4 5 6

2 2 2 2 3 3 3 3 4 4 44 5 5 5 5 6 6 6 6

Utilized Bus Bandwidth= 16 bytes per 20 ns x 4 data cycles per 5 bus cycles= 640MB/s

Figure 2 LSB Transaction Pipeline

102 Vol. 4 No. 4 Special Issue 1992 Dtgttal Tecbntcal Journal

Technical Description of the DEC 7000 and DEC 10000 AXP Family

bus. Transmit check allows the detection of bus col­
lisions and faulty bus drivers or receivers.

The system intercormect is physically imple­
mented as a centerplane which is 350 millimeters
(mm) wide and 500 mm high. There are four mod­
ule connections on one side, and five on the other.
The centerplane-module connection is imple­
mented using a four-row pin and socket connector
with connections on a 100-mil grid. Modules are
410 mm high and 340 mm deep. This module size
was chosen to allow the maximum module size
within the constraints of an 865-mm-deep cabinet
and of the centerplane technology. Modules are
spaced on 65-mm centers and are contained within
a box that provides customized air flow for each dif­
ferent module design.

The DEC 7000 was designed with a centerplane
interconnect to solve the problem of bus length
and to meet the need for wide module spacing
that allows for the anticipated heat-dissipation
requirements of future processor chips. With a
centerplane, the number of module slots available
for a given length of bus increases by (n •2)-1
where n is the number of slots available in a con­
ventional backplane. A centerplane configuration
leaves little space on the backplane for termination

DECCHIP
21064

CONTROL

networks. Designers solved this problem by adopt­
ing a distributed termination scheme with bus ter­
minator networks present on all modules in the
backplane.

Processor Module
The primary purpose of the processor module is to
provide a large second-level cache to the processor
chip and to act as an interface to the system bus and
memory for missed cache references. The proces­
sor module in the DEC 7000 system was designed to
use either VAX or Alpha AXP chips. As noted above,
a common design is used in the implementation of
the VAX and DEC 7000 and 10000 systems, with the
only significant differences being the processor
chip and the console/diagnostic code. Figure 3 is a
block diagram of the processor module.

The processor module provides a 4MB external
cache, which is shared by the processor chip and
the bus interface chips. The cache is organized as a
single set (direct mapped), with a block and fill size
of 64 bytes. The external cache conforms to a write­
back, conditional update, cache coherency proto­
col. The processor on-chip data cache is a proper
subset of the external cache and uses a write­
through protocol.4

BUS INTERFACE
GATE ARRAYS

PROCESSOR ADDRESS

I D~ACHE I

1 ,~ACHE I

CPU
W·BUFFER

LATCH/MUX

INVALIDATE

B·CACHE B·CACHE
TAG AND DATA
STATUS

DATA, ECC

F646

TAG, VALID . SHARED, DIRTY

INIT
ROM

ROM WATCH

LSB ADDRESS

BACKMAP
B·CACHE

DATA,ECC

FLASH
ROM

TAG , VALID

UART

BACKMAP
D-CACHE

WRITE
BUFFER

t

VICTIM
BUFFER

Figure 3 Block Diagram of the DEC 7000 Processor Module

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

SYSTEM
BUS

103

Alpha AXP Architecture and Systems

The structure of the cache is shown in Figure 4.
Each cache line consists of 512 bits of data (with 112
bits of ECC), 12 bits of tag (with 1 parity bit), and 3
status bits (with 1 parity bit). The 12 bits of tag data
applied to a 4MB cache size sets a processor physi­
cal address capability of 16GB. (This is a processor
limitation, and future processors will address larger
memory sizes.) The control bits contain informa­
tion that allows the cache and memory systems to
maintain coherency. The control bits are defined as
follows:

• A valid bit, indicating whether or not this line
contains valid data

• A shared bit, indicating whether or not this line
may also be resident in another processor's
cache in the system

• A dirty bit, indicating whether or not this line
has been written to by this processor

Upon detection of a cache read miss in the pro­
cessor on-chip cache, the processor accesses the
external cache tag to see if the given block is resi­
dent. The processor chip contains the tag compari­
tor and status logic to determine a "hit." If the block
is resident in the external cache, the processor then
cycles the external cache data store twice, each time
reading in 128 bits of data and 28 bits of ECC for a
total of 32 bytes (internal processor cache block
size is 32 bytes). The external cache cycles at a rate
five times the processor chip dock period (and at
two times the period for the VAX variant). Upon the
detection of a "miss," the processor chip informs
the bus interface chips by means of handshake sig­
nals and waits until the miss is serviced on the I.SB.

Upon a data write by the processor, the data is
written through to the external cache. If the data
is already resident in the cache, it is updated and
conditionally broadcast onto the system bus if
marked as shared. If the selected cache line contains
a different valid tag, the current (old) cache line is
written to memory and replaced by the new tag and
data. To improve performance during this opera-

tion, the current cache line is stored in a local victim
buffer while the new data is read. After the new data
has been placed in the cache, the old data is written
back to memory as a background operation.

A duplicate set of cache tags (backmaps) are kept
by the bus interface logic for both the external
cache and the internal processor chip D-cache.
These backmaps are accessed by the bus interface
logic on all bus references to determine the action
necessary to maintain cache/memory coherency.

On bus read requests, the processor bus inter­
face references its external cache backmap and sup­
plies data from the on-board cache if a "dirty" copy
of the data is present. On bus writes, a check is per­
formed to see if the data is present in the processor
on-chip D-cache. If the data line is present, the
updated data is accepted. If the data line is not pre­
sent but is instead in the external cache, the line is
invalidated. This cache update policy is an attempt
to minimize false sharing of data by only updating
on references to a cache line in the processor on­
chip cache, which is small and should contain only
freshly referenced data.

False sharing of data is a problem common to
multiprocessor systems running fully symmetric
operating systems. When a process is migrated
from one processor to another, dirty data often
remains in the cache of the previous processor.
When the new processor requests that data, it
becomes "shared," resulting in the need to update
all copies by means of bus transactions on all subse­
quent modifications of the data. Since the process
has migrated, there is no need to maintain the state
of the data in the cache of the previous processor;
doing so slows down execution of the process due
to the bus transactions required to update. The
write-update policy described in the previous para­
graph provides a means to estimate if "shared" data
is still in use by the previous processor and pro­
vides a means to flush it from the previous cache if
it has not been recently referenced.

The external cache is 128 bits wide with long­
word ECC protection. The ECC scheme used to

I PlvlslDI 12-s1T TAG IP LONGWORD3 ECC LONGWORD2 ECC LONGWORD 1 ECC LONGWORDO ECC

~DIRTY
LONGWORD ? ECC LONGWORD 6 ECC LONGWORD 5 ECC LONGWORD4 ECC

SHARED LONGWORD 11 ECC LONGWORD 10 ECC LONGWORD 9 ECC LONGWORDS ECC
VALID LONGWORD 15 ECC LONGWORD 14 ECC LONGWORD 13 ECC LONGWORD 12 ECC
PARITY

x 64K CACHE ENTRIES

Figure 4 External Cache Structure

104 Vol. 4 No. 4 Special Issue 1992 D igital Tecbntcaljournal

Technical Description of the DEC 7000 and DEC 10000 AXP Family

protect the external cache is identical to that used
on the LSB, which allows flow-through ECC. The
processor chip checks and corrects data for all pro­
cessor refills. The bus interface chips perform
lookaside ECC checking for fault isolation purposes
but do not perform ECC correction.

The processor module also provides system con­
sole functions. The module includes universal
asynchronous receiver/transmitters (UARTs) for
communication with the console terminal and
power subsystems, a time-of-year clock, and 896KB
of flash read-only memories (ROMs) for console and
diagnostic code. Each processor contains a com­
plete console subsystem, but only one module uses
this function in a multiprocessor system. This
approach allows static reconfiguration of the
system in the event of a module failure.

A 4MB module-level cache was chosen because
it was the largest natural implementation using
256K X 4 SRAMs driven by the 128-bit-wide cache
data path defined by the DECchip 21064 micropro­
cessor. Denser SRAMs were not available at the nec­
essary speed (10 to 12 ns), and a multiway cache
architecture is not easily implemented with the
DECchip 21064. The fill size of 64 bytes was
selected to efficiently use the 16-byte-wide system
bus and provide 80 percent bus data efficiency.

Figure 5 shows a photograph of side 1 of a pro­
cessor module. Additional cache RAMs and drivers
reside on side 2.

Memory Module
The memory subsystem of the DEC 7000 comprises
one to seven memory array modules with a single
module capacity of 64 to 2048MB. The primary
functions of the memory array modules are to
respond to bus read/write functions, refresh the
memory RAMs, and maintain ECC data for the mem­
ory. The design supports either 4MB or 16MB
DRAMs, on-board interleaving on modules with
greater than 64MB, and multimodule interleaving
under many conditions.

The DEC 7000 memory modules run synchro­
nous with the LSB. Memory transactions occur in
fixed cycles relative to the system bus. All memory
space transfers consist of 64-byte blocks that are
transferred 16 bytes at a time over four contiguous
data cycles. Read and write data wrapping is done
on 32-byte naturally aligned boundaries. The
DRAMs are 4-bit-wide parts, and an entire 64-byte
block is read or written in parallel and buffered for
bus transmission.

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

Data wrapping is a method used to provide a
lower latency return of the data required by a read
command. The bus contains an extra address bit
that indicates in which half of a 64-byte block the
requested data lies. The memory controller returns
the half block containing the target data first, allow­
ing faster resumption of processing. Data wrapping
has no benefit on write transactions but is done to
simplify the design of the system.

DEC 7000 memory modules are protected with a
quadword ECC algorithm. The chosen ECC imple­
mentation allows detection and correction of sin­
gle-bit failures, detection of all 2-bit failures, and
detection and correction of any error wholly con­
tained within a 4-bit-wide DRAM. Memory modules
convert LSB longword (32-bit) ECC into quadword
(64-bit) ECC that is stored with LSB data on writes.
During LSB reads, quadword ECC is converted to
longword ECC. Quadword ECC allows for higher
packing densities on the memory module with
fewer DRAM components. Longword ECC is used on
the system bus because the DECchip 21064 micro­
processor dictates the use of longword ECC in its
external caches, and the timing of the external
cache will not allow a conversion to a different ECC
for bus transactions.

The memory module contains a hardware-based
self-test that checks each bit on the module to be
sure it can be set to either a O or a 1 state and initial­
izes the memory to a known good ECC state. All
memory modules execute self-test in parallel upon
system initialization at a rate of approximately
35MB per second. This approach results in substan­
tial savings in boot time as compared to a system
that tests memory with initialization code executed
by the processor. Moreover, the self-test provides
excellent error isolation in the event of a failure.

DEC 7000 memory is designed in 64MB, 128MB, ·
256MB, 512MB, and 2GB modules. The 64MB, 128MB,
and 256MB modules use 4MB DRAMs, double-side
surface mounted. The 512MB modules use 4MB
DRAMS mounted on soldered-in single in-line mem­
ory modules (SIMMs). (PC-style socketed SIMMs
proved unreliable for large configurations.) The
2GB modules use 16MB DRAMS mounted on sol­
dered-in SIMMS.

1/0 Subsystem
The DEC 7000 1/0 subsystem consists of an 1/0 port
controller and four high-speed parallel ports. The
1/0 controller provides an interface between
the system bus and the parallel ports. Additional

105

Alpha AXP Architecture and Systems

POWER SUPPLY SYSTEM BUS INTERFACE

Figure 5 Processor Module, Major Components Highlighted

modules provide the interface between the high­
speed parallel ports and specific standard 1/0 buses.
To date, interfaces have been designed for the XMI,

which is used as the 1/0 bus on the VAX 6000 and
VAX 9000 systems, and for the Futurebus+, which is
an IEEE standard high-performance bus definition.

The I/0 port controller and specific bus adapter
architecture was adopted to allow a flexible bus
strategy that can evolve over time, as well as to
accommodate the physical separation of processor
and I/0 subsystems necessary in an expandable
system with multiple I/0 channels. The 1/0 port

106

controller cable(s) will function to a maximum
cable length of 3 meters. This length allows 1/0

expansion cabinets to be placed on either side of
the main system cabinet.

The aggregate bandwidth of the 1/0 port con­
troller is 256MB per second. Each parallel port is
capable of operating at a maximum of 135MB per
second for data flowing from the 1/0 subsystem to
memory and at 88MB per second for data flowing
from memory to the 1/0 subsystem.

The 1/0 port controller module with its four
parallel ports is a standard part of all DEC 7000

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Technical Description of the DEC 7000 and DEC 10000 AXP Family

systems and resides in a dedicated system back­
plane slot. Various system configurations are avail­
able that contain between one and four XMI 1/0

buses. The Futurebus+ subsystems will be available
when Futurebus+ components become available in
the computer industry.

The 1/0 port controller provides a "mailbox"
interface between the processor and 1/0 devices. A
processor instruction cannot directly access a regis­
ter in an 1/0 device, as was possible on previous VAX
implementations. To use the "mailbox" interface, a
processor creates a work descriptor packet in mem­
ory and then issues a command to the 1/0 port con­
troller to execute the command. Command
completion is asynchronous and the processor may
choose to do other work while the command is exe­
cuted. The "mailbox" interface between proces­
sors and 1/0 devices was created to allow relatively
slow 1/0 devices to interface to a high-speed, non­
pended system bus. If a processor were allowed to
access the 1/0 device directly, the system bus would
be stalled for large portions of time.

Clearly the mailbox communications method is
more complicated than traditional direct access.
Fortunately the mailbox is used only when a pro­
cessor needs to directly access an 1/0 device. The
I/0 device can directly access main memory (or
possibly a CPU cache) with all necessary buffering
done by the 1/0 port controller. Most modern high­
performance 1/0 adapters use high-level, packet­
based protocols, which require very little direct
access of the 1/0 adapter by the processor.

A typical CPU-initiated 1/0 transaction to an intel­
ligent disk controller on an XMI bus to read from
the disk would have the following steps.

• The CPU places a disk controller command
packet requesting a disk read into system
memory.

• The CPU sets up an 1/0 mailbox structure with a
command to inform the disk controller that
there is a command packet in memory, writes a
register in the 1/0 port controller to inform it
that there is a mailbox transaction to complete,
and then spins on a done bit in the mailbox
structure.

• The 1/0 port controller fetches the mailbox
structure from memory, generates an XMI write
command to the disk controller, and sets the
done bit in the mailbox structure. The CPU sees
the assertion of the done bit and goes on to other
work.

Digital Technicaljour 11al Vol. 4 No. 4 Special Issue 1992

• The disk controller receives the mailbox data
and then generates an XMI request to read its
command packet from memory.

• The 1/0 port controller reads the specified com­
mand packet from memory 64 bytes at a time
and sends it back to the disk controller 32 bytes
at a time.

• The disk controller decodes the command packet,
reads the requested data from disk, and starts
writing to system memory in 32-byte segments.

• The 1/0 port controller buffers the 32-byte
writes from the disk controller into 64-byte seg­
ments and writes the data to system memory.

• The disk controller signals an interrupt on the
XMI to indicate that the requested operation is
complete, which is received by the 1/0 port con­
troller. The 1/0 port controller signals an inter­
rupt to the CPU.

Console and Diagnostics
Like many previous VAX systems, the DEC 7000
system employs an embedded console. The console
function is performed by code run on the proces­
sors within the system rather than by a dedicated,
detached front-end processor.

Unlike the strategy for previous VAX systems, a
unified console and diagnostic strategy was
adopted for the DEC 7000 and 10000, VAX 7000 and
10000, and DEC 4000 systems. A single code base
not only provides the basic console functions but
also extends diagnostic support for manufacturing
and field firmware upgrade support. This unified
strategy has reduced the total development effort
and promoted a common "look and feel" across the
different systems.

The console development also differed from that
of previous VAX systems. The primary implemen­
tation language was C, with only various architec­
ture-specific code in Alpha AXP (or VAX) assembly
language. The console and processor diagnostic
code was simulated prior to the arrival of hardware.
This simulation greatly simplified early hardware
debug; the console had basic functionality after a
single debug session.

At power-up, each processor acts independently
to execute processor-specific diagnostics and con­
sole initialization. The processors then select a con­
sole primary, which then proceeds to test and
configure the memory and 1/0 subsystems. The
console primary also retains control of the console
terminal line; console secondaries communicate

107

Alpha AXP Architecture and Systems

with the primary through memory-resident mes­
sages. After initialization, diagnostic or other con­
sole tasks can be assigned to any processor in the
configuration. One benefit of this arrangement is
that system diagnostics and exercisers can be run in
parallel.

Like previous DECsystem consoles (that is, sys­
tems based on MIPS Co. chips) , the DEC 7000 con­
sole provides a set of services, or callbacks, to the
operating system. These services can be used to
control automatic bootstrapping across operating
system crashes as well as primitive I/0 services
used by the operating system during bootstrap and
system crash. The latter simplifies the operating
system device support by providing simple
read/write functions common to all devices.

A feature of the power of the console is the field
firmware update utility. Field upgrade of all system
firmware (console and I/0 adapters) is accom­
plished by the DEC 7000 firmware update utility
(I.FU). LFU is really a dedicated console image which
is distributed on CDROM. The system console is
used to boot LFU, which is then used to update all
system firmware.

System Packaging
The DEC 7000 system cabinet is 1700 mm high
by 800 mm wide by 865 mm deep. The cabinet
houses the system backplane, up to two I/0 subsys­
tems, and disk arrays or batteries for the system bat­
tery-backup function . Expansion is possible by
using one or two I/0 expander cabinets, each of

which houses up to two additional I/0 subsystems
and additional disk arrays. Further mass storage
expansion is possible with Digital 's standard line of
mass storage cabinets connected by CI, DSSI, or SI
interconnects.

The DEC 7000 cabinetry has been designed for
easy system upgrade and servicing. The system
backplane assembly, power system, and I/0 subsys­
tems are modular and easily replaced by field per­
sonnel. The process of future upgrades can be
accomplished more quickly and reliably through
the use of modular subassemblies.

As shown in Figure 6, the DEC 7000 main system
cabinet contains a central air mover with logic
assemblies above and below it. The air mover is a
single motor with a large molded vane assembly
and can pull air through both the upper and the
lower logic assemblies. An air flow of approxi­
mately 900 cubic feet per minute with velocities
up to 1800 linear feet per minute is maintained
through the upper logic assembly, which contains
the processor and memory subsystems. Although
not necessary for the DECchip 21064, this large
volume of air movement was designed into the
machine to allow upgrades through several genera­
tions of processor chips. By using standard air-cool­
ing techniques and customized module "boxes"
that optimize local air flow, it is possible to cool
processor chips of up to 70 watts in the DEC 7000
system cabinet.

Above the air mover are the system backplane
and the modular power subsystem. Below the air

Figut·e 6 DEC 7000 Main System Cabinet, Front (Left) and Rear (Right) Views

108 Vol. 4 No. 4 Special Issue 1992 Digital Technical journal

Technical Description of the DEC 7000 and DEC 10000 AXP Family

mover are four modular spaces for 1/0 bus back­
planes, disk drives, or batteries.

I/0, disk, and battery subsystems occupy varying
amounts of the four modular spaces. The XMI sub­
system occupies two spaces and is oriented front to
back because of its rear-exit cabling scheme. The
Futurebus+ subsystem occupies a single rear space.
Disk subsystems consisting of up to six 5.25-inch
(DSSI or SCSI [small computer system interface]) or
fourteen 3.5-inch (SCSI only) drives may occupy any
of the modular spaces. Batteries for the uninter­
ruptible power system occupy two modular
spaces, which may be oriented either front to back
(for XMI-based systems) or side to side (for
Futurebus+ systems).

The expander cabinet is identical to the main
system cabinet, with two exceptions: disks may be
packaged in the area occupied by the system back­
plane, and there is no control panel. Up to two XMI
or Futurebus+ subsystems may be placed in an
expander cabinet.

Power Subsy s tem
The power subsystem of the DEC 7000 family has
a highly modular, hierarchical design. The basic
power system provides 48-volt direct current (VDC)
to all subassemblies which in turn further regulate
to necessary voltages. Each module in the system
backplane contains on-board regulation. This fea­
ture will allow the system to easily evolve with
changing voltage requirements as CMOS technology
moves to lower voltages to reduce power consump­
tion. Voltage tolerances can be tightly controlled
since transmission drops are negated; a precise
voltage level can be set at the time of module manu­
facture. The voltage and tolerance to a high-per­
formance CMOS processor must be very tightly
controlled in order to extract maximum perfor­
mance. The XMI, Futurebus+, and disk subsystems
all regulate the 48 VDC to lower voltages at a subsys­
tem-wide level, not at the module level.

The 48-VDC modular power system consists of
one to three parallel regulators, each of which pro­
duces 2400 watts of power. A maximally config­
ured cabinet needs no more than two power
regulators. An additional regulator can be config­
ured into the system to provide an n+ 1 capability
for higher availability.

The power system also includes a battery
standby function that provides 48 VDC throughout
the system in the event of an AC power failure .
Unlike earlier VAX systems in which power was

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

maintained only to system memory, the DEC 7000
keeps the entire system powered, including in-cabi­
net mass storage. Depending on the system config­
uration, power is maintained for a minimum of 20
minutes in an n+ 1 power configuration. N+ 1
power with full battery backup is standard on all
DEC 10000 systems.

The DEC 7000 system employs a highly intelligent
power subsystem with microprocessors in all 48-
volt regulators, which report status to processor
modules by means of a serial interconnect. System
software can therefore monitor a wide range of
power system operating parameters, including
voltage output, AC input, efficiency, and battery
charge state. In a large configuration with optional
expander cabinets, the expander cabinet power sys­
tems also communicate with the system processors
to provide system-wide power status.

Performance
The DEC 7000 and DEC 10000 systems are the fastest
uniprocessor and multiprocessor, microprocessor­
based computer systems in the world as of their
introduction date (10 November 1992) and as
defined by SPEC89 and SPEC92 benchmark data. For
compute-intensive benchmarks, the DEC 10000 is
approximately 10 percent faster than the DEC 7000,
based entirely on the difference in processor clock
speed.

The base performance of the DEC 7000 and DEC
10000 systems is determined by the speed of the
processor chip and is heavily influenced by cache,
memory, and 1/0 subsystems. The design goal for
the DEC 7000 and DEC 10000 systems was to extract
the maximum possible performance from the
DECchip 21064 by providing an electrical and physi­
cal environment capable of supporting 200-MHz
processor operation as well as large caches, a
large and fast memory subsystem, and multiple I/0
subsystems.

While full system-level performance data is still
being collected, the very high speed processor per­
formance measured on the SPEC benchmarks com­
bined with the very high performance cache,
memory, and 1/0 subsystems of the DEC 7000 and
DEC 10000 systems should yield very impressive
overall system performance. See Table 1.

Design Process
The DEC 7000 system was specified, designed, and
tested by a group of approximately 200 people in
Boxboro, Massachusetts. The system design team

109

Alpha AXP Architecture and Systems

Table 1 DEC 7000 and DEC 10000 System
Performance Measurements

DEC 7000 DEC 10000

SPECmark89 167.4 184.1
SPECint89 95.1 104.5
SPECfp89 244.2 268.6
SPECint92 96.9 106.5
SPECfp92 182.1 200.4

SPECthroughput89
(4 CPUs) 604.4 654.6

UNPACK double-precision
100X100 (MFLOPS) 38.6 42.5
1000x1000 (MFLOPS) 102.1 111.6

was responsible for all aspects of the design except
the DECchip 21064 microprocessor.

Conceptual work on a system to follow the VAX
6000 family was started in early 1989, although at
that time design work was focused on implementa­
tions using VAX and MIPS R4000 processors. In the
latter part of 1989, the decision was made to pursue
the Alpha AXP strategy, and earlier concepts were
reworked to incorporate much higher levels of per­
formance to accommodate the proposed Alpha
AXPchip.

In October-December 1989, a core team of
approximately 10 engineers was assembled to
firmly define system architecture and to produce
specifications for all subassemblies. By July 1990 all
specifications were complete, and implementation
was started. The first processor module was pow­
ered up in June 1991, followed by a full system
power-up in September 1991. The VMS operating
system was booted on a DEC 7000 system on
September 9, 1991, and OSF was booted in
November 1991.

A minimal DEC 7000 system includes 430,000
gates of logic contained in gate arrays, whereas a
minimal VAX 6000 Model 200 includes 94,000 gates.
Despite more than four times the gate count,
the design portion of the DEC 7000 program was
completed in approximately 9 months as com­
pared to 12 months for the VAX 6000 program. This
reduction in design time was achievable in part
because of the maturing of the engineering pop­
ulation (many of the DEC 7000 engineers had
worked on various VAX 6000 implementations),
as well as advances in design tool technology and
the availability of significantly more powerful
computers for design simulation. At its peak, the
DEC 7000 program was consuming 1500 VAX units
of performance, or VUPs, of compute power

110

(primarily multiprocessor VAX 6000 Model 500 sys­
tems) and used over 325,000 hours of CPU time
for simulations.

Conclusion
The DEC 7000 and DEC 10000 systems are the sec­
ond generation of highly configurable and expand­
able systems produced by Digital Equipment
Corporation. These are the first systems expressly
designed to accommodate multiple-processor archi­
tecture types. As computer technology moves for­
ward at an ever-increasing pace, this type of design
will be demanded by computer users and will be
necessary to manage engineering costs.

The DEC 7000 and DEC 10000 system platform
will accommodate new VAX and Alpha AXP proces­
sors for several years. Over that time, this platform
will span a performance range of greater than 50: I.
It will provide computer users with a stable system
environment that should help minimize the changes
caused by the continued development of new pro­
cessor chips. While this level of flexibility incurs
additional initial engineering and product costs, it
does provide a very cost-effective way to deal with
the inexorable forward march of technology.

Acknowledgments
The following engineers formed the system archi­
tecture team of the project that produced the DEC
7000 and DEC 10000 and VAX 7000 and VAX 10000
products: Frank Bomba, Reinhard Schumann, Mike
Callander, Steve Polzin, Kathy Harrington, Dave
Mayo, Catharine van Ingen, Vicky Triolo, Bob
Dickson, Dave O 'Keefe, Jim Leahy, Hansel Collins,
Jim Stegeman, Darrel Donaldson, Dave Hartwell,
Charlie Barker, Mark Stefanski, Brian Allison.
Various parts of this text originated within engi­
neering specifications written by this team.

References

1. Digital Technical Journal, vol. 2, no. 2, featuring
papers on the VAX 6000 Model 400 (Spring 1990).

2. G. Uhler et al., "The NVAX and NVAX+ High-perfor­
mance VAX Microprocessors," Digital Technical
Journal, vol. 4, no. 3 (Summer 1992): 11-23.

3. D. Dobberpuhl et al., "A 200-MHz 64-bit Dual­
issue CMOS Microprocessor," Digital Technical
Journal, vol. 4, no. 4 (1992, this issue): 35-50.

4. A.]. Smith, "Cache Memories," Computing
Surveys, vol. 14, no. 3 (September 1982).

Vol. 4 No. 4 Special Issue 1992 Digital Tecb11ical]ournal

Nancy R Kronenberg
Thomas R. Benson
Wayne M. Cardoz a

Ravindran]agannathan
Benjamin]. Thomas III

Porting OpenVMS
from fflXtoAlphaAXP

The Open VMS operating system, developed by Digital for the mx family of comput­
ers, was recently moved from the mx to the Alpha AXP architecture. The Alpha AXP
architecture is a new RISC architecture introduced by Digital in 199'2. This paper
describes solutions to several problems in porting the operating system, in addition
to performance benefits measured on one of the systems that implements this new
architecture.

The VAX architecture is an example of complex
instruction set computing (CISC), whereas the
Alpha AXP architecture is based on reduced instruc­
tion set computing (RISC). The two architectures
are very different.1 CISC architectures have perfor­
mance disadvantages as compared to RISC architec­
tures. 2 Digital ported the OpenVMS system to the
Alpha AXP architecture mainly to deliver the perfor­
mance advantages of RISC to OpenVMS appli­
cations. This paper focuses on how Digital's
OpenVMS AXP operating system group dealt with
the large volume of VAX assembly language and
with system kernel modifications that had VAX
architecture dependencies.

The OpenVMS AXP group had two impor­
tant requirements in addition to the primary goal
of increasing performance: first, to make it easy
to move existing users and applications from
Open VMS VAX to Open VMS AXP systems; second, to
deliver a high-quality first version of the product
as early as possible. These requirements led us to
adopt a fairly straightforward porting strategy with
minimal redesigns or rewrites. We view the first
version of the OpenVMS AXP product as a begin­
ning, with other evolutionary steps to follow.

The Alpha AXP architecture was designed for
high performance but also with software migration
from the VAX to the AlphaAXP architecture in mind.
Included in the Alpha AXP architecture are some
VAX features that ease the migration without com­
promising hardware performance. VAX features
in the Alpha AXP architecture that are important
to OpenVMS system software are: four protec­
tion modes, per-page protection, and 32 interrupt

D igita l Tech11icalJour11al Vol . 4 No. 4 Special Issue 1992

priority levels. The Alpha AXP architecture also
defines a privileged architecture library (PAL) envi­
ronment, which runs with interrupts disabled and
in the most privileged of the four modes (kernel).
PALcode is a set of Alpha AXP instructions that exe­
cutes in the PAL environment, implementing such
basic system software functions as translation
buffer (TB) miss service. On Open VMS AXP systems,
PALcode also implements some OpenVMS VAX fea­
tures such as software interrupts and asynchronous
traps (ASTs). The combination of hardware archi­
tecture assists and OpenVMS AXP PAI..code made it
easier to port the operating system to the Alpha
AXP architecture.

The VAX architecture is 32-bit; it has 32 bits
of virtual address space, 16 32-bit registers, and a
comprehensive set of byte, word (16-bit), and long­
word (32-bit) instructions. The Alpha AXP archi­
tecture is 64-bit, with 64 bits of virtual address
space, 64-bit registers (32 integer and 32 floating­
point), and instructions that load, store, and oper­
ate on 64-bit quantities. There are also longword
load, store, and operate instructions, and a canoni­
cal sign-extended form for a longword in a 64-bit
register.

The OpenVMS AXP system has anticipated evolu­
tion from 32-bit address space size to 64-bit address
space by changing to a page table format that sup­
ports large address space. However, the OpenVMS
software assumes that an address is the same size as
a longword integer. The same assumption can exist
in applications. Therefore, the first version of the
Open VMS AXP system supports 32-bit address space
only.

111

Alpha AXP Architecture and Systems

Most of the OpenVMS kernel is in VAX assembly
language (VAX MACR0-32). Instead of rewriting the
VAX MACR0-32 code in another language, we devel­
oped a compiler. In addition, we required inspec­
tion and manual modification of the VAX MACR0-32
code to deal with certain VAX architectural depen­
dencies. Parts of the kernel that depended heavily
on the VAX architecture were rewritten, but this
was a small percentage of the total volume of VAX
MACR0-32 source code.

OJmpiling VAX MACR0-32 Code for the
Alpha AXP Architecture
Simply stated, the VAX MACR0-32 compiler treats
VAX MACR0-32 as a source language to be compiled
and creates native OpenVMS AXP object files just as
a FORTRAN compiler might. This task is far more
complex than a simple instruction-by-instruction
translation because of fundamental differences in
the architectures, and because source code fre­
quently contains assumptions about the VAX archi­
tecture and the OpenVMS Calling Standard on VAX
systems.3,4 The compiler must either transparently
convert these VAX dependencies to their OpenVMS
AXP counterparts or inform the user that the source
code has to be changed.

Source Code Annotation
We extended the VAX MACR0-32 source language to
include entry-point declarations and other direc­
tives for the compiler's use, which provide more
information about the intended behavior of the pro­
gram. Entry-point declarations were introduced to
allow declaration of: (1) the register semantics for
a routine when the defaults are not appropriate and
(2) the specialized semantics of frameless subrou­
tines and exception routines to be declared.

The differing register size between the VAX and
the Alpha AXP architectures influenced the design
of the compiler. On the VAX, MACR0-32 operates on
32-bit registers, and in general, the compiled code
maintains 32-bit sign-extended values in Alpha AXP
64-bit registers. However, this code is now part
of a system that uses true 64-bit values. As a result,
we designed the compiler to generate 64-bit regis­
ter saves of any registers modified in a routine,
as part of the "routine prologue code." Automatic
register preservation has proven to be the safest
default but must be overridden for routines that
return values in registers, using appropriate entry­
point declarations.

112

Other directives allow the user to provide addi­
tional information about register state and code
flow to improve generated code. Another class of
directives instructs the compiler to preserve the
VAX behavior with respect to granularity of mem­
ory writes or atomicity of memory updates. The
Alpha AXP architecture makes atomic updates and
guaranteed write granularity sufficiently costly to
performance that they should be enabled only
when required. These concepts are discussed in
the section Major Architectural Differences in the
OpenVMS Kernel.

Identifying VAX Architecture
and Calling Standard Dependencies
As mentioned earlier, the compiler must either
transparently support VAX architecture-dependent
constructs or inform the user that a source change
is necessary. A good example of the latter case is
reliance on VAX JSB/RSB (jump to subroutine and
return) instruction return address semantics. On
VAX systems, a JSB instruction leaves the return
address on top of the stack, which is used by the
RSB instruction to return.3 System subroutines
often take advantage of this semantic in order to
change the return address. This level of stack con­
trol is not available in a compiled language. In
porting the OpenVMS system to the Alpha AXP
architecture, we developed alternative coding prac­
tices for this and many other nontransportable
idioms.

The compiler must also account for the dif­
ferences in the OpenVMS Calling Standard on the
VAX and Alpha AXP architectures. Although trans­
parent to high-level language programmers, these
differences are very significant in assembly lan­
guage programming. 4 To operate correctly in a
mixed language environment, the code generated
by the VAX MACR0-32 compiler must conform to
the OpenVMS Calling Standard on the Alpha AXP
architecture.

On VAX systems, a routine refers to its arguments
by means of an argument pointer (AP) register,
which points to an argument list that was built in
memory by the routine's caller. On Alpha AXP sys­
tems, up to six routine arguments are passed to the
called routine in registers; any additional argu­
ments are passed in stack locations. Normally, the
VAX MACR0-32 compiler transparently converts
AP-based references to their correct Alpha AXP loca­
tions and converts the code that builds the list to

Vol. 4 No. 4 Special Issue 1992 Dtgttal Technical Journal

initialize the arguments correctly. In some cases,
the compiler cannot convert all references to their
new locations, so an emulated VAX argument list
must be constructed from the arguments received
in the registers. This so-called "homing" of the argu­
ment list is required if the routine contains indexed
references into the argument list or stores or passes
the address of an argument list element to another
routine.

The compiler identifies these coding practices
during its process of flow analysis, which is similar
to the analysis done by a standard high-level lan­
guage optimizing compiler. The compiler builds a
flow graph for each routine and tracks stack depth,
register use, condition code use, and loop depth
through all paths in the routine flow. This same
information is required for generating correct and
efficient code.

Access to AI,pha AXP
Instructions and Registers
In addition to providing migration of existing VAX
code, the VAX MACR0-32 compiler includes support
for a subset of Alpha AXP instructions and PALcode
calls and access to the 16 integer registers beyond
those that map to the VAX register set. The instruc­
tions supported either have no direct counterpart
in the VAX architecture or are required for efficient
operation on a full 64-bit register value. These
"built-ins" were required because the OpenVMS
AXP system uses full 64-bit values for some opera­
tions, such as manipulation of 64-bit page table
entries (PTEs).

Optimization
The compiler includes certain optimizations that
are particularly important for the Alpha AXP archi­
tecture. For example, on a VAX system, a reference
to an external symbol would not be considered
expensive. On an Alpha AXP system, however, such
a reference requires a load from the linkage section
to obtain the address of the symbol prior to loading
the symbol's value. (The linkage section is a data
region used for resolving external references.4)

Multiple loads of this address from the linkage
section may be reduced to a single load, or the
load may be moved out of a loop to reduce memory
references.

Other optimizations include the elimination
of memory reads on multiple safe references, regis­
ter state tracking for optimal register-based mem­
ory references, redundant register save/restore

D igital Technical j ournal Vol. 4 No. 4 Speciallssue 1992

Porting Open VMS from VAX to Alpha AXP

removal, and many local code generation optimiza­
tions for particular operand types. Peephole opti­
mization of local code sequences and low-level
instruction scheduling are performed by the back
end of the compiler.

In some instances, the programmer has knowl­
edge of register state or other code behavior that
cannot be inferred from the source code alone.
Compiler directives are provided for specifying reg­
ister alignment state, structure base address align­
ment, and likely flow paths at branch points.

Certain types of optimization typically per­
formed by a high-level language compiler cannot be
performed by the VAX MACR0-32 compiler, because
assumptions made by the MACR0-32 programmer
cannot be broken. For example, the order of mem­
ory reads may not be changed.

Major Architectural Differences
in the OpenVMS Kernel
This section concentrates on architectural changes
that affect synchronization, memory management,
and 1/0. These are not the only architectural differ­
ences that cause significant changes in the kernel.
However, they are the major differences and are
representative of the effort involved in porting the
OpenVMS system to the Alpha AXP architecture.

For the most part, it was possible to isolate archi­
tecture-dependent changes to a few major sub­
systems. However, differences in the memory
reference architecture had a pervasive impact on
users of shared data and many common synchro­
nization techniques. Other differences such as
those related to memory management, context
switching, or access to 1/0 devices were confined
mostly to the relevant subsystems.

Effects of Architectural Differences
in Memory Subsystems
The following differences between the VAX and
Alpha AXP memory reference architectures affected
synchronization: 1,3

• Load/store architecture rather than atomic mod­
ify instructions

• Longword and quadword writes with no byte
write instructions

• Read/write ordering not guaranteed

Load/store memory reference instructions are
characteristic of most RISC designs. However, the
other differences are less typical. The reasons for all

113

Alpha AXP Architectu re and Systems

three differences were hardware simplification and
opportunities for increased hardware perfor­
mance.' These differences result in significant
changes in system software and in many opportuni­
ties for subtle errors, which can be detected only
under heavy load. Adapting to these architectural
changes without greatly impacting performance
was one of the major challenges that faced the
group in porting the OpenVMS system to the Alpha
AXP architecture.

A load/store architecture such as Alpha AXP can­
not provide the atomic read-modify-write instruc­
tions present in the VAX architecture. Thus,
instruction sequences are necessary for many oper­
ations performed by a single, atomic VAX instruc­
tion, such as incrementing a memory location. The
consequence is a need for increased awareness of
synchronization. Instead of depending on hard­
ware to prevent interference between multiple
threads of execution on a single processor, explicit
software synchronization may be required.
Without this synchronization, the interleaving of
independent load-modify-store sequences to a sin­
gle memory location may result in overwritten
stores and other incorrect results.

The lack of byte writes imposes additional syn­
chronization burdens on software. Unlike VAX and
most ruse systems, an Alpha AXP system has instruc­
tions to write only longwords and 64-bit quad­
words, not bytes or words. Thus to write bytes, the
software must include a sequence of instructions
that reads the encompassing longword, merges in
the byte, and writes the longword to memory. As
a consequence, software must be concerned not
only with shared access to the same memory cell by
multiple threads, but also with access to indepen­
dent but adjacent variables. Synchronization aware­
ness is now extended from shared data to data
items that are merely near each other.

The OpenVMS AXP operating system group
avoided the above-mentioned problems introduced
by the architectural changes in one of three ways:

• Explicit software synchronization was added
between threads.

• Data items were relocated to aligned longwords
or quadwords.

• Alpha AXP load locked and store conditional
instructions were used.

The obvious solution of adding explicit synchro­
nization in the form of a software lock is not always

114

appropriate for several reasons. First, the problem
may be independent data items that happen to
share a longword. Synchronizing this sort of access
in unrelated code paths is prone to error. Explicit
synchronization may also have an unacceptable
performance impact. Finally, deadlocks are a possi­
bility if one thread interrupts another.

Ensuring that data items are in aligned longwords
or quadwords both improves performance and
eliminates interactions between unrelated data.
This technique is used wherever possible but can­
not be used in two major cases. One case occurs
when the replication factor is too large. Expanding
an array of thousands of bytes to longwords may
simply not be acceptable. The other major problem
case is data structures that cannot be changed
because of external constraints. For example, data
may represent a protocol message or a structure
primarily resident on disk. Separate internal and
external forms of such data structures could exist,
but the performance cost of continuous conver­
sions may not be acceptable.

Often the easiest and highest-performance way
to solve synchronization problems is to use
sequences of load locked and store conditional
instructions. The load locked instruction loads an
aligned longword or quadword while setting a
hardware flag that indicates the physical address
that was loaded. The hardware flag is cleared if any
other thread, processor, or VO device writes to the
locked memory location. The store conditional
instruction stores an aligned longword or quad­
word if and only if the hardware lock flag is still set.
Otherwise, the store returns an error indication
without modifying the storage location. These
instructions allow the construction of atomic read­
modify-write sequences to update any datum that is
contained within a single aligned quadword. These
sequences of instructions are significantly slower
than normal loads and stores due to the necessity of
waiting for the write to reach a point in the mem­
ory hierarchy where consistency can be guaran­
teed. In addition, their use may inhibit many
compiler optimizations because of restrictions on
the instructions between the load and store.
Although faster than most other synchronization
methods, this mechanism should be used sparingly.

The lack of guaranteed read/write ordering
between multiple processors is another complica­
tion for the programmer trying to achieve proper
synchronization. Although not visible on a single
processor, this lack of ordering means that one

Vol. 4 No. 4 Special Issue 1992 Dtgttal Technical Journal

processor will not necessarily observe memory
operations in the order in which they were issued
by another processor. Thus, many obvious synchro­
nization protocols will not work when writes to
the synchronization variable and to the data being
protected are observed to occur out of order.
A memory barrier instruction is provided in the
architecture to ensure ordering. However, the nega­
tive impact of this instruction on system perfor­
mance requires that it be used only when
necessary.

As described in the previous section, we used
various mechanisms to solve the synchronization
problems. Having multiple solutions allowed us to
choose the one with the least performance impact
for each case. In some cases, explicit synchroniza­
tion was already in place due to multiprocessor syn­
chronization requirements. In other cases, we
expanded data structures at a cost of modest
amounts of memory to avoid expensive synchro­
nization when referencing data.

Privileged Architecture Changes
Unlike the pervasive architectural changes
described in the previous section, the privileged
architecture differences had a more limited impact.
The primary remaining areas of change are the
new page table formats and the details of process
context switching. This section describes mem­
ory management as a representative example.
However, many limited changes still amount to
modifying virtually every source module in the
OpenVMS kernel, even if only to add compiler
directives.

Memory Management Not surprisingly, the mem­
ory management subsystem required the most
change when moving from the VAX to the Alpha
AXP architecture. Aside from the obvious 64-bit
addressing capability, two significant differences
exist between the page table structures on the VAX
and the Alpha AXP architectures. First, Alpha AXP
does not have an architectural division between
shared and process private address space. Second,
the Alpha AXP three-level page table structure
shown in Figure 1 allows the sharing of arbitrary
subtrees of the page table structure and the effi­
cient creation of large, sparse address spaces. In
addition, future Alpha AXP processors may have
larger page sizes.

To meet our schedule goals, we decided initially
to emulate the VAX architecture's 32-bit address

Digital Technical journal Vol. 4 No. 4 Special Issue 1992

Porting Open VMS from VAX to Alpha AXP

space as closely as possible. This decision required
creating a 2-gigabyte (GB) process private address
region (i.e., VAX PO and Pl) and a 2GB shared
address region (i.e., VAX SO and Sl) for each pro­
cess. This is easily accomplished by giving each
process a private level 1 page table (LlPT) that con­
tains two entries for level 2 page tables (L2PTs).
One of these L2PTs is shared and implements the
shared system region, whereas the other is private
and implements the process private address
regions. Although the smallest allowed page size of
8 kilobytes (KB) results in an 8GB region for each
level 2 page table, we use only 2GB of each region
to keep within our 4GB 32-bit limit. As shown
in Figure 1, the L2PTs are chosen to place the
base address of the shared system region at
FFFFFFFF80000000 (hexadecimal), the same as the
sign-extended address of the top half of the VAX
architecture's 32-bit address space.

Although changes were extensive in the memory
management subsystem, many were not conceptu­
ally difficult. Once we dealt with the new page
table structure, most changes were merely for alter­
native page sizes, new page table entry formats, and
changes to associated data structures. We did
decide to keep the OpenVMS VAX concept of map­
ping process page tables as a single array in shared
system space for our initial implementation.
Although not viable in the long term due to the
potentially huge size of sparse process page tables,
this decision minimized changes to code that refer­
ences process page tables. Having process page
tables visible in shared system space turned out to
be a significant complication in paging and in
address space creation, but the schedule benefits
derived from avoiding changes to other subsystems
were considered worthwhile. We expect to change
to a more general mechanism of self-mapping pro­
cess page tables in process space for a subsequent
Open VMS AXP release.

Retaining the VAX appearance of process page
tables allowed us to meet our goals of minimum
change outside of the memory management subsys­
tem. Unprivileged code is unaffected by the mem­
ory management changes unless it is sensitive to the
new page size. Even privileged code is generally
unaffected unless it has knowledge of the length or
format of PTEs.

Optimized Translation Buffer Use Thus far, we
may have given the impression that architectural
changes always create problems for software. This
was not universally true; some changes offered us

115

Alpha AXP Architecture and Systems

LEVEL3
PAGE TABLES

CODE OR
DATA PAGES

PAGE TABLE
BASE
REGISTER

PO SPACE
L3PT

LEVEL 2 ,_.. L3PTE
PAGE TABLES

PROCESS­
PRIVATE
L2PT

- L2PTE P1 SPACE

ADDRESSO

D

_. VIRTUAL

LEVEL 1
PAGE TABLE
(L1PT)

- L1PTE -

L2PTE .--~,L
3

PT D_.SOMEP1SPACE
VIRTUAL ADDRESS

UNUSED L

3

PTE

L1PTE -
SHARED
L2PT

- UNUSED

L2PTE

L2PTE

,_..

,---

~

SYSTEM
SPACE
L3PT

L3PTE

SYSTEM
SPACE
L3PT

D

_. VIRTUAL ADDRESS
FFFFFFFFSOOOOOOO

L3PTE -

--+-D...- SOME SYSTEM SPACE
VIRTUAL ADDRESS

Figure 1 Open VMS AXP Page Table Structure

opportunities for significant gains. One such
change was an Alpha AXP translation buffer feature
called granularity hints. TBs are key to performance
on any virtual memory system. Without them, it
would be necessary to reference main memory
page tables to translate every virtual address to
a physical address. However, there never seems to
be enough TB entries. The Alpha AXP architecture
allows a single TB entry to optionally map a virtu­
ally and physically contiguous block of properly
aligned pages, all with identical protection
attributes. These pages are marked for the hard­
ware by a flag in the PTE.

Given granularity hints, near-zero TB miss rates
for the kernel became attainable. To this end, we
enhanced the kernel loading mechanisms to create
and use granularity hint regions.

The OpenVMS AXP kernel is made up of many
separate images, each of which contains several
regions of memory with varying protections. For

116

example, there is read-only code, read-only data,
and read-write data. Normally, a kernel image is
loaded virtually contiguously and relocated so that
it can execute at any address. To take advantage of
granularity hints, kernel code and data are loaded in
pieces and relocated to execute from discontigu­
ous regions of memory. Only a very few TB entries
are actually used to map the entire nonpaged ker­
nel, and the goal of near-zero TB misses was
reached.

The benefits of granularity hints became immedi­
ately obvious, and the mechanism has since been
expanded. Now, the OpenVMS AXP system also uses
the code region for user images and libraries. This
feature extends the benefits not only to images sup­
plied by the OpenVMS system, but to customer
applications and layered products as well. Of
course, usage of this feature is only reasonable for
images and libraries used so frequently that the
permanent allocation of physical memory is

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

warranted. However, most applications are likely to
have such images, and the performance advantage
can be impressive.

1/0
Unlike the architectural changes, the new 1/0 archi­
tecture structures an area that previously was
rather uncontrolled. The project goal was to allow
more flexibility in defining hardware 1/0 systems
while presenting software with a consistent inter­
face. These seem like contradictory aims, but both
must be met to build a range of competitive, high­
performance hardware that can be supported with
a reasonable software effort.

The Alpha AXP architecture presents a number of
differences and challenges that impacted the
OpenVMS AXP 1/0 system. These changes spanned
areas from longword granularity to device control
and status register (CSR) access to how adapters
may be built.

CSR Access A fundamental element of 1/0 is the
access of CSRs. On VAX systems, CSR access is
accomplished as simply another memory reference
that is subject to a few restrictions. Alpha AXP sys­
tems present a variety of CSR access models.

Early in the project, the concept of 1/0 mailboxes
was developed as an alternative CSR access model.
The 1/0 mailbox is basically an aligned piece of
memory that describes the intended CSR access.
Instead of referencing CSRs by means of instruc­
tions, an 1/0 mailbox is constructed and used as
a command packet to an 1/0 processor. The mail­
box solves three problems: the mailbox allows
access to an 1/0 address space larger than the
address space of the system; byte and word refer­
ences may be specified; and the system bus is sim­
plified by not having to accommodate CSR
references that may stall the bus. As systems get
faster, these bus stalls are increasingly larger imped­
iments to performance.

Mailboxes are the 1/0 access mechanism on
some, but not all, systems. To preserve investment
in driver software, the OpenVMS AXP operating
system implemented a number of routines that
allow all drivers to be coded as if CSRs were
accessed by a mailbox. Systems that do not support
mailbox 1/0 have routines that emulate the access.
These routines provide insulation from hardware
implementation details at the cost of a slight perfor­
mance impact. Drivers may be written once and
used on a number of differing systems.

Digital Techn ical Journal Vol. 4 No. 4 Special Issue 1992

Porting Open VMS from VAX to Alpha AXP

Read/Write Ordering An 1/0 device is simply
another processor, and the sharing of data is a
multiprocessing issue. Since the Alpha AXP archi­
tecture does not provide strict read/write ordering,
a number of rules must be followed to prevent
incorrect behavior. One of the easiest changes is to
use the memory barrier instructions to force order­
ing. Driver code was modified to insert memory
barriers where appropriate.

The devices and adapters must also follow these
rules and enforce proper ordering in their interac­
tions with the host. An example is the requirement
that an interrupt also act like a memory barrier in
providing ordering. In addition, the device must
ensure proper ordering for access to shared data
and direct memory access.

Kernel Processes Another important way in
which the Alpha AXP architecture differs from the
VAX architecture is the lack of an interrupt stack.
On VAX systems, the interrupt stack is a separate
stack for system context. With the new Alpha AXP
design, any system code must use the kernel stack
of the current process. Therefore, a process kernel
stack must be large enough for the process and for
any nested system activity. This burden is unreason­
able. A second problem is that the VAX 1/0 sub­
system depends on absolute stack control to
implement threads. As a result, most of the 1/0 code
is in MACR0-32, which is a compiled language on the
OpenVMS AXP system that does not provide abso­
lute stack control.

These facts resulted in the creation of a kernel
threading package for system code at elevated inter­
rupt priority levels. This package, called kernel pro­
cesses, provides a set of routines that support a
private stack for any given thread of execution. The
routines include support for starting, terminating,
suspending, and resuming a thread of execution.

The private stack is managed and preserved
across the suspension with no special measures on
the part of the execution thread. Removing require­
ments for absolute stack control will facilitate the
introduction of high-level languages into the 1/0

system.

Peiformance
As stated earlier, the main purpose of the project
was to deliver the performance advantages of RISC
to OpenVMS applications. We adopted several
methods, including simulation, trace analysis, and a
variety of measurements, to track and improve

117

Alpha AXP Architecture and Systems

operating system and application performance.
This section presents data on the performance of
Open VMS services and on the SPEC Release I bench­
mark suite.5 Note that all Alpha AXP results are
preliminary.

Performance of Open VMS Services
To evaluate the performance of the OpenVMS
system, we used a set of tests that measure the CPU
processing time of a range of OpenVMS services.
These tests are neither exhaustive nor representa­
tive of any particular workload. We use relative CPU
speed (i.e ., VAX CPU time divided by Alpha AXP CPU
time) as a metric to truly compare CPU perfor­
mance. For 1/0-related services, a RAM disk was
used to eliminate 1/0 latencies.

The tests were run on a VAX system and an Alpha
AXP system that are the same except for the CPU.
Table I shows the configuration details of the two
systems. Figure 2 shows the distribution of the rela­
tive CPU speed for the Open VMS services measured.
Most tests ran between 0.9 and 1.7 times faster on
the Alpha AXP system than on the VAX system. Table
2 contains the results for a representative subset of
the measured OpenVMS services.

Application Performance
Applications vary in their use of operating system
services. Most applications spend the majority of

35
33

30 29
28

en 25
f-
en
UJ 21
f- 20 20
u..
0 17 17
a:
~ 15
~ 12
::,
2 10

8 7

5
3

2

o~~__.~~~~~~~~~~~~~~o~~
0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0>2.0

RELATIVE CPU SPEED
Notes:
1. The relative CPU speed equals the CPU lime on a VAX system

divided by the CPU lime on an Alpha AXP system.
2. A relative CPU speed greater than 1.0 implies that the Alpha AXP

system is faster.
3. The total number of tests is 198.

Figure 2 Distribution of Relative CPU Speed
for OpenVMS Services

their time performing application-specific work
and a small fraction of their time using operating
system services. For these applications, perfor­
mance depends mainly on the performance of
hardware, compilers, and run-time libraries. We

Table 1 Configuration Details for OpenVMS Services Test Environment

Model number

Clock rate

Memory size

On-chip cache size

Backup cache size

Translation buffer

Page size

Number of registers

OpenVMS version

Key:
I Instruction
D Data
ITB Instruction translation buffer
OTB Data translation buffer
GPR General-purpose register

VAX System

VAX 7000 Model 61 0

91 MHz

64MB

1 KB virtual I-cache
BKB physical I- and
D-caches

4MB I- and D-caches

96 entries

512 bytes

16 32-bit GPRs

Pre-release V5.5-2

Alpha AXP System

DEC 7000 Model 610

182 MHz

64MB

BKB physical I-cache
8KB physical D-cache

4MB I- and D-caches

12 ITB entries
32 DTB entries

8KB

32 64-bit integer
32 64-bit floating-point

Pre-release V1 .0

I 18 Vol. 4 No. 4 Special Issue 1992 Digital Tecbntcalfournal

Table 2 Relative CPU Speed for a Subset
of OpenVMS System Services
and Primitives

OpenVMS System Service
or Primitive

Memory Management Services
Create virtual address space
Delete virtual address space
Expand address region
Page fault without 1/0

(soft page fault)

Logical Name Services
Translate a logical name

Event Flag Services
Set an event flag
Clear an event flag

Process Control Services
Create a process and

activate an image

File System Services
(File on a RAM Disk)

File open
File close
File create
File delete

Record Management System (RMS)
Services (File on a RAM Disk)

Get record from a sequential file
Put record into a sequential file

Relative
CPU Speed

1.03
1.44
1.58

1.05

1.75

1.45
1.35

1.17

1.34
1.21
1.24
1.31

0.98
0.96

Note that the relative CPU speed equals the CPU time on a VAX
system divided by the CPU time on an Alpha AXP system. A
relative CPU speed greater than 1.0 implies that the Alpha AXP
system is faster.

used the SPEC Release 1 benchmarks as representa­
tive of such applications. Table 3 shows the details
of the VAX and Alpha AXP systems on which the
SPEC Release 1 suite was run, and Table 4 contains
the results. The SPECmark89 comparison shows
that the OpenVMS AXP system outperforms the
Open VMS VAX system by a factor of 3.59.

The performance of OpenVMS services and the
SPECmark results are consistent with other studies
of how operating system primitives and SPECmark
results scale between CISC and RISC.6 Overall, the
results are very encouraging for a first-version
product in which redesigns were purposely limited
to meet an aggressive schedule.

Conclusions
Some OpenVMS VAX features such as symmetric
multiprocessing and VMScluster support were

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

Porting Open VMS from VAX to Alpha AXP

deferred from the first version of the Open VMS AXP
system. Beyond this, we anticipate taking signifi­
cant steps to better exploit the hardware architec­
ture, including evolving to a true 64-bit operating
system in a staged fashion. Also, detailed analysis of
performance results shows the need to alter inter­
nal designs to better match RISC architecture.
Finally, a gradual replacement of VAX MACR0-32
source with a high-level language is essential to sup­
port a 64-bit virtual address space and is an impor­
tant element for increasing performance.

The OpenVMS AXP system clearly demonstrates
the viability of making dramatic changes in the
fundamental assumptions of a mature operat­
ing system while preserving the investment
in software layered on the system. The future
challenge is to continue operating system evolu­
tion in order to provide more capabilities to appli­
cations while maintaining that essential level of
compatibility

Acknowledgments
The work described in this paper was done by
members of the OpenVMS AXP operating system
group. This work would have been impossible with­
out the help of many software and hardware engi­
neering groups at Digital. Thanks to Bradley
Waters, who measured OpenVMS performance, and
to John Shakshober and Sandeep Deshmukh, who
obtained the SPEC Release 1 benchmark results. We
also thank Barbara A. Heath and Kathleen D. Morse
for their comments, which helped in preparing this
paper.

References

1. R. Sites, "Alpha AXP Architecture," Digital Tech­
nical Journal, vol. 4, no. 4 (1992, this issue):
19-34.

2. D. Bhandarkar and D. Clark, "Performance from
Architecture: Comparing a RISC and a CISC with
Similar Hardware Organization," Proceedings of
the Fourth International Conference on Archi­
tecture Support for Programming Languages
and Operating Systems (ASPLOS-IV) (New York,
NY: The Association for Computing Machinery,
1991): 310-319.

3. T. Leonard, ed., VAX Architecture Reference
Manual (Bedford, MA: Digital Press, 1987).

119

Alpha AXP Architecture and Systems

Table 3 Configuration Details for the SPEC Release 1 Benchmark Test Environment

VAX System Alpha AXP System

Hardware

Model number

Clock rate

VAX 7000 Model 610

91 MHz

DEC 7000 Model 610

182 MHz

Backup cache size

Memory size

4MB I- and D-caches

128MB

4MB I- and D-caches

256MB

Software

Operating system and version

Compilers and version

OpenVMS V5.5-2 Field Test

VAXCV3.2

OpenVMS V1 .0

Pre-release C compiler
Pre-release FORTRAN compiler VAX FORTRAN V5.7

with HPO V1 .3
(high-performance option)

Other software KAP V1 .0 for VAX C KAPF/KAPC V1 .49 native
KAP for Alpha AXP systems and FORTRAN

Key:
I Instruction
D Data

Note that DECram, a memory-resident disk device, was used to create and manage memory- resident disks.

Table 4 SPEC Release 1 Benchmark Results

VAX 7000 DEC 7000
SPEC Benchmark Model 610 Model 610 Relative
Name and Number SPECratio SPECratio Performance

001.gcc 34.9 67.5 1.93
008.espresso 28.8 94.7 3.29
013.spice 2g6 30.9 87.7 2.84
015.doduc 42.1 126.3 3.00
020.nasa7 67.2 293.0 4.36
022.li 34.7 100.2 2.89
023.eqntott 38.4 127.6 3.32
030.matrix300 138.8 1219.7 8.79
042.fpppp 48.8 193.8 3.97
047.tomcatv 61.6 276.5 4.49

SPECint89 34.0 95.1 2.80
SPECfp89 57.6 244.2 4.24
SPECmark89 46.6 167.4 3.59

Note that relative performance represents the ratio of DEC 7000 Model 610 performance to VAX 7000 Model 610 performance.

4. Open VMS Calling Standard (Maynard, MA:
Digital Equipment Corporation, October 1992).

S. Spec Newsletter, vol. 4, no. 1 (March 1992).

6. T. Anderson , H. Levy, B. Bershad, and E.
Lazowska, "The Interaction of Architecture and
Operating System Design," Proceedings of the
Fourth International Conference on Architec­
ture Support for Programming Languages and
Op erating Systems (ASPLOS-IV) (New York, NY:
The Association for Computing Machinery,
1991): 108-120.

120

General References

R. Goldenberg and S. Saravanan, VMS for Alpha Plat­
forms Internals and Data Structures, Preliminary
edition of vols. 1 and 2 (Maynard, MA: Digital Press,
1993, forthcoming).

]. Hennessy and D. Patterson, Computer Architec­
ture, A Quantitative Approach (San Mateo, CA:
Morgan Kaufmann Publishers, Inc., 1990).

R. Sites, ed., Alpha Architecture Reference Manual
(Burlington , MA: Digital Press, 1992).

Vol. 4 No. 4 Spedal Issue 1992 Digital Technical Jour11a l

The GEM optimizing
Compiler System

David S. Blickstein
Peter W. Craig

Caroline S. Davidson
R. Neil Faiman,Jr.

Kent D. Glossop
Richard B. Grove

Steven 0. Hobbs
William B. Noyce

The GEM compiler system is the technology Digital is using to build state-of the-art
compiler products for a variety of languages and hardware/software platforms.
Portable, modular software components with carefully specified interfaces simplify
the engineering of diverse compilers. A single optimizer, independent of the lan­
guage and the target platform, transforms the intermediate language generated by
the front end into a semantically equivalent form that executes faster on the target
machine. The GEM system supports a range of languages and bas been successfully
retargeted and rebosted for the Alpha AXP and MIPS architectures and for several
operating environments.

In the past, Digital has made major investments
in optimizing compilers that were specifically
directed at one hardware platform, namely VAX
computers. When Digital began broadening its
hardware offerings to include reduced instruction
set computer (RISC) architectures, it became clear
that new optimization technology was needed, as
well as a new strategy for leveraging investments in
compiler technology across an increasing number
of hardware platforms.

This paper presents a technical description of
the GEM compiler technology that Digital uses to
generate compiler products for a wide range of
hardware and software combinations. We begin
with an explanation of the GEM strategy of leverag­
ing investments by using portable, modular soft­
ware components to build compiler products. The
bulk of the paper describes the GEM optimizer and
code generator technologies, with a focus on how
they address challenges posed by the Alpha AXP
architecture. 1 We then move to a discussion of com­
piler engineering and conclude with an overview
of some planned enhancements to the software.

GEM Compiler Architecture
Because of the many hardware platforms available,
often with multiple operating systems and a variety
of languages offered on those platforms, building a
compiler from scratch for each combination is no
longer feasible. To simplify the engineering of

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

diverse compilers, GEM compiler products share a
basic architecture. The compiler is divided into sev­
eral major components, in effect, the fundamental
building blocks from which a compiler is con­
structed. The interfaces among these components
are carefully specified. The major components of a
GEM compiler are the front end, the optimizer, the
code generator, and the compiler shell. The logical
division of GEM components and the range of GEM
support is shown in Figure 1. Note that the host is
the computer on which the compiler runs, and the
target is the computer on which the generated
object runs.

The front end performs lexical analysis and pars­
ing of the source program. The primary outputs are
intermediate language (IL) graphs and symbol
tables, which are both standardized. In an IL graph,
each node, referred to as a tuple, represents an
operation. Front ends for all source languages
translate to the single standard IL. All language-spe­
cific code is encapsulated in the front end. All
knowledge of the source language is communi­
cated in the IL or through callbacks to the front end.
Knowledge of the target hardware is represented in
tables and in a minimal amount of conditional code.

The optimizer transforms the IL generated by the
front end into a semantically equivalent form that
will execute faster on the target machine. A signifi­
cant technical achievement is that a single opti­
mizer is used for all languages and target platforms.

121

Alpha AXP Architecture and Systems

FRONT END SHELL CODE GENERATOR

HOST TARGET
LANGUAGES OPERATING SYSTEM HOST CPU OPERATING SYSTEM TARGET CPU

Ada Open VMS Alpha AXP Open VMS Alpha AXP
BLISS OSF/1 MIPS OSF/1 MIPS
c ULTRIX VAX ULTRIX Others

C++ Windows NT Windows NT
COBOL
Fortran
Pascal OPTIMIZER
PU1
Opal

Figure I GEM Components and Supported CPUs, Operating Systems, and Languages

The code generator translates the IL into a list of
code cells, each of which represents one machine
instruction for the target hardware. Virtually all the
target machine instruction-specific code is encap­
sulated in the code generator.

The shell is a collection of common compiler
functions such as listing generators, object file
emitters, and command line processors. Basically,
the shell is a portable interface to the external envi­
ronment in which the compiler is used. This inter­
face allows the other components to remain
independent of the operating system.

There are numerous benefits to this modular
approach:

• Adding a new feature to a common component
enhances many products.

• Source language compatibility is ensured among
all compilers that use the same front end.

• Standardized interfaces enable us to plug in a
new front end to build a compiler for a new lan­
guage, or a new shell to allow the compiler to
run on a new host.

• When a new language is added, it can be offered
quickly on many platforms.

• When a new target CPU or operating system is
supported, many languages are immediately
available to that target.

Order of Processing
When compiling a program, the overall order of pro­
cessing must be carefully arranged so that each com­
ponent of the compiler can see a large portion of the
program at one time. When processing one portion

122

of a program, certain information about other rele­
vant parts of the source program can be useful.

Figure 2 illustrates the overall process of compil­
ing a program. Since GEM compilers include inter­
procedural optimizations, as much of the program
as possible should be presented to the optimizer at
the same time. For this reason, GEM compilers
allow the user to process multiple source files in a
single compilation. The front end parses these
source files and constructs the symbol table and a
compact form of IL in memory before invoking the
GEM back end. The portion of the user's program
thus compiled is called a compilation unit.

The GEM back-end interprocedural optimization
phase is the first to operate on the program. This
phase analyzes the routines within a compilation
unit to develop a call graph that shows which
routines might call which other routines.
Interprocedural optimizations are applied to the
routines as a group.

Next, the global optimizer and the code genera­
tor process each routine in a bottom-up order,
resulting in a translation of the program to code
cells that represent operations at machine level.
This bottom-up order is convenient for certain opti­
mizations, as discussed in the Optimization section.
The first action of the global optimizer is to trans­
late the routine's IL from the compact form pro­
vided by the front end to an expanded form used by
the optimizer and the code generator. Since only
one routine at a time is stored in expanded form, a
much larger data structure can be used to store the
results of the optimizer analysis. The expansion
from compact form also expands certain shorthand
forms, which are convenient for a front end, into
explicit operations in the expanded IL, much like a
macro expansion facility in a source language.

Vol. 4 No. 4 5pecial Issue 1992 Digital Technical Journal

SOURCE PROGRAM

• FRONT END
SCANNER
PARSER
SEMANTIC PROCESSING

! SYMBOL TABLE
COMPACT INTERMEDIATE LANGUAGE

INTERPROCEDURAL INLINING
OPTIMIZATION

COMPILATION ORDERING

! SYMBOL TABLE
COMPACT INTERMEDIATE LANGUAGE

GLOBAL
OPTIMIZATION INTERMEDIATE LANGUAGE EXPANSION

FLOW GRAPH REDUCTION
LOOP UNROLLING
COMMON SUBEXPRESSION
CODE MOTION
VALUE AND CONSTANT PROPAGATION
STRENGTH REDUCTION
TEST REPLACEMENT
SPLIT LIFETIME ANALYSIS

! SYMBOL TABLE
EXPANDED INTERMEDIATE LANGUAGE

CODE
GENERATION CODE SELECTION

INTERMEDIATE LANGUAGE SCHEDULING
REGISTER HISTORY
REGISTER ALLOCATION
CODE EMISSION
STORAGE ALLOCATION

! SYMBOL TABLE
CODE CELLS

INSTRUCTION
PEEPHOLING PROCESSING
CODE SCHEDULING
BRANCH/JUMP RESOLUTION

! SYMBOL TABLE
CODE CELLS

OBJECT MODULE
CONSTRUCTION

~
OBJECT MODULE

The GEM Optimizing Compiler System

COMPILER SHELL
AND UTILITIES

FILE 1/0 SUPPORT
MESSAGING
COMPILER DEBUGGING TOOLS
LOCATOR PACKAGE
COMMAND PROCESSING
LISTING GENERATION
MEMORY MANAGEMENT

Figure 2 GEM Compiler Order of Processing

Once all the routines have been processed by
the global optimizer and the code generator, a
complete description of the program is available at
the machine instruction level. Certain machine­
specific optimizations, such as peephole opti-

Digital Tech 11tcal Jour11al Vol. 4 No. 4 Special Issue 1992

mizations and instruction scheduling, are per­
formed on this program description. Finally, the
optimized machine instructions are converted to
the appropriate object language for the target oper­
ating system.

123

Alpha AXP Architecture and Systems

optimization
The GEM compiler system's optimizer is state-of­
the-art and independent of the language and the tar­
get platform. The input to the optimizer is the IL

and symbol table for multiple routines; the output
is the semantically equivalent IL and symbol table,
both modified to run faster on the target platform.

GEM optimizations include interprocedural opti­
mizations, modern optimizations for superscalar
RISC architectures such as the Alpha AXP archi­
tecture, plus a robust implementation of the classi­
cal global optimizations. In addition, GEM's code
generator includes a number of optimization fea­
tures that help it produce extremely high local code
quality.

Design Principles
Certain general design approaches or principles
were applied throughout the optimizer. For
instance, choices had to be made in the design of
the IL; the front end could either provide a higher­
level description of program features or rely on the
back end to derive the higher-level description
from an analysis of a lower-level description. In
cases where accurate, well-defined algorithms for
deriving those higher-level features exist, GEM
chooses to derive the descriptions.

Describing source code loops is a key example of
the implementation of this design principle. Most
source languages have explicit syntax for writing
loops, and the front end could translate these lan­
guages into a higher-level IL that designates those
loops. Instead, GEM uses a lower-level IL with primi­
tives such as conditional branch and label opera­
tors. The advantage of this approach is that GEM
recognizes all loops, even those constructed with
GOTO statements.

A general design approach that emerged from
experience gained during the GEM project is the
use of enabling or expanding transformations to
support fundamental optimizations. Often, repre­
senting operations in the IL in a way that hides cer­
tain implicit operations is a compact and efficient
approach. However at times, making these implicit
operations explicit allows a particular optimization
routine to operate on them. A good solution to this
problem is to initially represent the operations in
the IL in the compact form. Then, before applying
optimizations that could benefit from seeing the
implicit operations, apply expanding transforma­
tions to convert the IL into a longer form in which
all operations are explicit.

124

Out of concern for the time required to compile
large programs, GEM also established the design
principle that the order of complexity as a function
of the number of IL operations should be as close to
linear as possible.

Data Access Model and
Side Effects Intetface
Since GEM compilers translate all source languages
to a common IL and symbol table format, the
semantics of these languages must be specified
precisely. Many optimizations require an exact
understanding of which symbols are being written
or read by operations in the IL, and which opera­
tions might affect the results computed by other
operations.

The GEM team developed a detailed specification
known as the data access model, which defines
those operations that can write to memory and
those that can read from memory. Each of these
memory-accessing operations can explicitly desig­
nate the symbol being accessed when it is known.
The model also requires the front end to specify
when symbols may be aliased with parameters and
when they may be pointer aliased. A pointer­
aliased symbol may be accessed through pointers
or other operations that do not specify the symbol
that they access.

The model can indicate that the pointer-aliased
property is derivable, i.e., a symbol is pointer
aliased only if an operation that stores its address is
present in the IL A special IL operator marks such
operations. When the derivation of this property is
deferred, the optimizer can avoid marking symbols
pointer aliased.

The data access model provides a standard way
for a front end to indicate how IL operations affect
or depend upon symbols. However, some front
ends can provide additional language-specific dis­
crimination of operations that cannot be allowed to
interfere with one another. For example, a strongly
typed language like Pascal may stipulate that an
assignment to a floating-point target must refer to
different storage than an integer read, even when
the assignment target is accessed indirectly through
a pointer.

To represent language-specific rules while adher­
ing to the philosophy that the back end should have
no knowledge of the source language, GEM compil­
ers employ a unique interface with the front end,
called the side effects interface. The front end pro­
vides a set of procedures that GEM can call during

Vol. 4 No. 4 Special Issue 1992 Digital Technical journal

optimization to ask which IL operations have side
effects and which IL operations depend upon those
side effects.

Interprocedural Optimization
GEM's interprocedural optimization phase starts
by walking over the IL for all routines to build
the call graph. The call graph is a directed multi­
graph in which the nodes are routines, and the
edges are calls from one routine to another. The
graph is not a tree because recursion is allowed.
A special virtual routine node represents all
unknown routines that might call or be called by
a routine in this compilation.

GEM walks the graph to determine which local
symbols that are potential targets of up-level access
are actually referenced in a called routine. When
up-level references do occur, GEM can also deter­
mine the most efficient way to pass that context
from the routine that declares the variable to the
routine that references it.

On the same walk, GEM analyzes the use of sym­
bols whose pointer-aliased property is derivable. If
operations that store the address of such a symbol
are present, then the symbol is marked as pointer
aliased. The front end's indication is also retained
so that this analysis can be repeated after address
storing operations are eliminated.

The most significant interprocedural optimiza­
tion that GEM performs is procedure inlining.
lnlining is a well-known method for reducing
procedure call overhead and for increasing the
effectiveness of global optimizations by enlarging
the scope of the operations seen at one time.
lnlining has additional benefits on superscalar
RISC architectures, like the Alpha AXP system,
because the optimization allows the compiler to
schedule the instructions of the two routines
together.

GEM's inliner reviews all calls in the call graph
and uses heuristic algorithms to determine which
calls should be inlined for maximum speed without
unreasonable increases in code size or compilation
time. The heuristics consider the number and kind
of IL operations, the number of symbols referenced,
and the kinds of optimization that would likely be
enabled or disabled by inlining.

When callers pass constants as actual parame­
ters, better optimization is likely to result from
inlining because the corresponding formal parame­
ter will have a known constant value. On the other
hand, when two sections of the same array are

Dtgttal Tecbnical]ournal Vol. 4 No. 4 Special Issue 1992

The GEM Optimizing Compiler System

passed as arguments, and the corresponding for­
mals are described as not aliased with one another,
eliminating the formal parameters through inlining
discards valuable alias information. 2,3

Also, the order in which inlining decisions are
made can be important. In a chain of calls in which
A calls B and B calls C, the call from A to B might be
the most desirable inlining candidate. However, if
the call from B to C is inlined first, the size of B may
increase, making it a less attractive candidate for
inlining into A. Consequently, GEM uses its heuris­
tics to preevaluate all calls and then orders the calls
by desirability. GEM inlines the most desirable can­
didate first, and then reevaluates the caller's prop­
erties, possibly adjusting its position in the ordered
list.

In many C programs, the address of a variable
(especially a struct) is passed to a called routine
that refers to the variable through a pointer for­
mal parameter. After inlining, a symbol's address
is stored in a pointer and indirect references are
made through the pointer. Later, while optimizing
the routine, GEM's value propagation often elimi­
nates the pointer variable. Finally, when one or
more pointer-storing operations have been elimi­
nated, GEM reevaluates the pointer-aliased prop­
erty of derivable local symbols, and the variable that
was once passed by address is no longer pointer
aliased.

After interprocedural analysis, the routines of the
user's program pass through the optimizer and
code generator one at a time. GEM's interprocedural
phase chooses a bottom-up routine order in the call
graph. Except for recursive cycles, this order causes
GEM to generate the code for a called routine before
generating the caller's code. GEM takes advantage of
this property by recording the scratch registers that
were actually used in a called routine and adjusting
register usage at its call sites.4 GEM also determines
whether or not the called routine requires an argu­
ment count.

Intermediate Language Peepholes
GEM uses a peephole optimizer to improve the IL. In
addition to performing the many obvious simplifi­
cations such as multiplying by one or adding zero,
the optimizer performs other transformations.
Integer division by a constant is expanded into a
multiply by a reciprocal operation, which can be
efficiently implemented with a UMULH instruction.
String operations on short fixed-length strings are
converted into integer operations, to benefit from

125

Alpha AXP Architecture and System s

various optimizations performed only on scalars.
Also, integer multiply operations by a constant are
converted into an equivalent set of shift and add or
subtract operations.

IL peepholes sometimes expose new optimiza­
tion opportunities by expanding complex opera­
tions into more explicit components. Also, other
optimizations such as value propagation may create
new opportunities to apply peepholes. To take
advantage of these opportunities, GEM compilers
apply these IL peepholes multiple times during the
optimization of a routine.

Data-flow Analysis
In previous Digital compilers, the use of data-flow
analysis was limited largely to the elimination of
common subexpressions (CSEs), value propaga­
tions, and code motions. We generalized the data­
flow analysis technique to perform a wider variety
of optimizations including field merging, induction
variable detection, dead store elimination, base
binding, and strength reduction.

The process of detecting CSEs is divided into the
tasks of

• Knowing when two expressions would com­
pute the same results given identical inputs.
Within GEM compilers, such expressions are said
to be formally equivalent.

• Verifying that the inputs to formally equivalent
subexpressions are always identical. Such
expressions are said to be value equivalent. This
verification is accomplished by using the side
effects mechanism.

• Determining when an expression dominates a
value equivalent expression.s This information
guarantees that GEM will have computed the
dominating expression whenever the dominated
expression is needed.

Code motions introduce the additional task of
finding those places in the flow graph to which an
expression could be legally moved such that

• The moved expression would be value equiva­
lent to the original expression, and

• The moved expression would execute less often
than the original expression.

The following sections describe how GEM
detects base-binding and strength-reduction candi­
dates by substituting slightly different equivalence
functions.

126

Base Binding
On RISC machines, a variable in memory is refer­
enced by loading the address into a base register and
then using indirect addressing through the base reg­
ister. To reduce the number of address loads, sets of
variables that are closely allocated share base regis­
ters. GEM considers two address expressions for­
mally equivalent if they differ by an amount less than
the range of the hardware instruction offset field.
The CSE detection algorithm determines which
address expressions are formally equivalent and
thus can share a base register, and the code motion
algorithm moves the base register loads out of loops.

Induction Variables
Some of GEM's most valuable optimizations require
the identification of inductive expressions and
induction variables, which is done during data-flow
analysis. An expression in a loop is inductive if its
value on a particular iteration is a linear function of
the trip count. The simplest forms of inductive
expressions are the control variables of counted
loops. Expressions that are linear functions of
induction variables are also inductive.

GEM's implementation of data-flow analysis uses
a technique for determining what variables are
modified between basic blocks in the flow graph.6,7
The variables modified between a basic block and
its dominator are represented as a set called the
/DEF set. The mapping from variables to set ele­
ments is done using the side effects interface.

The algorithm for detecting induction variables
starts by presuming that all variables modified in
the loop are induction variable candidates. It then
disqualifies variables not redefined as a linear func­
tion of themselves with a coefficient equal to one.
The loops that GEM chooses to analyze have a loop
top that dominates all nodes within the loop. The
IDEF set for a loop top is exactly those variables that
are modified within the loop and thus serves as the
starting value for the induction variable candidate
set, again using the side effects mapping of vari­
ables to set elements. During the walk of the loop,
whenever a disqualifying store is encountered, the
contents of the candidate set are updated. Thus, at
the end of the walk, the remaining variables in the
set are known to be true induction variables.

Strength Reduction of Induction Variables
Strength reduction is the process of replacing an
expensive operation with a less expensive opera­
tion. The most basic example of strength reduction
on induction is as follows:

Vol. 4 No. 4 Spedal Issue 1992 Digital Technical Journal

If the original source program was

DO 20 I = 1,10
20 PRINT 1*4

strength reduction would reduce the multiply to an
add as follows:

I' = 4
DO 20 I = 1,10
PRINT I' 20
1'=1'+4

Note that the most common array references are
of the form A(I), which implies a multiplication of
I by the stride of the array. Thus, strength reduction
yields a significant performance improvement in
array-intensive computations.

To detect strength-reduction candidates, we
redefine formal and value equivalence as follows:

• Two inductive expressions are formally equiva­
lent if, given identical inputs, they differ only by
a constant.

• Two formally equivalent inductive expressions
are value equivalent if their inputs are value
equivalent or are direct references to induction
variables.

Thus, strength-reduction candidates appear
loop invariant, and two expressions that are value
equivalent can share a single strength reduction.
Code motion yields the initial value of the strength
reduction.

Split Lifetime Analysis
The GEM optimizer analyzes the usage of certain
variables to determine if the stores and fetches of a
variable can be partitioned, i.e., split, into disjoint
variables or lifetimes.

For example, consider the following program
segment:

1 : v x * y
2: z = z * v

3: v R + s
4: T T + v

The references to V can be divided into two dis­
joint lifetimes V' and V" without changing the
semantics of the program as in:

1 : V'
2: Z

3: V"
4: T

x * y
Z * V'

R + S
T + V"

V' and V'' can be treated as two completely
independent variables. This has several useful
applications.

Digital Tec/JntcalJournal Vol. 4 No. 4 Special Issue 1992

The GEM Optimizing Compiler System

• V' and V' ' can be assigned to different registers,
each with shorter lifetimes than the original vari­
able V The allocator can thus pack registers and
memory more tightly.

• V' and V' ' can be scheduled independently. For
example, the computation of Zin line 2 could be
scheduled after the redefinition ofV in line 3.

• A lifetime that begins with a fetch is an uninitial­
ized variable. GEM issues a diagnostic in such cases.

• Any lifetime with only stores is effectively
"dead," and thus, the stores can be eliminated.

• When a lifetime of an induction variable con­
tains an equal number of stores and fetches, the
variable is used only to compute itself. Thus, the
whole lifetime can be eliminated. This is called
induction variable elimination.

• GEM uses split lifetime information to optimize
the flushing and reloading of register variables
around routine calls.

• GEM uses split lifetime information to determine
what variables are potentially referenced by
exception handlers.

• Lifetimes often need to be extended around loop
tops and loop bottoms. Split lifetime analysis has
full information in many cases in which the code
generator's lifetime computation must make
pessimistic assumptions. Thus, analyzed vari­
ables are allocated more efficiently inside loops.

The technique GEM uses for split lifetime analysis
is based on the VAX Fortran SPLIT phase.8 The tech­
nique includes several extensions in the areas of
induction variables, unselected variables (the origi­
nal algorithm analyzed only a fixed number of vari­
ables), and exception handling.

Code Generation
The GEM code generator matches code templates to
sections of IL trees.9 The code generator has a set of
approximately 600 code patterns and uses dynamic
programming to guide the selection of a least-cost
covering for each statement tree in the IL graph pro­
duced by the global optimizer.

Each code pattern specifies a set of interpretive
code-generation actions to be applied if the tem­
plate is selected. The code-generation actions cre­
ate temporaries, determine their lifetimes, allocate
registers and stack locations, and actually emit
sequences of instructions. These actions are
applied during the following four separate code­
generation passes over the IL graph for a procedure:

127

Alpha AXP Architecture and Systems

• Context. During the context pass, the code gen­
erator creates data structures that describe each
temporary variable. The information computed
includes the lifetime, usage counts, and a weight
scaled by loop depth.

• Register history. During the register history pass,
the code generator does a dominator-order
walk of the flow graph to identify potential
redundant loads of values that could be available
in registers.

• Temp name. During the temp name pass, the
code generator performs register allocation
using the lifetime and weight information com­
puted during the context pass. The code genera­
tor also uses register history to allocate
temporaries that hold the same value in the same
register. If successful, this action eliminates load
and move instructions.

• Code. During the code pass, the code generator
emits instructions and code labels. The resulting
code cells are an internal representation at the
assembly code level. Each code cell contains a
single target machine instruction. The code cells
have specific registers and bound offsets from
base registers. References to labels in the code
stream are in a symbolic form, pending further
optimization and final offset assignment after
instruction peephole optimization and instruc­
tion scheduling.

Template Matching and Result Modes
Code template enumeration and selection occurs
during the context pass. The enumeration phase
scans IL nodes in execution order (bottom-up) and
labels each node with alternative patterns and
costs. When a root node such as a store or branch
tuple is reached, the lowest-cost template for that
node is selected. The selection process is then
applied recursively to the leaves for the entire
tree. 10

The IL tree pattern of a code-generation template
consists of four pieces of information:

• A pattern tree that describes the arrangement of
IL nodes that can be coded by this template. The
interior nodes of the pattern tree are IL opera­
tors; the leaves are either result mode sets or IL
operators with no operands.

• A predicate on the tree nodes of the pattern. The
predicate must be true in order for the pattern to
be applicable.

128

• A result mode that encodes the representation
of a value computed by the template's generated
code.

• An integer that represents the cost of the code
generated by this template.

The result modes are an enumeration of the dif­
ferent ways the compiler can represent a value in
the machine. 11 GEM compilers use the following
result modes:

• Scalar, for a value, negated value, and comple­
mented value

• Boolean, for low-bit, high-bit, and nonzero values

• Flow, for a Boolean represented as control flow

• Result modes for different sizes of integer literals

• Result modes for delayed generation of address­
ing calculations

• Result modes indicating that only a part of a
value has been materialized, i.e., the low byte, or
that the materialized value has used a lower-cost
solution

As templates are matched to portions of the IL
tree, each node is labeled with a vector of possible
solutions. The vector is indexed by result mode,
and the lowest-cost solution for each result mode is
recorded on the forward bottom-up walk. When a
root node is encountered, the lowest-cost template
in its vector of solutions is chosen. This choice then
determines the required result mode and solution
for each leaf of the pattern, recursively.

GEM Code Generator Action Language
The GEM code generator uses and extends methods
developed in the BLISS compilers, the Camegie­
Mellon University Production-Quality Compiler­
Compiler Project, and Digital's VAX Pascal
compiler.12, 13 One key GEM innovation is the use of
a formalized action language to give a unified
description of all actions performed in the four
code-generation passes. The same formal action
descriptions are interpreted by four different inter­
preters. For example, the Allocate_TN action is
used to allocate long-lived temporaries that may be
in a register or in memory: This action creates a data
structure describing the temporary in the context
pass, allocates a register during the temp name
pass, and provides the actual temporary location
for code emission.

Vol. 4 No. 4 Sp eciallssue 1992 Digital Tech11ical]our11al

Tree-matching code generators were originally
developed for complex instruction set computer
(CISC) machines, like the PDP-11 and VAX comput­
ers. The technique is also an effective way to build
a retargetable compiler system for current RISC
architectures. The overall code-generation struc­
ture and many of the actions are target indepen­
dent. Some IL trees use simple, general code
patterns, whereas special cases use more elaborate
patterns and result modes.

Register AJ,/ocation
GEM compilers use a simple linear model to charac­
terize register lifetimes. The context, temp name,
and code passes process the basic blocks and the IL
nodes of each block in execution order. Each code
pattern has a certain number of lifetime ticks to
represent points at which a temporary value is cre­
ated or used. The lifetime of a temporary is then the
interval defined by its starting lifetime tick and end­
ing lifetime tick.

Simple expression temporaries have a linear life­
time contained within a basic block. User variables
and CSEs may require that lifetimes be extended to
cover loop tops and loop bottoms. The optimizer
inserts special begin and end markers to delimit the
precise lifetimes of variables created by the split
lifetime phase.

The code generator uses a number of heuristics
to allocate registers to avoid copying. If a new
lifetime begins at exactly the same tick as another
lifetime ends, this may indicate that they should
share a register. Otherwise, the allocator uses a
round-robin allocation to avoid packing registers
too tightly, which would inhibit scheduling. The
Move_ Value action is used to copy one register to
another and provides a hint that the source and des­
tination should be allocated to the same register.

Actual allocation of registers and stack tempo­
raries occurs in the temp name pass. The allocator
uses a bin-packing technique to allocate each com­
piler and user variable to a register or to memory. 14
The allocator first attempts to assign variables to
registers; lifetimes that conflict cannot be assigned
to the same register. The allocator uses a density
function to control the process. A new candidate
can displace a previous variable that has a conflict­
ing lifetime if this action increases the density mea­
sure. After the allocation of temporaries to registers
is completed, any unallocated or spilled tempo­
raries are allocated to stack locations.

Dtgttal Tecbntcal Journal Vol. 4 No. 4 Spectal Issue 1992

The GEM Optimiz ing Compiler Sy stem

Scheduling
To take advantage of high instruction-issue rates in
Alpha AXP systems, compilers must carefully sched­
ule the object code, interleaving instructions from
several parts of the program being compiled.
Performing instruction scheduling only once after
registers have been allocated places artificial con­
straints on the ordering, as illustrated in the follow­
ing code example:

Ldq
stq
Ldq
stq

rO, a(sp)
rO, b(sp)
rO, c(sp)
rO, d(sp)

; Copy a to b

; Copy c to d

If the load of c and store of d were to use some
other register, the code could be rescheduled to
save three cycles on the DECchip 21064 processor,
as shown in the following code:

Ld q
Ldq
stq
stq

rO, a(sp)
r1, c(sp)
rO, b(sp)
r1, d(sp)

; Copy a to b
; Copy c to d

On the other hand, scheduling only before regis­
ter allocation does not incorporate decisions made
by the code generator. Therefore, instruction
scheduling in GEM compilers occurs twice, before
and after registers are allocated. This practice is
fairly common in contemporary RISC compiler sys­
tems. In most other systems, scheduling is per­
formed only on machine code. GEM has two
different schedulers-one that schedules machine
code and one that schedules IL.

Intermediate Language Scheduling
IL scheduling is performed one basic block at a
time. First, a forward pass over the block gathers
information needed to control the scheduling, and
then a backward pass builds the new ordered list of
tuples. During the forward pass, the compiler
builds dependence edges to represent the neces­
sary ordering relationships between pairs of tuples.
Tuples that would require an excessive number of
edges, such as CALL tuples, are considered markers.
No tuples can be reordered across a marker.

The compiler uses the data access model to
determine whether two memory-access tuples con­
flict. Also, if two tuples have address operands with
the same value (using data-flow information) but
different offset attributes, the tuples must access
different memory. Thus, no dependence edge is
needed, and more rescheduling is possible.

129

Alpha AXP Architecture and Systems

The general code for an expression tuple places
the result into a compiler-generated temporary,
and the general code for a store into a register vari­
able moves the value from a temporary into the
variable. Many GEM code patterns for expression
tuples allow targeting, where the expression is
computed directly into the variable instead of into
a temporary. These code patterns are valid only if
there are no fetches of the variable between the
expression tuple and the store operation. Similarly,
a fetch tuple need not generate any code (called
virtual), if no stores exist between the fetch and its
consumer. For example,

T = A-1; A= B+1; C

might generate the GEM IL

1$: FETCHCA)
2$: SUBC1$, [1])
3$: FETCHCB)
4$: ADDC3$, [1])
5$: STORECA, 4$)
6$: STORECC, 2$)

T. ,

In this example, SUB operates directly on the reg­
ister allocated for A, and ADD targets its result to the
register allocated for A. The obvious dependence
edge is from FETCH(A) to STORE(A, ...). However, IL
scheduling must be careful not to invalidate the
code patterns, which would happen if it moved
FETCH(A) between ADD and STORE(A) or STORE(A)
between FETCH(A) and SUB. To ensure valid code
patterns, the first pass moves the head of depen­
dence edges backward from targeted stores to the
expression tuple that does the targeting. Similarly,
the first pass moves the tail of dependence edges
forward from virtual fetches to their consumers. In
this example, the edge runs from 2$ to 4$ and pre­
vents either of the illegal reorderings.

In addition to building dependence edges, the
first pass computes heuristics for each tuple, to be
used by the second, i.e., scheduling, pass. One
heuristic, the anticipated execution time (AET),

estimates the earliest time at which the tuple could
execute. The AET for tuple T is either the maximum
AET of any tuple that must precede T, or the
maximum AET plus the latency of T's operands. If
some of the tuples that must precede T require the
same hardware resources, the AET may be opti­
mistic. Nevertheless, the AET is a useful guide to the
scheduling pass.

The first pass also computes the minimum
number of registers (separately for integer and
floating-point registers) needed to evaluate the
subexpression rooted at a particular tuple. The

130

value of this heuristic is the Sethi-Ullman number,
i.e., the number of registers needed to evaluate the
subexpressions in the optimal order, keeping their
intermediate values, plus the additional registers to
evaluate the tuple itself. 15 If the second pass sched­
ules tuples with a lower count later in the program,
the register usage will be kept low. Without such a
mechanism, scheduling before register allocation
tends to cause excessive register pressure.

CSEs can be treated similarly to subexpressions in
this computation, but with two complications. The
first pass cannot predict the last use of the CSE and
therefore treats each use as the last one. The sched­
uler ignores any register usage associated with CSEs
that are not both created and used within the block
being scheduled. This action allows the register
allocator to place the CSEs in memory, if the sched­
uled code has better uses for registers.

The second pass of the IL scheduler works back­
ward over the basic block. The scheduler removes
all the tuples up to the last marker and makes avail­
able those that have no dependence edges to tuples
that must follow. The scheduler then selects an
available tuple and places it in the scheduled out­
put, updates the state of each modeled functional
unit, and makes available new tuples whose depen­
dences are now satisfied. When the marker is
scheduled, the scheduler continues to remove the
preceding group of tuples from the block until the
entire block has been scheduled.

The scheduler keeps track of the number of
scheduled cycles and the estimated number of live
registers. When choosing among tuples, the sched­
uler prefers one whose subtree can be evaluated
within the available registers, or, failing that, one
whose subtree can be evaluated with the fewest
registers. When several tuples qualify, the sched­
uler chooses the one with the greatest AET.

Limiting register pressure, while not important
for all programs, is important in blocks with a lot of
available parallelism. With this feature, IL schedul·
ing is a significant contributor to the high perfor­
mance of GEM-compiled programs.

Instruction Peepholing
After code has been generated or code cells have
been created directly, the instruction processing
phases are run as a group. Instruction peepholing
performs a variety of localized transformations, typ­
ically by matching patterns of adjacent instructions
and replacing them with better patterns. From the
perspective of instruction scheduling, the most

Vol. 4 No. 4 Speciallssue 1992 D igital Technical Journal

interesting function of the instruction peepholer
is to perform a set of branch reductions. The peep­
holer also replicates short sequences of code to
facilitate instruction scheduling and to eliminate
the instruction pipeline effects of branches.

A control flow processing phase follows the
instruction peepholing phase. Currently, this phase
determines labels that are backward branch targets
for alignment purposes. This action occurs before
instruction scheduling, because instruction align­
ment is important for the DECchip 21064 Alpha AXP
processor, in which instructions must be aligned
on quadword boundaries to exploit dual instruc­
tion issue. In the near future, the control flow pro­
cessing phase will collect register information for
each basic block to allow additional scheduling
transformations.

Instruction Scheduling
The instruction scheduler is the next phase. At this
point, all register binding and code modifications
other than branch/jump resolution have occurred.
The scheduler does a forward walk over the basic
blocks in each code section to determine the align­
ment of the first instruction in each block.

For each basic block, the instruction scheduler
does two passes that are effectively the inverse of
the passes that the IL scheduler performs, namely a
backward walk to determine instruction-ordering
requirements and path length to the end of the
block, and a forward pass that actually schedules
the code.

The backward ordering pass uses an AET compu­
tation similar to the one used by the IL scheduler.
The instruction scheduler knows the actual instruc­
tions to be scheduled and has a more detailed
machine model. For the DECchip 21064 processor,
for example, the instruction scheduler has detailed
asymmetric bypassing information and information
about multiple issue. For architectures that have
branch delay slots, the AET computation is biased
so that instructions likely to be able to fill branch
delay slots will occur immediately before branch
operations.

The forward scheduling pass does a cycle-by­
cycle model of the machine, including modeling
multiple issue. The reasons for choosing this
approach rather than an approach that just selects
an ordering of the instructions are as follows:

• For machines with significant issue limitations,
e.g., nonpipelined functional units or multiple
issue pairing rules, packing the limiting resource

Digital TecbntcalJournal Vol. 4 No. 4 Spedal Issue 1992

The GEM Optimizing Compiler System

well is often preferable to obtaining a good sched­
ule. A cycle model allows other instructions to
"float" into the no-issue slots, while allowing the
critical resource to be scheduled well.

• Modeling the machine allows easy determination
of where stalls are occurring, which in turn allows
instructions from the current block or from suc­
cessor blocks to be moved into no-issue slots.

• Modeling the machine in a forward direction
captures the fact that processors are typically
"greedy" and issue all the instructions that they
can issue at a given time.

• The cycle model allows a variety of dumps,
which can be useful both to users of the com­
piler system and to developers who are trying to
improve the performance of generated code.

The forward pass does a topological sort of the
instructions. The scheduler moves instructions that
have either a direct dependence or an antidepen­
dence (e.g., register reuse) to a data structure
called the issuing ring for future issue.

The scheduler represents the instructions avail­
able for issuing as a list of data structures known as
heaps, which are priority queues. Each heap on the
list contains instructions with a similar "signature."
For example, a heap might contain all store instruc­
tions. When looking for the next instruction to
issue, the scheduler examines the top instruction in
each heap. Within each heap, instructions are typi­
cally ordered by their AET values, with occasional
small biases for different instruction properties,
such as loads that may have a variable execution
time longer than the projected time.

The heaps are, in turn, ordered in the list accord­
ing to how desirable it is that a particular heap's top
instruction be issued. All nonpipelined instruction
heaps are first on the list, followed by all semi­
pipelined heaps and, last, all fully pipelined ones.
A semipipelined resource may prevent particular
instructions from issuing in certain future cycles
but can issue every cycle. For example, stores on
some machines interact with later loads.

Instructions that use multiple resources are rep­
resented in the heap ordering. For example, float­
ing-point multiplies on the MIPS R3000 machine
use both the multiplier and some of the same
resources as additions. As a result, the heap that
holds multiplies is always kept ahead of the heap
that holds adds. This ordering scheme works well
for both machines with a significant number of
nonpipelined units, such as the MIPS processors,

131

Alpha AXP ArcWtecture and Systems

and machines that have largely pipelined functional
units with only particular combinations of multiple
issue allowed, like the DECchip 21064 processors.

Note that, other than the architecture-specific
computation for AET and per-processor imple­
mentation data tables, the scheduler is completely
target independent. For example, currently, proces­
sor implementation tables exist for the MIPS R3000
and R4000 processors, the DECchip 21064 pro­
cessor, and Alpha AXP processors that are under
development.

Field Merging Example
Generating efficient code for the extraction and
insertion of fields within records is particularly
challenging on RISC architectures, like Alpha AXP,

that provide only 32-bit Oongword) or64-bit (quad­
word) memory operations.

Often, a program will fetch or store several fields
that are contained in the same longword. Without
optimization, each fetch would load the longword
from memory, and each store would both load and
store the longword. However, it is possible to per­
form a collection of field fetches and stores with a
single load and store to memory. As another exam­
ple, two bit tests within the same longword could
be done in parallel as a mask operation.

In the IL generated by the front end, each field
operation is generated as a separate IL operation.
Thus, the real task of optimizing field accesses is to
identify IL operations that can be combined.

In the initial IL, a field fetch or store is repre­
sented as an IL operator. The underlying problem is
that the redundant loads and stores are not visible
in this representation. The first part of the solution
involves expanding the field fetch or store into

1 $: FETCHXCRECORD, [OJ, [1 J)

2$: FETCHXCRECORD, [1J, [1 J)

(a) Pre-field merging IL

1$: FETCHCRECORD)
2$: EXTVC1S, [OJ, [1 J);

3$: FETCHCRECORD)
4$: EXTVC1S, [1], [1 J);

(b) Post-field merging IL

;
;

;
;

;
;

lower-level operators. The IL generated by the front
end for two field extractions as shown in (a) of
Figure 3 is expanded into the IL shown in (b)
of Figure 3. With the loads exposed as fetches, data­
flow analysis is now capable of finding the common
subexpressions of 1 $ and 3 $.

Similarly, each field store expands into a fetch of
the background longword, an insertion of the new
data into the proper position, and a store back.
Given two field stores, value propagation can elimi­
nate the second fetch, and then dead-store elimina­
tion can eliminate the first store.

In some cases, a program operates on the field
and thus eliminates the extract and insert opera­
tions. For example, the following example gener­
ates the machine code shown in Figure 4.

typedef struct node {
char n_kind;
char n_flags;
struct node *xl_car;
struct node *xl_cdr;

} NODE;

#define MARK 1
#define LEFT 2

void demo(ptr)
NODE *ptr;

{

while Cptr) {
if Cptr->n_kind == 0) {

ptr->n_flags I= MARK;
ptr->n_flags &= -LEFT;

}

ptr = ptr->xl_cdr;
}

}

The unoptimized code would contain a load and
an extract for each reference to n_kind or n_flags,
plus an insert and a store for the latter two
references. The optimizer has eliminated two of the

Fetch the #1 Clow-order) bit
from memory
Fetch the #2 bit from memory

Fetch the longword
Extract the #1 from the longword

Fetch the longword
Extract the #2 from the longword

Figure 3 Field Merging Example

132 Vol. 4 No. 4 Spectal/ssue 1992 Digital 'Iecbnlcal]ournal

demo::

L$7:

BEG
NOP

ptr, L$5

RO, (R16)
RO, 255, R1
R1, L$9
256, R17

The GEM Optimizing Compiler System

Load n k ind and n_flags
; Extract n_kind

LDL
AND
BNE
MOV
BIS
MOV
AND
STL

RO, R17, R17;
-513, R1

Set MARK (in place)

R17, R1, R17; Clear LEFT (in place)
R17, (R16) ; Store back

L$9:
LDL
BNE

L$5:
RET

ptr, 8(R16)
ptr, L$7

R26

Figure 4 Machine Code with Field Merging

three loads, two of the three extracts, both inserts,
and one of the two stores.

Branch Optimization Examples
Branch instructions can hurt the performance
of high-performance systems in several ways. In
addition to consuming space and causing time to be
expended while issuing the instruction, branches
can disrupt the hardware pipeline. Also, branches
can inhibit optimizations such as code scheduling.
Therefore, the GEM compiler system uses several
strategies to avoid branches in the IL and generated
code or to eliminate some bad effects of branch
instructions.

Some branches appear as part of a well-defined
pattern that need not inhibit optimizations. GEM

uses special operators for these cases. A simple
example is the MAX function. For Alpha AXP sys­
tems, MAX can be implemented using the CMOVxx

instructions, avoiding branch instructions entirely.
For other architectures, the main benefit is that the
branch does not appear in the IL. A more compli­
cated example involves the so-called "flow­
Boolean" operators. Consider the C code example,

x = (p && *p) ? *y: *z;

which generates the following GEM IL:

1$: FETCH(P)
2$: NONZER0(1$)
3$: ANDSKIP(2$)
4$: FETCH(1 $)
5$: NONZE R0(4$)
6$: LANDC(3 $, 5$)
7$: SELTHEN(6$)
8$: FETCH(Y)
9$: FETCH(8 $)

Digital Technical Journal Vol. 4 No. 4 Spedal Issue 1992

10$: SELELSE(9$)
11$: FETCH(Z)
12$: FETCH(11$)
13$: SELC(7$, 10$, 12$)
14$: STORE(X, 13$)

The ANDSKIP and LANDC tuples implement the
conditional-AND operator. If tuple 2$ is false, tuples
4$ and 5$ are skipped, and the result of the LANDC
is false. Otherwise, the LANDC uses the result of
tuple 5$.

Similarly, the SELTHEN, SELELSE, and SELC tuples
implement the select operator. If tuple 6$ is true,
then tuples 8$ and 9$ compute the result, and
tuples 11 $ and 12$ are skipped. If tuple 6$ is false,
then tuples 8$ and 9$ are skipped, and tuples 11$
and 12$ compute the result.

These operators allow programs to represent
branching code within the standard basic-block
framework but require branches in the generated
code, to avoid undesired side effects of the skipped
tuples. In some cases, though, GEM can determine
that the skipped tuples have no side effects and then
converts the operators to an unconditional form,
allowing the generated code to be free of branches.

GEM performs other transformations on the IL to
eliminate branches and thus enable further opti­
mizations. For example, GEM transforms

if (expr) var= 1; else var= O;

into

var= ((expr) != 0)

Alpha AXP implementations typically include a
branch prediction mechanism. Correctly predicted

133

Alpha AXP Architecture and Systems

branches take several cycles less time than mispre­
dicted branches. The fastest conditional branch is
one that is correctly predicted not to be taken. GEM
uses several strategies to arrange branches for best
performance.

GEM selects an order for the basic blocks of a pro­
gram that may differ from the order in the source
program. For each basic block that ends with an
unconditional branch, GEM places the target block
next, unless that block has already been placed.
Similarly, if a basic block within a loop ends with an
unconditional branch, a target block within that
loop is placed next, if possible. For example,

whi Le (--i > 0) {

}

if Ca[i] != b[i]) return a[iJ-b[iJ;
a[iJ = O;

To eliminate the unconditional branch when the
loop iterates, GEM transforms the pretested loop
into a posttested loop. Since the return statement is
outside the loop, the generated code looks like

if (-- i > 0)
do {

if Ca[iJ != b[iJ) goto Label;
a[iJ = O;

} while (--i > 0);

Label: return a[iJ-b[iJ;

GEM can also unroll loops and thus reduce the
number of times the branch back must be exe­
cuted. More important, GEM often allows opera­
tions from different iterations to be scheduled
together. Unrolling by four transforms the above
loop into a cleanup loop and the main loop into
code that resembles

do {
if Ca[i] != b[i]) goto Label;
a[iJ = O;
if Ca[i-1] != b[i-1]) goto Label;
a[i-1J = O;
if Ca[i-2] != b[i-2]) goto Label;
a[i-2] = O;
if Ca[i-3] != b[i-3]) goto Label;
a[i-3J = O;

} while Ci -= 4);

This code executes four fall-through branches
and one taken branch, whereas the original code
executed four fall-through branches and four taken
branches.

Certain code patterns generate code that is likely
not to be executed. For example, when the com­
piler believes that a 16-bit value in memory is apt to
be naturally aligned, but may be unaligned, it gen­
erates the instructions shown in Figure 5 to load
the value, given the address in rO. The code runs
quickly for the aligned case, because the branch is
correctly predicted to fall through, but gets the cor­
rect value for unaligned data, as well. A similar code
pattern handles stores.

Compiler Engineering
Engineering compilers for a large combination of
languages and platforms required a considerable
number of innovations in the area of project engi­
neering. In this section we describe some of the
project methods and tools GEM uses.

Opal Intermediate Language Compiler
The task of a GEM compiler is to translate a pro­
gram presented by the front end in the form of an
IL graph and symbol table into machine code. In
the early stages of GEM development, no front

3-instruction inline sequence if aligned

20$:

Ldq_u
extwl
blbs

r1, CrO)
r1, rO, r1
rO, 10$

out-of-Li ne sequence to Load and merge

10$: Ldq_u r28, 1Cr0)
ext wh r28, rO, r28
or r1, r28, r1
br r31, 20$

Figure 5 Potentially Unaligned Load Code

134 Vol. 4 No. 4 Special Issue 1992 Dig ital Technical]ourna l

ends existed to generate IL graphs and symbol
tables. To fill this requirement, a syntactic speci­
fication of the IL and symbol table was designed
and an IL assembler called Opal was built to com­
pile this syntax. Opal uses GEM components such
as the shell and thus supports a robust set of fea­
tures including listing generation, object files,
include files, debug support, and language editor
diagnostics.

Even with the availability of front ends, Opal
remains a vital project tool: it allows GEM develop­
ers to exercise new features before front-end sup­
port is available; front-end developers use Opal to
experiment with different IL alternatives; and the
Opal syntax serves as the output format of the IL
dumper.

Attribute and Operator Signature Tables
GEM tables give a complete description of all GEM
data structures, including IL operators and symbol
table nodes. The operator signature table contains
the operator type, result type, number of operands,
and legal operand types for IL operators. The
attribute tables describe each component in a node
including location, abstract GEM data type, legal val­
ues, node type for pointers, and special print for­
mats. When a new attribute is added to the GEM
specification, the attribute is described once in the
tables and automatically the Opal compiler under­
stands the syntax and semantics, the GEM dump
utility is able to dump the attribute, and the GEM
integrity checker is able to verify the structure.

Automatic KFOW Builder
The GEM compiler needs to evaluate constant
expressions at compile time, which is referred to as
constant folding. GEM's intermediate language has
many IL operators and data types. A constant folder
is thus a complicated routine with many cases, and
the compile-time and run-time results must be
identical.

After writing our first , incomplete, handcrafted
constant folder, we searched for a method to auto­
mate the process. No source language supported all
the operators and data types of the GEM IL. The key
insight was that there is one language in which IL
programs can be written precisely and tersely: the
GEM IL itself. Since GEM already embodies knowl­
edge of the code sequences to evaluate every IL
operator, no other encoding is needed.

The automatic KFOLD builder is a specialized
GEM compiler that uses the standard GEM back end

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

The GEM Optimizing Compiler System

but has a front end that compiles only one program.
The KFOLD builder scans the GEM operator signa­
ture table and constructs a procedure that contains
a many-way conditional branch to select a case
based on the IL operator specified in the argument
list . Each case fetches operand values from the
argument list, applies the operator, and returns the
result. Since most GEM IL tuples operate on several
data types, additional subcases may be based on the
operator type or result type. We have already recov­
ered the investment in developing the automatic
KFOLD builder, and it significantly eases the task of
retargeting GEM.

Conclusion
This paper describes the current GEM compiler
system. However, a portable, optimizing compiler
provides many opportunities that we have not yet
exploited. Some enhancements planned for future
versions are:

• Additional IL operators and data types, to sup­
port more languages

• Support for additional architecture and operat­
ing system combinations

• Dependence analysis, to enable some of the
following enhancements

• Loop transformations, to improve the use of the
memory hierarchy

• Software pipelining, to increase parallelism in
vectorizable loops

• Better reordering of memory references during
instruction scheduling

• The scheduling of instructions into different
basic blocks

• The relaxing of the linear restriction on the
lifetime model, i.e ., allowing holes in register
lifetimes

The GEM compiler system has met demanding
technical and time-to-market goals. The system has
been successfully retargeted and rehosted for the
Alpha AXP and MIPS architectures and several oper­
ating environments. GEM supports a wide range of
languages and provides high levels of optimization
for each. The current version of GEM generates effi­
cient code for Alpha AXP systems, and the imple­
mentation is robust and flexible enough to support
future improvements.

135

Alpha AXP Architecture and Systems

Acknowledgments
The authors wish to acknowledge the contribu­
tions of the following individuals to the design and
implementation of the GEM compilers: Ron
Brender, Patsy Griffin, Lucy Hamnett, Brian
Koblenz, Dennis Murphy, Bob Peterson, Paul
Winalski, Stan Whitlock (Fortran), Bevin Brett
(Ada), and Farokh Morshed (C).

References

1. R. Sites, ed., Alpha Architecture Reference
Manual (Burlington, MA: Digital Press, 1992).

2. K. Cooper, M. Hall, and L. Torczon, "The Per­
ils of Interprocedural Knowledge," Rice COMP

TR90-]32 (1990).

3. K. Cooper, M. Hall, and L. Torczon, "Unex­
pected Side Effects of Inline Substitution: A
Case Study," TOP/AS (March 1992): 22-32.

4. F. Chow, "Minimizing Register Usage Penalty
at Procedure Calls," SIGPIAN '88 Conference
on Programming Language Design and
Implementation (June 1988): 85-94.

5. T. Lengauer and R. Tarjan, "A Fast Algorithm
for Finding Dominators in a Flowgraph,"
TOP/AS, vol. 1, no. 1 (July 1979): 121-141.

6.]. Reif, "Symbolic Interpretation in Almost Lin­
ear Time," Conference Records of the Fifth
ACM Symposium on Principles of Program­
ming Languages (1978): 76-83.

7.]. Reif and R. Tarjan, "Symbolic Program Anal­
ysis in Almost-Linear Time," SIAM Journal of
Computing, vol. 11, no. 1 (February 1981):
81-93.

8. K. Harris and S. Hobbs, "VAX Fortran;'
Optimization in Compilers, ed., F. Allen,
B. Rosen, and F. Zadek (New York, NY: ACM
Press, forthcoming).

9. R. Cattell, "Formalization and Automatic
Derivation of Code Generators," Ph.D. thesis,
CMU-CS-78-115, Carnegie-Mellon University,
April 1978.

10. A. Aho and S. Johnson, "Optimal Code Gener­
ation for Expression Trees," Journal of the
ACM, vol. 23, no. 3 (July 1976): 488-501.

11. B. Leverett, "Register Allocation in Optimiz­
ing Compilers," Ph.D. thesis, CMU-CS-81-103,
Carnegie-Mellon University, February 1981.

12. W: Wulf et al., The Design of an Optimizing
Compiler (New York, NY: American Elsevier
Publishing Co., 1975).

13. B. Leverett et al., "An Overview of the Pro­
duction-Quality Compiler-Compiler Project,"
Computer, vol. 13, no. 8 (August 1980): 38-49.

14. R. Johnsson, "An Approach to Global Register
Allocation," Ph.D. thesis, Carnegie-Mellon
University, December 1975.

15. R. Sethi and]. Ullman, "The Generation of
Optimal Code for Arithmetic Expressions,"
Journal of the ACM, vol. 17, no. 4 (October,
1970): 715-728.

General Reference •
P. Anklam et al., Engineering a Compiler (Bedford,
MA: Digital Press, 1982).

136 Vol. 4 No. 4 Spedal Issue 1992 Digital Technical Journal

Binary Translation

Richard L. Sites
Anton Chernoff

Matthew B. Kirk
Maurice P. Marks
Scott G. Robinson

Binary translation is a technique used to change an executable program for one
computer architecture and operating system into an executable program for a dif
Jerent computer architecture and operating system. Two binary translators are
among the migration tools available for Alpha AXP computers: VEST translates
Open VMS VAX binary images to Open VMS AXP images; mx translates ULTRIX MIPS
images to DEC OSF/1 AXP images. In both cases, translated code usually runs on
Alpha AXP computers as fast or Jaster than the original code runs on the original
!rchitecture. In contrast to other migration efforts in the industry, the VAX transla­
tor reproduces subtle CISC behavior on a RISC machine, and both open-ended trans­
lators provide good performance on dynamically modified programs. Alpha AXP
binary translators are important migration tools-hundreds of translated
Open VMS VAX and ULTRIX MIPS images currently run on Alpha AXP systems.

When Digital started to design the Alpha AXP archi­
tecture in the fall of 1988, the Alpha AXP team was
concerned about how to run existing VAX code and
soon-to-exist MIPS code on the new Alpha AXP com­
puters.1·2 To take full advantage of the performance
capability of a new computer architecture, an appli­
cation must be ported by rebuilding, using native
compilers. For a single program written in a stan­
dard programming language, this is a matter of
recompile and run. A complex software application,
however, can be built from hundreds of source
pieces using dozens of tools. A native port of such
an application is possible only when all parts of the
build path are running on the new architecture.

Therefore, devising a way to run an existing (old
architecture) binary version of a complex applica­
tion on a new architecture is an important interim
measure. Such a technique allows a user to get
applications up and running immediately, with
minimal porting effort. Once a user's everyday envi­
ronment is established, applications can be rebuilt
over time, using handwritten native code or par­
tially native and partially old code.

Background
Several techniques are used in the industry to run
the binary code of an old architecture on a new
architecture. Figure 1 shows four common tech­
niques, from slowest to fastest:

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

• Software interpreter (e.g., Insignia Solutions'
SoftPC)

• Microcoded emulator (e.g., PDP-11 compatibility
mode in early VAX computers)

• Binary translator (e.g., Hunter System's XDOS)

• Native compiler

A software interpreter is a program that reads
instructions of the old architecture one at a time,
performing each operation in turn on a soft­
ware-maintained version of the old architecture's
state. Interpreters are not very fast, but they run
on a wide variety of machines and can faithfully

SOFTWARE
INTERPRETER

FASTER

Figure 1 Common Techniques for Running Old
Code on New Computers

137

Alpha AXP Architecture and Systems

reproduce the behavior of self-modifying pro­
grams, programs that branch to data, programs that
branch to a checksum of themselves, etc. Caching
interpreters gain speed by retaining predecoded
forms of previously interpreted instructions.

A microcoded emulator operates similarly to a
software interpreter but usually with some key
hardware assists to decode the old instructions
quickly and to hold hardware state information in
registers of the micromachine. An emulator is typi­
cally faster than an interpreter but can run only on
a specific microcoded new machine. This technique
cannot be used to run existing code on a reduced
instruction set computer (RISC) machine, since RISC
architectures do not have a microcoded hardware
layer underlying the visible machine architecture.

A translated binary program is a sequence of
new-architecture instructions that reproduce the
behavior of an old-architecture program. Typically,
much of the state information of the old machine is
kept in registers in the new machine. Translated
code faithfully reproduces the calling standard,
implicit state, instruction side effects, branching
flow, and other artifacts of the old machine.
Translated programs can be much faster than
interpreters or emulators, but slower than native­
compiled programs.

Translators can be classified as either (1)

bounded translation systems, in which all the
instructions of the old program must exist at trans­
late time and must be found and translated to new
instructions,3,4.5 or (2) open-ended translation sys­
tems, in which code may also be discovered, cre­
ated, or modified at execution time. Bounded
systems usually require manual intervention to find
100 percent of the code; open-ended systems can
be fully automatic.

To run existing VAX and MIPS programs, an open­
ended system is absolutely necessary. For example,
some customer programs write license-check code
(VAX instructions) to memory, and branch to that
code. A bounded system fails on such programs.

A native-compiled program is a sequence of new­
architecture instructions produced by recompiling
the program. Native-compiled programs usually
use newer, faster calling conventions than old pro­
grams. With a well-tuned optimizing compiler,
native-compiled programs can be substantially
faster than any of the other choices.

Most large programs are not self-contained; they
call library routines, windowing services, data­
bases, and toolkits, for example. These programs

138

also directly or indirectly invoke operating system
services. In simple environments with a single dom­
inant library, it can be sufficient to rewrite that
library in native code and to interpret user pro­
grams, particularly user programs that actually
spend most of their time in the library. This strategy
is commonly used to run Windows and Macintosh
programs under the UNIX operating system.

In more robust environments, it is not practical
to rewrite all the shared libraries by hand; collec­
tions of dozens or even hundreds of images (such as
typical VAX ALL-IN-I systems) must be run in the old
environment, with an occasional excursion into the
native operating system. Over time, it is desirable to
rebuild some images using a native compiler while
retaining other images as translated code, and to
achieve interoperability between these old and
new images. The interface between an old environ­
ment and a new one typically consists of "jacket"
routines that receive a call using old conventions
and data structures, reformat the parameters, per­
form a native call using new conventions and data
structures, reformat the result, and return.

The Alpha AXP Migration Tools team considered
running old VAX binary programs on Alpha AXP
computers using a simple software interpreter, but
rejected this method because the performance
would be too slow to be useful. We also rejected
the idea of using some form of microcoded emula­
tor. This technique would compromise the perfor­
mance of a native Alpha AXP implementation, and
VAX compatibility would be nearly impossible to
achieve without microcode, which is inconsistent
with a high-speed RISC design.

We therefore turned to open-ended binary trans­
lation. We were aware of the earlier Hewlett­
Packard binary translator, but its single-image HP
3000 input code looked much simpler to translate
than large collections of hand-coded VAX assembly
language programs.6 One member of the team
(R. Sites) wrote a VAX-to-VAX binary translator in
October 1988 as proof-of-concept. The concept
looked feasible, so we set the following ambitious
product goals:

1. Open-ended (completely automatic) translation
of almost all user-mode applications from the
OpenVMS VAX system to the OpenVMS AXP
system

2. Open-ended translation of almost all user-mode
applications from the ULTRIX system to the DEC
OSF/1 system

Vol. 4 No. 4 Special Issue 1992 Digital Technical journal

3. Run-time pe rformance of translated code on
Alpha AXP compu ters that meets or exceeds the
p erformance of the original code on the original
architecture

4. Optional reproduction of subtle old-architecture
details, at the cost of run-time performance, e .g. ,
complex instruction set computer (CISC)
instruction atom icity for multithreaded applica­
tions and exact ari thmetic traps for sophisti­
cated error handlers

5. If translation is not possible , generation of
explicit messages that give reasons and sp ecify
what source changes are necessary

While we were c reating the VAX translator, we
discovered that the process of bu ilding flow graphs
of the code and tracking data dependencies yielded
information about source code bugs, performance
bottlenecks, and dependencies on features not avail­
able in all Alpha AXP operating systems. This analy­
sis information could be valuable to a source code
maintainer. Thus, we added one more product goal:

6. Optional source analysis information

OLD BINARY
OPTIONAL
INTERFACE

IMAGE DESCRIPTIONS

I
I

TRANSLATOR
(VEST/MX)

I

I

NEW BINARY IMAGE OPTIONAL
• OLD DATA LISTING
• OLD CODE AND ERROR
• NEW CODE MESSAGES

RUN-TIME
SUPPORT
(TIE/MX)

I

I

PROGRAM
LOADER

Binary Translation

To achieve these goals, the Alpha AXP Migration
Tools team created two binary translators: VEST,
which translates OpenVMS VAX binary images to
OpenVMS AXP images, and mx, which translates
ULTRIX MIPS images to DEC OSF/1 AXP images.
However, binary translation is only half the migra­
tion p rocess. As shown in Figure 2, the other half is
to build a run-time environment in which to exe­
cute the translated code. This second half of the
process must bridge any differences between old
and new operating systems, calling standards,
exception handling, etc. For open-ended transla­
tion, this part of the process must also include a
way to run old code that was not d iscovered (or did
not exist) at translate time. The translated image
environment (TIE) and mxr run- time environment
support the VEST and mx translators, respectively,
by reproducing the old operating environments.
Each environment supports open-ended transla­
tion by including a fallback interpreter of old code,
and extensive run-time feedback to avoid using the
interpreter except for dynamically created code.
Our design philosophy is to do everything feasible
to stay out of the interpreter, rather than to increase
the speed of the interpreter. This approach gives

I
I I

OPTIONAL OPTIONAL
INTERFACE FLOW
DESCRIPTION GRAPHS

OTHER OTHER
TRANSLATED NATIVE
IMAGES IMAGES

I I
I

Figure 2 Binary Translation and Execution Process

Digital Tech11ical Journal Vol. 4 No. 4 Special Issue 1992 139

Alpha AXP Archltecture and Systems

better performance over a wider range of programs
than using pure interpreters or bounded transla­
tion systems.

The remainder of this paper discusses the two
binary translator/run-time environment pairs avail­
able for Alpha AXP computers: VEST/TIE and
mx/mxr. To establish a basis for the discussion, the
reader must understand the following terms:
datum, alignment, instruction atomicity, granular­
ity, interlocked update, and word tearing.
Definitions of these terms appear in the References
and Note section.7

VEST: Translating a VAX Image
Translating a VAX image involves two main steps:
analyzing VAX code and generating Alpha AXP code.
The translated images produced are OpenVMS AXP
images and may be run just like native images. 8

Translated images run with the assistance of the
translated image environment, which is discussed
later in this paper. The VEST binary translator is
written in C++ and runs on VAX, MIPS, and Alpha
AXP machines. The TIE is written in the OpenVMS
system programming languages, BLISS and Alpha
assembler.

Analysis
To locate VAX code, VEST starts disassembling code
at known entry points and recursively traces the
program's flow of control. Entry points come from
main and global routines, debug symbol table
entries, and optional information files (including
run-time feedback from the TIE).

As VEST traces the program, it builds a flow graph
that consists of basic blocks (i.e., straight-line code
sequences) annotated with information derived
from parsing instructions. VEST then performs sev­
eral analyses on the flow graph to propagate con­
text information to each basic block and eliminate
unnecessary operations. Context information
includes condition code usage, register contents,
stack depth, and a variety of other information that
allows VEST to generate optimized code.

Analysis is important for achieving good perfor­
mance. For example, no condition codes exist in
the Alpha AXP architecture. Without analysis it
would be necessary to compute condition codes
for each VAX instruction even if the codes were not
used. Furthermore, several forms of analysis were
invented to allow correct translation. For example,
VEST automatically determines if a subroutine does
a normal return.

140

Code analysis can detect many problems, includ­
ing some that indicate latent bugs in the source
image. VEST can detect, for example, uninitialized
variables, improperly formed VAX CASE instruc­
tions, stack depth mismatches along two different
paths to the same code (the program expects data
to be at a certain stack depth), improperly formed
returns from subroutines, and modifications to a
VAX call frame. A latent bug in the source image
should be fixed, since the translated image may
demonstrate incorrect behavior due to that bug.

Analysis also detects the use of unsupported
OpenVMS features including unsupported system
services. The source image must be modified to
eliminate the use of these features.

Some problems reported by VEST result from
code that is hackish in nature. For example, we
found code that expects a call mask at an entry
point to be executed as a no-op instruction so that
the code preceding the subroutine can simply exe­
cute the call mask, rather than go through the over­
head of a VAX jump OMP) instruction. VEST
reproduces the behavior of the VAX program, even
if this behavior is a result of luck.

A VEST-generated flow graph is displayed in
Figure 3. Dashed lines represent code paths fol­
lowed if a conditional branch is taken. Solid lines
indicate fall-through paths. A problem is high­
lighted by a wide, dashed pointer whose bottom
end indicates the basic block in which the problem
was uncovered. Full blocks show the path that
reveals the error; empty blocks show basic blocks
that are not in the error path. In Figure 3, a path
exists by which register 3 (R.3) may be used without
being set if the VAX BNEQ (branch if the register
does not equal zero) instruction in the second basic
block is true the first time through the code
sequence.

Code Generation
The VEST translator generates code by converting
each VAX instruction into zero or more Alpha AXP
instructions. The architecture mapping is straight­
forward because there are more Alpha AXP registers
than VAX registers. The VAX archltecture has only 15
registers, which are used for both floating-point
and integer operations. The Alpha AXP architecture
has separate integer and floating-point registers.
VAX RO through RI4 are mapped to Alpha AXP RO
through R14 for all operations except floating
point. Rl2, R13, and R14 retain their VAX desig­
nations as argument pointer, frame pointer, and

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

, 3070 CE
DHRY~ONE\Prcc.?\504 (CJ

J R3 used
, IVEST-1-NONSTDCALLU, PICKY: Non-standard call uses R3.

mask.-OOlC

\

~~;~STaJ£. \ Pror2 • 5C.; •
\504 OneTofifty • t nt ParIO~
\509 IntLoc • "'IntPairlO ••O;
SUBL2 S" 104, SP •
MOVAB 00002coc, R2 •

~g~i~ ~~~gi:~~4~!Pl, Rl •
00:ll ' BDC: ,LOA Rl6,FFFC tfi4)
OOO!OBEO: , BIC Rl6, IF, Rl6.
00010BE4:.01PULT Rl6,R30,Rl7.
00010BE8:,CMOVNE Rl7,Rl6,R30 .

: ggg:g:~g: :~B~L ~::::tm •
• 00010BF4: .LOA R2,ACOC(Rl5) •
• 00010BF8:. LOL Rl8,0(Rl8) e

ggg:g~~g: :~g~L ~:a~!'.~~151 e
•

- ---- I •
I 3088 -
I OHRYSTONE\Proc2\512 •
I \512 if (CharlGlob •• 'A' I •

I ~~~ ~~~bl;;; •
I • ggg;~g:;)'~-u :i'.';.~)"f I 0001ococ:.EXTBL R20,R2,.19

OOOIOCIO : ,01PEQ R19,R~ ,R24
I • 00010Cl4: .BEQ R24,l~ JO

I I----
1 - --,

I • I
I : I
I • I
I • I
I • I
I .19 ------
1 3)97
I DHRYSTONE\Proc2\518 I i~~ i&

3
(EnumLoc -- Identl)

I BNEQ 00003088
I • 00010C30: .BNE R3, 10C04

~~----~~=.-~~I~~~~~~

I

Figure 3 VEST-generated Flow Graph Showing
Uninitialized Variable

stack pointer, and R15 is used to resolve PC-relative
references. Floating-point operations are mapped
to FO through F14.

The VAX architecture has condition codes that
may be referenced explicitly. In translated images,
condition codes are mapped into R22 and R23.
Similar to the HP 3000 translator, R23 is used as a
fast condition code register for positive/negative/
zero results.6 R22 contains all four condition code
bits and is calculated only when necessary. All

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

Binary Translation

remaining Alpha AXP registers are used as scratch
registers or for Open VMS AXP standard calls.

VEST connects simple branches directly to their
translated targets. VEST performs backward sym­
bolic execution of VAX instructions to resolve as
many computed branch targets as feasible. If more
than one possible computed target exists, a run­
time lookup is done on the VAX target address. If the
lookup fails to find a translated target, a fallback
VAX interpreter is used, as described in the TIE sec­
tion Failure to Find All Code during Translation.
Unlike bounded translation systems, which must
achieve 100 percent resolution of computed tar­
gets, the VEST and mx binary translators require no
manual intervention.

Translated Images
A translated image has the same format as an
OpenVMS AXP image and contains the original
OpenVMS VAX image as well as the Alpha AXP
instructions that were generated for the VAX code.
The run-time VAX interpreter TIE needs the original
VAX instructions as a fallback. (Also, some error
handlers look up the call stack for pointers to spe­
cific VAX instructions.) The addresses of statically
allocated data in the translated image are identical
to their VAX addresses. The image contains a VAX-to­
Alpha AXP address mapping table for use during
lookups and may contain an instruction atomicity
table, described in the VAX Instruction Guarantees
section.

Translated images use the OpenVMS VAX calling
standard. Native images use different conventions,
but translated images interoperate with native or
translated shareable images. Automatic jacketing
services are provided in the TIE to convert calls
using one set of conventions into the other. In
many cases, jacketing services permit substitution
of a native shareable image for a translated share­
able image without modification. However, a jacket
routine is sometimes required. For example, on
OpenVMS AXP systems, the translated FORTRAN
run-time library, FORRTL_TV, invokes the native
Alpha AXP library DEC$FORRTL for 1/0-related sub­
routine calls. DEC$FORRTL has a different interface
than FORRTL has on an OpenVMS VAX system. For
these calls, FORRTL_TV contains handwritten jacket
routines.

Files Used
Translating an image requires only one file-a VAX
executable image. Several optional files make trans­
lation more effective.

141

Alpha AXP Architecture and Systems

I. Image information files (IIFs). VEST automati­
cally creates IIFs to provide information about
shareable image interfaces. The information
includes the addresses of entry points, names of
routines, and resource utilization.

2. Symbol information files (SIFs). VEST automati­
cally generates SIFs to control the global symbol
table in a translated shared library, facilitating
interoperation between translated and native
images.

3. Hand-edited information files (HIFs). The TIE
automatically generates HIFs, which may be
hand-edited to supply information that VEST can­
not deduce. HIFs contain directives to tell VEST
about undetected entry points, to force it to
change specific assumptions about an image dur­
ing translation, and to provide known interface
properties to be propagated into an IIF.

VEST Performance Considerations
In evaluating translated code performance, we rec­
ognized that there was a significant trade-off
between performance and the accuracy of emulat­
ing the VAX architecture. VEST permits users to
select several architectural assumptions and opti­
mizations, including:

• D-float precision. The Alpha AXP architecture
provides hardware support for D-float with only
53-bit mantissas, whereas the VAX architecture
provides 56-bit mantissas. The user may select
translation with either 53-bit hardware support
(faster) or 56-bit software support (slower).

• Alignment. Alpha AXP instructions support only
naturally aligned longword (32-bit) and quad­
word (64-bit) memory operations. Unaligned
memory operations cause alignment faults,
which are handled transparently by software at
significant run-time expense. The user may
direct VEST to assume that data references are
unaligned whenever alignment information is
unavailable.

• Instruction atomicity. Multitasking and multi­
processing programs may depend on instruction
atomicity and memory operation characteristics
similar to those of the VAX architecture. VEST
uses special code sequences to produce exact
VAX memory characteristics. VEST and the TIE
cooperate to ensure VAX instruction atomicity
when instructed to do so. This mechanism is

142

described in detail in the section Special
Considerations for Instruction Atomicity.

Untranslatable Images
Some characteristics make OpenVMS VAX images
untranslatable, including:

• Exception handler issues. Images that depend
on examining the VAX processor status longword
(PSL) during exception handling must be modi­
fied, because the VAX PSL is not available within
exception handlers.

• Direct reference to undocumented system ser­
vices. Some software contains references to
unsupported and undocumented system ser­
vices, such as an internal-to-VMS service, which
parses image symbol tables. VEST highlights
these references.

• Exact VAX memory management requirements.
Images that depend on exact VAX memory man­
agement behavior do not function properly and
must be modified. These images include those
that depend on VAX page size or that expect
certain objects to be mapped to particular
addresses.

• Image format. Programs that use images as data
are not able to read OpenVMS AXP images with­
out modifications, because the image formats
are different.

TIE Design Overview
The run-time translated image environment TIE
assists in executing translated OpenVMS VAX images
under the OpenVMS AXP operating system. Figure 4
and Table 1 show the contents of the TIE.

Problems Solved at Run Time
Complications may occur when translated
OpenVMS VAX images are run under the OpenVMS
AXP operating system. This section discusses the
following related topics: the failure to find all code
during translation, VAX instruction guarantees,
instruction atomicity, memory update, and preserv­
ing VAX exceptions.

Failure to Find All Code during Translation
When the VEST binary translator encounters a
branch or subroutine call to an unknown destina­
tion, VEST generates code to call one of the TIE
lookup routines. The lookup routines map a VAX

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Binary Translation

instructio n address to a translated Alpha AXP code
address. If an address mapping exists, then a trans­
fer to the translated code is performed. Otherwise,
the VAX interpreter executes the destination code.
When the VAX interpreter encounters a flow of con­
trol change, it checks for returns to translated code.

If the target of the flow change is translated code,
the interpreter exits to this code. Otherwise, the
interpreter continues to interp re t the target.

Lookup op erations that t ransfer control to the
interpreter also record the starting VAX code
address in an HIF file. The VAX image can then be
re translated with the HIF information, resulting in
an image that runs faster.

TRANSLATED
MAIN AND NATIVE
SHAREABLE IMAGES
IMAGES

t
OPENVMS AXP

JACKETING EXCEPTION SYSTEM
INTERFACE HANDLING CALLBACKS

+ + +
I I

t t t
JACKETING EXCEPTION SYSTEM

INTERFACE HANDLING SERVICES
EMULATION

~ t '

VAX STATE
MANAGER

VAX _J
INTERPRETER

L COMPLEX
INSTRUCTIONS

Figure 4 VEST Run-time Environment

Table 1 TIE Contents

VAX-to-Alpha AXP Address Mapping
(VAX State Manager)

VAX Inst ruction Atomicity Controller
(VAX State Manager)

VAX Instruction Interpreter

VAX Complex Instructions

OpenVMS VAX Exception Processing

Routines for Differences between OpenVMS
VAX and OpenVMS AXP System Services

TIE

Lookup routines are also used to call native
Alpha AXP (nontranslated) routines. The TIE sup­
plies the required sp ecial autojacketing processing
that allows interop eration between translated and
native routines with no manual intervention. At
load time, each translated image identifies itself to
the TIE and supplies a mapp ing table used by the
lookup routines. The TIE maintains a cache of trans­
lations to speed up the actual lookup processing.

Every translated image contains both the original
VAX code and the corresponding Alpha AXP code.
When a translated image identifies itself, the TIE
marks its original VAX addresses with the page pro­
tection called fault on execute (FOE). An Alpha AXP
processor that attempts to execute an instruction
on one of these pages generates an access violation
fault. This fault is processed by a TIE condition han­
d ler to convert the FOE page protection into an
appropriate destination address lookup operation.
For example, the FOE might occur when a trans­
lated routine returns to its caller. If the caller was
interpreted, then its return address is a VAX code
address instead of a translated VAX (Alpha AXP
code) address. The Alpha AXP processor attemp ts

Used to find computed destinations and other cases
where VESf did not find the original VAX code. Each
translated image has a mapping table included.

Achieves VAX instruction atomicity for asynchronous
events. This allows data sharing between the single
asynchronous execution context (ASf) provided by
OpenVMS and non-ASf level routines.

Executes VAX instructions not found by VESf.

Some VAX instructions do not have code generated in-line
by VESf. Those instructions are processed in the TIE.
Examples are MOVC3 and MOVC5 that move byte strings.
Certain aspects of OpenVMS AXP exception processing
are necessarily different from OpenVMS VAX. For
example, the VAX computers have two scratch registers,
but Alpha AXP computers have 15. Translated condition
handlers are passed the VAX equivalents.

Some operating system interfaces were rearchitected.
The TIE intervenes to make the differences transparent.

Digital Tech11icaljourr1al Vol. 4 No. 4 Special Issue 1992 143

Alpha AXP Architecture and Systems

to execute the VAX code and generates a FOE condi­
tion. The TIE condition handler converts this into a
JMP lookup operation.

VAX Instruction Guarantees Instruction guaran­
tees are characteristics of a computer architecture
that are inherent to instructions executed on that
architecture. For example, on a VAX computer, if ·
instruction 1 writes data to memory and then
instruction 2 writes data to memory, a second pro­
cessor must not see the write from instruction 2
before the write from instruction 1. This property
is called strict read-write ordering.

The VEST/TIE pair can provide the illusion that a
single CISC instruction is executed in its entirety,
even though the underlying translation is a series
of RISC instructions. VEST/TIE can also provide the
illusion of two processors updating adjacent mem­
ory bytes without interference, even though the

Table 2 Single Processor Guarantees

underlying RISC instructions manipulate four or
eight bytes at a time. Finally, VESli'TIE can provide
exact memory read-write ordering and arithmetic
exceptions, e.g., overflow. All these provisions are
optional and require extra execution time.

Tables 2 and 3 show the visibility differences
between various guarantees on VAX and Alpha AXP

systems as well as for translated VAX programs.

Special Considerations for Instruction Atomicity
The VAX architecture requires that interrupted
instructions complete or appear never to have
started. Since translation is a process of converting
one VAX instruction to potentially many Alpha AXP
instructions, run-time processing must achieve this
guarantee of instruction atomicity. Hence, a VAX

instruction atomicity controller (IAC) was created
to manipulate Alpha AXP state to an equivalent
VAX state. When a translated asynchronous event

Single Processor Guarantees Characterized by What an Observer Sees
on the Same Processor That Executes the Data Change

Topic

Instruction
Atomicity

VAX

An entire
VAX instruction

Table 3 Multiple Processor Guarantees

Translated VAX

An entire translated
VAX instruction with
/PRESERVE=INSTRUCTION
_ATOMICITY and TIE's
instruction atomicity
controller, else a single
Alpha AXP instruction

Native Alpha AXP

A single Alpha AXP
instruction

Multiple Processor Guarantees Characterized by What an Observer
on a Different Processor Sees versus the One Executing the Data Change

Topic VAX Translated VAX Native Alpha AXP

Byte Granularity Yes, hardware Yes, with Yes, via LDx_L,
ensures this /PRESERVE=MEMORY merge, STx_C

ATOMICITY - sequence

Interlocked Update Yes, for aligned Yes, for aligned datum Yes, via LDx_L,
datum using interlock using VAX interlock modify, STx_C
instructions instructions sequence

Word Tearing Aligned longword Aligned longword or Aligned longword or
writes change all quadword writes quadword writes
bytes at once change all bytes change all bytes

at once at once
Other writes are
allowed to change
one byte at a time

144 Vol. 4 No. 4 Spedal Issue 1992 Digital Technical Journal

processing routine is called, the IAC is invoked. The
IAC examines the Alpha AXP instruction stream and
either backs up the interrupted program counter to
restart at the equivalent VAX instruction boundary
or executes the remaining instructions to the next
boundary. Many VAX programs do not require this
guarantee to operate correctly, so VEST emits code
that is VAX instruction atomic only if the qualifier
/PRESERVE=INSTRUCTION_ATOMICITY is specified
when translating an image.

VEST-generated code consists of four sections
that are detected by the IAC. These sections have
the following functions:

• Get operands to temporary registers

• Operate on these temporary registers

• Atomically update VAX results that could gener­
ate side effects (i.e., an exception or interlocked
access)

• Perform any updates that cannot generate side
effects (e.g., register updates)

The VAX interpreter achieves VAX instruction
atomicity by using the atomic move, register to
memory (AMOVRM) instruction. The AMOVRM
instruction is implemented in privileged archi­
tecture library (PAL) subroutines and updates a
contiguous region of memory containing VAX
state without being interrupted. At the begin­
ning of each interpreted VAX instruction, a read and
set flag (RS) instruction sets a flag that is cleared
when an interrupt occurs on the processor.
AMOVRM tests the flag, and if set, performs the
update and returns a success indication. If the flag
is clear, the AMOVRM instruction indicates failure,
and the interpreter reprocesses the interrupted
instruction.

Issues with Changing Memory VAX instruction
atomicity ensures that an arithmetic instruction
does not have any partially updated memory loca­
tions, as viewed from the processor on which that
instruction is executed. In a multiprocessing envi­
ronment, inspection from another processor could
result in a perception of partial results.

Since an Alpha AXP processor accesses mem­
ory only in aligned longwords or quadwords, it
is therefore not byte granular. To achieve byte
granularity, VEST generates a load-locked/store­
conditional code sequence, which ensures that a
memory location is updated as if it were byte granu­
lar. This sequence is also used to ensure interlocked

Digita l Tee/mica/ Jourual Vol. 4 No. 4 Special Issue 1992

Binary Translation

access to shared memory. Longword-size updates
to aligned locations are performed using nor­
mal load/store instructions to ensure longword
granularity.

Many multiprocessing VAX programs depend
on byte granularity for memory update. VEST
generates byte-granular code if the condition
/PRESERVE=MEMORY _ATOMICITY is specified when
translating an image. In addition, VEST generates
strict read-write ordering code if the qualifier
/PRESERVE=READ_ WRITE_ORDERING is specified
when translating an image.

Preserving VAX Exceptions Alpha AXP instruc­
tions do not have the same exception characteris­
tics as VAX instructions. For instance, an arithmetic
fault is imprecise, i.e., not synchronous with the
instruction that caused it. The Alpha AXP hardware
generates an arithmetic fault that gets mapped
into an OpenVMS AXP high-performance arith­
metic (HPARITH) exception. To retain compati­
bility with VAX condition handlers, the TIE maps
HPARITH into a corresponding VAX exception when
calling a translated condition handler. Most VAX
languages do not require precise exceptions.
For those that do, like BASIC, VEST generates
the necessary trap barrier (TRAPB) instructions
if /PRESERVE=FLOATING_EXCEPTIONS is specified
when translating an image.

Open VMS AXP and
OpenVMS VAX Differences
Functional Differences Most OpenVMS AXP
system services are identical to their OpenVMS VAX
counterparts. Services that depend on a VAX-spe­
cific mechanism are changed for the Alpha AXP
architecture. The TIE intervenes in such system ser­
vices to ensure the translated code sees the old
interface.

For example, the declare change mode handler
($DCLCMH) system service establishes a handler for
VAX change mode to user (CHMU) instructions. The
handler is invoked as if it were an interrupt service
routine required to use the VAX return from inter­
rupt or exception (REI) instruction to return to the
invoker's context. On OpenVMS AXP systems, the
handler is called as a normal procedure. To ensure
compatibility, the TIE inserts its own handler when
calling OpenVMS AXP $DCLCMH. When a CHMU is
invoked on Alpha AXP computers, the TIE handler
calls the handler of the translated image, using the
same VAX-specific mechanisms that the handler
expects.

145

Alpha AXP Architecture and Systems

Exception Handling OpenVMS AXP exception
processing is almost identical to that performed in
the OpenVMS VAX system. The major difference is
that the VAX mechanism array needs to hold the
value of only two temporary registers, RO and RI,
whereas the Alpha AXP mechanism array needs to
hold the value of 15 temporary registers, RO, RI, and
R16 through R28.

Complex Instructions Translating some VAX
instructions would require many Alpha AXP
instructions. Instead, VEST generates code that calls
a TIE subroutine. Subroutines are implemented in
two ways: (1) handwritten native emulation rou­
tines, e .g., MOVC5, and (2) VEST-translated VAX emu­
lation routines, e.g., POLYH.

Together, VEST and TIE can translate and run most
existing user-mode VAX binary images. As shown in
Table 4, performance of translated VAX programs
slightly exceeds the original goal. Performance
depends heavily on the frequency of use of VAX fea­
tures that are not present in Alpha AXP machines.

ULTRIX MIPS Translation
mx is the translator that converts ULTRIX MIPS pro­
grams to DEC OSF/1 AXP programs. The mx project

started after VEST was functional, and we took
advantage of the VEST common code base for much
of the analysis and Alpha AXP code assembly phases
of the translator. In fact, about half of the code in
mx is compiled from the same source files as those
used for VEST, with some architectural specifics
supplied by differing include files. The code-shar­
ing aspects of C++ have proven quite valuable in
this regard.

mxr is the run-time support system for translated
programs. It provides services similar to TIE, emu­
lating the ULTRIX MIPS environment on a DEC OSF/1
AXP system. mxr is written in C++, C, and Alpha
assembler.

Challenges
Creating a translator for the MIPS R2000/R3000
architecture presented us with a host of new oppor­
tunities, along with some significant challenges.
The basic structure of the mx translator is much
simpler than that of VEST. Both the source and
the target architectures are RISC machines; there­
fore, the two instruction sets have a considerable
similarity. Many instructions translate one for one.
The MIPS architecture has very few instruction side
effects or subtle architectural details, although

Table 4 Translated VAX Performance, Normalized to Native-compiled OpenVMS AXP Code

VAX Time
on VAX 6610

Program (83.3 MHz)

SPECmark89

gee 1.9
expresso 3.1
spice2g6 2.8
doduc 2.9
nasa7 4.4
Ii 2.7
eqntott 3.3
matrix300 8.8
fpppp 3.8
tomcatv 5.3

Geometric Mean 3.8
(without gee)

Notes:

VEST
Translated Time
on DEC 7000 AXP
(167 MHz)*

_t

2.7
1.8
3.0
6.2
4.2
2.2
4.2
2.7
2.9

3.1

Native Time
on DEC 7000 AXP
(167 MHz)

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1.0

The larger the number, the slower the performance. These performance numbers were measured on derated field test hardware and
software at various times during 1992; production results will vary somewhat. The SPEC benchmarks are written in FORTRAN and C;
no conclusions should be drawn about other classes of programs written in other languages.

'The DEC 7000 system was running at a derated speed compared to production DEC 7000 systems.

tTiming information for this run is not available.

146 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

those that are present are particularly tricky.
Furthermore, the format of an executable program
under the ULTRIX system collects all code in a single
contiguous segment and makes it easy for mx to
reliably find close to 100 percent of the code in the
MIPS application. The system interfaces to the
ULTRIX and DEC OSF/1 systems are similar enough
that most ULTRIX system calls have functionally
identical counterparts under the DEC OSF/1 system.

The challenges in mx stem from the fact that the
source architecture is a RISC machine. For example,
DEC OSF/1 AXP is a 64-bit computing environment,
i.e., all pointers used to communicate with the
operating system are 64 bits wide. This environ­
ment does not present a problem when the pointer
is passed in a register. However, when a pointer (or
a long data item, such as a file size) is passed in
memory, it must be converted between the 32-bit
representation, used by the ULTRIX system, and the
64-bit AXP representation, even when the seman­
tics of the operating system call are the same on
both systems.

A significant challenge is the fact that our users'
expectations for performance of translated pro­
grams are much higher than for VEST. Reasoning
that the source and target machines are similar,
users also expect mx to achieve a translated pro­
gram performance better than that of the source
program, since Alpha AXP processors are faster.
Thus, as our performance goal, we set out to pro­
duce a translated program that runs at about the
same speed as the original program would run on a
MIPS R4000 machine with a 100-megahertz (MHz)
internal clock rate.

Mapping the Architectures
At first glance, it appears that we could simply
assign each MIPS register to a corresponding Alpha
AXP register, because each machine has 32 general­
purpose registers. The translated code would then
have two scratch registers, since the MIPS architec­
ture does not allow user-level programs to use reg­
isters KO and K 1, which are reserved for the
operating system kernel.

Unfortunately, translation requires more than
two scratch registers. The Alpha AXP architecture
does not have byte or halfword (16-bit) loads or
stores, and the code sequences for perform­
ing these operations require four or five scratch
registers. Furthermore, mx requires a base register
to locate mxr without having to load a 64-bit
address constant at each call. Finally, the MIPS

Digital Technical Journal Vol. 4 No. 4 Spedal Issue 1992

Binary Translation

architecture has more than 32 registers, including
the HI and LO registers used by the multiply and
divide instructions, and a floating-point condition
register, whose layout and contents do not corre­
spond to the Alpha AXP floating-point condition
register.

In mx, we assign registers using standard com­
piler techniques. To assign registers to 33 MIPS
resources (the 32 general registers plus one 64-bit
register to hold both HI and LO), certain registers
are permanently mapped, and other MIPS registers
are kept in either AXP registers or memory. The
MIPS argument-passing registers AO through A3 are
permanently assigned to Alpha AXP registers R16
through R19, which are the argument registers in
the DEC OSF/1 AXP calling standard. This correspon­
dence simplifies the work needed when mxr must
take arguments for an ULTRIX system call and pass
them to a DEC OSF/1 system call. Similarly, the argu­
ment return registers VO and VI are mapped to the
Alpha AXP argument return registers RO and R 1. The
return address registers and stack pointer registers
of the two machines are also mapped. MIPS RO is
mapped to Alpha AXP R31, where both registers
contain the same hard-wired zero value. We reserve
Alpha AXP registers R22 through R24 as scratch reg­
isters and also use them when interfacing to mxr.
We reserve Alpha AXP R14 as a pointer to an mxr
communication area. Finally, we reserve three
more registers as scratch registers for use by the
code generator.

The remaining 16 Alpha AXP registers are avail­
able to be assigned to the remaining 23 MIPS
resources. After the code is analyzed and we have
register usage information, the 16 most frequently
used MIPS registers get mapped to the remaining 16
Alpha AXP registers, and the remaining registers are
assigned to memory slots in the mxr communica­
tion area. When a MIPS basic block uses one of the
slotted registers, mx assigns it to one of the scratch
registers. If the first reference reads the old con­
tents of the register, mx generates a load instruc­
tion from the communications area. If the value of
the MIPS resource changes in the basic block, the
scratch register is stored in the communication
area before the end of the block. As in most compil­
ers, if we run out of registers, a spill algorithm
chooses a value to save in the communication area
and frees up a register.

Alpha AXP integer registers are 64 bits wide,
whereas MIPS registers are only 32 bits wide. We
chose to keep all 32-bit values in Alpha AXP integer

147

Alpha AXP Architecture and Systems

registers as sign-extended values, with the high 32
bits equal to bit 31. This approach occasionally
requires mx to generate additional code to create
canonical 32-bit integer results, but the 64-bit com­
pare operations do not need to change the values
that they are comparing.

The floating-point architecture is more complex.
Each of the 32 MIPS floating-point registers is 32 bits
wide. Only the even registers are used for single
precision, and a double-precision number is kept
in an even-odd register pair. We map each pair of
MIPS floating-point registers onto a single 64-bit
Alpha AXP floating-point register. Also, one Alpha
AXP floating-point register represents the condition
code bit of the MIPS floating-point control register.
Thus, the mx code generator can use 14 scratch
registers. mx goes to considerable effort to find
paired loads and stores in the MIPS code stream, and
to merge them into one Alpha AXP floating-point
operation.

MIPS single-precision operations cause problems
with floating-point correspondence. Since on MIPS
machines, the single-precision number is kept in
only the even register of the register pair, the even
and odd registers in a pair are independent when
single-precision (or integer) operations are done in
the floating-point unit. On Alpha AXP machines,
computation must be done on a value extended to
double format in the whole 64-bit register. We
defined two forms for values in Alpha AXP floating­
point registers: computational form, in which com­
putation is done, and canonical form, which
mimics the MIPS even and odd registers. If a MIPS
program loads an even register and uses this regis­
ter as a single-precision value, mx loads the value
from memory to be used computationally. If a MIPS
program loads only an even register but does not
use this register in the basic block, mx puts the 32-
bit value into half of the Alpha AXP floating-point
register. This permits correct behavior in the patho­
logical case where half of a floating-point number is
loaded in one place, and the other half is loaded in
some other basic block. If a register is used as a sin­
gle-precision number in a basic block without first
being loaded, the code generator inserts code to
convert it from canonical to computational float­
ing-point form. If a single-precision value has been
computed in a block and is live at the end of the
block, it is converted to canonical form.

mx inserts a register mapping table into the
translated program that indicates which MIPS
resources are statically mapped to which Alpha

148

AXP registers, and which MIPS resources are nor­
mally kept in memory. This table allows mxr to find
the MIPS resources at run time.

Finding Code
As with the VEST translator, mx finds code by
starting at entry points and recursively tracing
down the flow of control. mx finds entry points
using the executable file header, the symbol table
(if present), and feedback from mxr (if present).
Finally, mx performs a linear scan of the entire
text section for unexamined words. mx analyzes
any data that looks like plausible code but does not
connect this data into the main flow graph.
Plausible code consists of a series of valid MIPS
instructions terminated by an unconditional trans­
fer of control.

While finding code and connecting the basic
blocks into a flow graph, mx looks for the code
sequence that indicates a switch statement, i.e., a
multi-way branch, usually through an element of a
table. mx finds the branch table and connects each
of the possible targets as successors of the branch.

Code Analysis
Our static analysis of hundreds of MIPS programs
indicates that only 10 instructions account for
about 85 percent of all code. These instructions are
LW, ADDIU, SW, NOP, ADDU, BEQ, JAL, BNE, LUI, and
SLL. The corresponding sequences of Alpha AXP
code range from zero operation codes, or opcodes,
(for NOP, since the Alpha AXP architecture does not
require NOPs anywhere in the code stream) to two
opcodes (for Sil).

Code analysis for source programs is much more
important in mx than in VEST, because the coding
idioms for many common operations differ
between the Alpha AXP and MIPS processors. The
simple technique of mapping each MIPS instruction
to a sequence of one or more Alpha AXP instruc­
tions loses much of the context information in the
original program.

For example, the idiom used to load a 32-bit
constant into a register on MIPS machines is to gen­
erate a load upper immediate (LUI) opcode, placing
a 16-bit constant in the high-order 16 bits of a
register. This operation is followed by an OR imme­
diate (ORI) opcode, logically ORing a 16-bit
zero-extended value into the register. The LUI
corresponds exactly to the Alpha AXP load address
high (LDAH) opcode. However, the Alpha AXP

Vol. 4 No. 4 Special Issue 1992 Dtgttal Technical Journal

architecture has no way of directly ORing a 16-bit
value into a register and cannot even load a zero­
extended 16-bit constant into a register. When the
high-order bit of the 16-bit constant is 1, the short­
est translation for the ORI is three instructions. The
mx translator scans the code looking for such
idioms, and generates the optimal two-instruction
sequence of Alpha AXP code that performs the 32-
bit load. No opcode exists that corresponds to the
ORI, but the results in the registers are correct.

When we started writing the mx translator,
we listed a number of code possibilities that we
thought we would never see. In retrospect, this was
a misguided assumption. For example, we have
seen programs that branch into the delay slot of
other instructions, requiring us to indicate that the
delay slot instruction is a member of two different
basic blocks-the block it ends, and the one it
starts. We have observed programs that put soft­
ware breakpoint (BREAK) instructions in the branch
delay slot, and thus BREAK ends a basic block with­
out being the last instruction. Some compilers
schedule code so that half of a floating-point regis­
ter is stored and then reused before the other half is
stored. The general principle that we intuit from
these observations is "if a code sequence is not
expressly prohibited by the architecture, some pro­
gram somewhere will use it."

Code Generation
After the program is parsed and analyzed and the
flow graph is built, the code generator is called. It
builds the register mapping table and then, in turn,
processes each basic block, generating Alpha AXP
code that performs the same functions as the MIPS
code.

At each subroutine entry, mx scans the code
stream with a pattern-matching algorithm to see if
the code corresponds to any of a number of stan­
dard MIPS library routines, such as strcpy. (Note that
the ULTRIX operating system has no shared
libraries, so library routines are bound into each
binary image.) If a correspondence exists, the
entire subroutine is recursively deleted from the
flow graph and replaced with a canned routine to
perform the subroutine's work on Alpha AXP pro­
cessors. This technique contributes significantly to
the performance of translated programs.

For each remaining basic block, the instructions
are converted to a linked list of intermediate
opcodes. At first, each opcode corresponds exactly
to a MIPS opcode. The list is then scanned by an

Digital Technical Journal Vol. 4 No. 4 Speciallssue 1992

Binary Translation

optimization phase, which looks for MIPS coding
idioms and replaces them with abstract machine
instructions that better reflect the idiom. For exam­
ple, mx changes loads of immediate values to a non­
MIPS hardware load immediate (LI) instruction; shift
and add sequences to abstract operations that
reflect the Alpha AXP scaled add and subtract
sequences; and sequences that change the floating­
point rounding mode (used to truncate a floating­
point number to an integer) to a single opcode that
represents the Alpha AXP convert operation with
the chopped mode (IC) modifier.

MIPS code contains a number of common code
sequences that cross basic block boundaries,
but which can be compressed into a single basic
block in Alpha AXP code. Examples of these are
the min and max functions, which map neatly
onto a single conditional move (CMOVxx) instruc­
tion in Alpha AXP code. The code generator looks
for these sequences, merges the basic blocks,
and creates an extended basic block, which
includes pseudo-opcodes that indicate the MIPS
code idiom.

After the optimizer completes the list of instruc­
tions, it translates each abstract opcode to zero or
more Alpha AXP opcodes, again building a linked
list of instructions. This process may permit further
improvements, so the optimizer makes a second
pass over the Alpha AXP code.

When processing a basic block, the code genera­
tor assumes that it has an unlimited number of tem­
porary resources. Since this is not actually true, the
code generator then calls a register assigner to allo­
cate the real Alpha AXP temporary resources to the
intermediate temporary registers. The register
assigner will load and spill MIPS resources and gen­
erated temporary registers as needed.

Finally, the list of Alpha AXP instructions is assem­
bled into a binary stream, and the instruction
scheduler rearranges them to remove resource
latencies and use the chip's multiple issue capability.

Image Formats
The file format for input is the standard ULTRIX
extended common object file format (COFF). In
most ULTRIX MIPS programs, the text section starts
at 00400000 (hexadecimal) and the data at
10000000 (hexadecimal). In virtually all programs,
a large gap exists between the virtual address for
the end of text and the start of the data section.
When mx creates the output image, it places the
generated Alpha AXP code after the MIPS code and

149

Alpha AXP Archltecture and Systems

before the MIPS data. This allows the program to
have one large text section. The Alpha AXP code
begins at an Alpha AXP page boundary, so that we
can set the memory protection on the MIPS code
separately from the Alpha AXP code.

The translated image is not in DEC OSF/1 AXP exe­
cutable format. Instead, it looks like a MIPS COFF
file, but with the first few bytes changed to the
string ··=!/usr/bin/mxr" .

Executing a Translated Program
When a translated image is run on DEC OSF/1 AXP,

its modified header invokes mxr first. mxr uses the
memory map (mmap) system call to load the trans­
lated program at the same virtual address that it
would have had under the ULTRJX operating
system. mxr resets the protection of the MIPS code
to read/no-write/no-execute, the Alpha AXP code
to read/no-write/execute, and the data to read/
write/no-execute.

mxr allocates a communication area and ini­
tializes Alpha AXP R14 to point to this area. The
communication area contains save areas for
MIPS resources, initialized pointers to mxr ser­
vice routines, and other scratch space. mxr then
constructs new command argument (argv) and
environment vectors as 32-bit wide pointers (as the
MIPS program expects), arranges to intercept cer­
tain signals from the DEC OSF/1 AXP system, and
transfers control to the translated start address of
the program.

When a system signal is delivered to the program,
control goes to the signal intercept code in mxr.
This code transforms the signal context structure
from the DEC OSF/1 AXP system and constructs an
ULTRJX MIPS style context, which it then passes to
the translated signal handler.

Certain signals are processed specially. For
instance, a program that attempts to transfer con­
trol to a location containing MIPS code rather than
translated code gets a segmentation violation, since
the MIPS code is not executable. This situation
can occur if a routine modifies its return address
to be a MIPS address constant. mxr will examine
the target address and, if it corresponds to the start
of a pretranslated MIPS basic block, divert the flow
of control to the translated code for that block.
If not, mxr enters the MIPS interpreter. The
interpreter proceeds to emulate the MIPS code
until a translated point is reached. mxr then
resynchron izes its machine state and reenters the
translated code.

150

Translation Goals and Classes
of Programs Not Supported
Our goal was to translate most user-mode MIPS pro­
grams compiled for a MIPS R2000 or R3000 machine
running ULTRJX Release 4.0 (or later) to run identi­
cally on the DEC OSF/1 AXP system with acceptable
performance. As shown in Table 5, performance of
translated MIPS programs meets or exceeds the
original goal.

Table 5 Translated MIPS
Relative Performance

MIPS Time on Translated Time
DECstation on DEC 3000
5000 Model 240 AXP Model 500

Program (40 MHz) (150 MHz)

SPECint92

espresso
Ii
eqntott
compress
SC
gee

Geometric Mean
(without sc)

SPECfp92

spice2g6
doduc
mdljdp2
wave5
tomcatv
ora
alvinn
ear
mdljsp2
swm256
su2cor
hydro2d
nasa7
fpppp

Geometric Mean
(without
spice2g6)

Notes:

2.4 1.1 (1.0)*
1.6 1.2 (1.0)
1.6 2.1 (1.0)
2.7 1.0 (1.0)

_t

2.1 1.2 (1.0)

2.0 1.3 (1.0)

1.7 1.0
2.7 1.0
1.1 1.0
3.0 1.0
1.5 1.0
1.6 1.0
1.7 1.0
1.4 1.0
2.3 1.0
2.7 1.0
2.9 1.0
2.6 1.0
2.2 1.0

2.0 1.0

The larger the number, the slower the performance. These
performance numbers were measured on derated field test
hardware and software at various times during 1992; production
results will vary somewhat. The SPEC benchmarks are written
in FORTRAN and C; no conclusions should be drawn about other
classes of programs written in other languages.

'The values in parentheses are from running once, then
retranslating with the run-time feedback from the first run;
this gave a significant performance difference only for the
programs shown.

tTiming information for this run is not available.

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Due to extreme technical obstacles, some classes
of programs will never be supported by mx. We
decided not to translate programs that use privi­
leged opcodes or system calls or that need to run
with superuser privileges. In cases where the file
system hierarchy differs between the ULTRIX and
DEC OSF/1 AXP systems, programs that expect files
to be in particular places or in a particular format
may fail. Similarly, programs that read /dev/kmem
and expect to see an ULTRIX MIPS memory layout
fail.

Certain other classes of programs are not cur­
rently supported, but are technically feasible.
These include big endian MIPS programs from non­
Digital MIPS environments, programs that use
R4000 or R6000 instructions that are not present
on the R3000 model, programs that need to be
multiprocessor safe, and programs that require cer­
tain categories of precise exception behavior.

Summary
Building successful turnkey binary translators
requires hard work but not magic. We built two dif­
ferent translators, VEST and mx. In both cases, the
old and new environments are, by design, quite
similar in fundamental data types, memory address­
ing, register and stack usage, and operating system
services. Translators between dissimilar architec­
tures or operating systems are a different matter.
Translating the code might be a reasonably straight­
forward task. However, emulating a run-time envi­
ronment in which to execute the code might
present insurmountable technical and business
obstacles. Without capturing the environment, an
instruction translator would be of no use.

The idea of binary translation is becoming more
common in the computer industry, as various other
companies start on their transitions to 64-bit
architectures.

Acknowledgments
Steve Hobbs originally suggested the binary transla­
tion path in the architecture task force discussions.
Nancy Kronenberg and Bob Supnik added critical
early support and later coordination. Jud Leonard
set the engineering direction of doing careful static
translation once, instead of on-the-fly dynamic
translation at each execution. Butler Lampson
boosted morale at a critical time. Jim Gettys has
also been an important and vocal supporter.

The success of the translators would not have
been possible without the enthusiastic support of
the OpenVMS AXP and DEC OSF/1 AXP operating

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

Binary Translation

system groups, and the respective run-time library
groups, especially Matt LaPine, Larry Woodman,
Hai Huang, Dan Murphy, Nitin Karkhanis, Ray
Lanza, Anton Verhulst, and Terry Grieb.

The Porting and Performance Engineering
Group did extensive porting and testing of cus­
tomer applications. The group members, especially
Shamin Bhindarwala and Robi Al-Jaar, were sources
of extremely valuable customer feedback. The
Engineering System Group under Mike Greenfield
also made extensive early use of the translators and
provided valuable feedback.

The Alpha AXP Migration Tools team is relatively
small for the substantial amount of work accom­
plished in the past two and one-half years. Every
person has made several key contributions. In addi­
tion to the authors of this paper, the team members
are: Kate Burleson, Peigi Cleminshaw, George
Darcy, Catherine Frean, Bruce Gordon, Rick
Gorton, Kevin Koch, Mark Herdeg, Giovanni Della
Libera, Nikki Mirghafori, Srinivasan Murari, Jim
Paradis, and Ashutosh Roy.

References and Note

1. R. Sites, ed., Alpha Architecture Reference
Manual (Burlington, MA: Digital Press, 1992).

2. R. Sites, "Alpha AXP Architecture," Digital
Technical journal, vol. 4, no. 4 (1992, this issue):
19-34.

3. C. Hunter and J. Banning, "DOS at RISC," Byte
Magazine (November 1989): 361-368.

4. Echo Logic, News Release (May 4, 1992).

5. L. Wirbel, "DOS-to-UNIX Compiler," Electronic
Engineering Times (March 14, 1988): 83.

6. A. Bergh, K. Keilman, D. Magenheimer, and
J. Miller, "HP 3000 Emulation on HP Precision
Architecture Computers," Hewlett-Packard jour­
nal (December 1987).

7. Datum is the term used to refer to a piece
of information that has an address and a size.

Alignment is the property of a datum of size
2n bytes. This datum is aligned if its byte address
has n low-order zeros. A size or address not
meeting this constraint implies that the datum is
unaligned.

Instruction atomicity is the property of instruc­
tion execution on single processor systems
such that an interrupted instruction has been

151

Alpha AXP ArcWtecture and Systems

completed or has never started, i.e., partial exe­
cution of an instruction is never observed.

Granularity is the property of memory writes on
multiprocessor systems such that independent
writes to adjacent aligned data produce consis­
tent results. The terms byte, word, longword,
quadword, and octaword granularity refer to
writing 1-, 2-, 4-, 8-, and 16-byte size adjacent
data.

Interlocked update is the property of memory
updates (read-modify-write sequences) on multi­
processor systems such that simultaneous

152

independent updates to the same aligned datum
will be consistent. This property causes serial­
ization of the independent read-modify-write
sequences and is not guaranteed for an
unaligned datum.

Word tearing is the property of aligned memory
writes on multiprocessor systems such that a
reader independent of the writer can see partial
results of the write.

8. N. Kronenberg et al., "Porting OpenVMS from
VAX to Alpha AXP ;' Digital Technical Journal,
vol. 4, no. 4 (1992, this issue): 111-120.

Vol. 4 No. 4 Special issue 1992 Digital Technical Journal

Jeffrey A. Cof.!1er
Zia Mohamed
Peter M . Spiro

Porting Digitals Database
Management Products to the
AlphaAXP Platform

The cornerstone software component of bigl:rend production systems is a database
management system. Digital bas successfally ported the DEC Rdb for Open VilfS rela­
tional database management system and the DEC DBMS for OpenVilfS network
database management system to the Alpha AXP platform. Rdb and DBMS were per­
haps the most complex layered products to be ported. The tight coupling of these two
products to the Open VilfS VAX system made the port a challenging task. To avoid the
future problem of integrating two source code bases, the porting team decided to
use a common code base and to overlap current VAX development with the Alpha
AXP port. The goal was to provide an easy migration path for software products to
the Alpha AXP platform.

Digital is one of a small number of vendors compet­
ing in the high-end, complex production systems
market. Applications for this market support indus­
tries such as banking, stock exchanges, telecommu­
nications, and information services. The Alpha AXP
platform is ideally suited to meet the response
time, throughput, and availability requirements of
these applications, since it offers increased perfor­
mance while maintaining the superb availability
characteristics ofVMScluster systems.

Although high-end production systems involve a
collection of software packages, the cornerstone
software component is a database management
system. Digital offers two database management
systems for high-end commercial systems: DEC Rdb
for OpenVMS, a relational database management
system, and DEC DBMS for OpenVMS, a network
(CODASYL) database management system. Digital
had to port the DEC Rdb for OpenVMS VAX and DEC
DBMS for OpenVMS VAX database systems to the
Alpha AXP platform as early as possible to continue
to compete in this commercial arena. The resulting
products are the DEC Rdb for OpenVMS AXP and
DEC DBMS for OpenVMS AXP systems. (Since these
two products for the Alpha AXP system are the
same as those for the VAX system, hereafter, we
will refer to the products as Rdb and DBMS.)
Additionally, both software products drive many
sales of Digital's OpenVMS operating system and

Dig ital Tecb11ical] our11.al Vol. 4 No. 4 Special Issue 1992

transaction processing and information manage­
ment products such as CDD, ACMS, and DEC RALLY,
which integrate with the Rdb and DBMS systems.

Database management systems are among the
most complex of all software products. Applica­
tions expect these systems to have 7 by 24 availabil­
ity, sophisticated concurrency capabilities, fast data
access, high-speed backup and restore mecha­
nisms, and large buffer pools. To provide such func­
tionality, the Rdb and DBMS products make
extensive use of the Open VMS VAX system, the VAX
run-time libraries, and the BLISS and VAX MACR0-32
programming languages. The current release of the
product set uses more than 100 system services or
run-time library calls. The two products utilize
almost every BLISS BUILTIN function, i.e., a machine­
specific function call that generates in-line code.
Combined, Rdb and DBMS comprise more than 30
different images. The products run in elevated pro­
cessing modes, both executive and kernel, and
include user-written system services.

Further compounding the complexity of porting
the Rdb and DBMS software to the Alpha AXP plat­
form is the fact that they are mature products; DBMS
was released in 1981, Rdb in 1984. Because various
system capabilities did not exist in the early 1980s,
the two database management systems include
code that is no longer required. For example, both
products have code to move bytes from one data

153

Alpha AXP Architecture and Systems

type to another. Also, during image rundown, the
products rely on undocumented, operating system
behavioral patterns such as the asynchronous
system trap (AST) delivery protocols. In addition,
the Rdb software contains a modified version of the
OpenVMS SORT routine.

Rdb and DBMS were initially designed to run
only on the OpenVMS VAX operating system.
Consequently, both products heavily utilize VAX­
specific features for performance gains.1 For exam­
ple, Rdb generates VAX machine code routines as
part of query execution plans; the machine code is
carefully generated for maximum execution effi­
ciency. This tight coupling of Rdb and DBMS to the
OpenVMS VAX system made the port a challenging
task.

Since the OpenVMS and BLISS groups were busy
with their own porting projects, we in the Database
Systems Group had to accomplish our port with lit­
tle outside help. The task was noteworthy because,
by necessity, the team had to port its product set to
the Alpha AXP platform earlier than most of the
other porting groups. At the same time, Rdb and
DBMS were perhaps the most complex layered
products that would be ported. Our goal was to
port these two products in a timely fashion, so that
Digital would truly succeed in providing an easy
migration path for software products to the Alpha
AXP platform.

In this paper, we first present a brief description
of the architecture of the two database manage­
ment system products. We next describe the guid­
ing policies we formulated to allow the port to
proceed as efficiently as possible. Then, we docu­
ment porting issues that we resolved for the two
products. Finally, we summarize our experiences
related to this effort.

Product Architecture
Digital is unique in the database industry in that we
provide two different types of database manage­
ment systems that layer on top of the same database
kernel, which is called KODA. The KODA kernel
provides journaling and recovery, locking, access
methods (e.g., B-tree, hashing), record and page
management, and buffer pool management.

The Rdb software provides language preproces­
sors, an interactive query front end, a callable inter­
face, catalogue management, query optimization,
and relational operations such as join, select, and
project. Rdb supplies a relational interface to the
database.

154

The DBMS product also provides language pre­
processors, an interactive query front end, and
other software necessary to define, create, and
manage data in simple or complex databases. In
contrast to Rdb, DBMS provides a CODASYL inter­
face to the database.

Figure 1 shows the relationship of the Rdb and
DBMS software products to the KODA database
kernel.

Porting Policies
Initially, we developed policies to guide our port to
the Alpha AXP platform. These policies, which
applied to the KODA, Rdb, and DBMS teams, were
designed to simplify the port and to ease long-term
maintenance requirements.

Common Source Code Base
Our most important decision was to have a com­
mon source code base. That is, we wanted to have
one set of source code that could be compiled and
run on either a VAX or an Alpha AXP system. At the
time we began our port, the OpenVMS group was
the only other software group that had started their
port, and they had chosen to have two distinct code
bases. (The OpenVMS AXP porting schedule dic­
tated the choice.) So with respect to code base, the
path we chose was untested. We also decided to
maintain common command procedures to com­
pile, build, and link, and common regression tests
between the VAX and Alpha AXP systems.

A primary reason for our code base decision was
that we did not have the resources to manage two
different code bases. Also, although two divergent
code sources would have allowed for a stable code

ROB DBMS

I

KODA DATABASE KERNEL

OPENVMS OPERATING SYSTEM

Figure 1 Relationship of Rdb and DBMS
to the KODA Database Kernel

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Porting Digital's Database Management Products to the Alpha AXP Platform

base with which to begin the Alpha AXP port, the
group strongly wanted to avoid having to merge the
two code bases at a future date. Consequently,
since our preliminary investigation indicated that a
single code base was feasible and that we could
hide most of the platform dependencies through
the superb macro capability of the BUSS language,
we proceeded with the common source code
implementation. The single code base allowed us to
build and release Alpha AXP and VAX versions of our
products at the same time.

Concurrent Releases
Our release schedule complicated the process of
adhering to the single code base policy. To meet the
schedule, we had to overlap some of the Alpha AXP
port with our current VAX releases. That is, the sce­
nario we followed was NOT: work on a VAX release;
complete all necessary code changes; stabilize the
release; and then create a newer set of sources for
the Alpha AXP port. Rather, for the beginning por­
tion of the Alpha AXP port, we also had to change
source code destined for a VAX release. Thus, if a
module had to be changed for the earlier VAX
release and the same module had already been
ported for the Alpha AXP release, the engineer had
to propagate the code change to the Alpha AXP
source code.

To minimize the effect of double code changes,
we first worked on those modules for the Alpha
AXP release that were reasonably stable in the cur­
rent VAX code stream. For example, the BUSS
REQUIRE files that we use for data definitions were
reasonably stable for the VAX release by the time the
Alpha AXP port began. The modules that did not
change for the VAX release were also good candi­
dates for helping us to avoid making double code
changes. When we finally began to port the bulk of
the modules, they were mostly stable and, as a
result, only bug fixes for the VAX release required
that we manually modify the same module for the
Alpha AXP release.

Furthermore, once we began work on the Alpha
AXP release, we needed the capability of being able
to compile, link, and test on both the Alpha AXP
and VAX platforms. So we had to modify our devel­
opment environment to allow us to identify the
code change session as either an Alpha AXP or a VAX
session.

No New Functionality
The Alpha AXP release of the database management
system product set contains no new functionality.

Digital Tech11icaljournal Vol. 4 No. 4 Special Issue 1992

On the first pass, we decided to port the VAX code
without designing any new algorithms. We did
clean up some code for style, convention, and per­
formance, but basically, the Alpha AXP release
remains functionally equivalent to the latest VAX
release.

Correct and Fast Code Execution
We did not prioritize our effort to first, be correct,
and second, be fast. We decided that we must be
correct and fast on certain key issues. For example,
on VAX systems, our argument-passing mechanism
utilized the argument pointer (AP). To minimize
code changes, we could have used the ARGPTR con­
struct in the BLISS cross compiler. However, ARGPTR
is inefficient and, therefore, not appropriate for our
needs. Consequently, we ensured that our new
argument-passing design was efficient, even
though doing so was time-consuming.

Minimizing Platform-specific Modules
Code conditionalization, i.e., producing separate
code for the VAX and the Alpha AXP platforms,
requires various levels of code duplication. For
example, the process may require the duplication
of an entire module, routines within a module, or
certain lines of code within a routine. To minimize
the amount of code duplicated, we conditionalized
on the smallest code segment possible, using a sen­
sible approach. For example, when forced into
using conditional code, we avoided duplicating
modules by choosing to keep within a single mod­
ule. Ideally, we conditionalized just a few lines.
Wherever possible, BUSS macros were modified to
hide the code conditionalization.

RdblsRdb
We wanted our database management products to
"look and feel" the same on an Alpha AXP system as
they did on a VAX system. So, to paraphrase from the
OpenVMS operating system maxim, we wanted Rdb
to be Rdb! That is, the ported Rdb should have the
same utilities, the same data structures, the same
data definition capabilities, the same data manipu­
lation constructs, etc., as the DEC Rdb for OpenVMS
VAX product. Incorporated in this desire for same­
ness was the fundamental point that we were not
going to change the on-disk structures. DBMS was
ported with the same goal in mind.

No Changes to On-disk Structures
The KODA kernel stores records on database pages.
Unfortunately, the database page is not naturally

155

Alpha AXP Architecture and Systems

aligned; page header fields and fields within the
records are not aligned. Although aligning these
fields would boost performance, to realign all the
structures on the database page would require the
database to be unloaded and then reloaded. Current
customers cannot afford the downtime needed to
perform the conversion, so we decided to maintain
the same page/record structure. Furthermore, by
maintaining the same on-disk structure for the VAX
and Alpha AXP databases, we do not preclude
future concurrent access to the database in a
mixed-architecture VMScluster. Thus, our present
design does not require an unload/reload opera­
tion, since performing that action would be too
much of an impediment to migrating to the Alpha
AXP platform. However, we do plan to investigate
the potential performance boost from aligned
pages/records and, if the gain is substantial, to offer
some alignment solution. Note that this section
refers only to data structures tied to on-disk struc­
tures. We did align all in-memory structures, and
we elaborate on this topic in the next section.

Porting Details
In this section we describe a general set of issues
and solutions that applied to all the groups involved
in porting the database management system soft­
ware to the Alpha AXP platform. We then explain
some of the more interesting issues and solutions
pertaining to each group.

Common Issues
A collection of general porting issues applied to the
Rdb, DBMS, and KODA groups. For example, all
groups needed the capability to conditionalize
code in a module, so that the compiler on an Alpha
AXP system would produce one set of object code,
and the compiler on a VAX system would produce
another set. Common issues were:

$PROBER (BASE, LEN= 4, MODE= 0)
%IF KOD$K_ALPHA
%THEN CBUILTIN PAL_PROBER;

• Varianted code

• Data alignment and field resizing

• Argument-passing mechanism

• BUILTIN functions

• VAX testing

• The CALLG mechanism and AP references

• VAX MACR0-32 modules

• Message file support

Varianted Code To simplify conditional code, we
added a set of literals, for example KOD$K_ VAX or
KOD$K_ALPHA, that can be used in all our BLISS
modules. We could then use these literals to condi­
tionalize code. The code example shown in Figure
2 illustrates the conditionalizing of the PROBE
instruction. The PROBE instruction checks the
read/write access of a memory location. On Alpha
AXP systems, the instruction is quite different from
the corresponding instruction on VAX systems.
However, BLISS easily handles this difference in a
macro, which allows us to change the name and the
order of the arguments, pass arguments by value
instead of reference, and use an offset instead of a
length. By developing such a macro, the actual
source code did not have to change.

Data Alignment and Field Resizing On the first
pass, we immediately modified all in-memory data
structures so that they were naturally aligned. This
step avoided incurring a significant performance
penalty on the Alpha AXP platform. In addition,
since no single Alpha AXP instructions exist that
could be used to easily manipulate bytes or words,
many of our in-memory byte (8-bit) and word
(16-bit) fields were changed to longwords (32 bits)
to reduce the object code size and improve
performance.

PAL_PROBER (BASE, LEN - 1, MAX (MODE, $PREV_MODE)))
%ELSE CBUILTIN PROBER;

PROBER (%REF (MODE), %REF (LEN), BASE))
%FI %,

Figure 2 Conditionalized PROBE Instruction

156 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Porting Digitals Database Management Products to the Alpha AXP Platform

Once we aligned the in-memory data structures,
two groups of data structures remained unaligned:
those tied to the database root file, which records
database parameters such as associated files and
database settings, and the database pages that actu­
ally contain the data records. Since the database
root file is relatively small (i.e., less than 100 blocks
in size), it was aligned also. Thus, the root file is
automatically re-created in a conversion that
occurs when upgrading a database product to sup­
port both the Alpha AXP and VAX architectures.
Since this conversion invariably takes place when
converting to a newer version of either the Rdb or
the DBMS product, the additional realignment of
the root is a minor additional expense.

Thus far, we have not pursued any potential mod­
ifications of the page data structures, such as align­
ing them once they are fetched into memory. Note
that these structures do not generate unaligned
faults. Instead, they force the compiler to generate
a few additional instructions to handle the odd
alignment.

Argument-passing Mechanism The VAX and
Alpha AXP argument-passing mechanisms are
entirely different. Rather than using the standard
BUSS mechanism, the existing code depended
strongly on the VAX argument-passing mechanisms
by using BUSS macros to reference arguments from
the AP. This approach was not possible on Alpha
AXP systems due to the lack of an AP register. (You
could force the AP to be generated, but that process
would be slow and would waste memory.)
Therefore, we changed our procedure headings to
declare a generic formal parameter list (e.g., Pl
through PN) for both the Alpha AXP and the VAX
systems and then developed another set of BLISS
macros that allowed us to bind to the arguments
based on the generated formal parameter list. Since
this process involved changing every routine decla­
ration, we developed a text-processing tool that
would automatically change the routine headings
and thereby avoid the expensive and error-prone
task of manually changing each routine.

BUILTIN Functions Together, the KODA, Rdb, and
DBMS code uses most of the BUSS BUILTIN func­
tions. This fact presented a problem for the team
porting the software to the Alpha AXP platform.
Some VAX BUILTINs were not supported, some
behaved differently, and some were eliminated as
BUILTINs but emulated by Starlet, an OpenVMS

Digital TecbntcalJournal Vol. 4 No. 4 Speciallssue 1992

support library. Again, we used BLISS macros to
solve the problem. Essentially, our macros catego­
rized the BUILTINs and then performed the appro­
priate expansion, based on the category. For
example, the PROBE BUILTIN differed markedly
between the VAX and Alpha AXP implementations,
as indicated by Figure 2.

VAX Testing Another general problem that we
had to guard against was the possibility that the
Alpha AXP code changes would introduce bugs into
the VAX versions of the products. Consequently, we
adopted a policy whereby all Alpha AXP changes
had to be tested on a VAX system. This policy
ensured that we maintained a steady pattern of cor­
rect VAX behavior. Also, since the VAX environment
was more stable than the Alpha AXP environment,
testing on a VAX system helped tremendously in
identifying and fixing bugs related to the port.

The CALLG Mechanism and AP References The
Alpha AXP platform does not directly support
CALLG, a VAX procedure calling mechanism, and
references to the AP. The CALLG mechanism and AP
references are slow since they are simulated and
automatically allocate stack space to accommodate
the largest possible argument list (i.e. , 255). In situ­
ations where performance was not critical, for
example, in an error handler, we replaced CALLG by
a standard routine call on both the VAX and the
Alpha AXP software versions. When performance
was an issue, we used conditional code to retain the
CALLG mechanism for the VAX code and to use a
standard routine call in the Alpha AXP code. In
instances where the CAllG mechanism is used to
pass the argument list to the next rou tine, we con­
structed an argument vector and replaced CALLG by
a special call linkage. The new mechanism passed.
the pointer to the argument vector by means of a
single parameter or a global register. This solution
guaranteed good performance on both VAX and
Alpha AXP systems yet avoided any conditionalizing
of the code.

VAX MACR0-32 Modules For a variety of reasons,
we used VAX MACR0-32 to code some routines in
the Rdb, DBMS, and KODA software. For example,
basic operations such as record compression, record
expansion, and buffer initialization are performed
through calls to VAX MACR0-32 routines that are
heavily optimized for efficient operation. Some
routines are coded in VAX MACRO-32 for ease

157

Alpha AXP Architecture and Systems

of character manipulation. Also, we used VAX
MACR0-32 to code machine instructions that were
not available through a BLISS BUILTIN function.

We adopted various solutions for these VAX
MACR0-32 routines. For those routines where per­
formance was not an issue and BLISS generated
acceptable code, we converted to BLISS code. For
routines where performance was absolutely criti­
cal, we rewrote the routine in Alpha AXP MACR0-64
to utilize the additional registers. Finally, in some
cases where we could not rewrite the routine in
BLISS code and did not have the resources to con­
vert to MACR0-64 code, we employed the Alpha
MACRO cross compiler.

Message File Support Due to the structure of the
database products, as shown in Figure 1, each com­
ponent has separate message files. Both Rdb and
DBMS have a message file that is separate from the
KODA message file. Furthermore, the Rdb and DBMS
software share the KODA message file.

The message files are merged during the build
cycle, so that customers are not required to be
aware of the modular layout of the code. As a result,
KODA messages, when appended to Rdb's message
file, print as Rdb messages (e.g., RDMS-F-msgcode,
message text). However, the Rdb source code still
references the KODA message codes with the
KOO$_ message prefix.

Prior to the introduction of the Alpha AXP archi­
tecture, the KODA messages were defined with
.LITERAL declarations in the message files. Since we
occasionally link images with multiple message
files, we wrote a program that would read an .OBJ
file and write a new .OBJ file without writing the
KODA literal declarations. This process would no
longer work since Alpha AXP object files have a dif­
ferent format than VAX object files. As a result, we

MODULE DBMKODMSG =
BEGIN

changed the mechanism to define the KOO$_ sym­
bolic values to be compatible with both the VAX
and Alpha AXP architectures.

First, we removed all .LITERAL declarations from
the KODA message file. As a result, all KODA mes­
sages were defined strictly as ROMS or DBMS
messages. Then, after passing the message source
file through the message compiler to get the mes­
sage object file, we invoked the ANALYZE/OBJECT
facility to get a listing of the message symbol codes
and values for each message. Finally, we wrote a
small utility to read the ANALYZE/OBJECT output
and generate a BLISS .832 file, which is shown in
Figure 3.

This BLISS program, when compiled and included
in an executable image, defines the appropriate
KOO$_ message codes and their associated values.
This procedure is used on both the OpenVMS VAX
and the OpenVMS AXP operating systems to gener­
ate the message files. Furthermore, since this group
no longer writes programs that read object code,
the resulting method is easier to maintain.

The following three sections discuss some prob­
lems encountered by each of the porting teams.

Porting the KODA Database Kernel
Among the issues that the KODA group dealt with
were those related to calling mechanisms, kernel­
mode rundown handlers, and a bugcheck dump
mechanism.

Stack-switching/Stall Mechanism The KODA data­
base kernel performs its own multithreading activi­
ties. A single process can be actively attached to
multiple databases in the context of a single instan­
tiation of the software. For example, in the DBMS
interactive query (DBQ) facility, the user can per­
form the following operation:

GLOBAL LITERAL KODS_ABORT WAIT
GLOBAL LITERAL KODS_ACCVIO
GLOBAL LITERAL KODS_AIJACTIVE
GLOBAL LITERAL KOD$ AIJALLDONE

%X '0028800C';
%X'002885EC';
%X'00288BA3';
%X'00288B33';

END
ELUDOM

Figure 3 BUSS Code to Generate KOD Message Definitions

158 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Porting Digital's Database Management Products to the Al,pha AXP Platform

dbq> ! Attach to first database as user1.
dbq> BIND DB1 ON STREAM 1
dbq>
dbq> ! Attach to second database as user2.
dbq> BIND DB2 ON STREAM 2
dbq>
dbq> ! Establish user1 context.
dbq> SET STREAM 1

This example has the user attached to two differ­
ent databases, DBI and DB2. To issue queries against
either database, the user enters the SET STREAM
command. In response, KODA establishes the cor­
rect data structures and stream context for this
database session. This process involves switching
data structures and stack context. Consequently,
KODA manages its own stack for its executive mode
code and data structures. This stack-switching
mechanism is complex, and this code is intimately
tied to the VAX procedure calling mechanism. For
example, whenever a query must stall (e.g., while
waiting for a lock request), KODA saves the current
executive mode context and then switches back
through the stream code out to user mode. This
action allows the process to receive user-mode
ASTs. This mechanism essentially saves a call frame
so that after the user-mode stall has completed,
KODA can set up the appropriate stack and return to
the calling routine by means of the saved call frame.

The calling/return mechanism is entirely differ­
ent for the VAX and Alpha AXP architectures. On
Alpha AXP systems, for each routine, the compiler
generates prologue code and epilogue code to man­
age the routine calling mechanism. Accordingly,
the KODA stack mechanism had to rely on this new
mechanism. In addition, for this level of support,
the routine that was coded in BLISS for the VAX plat­
form had to be coded in MACR0-64 on the Alpha
AXP platform.

Kernel-mode Rundown Handlers Another exam­
ple of KODA's close tie to OpenVMS behavior
involved the use of KODA's kernel-mode rundown
handler. On VAX systems, in the event of an abnor­
mal failure, we must clean up certain data struc­
tures and release resources such as locks or
channels. Furthermore, database recovery must
start before the image rundown is completed, so
that surviving processes cannot acquire locks on
resources before the databases are recovered.

We accomplish this image cleanup through the
use of a user-defined system service (i.e., a system
service not defined by the OpenVMS system),
which acts as a kernel-mode rundown handler.
In addition to releasing database resources, the

Digital Tee/mica (Jo11r11 a f Vol. 4 No. 4 Special Issue 1992

handler also cleaned up OpenVMS data structures
such as the pending AST queue. These OpenVMS
data structures changed significantly for the Alpha
AXP architecture. For example, an Alpha AXP
system has five pending AST queues instead of one.
In addition, this handler routine would acquire the
OpenVMS scheduler spinlock and perform "poor
man's lockdown;' which effectively pages the entire
routine into memory (since the code cannot incur a
page fault at elevated interrupt priority level, IPL).
For Alpha AXP, code and data cannot be located in
the same PSECT, so this trick was not possible.
Instead, we used the $LKWSET macro to lock pages
in memory and then to clean up the OpenVMS data
structures.

After we completed and tested the code, the
database and OpenVMS engineering teams decided
that such intricacy was needlessly complex, and
that the OpenVMS AXP software could clean up
the data structures based on its image control
block and related structures. This example shows
how the Open VMS AXP system offers different func­
tionality than the OpenVMS VAX system, i.e., the
port offered the opportunity to clean up existing
mechanisms.

Bugcheck Dump Mechanism Complex, sophisti­
cated software products are by nature difficult to
debug. Most of these products utilize a data struc­
ture dumping mechanism whenever an internal
software or hardware error is encountered. KODA
has a mechanism called a bugcheck dump that per­
forms this service. When an unexpected exception
is generated, the bugcheck dump code prints all rel­
evant data structures into a file. In addition, the
dump includes a stack dump. On VAX systems, the
bugcheck dump traces back down the stack using
the saved call frames and prints out all the fields in
each call frame, the routine name, and the argu­
ments passed.

In particular, the method for printing the sym­
bolic name of the routines is especially clever. After
linking an image, we utilize a program that scans
the symbol table (.STB file) produced by the linker.
Then the program creates its own object file, which
includes a relative offset of all the routines and their
symbolic names. Finally, the image is relinked, and
this new object file is included into the image in a
particular PSECT. When tracing back down the call
frames, the bugcheck dump also checks the special
PSECT to locate and print the correct routine name.
This dump is an invaluable tool in determining the
causes of unexpected errors. Figure 4 includes two

159

Alpha AXP Architecture and Systems

Saved PC= 000408AF : DIOSFETCH D8KEY + 0000004F
ARG# Argument [data ...]-------=---

1 00206484: 0001FCFC 002064F4 0020650C 207C0000 000277C7 00010000 00020001
2 00000001

Handler= 00000000, PSW = 0000, CALLS= 1, STACKOFFS = 0
Saved AP= 0020644C, Saved FP = 00206430, PC Opcode= EO

SR2 002646DO: 00000000 00000000 00006918 FFDAA3E8 FFF63770 00000000 00000000
SR3 00008C41: 013A2048 C2FFFFFF FFFFF85E E0009587 D512A4E0 40000000 18C00040
SR4 00264680: 00000008 0020645C 002646AO 00000000 00000000 00000000 00000000

20 bytes of stack data from 0020641C to 00206430:
00264680000000010020648400000002 0000 ' 4d OF&.'

001C7D08 0010 '.} .. '

Saved PC= 00055241 : PSISMODIFY STITM + 00000033
ARG# Argument [data ...]--------=--

1 00206484: 0001FCFC 002064F4 0020650C 207COOOO 000277C7 00010000 00020001
2 00000096
3 002646DO: 00000000 00000000 00006918 FFDAA3E8 FFF63770 00000000 00000000

Handler= 00000000, PSW = 0000, CALLS= 1, STACKOFFS = 0
Saved AP= 00206490, Saved FP = 00206464, PC Opcode= DD

SR2 = 00256042: 00020096 0000005F 00000057 00000000 00000002 00010000 002E2A13
SR3 = 00264680: 00000000 00000001 00000008 002646AO 00264670 00000000 00000000

24 bytes of stack data from 0020644C to 00206464:
002646D0000000960020648400000003 0000 ' 4d PF&.'

001C7CF8002646CO 0010 '@F&.xl .. '

Figure 4 Bugcheck Dump

routine calls from a stack trace, indicated by the
lines of code that begin with "Saved Pc."

Alpha AXP systems have no equivalent to the VAX
call frames, so it is impossible to use the call frame
mechanism to trace down through the stack. As
mentioned previously, Alpha AXP routines utilize
prologue and epilogue code for returning from rou­
tine calls. Procedure descriptors contain informa­
tion such as entry address and register save
information.

On Alpha AXP systems, another Digital group
supplied a set of routines that allows tracing the
call sequence. This set provided the basic capabil­
ity to print the routine calling sequence that led to
an abnormal exception. In addition, the Alpha AXP
linker produced a symbol table file. However, we
decided to simplify our bugcheck mechanism.
Although we still search the symbol table file for all
routine addresses, rather than create an Alpha AXP
object file, we create a VAX MACR0-32 file that
includes the routine name and address/offset.
Then, we simply use the Alpha MACRO cross com­
piler to generate the Alpha AXP object, which gets
linked into the image on the second pass. In fact,
we changed our VAX bugcheck routine to produce a
MACR0-32 file with routine name and offsets. This

160

process is simpler than directly creating an object
file, as we did previously.

Even though the routines provided this call trace­
back capability, we were missing the arguments
passed to the routines, perhaps the most important
part of the stack trace. The VAX mechanism cap­
tured this data, because very often a bugcheck
results from one routine passing an improper argu­
ment to another routine. The Alpha AXP system
does not provide a way to capture this information,
because the routine calling sequence reuses regis­
ters RI6 through R21 for passing arguments.

PortingRdb
Some issues handled by the Rdb porting group
were associated with the dispatch code, Alpha AXP
code generation, Rdb precompilers, and Rdb
system relations.

Dispatch Code The dispatch code is the topmost
layer of the Rdb software and is called directly by
the user application by means of relational call
interface (RCI) calls. 2 The main function of dispatch
code is to direct the user request to the correct tar­
get Rdb executive (local or remote) for processing.
On VAX systems, the dispatch code passes the user

Vol. 4 No. 4 Special Issue 1992 Digital TecbnicalJournal

Porting Digital's Database Management Products to the Alpha AXP Platfonn

arguments to the Rdb software using the CALLG
linkage.3 On Alpha AXP systems, CALLG linkage is
very inefficient. Therefore, the dispatch code was
changed to build a user argument vector in the
same style as the VAX argument list, and the pointer
to the argument vector was passed as a single
parameter. The code in Rdb was changed to bind to
the user arguments using the offset from the
pointer to the argument vector.

Using two different calling mechanisms in the
dispatch to pass user arguments was a careful
design. On VAX systems, the existing CALLG mecha­
nism was retained to ensure backward compatibil­
ity between different versions of the Rdb dispatch,
Rdb layered products, and gateways. A new calling
mechanism was used on Alpha AXP systems to
ensure good performance, since every user request
to the Rdb executive goes through the dispatch.

Code Generator Rdb uses compiled BUSS code
and generated machine code to execute user
requests. During request compilation, Rdb gener­
ates highly efficient routines using the target
machine instructions. These routines perform
basic data operations including data conversion,
data movement between buffers, aggregation, and
expression evaluation.

The design of the Rdb code generator to produce
Alpha AXP machine code was undoubtedly the
most complex porting task. Use of a mechanism
other than code generation would have reduced
the porting effort. However, at the time we began
porting Rdb, it was not clear if an alternate mecha­
nism would guarantee an acceptable level of perfor­
mance. Good performance was considered critical
to the success of Rdb on Alpha AXP systems.
Therefore, we decided to add functionality to the
Rdb code generator to produce Alpha AXP code. To
generate efficient Alpha AXP code sequences, we
observed specific guidelines. 4

On Alpha AXP systems, code that references data
items with increasing memory addresses executes
more efficiently. Therefore, the algorithm was
changed to first order the data items by increasing
memory addresses and then generate code to pro­
cess the data.

In Rdb, each data item has a null bit that indicates
whether or not the value of the data item is known.
As shown in Figure 5, to conserve space, the null
bits of different data items are stored together like
a bit vector within a record. Loading/storing a
null bit is an expensive operation on Alpha AXP

Digital Technical Journal Vol. 4 No. 4 Spedal Issue 1992

j oATA ITEM1 joATA ITEM21 NULL BIT VECTOR

Figure 5 Rdb Record Layout

systems.4 Therefore, the algorithm was modified to
fetch a batch of null bits into a register. When all
null bits in the register are processed, the batch is
written and the next batch of null bits is fetched.
This approach reduced the number of load and
store instructions and made the code sequence
much more efficient.

On Alpha AXP systems, the machine code rou­
tines generated by Rdb use four different address­
ing modes to access data items: absolute address,
base register plus offset, integer register content,
and floating-point register content. Each of the
Alpha AXP registers R12 through R15 is used as a
base register. Thus, any data stored within 256K
(4 X 64K) of memory space can be accessed effi­
ciently. To maximize data access efficiency and
caching, changes were made in the code generator
to allocate data densely. To improve performance
further, data items were allocated at quadword or
longword aligned addresses.

An Alpha AXP code sequence executes more
efficiently when instructions can be multi-issued
and executed in parallel. This can be achieved
by reordering the sequence of instructions
while maintaining any chronological dependency
between instructions. To take advantage of this
Alpha AXP feature, BLISS macros were developed
to reorder and interleave the instructions in a gen­
erated code sequence.

On Alpha AXP systems, backward branches in the
code slow down the execution because of instruc­
tion stream invalidation. 4 Changes were made in
the Rdb code generator to minimize backward
branches. This change at times increased the size of
the generated code but improved the code execu­
tion efficiency. Further, Boolean code generation
algorithms were modified to incorporate branch
prediction logic; code sequences with a smaller
probability of execution were branched out of the
main code stream. This technique maximized the
effect of instruction stream caching.

Rdb Precompilers An Rdb precompiler prepro­
cesses a user application program that includes
Rdb statements and replaces these statements by
standard RCI calls to the Rdb software.2 The Rdb

161

Alpha AXP Architecture and Systems

statements embedded in the applications can be
one of three types: structured query language
(SQL), Rdb preprocessors language (RdbPRE), or
relational data manipulation language (RDML).
There are three different Rdb precompilers to sup­
port these languages.

The SQL precompiler, an industry-standard lan­
guage interface to Rdb, is a strategic Rdb compo­
nent. A long-term goal of this precompiler is
flexibility in future developments and ease of main­
tenance. To meet this goal, the SQL precompiler was
redesigned to use the GEM compiler on Alpha AXP
systems to preprocess SQL application programs
and produce Alpha AXP object code.

The RdbPRE precompiler is a proprietary lan­
guage interface to Rdb. The long-term goal is no
new functionality and minimal maintenance. So
the main objective was to reduce the effort
required to port this compiler. This was achieved by
retaining the existing design and using the Alpha
MACRO cross compiler to produce Alpha AXP
objects from VAX MACR0-32 files.

The RDML precompiler is also a proprietary lan­
guage interface to Rdb. Unlike the RdbPRE precom­
piler, this compiler does not produce VAX MACR0-32
files. So porting it was an easy and straightforward
task.

Rdb System Relations Rdb uses system relations
to record information about the user relations and
the database. The system relations are stored on
disk and loaded into memory on demand. Since
they are frequently referenced during user request
processing, efficient access to data in system rela­
tions is critical for performance. On Alpha AXP
systems, accessing data from memory is efficient if
it is located on either a longword or a quadword
address boundary.4 Therefore, changes were made
to the in-memory system data structures to align
each data field to at least a longword address bound­
ary. Further, data fields that were a byte or a word
were expanded to a longword.

The data in system relations was accessed by
using RdbPRE statements embedded in Rdb source
modules. Porting such Rdb modules posed a
dilemma. To compile these modules, first the
RdbPRE compiler had to be ported to the Alpha AXP
platform. Vice versa, to port and test the RdbPRE
precompiler, Rdb had to be ported and running on
the Alpha AXP platform. Moreover, RdbPRE was no
longer a strategic language interface. Therefore,
new BLISS macros were designed that replaced the
embedded RdbPRE statements.

162

Porting DBMS
This section discusses some experiences of the
DBMS porting group, namely those related to the
Database Control System (DBCS) interface, the
H_FLOAT data type support, and the use of the
Alpha User-mode Debugging Environment (AUD).

DBM$32, the Primary Inteiface to the DBMS The
DBCS for the DBMS software uses a single subrou­
tine (DBM$32) as its primary entry point. This entry
point is used by the DBMS precompilers (FDML,
for Fortran, and DML, for other languages except
COBOL), as well as other layered products, such as
COBOL and DATATRIEVE.

After receiving control, DBM$32 performs some
processing and then, using the CALLG mechanism,
passes the entire argument list to lower-level rou­
tines for further processing. These lower-level rou­
tines, in turn, often pass on the argument list,
sometimes as deep as five or six levels.

Because we found CALLG to be inefficient, we
decided to change the primary entry point into the
DBCS. Rather than passing up to 26 separate argu­
ments, DBMS creates a vector of longwords; each
longword contains an argument that would have
been passed using a parameter. Once this vector is
created (often during the compilation phase for the
precompilers), DBM$32_ VEC (the VECTOR version
of DBM$32) is called with a single parameter: the
address of the argument list. An example is shown
in Figure 6.

Layered products using DBMS were advised of the
new interface and were requested to use it as soon
as possible. However, since the changed interface
was incompatible with some existing products, the
old interface was retained. DBM$32_ VEC uses the
new interface, and DBM$32 homes the argument list
(thus creating the above vector) and then passes
that, by reference, to DBM$32_ VEC.

Support of H_FLOAT Data Types The H_FLOAT
data type is fully supported on the VAX processor,
but the Alpha AXP processor has no high-precision
floating-point formats. Although facilities exist on
Alpha AXP processors to read an H_FLOAT data
type, no such facility exists to write an H_FLOAT
data type.

As a result, DBMS customers are advised to elimi­
nate any H_FLOAT data in databases before moving
them to an Alpha AXP system. The DBMS Database
Restructure Utility (DRU) can be used to change all
H_FLOAT data to another common floating-point
format.

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Porting Digital's Database Management Products to the Alpha AXP Platform

DBM$32 INTERFACE

ARG1 = FIRST PARAMETER
ARG2 = SECOND PARAMETER

ARGN = NTH PARAMETER

DBM$32_VEC INTERFACE

ARG1 -+-..--~~~~~~----.
LENGTH OF VECTOR

FIRST PARAMETER

SECOND PARAMETER

NTH PARAMETER

Figure 6 DBCS Routine-calling Interface

In preparation for mixed VAX and Alpha AXP
VMScluster systems, DBMS was modified such that
databases with H_FLOAT data can still be accessed.
However, a run-time conversion error occurs if
H_FLOAT data is accessed from an Alpha AXP
system.

Use of AUD The Alpha User-mode Debugging
Environment is a set of facilities that aids testing
and debugging of native Alpha AXP code on any
OpenVMS VAX system. AUD allowed as much Alpha
AXP user-mode code as possible to be ported imme­
diately to the Alpha AXP system and to be substan­
tially debugged before Alpha AXP hardware was
available. Early in the DBMS porting effort, we used
AUD to verify our port and to ensure that our code
was working correctly.

However, several issues hampered the success of
using AUD in porting the DBMS software:

1. DBMS makes frequent use of signaled excep­
tions. AUD had difficulty in handling exceptions
that cross the boundary between the Alpha AXP
and VAX systems.

2. DBMS uses special stack manipulation code
(stream code) to perform multithreading func­
tions. AUD would become confused if the stack
were to change unexpectedly.

3. At the time we were using AUD, the DBCS had
been ported, but KODA (i.e., the low-level ser­
vices used by the DBCS) had not. As a result,
many variables needed to be defined as crossing
the boundary between the Alpha AXP and VAX
systems. The setup time to define this informa­
tion was significant.

4. Since the code was still running on a VAX proces­
sor, many VAX dependencies were not caught by
AUD. In particular, system services that changed
in subtle ways would work as before because the
operating system was still the OpenVMS system.

Digital Technical Journal Vol. 4 No. 4 Spedal Issue 1992

5. Most of the changes that we made in DBMS were
not conditional, that is, the changes would affect
both VAX and Alpha AXP systems. As a result, we
were able to test our code on VAX systems with a
fairly high degree of certainty that our code was
correct, barring any operating system or com­
piler bugs.

We did eventually get an AUD version of DBMS
working. However, since we spent a considerable
amount of time accomplishing this, and we did not
actually find any bugs in our code by using AUD, we
decided not to use AUD in further areas of DBMS.

Shortly after using AUD, we received our Alpha
Demonstration Unit (ADU) and could test our code
on actual Alpha AXP hardware. The only problems
we found, which were missed during our initial
port, were VAX-style argument list assumptions.
Some of our code assumed that routine arguments
were contiguous in virtual memory; on Alpha AXP
systems, this is not the case.

Conclusion
To conclude the paper, we discuss our plans for per­
formance testing and our reflections on the porting
process.

Performance
We have only begun our performance tests. Cur­
rently, we are running the TPC-B performance
benchmark. We also plan to test against all TPC
benchmarks (A, B, and C) and other benchmarks
such as the Wisconsin benchmark. We are trying to
minimize the amount of time spent in PALcode,
decreasing the code path length, reducing the cycles
per instruction, and optimizing internal algorithms.

Planned testing will also evaluate the effect of
additional data alignment. As mentioned earlier, the
ease-of-migration issue is paramount for our current
customers. Consequently, we have not realigned
the database pages because that action would

163

Alpha AXP Architecture and Systems

require too much downtime. Nevertheless, we do
not want to preclude new customers, or current
customers who need the performance boost, from
utilizing a properly aligned database page. To test
the potential performance improvement, we plan
to create a test database that is completely aligned,
in memory and on disk, and compare the TPC per­
formance against the standard database.

Reflections
At the beginning of the paper, we stated that our
goal was for Digital to provide an easy migration
path to the Alpha AXP platform for software prod­
ucts. Although we encountered some difficulties,
we believe our Rdb and DBMS porting efforts attest
to Digital's success in this endeavor.

As one example of how the experience influ­
enced our approach to porting, we had to learn
new methodologies, practices, and system behavior
on the Alpha AXP machines. For instance, when
stepping through a particular code sequence with
the debugger, we would end up in an infinite loop;
if we just ran the code, the sequence would work.
Although this behavior was documented, we
encountered the problem several times before we
fully understood the ramifications and appropri­
ately changed our development methods.

Overall, the porting effort had the following pos­
itive results:

• The port allowed us to clean up our code, even
though we tried to avoid algorithm changes.
Because we had to port and review every line of
code, we managed to move the code to a more
consistent coding convention.

• The port acted as a learning experience for most
of the engineers. Most mature products contain
some code that has not been modified in years.
The port forced us to review and understand
such code sequences. As a result, we ended up
with more knowledgeable engineers.

• The port allowed us to transform the code into
a more portable state. As we moved away from
tight ties to VAX behavior, we simplified future
tasks such as moving to the OSF/1 and Windows
NT operating systems.

• Although overlapping current VAX development
with the Alpha AXP port slowed down the port­
ing process, the decision to use a common code
base eliminated the future need to integrate two
divergent source codes.

164

• Surprisingly, the code did not grow appreciably
in size or complexity. One strength of the Rdb
and DBMS software has been the ability to easily
modify the code and to add new functionality.
Even after the port, we find that the products
are as malleable and as easy to modify as before.

• We found unreported bugs in our VAX products.

Virtually all the groups involved did a masterful
job. The program team and various Alpha AXP com­
mittees anticipated potential issues and ensured
that the program proceeded smoothly and pre­
dictably. The cross compilers from the language
groups worked superbly. The OpenVMS AXP and
hardware groups delivered their products on time,
and when a user logs in to an Alpha AXP system, the
OpenVMS AXP system is not only familiar but faster.

Acknowledgments
The successful port of the Rdb and DBMS software
to the OpenVMS AXP operating system was a result
of the contributions made by many of the engineers
in the Database Systems Group. The authors sin­
cerely acknowledge the effort of each engineer in
achieving the project goal, that is, to be able to
quickly offer correct versions of Rdb and DBMS on
the Alpha AXP platform. Finally, an unsung hero in
the company-wide effort was Digital's VAX Notes
communications facility. VAX Notes functioned as
an excellent medium for identifying and sharing
problems and solutions.

References

1. T. Leonard, VAX Architecture Reference Manual
(Bedford, MA: Digital Press, Order No. EY-3459E­
DP, 1987).

2. DSRJ Handbook (Maynard, MA: Digital Equipment
Corporation, Order No. AA-GV71A-TE, 1986).

3. OpenVMS Calling Standard (Maynard, MA:
Digital Equipment Corporation, Order No. AA­
PQY2A-TK, 1992).

4. R. Sites, ed., Alpha Architecture Reference
Manual (Burlington, MA: Digital Press, Order
No. EY-L520E-DP, 1992).

Vol. 4 No. 4 Spedal Issue 1992 Digital Technical Journal

James V. Colombo
PamelaJ. Rickard

Paul Benoit

DECnet for OpenVMSAXP:
A Case History

The DECnet for Open VMS AXP networking software facilitates the integration of
Open VMS AXP systems into existing DECnet computing environments. This new soft·
ware product supports application migration by providing the following net­
working capabilities: support of compatible libraries, consistent application
programming interfaces, and the assurance of a common semantic operation with
the Open VMS VAX system. The team implemented a phased porting process and exe­
cuted the project cooperatively. The effort resulted in a solid knowledge base with
which to approach future porting undertakings. Using common code where possi­
ble and avoiding architecture-specific code were lessons learned during the project.

The DECnet for Open VMS AXP networking software
product plays an important role in the integration
ofOpenVMS AXP systems into existing DECnet com­
puting environments. The availability of DECnet
software on the Alpha AXP hardware platform facil­
itates application migration. The networking capa­
bilities needed to support this migration activity
include support of compatible libraries, consistent
application programming interfaces (APis), and the
assurance of a common semantic operation with
the OpenVMS VAX system. The network features
such as network file transfer, remote file access,
remote login, downline load, and local and remote
network management allow the OpenVMS AXP
system to participate fully in a DECnet network.

The purpose of this paper is to describe the pro­
cess of porting the DECnet-VAX product to the
OpenVMS AXP operating system. The DECnet-VAX
product consists of networking software written in
the MACR0-32 and BIJSS-32 programming languages.
The software contains privileged system code,
device drivers, and user-mode utilities.

This paper is divided into two major sections.
The first section presents an overview of the proj·
ect, including discussions about the DECnet fea­
tures supported in the OpenVMS AXP operating
system, the project schedule, and the major DECnet
for OpenVMS AXP components. The second major
section details the process of porting DECnet-VAX
software to the OpenVMS AXP operating system,
including testing and debugging. This section pro­
vides information on nonportable coding practices

Digita l Tecbnical journal Vol. 4 No. 4 Sp ecial Issue 1992

and identifies specific problem areas. It concludes
with a summary of the lessons learned during the
course of the project.

Project Overview
In addition to presenting the DECnet for OpenVMS
AXP features, this section details how we derived a
project schedule and gives an overview of the soft·
ware components.

Software Code Base
Prior to the formation of a team to port a DECnet
product from VAX to the Alpha AXP architecture,
the DECnet-VAX development group completed
a feasibility study of porting DECnet-VAX Phase IV
to the Alpha AXP architecture. This effort was nec­
essary because the DECnet-VAX software was not
designed with porting in mind. The study con­
cluded that it would take four engineers twelve
months (i.e ., 48 person-months) to port DECnet­
VAX to the OpenVMS AXP operating system. After
examining the proposal and investigating the alter­
natives, we decided that the best approach would
be to start by porting DECnet-VAX VS-4.3, a Digital
Network Architecture (DNA) Phase IV implementa­
tion.1 One of the most important factors in making
this decision was that this software version was
in external field test and was nearly ready for
shipment to customers. Another consideration was
that some very important fixes had been made in
that release, and we wanted to offer our customers

165

Alpha AXP Architecture and Systems

the highest quality possible in the first version of
DECnet for OpenVMS AXP software. Since that time,
we have continued to improve our DECnet software
for the OpenVMS AXP operating system and have
recently incorporated some fixes from DECnet for
OpenVMS VAX V5.5-2.

DECnet for Open VMS AXP Features
The first release of the DECnet for OpenVMS AXP
networking product is packaged with the Open VMS
AXP operating system. The initial offering includes
the support of DECnet Phase IV protocols running
over Ethernet or fiber distributed data interface
(FDDI) local area networks. This release supports
distributed task-to-task communications using the
same set of documented programming interfaces
supported in the DECnet-VAX environment. At this
time, DECnet for OpenVMS AXP software does not
support wide area communications devices and
host-based routing. Future releases of DECnet for
OpenVMS AXP may include symmetric multi­
processor (SMP) and cluster alias support.

Project Schedule
The DECnet for Open VMS AXP project schedule was
primarily driven by the overall OpenVMS AXP oper­
ating system product schedule, with the DECnet com­
ponent scheduled for delivery in November 1991.
The DECnet-VAX porting project officially began in
early January 1991, after the code base was selected.

Porting Estimates After analyzing the work
required to achieve the port, we developed general
porting guidelines and estimates based on a num­
ber of factors, including the language the software
was written in, the amount of software to port, and
the number of software component modules. We
then combined these estimates to determine an
overall project schedule. Table 1 presents the
guidelines we used for the porting estimates.

We used two methods to estimate the amount of
work required to complete the port. The Module
Size Method takes into account the number of lines

Table 1 Guidelines for Porting Estimates

Language

BLISS

MACRO

166

Lines of Code
(Per week)

10,000

3,000

Module Count
(Per week)

10

5

of code per software module. The Module Count
Method uses the number of modules per software
component to determine the workload. Both meth­
ods take into consideration the programming lan­
guage used in each module. Table 2 presents details
of the component module count and sizes. We fur­
ther categorized the software being ported into
three groups: privileged code, device driver, and
user-mode utility. The software type was used to
estimate the amount of time needed for linking. In
general, we allocated more time for privileged code
and device drivers.

The estimates were used to derive a first-pass
schedule and to determine resource allocation. A
number of other factors affected the final schedule.
A major factor that we could not quickly estimate
was the portability of the software. The software
techniques encountered and described in this
paper such as coroutines, up-level stack references,
and condition code usage had a direct impact on
the schedule. Also, during the first three months of
the project, significant time was spent learning
how to port code. During this learning period, we
developed the skills, knowledge, and techniques
used throughout the remainder of our porting
work.

Once we established the estimation metrics, the
data was compiled and time estimates calculated
for each component. Tables 3 and 4 show the aver­
age amount of time required to port each DECnet
for Open VMS AXP component.

Based on these calculations, we estimated that it
would take 13 person-months just to port the
DECnet-VAX software. We then used project man­
agement software to plan the schedule. The sched­
ule shown in Table 5 indicated that it would take 48
person-months to meet the OpenVMS AXP sched­
uled completion date of November 22, 1991. We
made our first network connection on July 25, 1991,
20 person-months into the project. Although much
work remained, we were well ahead of the
November target date.

Since we were ahead of schedule, we assisted in
the porting of other components, including RTPAD,
CTDRIVER, RTTDRIVER, and REMACP, all discussed
later in the paper. In addition, we were able to add
support for FDDI.

Milestones The OpenVMS AXP project schedule
consisted of a series of functional internal base
levels numbered one to five. In terms of the whole
OpenVMS AXP project schedule, DECnet for

Vol. 4 No. 4 Special Issue 1992 Dtgttal Technical Journal

DECnet for Open VMS AXP: A Case History

Table 2 Component Module Count and Sizes

Average
Software Module Number Number

Component Type Language Count of Lines of Lines

DTR/DTS User MACRO 14 1937 138.36
EVL Privileged BLISS 10 3821 382.10
HLD Privileged MACRO 9 715 79.44
MIRROR Privileged MACRO 1 131 131.00
MOM Privileged BLISS 15 5835 389.00

MACRO 7 1182 168.86
Subtotal 22 7017 318.95
NCP User BLISS 35 19371 553.46

MACRO 2 712 356.00
Subtotal 37 20083 542.78
NETACP Privi leged MACRO 24 20871 869.63
NETDRIVER* Driver MACRO 4 6891 1722.75
NICONFIG User BLISS 7 2078 296.86
NM Lt Privileged BLISS 31 19889 641.58

MACRO 7 4997 713.86
Subtotal 38 24886 654.89
NETSERVER Privileged BLISS 3 303 101.00

Notes:
* Includes estimates for NDDRIVER
t Includes estimates for NMLSHR

Table 3 Module Size Method

Total Time
Component BLISS MACRO Link per Component

DTR/DTS 0.00 0.65 2.00 2.65
EVL 0.38 0.00 2.00 2.38
HLD 0.00 0.24 2.00 2.24
MIRROR 0.00 0.04 2.00 2.04
MOM 0.58 0.39 4.00 4.98
NCP 1.94 0.24 4.00 6.17
NETACP 0.00 6.96 6.00 12.96
NETDRIVER* 0.00 2.30 6.00 8.30
NICONFIG 0.21 0.00 2.00 2.21
NM Lt 1.99 1.67 4.00 7.65
NETSERVER 0.03 0.00 2.00 2.03
TOTAL
Weeks 5.13 12.48 36.00 53.61
Months 1.18 2.88 8.31 12.37
Years 0.10 0.24 0.69 1.03

Notes:
* Includes estimates for NDDRIVER
t Includes estimates for NMLSHR

Note that the data presented is in weeks, unless otherwise specified. A week equals five working days, a month equals 4.33 weeks, and
a year equals 12 months or 52 weeks.

Digital Tecbn teal Journal Vol. 4 No. 4 Special Issue 1992 167

Alpha AXP Architecture and Systems

Table 4 Module Count Method

Total Time
Component BLISS MACRO Link per Component

DTR/DTS 0.00 2.80 2.00 4.80
EVL 1.00 0.00 2.00 3.00
HLD 0.00 1.80 2.00 3.80
MIRROR 0.00 0.20 2.00 2.20
MOM 1.50 1.40 4.00 6.90
NCP 3.50 0.40 4.00 7.90
NETACP 0.00 4.80 6.00 10.80
NETDRIVER* 0.00 0.80 6.00 6.80
NICONFIG 0.70 0.00 2.00 2.70
NM Lt 3.10 1.40 4.00 8.50
NETSERVER 0.30 0.00 2.00 2.30

TOTALS
Weeks 10.10 13.60 36.00 59.70
Months 2.33 3.14 8.31 13.78
Years 0.19 0.26 0.69 1.15

Notes:
• Includes estimates for NDDRIVER
t Includes estimates for NMLSHR

Note that the data presented is in weeks, unless otherwise specified. A week equals five working days, a month equals 4.33 weeks, and
a year equals 12 months or 52 weeks.

Table 5 Planned Project Schedule

Code Total Time
Component Port Debug Review Test per Component

DTR/DTS 4.80 4.00 2.00 6.00 16.80
EVL 3.00 4.00 2.00 6.00 15.00
HLD 3.80 4.00 2.00 6.00 15.80
MIRROR 2.20 4.00 2.00 6.00 14.20
MOM 6.90 4.00 2.00 6.00 18.90
NCP 7.90 4.00 2.00 6.00 19.90
NETACP 10.80 8.00 6.00 6.00 30.80
NETDRIVER* 6.80 8.00 6.00 6.00 26.80
NICONFIG 2.70 4.00 2.00 6.00 14.70
NMLt 8.50 4.00 2.00 6.00 20.50
NETSERVER 2.30 4.00 2.00 6.00 14.30
TOTALS
Weeks 59.70 52.00 30.00 66.00 207.70
Months 13.78 12.00 6.92 15.23 47.93
Years 1.15 1.00 0.58 1.27 3.99

Notes:
• Includes estimates for NDDRIVER
t Includes estimates for NMLSHR

Note that the data presented is in weeks, unless otherwise specified. A week equals five working days, a month equals 4.33 weeks, and
a year equals 12 months or 52 weeks.

168 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

OpenVMS AXP was targeted for base level five.
However, it was highly desirable to provide file
transfer and remote login capability over DECnet as
early as possible. The project team worked closely
with the OpenVMS AXP group to deliver this sup­
port prior to base level four.

Common Code
One of the most important decisions that helped us
deliver our software ahead of schedule was build­
ing common code for the VAX and Alpha AXP
systems. During the course of porting code, we dis­
covered two advantages to building common code.
The first was having the ability to generate VAX and
Alpha AXP images from a single set of source code.
The second was being able to debug our ported
changes in a stable OpenVMS VAX environment. We
accomplished this by rewriting code that required
change so that it worked on both platforms. We

RTPAD REMACP DTS DTR

DECnet for Open VMS AXP: A Case History

made architecture-specific code conditional on the
platform on which it would execute. Our long-term
goal is to incorporate common code into future
DECnet for Open VMS products.

DECnet for Open VMS AXP Components
This section describes the major DECnet for
OpenVMS AXP components and lists the porting
issues relevant to each.2 Figure 1 shows the inter­
connection of the various components of the
DECnet for OpenVMS AXP software. Detailed infor­
mation for each porting issue is further discussed in
this paper under the Porting Issues heading.

NETDRIVER NEIDRIVER is a pseudo device
driver, i.e., a device driver that does not directly
control any hardware devices. It implements the
routing, end communication, and session control
layers of the Phase IV version of DNA. 1

USER RMS EVL NICONFIG

NCP APPLICATION

NICE MESSAGES

LOCAL REMOTE

PERMANENT - NMLSHR - NML
DATABASE

CTDRIVER

I RTIDRIVER I

$010

NETDRIVER

SESSION

END COMMUNICATION

ROUTING

NETSERVER

DATA LINK DRIVER

Figure 1 DECnet for Open VMS AXP Components

Digital Tecb11icalJoun1al Vol. 4 No. 4 Special Issue 1992

$010

NETACP

ROUTING
DATABASE

VOLATILE
DATABASE

169

Alpha AXP Architecture and Systems

The queue 1/0 request ($QIO) system service is
the interface into the session control layer. The
NETDRIVER routing layer communicates with other
device drivers that implement the data link layer of
DNA. NETDRNER communicates with NETACP
(another component discussed later in this section)
to perform network management functions, to
report state and network topology changes, and to
perform operations that require process context.

NETDRIVER is written in MACR0-32 code and pre­
sented us with many porting issues, includ­
ing device driver changes, coroutines, memory
management changes, page size dependencies,
atomicity and granularity problems, OpenVMS AXP
operating system data structure changes, unaligned
references, and up-level stack references.

MOM The maintenance operations module
(MOM) image processes service operations defined
by the maintenance operation protocol (MOP). One
such service operation is downline loading remote
systems. MOM uses NDDRIVER (described in the
next subsection) to communicate with the remote
system over a DECnet circuit. MOM communicates
with NETACP to gather information about nodes
requesting to be downline loaded. NETACP creates a
process running the MOM image when a request for
a service operation is received on a circuit enabled
to perform service operations.

MOM is written primarily in BUSS-32 code. Porting
issues included removing dependencies on the for­
mat of a VAX argument list, condition handling
changes, and Alpha AXP image header changes.

NDDRIVER The pseudo device driver NDDRIVER
implements an interface that allows MOM to use a
DECnet circuit to perform service operations using
DNA MOP. The MOM image uses the $QIO system
service interface to send MOP messages to and
receive MOP messages from NDDRNER, which then
communicates with the data link device drivers to
transmit and receive these messages. NDDRNER
communicates with NETACP to perform tasks
that require process context and to receive notifica­
tion of state changes to circuits enabled for service
operations.

NDDRIVER is written in MACR0-32 code. Porting
issues included changes to device drivers, memory
management, and OpenVMS AXP operating system
data structures, as well as page size dependencies.

CTDRIVER, RTTDRIVER, and REMACP CTDRIVER
is a pseudo device driver for remote terminals using

170

the DNA command terminal (CTERM) protocol.
CTDRIVER and RTTDRIVER perform similar func­
tions with the exception that RTTDRIVER is used for
interoperability with older implementations of
remote terminal support. REMACP is an ancillary
control process (ACP) that receives incoming
requests for remote terminal support. After REMACP
establishes a connection with the remote node,
either CTDRNER or RTTDRNER communicates
directly with NETDRIVER to send and receive
remote terminal protocol messages.

CTDRIVER, RTTDRIVER, and REMACP are written in
MACR0-32 code and presented the following port­
ing issues: device driver changes, unaligned refer­
ences, OpenVMS AXP operating system data
structure changes, and for REMACP, changes in the
interface with CTDRIVER.

NETACP NETACP runs as an ACP that assists
NETDRIVER in performing network operations that
require process context. Examples include creating
processes for incoming logical links and assigning
channels to data link devices. NETDRIVER and
NETACP also work together to maintain information
about the state of the network. Another major func­
tion performed by NETACP is the management of
the network configuration parameters residing in
virtual memory.

NETACP is written in MACR0-32 code. Porting
issues included coroutines, usage of processor
status longword (PSL) condition codes, memory
management changes, page size dependencies,
atomicity and granularity problems, OpenVMS AXP
operating system data structure changes, and
unaligned references. In addition, the use of "poor
programmer's lockdown;' a method of locking
pages into a working set, required modification.

NETSERVER The NETSERVER image is run by
server processes created to handle incoming logi­
cal link requests. NETSERVER invokes the image or
command procedure associated with the network
object specified by the incoming logical link. To
avoid the overhead of process creation, a server
process can be reused after the logical link it was
servicing is terminated. Idle server processes regis­
ter themselves with NETACP so that they may be
reused for another logical link.

NETSERVER is written in BUSS-32 code. The
only porting change necessary was the addition
of the BLISS VOLATILE attribute to several data
declarations.

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

NCP The network control program (NCP) is the
user interface for network management. NCP com­
municates with other network management com­
ponents using the network information and
control exchange (NICE) protocol. NCP can be used
to manage the local node as well as remote nodes.
When managing the local node, NCP exchanges
NICE protocol messages with the NMLSHR shareable
image. For remote management, NCP creates a logi­
cal link to the network management listener (NML)
object on the remote node and exchanges NICE pro­
tocol messages over this logical link.

NCP consists primarily of BLISS-32 modules. The
major porting issue associated with NCP was chang­
ing the code to use LIB$TABLE_PARSE rather than
LIB$TPARSE.

NMLSHR NMLSHR is a shareable image that pro­
cesses NICE protocol network management mes­
sages on an OpenVMS system. NMLSHR decodes
NICE messages received as input and performs the
requested management operation. NMLSHR builds
NICE protocol messages as a response to requests
asking for network management information to be
returned. NCP and NML both link with the NMLSHR
image to call the routines that process the NICE pro­
tocol messages.

NMLSHR is written in BLISS-32 and MACR0-32.
Porting issues included dependencies on the for­
mat of a VAX argument list and changes required to
link shareable images.

NML The network management listener (NML)
image is run when a remote node requests a con­
nection to the NML object to perform remote
network management operations. NML sends NICE
protocol messages to and receives them from the
remote node. NML passes NICE protocol messages
received from the remote node to NMLSHR for
decoding and receives messages from NMLSHR to
send to the remote node.

NML is written in BLISS-32 code. The only porting
change made to NML code was to add the BLISS
VOLATILE attribute to one data declaration.

EVL The event logger (EVL) receives event mes­
sages from the various DNA layers. EVL can also act
as an event sink for messages generated at a remote
node. EVL is started by NETACP and declares itself
as a network object so that remote nodes can con­
nect to the EVL object and send event messages. EVL
can log events to a file in binary form or format the

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

DECnet for Open VMS AXP: A Case History

messages into something readable by a network
manager.

EVL is written in BLISS-32 code. Porting issues
included adding the BLISS VOLATILE attribute to
some data structure definitions and aligning data
structure fields on natural boundaries.

DTS and DTR The DECnet test sender (DTS) and
the DECnet test receiver (DTR) are cooperating pro­
grams that can be used to test the network connec­
tion between two nodes. DTS runs on the local node
and communicates with DTR on the remote node.
DTS and DTR can be used to test the throughput and
reliability of a line over which DECnet is running.

DTS and DTR are written primarily in MACR0-32
code. The two major porting issues associated with
DTS and DTR were changing the code to use
LIB$TABLE_PARSE rather than LIB$TPARSE and add­
ing some BLISS-32 code to support floating-point
operations.

RTPAD RTPAD provides the connection between
a local terminal and the remote terminal services of
a remote node. RTPAD is invoked as the result of
executing the SET HOST command of the Digital
Command Language (DCL). RTPAD communicates
with REMACP and CTDRIVER or RTTDRIVER on the
remote system to provide remote terminal support.
RTPAD accepts input from the local terminal (which
could be another remote terminal) and sends this
data over the network to the remote node. Output
from the remote node is received by RTPAD and dis­
played on the local terminal.

RTPAD is written in MACR0-32 code. Porting
issues included unaligned references and aligning
data structure fields on natural boundaries.

N/CONFIG NICONFIG is the Ethernet configurator
that listens to the MOP system identification mes­
sages broadcast on Ethernet circuits and maintains
a database of configuration information for all sys­
tems heard. NCP is used to manage and display the
information maintained by NICONFIG. NICONFIG
runs as a process created by NMLSHR and communi­
cates with NMLSHR over a DECnet logical link using
the NICE protocol.

NICONFIG is written in BLISS-32 code. The only
porting change was to remove the module switch
LANGUAGE.

HLD The host loader (HLD) communicates with
the DECnet-RSX satellite loader to downline load

171

Alpha AXP Architecture and Systems

tasks to an RSX-llS node. HLD is written in MACR0-
32 code. The only porting change was to update the
structure definition language used to create one
data structure.

MIRROR The Ioopback mirror participates in
network services protocol and routing layer Ioop­
back testing. MIRROR is written in MACR0-32 code.
No porting changes were required though changes
were made to the link procedure.

DECnet-VAX Port to the openVMS
AXP operating System
This section discusses the development environ­
ment, process, and issues related to porting the
DECnet-VAX product to the OpenVMS operating
system.

DECnet for Open VMS AXP
Development Environment
DECnet for OpenVMS AXP is built with and inte­
grated into the OpenVMS AXP operating system.
Many changes were being made to system data
structures that directly affected the DECnet soft­
ware. These changes required the DECnet for
OpenVMS AXP software to be built with and tested
on many interim operating system base levels
before the combined OpenVMS AXP operating
system and DECnet for OpenVMS AXP kit was
shipped for layered product development.

Because the development tools changed through­
out the project, we used the same tools to port the
DECnet-VAX software as were used to develop the
operating system base levels. When we copied por­
tions of an Open VMS AXP base level, we also copied
the tool directories associated with the system
build. We used cross compilers for MACR0-32 and
BUSS-32, which allowed us to develop Alpha AXP
software on an OpenVMS VAX system.3 In addition,
we used the OpenVMS AXP linker, librarian, and
system dump analyzer (SDA) cross tools on the VAX
system.4·5 We also used the OpenVMS AXP debug­
ging tools Delta and XDelta on the Alpha AXP proto­
type hardware.6

Initial DECnet for OpenVMS AXP testing was
accomplished on a VAX system. Such testing was
possible because we designed a majority of the
DECnet for OpenVMS AXP code to run on both VAX
and Alpha AXP hardware platforms.

The Alpha AXP prototype system used for testing
utilized a shared disk that contained the OpenVMS
AXP operating system images. The images and test

172

procedures were copied onto the disk from a AXP
system. Each time new DECnet for OpenVMS AXP
images or test procedures had to be added to the
shared disk during a test or debug session, the Alpha
AXP test system had to be stopped, the disk
mounted on the VAX system, images copied, the disk
dismounted, and the Alpha AXP system rebooted.
Providing file transfer support by means of the
DECnet for OpenVMS AXP software early in the
Alpha AXP project provided increased productivity
for anyone testing on Alpha AXP prototype systems.

Porting Process
The process of porting the DECnet software from
the VAX hardware platform to the Alpha AXP
platform consisted of the following steps: code
preparation, compilation, linking, code review,
debug, and testing. We did not start the task of port­
ing DECnet-VAX with a completely clear vision of
the total process. As we progressed and learned
more about the tools and porting process, we
improved our porting techniques and, as a result,
our productivity.

Our strategy was to begin by porting the drivers
and privileged code. These components were the
most complex; they were written completely in
MACR0-32 code and had the greatest potential for
change. We started with NETDRIVER and NETACP,
assigning one engineer to work on each compo­
nent. As our porting group grew in number, we
began to port, in parallel, the BUSS modules that
comprise NCP, NML, NMLSHR, EVL, and MOM.

The following is an overview of the process we
used to port the DECnet-VAX software to the Alpha
AXP platform. Later sections contain details of cod­
ing practices that had to change.

Code Preparation Our first task was to create
procedures that we could use early in the porting
process to compile single modules of a DECnet for
OpenVMS AXP component. We also ported the com­
ponent's build procedure to use the new Alpha AXP
cross tools.

Next, we began to prepare the code for initial
compilation. MACR0-32 code must have each entry
point identified prior to the initial compile. Entry
points are identified by a compiler directive such as
.JSB_ENTRY and .CALL_ENTRY. Each directive
accepts optional parameters that identify register
usage. However, this information is not required
at this point in the porting process. The Alpha
AXP MACR0-32 compiler will provide register

Vol. 4 No. 4 Special Issue 1992 Digital Technical journal

usage hints during the compilation, if so directed.
A5 the team became familiar with the porting
process, we were able to combine these steps
and include the register usage information when
declaring entry points. Also, as our experience
increased, we were able to make changes to non­
portable coding practices prior to the initial com­
pile of a module.

Our experience proved, as we expected, that
BLISS code is far easier to port than MACR0-32 code.
For the DECnet-VAX components containing BLISS
modules, we began the port by running the compo­
nent's build procedure. BLISS routines do not
require that entry points be identified. The com­
piler can process each module, identify errors, and
provide warning and informational messages.

Compile Process After we completed the initial
code preparation and created customized build
procedures, the real iterative process of porting
began. At this point we compiled one or more
modules, made additional modifications based on
the compilation results, and recompiled until we
were reasonably satisfied that all the errors were
fixed.

The Alpha AXP cross compilers, the MACR0-32
compiler in particular, have the capability of pro­
viding a vast array of informational and warning
messages. When compiling a module, we always
requested all informational messages. The infor­
mation assisted us in identifying the input and out­
put registers as well as the registers that the
compiler automatically preserved. Using this infor­
mation, we verified the register usage in each rou­
tine and added the information to the entry-point
directives. Other informational and warning mes­
sages directed us to coding techniques that
required change. By working with one module at a
time, we avoided making repetitive porting errors
in multiple modules prior to our complete under­
standing of how to solve the more complex porting
problems.

Some informational messages caution that cer­
tain coding techniques such as data alignment
should be modified. We observed that attempting
to make changes to align all data structure ele­
ments prior to completing preliminary debug and
testing caused many debug problems. Therefore,
we decided to establish a porting policy to change
only as much code as was absolutely necessary
prior to the initial debug and test of a DECnet for
OpenVMS AXP software component. Adhering to
this policy required careful consideration, since

Dtgttal Tecbntcal Journal Vol. 4 No. 4 Special Issue 1992

DECnet for Open VMS AXP: A Case History

some atomicity and granularity problems that are
not resolved/addressed might cause code failures
during debug.3

NETDRIVER and NETACP contained architecture­
specific code, including memory management,
driver tables, and structure definitions, which had
to be made conditional for the OpenVMS AXP and
OpenVMS VAX systems. A prefix file was added to
each MACR0-32 module during the Alpha AXP com­
pilation step. This file contained an Alpha AXP dec­
laration that allowed us to include the directives
required for conditional compilation. To compile
the ported code on a VAX system, it was necessary
to provide a VAX declaration and macros for the
various entry-point directives that when expanded
contained no instructions. These were placed in a
common library file and conditionally compiled.
The library file is included in each module. Figure 2
is an example of a library file that contains a VAX
declaration and macros.

BLISS architecture-specific code was made
conditional using the %if %bliss(bliss32v) or %if
%bliss(bliss32e) constructs for OpenVMS VAX and
OpenVMS AXP, respectively.

After porting all the modules within a compo­
nent, the component's build procedure was run to
ensure that each module had been ported without
error. This was typically the first attempt to link the
component. We also ran the OpenVMS VAX proce­
dure to ensure that the code would continue to
compile and link on the OpenVMS VAX operating
system.

Linking The process of linking was difficult at
times. The DECnet for OpenVMS AXP software con­
tains drivers, system images, and shareable images.
Each component required changes to the link pro­
cedures. We made these procedures conditional for
both the OpenVMS VAX and the Open VMS AXP oper­
ating systems.

The process of linking the ported modules
brought to light many unresolved references. In
general, these references were to external routines
that had changed for the OpenVMS AXP operating
system. One of the most difficult aspects of the
porting project was determining which changes
to the OpenVMS operating system had an impact
on our project. Determining these changes was
difficult because DECnet for OpenVMS AXP is
tightly integrated into the OpenVMS AXP operating
system. The process of porting applications to
the OpenVMS AXP environment should not be as
difficult.

173

Alpha AXP Archltecture and Systems

.SUBTITLE $DECNETDEF

;
;
;

Define all those symbols that should precede all DECnet
macro modules.

.MACRO $DECNETDEF

.IF NOT_DEFINED Alpha_AXP
;
;
;

These make Alpha AXP code compile on VAX builds by doing
nothing when encountered

;
VAX=1
; • J SB_ENTRY

.macro .jsb_entry, input, output, scratch, preserve

.endm
; .JSB32 ENTRY

.macro .jsb32_entry, scratch, preserve

.endm
; . CALL_ENTRY

.macro .call_entry, preserve, max_args=O,­
home_args=false, input, output, scratch

.ENDC

.ENDM
I

.endm

Figure 2 Library File That Contains a VAX Declaration and Macros

Code Review When all the known porting prob­
lems found during the compile and link phases had
been corrected, we began our code review process.
The original VAX code, the ported code, and a dif­
ference listing were available to the porting team.
One or more members of the team reviewed the
changes made and pointed out any problems that
were identified to the person responsible for the
module being reviewed. We all had previously
agreed that the reviews would be friendly and that
egos would be left out of the process. We found that
our successful code reviews were well worth the
effort.

Initial reviews turned up differing philos­
ophies regarding the porting process. We discussed
these differences and reached a consensus. The
reviews uncovered errors in the porting process,
and correcting these problems reduced the amount
of debugging required. The review process also
allowed us to agree on and maintain coding stan­
dards.

Debugging Our approach to debugging the
DECnet for OpenVMS AXP software was to build the
common ported code for a VAX system and to
replace the OpenVMS VAX images with our ported
version on one of our workstations. We began by

174

loading the ported NETDRNER and NETACP compo­
nents. Since many of the required changes were
common to both OpenVMS AXP and OpenVMS VAX
systems, we were able to debug much of this code
before we had access to Alpha AXP hardware. We
found and fixed a number of problems using this
technique.

When we were reasonably confident that the
ported code was working on the OpenVMS VAX
operating system, we began testing on Alpha AXP
prototype hardware, which fortunately had just
become available. We completed the driver load
and ACP initialization testing. The initial test uncov­
ered some problems that required special
workarounds to allow debug to continue. These
problems were corrected in later versions of the
tools. Since the user interface had not yet been
ported, test code was written to start DECnet for
OpenVMS AXP and begin debugging the $QIO inter­
face to the driver.

Eventually NCP, NML, and NMLSHR were ported,
and more comprehensive debugging began. We
used the OpenVMS AXP XDelta and Delta tools to
debug the DECnet for OpenVMS AXP code on our
Alpha AXP prototype hardware. System failures
were debugged using the SDA cross tool on a VAX
system. We learned how to trace call chains by

Vol. 4 No. 4 Special Issue 1992 Digital Technical Jo11r11al

studying the OpenVMS calling standard."'
Understanding the format of linkage pairs, proce­
dure descriptors, and register save areas made
debugging much easier prior to the availability of
these features in SDA. Debugging on an Alpha AXP
system is more difficult than on a VAX system since
most VAX instructions generate multiple Alpha AXP
instructions whose positions are optimized by the
compiler to take advantage of Alpha AXP architec­
ture features. Thus, it is not always easy to follow
the Alpha AXP code line by line because the gener­
ated Alpha AXP code from one language statement
is interspersed with Alpha AXP code generated
from another language statement.

Testing After solving the obvious problems dur­
ing the debug process, we began to test the DECnet
for OpenVMS AXP code. Early versions of the
OpenVMS AXP file system, record management ser­
vices (RMS), and the file access listener (FAL) were
made available to us. We in turn provided the
DECnet for Open VMS AXP code to the group porting
OpenVMS RMS and FAL for their use in debugging.
We were then able to run test scripts that used a
variety of DCL commands to perform loops of
remote copies, differences, and directory listings of
remote files. DECnet network management scripts
tested the network management interface. DTS and
DTR were used to perform data transfer testing.
Since the DECnet for OpenVMS AXP software was
available early, it was used by other Alpha AXP port­
ing groups on Alpha AXP prototype hardware in
various locations. As the code stabilized, a timeshar­
ing system was set up, which provided the opportu­
nity for more testing.

Porting Issues
When we began porting the DECnet-VAX software
to the Alpha AXP hardware platform, we found
many coding conventions could not be used. Most
of these coding practices are called out by the cross
compilers, which significantly helped the porting
effort.3

The following is a discussion of some problems
we encountered while porting and how we solved
them.

Entry Points Approximately four months into the
project, the porting team determined that using the
.JSB_ENTRY directive in NETDRIVER was going to
make porting difficult. The difficulty was due to
the complexity of the code and the fact that some
code paths contained more than a dozen layers of

Digital Teclmicaljounu1/ Vol. 4 No. 4 Special Issue 1992

DECnet for Open VMS AXP: A Case History

subroutine calls. We concluded that the code,
which had existed for a long time, already saved and
restored the correct registers. We decided that try­
ing to communicate the correct list of input, out­
put, pass-through, and preserve registers to the
compiler could be an impossible task, especially
given our schedule. We investigated the possibility
of using the .JSB32_ENTRY directive. This directive
allows the specification of registers that must be
preserved but does not take any input, output, or
scratch parameters. The OpenVMS AXP MACR0-32
cross compiler will not automatically preserve any
registers when this directive is used. A great deal of
care must be taken when using this entry-point
directive.

Our decision to use .JSB32_ENTRY to declare entry
points led to an interesting problem with asyn­
chronously executing code that could interrupt
other threads of execution. The DECnet-VAX code
that we ported used PUSHR and POPR instructions
to save and restore registers that were modified
by DECnet-VAX code interrupting another thread of
execution. When adding the .JSB32_ENTRY direc­
tives, we specified a register preserve parameter
only on external entry points, assuming that the
remainder of the original DECnet-VAX code was sav­
ing the proper registers. The preserve parameter
ensures that all 64 bits of the registers specified are
saved at routine entry and restored at routine exit.
The PUSHR and POPR instructions preserve only
the low-order 32 bits of the specified registers.
However, if DECnet-VAX code in a routine without
the .JSB32_ENTRY preserve parameter interrupts
another thread of execution that makes use of the
upper 32 bits of a register, these upper 32 bits
would not be properly restored when control
returned to the interrupted thread. The solution
was to specify the register preserve parameter on
the .JSB32_ENTRY directives used to declare the
entry points of routines in DECnet for OpenVMS
AXP that are capable of interrupting other threads
of execution.

Whenever we changed the input or output
parameters to an internal subroutine, we also
changed the name of that subroutine. This effort
helped identify all the internal calls made to sub­
routines whose interface had changed.

Coroutines A feature of the VAX architecture used
throughout the NETACP and NETDRIVER com­
ponents is called a coroutine. Coroutines used
in MACR0-32 allow a subroutine to call code frag­
ments in other subroutines. This technique uses the

175

Alpha AXP Architecture and Systems

jump-to-subroutine construct JSB @(SP)+ to jump
between coroutines. The code example shown in
Figure 3 demonstrates the use of the JSB construct.

The general flow of the example is for MAIN to
call COROUTINE with RO equal to O and RI equal
to 1. Usually, COROUTINE changes the value of RI to
2 and calls back MAIN at address SAVE. If COROUTINE
is entered with RI not equal to 1, then RO is set to 1
and the coroutine dialogue terminates. MAIN at
address SAVE then tests RO and exits. Under normal
circumstances, MAIN at address SAVE continues,
storing the returned value of RI in DATA and calling
back the coroutine at address FINAL. COROUTINE at
address FINAL then changes the value of RI to 3, sets
the return status in RO to 1, and returns to MAIN at
address TERMINATE. TERMINATE then exits MAIN via
the RSB instruction.

All entry points in MACR0-32 code on an
OpenVMS AXP operating system must have an entry
directive. Thus, it is not possible to use theJSB con­
struct to jump to any random line of code, as the
previous example demonstrates. To do so, the code
shown in Figure 3 would have to be split into sub­
routines, each with a .JSB_ENTRY or .JSB32_ENTRY
entry directive. Also, we had to change the imple­
mentation of coroutines. Rather than use the stack
to pass return addresses, we passed each return
address in a register.

Since some coroutines ported were more com­
plex than the example shown in Figure 3, we devel­
oped a technique to port VAX coroutines to the

MAIN: MOVL #0, RO
MOVL #1, R1
JSB COROUTINE

SAVE: BLBS RO, TERMINATE
MOVL R1, DATA
JSB @(SP)+

TERMINATE: RSB

COROUTINE: CMPL R1, #1
BNEQ EXIT
MOVL #2, R1
JSB @(SP)+

FINAL: MOVL #3, R1

EXIT: MOVL #1, RO
RSB

Alpha AXP architecture. When a coroutine is split
into multiple routines, some code, such as that test­
ing returned values, may change relative location.
In our example, the error processing at SAVE is no
longer necessary. Instead, COROUTINE returns to
MAIN if it detects an error, and MAIN simply returns
to its caller with the status in RO. The VAX code
example in Figure 3 was converted to Alpha AXP
code using our technique. The resulting code is
shown in Figure 4.

The use of coroutines on Alpha AXP systems
should be discouraged because of the overhead
associated with storing the return address in regis­
ters and the additional consumption of stack space.
Rather than a simple return address on the stack,
there will be a register save area on the stack for
each subroutine that makes up the coroutine.
Recursive coroutines can consume large quantities
of stack space. We have since converted coroutines
used in main code paths to straight in-line subrou­
tine calls.

Stack Usage MACR0-32 code uses a number of
common coding techniques that require knowl­
edge of the state of the stack and that must be
changed for the OpenVMS AXP operating system.
One such technique, referred to as an up-level stack
reference, occurs whenever a subroutine attempts
to access information (address or data) stored on
the stack by its caller. Parameter passing sometimes
uses this technique. If a routine pushes arguments

; Assume fai Lure
; Set initial value

Open a coroutine dialogue

No change in value
; Save the changed value

Continue coroutine dialogue

; Ex it with status in RO

Should we change the value?
; If not, exit routine
; Change the value
; Call back to coroutine

; Final value

; Signal success
; Return

Figure 3 VAX Code Example Showing the Use of the Construct]SB @ (SP)+ to Jump between Coroutines

176 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

DECnet for Open VMS AXP: A Case History

MAIN: .JSB_ENTRY OUTPUT=<RO,R1>,­
SCRATCH=<R2>

MOVL
MOVL
MOVAB
BSBW
RSB

110, RO
111, R 1
SAVE,R2
COROUTINE

; Assume failure
; Set initial value
; Next coroutine address
; Open a coroutine dialogue
; Return to caller

COROUTINE: .JSB - ENTRY INPUT=<R1,R2>,-
OUTPUT=<RO,R1,R2>

CMPL R1, 111 ; Should we change the value?
BNEQ EXIT ; If not, ex it routine
PUSHL R2 ; Save next coroutine address
MOVL 112, R1 ; Change the value
MOVAB FINAL,R2 ; Coroutine address for SAVE to use
JSB @(SP)+ ; Continue at SAVE

EXIT: MOVL 111 , RO ; Set status
RSB ; Return to MAIN

SAVE: . JSB_ ENTRY INPUT=<R1,R2>,-
OUTPUT=<RO,R1>

PUSHL R2 ; Save next coroutine address - FINAL
MOVL R1, DATA ; Save the changed value
JSB @CSP)+ ; Continue coroutine dialogue at FINAL
RSB ; To COROUTINE

FINAL: .JSB_ENTRY OUTPUT=<RO,R1>
MOVL 113, R1
RSB

; Final value
; To SAVE

Figure 4 Alpha AXP Code Example Showing the Use of the Construct
]SB @(SP)+ to Jump between Coroutines

onto the stack prior to jumping to a subroutine, the
called subroutine does up-level stack references to

retrieve the arguments. Other techniques include
using the stack as a common data area or attempt­
ing to manipulate the caller's return address in
order to alter the program flow.

All these techniques require re-coding. When we
encountered code that passed parameters on the
stack, we modified the code to pass parameters in
registers. If a structure was being passed, separate
memory was allocated and the address of the struc­
ture passed in a register. In one case, NETACP used
coroutines to perform specific functions to update
a common data area allocated on the stack. This
code was redesigned to eliminate the coroutines
and up-level stack references. Another alternative
would have been to pass the address of the data area
on the stack to the called routine.

Altering the program flow when error condi­
tions were encountered was also a common tech­
nique used in the DECnet-VAX MACR0-32 code.

Dtgttal Tecbntcal Journal Vol. 1 No. 4 Spedal Issue 1992

Subroutines removed the return address from the
stack and returned to the caller's caller. We modi­
fied the code to remove the up-level stack refer­
ence (the caller's return address) and return a flag
in a register to signal the caller that a change in the
program flow was desired.

Condition Codes The Alpha AXP architecture
does not support global condition codes in the pro­
cessor status word. Some routines set condition
codes and returned to the caller, which proceeded
to perform a conditional branch on the results of
the called routine. All occurrences of this tech­
nique were changed; routines now pass the result
of any conditional test to the caller in a register.

Granularity and Atomicity Issues8 The NETACP
and NETDRIVER components access shared data
structures. Since NETDRIVER can interrupt NETACP,
the DECnet-VAX code relies on the atomicity of VAX

177

Alpha AXP Architecture and Systems

instructions to provide synchronized access to
shared fields in the data structures. The DECnet-VAX
code also relies on byte (8-bit) and word (16-bit)
granularity for memory writes. Since the granular­
ity of Alpha AXP memory writes is either longword
(32-bit) or quadword (64-bit), DECnet-VAX code
that required atomic access to word fields had to
be modified to protect against writes to neighbor­
ing byte and word fields sharing the same long­
word or quadword. In DECnet for OpenVMS AXP,
word data structure fields shared by NETACP and
NETDRIVER that required atomic access were
moved to their own aligned quadwords to prevent
interference from simultaneous writes to other
byte and word fields sharing the same quadword.
After the word fields were placed in their own
aligned quadwords, the code generated by the
MACR0-32 cross compiler for the ADAWI instruction
was sufficient to provide atomic access to the word
fields. We could also have used compiler directives
to specify that VAX granularity and atomicity rules
be preserved.

BLISS-32 Code The BLISS-32 code in the DECnet­
VAX software was relatively simple to port. We
made minor changes to add the VOLATILE parameter
to data items that should not be cached in registers,
to conditionally compile the exception handlers
for VAX or Alpha AXP, and to remove unsupported
built-ins. Other modifications were more exten­
sive, such as the changes to accommodate the new
LIB$TABLE_FARSE.

%IF %BLISS(BLISS32V) %THEN

LIB$TPARSE Changes LIB$TPARSE and LIB$TABLE_
PARSE are the interface routines to a general­
purpose, table-driven parser for the OpenVMS
VAX and OpenVMS AXP operating systems, respec­
tively. The call to these routines was made condi­
tional for the VAX and Alpha AXP architectures.
Other changes were required because LIB$TPARSE
and LIB$TABLE_FARSE differ in the way argument
lists are passed. The method used by LIB$TPARSE to
pass arguments is incompatible with the OpenVMS
AXP calling standard. The LIB$TPARSE action rou­
tines required modification as a result of the
required change to LIB$TABLE_PARSE for the
OpenVMS AXP operating system. The LIB$TPARSE
action routines received all or a subset of the argu­
ment block as parameters. LIB$TABLE_PARSE passes
the address of the argument block to the action
routines. The solution we used was to make the
routine declaration conditional so that on the
OpenVMS VAX operating system the action routines
continued to receive the argument block parame­
ters, and on the Open VMS AXP operating system the
action routines received the address of the argu­
ment block. Next, for the OpenVMS AXP operating
system, the parameter names used by the common
code were bound to the argument block. These
changes are shown in Figure 5.

As a result of this relatively simple though repeti­
tive change, no other changes had to be made in the
action routines. If at some future time the Open VMS
VAX operating system uses LIB$TABLE_PARSE, there
will be no need for conditionals.

GLOBAL ROUTINE ACT$INV_COMMAND (OPT,STRCNT,STRPTR,TKNCNT,TKNPTR,CHR,
NUM,PARAM) = !

%ELSE
GLOBAL ROUTINE ACT$I NV_COMMAND (PARSE STATE : REF $BBLOCK) %FI

%IF %BLISS(BLISS32E) %THEN
BIND

%FI

OPT
STRCNT
STRPTR
TK NCNT
TKNPTR
CHR
NUM
PAR AM
;

PARSE_STATE[TPA$L_OPTIONSJ,
PARSE_STATECTPA$L_STRINGCNTJ,
PARSE_STATE[TPA$L_STRINGPTRJ,
PARSE_STATE[TPA$L_TOKENCNTJ,
PARSE_STATE[TPA$L_TOKE NPTRJ,
PARSE_STATE[TPA$B_CHARJ,
PARSE_STATE[TPA$L_NUMBERJ,
PARSE STATE[TPA$L_PARAM]

Figure 5 LIB$TPARSE Changes

178 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Conclusion
This porting effort not only provided a solid base of
knowledge with which to begin the port of the
DECnet/OSI for OpenVMS VAX software and the
associated products, but also gave us an apprecia­
tion of common code and the avoidance of archi­
tecture-specific code.

More and more software is being ported to new
hardware platforms. The porting process is often
carried out by individuals who did not develop
the original software and who may not even be
familiar with it. Our experience porting the
DECnet-VAX code leads us to believe that new soft­
ware development should take into account the
possibility that the code will be ported to new
hardware platforms at some future date. As we con­
tinue to port the DECnet/OSI for OpenVMS VAX soft­
ware, it is becoming increasingly obvious that
certain coding practices are difficult to port. As a
general suggestion, if the code has knowledge of
the architecture but can be written using system
routines, system services, or run-time library func­
tions, write the code in that manner. These system
routines will be ported with the operating system,
and in a majority of the cases, the application code
will not require modification.

Also, if architecture-specific functions are
required, provide only a minimum amount of code
to perform these required functions and segregate
the code. Document how the code works, why it
had to be done that way, what the alternatives were,
and why they were not taken. In addition to helping
maintain the code, this information may provide
valuable assistance to a person porting the code in
the future.

If a routine is written in assembly language for
the sole purpose of performance improvement,
consider rewriting it in a high-level language. It is
possible that the assembly language coding conven­
tions that may have been optimal for one hardware
platform will be slower on a different hardware
platform. Using high-level language compilers,
which generate optimized hardware-specific code,
will eliminate additional porting effort and may
very likely be the best performance solution.

As we discovered during the process of porting
the DECnet-VAX software, MACR0-32 code is signifi­
cantly more difficult to port than code written in
higher-level languages. However, certain architec­
ture-specific functions may have to be written in
assembly language. We recommend that these func­
tions be isolated. In addition, we recommend that

Digital Tech11icalJou r 11 a / Vol. 4 No. 4 Sp eda/ Issue 1992

DECnet for OpenVMS AXP: A Case History

any other code written in MACR0-32 be rewritten,
over time, in a higher-level language.

We determined that the fastest approach to port­
ing was to make the minimum number of changes
required to get the DECnet for OpenVMS AXP soft­
ware running. The porting process was accom­
plished in phases. The first phase included the
initial port and addressed any errors that occurred
until we successfully completed linking the image.
This phase also included the initial debug, which
was first performed on VAX systems because of our
common code approach and, subsequently, done
on Alpha AXP prototype hardware. When the prod­
uct was stable, we proceeded to the second phase
in which we began to methodically align data struc­
tures and fix granularity and atomicity problems.
Small changes could then be made and tested, and
any new problems were generally easy to identify.

Our team approach to the project worked
extremely well. Each team member was initially
responsible for porting specific portions of the
code. As the project progressed, individuals worked
on any part of the product that needed attention.
This flexibility was also used when we began to
debug the ported code and again when we began
to respond to problem reports. Priorities were used
to assign resources in order to solve problems as
quickly as possible. Throughout the project, team
members worked together to share knowledge and
to solve problems efficiently. This effective team­
work allowed us to deliver the DECnet for Open VMS
AXP product ahead of schedule.

Acknowledgments
The authors would like to thank the other members
of the software development team, Ken Roberts,
Cathy Wright, our manager John Heron, and the
group engineering manager Morea Martocchio,
whose hard work made this project a success. In
addition, we would like to thank all the individuals
of the Alpha AXP project who helped us along the
way. In particular, we would like to recognize cer­
tain individuals for their important contributions to
the success of this project: Paul Weiss, our porting
consultant; Lenny Scubowitz, David Gagne, and
Ben Thomas of the 1/0 team; Karen Noel and Mike
Harvey of the executive group; and Steve Dipirro of
the XDelta team.

The DECnet for OpenVMS AXP project was only
part of the Alpha AXP team effort. We feel fortunate
to have experienced the synergy that this team
created.

179

Alpha AXP Architecture and Systems

References
1. A. Lauck, D. Oran, and R. Perlman, "Digital

Network Architecture Overview," Digital
Technical Journal, vol. 1, no. 3 (September
1986): 10-24.

2. P. Beck and]. Krycka, "The DECnet-VAX Prod­
uct-An Integrated Approach to Networking,"
Digital Technicaljournal, vol. 1, no. 3 (Septem­
ber 1986): 88-99.

3. Migrating to an Open VMS Alpha System: Port­
ing VAX MACRO Code (Maynard: Digital Equip­
ment Corporation, Order No. AA-PQYEA-TE,
1992).

4. OpenVMS Linker Manual (Maynard: Digital
Equipment Corporation, Order No. AA-PQXYA­
TK, 1992).

5. OpenVMSAlpha System Dump Analyzer Utility
Manual (Maynard: Digital Equipment Corpora­
tion, Order No. AA-PQYCA-TE, 1992).

6. Open VMS Delta/XDelta Utility Manual (May­
nard: Digital Equipment Corporation, Order No.
AA-PQYPA-TK, 1992).

180

7. OpenVMS Calling Standard (Maynard: Digital
Equipment Corporation, Order No. AA-PQY2A­
TK, 1992).

8. N. Kronenberg et al., "Porting OpenVMS from
VAX to Alpha AXP," Digital Technical Journal,
vol. 4, no. 4 (1992, this issue): 111-120.

General References
DECnet for Open VMS Network Management Utili­
ties (Maynard: Digital Equipment Corporation,
Order No. AA-PQYAA-TK, 1992).

DECnet for Open VMS Guide to Networking (May­
nard: Digital Equipment Corporation, Order No.
AA-PQY8A-TK, 1992).

DECnet for Open VMS Networking Manual (May­
nard: Digital Equipment Corporation, Order No.
AA-PQY9A-TK, 1992).

Migrating to an OpenVMSAlpha System: Planning
for Migration (Maynard: Digital Equipment Corpo­
ration, Order No. AA-PQY7 A-TE, 1992).

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

George A. Darcy III
Ronald F. Brender
Stephen]. Morris

Michael V. Iles

Using Simulation to Develop
and Port Software

Among the tools developed to support Digital's Alpha AXP program were four soft­
ware simulators. The Mannequin and ISP instruction set simulators were used to
port the OpenVMS and OSF/1 operating systems to the Alpha AXP platform. The
Alpha User-mode Debugging Environment (AUD) allowed Alpha AXP user-mode
code to be debugged with support from the OpenVMS rnx run-time environment
on rnx hardware. AUD was built from a combination of new and existing Digital
software components. The Alpha User-mode Debugging Environment for
Translated Images (AUDI) allowed translated images to be debugged on a simulator
running on a rnx computer. With these debugging environments, user-mode
applications and code components could be tested before Alpha AXP hardware and
operating system software were available.

Digital developed several software simulators to
support its Alpha AXP program.' These tools
enabled engineers to develop and port software for
the 64-bit RISC Alpha AXP architecture concur­
rently with hardware development. The simulators
were used for a variety of purposes including port­
ing, testing, verification, and performance analysis.
This paper discusses four Alpha AXP software simu­
lators: Mannequin, ISP, AUD, and AUDI.

The Mannequin and ISP Simulators
Two Alpha AXP instruction set simulators,
Mannequin and ISP, were used to port operating
systems to the Alpha AXP platform. The OpenVMS
group used the Mannequin simulator to port the
OpenVMS VAX system to the Alpha AXP platform.
Likewise, the OSF/1 group used the ISP simulator in
their port of the ULTRIX and OSF/1 operating sys­
tems to the Alpha AXP platform. Both simulators
were also used for architectural and design verifica­
tion, and for performance modeling.

The Mannequin simulator grew out of a simula­
tor developed for an earlier RISC project at Digital.
The ISP simulator was written anew by engineers
closely associated with the Alpha AXP architecture.

The two development groups were requested to
boot their respective operating systems on the sim­
ulators before attempting to boot on the Alpha
Demonstration Unit (ADU), the Alpha AXP proto­
type hardware.2 The simulators were so successful

Digital Technical Journal Vol. 4 No. 4 Speciallssue 1992

in tracking the Alpha AXP architecture and in root­
ing out software bugs that the OSF/1 group was able
to boot the ULTRIX operating system on the hard­
ware on the first attempt. The OpenVMS group had
similar success and booted the OpenVMS AXP oper­
ating system in a few hours.

Note that the Alpha Demonstration Unit (ADU) is
an Alpha AXP prototype hardware system and
should not be confused with the Alpha User-mode
Debugging Environment (AUD) or the Alpha User­
mode Debugging Environment for Translated
Images (AUDI), two software simulator facilities dis­
cussed later in the paper.

OpenVMS AXP Porting
The Open VMS group used Mannequin as their Alpha
AXP instruction simulator in porting the OpenVMS
VAX operating system to the Alpha AXP hardware.
Never before had an OpenVMS porting effort been
able to debug as much operating system code
in advance of hardware. Prior porting efforts
debugged only up to VMB, a primary boot stage in
the OpenVMS operating system. Using Mannequin,
operating system developers were able to boot the
entire operating system on the simulator and actu­
ally log in and debug utilities.

Some developers used Mannequin's own win­
dows interface and debugging facilities to debug
their code. Others ran the XDelta utility on top of
Mannequin.3 XDelta is a low-level system debugger

181

Alpha AXP Architecture an d Systems

used to debug the OpenVMS VAX kernel and drivers.
However, the Mannequin interface was useful in ini­
tially debugging XDelta, since the Alpha AXP con­
sole allows neither breakpoints nor single stepping.

To debug their code before the full OpenVMS AXP
operating system was available, other developers
used Mannequin in conjunction with the Alpha
primary boot (APB) code and a test harness.
Mannequin was especially useful in finding align­
ment faults in the boot sequence, since the align­
ment tools are not operational until the OpenVMS
AXP system is completely booted. Alignment faults
occur when an attempt is made to access a unit of
data located at an address that is not a multiple of
the size of the data.

Microcode Speedup
One main reason the OpenVMS team was able to
debug a large part of the operating system in real
time was the use of specially written microcode to
speed up the simulator. Mannequin is capable of
running with special user-written microcode on
the VAX 8800 family of machines. 4 This microcode
is an addition to the normal VAX microcode for
the 8800 machines; the VAX microcode remains
unchanged. With microcode support, a large subset
of Alpha AXP instructions is executed in microcode
and attains performance comparable to native VAX
instructions. The Mannequin microcode occupies
93 percent of the total 1,024 words of the user­
writable control store.

Using microcode assistance greatly speeds up
Mannequin execution, yielding from 350 thousand
Alpha AXP instructions per CPU second (KIPS) to a
peak performance of 1 million Alpha AXP instruc­
tions per CPU second (MIPS) on a VAX 8800.
Without microcode assistance, Mannequin perfor­
mance is on the order of 10 KIPS. (For comparison,
the ISP simulator operates at approximately 30
KIPS.) Code streams that execute completely in
Mannequin microcode show much better perfor­
mance than those that switch back and forth
between microcode and the software simulator.
With microcode assistance on an unloaded VAX
8800, it takes from 20 to 30 minutes to boot the
OpenVMS AXP system and reach the Digital
Command Language (DCL) prompt after login.
Because of this microcode speedup, software engi­
neers were able to simulate and debug a much
larger part of the operating system and utilities than
ever before.

182

OSF/1 AXP Porting
The OSF/1 operating system group used the ISP sim­
ulator as an Alpha AXP instruction compute engine.
The strategy was to connect the ISP simulator to
dbx, a standard UNIX source-level debugger, via
dbx's remote interface. An interface was added to
the ISP to support the following low-level debugger
commands:

• Instruction stream examine and deposit

• Data stream examine and deposit

• Register examine and deposit

• Single step

• Continue

• Boot

The dbx debugger was modified to work with the
64-bit Alpha AXP architecture. That is, addresses in
the debugger were extended to 64 bits, and an
Alpha AXP disassembler was provided. The ISP
simulator and dbx debugger operated as separate
processes communicating on the same machine
by means of a socket. A socket is a protocol­
independent connection point for interprocess
communications.

Historically, the OSF/1 group used the ISP-dbx
combination to port the ULTRIX operating system
to the Alpha AXP platform as an advanced develop­
ment effort. When the group began to port the
OSF/1 system, Alpha AXP prototype hardware
(ADUs) and field-test compilers were available.
Thus, the OSF/1 group used the ISP in its ADU mode,
where the ISP simulator operated as a console to
the ADU hardware system. The ADU consists of an
Alpha AXP DECchip 21064 processor, memory,
disks, Ethernet, and a DECstation 5000 workstation,
which acted as the console interface. Instructions
that normally execute on the simulator were trans­
ferred to the ADU for execution. However, the
entire symbolic debugging environment remained
unchanged.

Simulator Specifics
The ISP simulator was written entirely in portable
C. The Mannequin simulator was a hybrid of the
C++ and C languages. ISP consisted of approxi­
mately 25,000 lines of code, Mannequin 31,800
lines. The two simulators shared common code:
the ISP simulator provided Mannequin with float­
ing-point routines and a comprehensive instruction

Vol . 4 No. 4 Special Issue 1992 Digital Technical Journal

test program; Mannequin provided ISP with 1/0
device routines. Thus, the simulators verified the
Alpha AXP architecture as well as each other.

The Mannequin and ISP simulators tracked and
supported changes in the evolving Alpha AXP archi­
tecture and in PALcode. PALcode is special machine­
dependent software that provides support for
many low-level operating system services such as
faults and exceptions. PALcode also provides
instructions not in the base Alpha AXP hardware.

The two simulators have features common to
many simulators, including support for loading
and running programs, setting breakpoints and
watchpoints, accessing memory, and saving and
restoring machine state. Also supported are many
machine-specific features, such as 1/0 devices,
interval timers, and configurable translation look­
aside buffers. Besides a command line interface,
the Mannequin simulator has a graphical windows
interface that allowed users to see most machine
resources in a windows-based format, as shown in
Figure 1.

The Mannequin and ISP simulators support three
basic devices:

• A console device used for terminal 1/0

• A disk device used to boot the operating system

• An interval timer used for interrupts

The disk device on the simulators can be either
a file or a physical disk device. The OpenVMS
group used a shared disk so that developers could
boot from a common disk while running on the
simulator.

The simulators provide 16 megabytes (MB) of
physical memory with a default page size of 8 kilo­
bytes (kB). The physical memory of the simulators
may be increased to the practical limit of available
virtual memory on a VAX system (minus a small
amount for the actual simulator code).

Both simulators have configurable instruction
stream (I-stream) and data stream (D-stream) trans­
lation lookaside buffers (TLBs). A TLB is a small
cache that holds recent virtual-to-physical address
translation and protection information. The simula­
tor TLBs can have a variable number of entries in
each of the four granularity hint block sizes.
Granularity hints indicate to the translation buffer
implementations that a block of pages can be
treated as a single, larger page. In essence, there are
four minitranslation buffers. The ISP simulator sup­
ports selectable TLB replacement algorithms,

Digital Tech11icalJour11al Vol. 4 No. 4 Special Issue 1992

Using Simulation to Develop and Port Software

whereas Mannequin supports only the not-last­
used (NLU) algorithm. The configurable TLBs
allowed the operating system and chip design
groups to analyze and finely tune the translation
lookaside buffers for optimum performance.

Peiformance Analysis and Benchmarking
The Mannequin and ISP simulators also support
execution of user-mode, stand-alone programs, i.e.,
those with little or no operating system run-time
support, by providing program loaders for several
formats. These formats include two UNIX object for­
mats (COFF and a.out), an OpenVMS AXP image for­
mat, and a system (raw data) image format.

Programs were compiled with early field-test
Alpha AXP compilers. Program execution was espe­
cially useful for hardware designers and compiler
writers for performance analysis and benchmark­
ing purposes. Note that applications requiring full
operating system support used the AUD facility,
described in a later section.

The simulators can generate trace files in a stan­
dard trace file format. This commonality enabled
the two facilities to share the same trace analysis
tools. The trace files generated by Mannequin
and ISP were also used as input to the Alpha
Performance Model, another simulator that gener­
ated detailed performance data.

EVILIST and ALPHA$REPORT were two tools fre­
quently used to analyze trace files and generate
statistics concerning machine resources used dur­
ing program execution. The types of data generated
by ALPHA$REPORT include the following:

• Instruction distribution by opcode, class, and
format

• Instruction and floating-point register utiliza­
tion summary

• Distribution of code block run lengths

• Opcode pair distribution by class

• Control/branch instruction flow summary

An actual trace analysis report generated by
ALPHA$REPORT is shown in Figure 2. This example
comes from a scaled version ofFPPPP (one of the 14
benchmarks in the SPECfp92 floating-point test
suite), with the constant NATOMS set equal to 2.
Figure 2 displays a report listing instruction distri­
bution by opcode.

Alpha AXP operating system developers and com­
piler writers relied heavily on the trace reports for

183

- f

m
ic

ro
c
o

d
e

u
p

d
a
te

tr

a
c
e

tr
a
c
e

fi
 L

e
c
o

n
so

le

Lo
g

RO
D

0

0
0

0
0

0
0

0

R
01

F

F
F

F
F

F
F

F

R
02

0

0
0

0
0

0
0

0

R
03

0

0
0

0
0

0
0

0

R
04

0

0
0

0
0

0
0

0

RO
S

0
0

0
0

0
0

0
0

R

06

0
0

0
0

0
0

0
0

R

O
?

0
0

0
0

0
0

0
0

PO
O

O
O

O
O

O
O

PO

O
O

O
O

O
O

O

PO
O

O
O

O
O

O
O

PO

O
O

O
O

O
O

O

PO
O

O
O

O
O

O
O

PO

O
O

O
O

O
O

O

P-
>P

O
O

O
O

O
O

O
O

PO

O
O

O
O

O
O

O

PO
O

O
O

O
O

O
O

PO

O
O

O
O

O
O

O

PO
O

O
O

O
O

O
O

PO

O
O

O
O

O
O

O

E
V

1
:S

T
A

T
U

S

U
N

A
V

A
IL

A
B

L
E

0

M
a
n

n
e
q

u
in

u
n

a
li

g
n

e
d

_
tr

a
p

s

ON

a
ri

th
m

e
ti

c
_

tr
a
p

s

ON

p
a
l_

d
e
b

u
g

ON

h

a
lt

_
p

a
l

ON

O
FF

N
O

N
E

N
O

N
E

E
V

1
:G

P
R

0
0

0
0

0
0

0
8

RO

B
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

R

16

F
F

F
F

E
6D

F

R
09

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

R

17

0
0

0
0

0
2

0
0

R

10

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

R
18

0

0
0

0
0

0
0

0

R
 11

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

R

19

0
0

0
0

0
0

0
0

R

12

0
0

0
0

0
0

0
0

0

0
0

4
0

0
0

0

R
20

0

0
0

0
0

0
0

0

R
13

0

0
0

0
0

0
0

0

0
0

0
0

0
0

9
0

R

21

0
0

0
0

0
0

0
0

R

14

0
0

0
0

0
0

0
0

O

O
F

F
28

00

R
22

0

0
0

0
0

0
0

0

R
15

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

R

23

E
V

1
:I

N
S

T

0
0

0
5

0
1

C
O

:
A

2
C

7
0

0
0

0

LD
L

R
2

2
,0

(R
7

)
0

0
0

5
0

1
C

4
:

4
2

C
0

3
0

1
7

AD

D
L

R

2
2

,#
1

,R
2

3

0
0

0
5

0
1
(8

:
B

2
E

7
0

0
0

0

ST
L

R

2
3

,0
C

R
7

)

A
lp

h
a

S
im

u
la

to
r

V
3

.1
0

-0

c
y

c
le

_
c
o

u
n

t
0

0
0

0
0

0
0

5
8

8

ru
n

s
ta

tu
s

ST
O

PP
E

D

sr
m

4

d
tb

E

V
3

/F
IX

=
C

4
,0

,0
,3

2
)

it
b

/F

IX
=

C
0

,0
,0

,8
)

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

R
24

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

R

25

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

R
26

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

0
0

0
5

0
1

0
8

R

27

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

F
F

F
F

F
F

F
F

F

F
F

F
F

F
C

O

R
28

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

R

29

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

2

8
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

R
30

0

0
0

0
0

0
0

0

0
1

0
0

0
0

0
0

0

0
0

0
0

0
0

0

0
0

0
0

0
0

8
0

R

31

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

E
V

1:
M

E
M

O
R

Y

vo
oo

oo
oo

o
0

0
0

0
0

0
0

0
:

2
0

3
 F

O
O

O
O

20

1F
O

D
04

vo

oo
oo

oo
o

0
0

0
0

0
0

0
8

:
20

5F
E

O
O

O

2
4

2
1

0
0

0
1

vo

oo
oo

oo
o

0
0

0
0

0
0

1
0

:
20

9F
O

O
O

O

2
4

4
2

0
0

0
1

0

0
0

5
0

1
C

C
:

9
5

1
E

F
F

D
8

ST

D

R
8

,F
F

D
8

C
R

3
0

)
vo

oo
oo

oo
o

0
0

0
0

0
0

1
8

:
4

0
2

0
1

4
0

3

2
4

8
4

0
0

0
0

0

0
0

5
0

1
0

0
:

A
11

E
F

F
D

8
LD

L
R

8
,F

F
D

8
C

R
3

0
)

vo
oo

oo
oo

o
0

0
0

0
0

0
2

0
:

0
0

0
0

0
0

0
0

6

B
E

3
0

0
0

0

0
0

0
5

0
1

0
4

:
C

3F
F

F
F

A
C

BR

1F

F
F

A
C

vo

oo
oo

oo
o

0
0

0
0

0
0

2
8

:
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

5
0

1
0

8
:

4
5

(0
7

0
1

9

A
N

D

R
1

4
,#

3
,R

2
5

vo

oo
oo

oo
o

0
0

0
0

0
0

3
0

:
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

5
0

1
D

C
:

4
5

C
0

7
1

0
E

B

IC

R
1

4
,#

3
,R

1
4

vo

oo
oo

oo
o

0
0

0
0

0
0

3
8

:
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

5
0

1
E

O
:

21
C

E
F

F
D

O

LD
A

R

1
4

,F
F

D
O

C
R

1
4

)
vo

oo
oo

oo
o

0
0

0
0

0
0

4
0

:
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

5
0

1
E

4
:

B
1

0
E

0
0

2
C

ST

L

R
8

,2
C

C
R

1
4

)
vo

oo
oo

oo
o

0
0

0
0

0
0

4
8

:
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

5
0

1
E

8
:

B
O

E
E

00
28

ST

L

R
7

,2
8

C
R

1
4

)
vo

oo
oo

oo
o

0
0

0
0

0
0

5
0

:
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

5
0

1
E

C
:

BO
C

E
0

0
2

4

ST
L

R

6
,2

4
C

R
1

4
)

vo
oo

oo
oo

o
0

0
0

0
0

0
5

8
:

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

E
V

1>

LO
A

D

SQ
U

A
R

E
R

O
O

T
%

M
Q

N
:

Lo
a
d

e
d

v

;s

f
i

le

C
E

M
T

_O
O

:[
D

A
R

C
Y

]S
Q

U
A

R
E

_R
O

O
T

.E
X

E
;1

)
%

M
Q

N
:

22

b
lo

c
k

s
;

e
n

tr
y

a
t

0
0

0
0

0
0

0
0

0

0
0

5
0

1
0

8

E
V

1>
1

F
ig

u
re

 I

M
a

n
n

e
q

u
in

 S
im

u
la

to
r

W
in

d
o

w
s

Using Simulation to Develop and Port Software

ALPHA Instruction Statistics Report 6-MAY-1992
FPPPP -- Quantum chemistry calculation of a two-electron integral
derivative

Instruction Distribution by Opcode
(Ranked from highest to Lowest)

Instruction
Class Mnemonic
6 LDT
8 MULT
8 ADDT
6 STT
1 LDQ
1 LDL
1 STL
4 BIS
3 ADDL
8 SUBT

Occurrence
2321155
1732928
1433798

998446
544385
241142
178828
151120
126321

95045

Percent
25.41
18.97
15.70
10.93

5.96
2.64
1. 96
1 • 6 5
1. 38
1. 04

Cumulative
Percent

20
40
60
70

80

Figure 2 Mannequin/ISP Trace Output

help in designing critical sections of code. For
example, the register usage distribution report
helped determine how many registers should be
preserved by a call and how many should be
scratch (usable by a called routine without being
preserved).

The AUD Facility
Whereas the Mannequin and ISP simulators were
suitable for initial debugging of low-level software
such as operating systems, direct use of these tools
for user-mode applications, i.e ., layered products, is
a different matter. Porting and debugging Alpha
AXP user-mode code is at best difficult without the
full run-time support of an operating system. User­
mode applications typically take advantage of a
wide variety of run-time libraries, including com­
piled code support (such as the Fortran run-time
library), mathematical routines, graphics 1/0 ser­
vices, and database software (such as Rdb for
OpenVMS). Even if all this software were immedi­
ately available for Alpha AXP systems, running it
under simulation would be prohibitively slow.

Therefore, Digital developed a mixed-execution
debugging environment. This Alpha User-mode
Debugging Environment (AUD) was built from a
combination of new and existing Digital software
components. In the AUD environment, user-mode
code being developed for or ported to the Alpha
AXP platform could be compiled and executed as

Digital Technical Journal Vol. 4 No. 4 Sp ecial issue 1992

Alpha AXP code using simulation on VAX hardware.
At the same time, OpenVMS VAX run-time services
called by the code could be executed as native VAX
instructions. Thus, modules could be ported and
debugged one at a time, until almost the entire
application consisted of bug-free Alpha AXP code.

During the design of the AUD environment, two
key technical issues were

• How to efficiently detect calls made by execut­
ing VAX code to a routine in Alpha AXP code that
could be "executed" only by simulation, and
conversely, how to detect calls made by Alpha
AXP code being simulated to native VAX code.

• How to effect the transformation of parameters,
both location and representation, from that pro­
vided by the caller in one domain into the loca­
tions and representations expected by the called
routine in the other domain. Although there
existed well-defined and widely followed calling
standards for both domains, a variety of special­
purpose, high-performance calling conventions
were used in many situations.

This mixed-execution environment was expected
to have a relatively short lifetime, because it would
become obsolete as soon as significant numbers of
real Alpha AXP hardware systems became available.
Consequently, AUD itself had to be simple and inex­
pensive enough to be created quickly and put into
use. The development effort met this requirement.

185

Alpha AXP Architecture and System s

The elapsed time from initial concept to first use
was about eight months; the total development
effort for AUD over its lifetime was between three
and four man-years.

AUD Components
Despite the desire for simplicity, AUD consists of a
number of cooperating components:

• Callable Mannequin Alpha Simulator

• AUD debugger

• AUD linker

• Alpha AXP native services

• VAX jacketing services

• AUD Linkage Analyzer (ALA)

• Selected VAX jackets

Callable Mannequin Alpha Simulator Callable
Mannequin, the Alpha AXP instruction set simula­
tor, is essentially a subset of the Mannequin simu­
lator described earlier. In particular, Callable
Mannequin omits the user interface and Alpha AXP
machine state. Instead, the AUD debugger supplies
the user interface. Also, storage for the Alpha AXP
machine state is separately linked into the AUD
environment to make this information globally
accessible. Callable Mannequin does retain the
microcode-assist feature .

AUD Debugger The AUD debugger is a modified
version of DEBUG-32, the user-mode debug utility
on the OpenVMS VAX operating system. The AUD
debugger provides most of the same features of
DEBUG-32. A configuration option allows the
DEBUG-32 utility to use an internal, low-level
remote debugger interface to interface with a for­
eign target. (This capability was originally devel­
oped for use in other products such as VAXELN
Ada.) We developed new code to join DEBUG-32 and
Mannequin using this interface. As a result, the AUD
debugger works directly with VAX code, in the
usual manner, and works with Alpha AXP code by
passing commands to the Callable Mannequin simu­
lator to set breakpoints, examine instructions, exe­
cute code, etc.

AUD Linker The AUD linker is a variant of the
Alpha AXP cross linker that reads Alpha AXP object
modules as input and produces an OpenVMS VAX

186

format image as output. The standard VAX linker
can therefore reference locations in the Alpha AXP
image in the normal way, and the standard
OpenVMS image activator can be used to load the
Alpha AXP image for execution. However, to mini­
mize complexity, we did constrain the Alpha AXP
image to be linked as an absolute image (i.e ., a
based image, in OpenVMS jargon). This restriction
eliminated the problem of how to relocate Alpha
AXP instructions using the OpenVMS image activa­
tor. As mentioned previously, the Alpha AXP image
also includes a global storage area to hold the simu­
lated Alpha AXP machine state.

Alpha AXP Native Services Alpha AXP native ser­
vices is a special operating system shell, part of
which executes as Alpha AXP code (under simula­
tion) and part of which is included in the AUD jack­
eting services. The native services provide the
lowest-level support for hardware exception han­
dling and the OpenVMS condition-handling facility.
While AUD ultimately supported frame-based con­
dition handling within the Alpha AXP image, inter­
operation of application exceptions between the
Alpha AXP and VAX domains was not supported.

VAX Jacketing Services VAX jacketing services is
VAX code that supports the ability to write jackets
that pass control back and forth between VAX and
Alpha AXP code. The mechanics for accomplishing
this are discussed in the Jacketing section.

AUD Linkage Analyzer The ALA is a specialized
compiler that reads a specialized jacket description
language. This language describes how calls in
one domain are to be transformed into calls in the
other domain on a routine-by-routine, parameter­
by-parameter basis. The output from the ALA is
an Alpha AXP object module and a linker options
control file, both used to link the Alpha AXP image,
and a VAX object module. The Alpha AXP object
module provides a transfer vector into the Alpha
AXP procedures. The linker options control file
provides symbol definitions in an encoded form to
manage calls from the Alpha AXP image to the main
VAX image, which is linked later. The VAX object
module contains a table that encodes the jacketing
description.

Selected VAX]ackets Selected VAX jackets are ALA
jacketing files (in both source and compiled forms)
for calling common VAX facilities from Alpha AXP

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

code. Jackets are provided for Open VMS system ser­
vices, the C run-time library, and some parts of the
general-purpose, run-time library (UBRTL). The
DECwindows group also supplied jacket definition
files for use by other groups. AUD users are able to
supplement these files as needed by creating and
compiling their own jacketing descriptions for
other VAX facilities.

Figure 3 shows the main steps in building an AUD
environment. The uppermost sequence shows the
compilation and linking of the Alpha AXP comp~
nents, which results in the creation of the Alpha
AXP image. The central sequence shows the compi­
lation of the jacket descriptions, which results in
the creation of components that are included in
both the Alpha AXP and the VAX images. The lower
rows of Figure 3 show the compilation of the VAX

ALPHAAXP
PART OF - ALPHAAXP

f-+-
ALPHA AXP

APPLICATION COMPILER OBJECTS
PROGRAM

Using Simulation to Develop and Port Software

part of an application and its linking with the AUD
manager to create the VAX main image. When the
mixed VAX and Alpha AXP application is executed,
these images are combined in memory with
Callable Mannequin, the AUD debugger, and other
shareable images. This relationship is illustrated in
Figure 4.

Jacketing

l

Jacketing is the key feature that allows VAX and
Alpha AXP interoperability, i.e., gives a processor
the appearance of being able to execute both VAX
and Alpha AXP instructions. Although the details of
jacketing are intricate, the result is simple and ele­
gant. Calls can be made freely back and forth
between VAX compiled code and Alpha AXP com­
piled code, without any special compilation modes

ALPHA AXP r+- ALPHAAXP
LINKER IMAGE

J ALPHAAXP
JACKET
OBJECTS

t
JACKET - JACKET
DESCRIPTIONS COMPILER

!
VAX
JACKET

l OBJECTS

VAX r+- VAX
LINKER IMAGE

J VAX PART OF VAX VAX DEBUG
APPLICATION - COMPILER f-+- OBJECTS IMAGE
PROGRAM

ENVIRONMENT VAX VAX CALLABLE

MANAGER - COMPILER r+- OBJECTS - MANNEQUIN
IMAGE

Figure 3 Creating an AUD Application

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992

-

VAX
LOADER

-

-

-

- VAX
MEMORY

187

Alpha AXP Architecture and Systems

ALPHAAXP
LINK

VAX
LINK

ALPHAAXP
COMPONENTS

ALPHAAXP
COMPONENT SERVICES

ALPHAAXP
MACHINE STATE

AUD AND JACKETING
TABLES

VAX COMPONENTS

MAIN IMAGE

CALLABLE MANNEQUIN

AUD DEBUGGER

OTHER IMAGES

SHAREABLE LIBRARIES

Figure 4 AUD Process Components

on either side. The AUD support is fully recursive
and reentrant.

Static calls from VAX to Alpha AXP code are
directed to dummy entry points in the object mod­
ule produced by the ALA compiler. Each entry point
is simply an instruction that loads a pointer to the
jacketing description table for the target Alpha AXP
procedure, followed by a transfer into common
jacket interpretation code.

Calls from Alpha AXP code to VAX code use
the fact that the Callable Mannequin component
stops and returns control to the AUD environment
when it detects an instruction that transfers control
out of the Alpha AXP image. In this case, the appar­
ent address is an encoded integer (created by the
ALA), whose high four bits make it look like an ille­
gal address (in the VAX reserved SI space) and
whose remaining bits are a two-level index (i.e., 12
bits of facility code and 16 bits of offset) into the
jacket description table for the target VAX proce­
dure. This two-level scheme was chosen to allow
jacket descriptions for different shared library facil­
ities to be prepared and compiled independently.
The facility code is a number normally already asso­
ciated with that facility by software convention for
other purposes.

When a routine is called using a dynamically
determined address, such as an address given in a
function variable, a property of the VAX and Alpha
AXP architectures is exploited to determine dynam­
ically whether the target routine is a VAX routine or

188

an Alpha AXP routine. According to the VAX archi­
tecture, the first 16 bits of a routine comprise a
mask that encodes the registers to be preserved as
part of the call. Bits 12 and 13 of this mask are
unused and required to be O; if one of these bits is
set at the time of a call, then a hardware exception
results. According to the OpenVMS AXP software
architecture, an Alpha AXP procedure address is
actually the address of a procedure descriptor,
which is a data structure and not the actual Alpha
AXP code. By design, bits 12 and 13 of this data
structure must be set to I.

VAX execution of a VAX CALL instruction that
attempts to transfer to an Alpha AXP procedure
results in an exception. A special AUD exception
handler intercepts the exception, determines if the
illegal entry mask is caused by a reference into an
Alpha AXP image, and if so, calls into the AUD jacket­
ing routines to reformat the call frame. This mecha­
nism also works for handling asynchronous system
traps (ASTs) from the OpenVMS VAX operating
system to Alpha AXP code.

For computed calls from Alpha AXP code, com­
piled code calls an Alpha AXP run-time library rou­
tine to perform the comparable bit 13 test (under
simulation). If bit 13 of the target location is set to I,
then simulated execution continues and an Alpha­
to-Alpha call is carried out. Otherwise, control
transfers to a special VAX code entry point in AUD,
which terminates simulation and performs jacket­
ing back to the VAX target procedure.

Vol . 4 No. 4 Special Issue 1992 Digital Tecbnlca/Jourr,al

Basic Operation
To start executing a mixed application, the AUD
environment first performs several initialization
steps. In particular, AUD scans all the images loaded
in process memory to identify the Alpha AXP image
(only one was allowed and supported).

Some AUD options are set through the use of
OpenVMS logical names, which are interrogated
during image initialization. These options include

• Selecting Alpha AXP stack size

• Enabling delivery of ASTs to Alpha AXP routines

• Disabling the normal Alpha AXP stack consis-
tency checks

• Disabling unaligned memory reference messages

• Enabling AUD initialization tracing

• Disabling integer overflow checking

Debugging combined VAX and Alpha AXP code
under the AUD environment is similar to debugging
normal VAX code under the DEBUG-32 OpenVMS
debugger. Basically, if the address involved in a
debug command is within an Alpha AXP image,
then the debugger calls the Mannequin simulator to
perform the command for the Alpha AXP code.
Otherwise, the DEBUG-32 debugger itself performs
the command for the VAX code, as usual. Alpha AXP
machine state is kept in static global storage by
Mannequin and thus is visible to the AUD debugger.

In the DEBUG symbol table (DST) representation,
variables that are allocated in the Alpha AXP regis­
ters are described as being allocated in the corre­
sponding global state locations. This "trick"
allowed AUD to handle the 64 Alpha AXP registers
using the VAX DST representation, which can
encode only the 16 VAX registers.

Once simulation begins, Mannequin continues to
simulate Alpha AXP instructions until it either
detects an instruction that would transfer control
outside of the Alpha AXP image, completes a single­
step request, or detects an error condition. Upon
returning to the AUD environment, Mannequin sup­
plies status information that indicates the reason
simulation ended.

For a transfer of control from Alpha AXP to VAX
code, AUD must first determine whether the trans­
fer is a return from Alpha AXP code as a result of a
prior VAX call or a new call from Alpha AXP code to
VAX code. AUD is fully reentrant, so AUD cannot
make this determination from global state. If the
target address is a distinguished address that AUD

Digital Tech11icaljour11al Vol. 4 No. 4 Special Issue 1992

Using Simulation to Develop and Port Software

supplies when it sets up a VAX-to-Alpha call (i.e., an
address in the reserved SI part of the VAX address
space), the address is interpreted as a return trans­
fer. Otherwise, AUD initiates a new Alpha-to-VAX
call.

For a return operation, the AUD code copies the
return value or values from the Alpha AXP registers
and passes them back to the VAX code. A VAX return
instruction is then executed to resume execution
of the calling VAX code.

For a call operation, the VAX code fetches the
Alpha AXP parameters and builds a VAX argument
list, which is then used to call the target VAX rou­
tine. When the VAX routine returns, the contents of
the result registers are copied to the corresponding
Alpha AXP machine state locations, and Mannequin
is restarted to resume executing Alpha AXP code.

Despite some limitations (e.g., only one Alpha
image and no exception handling across the VAX to
Alpha AXP domains), AUD greatly aided the
OpenVMS AXP porting effort. The simulator pro­
vided software groups with a pseudo-Alpha AXP
environment in which to debug their Alpha AXP
code, well before either Alpha AXP hardware or the
OpenVMS AXP operating system was available.
Many OpenVMS AXP groups successfully used AUD
to facilitate their porting, including the Record
Management Services (RMS), DECwindows, Forms
Management System (FMS), various OpenVMS com­
mand utilities, text processing utility (TPU), DEBUG,
and GEM compiler back-end groups.

The AUDI Facility
The VAX Environment Software Translator (VEST) is
an important part of the initial Open VMS AXP offer­
ing.s VEST translates an OpenVMS VAX executable or
shareable image into an OpenVMS AXP image that
can then be executed with support on an OpenVMS
AXP system. As for other user-mode layer software
components, it was desirable to test VEST and
images translated by VEST as early as possible in a
simulation environment such as AUD. However,
AUD could not be used directly to test translated
images for two reasons:

• VEST directly creates an Alpha AXP image. In
effect, VEST is a combined compiler and linker.
Thus, the symbol mapping protocols used by
AUD were extraneous, and the linking protocols
had to be completely replaced.

• Actual execution of a translated image on
an OpenVMS AXP system makes use of the

189

Alpha AXP Architecture and Systems

Translated Image Environment (TIE).5 The TIE
is a shareable library that contains support rou­
tines for translated images. In particular, TIE
provides support for VAX complex instruction
processing, VAX-to-Alpha address mapping, and
OpenVMS VAX exception handling. Creating a
VAX version of the TIE to use with AUD required
intimate interfaces with the OpenVMS VAX oper­
ating system as well as compatibility with AUD.

Thus, the need to debug translated images led to
the creation of the Alpha User-mode Debugging
Environment for Translated Images (AUDI). Just as
Callable Mannequin provided a key building block
for AUD, AUD in turn provided a key building block
for AUDI. Alpha AXP software teams and porting
centers used AUDI to port both Digital and third­
party translated applications prior to the arrival
of Alpha AXP hardware. The porting process was
as follows: a VAX application was translated to
Alpha AXP code by means of the VEST translator;
this code was then run on a VAX system using the
AUDI simulator.

The AUDI process components shown in Figure 5
include the

• Callable Mannequin Alpha simulator

• AUD debugger

• VAX version of the TIE

• Translated VAX code (AlphaAXP code)

AUDI Environment
Emulated VAX state in AUDI is maintained in a global
context block. Emulated VAX registers RO through
R14 are used exactly as their VAX counterparts.
The correspondence between a translated and

ORIGINAL VAX CODE
AND
TRANSLATED VAX CODE
(ALPHA AXP CODE)

TRANSLATED IMAGE

equivalent VAX program counter (PC) is not directly
available during execution, since translated code
occupies different address space than the original
VAX code. Thus, register RIS is used instead as an
in-image index register.

The user-mode VAX stack is split into a VAX stack
and an Alpha and emulated VAX stack. The VAX
stack services both the AUDI environment and any
VAX system services or run-time library routines
that the translated image may call. The Alpha and
emulated VAX stack services Alpha AXP and trans­
lated code.

Translated images contain calls to the TIE as nec­
essary to simulate VAX complex instructions and
procedure calls. Complex instruction routines are
used to simulate VAX instructions that would other­
wise expand into excessive Alpha AXP code.
However, since AUDI is running on VAX hardware,
complex instructions can be executed native on the
VAX hardware.

To initialize the AUDI environment, the translated
image calls an initialization routine in the TIE by
means of an initialization program section (PSECT).
This routine determines the address range of the
Alpha AXP code and the location of the VAX-to­
Alpha address mapping structure, saves the current
Alpha AXP register state, and calls Mannequin to
begin executing translated code at the appropriate
entry point. Translated code uses the address map­
ping structure to find computed branch destina­
tions on the fly. Callable Mannequin then executes
translated code until it encounters some instruc­
tion that would transfer control out of translated
code. The cause of this transfer would be either a
TIE-based procedure or complex instruction call, or
calls to native VAX routines.

I TRANSLATED IMAGE I ENVIRONMENT (TIE)

I CALLABLE MANNEQUIN I
I AUD DEBUGGER I
I OTHER IMAGES I

AUDI ENVIRONMENT

Figure 5 AUDI Process Components

190 Vol. 4 No. 4 Special Issue 1992 Digital Tee/mica/ jour11a/

Like AUD, AUDI allows interoperation between
translated VAX code (Alpha AXP code) and VAX
code. Translated code can use existing VAX system
services and run-time libraries. AUDI does not use
the jacketing language described in the section The
AUD Facility. Instead, AUDI automatically jackets
procedure calls between the translated VAX code
and the native VAX code. Autojacketing includes
building proper parameter lists and call frames for
the destination calling standard.

The fact that AUDI does not use a jacketing lan­
guage leads to some procedure call limitations.
However, note that these limitations do not appear
when running translated code on actual Alpha
AXP hardware. For incoming calls (VAX code to
translated VAX code), all AST delivery and condition
handlers execute as VAX code rather than as trans­
lated VAX code. Thus, translated programs may

$ RUN HELLO_WORLD_TV
Hello World from VAX BASIC

AUDI V3.0 Runtime Statistics:

Using Simulation to Develop and Port Software

not function properly. For outgoing calls (trans­
lated VAX code to VAX code), routines in which
a callee modifies its caller's stack frame argument
list or return address may produce unpredictable
results, since the autojacketing may be altered or
disconnected.

AUDI Example
Figure 6 shows the execution of a translated image
under AUDI. Note that both the BASIC image
(HELLO_ WORLD) and the BASIC run-time library
(BASRTL) are translated. Run-time libraries that are
used by the AUDI environment cannot be translated
under AUDI. Translating run-time libraries that AUDI
itself uses causes a "circularity in activation" and
incorrect or no execution.

In the HELLO_ WORLD example, there are 28 calls
to VAX routines, most likely those to LIBRTL and

8085 Alpha AXP instructions were executed.

TIE Lookups:

Stayed in Alpha AXP routines:
Went to VAX routines:

Total:

CALLx

4
28

32

JSB

5
0

5

JMP

0
0

0

28 VAX returns used (28 RET, 0 RSB) to resume Alpha AXP code.
There were no Fault-On-Execute conditions converted to Lookups.
21 CALLx Context Blocks were allocated - which were reused 7 times.

There were 19 TIE-based 'complex instructions' executed.
Instruction INSQUE COE) 2
Instruction MOVC3 (28) 8
Instruction MOVC5 C2C) 8
Instruction MOVTUC C2F) 1

There was 1 VAX routine call to Alpha AXP code.

There were 2 images containing Alpha AXP code:
HELLO_WORLD_TV X0.0 from BL3.3 VEST of Mar 30 1992 09:27:02
BASRTL_TV X0.0 from BL3.3 VEST of Mar 30 1992 09:14:10

Execution depended on
LIBRTL_TV
MTHRTL_TV
TIE$SHARE
MQN$SHARE
DECW$DWTLIBSHR
LBRSHR

these images:
DECW$XLIBSHR
DECW$TRANSPORT
VAXCRTL
MTHRTL
CONVSHR
SORTS HR

COMMON
LIBRTL2
LIBRTL
DBGSSIS HR

Figure 6 AUDI Example-Translated Hello World Image

Digital TeclmicalJournal Vol . 4 No. 4 Sp eciallssue 1992 191

Alpha AXP Architecture and Systems

OpenVMS system services. There are 21 unique
CALLx contexts and 7 reused ones. In addition, the
example uses four different complex instructions.

Summary
The software simulators Mannequin, ISP, AUD, and
AUDI greatly aided Alpha AXP software porting
and development efforts. Substantial parts of both
system and application software were simulated
and verified concurrently with hardware develop­
ment. When Alpha AXP hardware became available,
most software could be plugged in simply and ran
exactly as expected. The use of these simulation
tools saved a year or more from the overall Alpha
AXP schedule.

Acknowledgments
Many people throughout Digital contributed to the
success of the Alpha AXP simulators. Homayoon
Akhiani, Ray Lanza, Stephan Meier, Steve Morris,
Andrew Payne, and Jon Reeves worked on the ISP
model. George Darcy, Mark Herdeg, Kevin Koch,
Eric Rasmussen, and Scott Robinson contributed to
the Mannequin simulator. The AUD effort included
several groups from across Digital. Their primary
contributors were Walter Arbo, Ronald Brender,
Henry Grieb, Mark Herdeg, Michael Iles, James
Johnson, Robert Landau, Maurice Marks, Dennis

192

Murphy, Scott Robinson, Larry Woodman, and
James Wooldridge. Finally, much of the AUDI
information in this article is taken from work origi­
nally done by Scott Robinson. Other AUDI contribu­
tors include George Darcy, Mark Herdeg, Matthew
Kirk, Naghmeh Mirghafori, and Murari Srinivasan.

References

1. R. Sites, ed., Alpha Architecture Reference
Manual (Burlington, MA: Digital Press, 1992).

2. C. Thacker, D. Conroy, and L. Stewart, "The
Alpha Demonstration Unit: A High-performance
Multiprocessor for Software and Chip Devel­
opment," Digital Technical Journal, vol. 4, no. 4
(1992, this issue): 51-65.

3. OpenVMS Delta/XDelta Utility Manual
(Maynard: Digital Equipment Corporation,
Order No. AA-PQYPA-TK, 1992).

4. S. Mishra, "The VAX 8800 Microarchitecture,"
Digital Technical journal, vol. 1, no. 4 (February
1987): 20-33.

5. R. Sites, A. Chernoff, M. Kirk, M. Marks, and
S. Robinson, "Binary Translation," Digital
Technical journal, vol. 4, no. 4 (1992, this issue):
137-152.

Vol. 4 No. 4 Special Issue 1992 Digital Tech11ical Jounial

Peter F. Conklin I

Enrollment Management,
Managing the
AlphaAXP Program

Digital's multiyear Alpha AXP program has involved more than two thousand
engineers across many disciplines. Innovative management styles and techniques
were required to deliver this higl.rquality program on an aggressive schedule.
The Alpha AXP Program Office used a four-point methodology for management:
(1) establish an appropriately large shared vision; (2) delegate completely and
elicit specific commitments; (3) inspect rigorously, providing supportive feed­
back; (4) acknowledge every advance, learning as the program progresses.
We consciously used each project event to propel progress and gain momentum.
Digital delivered the Alpha AXP program on schedule with industry-leadership
capabilities.

Introduction
The program to develop the Alpha AXP systems
has been the largest in Digital's history and one
of the largest in the computer industry. During
the course of the program, the Alpha AXP Pro­
gram Office developed a model that provided the
tools necessary to manage the program. At times,
this paper may seem to imply that the program
team developed the tools and then used them in
a pure form. In practice, the team developed these
approaches based on many years of experience and
on the management theories of experts; we also
learned and applied these lessons as we managed
the program.

Although the positive effects of timely delivery
and high quality are particularly noticeable results
of such a large program, Digital has also used the
tools to good effect on smaller projects. Moreover,
teams within the Alpha AXP program used the tools
recursively, project by project. The author's experi­
ence is that this management model is applicable to
projects of nearly any size.

The discussion that follows briefly defines the
scope of the program and explains why traditional
methods were inappropriate for managing the
development of such a complex product set in a
short time period. The Enrollment Management
Model and the concept of cusps-a key element of
the model-are then defined and clarified through

Digital Techllical Journal Vol. 4 No. 4 Spectal Issue 1992

discussion of the model's evolution during the
Alpha AXP Program.

Size of the Al,Pha AXP Program
Digital's Alpha AXP program encompassed the
design of a world-leadership microprocessor chip,
a new 64-bit system architecture, multiple hard­
ware systems (from personal computers to main­
frames), multiple operating systems, and hundreds
of software products layered on these systems. The
development of the first-generation products
extended over several years and involved more than
two thousand hardware, software, and systems
engineers at its peak. Digital managed the overall
development program from a Program Office
staffed by eight professionals.

Across Digital worldwide, the Alpha AXP pro­
gram development spanned more than 22 software
engineering groups and 10 hardware engineering
groups. The hardware effort included the semicon­
ductor design group and groups for each of the
hardware systems platforms. The software efforts
encompassed four operating systems groups, and
groups designing migration tools, network sys­
tems, compilers, databases, integration frame­
works, and applications. Some groups peaked at
more than 150 development engineers plus sup­
porting staff. Many also contracted with suppliers
both within and outside Digital.

193

Alpha AXP Program Management

Inappropriate Organizational Approaches
Implementing such a broad, complex program pre­
sented not only technological challenges but a man­
agement challenge as well. The Program Office
therefore considered and rejected a number of tra­
ditional organizational approaches.1

In the classic organizational model, a hierarchi­
cal, or line, organization is formed, containing all
the primary implementers. The problem with this
approach to large programs is that it takes too long
to form the organization. Staffing the teams and
establishing operational procedures take longer
than the market window and available technology
allow. The result is grand visions and projects deliv­
ered years behind schedule. Further, "temporary"
organizations must be folded back into the main­
stream at the end of the program. The management
goal of the Alpha AXP program was to keep exper­
tise concentrated to achieve synergy across many
projects within a particular discipline.2

An alternative approach is to form small
entrepreneurial teams and challenge them to work
long hours to achieve the goals. This works well in
small projects suitable for "skunk works." The origi­
nal design work was conducted in this fashion.
However, when this approach is applied to large
programs, the result is that team members burn out
without achieving the aggressive schedules
demanded. Management then becomes frustrated
and tries again with different teams, but the results
are no better.

The Program Office established the Alpha AXP

program as an integration of project teams that
would remain within the existing line organiza­
tions. Thus, for example, each hardware and soft­
ware project resided within its functional group
(semiconductors, servers, OpenVMS, UNIX, compil­
ers, database, CPU development, networks, etc.).
The Program Office integrated the work of the indi­
vidual project teams, which provided the addi­
tional advantage of program resilience in the face of
functional group reorganizations.

The Enrollment Management Model
The Enrollment Management Model (Figure 1) for
the Alpha AXP program comprises four stages.

Vision-Enrollment

Commitment-Delegation

Inspection-Support

Acknowledgment-Learning

194

PERSONAL
PUBLIC

ACKNOWLEDGMENT
LEARNING

INSPECTION
SUPPORT

REVIEW
ENCOURAGEMENT

VISION
ENROLLMENT

COMMITMENT
DELEGATION

TRUST
ACCOUNTABILITY
(TASK-OWNER-DATE)

Figure 1 Enrollment Management Model

The model in this form was developed by
the author. Some elements are derived from man­
agement seminars and from consultants' recom­
mendations. The particular forms used for vision,
commitment, and acknowledgment emerged dur­
ing the Alpha AXP program. The inspection­
support stage was developed by the author during
many years of project management and reviews.

Two concepts are key to implementing this
model for large programs. First, the Program Office,
which has already been mentioned, provides the
necessary cohesion, program vision, and inspec­
tion structures, while allowing the skills and
resources to remain within their natural organiza­
tions. Moreover, the office lends consistency across
the program and encourages each contributing
group to hold to its commitments. The small Alpha
AXP Program Office, made up of a diverse group of
product and operations managers, had no formal
authority (not even budget authority); so it exerted
influence only through rigorous enrollment and
delegation outlined by the management model.

The second key concept is the project "cusp;'
which is a critical event that propels change. Cusps
are further defined in the sections Inspection­
Support and Using Project Cusps below.

Vision-Enrollment
The Program Office uses vision to enroll the related
groups in the goals of the program. For example,
the vision can be the top-level business goals and
customer needs. For subordinate projects, the
vision can be the objectives of the larger project. In
all cases, the enrollment happens only when the
goals are set in the context of the audience (the
project team). In particular, the Program Office is
most effective when it expresses the program's

Vol. 4 No. 4 Special Issue 1992 Digital Tech11tcal]ournal

Enrollment Management, Managing the Alpha AXP Program

vision in the terms and language of the group being
enrolled. The vision has to be large enough to
encompass all the required commitments and the
ultimate results.

Commitment-Delegation
As the manager of a project develops plans, he or
she delegates the tasks to sub-groups and solicits
specific commitments to content and schedule.3
Since these commitments are made within the con­
text of the larger vision, the subordinate commit­
ments become quite strong for sub-project
members. A key element of the delegation process
is the explicit specification of the results such that
they are measurable and identified with an individ­
ual owner. The owner is a single individual empow­
ered by the committing group and held
accountable for the deliverable.4 An important
point here is that the term "owner" does not neces­
sarily refer to the person who actually does the
work. The owner is responsible and therefore
accountable for getting the work done on time. In
our particular program, the Program Office had to
clarify and reinforce this distinction carefully as
part of the enrollment stage.

Inspection-Support
The project manager trusts in the commitments
made and continually inspects the project to ensure
delivery on schedule. This inspection strictly takes
the form of supportive feedback, thereby encourag­
ing people to disclose risks before they become
problems. Whenever the projected results are at
risk of falling short of the commitment, the project
manager declares a project "cusp."

The term "cusp" is adapted here from Gleick to
describe the potential turning points, or critical
events, in a project.s (Other terms in conventional
parlance include "gotchas," setbacks, crises, turning
points, project breakdowns, and "calls to action."
The managers used these terms during the program.
For our purposes, we adopt the term cusp as an
emotionally neutral term. It is important that at any
point in the project the term used be one that gives
an opening for the possibility of making a difference
and for moving the project forward.) At the point of
a cusp, everyone is ready to embrace change
because it furthers the overall program objectives.

The management team collaborated to take
advantage of cusps to propel project momentum
toward the established goal. Examples of cusps in
the Alpha AXP program are presented throughout
this paper to demonstrate their integral value in the

Dig ital Teclmicaljournal Vol. 4 No. 4 Spectal Issue 1992

application of the Enrollment Management Model
and the role they played in the creation of the
model itself.

Acknowledgment-Learning
At each step of the project, the Program Office
acknowledges progress both personally and pub­
licly. For each event, the management team repeat­
edly asks what was learned and how managers and
the team can do even better next time. Teams are
frequently coached to improve their methods for
better results.

Using the Model
In principle, the Program Office used the Enroll­
ment Management Model in each component proj­
ect. Of course in practice, not all groups used this
methodology. Early in the program, only a few
groups signed up. As the Alpha AXP Program Office
began organizing the overall program, we started
formalizing the methodology. As noted above, we
learned extensively as events progressed. We found
few useful manuals applicable to running such a
large program effectively. Instead, the Program
Office developed many of the tools "on the job,"
learning as the project unfolded.6 This paper exag­
gerates a pure model rather than presenting its
incremental development. To balance the picture,
we show some of the pitfalls and side paths.

Most project managers followed the Enrollment
Management Model either by instinct (experience)
or by example. In several instances, they formally
reached outside for training in running projects
of this complexity. Depending on the size of the
project or sub-project, managers used the model
with varying degrees of rigor. For example, the
larger projects and the program overall used formal
inspection meetings and reviews. Subordinate
projects were free to use formal or informal inspec­
tion processes. The program team inspected
each group's inspection processes to ensure that
there would not be any unfortunate management
surprises.

Using Project Cusps
As described earlier, cusps are critical project
events, or crises. Conventional project manage­
ment concentrates on rigorous planning to avoid
such crises. The Program Office took the opposite
approach: We strove to understand the critical
events and milestones and used these cusps to
increase project momentum, as Figure 2 illustrates.
As the project approached each cusp, the Program

195

Alpha AXP Program Management

*
BUSINESS AS USUAL

I\
CUSP

Figure 2 Cusps as a Way to Change Directions

Office dealt with the event promptly to ensure that
the project continued to move toward the overarch­
ing goal. In other words, the managers did not
develop a plan just to follow the plan. Instead, they
developed a plan to understand the overall project
flow and used the milestones and other events as
opportunities to adjust the project velocity to keep
moving toward the goaJ.7 In many cases, we gener­
ated a cusp to propel the necessary change (for
example, by creating a schedule crisis). In other
cases, we took advantage of a cusp to make a neces­
sary change.

As the management team became comfortable
with using project cusps constructively, the
Program Office actively solicited more of them.
These increased the velocity and resulting momen­
tum of the program, thereby achieving a "slingshot"
effect. The Program Office used each cusp to
acknowledge progress. As the team acknowledged
more and more progress, the program's momentum
moved from very low to break-even, and finally into
high gear.

Vision-Enrollment Stage:
Magnitude of the Program's Vision
The vision for a program or project becomes the
ultimate goal or deliverable. Thus, the Alpha AXP
Program Manager's first task was to establish a
vision shared by all groups that would contribute to
the program. This vision had to be large enough to
encompass all the work.

Alpha AXP Systems as
Fiftlrgeneration Computing
The Alpha AXP family is at the confluence of five
major trends in computing.

1. Nineteen ninety-two is the first year in which
it is feasible to achieve 64-bit computing on a
single microprocessor.

196

2. Nineteen ninety-two is the first year in which
microprocessors have achieved over 100 MIPS

(million instructions per second) of computing.

3. It is now cost-effective to place more than 4 giga­
bytes of main memory on a system; hence 32-bit
addressing is insufficient.

4. Networking technology now allows the con­
struction of networks with over 100-megabit
throughput.

5. Cost-effective storage systems now exceed
the many-gigabyte range and are approaching
terabytes.

These computing systems will include large
amounts of parallelism as compared with classical
designs. The levels of performance and connec­
tivity finally allow computing to realize greater
human productivity: mobile, highly interactive
computing that supports group work with algo­
rithms that intelligently analyze, simulate, and
synthesize in support of a wide variety of human
endeavors. The application of this technology qual­
ifies as the fifth generation of computing.8,9

The program vision for Alpha AXP systems, as
shown in Figure 3, is to be the first family of systems
to implement the technology and applications for
the fifth generation of computing. This family is
fully compatible across all members now and will
be into future generations, ensuring that applica­
tion binary programs will run unchanged. With no
compromise to future performance, the initial fam­
ily members also maintain a high degree of com­
patibility with current systems to allow easy
migration for customers as they begin to require
this technology. Delivering a family of high-quality
systems in a timely fashion reestablishes Digital's
reputation for technology and systems leadership.

UJ
(.)
z
<(

~
re:
0
u..
re:
UJ
ll.

• 64-BIT MEMORY
• TERABYTES STORAGE .··

>100 MIPS

1992
TIME

Figure 3 Al,pha AXP Vision

Vol. 4 No. 4 Special Issue 1992 D igita l Technical Journal

Enrollment Management, Managing the Alpha AXP Program

Getting Started
The Alpha AXP program grew out of research
on computing, specifically the technology and
benefits of different RISC (reduced instruction set
computing) architectures, and from advanced
development in compiler designs, VLSI (very large­
scale integration) design, and semiconductor fab­
rication. In 1988, Digital's Executive Committee
challenged Engineering to develop a system that
would meet the customers' needs for competitive
performance in all of Digital's computing envi­
ronments. Engineering formed a cross-disciplinary
task force that developed the requisite systems
architecture and designs and produced the above
vision and hence the Alpha AXP program. Digital's
Executive Committee approved the Alpha AXP pro­
gram in October 1989. 10

First Cusp: Executive Challenge
to Accelerate Schedule
By the end of 1989, Digital had completed the
advanced developments and signed off on the archi­
tecture and primary design documents. In a major
review during January 1990, upper management
challenged the program to improve the schedules
to capture the market window for this new tech­
nology. The project managers understood the
rationale for this demand but could see no way to
meet the aggressive schedule. The result was a loss
of rapport between management and the technical
staff, with comments such as "Don't talk to me
about crazy schedules" and "This is just going to be
a lot of hard work."

The Program Office viewed this cusp as an
opportunity rather than the crisis that it appeared
to be. The office enrolled key project managers in
the overall vision, i.e., in the business value of a
timely execution. For some projects, it was suffi­
cient to focus on the classic "time-to-market."
However, for many, the ship date proved an insuffi­
cient motivator. Therefore the Program Office
framed the vision differently, as follows. A program
becomes profitable when it reaches break-even
(i.e., cumulative revenues meet and then exceed
cumulative expenses).

The time taken to achieve this point is known as
the "time-to-profit." 11 The Program Office estimated
that the program's schedule would affect Digital's
revenue at the rate of $1 million per hour. That is,
for each hour that the project could improve
(lower) the time-to-profit, Digital would achieve an
additional $1 million of revenue. The Program

Digital Technical Journal Vol. 4 No. 4 Spedal Issue 1992

Office pointed out to the project managers that this
revenue could translate to approximately $0.01 on
the stock price for each hour of schedule improve­
ment. With this concrete business metric in mind,
the key project managers were willing to consider
new ways to tackle the program's challenge.

Once the Alpha AXP program was approved, the
Program Office began holding Alpha AXP quarterly
review meetings. At these forums, groups reported
plans and progress to a wide, cross-disciplinary
audience. Initially, the audience was composed of
engineering, manufacturing, and service groups. As
the program gained momentum, other disciplines
such as marketing and sales joined and began to
report on their own progress. These forums helped
generate belief and solidify enrollment. They also
helped the Program Office identify problem areas
before they became crises.

First Cusp Result
We established a program-wide understanding of
the importance of volume deliveries in 1992.

Commitment-Delegation Stage:
Delegating and Eliciting Commitment
With the key project managers sharing a common
vision, the next step was to establish a work plan
and to ensure that each group committed to deliver
on its parts.

It had been 15 years since Digital attempted to
change simultaneously its architecture, hardware,
operating systems, compilers, and other layered
products. Since the introduction of the VAX systems
in the fall of 1977, each component had progressed
relatively independent of the development sched­
ules of the others. Fewer than half a dozen project
team members had participated in the VAX design.
For most participants, the system had always been
in existence, and hence the developer of each sub­
system could invoke and depend on the existence
of all the other subsystems.

The need for the simultaneous development of
multiple hardware and software systems compli­
cated the coordination task. The Program Office
addressed this complex coordination in two dimen­
sions: technical and project management. In the
technical dimension, the office formed a team of
technical leaders from the core engineering groups,
known as the EJST, shown in Figure 4. (EJST is an
acronym for EVAXJoint Systems Team. EVAX was an
early name for the Alpha AXP program. An earlier
forum, the EVAX Technical Team, merged into the

197

Alpha AXP Program Management

AS BOD ,--------------------------,
I I
I I
I I
I I
I I

~------------ ------- ----~

ASPM I" - - - --- .. --- - - -I EJST
I

I
I

I
PROJECT I

I
TECHNICAL I

MANAGERS I DIRECTORS I
I

- _ _J
I ---- _______ _J

ALPHA PROGRAM
OFFICE

Figure 4 The Alpha AXP Virtual Organization

EJST process over time.) This group met weekly to
set directions for important cross-group technical
design and strategy issues. Since the group's charter
was to resolve problems and ensure that solutions
"stuck," the EJST became a group to which others
brought technical problems for resolution.

In the project management dimension, the pro­
gram manager formed a team of project managers.
Members of this team were empowered by their
contributing engineering development groups to
make commitments and to be accountable for
deliverables. This team was known as the ASPM
(Alpha AXP System Project Managers). Given the
magnitude of the overall task and the complexity of
fully understanding the interdependencies, the
project managers tended to view the project as
impossibly complex. At the program level, the chal­
lenge then became to establish the Alpha AXP mas­
ter plan. A master plan, however, evolved much
more slowly than expected.

Second Cusp: Cannot Choose
the Order of the Work
Management's inability to provide an overall
plan induced a crisis of disbelief. The project
managers threatened to revolt (or move to other
projects). The technical leaders were generating
ever-larger design documents. The engineering
development group managers declared that the
Program Office had a crisis on its hands: We had to

198

establish a program-wide work plan that showed
the order in which each sub-project must deliver its
contribution.

How does one coordinate without a plan? The
Alpha AXP program manager kept asking the indi­
vidual groups for their plans. What do you depend
on? How long will it take? What resources do you
need? What are your milestones or metrics of
progress? The repeated answer was "I don't know
because I don't know what everyone else is doing
and when they will be done with their piece." At
this time, we had already established the cross­
functional ASPM team of experienced project man­
agers representing most of the development
groups. This team was unable to develop the com­
ponent plans because they lacked a master plan.

Choosing the Strategy
The engineering development group managers
met in a full-day meeting to establish the over­
all parameters of the Alpha AXP program's plan.
First, they established the business goals and exam­
ined the various technical constraints. The group
tested the inclusion of each component with
the question "Is this component critical to the over­
all business success of the Alpha AXP program?"
This process established solid reasons for the
contents of the master plan and kept the respon­
sibility for the inclusion or exclusion of a compo­
nent with the responsible development group. The

Vol. 4 No. 4 Special Issue 1992 Digital Teclmical Joi,rr,al

Enrollment Management, Managing the Alpha AXP Program

group then determined the organizational impli­
cations of such a work plan. Members of the group
balanced the dimensions of business, technology,
and organization to establish the priorities and
work order. We institutionalized this group into the
Alpha AXP System Board of Directors (ASBOD).

Representing the Plan
With the major program priorities and constraints
established, the Alpha AXP program manager then
set off to establish the master plan. For all groups to
see their contributions, he held the master plan to a
single page. He established the content during an
intense period in which he asked contributors to
describe their assumptions and tasks and to show
where on the overall plan their pieces would fall.
The single-page format forced the management
team to keep the plan to a high-level view and
allowed contributors to see their pieces without
adding the complexity of their own group's details.
Further, in review meetings it was easy for everyone
in the room to view the same picture so that the
results could be seen, debated, and agreed upon.

Once the management team had outlined the
plan, it was recommended by the project managers
(ASPM) and approved by the engineering develop­
ment group managers (ASBOD). Thus team mem­
bers knew their goals would not change without
clearly stated reasons. Further, others could start
building their plans based on a consistent set of
assumptions. The resulting single page also became
a reference, which we called the "straw horse," to
establish and reinforce constancy of purpose.
Figure S is an example of the Straw Horse Plan. (We
later upgraded the name to be the "tin horse" to
connote the increasing degree of solidity of the
underlying plans and commitments.)

Second Cusp Result
We agreed on the overall single-page plan upon
which teams could build their own plans.

Enrollment and Delegation:
Value of Each Contribution
With the master plan outlined (the straw horse
reviewed and approved), the next step was to
obtain the commitment of each contributing
group. To address continuing skepticism about the
necessity of each component and its schedule, the
program manager walked each group through the
overall program and the economic value of its
urgency. The group was then asked to contribute to

Dig ital Technical Journal Vol. 4 No. 4 Special Issue 1992

the overall system's value. A key prerequisite to this
conversation was to establish a full-time project
manager for each component group, who became
the coordination point and who was held account­
able for each deliverable.

Decide What to Do before How to Do It
The Program Office found that each group went
through a disbelief process similar to the one seen
earlier for the program. The program manager
urged each group to first focus on the "what" of
their deliverable, before trying to decide the "how:'
The program manager ensured that the group
grounded its overall estimates in reality. For exam­
ple, a software group might count the number of
modules to port and estimate the person-days per
module. This kind of high-level, quantifiable esti­
mate allowed the project manager to make an over­
all estimate without needing to understand the
order of the specific tasks.

Third Cusp: Need for Project
Management Expertise
Members of several of the larger projects deter­
mined that they did not have sufficient project man­
agement experience. Previously, this realization
would have resulted in replanning to move out
the target schedule, perhaps repeatedly. Instead,
given the group's commitment to the larger result,
we found a much more aggressive behavior. For
example, the OpenVMS AXP group publicly com­
mitted to their target schedule and stated, "We
don't know how to achieve this, but we commit to
finding a way." The next day they went to a project
management consultant for training on how to
build an aggressive, attainable schedule. This con­
sultant conducted the seminar many times through­
out the project for various groups.12

Third Cusp Result
Groups introduced education and rigor into project
management.

Inspection-Support Stage:
Inspection with Supportive Feedback
One of our vice presidents in the early 1980s had an
aphorism: You get what you inspect, not what you
expect. In other words, a common failing is that
managers obtain someone's promise and expect
that the results will be what they expected.
Unfortunately, despite everyone 's best intentions,
circumstances and unexpected requests can easily

199

Alpha AXP Program Management

Straw Horse Plan
Aug 1990

Stage 1: Technical Development System
Fortran & C performance system; Single hardware platform
English only

Fortran, C, Bliss, Assembler, Debug, License Mgmt Facility,
CASE tools (TPU, Code Mgmt System, Module Mgmt System,
Performance Code Analyzer, Language Sensitive Editor,
Digital Test Mgr), Compound Document Architecture,
DECnet Phase IV task-to-task, DECwindows client via LAT
SortMerge

Stage 2: Commercial Development System
Second hardware platform;
International versions follow 3 months later

COBOL, PASCAL, C++, ADA, CDD/Repository, Rdb,
threads-rtl, RPC, GKS, PHIGS, Forms Mgmt System, DECforms,
File Cache, VAXset, Distr Servers (name, time, file, queuing),
Remote System Manager, ALL-IN-1 base, CDA suite,
DECnet IV end node CTERM and DECwindows,
TCP/IP, PATHWORKS, LATmaster, ABSS extensions

Stage 3: Technical Robust System
Open System; Symmetric Multi-Processing

LISP, PL/I, user-written drivers, POSIX, disk shadowing,
DBMS, ACMS, DAS or equivalent, full NAS, DECnet Vend node,
X.25 access, ALL-IN-1 fully supported

Stage 4: Commercial Robust System
Alpha Clusters; International versions released
simultaneously

New Batch/Print, all System Integrated Products,
DECnet V routing node, SNA access

Stage 5: Transaction System

Transaction Monitor, Exec threads

Figure 5 The Singlepage Plan: An Extract from the Straw Horse Plan

divert the promiser away from fulfilling the
promise. Thus, managers learn to inspect regularly
the progress of groups on whose commitments
they depend.

program and shared our sense of schedule urgency.
Suddenly, we were shocked by a memo stating
that a critical project's schedule had slipped sev­
eral months. Since virtually every other project
depended upon it, this schedule slip could easily
have led to a program disaster. Instead, we used the
event to institute a regular operational inspection.
Often, instituting such regular reviews is difficult
and generally resisted by the reviewees. In this
case, every group could see the danger of continu­
ing without regular inspections and readily agreed
to this new process.

The model, therefore, incorporates this tradi­
tional, essential project management practice. Its
inclusion was prompted by another project crisis,
described below.

Fourth Cusp: Project Slips Motivate
Formal Operational Inspection
The Program Office knew that it was working with
highly motivated teams. On the basis of the earlier
planning work, we assumed that they were all
tightly focused on the objectives of the Alpha AXP

200

The Program Office adopted the term "inspec­
tion," rather than "review;' because we have found
this term to be neutral or positive. In the past,

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Enrollment Management, Managing the Alpha AXP Program

reviews had been imposed by line management and
tended to encourage the reviewees to cover up
issues until it was too late to recover. In contrast,
the program manager, operating under the Program
Office model, had no line authority and set up the
monthly operational inspections in an open and
supportive environment. The presenters were the
designated project managers from each develop­
ment group. The Program Office encouraged all
presenters to bring in their risks and problems
before it was too late to address them effectively.
We used the single-page format again, as shown in
Figure 6. Note that the simple, visual history of all

milestones is at the top, so one can readily see any
repetitive slips. The emphasis is on critical path
events completed last month and those coming up
next month. At the bottom are listed those issues
that have been resolved and issues being opened,
with clearly indicated ownership and due dates.

Operational Excellence
To ensure that every project implemented the
strategies, the Program Office established the prin­
ciple of operational excellence across the Alpha
AXP program. The office consistently recognized
teams that accomplished their results on time and

PROJECT: ALPHA/VMS
April 8, 1992 DATE :

SCHEDULE:
I Q4 1991 Ql 1992 Q2 1992 Q3 1992 Q4 1992
IOct Nov DeclJan Feb MarlApr May JunlJul Aug SeplOct Nov Dec
[---[---[---[---[---[---[---[---[---[---[---[---[---[---[---
B 4 5 I E I Sep 91

B 4 5 6 I E I Nov 91
B 4 5 6 I E S I Jan 92
B 4 5 6 I U E S IMar 92
B 4 5 6 I U E S IApr 92

Milestones
B Base Level 3B (Editor, debugger, TIE, base DECnet) DONE
4 Base Level 4 (More DECnet, utilities, and Oil clients) DONE
5 Base Level 5 (EV4 support, TFF, perfonnance) DONE
6 Base Level 6 (Perfonnance & Tapes) DONE
I Internal field test & Pilot Porting Activity - FTl
u Internal field test update - FT2
E External field test & Early Support Program - FT3
S Vl.O submit to SSB

CRITICAL PATH EVENTS PAST MONTH:
Shipped BL6 on March 12 - stable on ADU, Ruby, Cobra, Flamingo
Shipped BL6 AMC porting toolkit
Achieved FTl (PPA) code freeze
Received 2 Flamingo systems in Varese, Italy, for POSIX development
With SPE (CSSE), delivered worldwide field test support training
FTl stabilization continuing

ACTIVITIES ALONG THE CRITICAL PATH (NEXT MONTH):
Ship FTl; revised target is Apr 10
Ship FTl AMC porting toolkit
Complete PPA Readiness Review
Begin FT2 stabilization

ISSUES I DEPENDENCIES RESOLVED :
Flamingo SFB graphics support formally accelerated into Vl.O

ISSUES I DEPENDENCIES NOT RESOLVED:
GEM BL24 compilers needed for ESP integration: D.L., May 15
Rollout support staffing is not in anyone's plan : J.S., May 29

Figure 6 The Single-Page Review

Digital Tee/mica/ J ou r n al Vol. 4 No. 4 Special Issue 1992 201

Alpha AXP Program Management

predictably. We also used the monthly program­
wide inspections to maintain a published record of
progress. Thus, each project was encouraged to
excel operationally and to learn from the experi­
ences and presentations of the others.

Fourth Cusp Result
The Program Office established monthly inspec­
tions using a consistent single-page document to
record pertinent information.

Acknowledgment-Leaming Stage:
Building Momentum
Developing the vision and plan resulted in a gen­
eral sense of euphoria. Shortly afterwards, the real­
ity of the work ahead descended like a cloud
of despair. At this point, the primary challenge
was to start building momentum in the program.
In the Enrollment Management Model, building
momentum-the acknowledgment-learning stage­
is tightly intertwined with the inspection stage;
that is, events reported during inspections were
used to build momentum. The Program Office rein­
forced the vision and used momentum building to
minimize the time period during which the team
felt despair about the work ahead.

Fifth Cusp: Despair
Since the overall program had such a formidable
goal, many of the contributing teams became
stalled with the magnitude of the task ahead of
them. This manifested itself in the form of com­
ments about the large amount of work, the result­
ing potential for schedule delays, and a fear of
overtime demands. This syndrome is common in
any large project, especially when commitments
are made that involve taking large risks. The
approach the program team took was to start recog­
nizing each element of progress. As we distributed
announcements of progress widely (using Digital's
worldwide electronic mail network), we began to
build momentum around the Alpha AXP program.
Other groups picked up on this momentum and
contributed to it themselves. This effect cascaded
throughout the entire program-more groups per­
ceived their tasks ahead as achievable; rapidly each
group wanted its own progress acknowledged; and
momentum increased.

The Program Office found that the members of
a project appreciated and were motivated by the
simple "thank you" represented by the public

202

acknowledgment of their work. This contrasts with
the conventional management wisdom that it is
necessary to give frequent monetary rewards to
motivate people. Although everyone appreciates
the financial rewards, the biggest motivator is the
professional recognition that the contributor did a
good and necessary job!

The second benefit of the acknowledgment was
its effect in creating a sense of momentum through­
out all the project teams. Repeatedly, peer man­
agers would comment that the Alpha AXP team was
making significant progress. This in turn gave us a
sense of accomplishment as well. So the program
realized a double benefit from the original acknowl­
edgment and a further slingshot effect with recog­
nition coming back to the Program Office.

Fifth Cusp Result
Program-wide, managers established the norm of
frequent acknowledgment of progress.

As the Alpha AXP program made further prog­
ress, the Program Office actively solicited third­
party and customer involvement. This involvement
provided good feedback on progress and had the
effect of reinforcing the fact that the program was
on track to meet customer needs. In some cases, the
project teams altered the Alpha AXP plans to better
help our customers address their business needs.
This further contributed to the credibility and
momentum of the program as well as the sense of
accomplishment.

Sixth Cusp: Broken Dependencies
and Replanning
Like any project, not every assumption and depen­
dency proves to be correct or totally accurate. At
one point, one of the major Alpha AXP hardware
systems slipped its schedule for delivery of proto­
types to software. After considering a number of
alternatives, the operating system group proposed
an alternate plan using a different hardware system
and a changed order of events. They said in their
management presentation at the time, "The ques­
tion is not one of blame. Instead our goal is to pre­
serve the ultimate schedule goal of the program,
specifically its volume availability date."

Sixth Cusp Result
Program-wide, team members established the prin­
ciple of focusing on the desired state of time-to­
profit rather than on blaming others for failures.

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

Enrollment Management, Managing the Alpha AXP Program

At another point, one group was at risk because it
needed a critical skill for a week. A (historically)
competing hardware group responded by asking
what sort of resource, and then freely supplied the
resource despite its own very tight schedule. In the
past, these groups would compete for the same
resource without collaborating for the common
good.

Seventh Cusp: Incomplete Assumptions
and the Need for the Performance Team
Less than half way through the Alpha AXP program,
the program team realized that some projects'
assumptions were incomplete. RISC systems are
notorious for requiring careful design and tuning to
meet aggressive performance goals. Evidence from
a related program at Digital suggested that some
of our system performance homework was weak.
The Program Office quietly asked the appropriate
teams to assign some resources to measure key
components and subsystems of the design. This
confirmed the program team's concerns that the
current plans were incomplete. Quickly, we pulled
together a cross-disciplinary task force to analyze
the information rigorously and to make recommen­
dations. These analyses resulted in changes in the
architecture, the chip design, the systems designs,
and the software. The changes have proved to
increase performance substantially.

Seventh Cusp Result
The program established a performance team to
change the design and plans as needed.

Eighth Cusp: Prototype Allocation Process
As manufacturing started to deliver prototypes, the
Program Office found that the early manufacturing
build rate was lower than planned. This was the
result of normal start-up problems. At the same
time, initial demand had increased substantially.
Nevertheless, the project administrators continued
to ship the systems to engineering and applications
groups in the original order. If this had continued,
dependent software would have been delivered
progressively later because of inadequate testing
cycles. Our impact analysis indicated that the Alpha
AXP volume availability would slip by three
months.

The review team highlighted this problem in an
early program readiness review. Traditionally,
Digital uses readiness reviews to establish manufac-

D igital Technical Journal Vol. 4 No. 4 Spedal Issue 1992

turing's readiness to build systems. The Alpha AXP

Program Office broadened this process and asked
for a program-wide readiness review to identify
the "showstopper" risks. As a result, the Program
Office centralized the allocation process so that we
could maintain the prototype allocations in real
time. The result was to reestablish sufficient soft­
ware test time and maintain momentum with mini­
mal program impact.

Eighth Cusp Result
The program teams decided that prototypes would
be delivered based on program priorities, not solely
on existing plans.

Ninth Cusp: Need for Quality Metrics
Each group in the Alpha AXP program adopted very
high standards for the quality of its work. The man­
agement team repeatedly found reinforcement
of Phil Crosby's dictum: "Quality is free ."13 Results
in group after group showed that early and con­
tinuous attention to quality resulted in held or
improved schedules.

However, the program team noticed that we
were not inspecting and measuring progress in
quality at the total systems level; customers care
about only the quality of the total result. As the
projects started integrating into a total system, the
Program Office established an independent group
to measure overall quality levels. The classic reac­
tion to such independently derived quality metrics
is that they are meaningless. Instead, since the
program established the metrics at the moment
when everyone saw the need, the reaction has
been to focus on the total system's quality without
dropping attention on the individual component
metrics.

Ninth Cusp Result
The program formalized system-wide quality
metrics.

Results and Lessons Learned
Digital met exactly the program's overall schedule
to the month (i.e., date for high-volume shipments),
despite numerous setbacks along the way. The
Alpha AXP system is meeting the original per­
formance goals, and quality is excellent. Digital's
Board of Directors has approved the full Alpha AXP
program business plan and the investments neces­
sary to capitalize on the Alpha AXP family's early

203

Alpha AXP Program Management

successes. Initial reactions from customers have
been favorable . Third parties have committed
Alpha AXP support for their products in record
numbers.

What Worked Well
The Program Office in conjunction with the
Enrollment Management Model has worked well. If
the management team had followed traditional
approaches, we would still be getting organized.
Using the model, each group has been able to bring
its full capabilities to bear as problems have arisen.
The project teams have accepted the introduction
of multiple levels of inspection, and other programs
within Digital are copying this aspect of the model.
Further, the notion of using project cusps creatively
has been an effective tool to build momentum.
Finally, a common schedule and inspection disci­
pline allowed the schedule to become an opportu­
nity to reinforce a shared vision. This positive view
contrasts with the conventional interpretation of
a schedule as a burden.

As a result, most groups met very aggressive goals
on schedule. Several groups accelerated their deliv-

ALPHA/VMS SCHEDULE RESULTS

MILESTONE

Phase O closure
Alpha VMS minimal login
BLl ship - minimal login
BL2 ship - RTLs , DW(l) & LAT
BL3A ship - ISAM, linker

erables despite having the most complex tasks. For
example, the OpenVMS AXP system group not only
met its original schedule but also accelerated num­
erous deliverables into earlier base levels or releases.
Figure 7 shows the OpenVMS schedule and actual
dates of availability; footnotes indicate functional
accelerations. The networks group delivered DECnet
on the AXP system an entire base level early. The
database systems group accelerated its schedule by
several months and demonstrated products four
months early at Oigital's DECWORLD '92 trade show.

Clearly one of the major lessons was to establish
a constancy of purpose and hold to it while contin­
ually learning and updating the detailed plans. The
single-page representation of the goals and master
plan is a key element in maintaining this constancy.

What We Would Do Differently
Looking back, we would have approached the
program differently in two areas. First, project
teams would have benefited from broader early
education on project methodology. Several projects
had significant slips, causing undue hardship on
other groups. The Program Office should have

ORIGINAL ACTUAL

Aug 30 , 1990 Aug 30
Jun 17 , 1991 Mar 20
Jul 15, 1991 May 31
Aug 26, 1991 Jul 12
n/a Aug 23

BL3B ship - prog devel & TIE(2) , DECnet(3)
BL4 ship

Oct
Nov

7 ,
18,

1991 Oct 10
1991 Nov 15

BL5 ship - functionally complete(4)
BL6 ship - Ruby complete(5)

FTl/PPA
Phase 1
FT2/PPA
FT3/ESP (6)
FT4/ESP
Vl.O SSB submission (LRS)

Notes :

(1) DECwindows

Dec
Feb

Apr
May
n/a
Jul
n/a
Oct

30 , 1991 Jan
21 , 1992 Mar

3 , 1992 Apr
1992 May
1992 May
2 , 1992 Jul
1992 Aug
2 , 1992 Oct

(2) Translated Image Environment (RTL for translated images)
(3) DECnet accelerated from BL4 to BL3B

10
6

10
20
22
8
14
26

(4) Full graphics support accelerated from next version to Vl.O
(5) Support for multiple hardware platforms accelerated from next

version to Vl . O
(6) FDDI support accelerated from next version to Vl.O

Figure 7 Original Open VMS Milestone and Delivery Dates

204 Vol. 4 No. 4 Special Issue 1992 Digital Technicaljoun,al

Enrollment Management, Managing the Alpha AXP Program

introduced Ron LaFleur's project methodology
sooner and pervasively. Instead, we waited until
each group saw the need and then tried to intro­
duce it. For groups such as the OpenVMS AXP
system group, the methodology was introduced
early. However, other groups needed (and still
need) this discipline.

Second, the office would have conducted more
pervasive project inspections. Several groups were
very late in producing schedules and plans that the
Program Office could understand. The office was
unable to obtain their cooperation to hold detailed
and frequent inspections. Eventually, the Program
Office was invited to set up and participate in
appropriate inspections of schedule, process, etc.
However, we should have insisted on these much
sooner.

Summary
The Alpha AXP program is the most complex pro­
gram in Digital's history and has been delivered on
schedule with high quality. The Alpha AXP Program
Office used a rigorous management methodology
to build the program-level teamwork necessary to
accomplish this breakthrough. The office proved
the effectiveness of the Enrollment Management
Model: vision-enrollment, commitment-delega­
tion, inspection-support, and acknowledgment­
learning. Integral to this model and empowering to
the team is to take each cusp head-on and to use
them to increase momentum. The management
team has been learning as the program progressed
and has identified areas needing strengthening for
future programs.

Acknowledgments
The author thanks the following senior managers
for demonstrating the importance of good manage­
ment: Gordon Bell for architecture and a clear strat­
egy; Ken Olsen for demanding simple, single-page
plans; Jeff Kalb for operational excellence; David
Stone for the model of focusing on the desired
state; Bob Supnik for the paradigm of the Program
Office.

The author also thanks key members of the Alpha
AXP Program Office for their contributions in man­
aging the program and developing the Enrollment
Management Methodology: Al Avery for systems
integration and significant help preparing this
paper; Scott Gordon for competitive benchmark­
ing; Ellen Salisbury for planning; and Ken Schultz
for operations and inspection.

Dig ital Technical Jounzal Vol. 4 No. 4 Spedal Issue 1992

References and Note

1. R. Waterman, T. Peters, and]. Phillips, "Struc­
ture is Not Organization," Business Horizons,
no. 80302 (June 1980).

2. C. Savage, Fifth Generation Management
(Burlington, MA: Digital Press, 1990).

3. W Oncken and D. Wass, "Management Time:
Who's got the monkey," Harvard Business
Review, vol. 18, no. 6 (November 1974): 75-79.

4. M. McMaster and]. Grinder, PRECISION:
A New Approach to Communication (Bonny
Doon, CA: Precision Models, 1980).

5.]. Gleick, CHAOS: Making a New Science
(New York: Penguin Books, 1987).

6. P. Senge, The Fifth Discipline: The Art and
Practice of the Learning Organization (New
York: Doubleday, 1990).

7. A. Scherr, "Managing for Breakthroughs in
Productivity," Human Resource Manage­
ment, vol. 28, no. 3 (Fall 1989): 403-424.

8. L. Tesler, "Networked Computing in the
1990s," Scientific American (September
1991): 86-93.

9. The five generations of computing are as fol­
lows: 1950s, standalone; 1960s, batch; 1970s,
timesharing; 1980s, personal; 1990s, mobile
distributed.

10. R. Comerford, "How DEC Developed Alpha,"
IEEE Spectrum (July 1992): 26-31.

11. C. House and R. Price, "The Return Map:
Tracking Product Teams," Harvard Business
Review, vol. 69, no. 1 (January 1991): 92-100.

12. R. LaFleur, "A Seminar in Project Manage­
ment" (Scituate, MA: Project Management
Assistance Co., 1990).

13. P. Crosby, Quality Is Free: The Art of Making
Quality Certain (New York: McGraw-Hill,
1979).

General References

F. Brooks, The Mythical Man-month: Essays on
Software Engineering (Reading, MA: Addison­
Wesley, 1975).

R. Neustadt and E. May, Thinking In Time: The uses
of history for decision makers (New York: The
Free Press, 1986).

205

I Further Readings

The Digital TechnicalJournal
publishes papers that explore
the technological foundations
of Digital's major products. Each
Journal focuses on at least one
product area and presents a
compilation of papers written
by the engineers who developed
the product. The content for
the Journal is selected by the
Journal Advisory Board.
Digital engineers who would
like to contribute a paper
to the Journal should contact
the editor at RDVAX::BIAKE.

Topics covered in previous issues of the
Digital Technical journal are as follows:

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, EY-J884E-DP

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EY-L521 E-DP

PATHWORKS: PC Integration Software
Vol. 4, No. 1, Winter 1992, EY-J825E-DP

Image Processing, Video Terminals,
and Printer Technologies
Vol. 3, No. 4, Fall 1991, EY-H889E-DP

Availability in VAXcluster Systems/
Network Performance and Adapters
Vol. 3, No. 3, Summer 1991, EY-H890E-DP

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY-H876E-DP

Transaction Processing, Databases,
and Fault-tolerant Systems
Vol. 3, No. 1, Winter 1991, EY·F588E-DP

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E762E-DP

DECwindows Program
Vol. 2, No. 3, Summer 1990, EY-E756E-DP

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990, EY-Cl97E-DP

206

Compound Document Architecture
Vol. 2, No. 1, Winter 1990, EY-Cl96E-DP

Distributed Systems
Vol. 1, No. 9,June 1989, EY-C179E-DP

Storage Technology
Vol. 1, No. 8, February 1989, EY-C166E-DP

CVAX-based Systems
Vol. 1, No. 7, August 1988, EY-6742E-DP

Software Productivity Tools
Vol. 1, No. 6, February 1988, EY-8259E-DP

VAXcluster Systems
Vol. 1, No. 5, September 1987, EY-8258E-DP

VAX 8800 Family
Vol. 1, No. 4, February 1987, EY-6711E-DP

Networking Products
Vol. 1, No. 3, September 1986, EY-6715E-DP

MicroVAX II System
Vol. 1, No. 2, March 1986, EY-3474E-DP

VAX 8600 Processor
Vol. 1, No. 1, August 1985, EY-3435E-DP

Subscriptions to the Digital Technical journal are
available on a prepaid basis. The subscription rate
is $40.00 for four issues and $75.00 for eight issues.
Orders should be sent to Cathy Phillips, Digital
Equipment Corporation, ML01-3/B68, 146 Main
Street, Maynard, MA 01754-2571, U.S.A., Telephone:
(508) 493-2894, FAX: (508) 493-0637. Inquiries
can be sent electronically to D1J®CRL.DEC.COM.
Subscriptions must be paid in U.S. dollars, and
checks should be made payable to Digital
Equipment Corporation.

Single copies and past issues of the Digital
Technical journal are available for $16.00 each
from Digital Press, Department EEB, I Burlington
Woods Drive, Burlington, MA 01830-4597. Single
issues can also be ordered by calling DECdirect
at 1-800-DIGITAL (l-800-344-4825).

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

I Recent Digital U.S. Patents

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied
to us by the US. Patent and Trademark Office are reproduced exactly as they appear on the original
published patent.

0327,261 K. L. Korellis and R. T. Faranda Front Face Panel Portion for Enclosure Doors for a Computer

0327,477 K. L. Korellis Front Panel for an Integrated Storage Assembly for Computer
Storage Units

5,092,631 M. G. M. Masnik and Safety Enclosure for Gas Line Fittings
R. C. Martel

5,093,628

5,093,775

5,094,980

5,095,441

5,095,460

5,095,471

5,095,613

5,097,370

5,097,387

5,097,411

5,097,436

5,097,468

5,099,367

5,099,484

5,099,485

5,099,517

5,101,106

5,101,362

5,101,402

5,101,485

5,101,493

5,103,352

I. T. Chan

W. R. Grundmann, R. F.
Boucher, and T. Fossum

A. Shepela

D. F. Hopper, E. G. Fortmiller,
S. Kundu, and D. F. Wall

T. L. Rodeheffer

M. D. Sidman

K. R. Hussinger and
M. L. Mallary

Y Hsia

J. L. Griffith

P. L. Doyle,]. P. Ellenberger,
E. 0. Jones, D. C. Carver,
S. D. Dipirro, B. J. Gerovac,
W. P. Armstrong, E. S. Gibson,
R. E. Shapiro, K. C. Rushforth,
and W. C. Roach

J. H. Zurawski

E. Earlie

M. D. Sidman

D. W. Smelser

W. F. Brockert, T. D. Bissett,
D. Mazur,]. Munzer, F. Bernaby,
and]. H. Bhatia

A. Gupta, W. R. Hawe,
M. F. Kempf, and C. S. Lee

E. E. Cox,Jr. and M. P. Rolla

E. Simoudis

D. Chiu and R. Sudama

F. L. Perazzoli,Jr.

R. L. Travis and W. R. Laurune

W. Y Moon and R. Y Noguchi

Current-Pulse Integrating Circuit and Phase-Locked Loop

Microcode Control System for Digital Data Processing System

Method for Providing a Metal-Semiconductor Contact

Rule Inference and Localization during Synthesis of Logic
Circuit Designs

Rotating Priority Encoder Operating by Selectively Masking
Input Signals to a Fixed Priority Encoder

Velocity Estimator in a Disk Drive Positioning System

Thin Film Head Slider Fabrication Process

Subambient Pressure Air Bearing Slider for Disk Drive

Circuit Chip Package Employing Low Melting Point Solder for
Heat Transfer

Graphics Workstation for Creating Graphics Data Structure
Which Are Stored Retrieved and Displayed by a Graphics
Subsystem for Competing Programs

High Performance Adder Using Carry Prediction

Testing Asynchronous Processes

Method of Automatic Gain Control Basis Selection and Method
of Half-Track Servoing

Multiple Bit Error Detection and Correction System Employing
a Modified Reed-Solomon Code Incorporating Address Parity
and Catastrophic Failure Detection

Fault Tolerant Computer Systems with Fault Isolation
and Repair

Frame Status Encoding for Communication Networks

Resonant Technique and Apparatus for Thermal Capacitor
Screening

Modular Blackboard-Based Expert System

Apparatus and Method for Real time Monitoring of Network
Sessions in a Local Area Network

Virtual Memory Page Table Paging Apparatus and Method

Digital Computer Using Data Structure Including External
Reference Arrangement

Phased Series Tuned Equalizer

Digital Technical Journal Vol. 4 No. 4 Special Issue 1992 207

Recent Digital US. Patents

5, 103,393 J. P. Harris, D. Leibholz,
and B. Miller

5,103,553 M. Mallary

Method of Dynamically Allocating Processors in a Massively
Parallel Processing System

Method of Making a Magnetic Recording Head

5, 105,055 W C. Mooney, J. R. Santandreu, Tunnelled Multiconductor System and Method
and K. Kshonze

5, 105, 183 K. 0. Beckman System for Displaying Video from a Plurality of Sources on
a Display

5, 105,322 E. L. Steltzer

5, 105,408 N. K. S. Lee, J. W Howard,
P. K. Tan, and W Hrytsay

5, 107,398 D. A. Bailey

5, 107, 462 W R. Grundmann, V. R. Hay,
L. 0. Herman, and
D. M. Litwinetz

5, 107,503 C. M. Riggle, L. Weng,
andP. N. Hui

5, 107, 506 L. J. Weng and B. A. Leshay

5,108,837 M. L. Mallary

5, 109,307 M. Sidman

5, 109,495 D. B. Fite, T. Fossum, W R.
Grundmann, D. P. Manley,
F. X. McKeen,J. E. Murray,
R. M. Salett, E. Samberg,
and D. P. Stirling

5, lll ,352 S. C. Das and M. L. Mallary

5,111,424 D. D. Donaldson and
R. B. Gillett, Jr.

5,111,465 B. C. Edem, R. P. Helliwell,
J. T. Johnston, and R. F. Lary

5, 112, 142 F. Titcomb and J. Cordova

5,112,662 Q. Y Ng

5, 113,352 J. L. Finnerty

5, 113,515 D. B. Fite, R. C. Hetherington,
M. M. McKeon, D. P. Manley,
and]. E. Murray

5, 113,521 F. X. McKeen, T. Fossum,
D. P. Bhandarkar, and
C.A. Wiecek

5, 115,359 M. D. Sidman

5, 115,360 M. D. Sidman

5, 115,455 WA. Samaras, D. T. Vaughan,
and A. D. Ingraham

Transverse Positioner for Read/Write Head

Optical Head with Flying Lens

Cooling System for Computers

Self Timed Register File Having Bit Storage Cells with
Emitter-Coupled Output Selectors for Common Bits Sharing
a Common Pull-Up Resistor and a Common Current Sink

High Bandwidth Reed-Solomon Encoding, Decoding and Error
Correcting Circuit

Error Trapping Decoding Method and Apparatus

Laminated Poles for Recording Heads

Continuous-Plus-Embedded Servo Data Position Control
System for Magnetic Disk Device

Method and Apparatus Using a Source Operand List and
a Source Operand Pointer Queue between the Execution Unit
and the Instruction Decoding and Operand Processing Units
of a Pipelined Data Processor

Three-Pole Magnetic Head with Reduced Flux Leakage

Lookahead Bus Arbitration System with Override of
Conditional Access Grants by Bus Cycle Extensions for
Multicycle Data Transfer

Data Integrity Features for a Sort Accelerator

Hydrodynamic Bearing

Method for Providing a Lubricant Coating on the Surface of
a Magneto-Optical Disk and Resulting Optical Disk

Integrating the Logical and Physical Design of Electronically
Linked Objects

Virtual Instruction Cache System Using Length Responsive
Decoded Instruction Shifting and Merging with Prefetch
Buffer Outputs to Fill Instruction Buffer

Method and Apparatus for Handling Faults of Vector
Instructions Causing Memory Management Exceptions

Fault Tolerant Frame, Guardband and Index
Detection Methods

Embedded Burst Demodulation and Tracking
Error Generation

Method and Apparatus for Stabilized Data Transmission

5, 115,858 J. S. Fitch and W R. Hamburgen Micro-Channel Wafer Cooling Chuck

5, 117,351 S. Miller Object Identifier Generator for Distributed Computer System

208 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Alpha AXP Architecture
	A 200-MHz 64-bit Dual-issue CMOS Microprocessor
	The Alpha Demonstration Unit: A High-performance Multiprocessor for Software and Chip Development
	The Design of the DEC3000 AXP Systems, Two High-performance Workstations
	Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems
	Technical Description of the DEC 7000 and DEC 10000 AXP Family
	Porting OpenVMS from VAX to Alpha AXP
	The GEM Optimizing Compiler System
	Binary Translation
	Porting Digital's Database Management Products to the Alpha AXP Platform
	DECnet for OpenVMS AXP: A Case History
	Using Simulation to Develop and Port Software
	Enrollment Management; Managing the Alpha AXP Program
	Further Readings
	Recent Digital U.S. Patents
	Back cover

