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I Editor's Introduction 

Jane C. Blake 
Editor 

i'' 

This special issue of the Digital Technical journal 
presents the computer architecture that Digital 
believes will become the universal platform for 
computing over the next 25 years. A significant 
milestone in the company's history, the Alpha AXP 
architecture arises out of Digital's extensive engi­
neering experience and puts into place a cohesive, 
flexible framework for high-performance 64-bit 
RISC computing. This issue contains papers repre­
sentative of the scope of the program across 
Digital's Engineering organization, including hard­
ware systems, an operating system, compilers, 
binary translators, network and database software, 
and simulators. 

The results of the engineering efforts discussed 
in these papers reflect three primary goals for 
the Alpha AXP architecture: high performance, 
longevity, and easy migration from the 32-bit VAX 
VMS computer line. Dick Sites, one of the chief 
Alpha AXP architects, has written a definitive paper 
that explains how key architectural decisions were 
made relative to the goals. He reviews the similari­
ties and differences between the AXP architecture 
and other RISC architectures, and then presents 
details of the design, including data and instruction 
formats. In his conclusion, he projects evolutionary 
changes in the architecture and the resulting per­
formance increases of a thousandfold over the next 
25 years. 

The first implementation of the Alpha AXP archi­
tecture is the DECchip 21064 microprocessor, which 
can execute up to 400 million operations per 
second. Dan Dobberpuhl and members of the 
Alpha chip team offer an overview of the CMOS pro­
cess technology, the chip microarchitecture, and 
the external interface. They then detail the circuit 
implementation and explain the design choices 
directed toward meeting architectural performance 
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requirements and to allow application flexibility. 
The result of their design efforts is a microproces­
sor that operates at speeds up to 200 MHz-the 
fastest commercially available chip in the industry. 

Early implementations of this chip became part of 
a prototype system, the Alpha Demonstration Unit. 
As Chuck Thacker, Dave Conroy, and Larry Stewart 
explain in their paper, the prototype served the 
overall Alpha AXP program by giving software devel­
opers early access (ten months) to AXP-compliant 
hardware. Because of the architectural emphasis on 
multiple processors, prototype designers focused 
on delivering a robust multiprocessing system. The 
authors discuss the significance of the choice of a 
backplane interconnect for a multiprocessor, com­
pare different approaches to cache coherence, and 
describe the system modules and packaging. 

With constraints different from those of the pro­
totype, the hardware product projects are repre­
sented here by three different implementations: 
desktop, departmental, and data center systems. In 
the desktop area, the DEC 3000 AXP family of work­
stations are balanced uniprocessor systems. Todd 
Dutton, Dan Eiref, Hugh Kurth, Jim Reisert, and 
Robin Stewart review the decision to replace the 
traditional common system bus with a crossbar 
system interconnect constructed of ASICs. This new 
interconnect allowed the designers to meet the 
goals of low memory latency, high memory band­
width, and minimal CPU-1/0 memory contention in 
a cost-competitive manner. 

The DEC 4000 AXP system is a departmental 
server that implements the IEEE Futurebus+ stan­
dard. Barry Maskas, Stephen Shirron, and Nick 
Warchol present the reasoning behind the system 
architecture and technology decisions that resulted 
in the achievement of optimized uniprocessor per­
formance, dual-processor symmetric multiprocess­
ing, and balanced 1/0 throughput. Details of the 
subsystems that make up this expandable modular 
system are also provided. 

The DEC 7000 and DEC 10000 systems are power­
ful mid-range and mainframe platforms intended 
for large commercial applications and designed to 
utilize multiple future generations of the DECchip. 
Described by Brian Allison and Catharine van 
Ingen, the heart of these systems is a high-perfor­
mance interconnect that allows communications 
between multiple processors, memory arrays, and 
1/0 subsystems. The authors review each of the 
modules and the 1/0 subsystem design, which 
includes interfaces for XMI and Futurebus. Notably, 
a 32-bit VAX CPU module has been designed to the 



requirements of the high-performance system 
interconnect. Users who wish to migrate from the 
VAX system to Alpha AXP need only swap module 
boards. 

Migration to Alpha AXP from other architectures, 
in particular from VAX VMS, is one of the major goals 
set by the Alpha architects. Existing software­
operating systems, languages, programs-must be 
adapted to run effectively on 64-bit RISC systems. A 
paper by Nancy Kronenberg, Tom Benson, Wayne 
Cardoza, Ravindran Jagannathan, and Ben Thomas 
addresses the challenges of porting the OpenVMS 
operating system-originally developed specifi­
cally for 32-bit VAX systems-to Alpha AXP systems. 
To deal with the huge amount of code, the project 
team developed a compiler that treats VAX assembly 
language (VAX MACR0-32) as a source language to be 
compiled. The authors also discuss the major archi­
tectural differences in the kernel, performance, and 
some future directions for the system. 

The GEM compiler system is the technology 
Digital is using to build state-of-the-art compiler 
products. GEM is described here by David 
Blickstein, Peter Craig, Caroline Davidson, Neil 
Faiman, Kent Glossop, Rich Grove, Steve Hobbs, 
and Bill Noyce. A significant achievement in the 
development of this compiler is that a single opti­
mizer is used for all languages and platforms. 
Developers of compilers will find in-depth informa­
tion in the authors' discussions of optimization 
techniques, code generation, compiler engineer­
ing, and future enhancements. 

Binary translation is another means of moving 
complex software applications from one architec­
ture and operating system to another architecture 
and operating system. Two binary translators are 
the subject of a paper by Dick Sites, Anton Chernoff, 
Matthew Kirk, Maurice Marks, and Scott Robinson. 
The authors discuss the alternatives to translators, 
performance issues, and the development of the 
translators, VEST and mx, and the complementary 
run-time environments. VEST translates OpenVMS 
VAX images to OpenVMS AXP images, and mx trans­
lates ULTRIX/MIPS images to DEC OSF/1 AXP images. 

An easy migration path to Alpha AXP for two 
database management systems used in large com­
mercial applications is the subject of a paper by Jeff 
Coffler, Zia Mohamed, and Peter Spiro. The authors 
define the issues involved in porting the complex 
VAX DBMS and Rdb/VMS products to the AXP plat­
form. Adding to the challenge but balanced by its 
advantages was the decision to have a common 
source, or single code, base. The authors review 

this design approach and provide details of the 
individual porting efforts. 

The process of porting DECnet-VAX to the 
OpenVMS AXP operating system is described by Jim 
Colombo, Pam Rickard, and Paul Benoit. They dis­
cuss the DECnet features supported in the operat­
ing system, the software techniques used, and the 
importance of the decision to build common code 
for the VAX and Alpha AXP systems. The authors 
share details of the port and lessons learned that 
can be applied to future porting efforts. 

Complementary to the previously mentioned 
prototype hardware system are four software simu­
lators that enabled engineers to develop software 
for Alpha AXP concurrently with hardware develop­
ment. Described by George Darcy, Ron Brender, 
Steve Morris, and Mike Iles, the Mannequin simu­
lator was used by the OpenVMS group to boot 
the entire operating system and debug utilities; 
the ISP simulator was used by the DEC OSF/1 group 
with similar success. A major section of the paper 
focuses on the Alpha User-mode Debugging Envi­
ronment in which user-mode code being devel­
oped for Alpha AXP platforms can be compiled and 
executed as Alpha AXP code. 

The closing paper is an unusual one for the 
Journal because it addresses engineering manage­
ment, not strictly technical issues. Peter Conklin 
offers insights into the reasons for the success of 
one of the largest engineering programs under­
taken in the industry. He defines the enrollment 
management model used for the Alpha AXP pro­
gram and explains key concepts, including the 
program office and project "cusps." 

The editors are very grateful for the help of Bob 
Supnik, Vice President and Corporate Consultant, 
in planning this special issue and for writing its 
Foreword. 

We are also pleased to note that four papers 
in this issue are being copublished with the 
Communications of the ACM, including those on 
the Alpha AXP architecture, the Alpha Demon­
stration Unit, Open VMS AXP, and binary translation. 
Barbara Watterson from Digital's semiconductor 
organization; Diane Crawford, Executive Editor of 
the CACM; the DlJ editors; and the authors cooper­
ated so that these informative papers could be 
made available to a broad technical audience. 
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Brian R. Allison Brian Allison is a senior consultant engineer for Digital's 
mid-range VAX/Alpha AXP systems group and is the system architect responsible 
for the coordination of the VAX and DEC 7000 and 10000 system definition and 
design. Prior to this work, he served as system architect for the VAX 6000 
product. Brian holds a B.S.E.E. and a B.S.C.S. from Worcester Polytechnic Institute 
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Randy Alhnon After receiving a B.S. degree in electrical engineering from 
the University of Cincinnati, Randy Allmon joined Digital in 1981. As a circuit 
designer in the Semiconductor Engineering Group, he has contributed to the 
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Robert Anglin Robert Anglin received S.B. and S.M. degrees in electrical engi­
neering in 1989 from the Massachusetts Institute of Technology. In the same 
year, he joined Digital's Semiconductor Engineering Group, where he has 
worked on the design of high-performance microprocessors. Robert is a mem­
ber of Sigma Xi. He is currently pursuing an M.B.A. degree at Harvard University. 

Paul Benoit Paul Benoit is a principal software engineer in the Networks and 
Communications Group. He is the project/technical leader for the DECnet for 
OpenVMS AXP project; the team received an Alpha Achievement Award for early 
completion of project commitments. Previous to this, Paul led the DECnet-VAX 
Phase IV effort. He holds an M.S.S.E. (1991) from Boston University and a B.S.C.S. 
(1986) from the University of Lowell. Paul is a member of ACM and IEEE 
Computer Society. 

Thomas R. Benson A consulting engineer in the OpenVMS AXP Group, Tom 
Benson was the project leader and principal designer of the VAX MACR0-32 com­
piler. Prior to his Alpha AXP contributions, he led the VMS DECwindows File View 
and Session Manager projects and brought the Xlib graphics library to the VMS 
operating system. Earlier, he supported an optimizing compiler shell used by 
several VAX compilers. Tom joined Digital's VAX Basic project in 1979, after 
receiving B.S. and M.S. degrees in computer science from Syracuse University. He 
has applied for four patents related to his Alpha AXP work. 



David Bertucci David Bertucci received a B.S.E.E. degree in 1982 from Wayne 
State University and an M.S.E.E. degree in 1988 from Michigan State University. 
He joined Digital's Semiconductor Engineering Group in 1989 and worked on 
advanced CMOS microprocessor design. Currently, he is employed at Sun 
Microsystems, Inc. 

David S. Blickstein Principal software engineer David Blickstein has worked 
on optimizations for the GEM compiler system since the project began in 1985. 
During that time, he designed various optimization techniques, including induc­
tion variables, loop unrolling, code motions, common subexpressions, base 
binding, and binary shadowing. Prior to this, David worked on Digital's PDP-11 
and VAX APL implementations and led the VAX-11 PL/I project. He received a B.A. 
(1980) in mathematics from Rutgers College, Rutgers University, and holds one 
patent on side effects analysis and another on induction variable analysis. 

Ronald F. Brender Ron Brender is a senior consultant software engineer, 
contributing to the GEM compiler back-end project in the Software 
Development Technologies Group. He has worked on compilers and program­
ming language definition for Alpha AXP, VAX, PDP-11, and PDP-10 systems, includ­
ing Ada, FORTRAN and BLISS. A member of various standards committees since 
the mid-1970s, Ron is now responsible for VAX and Alpha AXP calling standards. 
He joined Digital in 1970, after receiving a Ph.D. in computer and communica­
tion sciences at the University of Michigan. 

Sharon Britton Sharon Britton received a B.S.E.E. degree from Boston 
University in 1983 and an M.S.E.E. degree from the Massachusetts Institute of 
Technology in 1990. She joined Digital in 1983 to work on the design and devel­
opment of 80186-based controllers for read-only and write-once optical disk 
drives. Sharon's graduate research involved the development of an integrated 
content addressable memory system with error detection capability. Currently a 
member of the Semiconductor Engineering Group, she is involved in the design 
and implementation of high-performance CMOS microprocessors. 

Wayne M. Cardoza Wayne Cardoza is a senior consultant engineer in the 
OpenVMS AXP Group. Since joining Digital in 1979, he has worked in various 
areas of the Open VMS kernel. Wayne was also one of the architects of PRISM, an 
earlier Digital RISC architecture; he holds several patents for this work. More 
recently, Wayne participated in the design of the Alpha AXP architecture and was 
a member of the initial design team for the OpenVMS port. Before coming to 
Digital, Wayne was employed by Bell Laboratories. Wayne received a B.S.E.E. from 
Southeastern Massachusetts University and an M.S.E.E. from MIT. 
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Engineering Group/Advanced Development in 1987, Linda has been engaged in 
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Anton Chernoff Anton Chernoff is a member of the technical staff at Digital 
Equipment Corporation, working in the Alpha AXP Migration Tools Group. He 
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ect leader and developer of the RT-11 and RSTS/E operating systems. Anton spent 
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Jeffrey A. Coffler A principal software engineer in the Database Systems 
Engineering Group, Jeff Coffler led the effort to port DBMS to the Alpha AXP plat­
form. Prior to this, Jeff worked on the DBMS and Rdb backup/restore facility and 
on new DBMS features and maintenance. He is currently working on the project 
to port Rdb for OpenVMS to operating systems such as Windows NT and OSF/1. 
He has also contributed to the RSTS/E operating system, WPS-PLUS porting, and 
workflow management projects. Jeff joined Digital in 1984 and holds a B.s.c.s. 
(1983) from California State University at Northridge. 

J ames V. Colombo Project/technical leader James Colombo is currently 
responsible for the next release of DECnet/OSI for OpenVMS for the VAX and 
Alpha AXP computing environments. Prior to this, he led the port of DECnet-VAX 
Phase IV to the OpenVMS AXP operating system; the team received an Alpha 
Achievement Award for early completion of the project. Jim also led the DECnet 
for OS/2 Vl.0 and various PATHWORKS product efforts. Before coming to Digital 
in 1983, Jim worked at Prime Computer, Inc. and Computer Devices, Inc. He 
holds a B.S.C.S. from Boston University and is a member of IEEE. 

Peter F. Conklin Peter Conklin is director of Alpha AXP Systems Develop­
ment. Since joining Digital in 1969, he has held engineering management posi­
tions in large and small systems and terminals groups, direct hardware and 
software engineering, product management, base product marketing, quality 
management, and advanced development. Peter was the first software engineer 
on the VMS project in 1975, ran the VAX architecture team, and was instrumental 
in developing the key architectures and products for the VAX VMS layered prod­
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Robert A. Conrad Robert Conrad received a B.S. degree in electrical and com­
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Semiconductor Engineering Group, where and has been involved with system­
level aspects of RISC microprocessors. 
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employed at Digital as a custom design engineer in the Semiconductor 
Engineering Group. She contributed to the design of the floating-point unit of 
the DECchip 21064 processor. Soha was the recipient of a Digital Minority and 
Women's Scholarship in 1991 and is pursuing a Ph.D. degree at the University of 
Washington, Seattle, Computer Systems Engineering Department. 

Steven 0. Hobbs A member of the Software Development Technologies 
Group, Steven Hobbs is working on the GEM compiler project. In prior contribu­
tions at Digital, he was the project leader for VAX Pascal, the lead designer for the 
global optimizer in VAX FORTRAN, and a member of the Alpha AXP architecture 
design team. Steve received his A.B. (1969) in mathematics at Dartmouth College 
and while there, helped develop the original BASIC time-sharing system. He has 
an M.A. (1972) in mathematics from the University of Michigan and has done 
additional graduate work in computer science at Carnegie-Mellon University. 
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Gregory W. Hoeppner Gregory Hoeppner graduated with distinction from 
Purdue University in 1979. His research topic was ion-implanted optical wave­
guides. In 1980 he worked at General Telephone and Electronics Research 
Laboratory, where he performed basic properties research on GaAs for fabrica­
tion of submicrometer FETs. From 1981 to 1992 he held a number of positions at 
Digital Equipment Corporation's Hudson, MA site, including co-implementation 
leader ofDigital's DECchip 21064. He is currently employed as a senior engineer 
at IBM, Advanced Workstation Division. 

Michael V. Iles Michael Iles is a senior technology consultant at the UK Alpha 
AXP Migration Centre. Since joining Digital in 1975, Mike has worked in various 
field positions, in Advanced VAX development as a microcoder, and for VMS engi­
neering as a software engineer. He worked on the migration of Open VMS VAX to 
the Alpha AXP platform, designing and implementing a user-mode simulation 
environment that became AUD. Mike has a B.Sc. in electrical engineering (hon­
ors, 1973) from City University, London, and holds a patent for digital speech 
synthesis techniques. He has several patents pending for AUD. 

RavindranJagannathan RavindranJagannathan is a principal software engi­
neer in the OpenVMS Performance Group currently investigating OpenVMS AXP 
multiprocessing performance. Since 1986, he has worked on performance anal­
ysis and characterization, and algorithm design in the areas of OpenVMS ser­
vices, SMP, VAXcluster systems, and host-based volume shadowing. Ravindran 
received a B.E. (honors, 1983) from the University of Madras, India, and M.S. 
degrees (1986) in operations research and statistics and in computer and sys­
tems engineering from Rensselaer Polytechnic Institute. 

Matthew B. Kirk Matthew Kirk is a senior software engineer in the SEG/AD 
AXP Migration Tools Group, where he works on binary translator development, 
testing, and support. He joined Digital in 1986 and has also d~signed and devel­
oped automated architectural test software for pipelined VAX hardware and the 
CI computer interconnect. Matthew holds a B.S. in computer science (1986) 
from the University of Massachusetts. 

Nancy P. Kronenberg Nancy Kronenberg joined Digital in 1978 and has 
developed VMS support for several VAX systems. She designed and wrote the VMS 
CI port driver and part of the VMScluster System Communications Services. In 
1988, Nancy joined the team that investigated alternatives to the VAX architec­
ture and drafted the proposal for the Alpha AXP architecture and for porting the 
OpenVMS operating system to it. Nancy is a senior consulting software engineer 
and technical director for the OpenVMS AXP Group. She holds an A.B. degree in 
physics from Cornell University. 
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Kathryn Kuchler Kathryn Kuchler received a B.S. degree in electrical engi­
neering from Cornell University in 1990. Upon graduation, she joined Digital's 
Semiconductor Engineering Group, where she worked on the first implementa­
tion of a RISC microprocessor based on the Alpha AXP architecture. 

Hugh R. Kurth Hugh Kurth joined Digital in 1986 after receiving a B.S. 
degree in electrical engineering, computer engineering, and mathematics from 
Carnegie-Mellon University. At Carnegie-Mellon, he was elected to Eta Kappa Nu 
and was awarded the David Tuma Undergraduate Laboratory Project Award. 
A senior hardware engineer, Hugh designed the TCDS ASIC and SCSI subsystem 
for the DEC 3000 AXP Model 500. Prior to this work, he designed floating-point 
hardware for two projects in the Advanced VAX Development Group. 

Maureen Ladd Maureen Ladd received a B.S. degree in computer engineering 
from the University of Illinois in 1986. She then joined the Semiconductor 
Engineering Group within Digital and worked on a 32-bit RISC microprocessor. 
Maureen received an M.S.E. degree in electrical engineering from the University 
of Michigan in 1990 through Digital's Graduate Engineering Education Program. 
Upon her return to Digital, she worked on the implementation of the first micro­
processor based on the Alpha AXP architecture. 

Burton M. Leary Mike Leary is currently a consulting engineer in the 
Semiconductor Engineering Group/Advanced Development Memory Group. He 
designed the instruction and data caches for the DECchip 21064 CPU and is cur­
rently working on the design of advanced memory products. Mike joined Digital 
in 1980 after receiving a B.S.E.E. degree from the University of Massachusetts. 

Liam Madden Liam Madden joined Digital in 1984 and has since designed 
both CISC and RISC microprocessors and contributed in the area of CMOS process 
development. He is currently a consultant engineer in Digital's CPU Advanced 
Development Group and his interests include circuit design and CMOS tech­
nology development. Prior to joining Digital, Liam designed industrial micro­
controllers for Mahon and McPhillips, Ireland, and worked for Harris 
Semiconductor. He received a B.S. degree from University College Dublin in 1979 
and an M.E. degree from Cornell University in 1990. 
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Maurice P. Marks Maurice Marks is a senior engineering manager in the 
Semiconductor Engineering Advanced Development Group. He currently man­
ages the AXP Migration Tools Group and contributed to the design and imple­
mentation of the translators. In Maurice's twenty years with Digital, he has led 
compiler, operating system, hardware and software tools, CAD, system, and chip 
projects. He holds B.Sc. and B.E. degrees from the University of New South Wales 
and has published papers on transaction processing, software portability, and 
CAD technology Maurice is a member of the Australian Computer Society 

Barry A. Maskas Barry Maskas is the project leader responsible for architec­
ture, semiconductor technology, and development of the DEC 4000 AXP system 
buses, processors, and memories. He is a consulting engineer with the Entry 
Systems Business Group. In previous work, he was responsible for the architec­
ture and development of custom VLSI peripheral chips for VAX 4000 and MicroVAX 
systems. Prior to that work, he was a codesigner of the MicroVAX II CPU and mem­
ory modules. He joined Digital in 1979, after receiving a B.S.E.E. from Pennsylvania 
State University. He holds three patents and has eleven patent applications. 

Edward J. McLellan Ed Mclellan is a principal engineer in the Semi­
conductor Engineering Group. He has contributed to the design of several pro­
cessor chips. Ed joined Digital in 1980 after receiving a B.S. degree in computer 
and systems engineering from Rensselaer Polytechnic Institute, where he was 
elected to Eta Kappa Nu. He holds three patents in computer design and has one 
application pending. 

Derrick R. Meyer Dirk Meyer joined Digital's Semiconductor Engineering 
Group in 1986. He was initially involved in the design of the cache and memory 
systems for a chilled CMOS VAX processor. He has since been involved in the 
development of microprocessors based on the Alpha AXP architecture. Prior to 
joining Digital, he was employed at Intel Corporation, where he was involved in 
the design of various CMOS microcontrollers, including the 80C51 and 80Cl96. 
Dirk received a B.S. degree in computer engineering from the University of 
Illinois in 1983. 

Zia Mohamed Zia Mohamed has been a member of the Database Systems 
Group since joining Digital in 1989. He works in the area of query optimization 
for the DEC Rdb for OpenVMS products; his contributions involve cost-based 
optimization of database queries and algorithms for execution of optimized 
query plans. He has developed dynamic OR optimization techniques, refinement 
of cost-model, and algorithms for better access plans for views. Zia holds a B.S. 
degree in electrical engineering from Bangalore University, India, and an M.S. 
degree in computer science from Texas Tech University. 
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James Montanaro James Montanaro received B.S.E.E. and M.S.E.E. degrees 
from the Massachusetts Institute of Technology in 1980. He joined Digital 
Equipment Corporation in 1982. He was a circuit designer on the floating-point 
chip for the LSI nn4 and a MicroVAX peripheral chip. He led the physical imple­
mentation of the uPRISM CPU, a 70-MHz prototype RISC CPU completed in 1988. 
James also led the physical implementation of the first CPU chip based on the 
Alpha AXP architecture and then contributed as a circuit designer for the 
DECchip 21064 CPU. He is currently with Apple Computer, Inc. 

Stephen). Morris Stephen Morris is a consultant software engineer in the 
Semiconductor Engineering Advanced Development Group. In addition to writ­
ing the Alpha ISP simulator, he wrote the OpenVMS and OSF PALcode for the 
Alpha AXP program. In previous work, Stephen designed the control sections of 
the instruction prefetch and translation look-aside buffer for an experimental 
Digital RISC chip. He also worked on the MicroVAX chip team, doing console and 
debug work, and in the RSTS/E operating system group. Stephen joined Digital 
after receiving a B.A. in biology from the University of Rochester in 1977. 

William B. Noyce Senior consultant software engineer William Noyce is a 
member of the Software Development Technologies Group. He has developed 
several GEM compiler optimizations, including those that eliminate branches. In 
prior positions at Digital, Bill implemented support for new disks and proces­
sors on the RSTS/E project, led the development of VAX DBMS VI and VAX 
Rdb/VMS Vl, and designed and implemented automatic parallel processing for 
VAX FORTRAN/HPO. Bill received a B.A. (1976) in mathematics from Dartmouth 
College, where he implemented enhancements to the time-sharing system. 

Donald A. Priore After receiving an S.M. degree in electrical engineering and 
computer science from the Massachusetts Institute of Technology, Donald 
Priore joined Digital in 1984. Initially, he worked on device characterization, 
yield enhancement, and yield modeling of NMOS and CMOS processes in manu­
facturing. Subsequently, he joined a CMOS design group, working first with 
low-temperature CMOS technology and later with conventional CMOS in high­
performance microprocessor design. His interests include signal, clock, and 
power integrity in the on-chip environment. 

Vidya Rajagopalan Vidya Rajagopalan received a B.E. degree in electronics 
engineering from Visvesvaraya Regional College of Engineering, Nagpur, India, 
in 1986, and an M.S. degree in electrical engineering from the University of 
Maryland in 1989. She was with Norsk Data India Ltd. from 1986 to 1987 as a 
systems design engineer. In 1989 she joined Digital's Semiconductor Engineer­
ing Group and was a member of the design team of the DECchip 21064 RISC 
microprocessor. Vidya is currently involved in the design of high-performance 
microprocessors. 
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James J. Reisert A senior hardware engineer, Jim Reisert designed the TC ASIC 
for the DEC 3000 AXP Model 500. Prior to this project work, he designed instruc­
tion parsers/decoders for two VAX implementations. Jim holds a patent for his 
design of a method for replaying instructions after a microtrap. Before joining 
Digital in 1986, he received an S.B. in electrical engineering from the Massa­
chusetts Ins ti tu te of Technology. He is currently in charge of timing verification 
for another AXP workstation. 

Pamela}. Rickard Principal software engineer Pam Rickard is a member of 
the team porting DECnet/OSI for OpenVMS to the Alpha AXP platform. As the ini­
tial member of the DECnet for OpenVMS AXP porting team, Pam took responsi­
bility for creating an effective team, ported NETDRIVER and other MACR0-32 
code, and debugged major portions of the ported product. Since joining Digital 
in 1978, she has contributed to PATHWORKS for OS/2 and led the console, 
microcode, and system test activities of the VAX-11/785 project. Pam received a 
B.S. (1970) in mathematics and computer science from the University of Denver. 

Scott G. Robinson Scott Robinson is a software engineering manager in the 
AXP Migration Tools Group. He contributed to the design and implementation of 
the binary translators, particularly the VAX translated image environment. Scott 
has also developed implementations of DECnet and CAD/CAM systems to design 
VAX processors. Prior to joining Digital in 1978, Scott worked on a variety of 
Digital hardware and software implementations. He holds a B.S. in electrical engi­
neering from the University of Arizona and is a member of IEEE. 

Sridhar Samudrala Sridhar Samudrala is a consulting hardware engineer in 
the Semiconductor Engineering Group, where he is currently working on a new 
CPU chip. He joined Digital in 1977. Since that time, he has worked on the design 
and verification of PDP-11/23 chips, VAX 8200 microcode development, and on 
the architecture and design of floating-point chips. He holds two patents and has 
three patent applications pending, all on floating-point design. Sridhar received 
an M.Sc. (Tech) degree from Andhra University, India, and an M.S.E.E. degree from 
the University of Wisconsin. 

Sribalan Santhanam Sri Santhanam received a B.E. degree in electrical engi­
neering from Anna University, Madras, India, in 1987, and an M.S.E. degree in com­
puter science and engineering from the University of Michigan in 1989. Upon 
graduation, he joined Digital as a design engineer for the Semiconductor 
Engineering Group, responsible for the full-custom design and development of 
high-performance CMOS VLSI processors. Sri worked on the design of the float­
ing-point unit of the DECchip 21064 CPU. He is currently involved in the design of 
another high-performance microprocessor. 



Stephen F. Shirron Stephen Shirron is a consulting software engineer in the 
Entry Systems Business Group and is responsible for OpenVMS support of new 
systems. He contributed to many areas of the DEC 4000, including PALcode, con­
sole, and OpenVMS support. Stephen joined Digital in 1981 after completing B.S. 
and M.S. degrees (summa cum laude) at Catholic University. In previous work, he 
developed an interpreter for VAX/Smalltalk-SO and wrote the firmware for the 
RQDX3 disk controller. Stephen has two patent applications and has written a 
chapter in Smalltalk-BO: Bits of History, Words of Advice. 

Richard L. Sites Dick Sites is a senior consultant engineer in the Semicon­
ductor Engineering Group, where he is working on binary translators and the 
Alpha AXP architecture. He joined Digital in 1980 and has contributed to various 
VAX implementations. Previously, he was employed by IBM, Hewlett-Packard, 
and Burroughs, and taught at the University of California. Dick received a B.S. in 
mathematics from MIT and a Ph.D. in computer science from Stanford University 
He also studied computer architecture at the University of North Carolina. He 
holds a number of patents on computer hardware and software. 

Peter M. Spiro Peter Spiro, a consulting software engineer, is presently the 
technical director for the Rdb and DBMS software products. Peter's current focus 
is database performance for Alpha AXP systems and very large database issues. 
Peter joined Digital in 1985, after receiving M.S. degrees in forest science and 
computer science from the University of Wisconsin-Madison. He has four 
patents related to database journaling and recovery, and he has authored two 
papers for earlier issues of the Digital Technical Journal. 

Lawrence C. Stewart Larry Stewart received an S.B. in electrical engineering 
from MIT in 1976, followed by M.S. (1977) and Ph.D. (1981) degrees from Stanford 
University, both in electrical engineering. His Ph.D. thesis work was on data com­
pression of speech waveforms using trellis coding. Upon graduation, he joined 
the Computer Science Lab at the Xerox Palo Alto Research Center. In 1984 he 
joined Digital's Systems Research Center to work on the Firefly multiprocessor 
workstation. In 1989 he moved to Digital's Cambridge Research Lab, where he is 
currently involved with projects relating to multimedia and AXP products. 

Robin L Stewart Robin Stewart joined Digital in 1986 after receiving a B.S. in 
electrical engineering from the University of Vermont. She is in the process of 
obtaining an M.B.A. degree from Boston College. A senior technology (hardware) 
engineer, Robin had responsibility for the integrated circuit technology in the 
DEC 3000 AXP Model 500 workstation. Prior to this project work, she was a com­
ponent engineer in Digital's Semiconductor Business Organization. 
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Charles P. Thacker Chuck Thacker has been with Digital's Systems Research 
Center since 1983. Before joining Digital, he was a senior research fellow at the 
Xerox Palo Alto Research Center. His research interests include computer archi­
tecture, computer networking, and computer-aided design. He holds several 
patents in the area of computer organization and is coinventor of the Ethernet 
local area network. In 1984, Chuck was the recipient (with 8 . Lampson and R. 
Taylor) of the ACM Software System Award. He received an A.B. degree in physics 
from the University of California in 1967. He is a member of ACM and IEEE. 

Benjamin}. Thomas III Benjamin Thomas joined the OpenVMS AXP project 
in 1989 as project leader for 1/0 subsystem design and porting. In this role, he has 
also contributed to the 1/0 architecture of current and future AXP systems. Ben 
joined Digital in 1982 and has worked in the VMS group since 1984. In prior 
work, he was the director of software engineering at a microcomputer firm. Ben 
is a consulting engineer and has a B.S. (1978) in physics from the University of 
New Hampshire and an M.S.C.S. (1990) from Worcester Polytechnic Institute. 

Catharine van Ingen A consulting software engineer, Catharine van Ingen 
was co-system architect for the VAX and DEC 7000 products. Catharine is cur­
rently on leave from Digital and is working on engineering document manage­
ment in large heterogeneous systems. Before joining Digital in 1987, she worked 
on data acquisition systems for two large physics detectors at the Fermi National 
Accelerator Laboratory and Stanford Linear Accelerator Center. She holds sev­
eral degrees in civil engineering, including a B.S. and an M.S. from the University 
of California and a Ph.D. from the California Institute of Technology. 

Nicholas A. Warchol Nick Warchol, a consulting engineer in the Entry 
Systems Business Group, is the project leader responsible for 1/0 architecture 
and 1/0 module development for the DEC 4000 AXP systems. In previous work, 
he contributed to the development of VAX 4000 systems. He was also a designer 
of the MicroVAX 3300 and 3400 processor modules and the RQDX3 disk con­
troller. Nick joined Digital in 1977 after receiving a B.S.E.E. (cum laude) from the 
New Jersey Institute of Technology. In 1984 he received an M.S.E.E. from 
Worcester Polytechnic Institute. He has four patent applications. 

Richard T. Witek Rich Witek joined Digital in 1977 to work on DECnet 
network architecture during Phase II. In 1982 he joined Digital's Semiconductor 
Engineering Group where he worked on CAD development, MicroVAX VLSI 

chips, and a variety of internal RISC projects. Rich was a codesigner of the Alpha 
AXP architecture and the principal microarchitect of the DECchip 21064 CPU 
chip. He received a B.A. degree in computer science from Aurora College. Rich is 
currently employed by Apple Computer, Inc. 
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It all started with eight people in a conference 
room.• 

The time was the summer of 1988. Digital 
Equipment Corporation had just closed the best 
fiscal year in its history, with record revenues and 
profits. Digital's VAX systems were the most widely 
used timesharing systems in the industry and were 
the "blue-ribbon standard" for mid-range comput­
ing. Digital was the second-largest workstation ven­
dor. The company had just introduced the VAX 6000 
system, its first expandable multiprocessor, was 
developing a true VAX mainframe, and had decided 
on a rapid thrust into RISC workstations to capital­
ize on that growing market. What could possibly go 
wrong? 

Nonetheless, senior managers and engineers saw 
trouble ahead. Workstations had displaced VAX VMS 
from its original technical market. Networks of per­
sonal computers were replacing timesharing. 
Application investment was moving to standard, 
high-volume computers. Microprocessors had sur­
passed the performance of traditional mid-range 
computers and were closing in on mainframes. And 
advances in RISC technology threatened to aggra­
vate all of these trends. Accordingly, the Executive 
Committee asked Engineering to develop a long­
term strategy for keeping Digital's systems compet­
itive. Engineering convened a task force to study 
the problem. 

The task force looked at a wide range of potential 
solutions, from the application of advanced pipe­
lining techniques in VAX systems to the deployment 
of a new architecture. A basic constraint was that 

the proposed solution had to provide strong com­
patibility with current products. After several 
months of study, the team concluded that only a 
new RISC architecture could meet the stated objec­
tive of long-term competitiveness, and that only the 
existing VMS and UNIX environments could meet 
the stated constraint of strong compatibility. Thus, 
the challenge posed by the task force was to design 
the most competitive RISC systems that would run 
the current software environments. 

Key groups in Engineering responded to this 
challenge. A cross-functional team from hardware 
and software defined the basic architecture. 
Advanced development teams began work on the 
knotty engineering problems: in the semiconduc­
tor group, the specification and design of a fast 
microprocessor, and the automatic translation of 
executable binary images; in the operating systems 
groups, on the porting of ULTRIX and of VMS (which 
was not portable!); and in the compiler group, on 
superscalar code generation. In the fall of 1989, 
Alpha became an officially sanctioned advanced 
development program. t In the summer of 1990, it 
transitioned to product development. 

From the original core in semiconductors, oper­
ating systems, and compilers, work expanded 
throughout Engineering. The server and work­
station hardware groups specified and started 
designing a family of systems, from desktop to data 
center. The networks group began porting DECnet, 
TCP/IP, X.25, LAT, and the many other network­
ing products. The layered software group inven­
toried the existing portfolio of products and 
prioritized the order and importance of delivery. 
The research group pitched in by designing an 
experimental multiprocessor as a software devel­
opment testbed. 

In parallel with the engineering work, market­
ing, sales, and service teams worked closely with 
business partners and customers to shape the deliv­
erables and messages to meet external require­
ments. These teams briefed key customers and 
partners early in the development process and 

'The Corona Borealis conference room in the LTNI facility in 
Littleton, Mass. LTNI was chosen because it was the geographic 
epicenter of the arc of Digital engineering facilities on Massa­
chusetts Route 495, the Corona Borealis because it was the 
only conference room with windows. 

'After going through more than one name change. The original 
study team was called the "RISCy VAX Task Force." The 
advanced development work was labeled "EVAX." When the 
program was approved, the Executive Committee demanded a 
neutral code name, hence "Alpha." 
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incorporated their advice into the development 
program. Ongoing partner and customer advisory 
boards provided regular feedback on all aspects 
of the program and helped shape two critical 
extensions of the original concept: the open licens­
ing of Alpha technology, and the porting of 
Windows NT. 

Taken together, the scope of the Engineering 
effort, the need for Marketing, Field, and Service 
involvement, and the high degree of customer and 
business partner participation, posed unique man­
agement challenges. Rather than organize a large­
scale hierarchical project, the company chose to 
manage Alpha as a distributed program. A small 
program team used enrollment management prac­
tices and strict operational discipline to coordinate 
and inspect activities across the company. This net­
worked approach to management gave the program 
both flexibility and resiliency in the face of rapidly 
changing business and organizational conditions. 
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The work of Engineering, Manufacturing, Mar­
keting, Sales, and Service came together in Novem­
ber 1992 with the announcement of the Alpha AXP 
systems family: seven systems, three operating sys­
tems, six languages, multiple networks, migration 
tools, open licensing of technology, hardware and 
software partnerships, and more than 2000 com­
mitted applications. Today, Alpha AXP embodies a 
fundamental repositioning of Digital Equipment 
Corporation to be the technology and solutions 
leader in twenty-first century computing: a com­
pany dedicated to meeting customers' needs with 
the best computing, business, and service technol­
ogy available. The delivery of Alpha AXP required 
the largest engineering program in Digital's history, 
spanning more than twenty Engineering groups 
worldwide. This issue of the Digital Technical 
Journal documents just a few of the hundreds of 
projects involved in bringing Alpha to fruition; 
future issues will continue the story. 



Richard L. Sites I 

AlphaAXP Architecture 

The Alpha AXP 64-bit computer architecture is designed for high performance and 
longevity. Because of the focus on multiple instruction issue, the architecture does 
not contain fadlities such as branch delay slots, byte writes, and precise arithmetic 
exceptions. Because of the focus on multiple processors, the architecture does con­
tain a careful shared-memory model, atomic-update primitive instructions, and 
relaxed read/write ordering. The first implementation of the Alpha AXP architec­
ture is the world's fastest single-chip microprocessor. The DECchip 21064 runs multi­
ple operating systems and runs native-compiled programs that were translated 
from the VAX and MIPS architectures. 

Thus in all these cases the Romans did what all 
wise princes ought to do; namely, not only to look 
to all present troubles, but also to those in the 
future, against which they provided with the 
utmost prudence. 

-Niccolo Machiavelli, The Prince 

Historical Context 
The Alpha AXP architecture grew out of a small task 
force chartered in 1988 to explore ways to preserve 
the VAX VMS customer base through the 1990s. This 
group eventually came to the conclusion that a new 
reduced instruction set computer (RISC) architec­
ture would be needed before the turn of the cen­
tury, primarily because 32-bit architectures will run 
out of address bits. Once we made the decision to 
pursue a new architecture, we shaped it to do 
much more than just preserve the VMS customer 
base. 

This paper discusses the architecture from a 
number of points of view. It begins by making the 
distinction between architecture and implementa­
tion. The paper then states the overriding archi­
tectural goals and discusses a number of key 
architectural decisions that were derived directly 
from these goals. The key decisions distinguish the 
Alpha AXP architecture from other architectures. 
The remaining sections of the paper discuss the 
architecture in more detail, from data and instruc­
tion formats through the detailed instruction set. 
The paper concludes with a discussion of the 
designed-in future growth of the architecture. An 
Appendix explains some of the key technical terms 
used in this paper. These terms are highlighted 
with an asterisk in the text. 
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Architecture Distinct 
from Implementations 
From the beginning of the Alpha AXP design, we 
distinguished the architecture from the implemen­
tations, following the distinction made by the IBM 
System/360 architects: 

Computer architecture is defined as the attributes 
and behavior of a computer as seen by a machine­
language programmer. This definition includes the 
instruction set, instruction formats, operation 
codes, addressing modes, and all registers and 
memory locations that may be directly manipu­
lated by a machine-language programmer. 
Implementation is defined as the actual hardware 
structure, logic design, and data-path organization 
of a particular embodiment of the architecture.1 

Thus, the architecture is a document that 
describes the behavior of all possible implementa­
tions; an implementation is typically a single com­
puter chip.2 The architecture and software written 
to the architecture are intended to last several 
decades, while individual implementations will 
have much shorter lifetimes. The architecture must 
therefore carefully describe the behavior that a 
machine-language programmer sees, but must not 
describe the means by which a particular imple­
mentation achieves that behavior. 

A similar approach has been used with much 
success in specifying the PDP-11 and VAX families of 
computers. An alternate approach is to design and 
build a fast RISC* chip, then wait to see if it is suc­
cessful in the marketplace. If so, successive imple­
mentations are often forced to reproduce accidents 
of the initial design, or to introduce slight software 
incompatibilities. This approach works, but with 
varying success. 
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Alpha AXP Architecture and Systems 

Architectural Goals 
When we started the detailed design of the Alpha 
AXP architecture, we had a short list of goals: 

1. High performance 

2. Longevity 

3. Capability to run both VMS and UNIX operating 
systems 

4. Easy migration from VAX and MIPS architectures 

These goals directly influenced our key decisions 
in designing the architecture. 

In considering performance and longevity, we 
set a 15- to 25-year design horizon and tried to avoid 
any design elements that we thought could become 
limitations during this time. In current architec­
tures, a primary limitation is the 32-bit memory 
address. Thus we adopted a full 64-bit architecture, 
with a minimal number of 32-bit operations for 
backward compatibility. 

We also considered how implementation perfor­
mance should scale over 25 years. During the past 
25 years, computers have become about 1,000 
times faster. Therefore we focused our design deci­
sions on allowing Alpha AXP system implementa­
tions to become 1,000 times faster over the coming 
25 years. In our projections of future performance, 
we reasoned that raw clock rates would improve by 
a factor of 10 over that time, and that other design 
dimensions would have to provide two more fac­
tors of 10. 

If the clock cannot be made faster, then more 
work must be done per clock tick. We therefore 
designed the Alpha AXP architecture to encourage 
multiple instruction issue• implementations that 
will eventually sustain about ten new instructions 
starting every clock cycle. This aggressive tech­
nique of starting multiple instructions distin­
guishes the Alpha AXP architecture from many 
other RISC architectures. 

The remaining factor of 10 will come from multi­
ple processors. A single system will contain per­
haps ten processors and share memory. We 
therefore designed a multiprocessor memory 
model and matching instructions from the begin­
ning. This early accommodation for multiple pro­
cessors also distinguishes the Alpha AXP 
architecture from many other RISC architectures, 
which try to add the proper primitives later. 

To run the OpenVMS AXP and the DEC OSF/1 
AXP-and now the Microsoft Windows NT -operat­
ing systems, we adopted an idea from a previous 
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Digital RISC design called PRISM.3 We placed the 
underpinnings for interrupt delivery and return, 
exceptions, context switching, memory manage­
ment, and error handling in a set of privileged 
software subroutines called PALcode. These sub­
routines have controlled entry points, run with 
interrupts turned off, and have access to real hard­
ware (implementation) registers. By including dif­
ferent sets of PALcode for different operating 
systems, neither the hardware nor the operating 
system is burdened with a bad interface match, and 
the architecture itself is not biased toward a partic­
ular computing style. 

To run existing VAX and MIPS binary images, we 
adopted the idea of binary translation,• as described 
in a companion paper.4.s.6 The combination of 
PALcode and binary translation gave us the luxury 
of designing a new architecture. Other than the fun­
damental integer and floating-point data types, 
there are no specific VAX or MIPS features carried 
directly into the Alpha AXP instruction-set architec­
ture for compatibility reasons. 

Key Design Decisions 
This section presents the design decisions that dis­
tinguish the Alpha AXP architecture from others. 

RISC 
The Alpha AXP architecture is a traditional RISC 
load/store architecture. All data is moved between 
registers and memory without computation, and all 
computation is done between values in registers. 
Little-endian byte addressing and both VAX and IEEE 
floating-point operations• are carried over from the 
VAX and MIPS architectures. 7 We assumed that most 
implementations would pipeline instructions, i.e., 
they would start execution of a second, third, etc. 
instruction before the execution of a first instruc­
tion completes. We assumed that the implementa­
tion latency of many operations would be 
important. Latency is the number of cycles a pro­
gram must wait to use the result of a preceding 
instruction. We assumed that the vast majority of 
memory operands would be aligned. An aligned 
operand of size 2**N bytes• has an address with N 
low-order zeros. Other memory operands are 
termed unaligned. 

Full 64-bit Design 
The Alpha AXP architecture uses a linear• 64-bit vir­
tual address space. Registers, addresses, integers, 
floating-point numbers, and character strings are 
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all operated on as full 64-bit quantities. There are 
no segmented addresses.• 

Register File 
In choosing the register file design, we considered 
both a single combined register file and split integer 
and floating-point register files. We chose a split 
register file to support aggressive multiple issue. A 
combined file is somewhat more flexible, espe­
cially for programs that are heavily skewed toward 
integer-only or floating-point-only computation. A 
combined file also makes it easier to pass a mixture 
of integer and floating-point subroutine parameters 
in registers. However, split files allow graceful two­
chip implementations and smaller integer-only 
implementations. They also need fewer read/write 
ports per file to sustain a given amount of multiple 
instruction issue. 

We also considered whether each file should con­
tain 32 or 64 registers. We chose 32, largely because 

1. Thirty-two registers in each file are enough to 
support at least eight-way multiple issue. 

2. Two valuable instruction bits are better used to 
make a 16-bit displacement field in memory­
format instructions. 

More registers might seem better, but excess reg­
isters consume chip area and access time, 
save/restore speed across subroutines and context 
switches, and instruction bits that might be put to 
better use. Compilers can deliver substantial per­
formance gains when given 32 registers instead of 
16, but there is no clear evidence of similar gains 
with 64 registers. Demand for registers is likely to 
increase slowly in the future, but a number of 
implementation techniques, such as short latency 
pipelines and register renaming, should satisfy this 
demand. 

Multiple Instruction Issue 
Our design sought to eliminate any mechanism that 
would hinder aggressive multiple instruction issue 
implementations. Therefore we tried to avoid all 
special or hidden processor resources.8 Thus, the 
Alpha AXP architecture has no condition codes, no 
global exception enables, no multiplier-quotient or 
string registers, no branch delay slots, no sup­
pressed instructions or skips, no precise arithmetic 
exceptions, and no single-byte writes to memory 
All of these features, found in some RISC architec­
tures, have the effect of hindering multiple instruc­
tion issue, or hindering pipelining of multiple 
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instances of the same instruction. For example, a 
dedicated string register makes it hard to have three 
unrelated string operations in the pipeline at once. 

To illustrate the performance loss associated 
with special or hidden processor resources, con­
sider a dual-issue implementation with a four-cycle­
deep pipeline. At the beginning of each cycle, up to 
six prior instructions are partially executed and 
two more are about to be issued. Six prior instruc­
tions can have six pending writes to result regis­
ters, plus six sets of side effects on special or 
hidden processor resources. The next two instruc­
tions can specify a total of four operand registers, 
two more result registers, and two more sets of side 
effects on special or hidden resources. The decision 
to issue 0, 1, or 2 of the next instructions involves 
36 simple comparisons of pairs of register numbers 
and 12 complex comparisons of sets of side effects. 
The number of such comparisons increases as a 
function of the issue width, the pipeline depth, and 
the number of special or hidden processor 
resources. The complexity of these comparisons 
can limit the clock rate. The register-number com­
parisons are unavoidable, therefore we tried to 
limit special or hidden processor resources. 

Branch Delay Slots The Alpha AXP architecture 
has no branch delay slots. The branch delay slots 
found in some RISC architectures require exactly 
one following instruction to be executed after a 
conditional branch. In 1988 this was, perhaps, a 
good idea for overlapping branch latency in a sin­
gle-issue chip with a one-cycle instruction cache. In 
1995, however, it will not scale well to a four-way 
issue chip with a two-cycle instruction cache. 
Instead of one instruction, up to eight instructions 
would be needed in the delay slot. Branch delay 
slots also introduce a restart problem if the instruc­
tion in the delay slot faults: one restart program 
counter is needed for the delay slot and another one 
for the actual branch target. 

Suppressed Instructions The Alpha AXP architec­
ture has no suppressed instructions, whereby the 
execution of one instruction conditionally sup­
presses a following one. Suppressed (or skipped) 
instructions are found in other RISC architectures. 
The suppression bit(s) represent nonreplicated 
hidden state, so multiple instruction issue is diffi­
cult for more than one potential suppressor. If an 
interrupt is taken between a suppressor and sup­
pressee, or if the suppressee takes a restartable 
exception (e.g., page fault), the correct version of 
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the suppression state must be saved and restored. 
There are also definitional problems with this 
approach: Are exceptions ever reported for sup­
pressed instructions? What happens if the sup­
pressed instruction suppresses a third instruction? 

Byte Load or Store Instructions The Alpha AXP 
architecture has no byte load or store instructions 
and no implicit unaligned accesses. There also are 
no partial-register writes. The byte load/store 
instructions and unaligned accesses found in some 
RISC architectures can be a performance bottle­
neck. They require an extra byte shifter in the 
speed-critical load and store paths, and they force a 
hard choice in fast cache design. The partial-regis­
ter writes found in other RISC architectures can also 
be a performance bottleneck because they require 
masking and shifting in the fundamental operation 
of accessing a register. 

On a previous project involving a MIPS implemen­
tation, we found the shifter for the load-left/load­
right instructions to be a direct cycle-time 
bottleneck. Also, the VAX 8700 implementation 
(circa 1986) removed the byte shifter in the 
load/store hardware in favor of a faster microcycle, 
with 2 cycles for a byte load and 6 cycles for an 
unaligned 32-bit access. This decision achieved a 
net performance gain. Our experience encouraged 
us to avoid byte load/store. 

An additional problem with byte stores is that an 
implementer may easily choose only two of the 
three design features: fast write-back cache, single­
bit error correction code (ECC), or byte stores. 

Byte stores are straightforward in simple byte­
parity write-through cache implementations. 
Except for the expensive design of four or five ECC 
bits for every eight bits of data, a byte store to a fast 
ECC write-back cache involves 

1. Reading an entire cache word* 

2. Checking the ECC bits and correcting any single­
bit error 

3. Modifying the byte 

4. Calculating the new ECC bits 

5. Writing the entire cache word 

This read-modify-write sequence requires hidden 
sequencer hardware and hidden state to hold the 
cache word temporarily. The sequencer tends to 
slow down ordinary full-cache-word stores. The 
need for byte stores tends to ripple throughout 
the memory subsystem design, making each piece 
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a little more complicated and a little slower. With 
nonreplicated hidden state, it is difficult to issue 
another byte store until the first one finishes. 
Finally, the existence of a byte store instruction has 
led to programs and library routines for other RISC 
implementations with single-byte move and com­
pare loops. String manipulation on Alpha AXP 
implementations is up to eight times faster by pro­
cessing eight bytes at a time.9 

Instead of including byte load/store, we followed 
the RISC philosophy of exposing hidden computa­
tion as a sequence of many simple, fast instructions. 
In the Alpha AXP architecture, a byte load is done as 
an explicit load/shift sequence; a byte store as an 
explicit load/modify/store sequence. We tuned the 
instruction set to keep these sequences short. The 
instructions in these sequences can be intermixed, 
scheduled, and issued as multiples with other com­
putation, as can the rest of the instructions in the 
architecture. Table 1 gives a summary of the Alpha 
AXP instruction set. 

Arithmetic Exceptions The Alpha AXP architec­
ture has no precise arithmetic exceptions. 
Reporting an arithmetic exception (e.g., overflow, 
underflow) precisely means that instructions 
subsequent to the one causing the exception 
must not be executed. This is straightforward 
in a slow implementation that runs a single instruc­
tion to completion before starting the next one, 
but becomes substantially more difficult to do 
quickly in a pipelined four-way issue implemen­
tation. There are standard techniques available 
for delivering precise exceptions while run­
ning quickly (checking exponents, suppressing 
register writes, exception silos and backout), but 
these techniques consume substantial design 
time and can cost some performance. They appear 
not to scale well with wider multiple issue or 
faster clocks. 

Exceptional cases are just that-exceptional, or 
rare, events. Based partly on customer requests, we 
decided to emphasize the performance of normal 
operations at the expense of exceptional cases. 
Rather than an implicit exception ordering 
between every pair of instructions, we adopted the 
Cray-I model of arithmetic exceptions-in which 
exceptions are reported eventually-plus an 
explicit trap barrier (TRAPB) instruction that can be 
used to make exception reporting as precise as 
desired. 10 We also documented a code-generation 
design that needs one trap barrier per branch (at 
most) to give precise reporting. Using TRAPB 
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Table 1 Alpha AXP Architecture Instruction Set Summary 

Load/Store, Byte Manipulation CMPLT Compare signed quadword < 
CMPLE Compare signed quadword $ 

LDA Load address CMPULT Compare unsigned quadword < 
LDAH Load address high CM PULE Compare unsigned quadword $ 
LDL Load sign-extended longword MULL Multiply longword 
LDO Load quadword MULO Multiply quadword 
LDO_U Load unaligned quadword UMULH Multiply quadword high, unsigned 
LDL_L Load sign-extended SUBL Subtract longword 

longword, locked S4SUBL Subtract longword, scale by 4 
LDO_L Load quadword locked SBSUBL Subtract longword, scale by 8 
STL_C Store longword, conditional SUBO Subtract quadword 
sro_c Store quadword, conditional S4SUBO Subtract quadword, scale by 4 
STL Store longword SSSUBO Subtract quadword, scale by 8 
sro Store quadword AND AND logical 
sro_u Store unaligned quadword BIS OR logical 
EXTBL Extract byte low XOR XOR logical 
EXTWL Extract word low BIC AND-NOT logical 
EXT LL Extract longword low OR NOT OR-NOT logical 
EXTOL Extract quadword low EOV XOR-NOT logical 
EXTWH Extract word high SLL Shift left, logical 
EXTLH Extract longword high SRL Shift right, logical 
EXTOH Extract quadword high SRA Shift right, arithmetic 
INSBL Insert byte low CMOVEO Conditional move if reg = 0 
INSWL Insert word low CMOVNE Conditional move if reg * 0 
INSLL Insert longword low CMOVLT Conditional move if reg < 0 
INSOL Insert quadword low CMOVLE Conditional move if reg $ 0 
INSWH Insert word high CMOVGT Conditional move if reg > 0 
INSLH Insert longword high CMOVGE Conditional move if reg ~ 0 
INSOH Insert quadword high CMOVLBC Conditional move if reg low 
MSKBL Mask byte low bit clear 
MSKWL Mask word low CMOVLBS Conditional move if reg low 
MSKLL Mask longword low bit set 
MSKOL Mask quadword low CMPBGE Compare bytes, unsigned 
MS KWH Mask word high ZAP Clear selected bytes 
MSKLH Mask longword high ZAPNOT Clear unselected bytes 
MSKOH Mask quadword high 

Integer Branch 
Floating Point Load/Store 

BEO Branch if reg = 0 
LDF Load F format r,JAX single) BNE Branch if reg * 0 
LDG Load G format r,IAX double) BLT Branch if reg < 0 
LDS Load S format (IEEE single) BLE Branch if reg $ 0 
LDT Load T format (IEEE double) BGT Branch if reg > 0 
STF Store F format r,JAX single) BGE Branch if reg ~ 0 
STG Store G format r,JAX double) BLBC Branch if low bit clear 
srs Store S format (IEEE single) BLBS Branch if low bit set 
STT Store T format (IEEE double) BR Branch 

BSR Branch to subroutine 
Address/Constant JMP Jump 
LDA Load address JSR Jump to subroutine 
LDAH Load address high RET Return from subroutine 

Integer Computation and Conditional Move 
JSR_COROUTINE Jump to subroutine, return 

ADDL Add longword 
Floating Point Branch 

S4ADDL Add longword, scale by 4 FBEO FP branch if = O 
S8ADDL Add longword, scale by 8 FBNE FP branch if * 0 
ADDO Add quadword FBLT FP branch if < 0 
S4ADDO Add quadword, scale by 4 FBLE FP branch if $ O 
S8ADDO Add quadword, scale by 8 FBGT FP branch if > 0 
CMPEO Compare signed quadword = FBGE FP branch if ~ 0 

continued on next page 
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Table 1 Alpha AXP Architecture Instruction Set Summary (continued) 

Floating Point Computation 
and Conditional Move 

CPYS Copy sign 
CPYSN Copy sign, negate 
CPYSE Copy sign and exponent 
CVTQL Convert quadword to longword 
CVTLQ Convert longword to quadword 
FCMOVEQ FP conditional move if reg = 0 
FCMOVNE FP conditional move if reg *- 0 
FCMOVLT FP conditional move if reg < 0 
FCMOVLE FP conditional move if reg $ 0 
FCMOVGT FP conditional move if reg > 0 
FCMOVGE FP conditional move if reg ;:,: 0 
MF_FPCR Move from FP control register 
MT_FPCR Move to FP control register 
ADDF Add F format C'/AX single) 
ADDG Add G format C'/AX double) 
ADDS Add S format (IEEE single) 
ADDT Add T format (IEEE double) 
CMPGEQ Compare G format = 

C'/AX double) 
CMPGLT Compare G format < 

C'/AX double) 
CMPGLE Compare G format $ 

C'/AX double) 
CMPTEQ Compare T format = 

(IEEE double) 
CMPTLT Compare T format < 

(IEEE double) 
CMPTLE Compare T format $ 

(IEEE double) 
CMPTUN Compare T format 

unordered (IEEE double) 
CVTGQ Convert G format to quadword 

CVAX double) 
CVTQF Convert quadword to F format 

C'/AX single) 
CVTQG Convert quadword to G format 

CVAX double) 
CVTDG Convert D to G format 

C'/AX double/double) 
CVTGD Convert G to D format 

C'/AX double/double) 

instructions in the first Alpha AXP implementation 
lowers performance 3 percent to 25 percent in real 
floating-point programs and less than 1 percent in 
integer programs, but improves cycle time approxi­
mately 10 percent. 

In contrast to arithmetic exceptions, memory 
management exceptions, such as page faults, are 
reported precisely. This is not as much of a burden 
on implementers as precise arithmetic exceptions 
would be, and lack of precise memory management 
faults would be a severe burden on software 
writers. 
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CVTGF Convert G to F format 
CVAX double/single) 

CVTTQ Convert T format to quadword 
(IEEE double) 

CVTQS Convert quadword to S format 
(IEEE single) 

CVTQT Convert quadword to T format 
(IEEE double) 

CVTTS Convert T to S format 
(IEEE double/single) 

CVTST Convert S to T format 
(IEEE single/double) 

DIVF Divide F format CVAX single) 
DIVG Divide G format CVAX double) 
DIVS Divide S format (IEEE single) 
DIVT Divide T format (IEEE double) 
MULF Multiply F format CVAX single) 
MULG Multiply G format CVAX double) 
MULS Multiply S format (IEEE single) 
MULT Multiply T format (IEEE double) 
SUBF Subtract F format CVAX single) 
SUBG Subtract G format CVAX double) 
SUBS Subtract S format (IEEE single) 
SUBT Subtract T format (IEEE double) 

System 

CALL_PAL Call privileged architecture 
library 

TRAPB Trap barrier (precise exception) 
FETCH Prefetch (cache) date hint 
FETCH_M Prefetch (cache) data, 

modify hint 
MB Memory barrier (serialize) 
WMB Memory barrier (serialize) write 
RPCC Read process cycle counter 
RC Read and clear 
RS Read and set 

PALRESO PALcode reserved opcode O 
PALRES1 PALcode reserved opcode 1 
PALRES2 PALcode reserved opcode 2 
PALRES3 PALcode reserved opcode 3 
PALRES4 PALcode reserved opcode 4 

Shared-memory Multiprocessing 
The Alpha AXP architecture 's shared-memory 
multiprocessing model is an integral part of the 
design. It is not the add-on found in other RISC 
architectures. 

The underlying primitive for safe updating of 
a multiprocessor-shared memory location is a 
sequence of RISC instructions: load-locked, in-regis­
ter modify, store-conditional, test. If this sequence 
completes with no interrupts, no exceptions, and 
no interfering write from another processor, then 
the store-conditional stores the modified result, 
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and the test indicates success: an atomic update 
was in fact performed. 

If anything goes wrong, the store-conditional 
does not store a result, and the test indicates fail­
ure. The program must then retry the sequence 
until it succeeds. We chose this primitive sequence 
(quite similar to the MIPS R4000 chip design5) 

because it can be implemented in a way that scales 
up with processor performance. In the absence of 
an interfering write, the entire sequence can be 
done in an on-chip write-back cache, and hundreds 
of chips can do noninterfering sequences simulta­
neously. The sequence can also be used to achieve 
byte granularity* of writes in shared memory.6 

The Alpha AXP architecture has no strict multi­
processor read/write ordering, whereby the 
sequence of reads and writes issued by one proces­
sor in a multiprocessor configuration is delivered 
to all other processors in exactly the order issued. 
Strict order is simple, but has a problem similar to 
that of byte stores. An implementer may easily 
choose only two of the three design features: 
pipelined writes, bus retry, or strict read/write 
ordering. 

If one processor starts a write to location A and a 
write to location B, then discovers that the write to 
A has failed (bus parity error, etc.) and retries it suc­
cessfully, then a second processor will observe the 
writes out of order: B, then A. 

Before Alpha AXP implementations, many VAX 
implementations avoided pipelined writes to main 
memory, multibank caches, write-buffer bypassing, 
routing networks, crossbar memory interconnect, 
etc., to preserve strict read/write ordering. The 
Alpha AXP architecture's shared-memory model 
instead specifies no implicit ordering between the 
reads and writes issued on one processor, as viewed 
by a different processor. This programming model 
is an enabling technology for a wide variety of high­
performance implementation techniques. Strict 
ordering can be specified when needed by insertion 
of explicit memory barrier (MB) instructions, quite 
similar to the IBM System/370 serialization design. 11 

Data Representation 
and Processor State 
This section describes the fundamental Alpha AXP 
data types and their representation in memory and 
registers. It also describes the complete hardware 
register state for each processor and outlines 
the additional state maintained by operating­
system-specific PALcode routines. The Alpha AXP 
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architecture differs from other RISC architectures 
by carefully specifying a canonical form for 32-bit 
data in 64-bit registers. A canonical form is a stan­
dardized choice of data representation for redun­
dantly encoded values. Since 32-bit operations 
assume canonical operands and give canonical 
results, very few explicit conversions between 32-
and 64-bit representations are needed. 

The fundamental unit of data in the Alpha AXP 
architecture is a 64-bit quadword.• As shown in 
Figure 1, quadwords may reside in memory or regis­
ters. For backwards compatibility, 32-bit long­
words• may also be stored in memory. 

There are three fundamental data types: integer, 
IEEE floating point, and VAX floating point; each 
is available in 32-bit and 64-bit forms. 4. 12 VAX floating­
point values in memory have 16-bit words swapped, 
for compatibility with VAX (and PDP-11) formats. 
The VAX floating-point load and store instructions 
do word swapping• to give a common register 
order. The 32-bit load instructions expand values to 
64-bit canonical form, and the 32-bit store instruc­
tions contract 64-bit values back to 32. 13 All register­
to-register operations are thus done on full 64-bit 
values in a common integer or floating-point for­
mat. No partial-register reads or writes are done. 

The canonical form of a 32-bit value in a 64-bit 
integer register has the most significant 33 bits all 
equal to bit<31>. In essence, bit<31> is kept as a 
"fat bit." This allows signed integer values to be 
used directly in 64-bit arithmetic and branches. 
This canonical form is maintained as a closed 
system (even for 32-bit data considered to be 
"unsigned") by using a combination of 64-bit oper­
ates, 32-bit add/subtract/multiply, and two-instruc­
tion sequences for shifts. 

The canonical form of a 32-bit value in a 
64-bit floating-point register has the 8-bit exponent 
field expanded to 11 bits and the 23-bit mantissa 
field expanded to 52 bits. Except for IEEE denor­
mals, • this allows single-precision floating-point 
values to be used directly in double-precision arith­
metic and branches. This canonical form is main­
tained as a closed system by using single-precision 
instructions. 

Bytes and words (16-bit quantities) are not funda­
mental data types. They may be transferred 
between memory and registers with short 
sequences of instructions and manipulated in regis­
ters using normal arithmetic and the byte-manipu­
lation instructions described in the Operate 
Instructions section. 
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Figure 1 Data Representation 

The hardware processor state, shown in Figure 2, 
includes 32 integer registers RO .. R31 of 64 bits each; 
R31 is always zero. There are also 32 floating-point 
registers FO .. F31 of 64 bits each; F31 is always zero. 
Writes to R31 and F31 are ignored. 

A 64-bit program counter (PC) contains a long­
word-aligned virtual byte address (i.e., the low 2 
bits of the PC are always zero). The VAX architecture 
keeps the PC in general register 15, where it is 
directly used for PC-relative memory addressing. In 
the Alpha AXP architecture, however, code and data 
pages are usually separated by 64 kilobytes (KB) or 
more to allow separate memory protection, but the 
16-bit displacement in load/store instructions can­
not span more than 64KB. 

The hardware processor state includes a lock flag 
and a locked physical address for the load­
locked/store-conditional sequence. It also has a 
floating-point control register containing the IEEE 
dynamic rounding mode.* 
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Hardware implementations may optionally 
include a pair of state registers for memory 
prefetching (FETCH/FETCH_M instructions), and an 
optional interrupt flag for use only by translated 
VAX OpenVMS AXP programs that reproduce com­
plex instruction set computer (CISC*) instruction 
atomicity using a sequence of RISC instructions.6 

In addition to the above hardware state, the privi­
leged architecture library routines for the various 
operating systems implement additional state. This 
state may be maintained by hardware or (PALcode) 
software, at the option of the implementer, and it 
varies from one operating system to another. 
Typical PALcode state includes a processor status 
(PS) word, kernel and user stack pointers, a process 
control block base for context switching, a process­
unique value for threads, and a processor number 
for multiprocessor dispatching. Additional PALcode 
state may include a floating-point enable bit, inter­
rupt priority level, and translation look-aside 
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Figure 2 Per-processor State 

buffers for mapping instruction-stream and data­
stream virtual addresses. All of this state is soft in 
the sense that it is defined only in relationship to 
the PALcode routines for a specific operating 
system. In a multiprocessor implementation, all of 
the above state is replicated for each processor. 

Memory Access 
Alpha AXP memory is byte addressed, using the low­
est-numbered byte of a datum. Only aligned long­
words or quadwords may be accessed: an aligned 
longword is a four-byte datum whose address is a 
multiple of four; an aligned quadword is an eight­
byte datum whose address is a multiple of eight. 
Normal load or store instructions that specify an 
unaligned address take a precise data alignment 
trap to PALcode (which may do the access using 
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two aligned accesses or report a fatal error, depend­
ing on the operating system design). 

Alpha AXP implementations allow data to be 
accessed using either a little-endian• view (byte O is 
the low byte of an integer), or a big-endian* view 
(byte O is the high byte of an integer). As described 
in the Load/Store Instructions section , there is a 
one-instruction bias in the sequences for little- and 
big-endian byte manipulation. 

Virtual addresses are a full 64 bits; implementa­
tions may restrict addresses to have some number 
of identical high-order bits, but must always distin­
guish at least 43 bits. Virtual addresses are mapped 
in an operating-specific way to physical addresses, 
using fixed-size pages. Memory protection is done 
on a per-page basis. Address mapping errors (e.g., 
protection, page faults) take precise traps to 
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PALcode. Each page may also be marked to provide 
a fault on each read, write, or instruction-fetch. 

Virtual addresses may be further qualified by 
address space numbers (ASNs), to allow multiple 
disjoint addresses spaces. The choice of disjoint or 
common mapping across all processes is done on a 
per-page basis. 

The virtual- to physical-address mapping is done 
on a per-page basis. Each implementation may have 
a page size of 8KB, 16KB, 32KB, or 64KB. The 64KB 
upper bound allows a linker to allocate blocks of 
memory with differing protection or ASN proper­
ties far enough apart to work on all implementa­
tions. The virtual- to physical-address mapping can 
be many to one, i.e., synonyms are allowed. In a 
multiprocessor implementation, shared main mem­
ory locations have the same physical address on all 
processors. Per-processor unshared locations are 
also allowed. 

Memory has longword granularity: two proces­
sors may simultaneously access adjacent longwords 
without mutual interference. The load-locked/ 
store-conditional sequence discussed previously can 
be used to achieve multiprocessor byte granularity. 

Input/output is memory mapped: some phys­
ical memory addresses may refer to 1/0 device 
registers whose access triggers side effects (such 
as the transfer of data). Side effects on reads are 
discouraged. 

Instruction Formats 
Four fundamental instruction formats-operate, 
memory, branch, and CALL_PAL- are shown in 
Figure 3. All instructions are 32 bits wide and reside 
in memory at aligned longword addresses. Each 
instruction contains a 6-bit opcode field and zero 
to three 5-bit register-number fields, RA, RB, and RC. 

OPERATE FORMAT 

31 26 21 1312 5 0 

The remammg bits contain function (opcode 
extension), literal, or displacement fields. To mini­
mize register file ports in fast implementations, RB 
is never written, and RC is never read. 

All the operate instructions are three-operand 
register-to-register, calculating RC= RA operate RB. 
In integer operates, the opcode and a 7-bit function 
field specify the exact operation. Integer operates 
may have an 8-bit zero-extended literal instead of 
RB. In floating-point operates, the opcode and an 
11-bit function field specify the exact operation. 
There are no floating-point literals. 

Memory format instructions are used for loads, 
stores, and a few miscellaneous operations. Loads 
and stores are two-operand instructions, specifying 
a register RA and a base-displacement virtual byte 
address. The effective address calculation sign 
extends the 16-bit displacement to 64 bits and adds 
the 64-bit RB base register (ignoring overflow). The 
resulting virtual byte address is mapped to a physi­
cal address. The miscellaneous instructions make 
other uses of the RA, RB, and displacement fields. 

Branch format instructions specify a single regis­
ter RA and a signed PC-relative longword displace­
ment. The branch target calculation shifts the 21-bit 
displacement left by 2 bits to make it a longword 
(not byte) displacement, then sign extends it and 
adds it to the updated PC. Conditional branch 
instructions test register RA, and unconditional 
branches write the updated PC to RA for subroutine 
linkage. The large longword displacement allows a 
range of ±4MB, substantially reducing the need for 
branches around or to other branches. 

The CALL_PAL instruction has only a 6-bit opcode 
and a 26-bit function field . The function field is a 
small integer specifying one of a few dozen privi­
leged architecture library subroutines. 

BRANCH FORMAT 

31 26 21 0 

LITERAL 1 FUNG. INTEGER, LITERAL I OP I RA I DISPLACEMENT I 
OP RA RB ff f O FUNG. RC INTEGER, REGISTER 6 5 21 

RB FUNG. FLOATING POINT CALL_PAL FORMAT 
31 26 0 

OP I FUNCTION I 
6 26 

6 5 5 11 5 

MEMORY FORMAT 
26 21 16 0 

I RA I RB I DISPLACEMENT 

5 5 16 

Figure 3 Instruction Formats 
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Operate Instructions 
There are five groups of register-to-register operate 
instructions: integer arithmetic, logical, byte­
manipulation, floating-point, and miscellaneous. 
All instructions operate on 64-bit quadwords 
unless otherwise specified. 

Integer Arithmetic Instructions The integer arith­
metic instructions are add, subtract, multiply, and 
compare. Add, subtract, and multiply have variants 
that enable arithmetic overflow traps. They also 
have longword variants that check for 32-bit over­
flow (instead of 64) and force the high 33 bits of the 
result to all equal bit<31>. Add and subtract also 
have scaled variants that shift the first operand left 
by 2 or 3 bits (with no overflow checking) to speed 
up simple subscripted address arithmetic. The 
UMULH instruction (from PRISM) gives the high 64 
bits of an unsigned 128-bit product and may be 
used for dividing by a constant. There is no integer 
divide instruction; a software subroutine is used to 
divide by a nonconstant. The compare instructions 
are signed or unsigned and write a Boolean result (0 
or 1) to the target register. 

Logical Instructions The logical instructions are 
AND, OR, and XOR, with the second operand 
optionally complemented (ANDNOT, ORNOT, 
XORNOT). The shifts are shift left logical, shift right 
logical, and shift right arithmetic. The 6-bit shift 
count is given by RB or a literal. The conditional 
move instructions test RA (same tests as the branch­
ing instructions) and conditionally move RB to RC. 
These can be used to eliminate branches in short 
sequences such as MIN(a,b). 

Byte-manipulation Instructions The byte-manip­
ulation instructions are used with the load and 
store unaligned instructions to manipulate short 
unaligned strings of bytes. Long strings should be 
manipulated in groups of eight (aligned quad­
words) whenever possible. The byte-manipulation 
instructions are fundamentally masked shifts. They 
differ from normal shifts by having a byte count 
(0 .. 7) instead of a bit count (0 .. 63), and by zeroing 
some bytes of the result, based on the data size 
given in the function field. 

The extract (EXTxx) instructions extract part 
of a 1-, 2-, 4-, or 8-byte field from a quadword 
and place the resulting bytes in a field of zeros. A 
single EXTxL instruction can perform byte or word 
loads, pulling the datum out of a quadword and 
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placing it in the low end of a register with high­
order zeros. A pair of EXTxl/EXTxH instructions can 
perform unaligned loads, pulling the two parts of 
an unaligned datum out of two quadwords and 
placing the parts in result registers. A simple OR 
operation can then combine the two parts into the 
full datum. 

The insert (INSxx) and mask (MSKxx) instruc­
tions position new data and zero out old data in reg­
isters for storing bytes, words, and unaligned data. 
If the Alpha AXP architecture were a four-operand 
one, inserting and masking could have been com­
bined into a single instruction. 

The compare-byte instruction allows character­
string search and compare to be done eight bytes at 
a time. The ZAP instructions allow zeroing of arbi­
trary patterns of bytes in a register. These instruc­
tions allow very fast implementations of the C 
language string routines, among other uses. 

Floating-point Arithmetic Instructions The float­
ing-point arithmetic instructions are add, subtract, 
multiply, divide, compare, and convert. The first 
four have variants for IEEE and VAX floating-point, 
and single- and double-precision data types. They 
also have variants that enable combinations of arith­
metic traps and that specify the rounding mode. 
The single-precision instructions write canonical 
64-bit results, but do exponent checking and 
rounding to single-precision ranges. The compare 
instructions write a Boolean result (0 or nonzero) 
to the target register. The convert instructions 
transfer between single and double, floating-point 
and integer, and two forms of VAX double (D-float 
and G-float). A combination of hardware and soft­
ware provides full IEEE arithmetic. Operations on 
VAX reserved operands,• dirty zeros,• IEEE denor­
mals, infinities," and not-a-numbers* are done in 
software. 

There are also a few floating-point instructions 
that move data without applying any interpretation 
to it. These include a complete set of conditional 
move instructions similar to the integer conditional 
moves. 

Miscellaneous Instructions The miscellaneous 
instructions include: memory prefetching instruc­
tions to help decrease memory latency, a read cycle 
counter instruction for performance measurement, 
a trap barrier instruction for forcing precise arith­
metic traps, and memory barrier instructions for 
forcing multiprocessor read/write ordering. 
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Load/Store Instructions 
The load and store instructions only move data. 
They never apply an interpretation to the data and 
therefore never take any data-dependent traps. This 
design allows moving completely arbitrary bit pat­
terns in and out of registers and allows completely 
transparent saving/restoring of registers. 

The integer load and store quadword unaligned 
(LDQ_U, STQ_U) instructions ignore the low three 
bits of the byte address and always transfer an 
aligned quadword. These instructions are used 
with the in-register byte manipulation instructions 
to operate on byte, word, and unaligned data by 
short sequences of RISC instructions. 

Example 1 in Figure 4 shows a two-instruction 
sequence for loading a byte into the low end of a 
register, using little-endian byte numbering. 
Example 2 shows a similar sequence for loading a 
byte into the high end of a register, using big-endian 
byte numbering. Example 3 shows a sequence for 
storing a byte (the first two and last two instruc­
tions might issue simultaneously on the first Alpha 
AXP implementation). Example 4 shows a sequence 
for an explicit unaligned load quadword (no data 
alignment trap). 

The integer load-locked and store-conditional 
(LDQ_L, LDL_L, STQ_C, STL_C) instructions are 
included in the architecture to facilitate atomic 
updates of multiprocessor-shared data. As 
described above, they can be used in short 
sequences of RISC instructions to do atomic read­
modify-writes. Example 5 shows a sequence for 
doing a multiprocessor test-and-set. Note that 
changing the LDQ_U/STQ_U in Example 3 to 
ANO/LDQ_USTQ_C/BEQ gives a byte-store sequence 
that is safe to use with multiprocessor-shared data. 

There are two related load address instructions. 
LOA calculates the effective address and writes 
it into RC. LOAH first shifts the displacement 
left 16 bits, then calculates the effective address 
and writes it into RC. LOAH is included to give a sim­
ple way of creating most 32-bit constants in a 
pair of instructions. (Because LOA sign-extends 
the displacement, some values in the range 
000000007FFF8000 .. 000000007FFFFFFF require 
three instructions.) Constants of 64 bits are loaded 
with LOQ instructions. 

Branching Instructions 
The branch instructions include conditional 
branches, unconditional branches, and calculated 
jumps. In addition to the previously described 
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conditional moves, the architecture contains hints 
to improve branching performance. 

The integer conditional branches test register RA 
for an opcode-specified condition (>0 >=0 =0 !=O 
<=0 <0 even odd) and either branch to the target 
address or fall through to the updated PC address. 
The floating-point conditional branches are the 
same, except they do not include even/odd tests. 
Arbitrary testing (and faulting on VAX or IEEE nonfi­
nite values) can be done by sequences of compare 
instructions and branch instructions. Logical or 
arithmetic instructions can combine compare 
results without using branches. 

Unconditional branches write the updated PC to 
RA for subroutine linkage and branch to the target 
address. RA = R31 may be used if no linkage is 
needed. 

Calculated jumps write the updated PC to RA and 
jump to the target address in RB. Calculated jumps 
are used for subroutine call, return, CASE (or 
SWITCH) statements, and coroutine linkage. 

The architecture specifies three kinds of branch­
ing hints in instructions. The hints need not be 
correct, but to the extent that they are, implementa­
tions may perform faster. 

The first form of hint is an architected static 
branch prediction rule: forward conditional 
branches are predicted not-taken, and backward 
ones taken. To the extent that compilers and hard­
ware implementers follow this rule, programs can 
run more quickly with little hardware cost. This 
hint does not eliminate the use of dynamic branch 
prediction in an implementation, but it may reduce 
the need to use it. 

The second form describes computed jump tar­
gets. Unused instruction bits are defined to give the 
low bits of the most likely target, using the same tar­
get calculation as unconditional branches. The 14 
bits provided are enough to specify the instruction 
offset within a page, which is often enough to start 
a fastest-level instruction-cache read many cycles 
before the actual target value is known. 

The third form describes subroutine and corou­
tine returns. By marking each branch and jump as 
call, return, or neither, the architecture provides 
enough information to maintain a small stack of 
likely subroutine return addresses within an imple­
mentation. This implementation stack can be used 
to prefetch subroutine returns quickly. 

The conditional move instructions (discussed 
previously in the Logical Instructions section and 
the Floating-point Arithmetic Instructions section) 

Vol. 4 No. 4 Special Issue 1992 Digital Tee/mica/ Journal 



Alpha AXP Architecture 

EXAMPLE 1: LOAD BYTE (UNSIGNED, LITILE-ENDIAN) 

7 6 
~ 4 

3 2 0 

LDQ_U R2,0(R1 ) II I B'vTE""" IIR2 

7 6 5 4 3 2 0 

EXTBL R2,R1,R2 I 0 IBYTEI R2 

EXAMPLE 2: LOAD BYTE (SIGNED, BIG-ENDIAN) 

0 ~ 3 4 5 6 7 
LDO_U R2,0(R1 ) [ !BYTE ! !R2 

SUBQ R31 ,R1 ,R3 -2 R3 

0 2 3 4 5 6 7 
EXTQH R2,R3,R2 I@ !R2 

EXAMPLE 3: STORE BYTE (LITILE-ENDIAN) 

7 6 ~ 4 3 2 0 
LDQ_U R2,0(R1 ) r I OLD I I R2 

7 6 5 4 3 2 0 
INSBL RO,R1 ,R3 I I NEW I R3 

7 6 5 4 3 2 0 
MSKBL R2,R1 ,R2 r "] l R2 

7 6 5 4 3 2 0 
OR R2,R3,R2 I . I 1 NEW I R2 

7 6 5 4 3 2 0 
STO_U R2,0(R1 ) I ! NEW l o(R1) 

EXAMPLE 4: EXPLICIT LOAD QUADWORD (UNALIGNED, LITILE-ENDIAN) 

7 6 ~ 4 3 2 0 
LDO_U R2,0(R1 ) I LOW PART ! R2 

15 14 13 (12) 11 10 9 8 
LDQ_U R3,7(R1) I HIGH PART ! R3 

7 6 5 4 3 2 0 
EXTOL R2,R1,R2 I LOW PART !IR2 

7 6 5 4 3 2 0 
EXTOH R3,R1 ,R3 I HIGH PART !R3 

7 6 5 4 3 2 1 0 

OR R2,R3,R2 r HIG!-f PART LOVVPART I R2 

EXAMPLE 5: MULTIPROCESSOR TEST-AND-SET 

LDQ_L R2,0(R1 ) FLAG ! R2 

BNE R2,FLAG_SET FLAG I R2 

ORR2,#1,R2 0 - >d R2 

STQ_C R2,0(R1) 1 O(R1 ) 

BEQ R2,CONTENTION ! STORED? ! R2 

Figure 4 Load/Store Instructions 
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and the branching hints eliminate some branches 
and speed up the remaining ones without compro­
mising multiple instruction issue. 

Supervision 
The actions underpinning an operating system are 
performed in PALcode subroutines and are a flexi­
ble part of the architecture. All asynchronous 
events, such as interrupts, exceptions, and machine 
errors, are mediated by PALcode routines. PALcode 
establishes the initial state of the machine before 
execution of the first software instruction. PALcode 
routines mediate all accesses to physical hardware 
resources, including physical main memory and 
memory-mapped 1/0 device registers. 

This design allows implementers to craft a set of 
PALcode routines that closely match an operating 
system design, not only for traditional operating 
systems, but also for specialized environments such 
as real-time or highly secure computing. As new 
computing paradigms are adopted and new operat­
ing systems are created, the Alpha AXP architecture 
may well prove flexible enough to accommodate 
them efficiently. 

Future Changes 
The Alpha AXP architecture will surely change 
during its lifetime. In addition to the PALcode 
flexibility discussed above, explicit performance 
flexibility and instruction-set flexibility exist in 
the architecture. 

Architectural fields that are too small can limit 
performance. The Alpha AXP architecture there­
fore has many fields deliberately sized for later 
expansion. 

Although initial implementations use only 43 
bits of virtual address, they check the remaining 
21 bits, so that software can run unmodified on 
later implementations that use (up to) all 64 bits. 
Furthermore, although initial implementations use 
only 34 bits of physical address, the architected 
page table entry (PTE) formats and page-size 
choices allow growth to 48 bits. By expanding into 
a 16-bit PTE field that is not currently used by map­
ping hardware, another 16 bits of physical address 
growth can be achieved, if ever needed. 

Initial implementations also use only 8KB pages, 
but the design accommodates limited growth to 
64KB pages. Beyond that, page table granularity 
hints allow groups of 8, 64, or 512 pages to be 
treated as a single large page, thus effectively 
extending the page-size range by a factor of over 
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1,000. Each architected PTE format also has one bit 
reserved for future expansion. 

Several other soft PALcode registers, such as the 
PS or ASN, that need only a few bits today are allo­
cated a full 64 bits for future expansion. 

Exception processing can limit performance. 
PALcode routines deliver exceptions to an operat­
ing system, so the design can be gradually 
improved. In fact, PALcode routines for the data 
alignment have been improved in the Open VMS AXP 
and DEC OSF/1 AXP operating systems. Some cur­
rently specified software exceptions (such as IEEE 
denormal arithmetic) could be moved into PALcode 
or hardware. 

There are a number of areas of instruction-set 
flexibility designed into the architecture. Four of 
the 6-bit opcodes are nominally reserved for 
adding integer and floating-point aligned octa­
word* (128-bit) load/store instructions. 14 Nine more 
6-bit opcodes remain for other expansion. Within 
each opcode, the function field contains room for 
further expansion. For example, the scaled add/sub­
tract functions were added between prototype 
chip and product chip. The fact that the function 
fields are not fully policed is a mistake. 

Within the IEEE floating-point function field, 
code points are nominally reserved for double­
extended* precision (128-bit) arithmetic. Within 
the memory barrier instruction group, three code 
points were reserved for subset barriers. One of 
these has already been redefined as a write-write 
barrier. 

Not all changes involve growth. There are subset­
ting rules defined for removing either one or both 
(IEEE and VAX) floating-point data types. If both are 
removed, the floating-point registers can also be 
removed. The AMOVxx PALcode routines and RS/RC 
instructions are defined as optional and can be 
deleted when the transition of translated VAX code 
is completed. Other unneeded PALcode routines 
can also be removed eventually. 

Summary 
The goals that shaped the Alpha AXP architecture 
design have largely been realized. For high perfor­
mance, the first implementation (the DECchip 
21064 microprocessor) is listed in the October 1992 
Guinness Book of Records as the world's fastest sin­
gle-chip microprocessor. It is too early to measure 
longevity, but the fact that we had designed-in flexi­
bility in places that changed during development is 
at least encouraging. Open VMS AXP, DEC OSF/1 AXP, 
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and Windows NT operating systems all run on 
Alpha AXP implementations today. Programs from 
the VAX and MIPS architectures transport easily to 
Alpha AXP implementations and run quickly. Many 
of the ideas in the Alpha AXP design are now being 
adopted by other architectures in the industry. 

Appendix 
Binary translation- A software technique to 
change an executable program written for one 
architecture/operating-system pair into an equiva­
lent program for a different architecture/operating­
system pair. 

Big-endian memory addressing-A view of mem­
ory in which byte O of an operand contains the 
most significant (sign) bit of an integer. Compare lit­
tle-endian memory addressing. 

Byte-An 8-bit datum. 

Byte granularity-The appearance that two pro­
cessors can update adjacent bytes in memory with­
out interfering with each other. 

CISC-Complex instruction set computer, charac­
terized by variable-length instructions, a wide vari­
ety of memory addressing modes, and instructions 
that combine one or more memory accesses with 
arithmetic. CISC designs express computation as a 
few complex steps. 

IEEE denormalized number (denormal)-A float­
ing-point number with magnitude between zero 
and the smallest representable normalized number. 
Numbers in this range are typically not repre­
sentable in other floating-point arithmetic systems; 
such systems might signal an underflow exception 
or force a result to zero instead. 

IEEE double-extended format-A loosely specifed 
floating-point format with at least 64 significant 
bits of precision and at least 15 bits of exponent 
width; typically implemented using a total of 80 or 
128 bits. 

IEEE dynamic rounding mode-One of four differ­
ent rounding rules. 

IEEE floating-point-A form of computer arith­
metic specified by IEEE standard 754. 12 IEEE arith­
metic includes rules for denormalized numbers, 
infinities, and not-a-numbers. It also specifies four 
different modes for rounding results. 

IEEE infinity-An operand with an arbitrarily large 
magnitude. 
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IEEE not-a-number (NaN)-A symbolic entity 
encoded in a floating-point format. The IEEE stan­
dard specifies some exceptional results (e.g., 0/0) 
to be NaNs. 

Linear addressing-A memory addressing tech­
nique in which all addresses form a single range, 
from O to the largest possible address. Subscript cal­
culations can create any address in the entire range. 

Little-endian memory addressing-A view of 
memory in which byte O of an operand contains the 
least significant bit of an integer. The terms little­
endian and big-endian are borrowed from 
Gulliver's Travels in which religious wars were 
waged over which end of an egg to break. 

Longword-A 32-bit datum. 

Multiple instruction issue-A high-performance 
computer implementation technique of starting 
more than one instruction at once. An implementa­
tion that starts (up to) two instructions at once is 
called dual-issue; four instructions, quad-issue or 
four-way issue; etc. 

Octaword-A 128-bit datum. 

Quadword-A 64-bit datum. 

RISC-Reduced instruction set computer, charac­
terized by fixed-length instructions, simple mem­
ory addressing modes, and a strict decoupling of 
load/store memory access instructions from regis­
ter-to-register arithmetic instructions. RISC designs 
express computation as many simple steps. 

Segmented addressing-A memory addressing 
technique in which addresses are broken into two 
or more parts (segments). Subscript calculations 
can only be done within a single segment, and elab­
orate software techniques are needed to extend 
addressing beyond a single segment. 

VAX dirty zero-A zero value represented with a 
non-zero faction; must be converted to a true zero 
result. 

VAX floating-point- A form of computer arith­
metic specified by the VAX architecture manual.4 

VAX arithmetic includes rules for reserved 
operands and dirty zeros. 

VAX reserved operand-A non-number that signals 
an exception when used as an operand in VAX float­
ing-point arithmetic. 

VAX word swapping-The rearrangement needed 
for the 16-bit pieces of a VAX floating-point number 
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to put the fields in a more usual order; this is an arti­
fact of the PDP-11 16-bit architecture. 

Word-A 16-bit datum. 
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A 400-mips/200-MFLOPS (peak) custom 64-bit VLSI CPU chip is described. The chip is 
fabricated in a 0. 75-µ,m CMOS technology utilizing three levels of metalization and 
optimized for 3.3-V operation. The die size is 16.8 mm x 13.9 mm and contains 1. 68 
million transistors. The chip includes separate 8KB instruction and data caches and 
a fully pipelined floating-point unit that can handle both IEEE and VAX standard 
floating-point data types. It is designed to execute two instructions per cycle among 
scoreboarded integer, floating-point, address, and branch execution units. Power 
dissipation is 30 Wat 200-MHz operation. 

A reduced instruction set computer (RISC)-style 
microprocessor has been designed and tested that 
operates up to 200 megahertz (MHz). The chip 
implements a new 64-bit architecture, designed to 
provide a huge linear address space and to be devoid 
of bottlenecks that would impede highly concur­
rent implementations. Fully pipelined and capable 
of issuing two instructions per clock cycle, this 
implementation can execute up to 400 million oper­
ations per second. The chip includes an 8-kilobyte 
(KB) I-cache, 8KB D-cache and two associated trans­
lation buffers, a four-entry, 32-byte-per-entry write 
buffer, a pipelined 64-bit integer execution unit 
with a 32-entry register file, and a pipelined floating­
point unit (FPU) with an additional 32 registers. The 
pin interface includes integral support for an exter­
nal secondary cache. The package is a 431-pin pin 
grid array (PGA) with 140 pins dedicated to ~nl~s 
(power supply voltage/ground). The chip is fabri­
cated in a 0.75-micrometer (µm) n-well comple­
mentary metal-oxide semiconductor (CMOS) 
process with three layers of metalization. The die 
measures 16.8 millimeters (mm) x 13.9 mm and con­
tains 1.68 million transistors. Power dissipation is 
30 watts (W) from a 3.3-volt (V) supply at 200 MHz. 

© IEEE.Reprinted, with permission, from the IEEE]ournal of 
Solid-State Circuits, volume 27, number 11, pages 1555 to 1567, 
November 1992. 
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CMOS Process Technology 
The chip is fabricated in a 0.75-µm, 3.3-V, n-well 
CMOS process optimized for high-performance 
microprocessor design. Process characteristics are 
shown in Table 1. The thin gate oxide and short 
transistor lengths result in the fast transistors 
required to operate at 200 MHz. There are no 
explicit bipolar devices in the process as the incre­
mental process complexity and cost were deemed 

Table 1 Process Description 

Feature size 

Channel length 

Gate oxide 

Vi/Vip 
Power supply 

Substrate 

Salicide 

Buried contact 

Metal 1 

Metal 2 

Metal 3 

0.75µm 

0.5µm 

10.5 nm 

0.5V/-0.5 V 

3.3V 

P-epitaxial with n-well 

Cobalt-disilicide in diffusions 
and gates 

Titanium nitride 

0.75-µm AICu, 2.25-µm pitch 
(contacted) 

0.75-µm AICu, 2.625-µm 
pitch (contacted) 

2.0-µm AICu, 7.5-µm pitch 
(contacted) 
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too large in comparison to the benefits provided­
principally more area-efficient large drivers such as 
clock and 1/0. 

The metal structure is designed to support 
the high operating frequency of the chip. Metal 3 
is very thick and has a relatively large pitch. It 
is important at these speeds to have a low-resis­
tance metal layer available for power and clock 
distribution. It is also used for a small set of special 
signal wires such as the data buses to the pins 
and the control wires for the two shifters. Metal 1 
and metal 2 are maintained at close to their maxi­
mum thickness by planarization and by filling metal 
1 and metal 2 contacts with tungsten plugs. This 
removes a potential weak spot in the electromi­
gration characteristics of the process and allows 
more freedom in the design without compromising 
reliability. 

Alpha AXP Architecture 
The computer architecture implemented is a 64-bit 
load/store RISC architecture with 168 instructions, 
all 32 bits wide. 1 Supported data types include 
8-, 16-, 32-, and 64-bit integers and both Digital and 
IEEE 32- and 64-bit floating-point formats. Each of 
the two register files, integer and floating point, 
contains 32 entries of 64 bits with one entry in each 
being a hardwired zero. The program counter and 
virtual address are 64 bits. Implementations can 
subset the virtual address size, but are required to 
check the full 64-bit address for sign extension. 
This ensures that when later implementations 
choose to support a larger virtual address, pro­
grams will still run and not find addresses that have 
dirty bits in the previously "unused" bits. 

The architecture is designed to support high­
speed multi-issue implementations. To this end the 
architecture does not include condition codes, 
instructions with fixed source or destination regis­
ters, or byte writes of any kind (byte operations are 
supported by extract and merge instructions 
within the CPU itself). Also there are no first-gener­
ation artifacts that are optimized around today's 
technology, which would represent a long-term lia­
bility to the architecture. 

Chip Microarchitecture 
The block diagram (Figure 1) shows the major func­
tional blocks and their interconnecting buses, most 
of which are 64 bits wide. The chip implements 
four functional units: the integer unit (IRF plus 
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l 
E-BOX F-BOX 

- I-BOX 

BIU 
IRF FRF 

A-BOX 

~ WRITE BUFFER 

D-CACHE 

Figure I CPU Chip Block Diagram 

E-box), the floating-point unit (FRF plus F-box), the 
load/store unit (A-box), and the branch unit (dis­
tributed). The bus interface unit (BIU), described in 
the next section, handles all communication 
between the chip and external components. The 
microphotograph (Figure 2) shows the boundaries 
of the major functional units. The dual-issue rules 
are a direct consequence of the register file ports, 
the functional units, and the I-cache interface. The 
integer register file (IRF) has two read ports and one 
write port dedicated to the integer unit, and two 
read and one write port shared between the branch 
unit and the load/store unit. The floating-point reg­
ister file (FRF) has two read ports and one write 
port dedicated to the floating unit, and one read 
and one write port shared between the branch unit 
and the load/store unit. This leads to dual-issue 
rules that are quite general: 

• Any load/store in parallel with any operate 

• An integer operate in parallel with a floating 
operate 

• A floating operate and a floating branch 

• An integer operate and an integer branch 

except that integer store and floating operate and 
floating store and integer operate are disallowed as 
pairs. 
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Figure 2 Microphotograph of Chip 

As shown in Figure 3a, the integer pipeline is 
7 stages deep, where each stage is a 5-nanosecond 
(ns) clock cycle. The first four stages are associated 
with instruction fetching, decoding, and score­
board checking of operands. Pipeline stages O 
through 3 can be stalled. Beyond 3, however, all 
pipeline stages advance every cycle. Most arith­
metic and logic unit (ALU) operations complete in 
cycle 4, allowing single-cycle latency, with the 
shifter being the exception. Primary cache accesses 
complete in cycle 6, so cache latency is three cycles. 
The chip will do hits under misses to the primary 
D-cache. 

The I-stream is based on autonomous prefetch­
ing in cycles O and 1 with the final resolution of 
I-cache hit not occurring until cycle S. The 
prefetcher includes a branch history table and a 
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subroutine return stack. The architecture provides 
a convention for compilers to predict branch deci­
sions and destination addresses, including those for 
register indirect jumps. The penalty for branch mis­
predict is four cycles. 

The floating-point unit is a fully pipelined 64-bit 
floating-point processor that supports both VAX 

standard and IEEE standard data types and rounding 
modes. It can generate a 64-bit result every cycle 
for all operations except divide. As shown in Figure 
3b, the floating-point pipeline is identical and 
mostly shared with the integer pipeline in stages O 
through 3; however, the execution phase is three 
cycles longer. All operations, 32- and 64-bit ( except 
divide) have the same timing. Divide is handled by a 
nonpipelined, single bit per cycle, dedicated divide 
unit. 
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(b) Floating-point Unit Pipeline Timing 

KEY: 

PC GEN GENERATE NEW PROGRAM COUNTER VALUE 
VA GEN GENERATE NEW VIRTUAL ADDRESS 
ITB INSTRUCTION TRANSLATION BUFFER 
OTB DATA TRANSLATION BUFFER 

Figure 3 Pipeline Timing 

In cycle 4, the register file data is formatted to 
fraction, exponent, and sign. In the first-stage 
adder, exponent difference is calculated and a 3 x 
multiplicand is generated for multiplies. In addi­
tion, a predictive leading 1 or O detector using 
the input operands is initiated for use in result nor­
malization. In cycles 5 and 6, for add/subtract, 
alignment or normalization shift and sticky-bit cal­
culation are performed. For both single- and dou­
ble-precision multiplication, the multiply is done in 
a radix-8 pipelined array multiplier. In cycles 7 and 
8, the final addition and rounding are performed in 
parallel and the final result is selected and driven 
back to the register file in cycle 9. With an allowed 
bypass of the register write data, floating-point 
latency is six cycles. 

The CPU contains all the hardware necessary to 
support a demand paged virtual memory system. It 
includes two translation buffers to cache virtuaI-to­
physical address translation. The instruction trans­
lation buffer contains 12 entries, 8 that map 8KB 
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pages and 4 that map 4-megabyte (MB) pages. The 
data translation buffer contains 32 entries that can 
map 8KB, 64KB, 512KB, or 4MB pages. 

The CPU supports performance measurement 
with two counters that accumulate system events 
on the chip such as dual-issue cycles and cache 
misses or external events through two dedicated 
pins that are sampled at the selected system clock 
speed. 

External Interface 
The external interface (Figure 4) is designed to 
directly support an off-chip backup cache that can 
range in size from 128KB to 8MB and can be 
constructed from ordinary SRAMs. For most opera­
tions, the CPU chip accesses the cache directly 
in a combinatorial loop by presenting an address 
and waiting N CPU cycles for control, tag, and data 
to appear, where N is a mode-programmable num­
ber between 3 and 16 set at power-up time. For 
writes, both the total number of cycles and the 
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Figure 4 CPU External Interface 

duration and position of the write signal are 
programmable in units of CPU cycles. This allows 
the module designer to select the size and access 
time of the SRAMs to match the desired price/ 
performance point. 

The interface is designed to allow all cache pol­
icy decisions to be controlled by logic external to 
the CPU chip. There are three control bits associ­
ated with each backup cache CB-cache) line: valid, 
shared, and dirty. The chip completes a B-cache 
read as long as valid is true. A write is processed by 
the CPU only if valid is true and shared is false. 
When a write is performed, the dirty bit is set to 
true. In all other cases, the chip defers to an exter­
nal state machine to complete the transaction. This 
state machine operates synchronously with the 
SYS_CLK output of the chip, which is a mode-con­
trolled submultiple of the CPU clock rate ranging 
from divide by 2 to divide by 8. It is also possible to 
operate without a backup cache. 

As shown in the diagram, the external cache 
is connected between the CPU chip and the sys­
tem memory interface. The combinatorial cache 
access begins with the desired address delivered 
on the adr_h lines and results in ctl, tag, data, 
and check bits appearing at the chip receivers 
within the prescribed access time. In 128-bit 
mode, B-cache accesses require two external data 
cycles to transfer the 32-byte cache line across 
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the 16-byte pin bus. In 64-bit mode, it is four cycles. 
This yields a maximum backup cache read band­
width of 1.2 gigabytes per second (GB/s) and a write 
bandwidth of 711MB/s. Internal cache lines can 
be invalidated at the rate of one line per cycle 
using the dedicated invalidate address pins, 
iAdr_h<12:5>. 

In the event external intervention is required, a 
request code is presented by the CPU chip to the 
external state machine in the time domain of the 
SYS_CLK as described previously. Figure 5 shows 
the read miss timing where each cycle is a SYS_CLK 
cycle. The external transaction starts with the 
address, the quadword within block and instruc­
tion/data indication supplied on the cWMask_h 
pins, and READ_BLOCK function supplied on the 
cReq_h pins. The external logic returns the first 
16 bytes of data on the data_h and error correct­
ing code (ECC) or parity on the check_h pins. The 
CPU latches the data based on receiving acknowl­
edgment on rdAck_H. The diagram shows a stall 
cycle ( cycle 4) between the request and the return 
data; this depends on the external logic and could 
range from zero to many cycles. The second 16 
bytes of data are returned in the same way with 
rdAck_h signaling the return of the data and cAck_h 
signaling the completion of the transaction. cReq_h 
returns to idle and a new transaction can start at 
this time. 
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sysCLKOut_h 

adr_h ~---------VA_L_ID ________ ..... c 
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rdAck_h / _ _ __.., \.____,! \.____ 
cAck_h 

Figure 5 CPU External Timing 

The chip implements a novel set of features sup­
por ting chip and module test. When the chip is 
reset, the first action is to read from a serial read­
only memory (SROM) into the I-cache via a private 
three-wire port. The CPU is then enabled and the 
program counter (PC) is forced to 0. Thus with only 
three functional components (CPU chip, SROM, and 
clock inp ut), a system is able to begin executing 
instructions. This initial set of instructions is used 
to write the bus control registers inside the CPU 

chip to set the cache timing and to test the chip and 
module from the CPU out. After the SROM loads the 
I-cache, the pins used for the SROM interface are 
enabled as serial in and out ports. These ports can 
be used to load more data or to return status of test­
ing and setup. 

Circuit Implementation 
Many novel circuit structures and detailed analysis 
techniques were developed to support the clock 
rate in conjunction with the complexity demanded 
by the concurrence and wide data paths. The clock­
ing method is single wire level sensitive. The bus 
interface unit operates from a buffered version of 
the main clock. Signals that cross this interface are 
deskewed to eliminate races. This clocking method 
eliminates dead time between phases and requires 
only a single clock signal to be routed throughout 
the chip. 
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One difficulty inherent in this clocking method 
is the substantial load on the clock node, 3.25 
nanofarad (nF) in our design. This load and the 
requirement for a fast clock edge led us to take par­
ticular care with clock routing and to do extensive 
analysis on the resulting grid. Figure 6 shows the 
distribution of clock load among the major func­
tional units. The clock drives into a grid of vertical 
metal 3 and horizontal metal 2. Most of the loading 
occurs in the integer and floating-point units that 
are fed from the more robust metal 3 lines. To 
ensure the integrity of the clock grid across the 
chip, the grid was extracted from the layout and the 
resulting network, which contained 630,000 RC ele­
ments, was simulated using a circuit simulation 
program based on the AWEsim simulator from 
Carnegie-Mellon University. Figure 7 shows a three­
dimensional representation of the output of this 
simulation and shows the clock delay from the 
driver to each of the 63,000 transistor gates con­
nected to the clock grid. 

The 200-MHz clock signal is fed to the driver 
through a binary fanning tree with five levels of 
buffering. There is a horizontal shorting bar at the 
input to the clock driver to help smooth out possi­
ble asymmetry in the incoming wave front. The 
driver itself consists of 145 separate elements, each 
of which contains four levels of prescaling into a 
final output stage that drives the clock grid. 
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Figure 7 CPU Clock Skew 

The clock driver and predriver represent about 
40 percent of the total effective switching capaci­
tance determined by power measurement to be 
12.5 nF (worst case including output pins). To 
manage the problem of di/dt on the chip power 
pins, explicit decoupling capacitance is provided 
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on-chip. This consists of thin oxide capacitance 
that is distributed around the chip, primarily under 
the data buses. In addition, there are horizontal 
metal 2 power and clock shorting straps adjacent 
to the clock generator, and the thin oxide decoup­
ling cap under these lines supplies charge to 
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the clock driver. di/dt for the driver alone is about 
2 x 1011 amperes per second. The total decoupling 
capacitance as extracted from the layout measures 
128 nE Thus the ratio of decoupling capacitance 
to switching cap is about 10: 1. With this capacitance 
ratio, the decoupling cap could supply all the charge 
associated with a complete CPU cycle with only a 10 
percent reduction in the on-chip supply voltage. 

Latches 
As previously described, the chip employs a single­
phase approach, with nearly all latches in the core 
of the chip receiving the clock node, CLK, directly. 
A representative example is illustrated in Figure 8. 
Notice that Ll and L2 are transparent latches 
separated by random logic and are not simultane­
ously active; Ll is active when CLK is high and L2 
is active when CLK is low. The minimum number of 
delays between latches is zero and the maximum 
number of delays is constrained only by the cycle 
time and the details of any relevant critical paths. 
The bus interface unit, many data-path structures, 
and some critical paths deviate from this approach 
and use buffered versions and/or conditionally buf-

CLK 

LOGIC 

(a) Latching Schema 

CLK 

L 1 OPAQUE L2 OPAQUE 
L2 TRANSPARENT L1 TRANSPARENT 

(b) Latch Timing 

Figure 8 Chip Latches 
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fered versions of CLK. The resulting clock skew is 
managed or eliminated with special latch structures. 

The latches used in the chip can be classified into 
two categories: custom and standard. The custom 
latches were used to meet the unique needs of data­
path structures and the special constraints of criti­
cal paths. The standard latches were used in the 
design of noncritical control and in some data-path 
applications. These latches were designed prior to 
the start of implementation and were included in 
the library of usable elements for logic synthesis. All 
synthesized logic used only this set of latches. 

The standard latches are extensions of previously 
published work, and examples are shown in Fig­
ures 9 to 11.2 To understand the operation of 
these latches, refer to Figure 9a. When CLK is high, 
Pl, Nl, and N3 function as an inverter complement­
ing INl to produce X. P2, N2, and N4 function as a 
second inverter and complement X to produce 
OUT. Therefore, the structure passes INl to OUT. 
When CLK is low, N3 and N4 are cut off. If INl, X, 
and OUT are initially high, low, and high respec­
tively, a transition of INl falling pulls X high 
through Pl causing P2 to cut off, which tristates 
OUT high. If INl, X, and OUT are initially low, high, 
and low respectively, a transition of INl rising 
causes Pl to cut off, which tristates X high leaving 
out tristated low. In both cases, additional transi­
tions of INl leave X tristated or driven high with 
OUT tristated to its initial value. Therefore, the 
structure implements a latch that is transparent 
when CLK is high and opaque when CLK is low. 
Figure 9c shows the dual circuit of the latch just dis­
cussed; this structure implements a latch that is 
transparent when CLK is low and opaque when 
CLK is high. Figures 9b and 9d depict latches with 
an output buffer used to protect the sometimes 
dynamic node OUT and to drive large loads. 

The design of the standard latches stressed three 
primary goals: flexibility, immunity to noise, and 
immunity to race-through. To achieve the desired 
flexibility, a variety of latches like those in Figures 9 
to 11 in a variety of sizes were characterized for the 
implementors. Thus the designer could select a 
latch with an optional output buffer and an embed­
ded logic function that was sized appropriately to 
drive various loads. Furthermore, it was decided to 
allow zero delay between latches, completely free­
ing the designer from race-through considerations 
when designing static logic with these latches. 

In the circuit methodology adopted for the imple­
mentation, only one node, X (Figure 9a), poses 
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inordinate noise margin risk. As noted above, X 
may be tristated high with OUT tristated low when 
the latch is opaque. This maps into a dynamic node 
driving into a dynamic gate that is very sensitive to 
noise that reduces the voltage on X, causing leakage 
through P2, thereby destroying OUT. This problem 
was addressed by the addition of PS. This weak 
feedback device is sized to source enough current 
to counter reasonable noise and hold P2 in cutoff. 
NS plays an analogous role in Figure 9c. 

Race-through was the major functional concern 
with the latch design. It is aggravated by clock skew, 
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Basic Latches 

the variety of available latches, and the zero delay 
goal between latches. The clock skew concern 
was actually the easiest to address. If data propa­
gates in a direction that opposes the propagation of 
the clock wave front, clock skew is functionally 
harmless and tends only to reduce the effective 
cycle time locally. Minimizing this effect is of con­
cern when designing the clock generator. If data 
propagates in a direction similar to the propagation 
of the clock wave front, clock skew is a functional 
concern. This was addressed by radially distrib­
uting the clock from the center of the chip. Since 
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Figure JO AND/NAND Latches 

the clock wave front moves out radially from the 
clock driver toward the periphery of the die, it is 
not possible for the data to overtake the clock if the 
clock network is properly designed. 

To verify the remaining race-through concerns, a 
mix-and-match approach was taken. All reasonable 
combinations of latches were cascaded together 
and simulated. The simulations were stressed by 
eliminating all interconnect and diffusion capaci­
tance and by pushing each device into a corner 
of the process that emphasized race-through. 
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Then many simulations with varying CLK rise and 
fall times, temperatures, and power supply volt­
ages were performed. The results showed no 
appreciable evidence of race-through for CLK rise 
and fall times at or below 0.8 ns. With 1.0-ns rise 
and fall times, the latches showed signs of failure. 
To guarantee functionality, CLK was specified and 
designed to have an edge rate of less than 0.5 ns. 
This was not a serious constraint since other 
circuits in the chip required similar edge rates of 
the clock. 
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A last design issue worth noting is the feedback 
devices, NS and PS, in Figures lOc, lOd, lla, and 
llb. Notice that these devices have their gates tied 
to CLK instead of OUT like the other latches. This 
difference is required to account for an effect not 
present in the other latches. In these latches, a 
stack of devices is connected to node X, without 
passing through the clocked transistors P3 or N3. 
Referring to Figure lla, assume CLK is low, X is 
high, and OUT is low. If multiple random transitions 
are allowed by INl with IN2 high, then coupling 
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through Pl can drive X down by more than a 
threshold even with weak feedback, thereby 
destroying OUT. To counter this phenomenon, PS 
cannot be a weak feedback device and therefore 
cannot be tied to OUT if the latch is to function 
properly when CLK is high. Note that taller stacks 
aggravate this problem because the devices 
become larger and there are more devices to partic­
ipate in coupling. For this reason, stacks in these 
latches were limited to three high. Also, note that 
clocking P5 introduces another race-through path 
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since X will unconditionally go high with CLK 
falling, and OUT must be able to retain a stored ONE. 
So there is a two-sided constraint: P5 must be large 
enough to counter coupling and small enough not 
to cause race-through. These trade-offs were ana­
lyzed by simulation in a manner similar to the one 
outlined above. 

64-bit Adder 
A difficult circuit problem was the 64-bit adder por­
tion of the integer and floating-point ALUs. Unlike a 
previous high-speed design, we set a goal to 
achieve single-cycle latency in this unit.3 Figure 12 
has an organizational diagram of its structure. Every 
path through the adder includes two latches, allow­
ing fully pipelined operation. The result latches are 
shown explicitly in the diagram; however, the input 
latches are somewhat implicit, taking advantage of 
the predischarge characteristics of the carry chains. 
The complete adder is a combination of three meth­
ods for producing a binary add: a byte long carry 
chain, a longword (32-bit) carry select, and local 
logarithmic carry select.4 The carry select is built as 
a set of n-channel metal-oxide semiconductor 
(NMOS) switches that direct the data from byte 
carry chains. The 32-bit longword lookahead is 
implemented as a distributed differential circuit 
controlling the final stage of the upper longword 
switches. The carry chains are organized in groups 
of eight bits. 

Carry chain width was chosen to implement a 
byte compare function specified by the architec­
ture. The carry chain implemented with NMOS tran­
sistors is shown in Figure 13a. Operation begins 
with the chain predischarged to Vss, with the con­
trolling signal an OR of CLK and the kill function. 
Evaluation begins along the chain length without 
the delay associated with the l;;s -V, threshold found 
in a chain precharged to Vvv· An alternative to a pre­
discharged state was to precharge to Vvv-V,, but the 
resulting low noise margins were deemed unac­
ceptable. From the least significant bit to the most 
significant bit, the width of the NMOS gates for each 
carry chain stage is tapered down, reducing the 
loading presented by the remainder of the chain. 
The local carry nodes are received by ratioed invert­
ers. Each set of propagate, kill, and generate signals 
controls two carry chains, one that assumes a carry 
in and one that assumes no carry in. The results 
feed the bit-wise data switches as well as the carry 
selects. 
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The longword carry select is built as a distributed 
cascode structure used to combine the byte gen­
erate, kill, and propagate signals across the lower 
32-bit longword. It controls the final data selection 
into the upper longword output latch and is out of 
the critical path. 

The NMOS byte carry select switches are con­
trolled by a cascade of closest neighbor byte carry 
outs. Data in the most significant byte of the upper 
longword is switched first by the carry-out data of 
the next lower byte, byte 6, then by byte 5, and 
finally byte 4. The switches direct the sum data 
from either the carry-in channel or the no-carry 
channel (Figure 13b). Sign extension is accom­
plished by disabling the upper longword switch 
controls on longword operations and forcing the 
sign of the result into both data channels. 

1/0 Circuitry 
To provide maximum flexibility in applications, the 
external interface allows for several different 
modes of operation all using common on-chip cir­
cuitry. This includes choice of logic family (CMOS/ 
transistor-transistor logic [TTL] or emitter-coupled 
logic [ECL]) as well as bus width (64/128 bits), exter­
nal cache size and access time, and BIU clock rate. 
These parameters are set into mode registers dur­
ing chip power-up. The logic family choice pro­
vided an interesting circuit challenge. The input 
receivers are differential amplifiers that utilize an 
external reference level which is set to the switch­
ing midpoint of the external logic family. To main­
tain signal integrity of this reference voltage, it is 
resistively isolated and RC-filtered at each receiver. 

The output driver presented a more difficult 
problem due to the 3.3-V Vvv chip power supply. To 
provide a good interface to ECL, it is important that 
the output driver pull to the Vvv rail (for ECL opera­
tion Vvv = 0 V, Vss = -3.3 V). This precludes using 
NMOS pull-ups. P-channel metal-oxide semicon­
ductor (PMOS) pull-ups have the problem of well­
junction forward bias and PMOS turn-on when 
bidirectional outputs are connected to 5-V logic 
in CMOS/TTL mode. The solution, as shown in Fig­
ure 14, is a unique floating-well driver circuit that 
avoids the cost of series PMOS pull-ups in the final 
stage, while providing direct interface to 5-V 
CMOS/TTL as well as ECL. 5 

Transistors QI , Q2, and Q6 are the actual output 
devices. QI and Q2 are NMOS devices arranged in 
cascade fashion to limit the voltages across a single 
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(a) Adder Carry Chain 
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CO GETS CO 

SUM_IN_ASSUMING_NO_CARRY 
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(b) Adder Carry-select Switches 

Figum 13 Adder Carry 

TO 
PAD 

transistor to no more than 4 V Q6 is a PMOS pull-up 
device that shares a common n-well with Q7 
through QlO, which have responsibility for supply­
ing the well with a positive bias voltage of either 
Yan or the 1/0 pin potential, whichever is higher. Q3 
through Q5 control the source of voltage for the 
gate of Q6-either the output of the inverter or the 
1/0 pad if it moves above Von· Rl and R2 provide 
50-ohm series termination in either operating mode. 

Caches 

Figure 14 Floating-well Driver 

The two internal caches are almost identical in con­
struction. Each stores up to 8KB of data (D-cache) 
or instruction (I-cache) with a cache block size of 
32 bytes. The caches are direct mapped to realize 
a single cycle access, and can be accessed using 
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untranslated bits of the virtual address since the 
page size is also 8KB. For a read, the address stored 
in the tag and a 64-bit quadword of data are 
accessed from the caches and sent to either the 
memory management unit for the D-cache or the 
instruction unit for the I-cache. A write-through 
protocol is used for the D-cache. 

The D-cache incorporates a pending fill latch 
that accumulates fill data for a cache block while 
the D-cache services other load/store requests. 
Once the pending fill latch is full, an entire cache 
block can be written into the cache on the next 
available cycle. The I-cache has a similar facility 
called the stream buffer. On an I-cache miss, the 
I-box fetches the required cache block from mem­
ory and loads it into the I-cache. In addition, the 
I-box will prefetch the next cache block and place it 
in the stream buffer. The data is held in the stream 
buffer and is written into the I-cache only if the data 
is requested by the I-box. 

Each cache is organized into four banks to reduce 
power consumption and current transients during 
precharge. Each array is approximately 1,024 cells 
wide by 66 cells tall with the top two rows used 
as redundant elements. A six-transistor, 98-µ.m 2 

static RAM cell is used. The cell utilizes a local inter­
connect layer that connects between polysilicon 
and active area, resulting in a 20-percent reduction 
in cell area compared to a conventional six-transis-

CLK 

DISPLACEMENT 
ADD 

CACHE 
WORD-LINE 

CACHE DATA/ 
TAGS OUT 

REGISTER FILE 
WRITE PORT 

ALU BYPASS IN 

3 4 

A 200-MHz 64-bit Dual-issue CMOS Microprocessor 

tor cell. A segmented word line is used to accom­
modate the banked design, with a global word line 
implemented in third-level metal and a local word 
line implemented in first-metal layer. The global 
word line feeds into local decoders that decode the 
lower two bits of the address to generate the local 
word lines. As shown in Figure 15, the word lines 
are enabled while the clock is high, and the sense 
amplifiers are fired on the falling edge of the clock. 

Summary 
A single chip microprocessor that implements a 
new 64-bit high-performance architecture has been 
described. By using a highly optimized design style 
in conjunction with a high-performance 0.75-µ.m 
technology, operating speeds up to 200 MHz have 
been achieved. 

The chip is superscalar degree 2 and has 7- and 
10-stage pipelines for integer and floating-point 
instructions. The chip includes primary instruction 
and data caches, each 8KB in size. In each 5-ns 
cycle, the chip can issue two instructions to two of 
four units, yielding a peak execution rate of 400 
mips and 200 MFLOPS. 

The chip is designed with a flexible external 
interface providing integral support for a sec­
ondary cache constructed of ordinary SRAMs. The 
interface is fully compatible with virtually any 
multiprocessor write cache coherence scheme, 

PIPELINE STAGE 

5 6 7 8 

Figure 15 D-cache Timing Diagram 
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and can accommodate a wide range of timing 
parameters. It can interface directly to standard rn 
and CMOS as well as IOOK ECL technology. 
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The Alpha Demonstration Unit: 
A High-performance Multiprocessor 
for Software and Chip Development 

Digital's first RISC system built using the 64-bit Alpha AXP architecture is the 
prototype known as the Alpha demonstration unit or ADU it consists of a backplane 
containing 14 slots, each of which can hold a CPU module, a 64MB storage module, 
or a module containing two 50MB/s I/0 channels. A new cache coherence protocol 
provides each processor and I/0 channel with a consistent view of shared memory. 
Tbirtyfive ADU systems were built within Digital to accelerate software develofr 
ment and early chip testing. 

There is nothing more difficult to take in hand, 
more perilous to conduct, or more uncertain in its 
success, than to take the lead in the introduction of 
a new order of things. 

-Niccolo Machiavelli, The Prince 

Introducing a new, 64-bit computer architecture 
posed a number of challenges for Digital. In 
addition to developing the architecture and the 
first integrated implementations, an enormous 
amount of software had to be moved from the VAX 

and MIPS (MIPS Computer Systems, Inc.) architec­
tures to the Alpha AXP architecture. Some software 
was originally written in higher-level languages and 
could be recompiled with a few changes. Some 
could be converted using binary translation tools.• 
All software, however, was subject to testing and 
debugging. 

It became clear in the early stages of the program 
that building an Alpha demonstration unit (ADU) 
would be of great benefit to software developers. 
Having a functioning hardware system would moti­
vate software developers and reduce the overall 
time to market considerably. Software develop­
ment, even in the most disciplined organizations, 
proceeds much more rapidly when real hardware is 
available for programmers. In addition, hardware 
engineers could exercise early implementations of 
the processor on the ADU, since a part as complex 
as the DECchip 21064 CPU is difficult to test using 
conventional integrated circuit testers. 

For these reasons, a project was started in early 
1989 to build a number of prototype systems as 
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rapidly as possible. These systems did not require 
the high levels of reliability and availability typical 
of Digital products, nor did they need to have low 
cost, since only a few would be built. They did need 
to be ready at the same time as the first chips, and 
they had to be sufficiently robust that their pres­
ence would accelerate the overall program. 

Digital's Systems Research Center (SRC) in Palo 
Alto, CA had had experience in building similar pro­
totype systems. SRC had designed and built much of 
its computing equipment. 2 Being located in Silicon 
Valley, SRC could employ the services of a number 
of local medium-volume fabrication and assembly 
companies without impeding the mainstream 
Digital engineering and manufacturing groups, 
which were developing AXP product systems. 

The project team was deliberately kept small. 
Two designers were located at SRC, one was with the 
Semiconductor Engineering Group's Advanced 
Development Group in Hudson, MA, and one 
was a member of Digital's Cambridge Research 
Laboratory in Cambridge, MA. Although the project 
team was separated both geographically and organ­
zationally, communication flowed smoothly 
because the individuals had collaborated on similar 
projects in the past. The team used a common set of 
design tools, and Digital's global network made it 
possible to exchange design information between 
sites easily. As the project moved from the design 
phase to production of the systems, the group 
grew, but at no point did the entire team exceed ten 
people. 
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Since multiprocessing capability is central to the 
Alpha AXP architecture, we decided that the ADU 
had to be a multiprocessor. We chose to implement 
a bus-based memory coherence protocol. A high­
speed bus connects three types of modules: The 
CPU module contains one microprocessor chip, its 
external cache, and an interface to the bus. A stor­
age module contains two 32-megabyte (MB) inter­
leaved banks of dynamic random-access memory 
(DRAM). The 1/0 module contains two 50MB per 
second (MB/s) 1/0 channels that are connected to 
one or two DECstation 5000 workstations, which 
provide disk and network 1/0 as well as a high­
performance debugging environment. Most of the 
logic, with the exception of the CPU chip, is emit­
ter-coupled logic (ECL), which we selected for its 
high speed and predictable electrical characteris­
tics. Modules plug into a 14-slot card cage. The card 
cage and power supplies are housed in a 0.5-meter 
(m) by 1.1-m cabinet. A fully loaded cabinet dissi­
pates approximately 4,000 watts and is cooled by 
forced air. Figures 1 and 2 are photographs of the 
system and the modules. 

In the remaining sections of this paper, we dis­
cuss the backplane interconnect and cache coher­
ence protocol used in the ADU. We then describe 
the system modules and discuss the design choices. 
We also present some of the uses we have found for 
the ADU in addition to its original purpose as a soft­
ware development vehicle. We conclude with an 
assessment of the project and its impact on the 
overall Alpha AXP program. 

Figure I The Alpha Demonstration Unit 
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(a) CPU Module 

(b) Storage Module 

(c) 1/0 Module 

Figure 2 ADU Modules 
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Backplane Interconnect 
The choice of a backplane interconnect has more 
impact on the overall design of a multiprocessor 
than any other decision. Complexity, cost, and per­
formance are the factors that must be balanced to 
produce a design that is adequate for the intended 
use. Given the overall purpose of the project, we 
chose to minimize complexity and maximize per­
formance. System cost is important in a high-vol­
ume product, but is not important when only a few 
systems are produced. 

To minimize complexity, we chose a pipelined 
bus design in which all operations take place at 
fixed times relative to the time at which a request is 
issued. To maximize performance, we defined the 
operations so that two independent transactions 
can be in progress at once, which fully utilizes the 
bus. 

We designed the bus to provide high bandwidth, 
which is suitable for a multiprocessor system, and 
to offer minimal latency. As the CPU cycle time 
becomes very small, 5 nanoseconds (ns) for the 
DECchip 21064 chip, the main memory latency 
becomes an important component of system per­
formance. The ADU bus can supply 320MB/s of user 
data, but still is able to satisfy a cache read miss in 
just 200ns. 

Bus Signals 
The ADU backplane bus uses ECL IOOK voltage lev­
els. Fifty-ohm controlled-impedance traces, termi­
nated at both ends, provide a well-characterized 
electrical environment, free from the reflections 
and noise often present in high-speed systems. 

Table 1 lists the signals that make up the bus. The 
data portion consists of 64 data signals, 14 error 
correction code (ECC) signals, and 2 parity bits. The 
ECC signals are stored in the memory modules, but 
no checking or correction is done by the memories. 
Instead, the ECC bits are generated and checked 
only by the ultimate producers and consumers of 
data, the 1/0 system and the CPU chip. Secondary 
caches, the bus, and main memory treat the ECC as 
uninterpreted data. This arrangement increases 
performance, since the memories do not have to 
check data before delivering it. The memory mod­
ules would have been less expensive had we used 
an ECC code that protected a larger block. Since the 
CPU caches are large enough to require ECC and 
since the CPU requires ECC over 32-bit words, we 
chose to combine the two correction mechanisms 
into one. This decision was consistent with our goal 
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Table 1 Bus Signals 

Signal Name Pins Use 

-Data[63 .. 00] 64 Data 
-ECC0[6 .. 0] 7 ECC on Data[31 .. 00] 
-ECC1[6 .. 0] 7 ECC on Data[63 .. 32] 
-P[O] 1 Even Parity over 

Data[31 .. 00], ECC0[6 .. 0] 
-P[1] 1 Even Parity over 

Data[63 .. 32], ECC1 [6 .. 0] 

8-shared Cache coherence 
8-dirty Cache coherence 

Retry 1 Storage module busy 
Error 1 Data or address parity error 

ArbRequest 8 Arbitration for the bus 

Clock 2 100 MHz differential clock 
Phase 1 50 MHz Reset 1 

nTypeClk 1 Module identification 
nType 1 Module identification 
nld 4 Module slot number (0 .. 13) 

set by backplane wiring 

of simplifying the design and improving perfor­
mance at the expense of increased cost. The parity 
bits are provided to detect bus errors during 
address and data transfers. All modules generate 
and check bus parity. 

The module identification signals are used only 
during system initialization. Each module type is 
assigned an 8-bit type code, and each backplane slot 
is wired to provide the slot number to the module it 
contains. Each module in the system reports its 
type code serially on the nType line during the 8 X 
slot number nTypeClk cycles after the deassertion 
of system reset. A configuration process running 
on the console processor toggles nTypeClk cycles 
and observes the nType line to determine the type 
of module in each backplane slot. 

The 100-megahertz (MHz) system clock is dis­
tributed radially to each module from a clock gen­
erator on the backplane. Constant-length wiring 
and a strictly specified fan-out path on each mod­
ule controls clock skew. Since a bus cycle takes two 
clocks, the phase signal is used to identify the first 
clock period. 

Addressing 
The bus supports a physical address space of 64 
gigabytes (236 bytes). The resolution of a bus address 
is a 32-byte cache block, which is the only unit 
of transfer supported; consequently, 31 address 
bits suffice. One-quarter of the address space is 
reserved for control registers rather than storage. 
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Accesses to this region are treated specially: CPUs 
do not store data from this region in their caches, 
and the target need not supply correct ECC bits. 

The method used to select the target module of 
a bus operation is geographic. The initiator sends 
the target module's slot number with the address 
during a request cycle. In addition to the 4-bit slot 
number, the initiator supplies a 3-bit subnode iden­
tifier with the address. Subnodes are the unit of 
memory interleaving. The 64MB storage module, 
for example, contains two independent 32MB sub­
nodes that can operate concurrently. 

The geographic selection of the target means that 
a particular subnode only needs to compare the 
requested slot and subnode bits with its own slot 
and subnode numbers to decide whether it is the 
target. This reduces the time required for the deci­
sion compared to a scheme in which the target 
inspects the address field, but it means that each ini­
tiator must maintain a mapping between physical 
addresses and slot and subnode numbers. This map­
ping is performed by a RAM in each initiator. For 
CPU modules, the RAM lookup does not reduce per­
formance, since the access is done in parallel with 
the access of the module's secondary cache. The 
slot-mapping RAMs in each initiator are loaded at 
system initialization time by the configuration pro­
cess described previously. 

Bus Operation 
The timing of addresses and data is shown in Figure 3. 
All data transfers take place at fixed times relative 
to the start of an operation. Eight of the backplane 
slots can contain modules capable of initiating 
requests. These slots are numbered from O to 7, but 
are located at the center of the backplane to reduce 
the transit time between initiators and targets. 

A bus cycle starts when one of the initiators arbi­
trates for the bus. The arbitration method guaran­
tees that no initiator can be starved. Each initiator 

monitors all bus operations and must request only 
those cycles that it knows the target can accept. 
Initiators are allowed to arbitrate for a particular 
target nine or more cycles after that target has 
started a read, or ten or more cycles after the target 
has started a write. To arbitrate, an initiator asserts 
the ArbRequest line corresponding to its current 
priority. Priorities range from O (lowest) to 7 (high­
est). If a module is the highest priority requester 
(i.e., no higher priority ArbRequest line than its 
own is asserted), that module wins the arbitration, 
and it transmits an address and a command in the 
next cycle. The winning module sets its priority to 
zero, and all initiators with priority less than the ini­
tial priority of the winner increment their priority 
regardless of whether they made a request during 
the arbitration cycle. Initially, each initiator's prior­
ity is set to its slot number. Priorities are thus 
distinct initially and remain so over time. This algo­
rithm favors initiators that have not made a recent 
request, since the priority of such an initiator 
increases even if it does not make requests. If all ini­
tiators make continuous requests, the algorithm 
provides round-robin servicing, but the implemen­
tation is simpler than round robin. 

An arbitration cycle is followed by a request 
cycle. The initiator places an address, node and 
subnode numbers, and a command on the bus. 
There are only three commands. A read command 
requests a 32-byte cache block from memory. The 
target memory or a cache that contains a more 
recent copy supplies the data after a five-cycle 
delay. A write command transmits a 32-byte block 
to memory, using the same cycles for the data trans­
fer as the read command. Other caches may also 
take the block and update their contents. A victim 
write is issued by a CPU module when a block is 
evicted from the secondary cache. When such an 
eviction occurs, any other caches that contain the 
block are guaranteed to contain the same value, so 

CYCLE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

ARB REQUEST 
DATA 
B-SHARED, B-DIRTY 
ERROR 

R1 
A1 

E1 

R2 R3 R4 

A2. D1 D1 01 01 A3 02 02 02 02 A4 031 03 D3 D3 
81 82 83 84 

E2 E3 E4 

This figure shows the contents of the bus during four read cycles. If requests are made at full rate, the bus is fully occupied 
with addresses and data. B-shared and B-dirty are sent in the fifth cycle after the arbitration request. If any module detects a 
parity error during an address cycle, it asserts error two cycles later. 

Figure 3 Bus Timing 
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they need not participate in the transfer at all. The 
block is stored in memory, as in a normal write. 

Cache Coherence 
In a multiprocessor system with caches, it is essen­
tial that writes done by one processor be made 
available to the other processors in the system in 
a timely fashion. A number of approaches to the 
cache coherence problem have appeared in the lit­
erature. These approaches fall into two categories, 
depending on the way in which they handle proces­
sor writes. Invalidation or ownership protocols 
require that a processor's cache must acquire an 
exclusive copy of the block before the write can be 
done.3 If another cache contains a copy of the 
block, that copy is invalidated. On the other hand, 
update protocols maintain coherence by perform­
ing write-through operations to other caches that 
share the block. 2 Each cache maintains enough 
state to determine whether any other cache shares 
the block. If the data is not present in another 
cache, then write through is unnecessary and is 
not done. 

The two protocols have quite different perfor­
mances, depending on system activity.4 An update 
protocol performs better than an invalidation pro­
tocol in an application in which data is shared (and 
written) by multiple processors (e.g. , a parallel 
algorithm executing on several processors). In an 
invalidation protocol, each time a processor writes 
a location, the block is invalidated in all other 
caches that share it. All caches require an expensive 
miss to retrieve the block when it is next refer­
enced. On the other hand, an update protocol per­
forms poorly in a system in which processes can 
migrate between processors. With migration, data 
appears in both caches, and each time a processor 
writes a location, a write-through operation 
updates the other cache, even though its CPU is no 
longer interested in the block. Larger caches with 
long block lifetimes exacerbate this problem. 

Coherence Protocol 
The coherence protocol used in the ADU is a hybrid 
of an update and an invalidation protocol, and like 
many hybrids, it combines the good features of 
both parents. The protocol depends on the fact that 
the CPU chips contain an on-chip cache backed by 
a much larger secondary cache that monitors all 
bus operations. Initially, the secondary caches use 
an update protocol. Caches that contain shared 
data perform a write-through operation to update 
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the blocks in other caches whenever the associated 
CPU performs a write. If no other cache shares 
a block, this write through is unnecessary and is 
not done. When a secondary cache receives an 
update (i.e., it observes a write on the bus directed 
to a block it contains), it has two options. It can 
invalidate the block and report to the writer that 
it has done so. If it is the only cache sharing the 
block, subsequent write-through operations will 
not occur. Alternatively, it can accept the update 
and report that it did so, in which case the cache 
that performed the write-through operation con­
tinues to send updates whenever its CPU writes the 
block. 

The actions taken by a cache that receives an 
update are determined by whether the block is in 
the CPU's on-chip cache. The secondary cache con­
tains a table that allows it to determine this without 
interfering with the CPU. If the block is in the on­
chip cache, the secondary cache accepts the 
update and invalidates the block in the on-chip 
cache. If the block is not in the on-chip cache, the 
secondary cache block is invalidated. If the block is 
being actively shared, it will be reloaded by the CPU 
before the next update arrives, and the block will 
continue to be shared. If not, the block will be inval­
idated when the second update arrives. 

Implementation of the Protocol 
The implementation of the coherence protocol is 
not complex. The five possible states of a secondary 
cache block are shown in Figure 4. Initially, all 
blocks in the cache are marked invalid. Misses in 
the CPU's on-chip cache cause a bus read to be 
issued if the block is not in the secondary cache. If 
the cache block is assigned to another memory loca­
tion and is dirty (i.e., has been written since it was 
read from memory), a victim write is issued to evict 
the block, then a read is issued. Other caches moni­
tor operations on the bus and assert the block­
shared (B-shared) signal if they contain the block. 
If a cache contains a dirty block and it observes 
a bus read, it asserts B-shared and B-dirty, and 
supplies the data. B-dirty inhibits the memory's 
delivery of data. 

The CPU's on-chip cache uses a write-through 
strategy. A CPU write to a shared block in the sec­
ondary cache initiates a bus write to update the 
contents of other caches that share the block. 
Memory is written, so the block becomes clean. If 
another cache takes the update, it asserts B-shared, 
and the initiator's state becomes Shared not ( - ) 
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Transitions occur as a result of CPU reads and writes (C-read, C-write) and bus operations 
initiated by other caches or 1/0 controllers (B-read, B-write). A C-read or C-write to an invalid 
block causes a B-read; a C-write to a shared block causes a B-write. The B-shared response 
indicates that some other cache contains the block. INC indicates that the block is in the CPU's 
on-chip cache. 

Figure 4 Secondary Cache Line States 

Dirty. If no other cache takes the update, either 
because it does not contain the block or because it 
decides to invalidate it, then the B-shared signal is 
not asserted, and the initiator's state becomes 
-Shared - Dirty. The B-shared and B-dirty signals 
may be asserted by several modules during cycle 
five of bus operations. The responses are ORed by 
the open-emitter ECL backplane drivers. More than 
one cache can contain a block with Shared = true, 
but only one cache at a time can contain a block 
with Dirty = true. 

Designing the bus interconnect and coherence 
protocol was an experiment in specification. The 
informal description required approximately 15 
pages of prose to describe the bus. The real specifi­
cation was a multithreaded program that repre­
sented the various interfaces at a level of detail 
sufficient to describe every signal, but, when exe­
cuted, simulated the components at a higher level. 
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By running this program with sequences of simu­
lated memory requests, we were able to refine the 
design rapidly and measure the performance of the 
system before designing any logic. Most design 
errors were discovered at this time, and prototype 
system debugging took much less time than usual. 

System Modules 
In this section, we describe the system modules 
and the packaging of the ADU. We discuss the 
design choices made to produce the CPU module, 
storage modules, and 1/0 module on schedule. We 
also discuss applications of the ADU beyond its 
intended use as a vehicle for software development. 

CPU Module 
The ADU CPU module consists of a single CPU chip, 
a 256-kilobyte (KB) secondary cache, and an inter­
face to the system bus. All CPU modules in the 
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system are identical. The CPU modules are not self­
sufficient; they must be initialized by the console 
workstation before the CPU can be enabled. 

The CPU module contains extensive test access 
logic that allows other bus agents to read and write 
most of the module's internal state. We imple­
mented this logic because we knew these modules 
would be used to debug CPU chips. Test access logic 
would help us determine the cause of a CPU chip 
malfunction and would make it possible for us to 
introduce errors into the secondary cache to test 
the error detection and correction capabilities of 
the CPU chip. This logic was used to perform almost 
all initialization of the CPU module and was also 
used to troubleshoot CPU modules after they were 
fabricated. 

The central feature of the CPU module (shown 
in Figure 5) is the secondary cache, built using 16K 
by 4 BiCMOS static RAMs. Each of the 16K half­
blocks in the data store is 156 bits wide (4 long­
words of data, each protected by 7 ECC bits). Each 
of the SK entries in the tag store is an 18-bit address 
(protected by parity) and a 3-bit control field 
(valid/shared/dirty, also protected by parity). In 
addition, a secondary cache duplicate tag store, 
consisting of an 18-bit address and a valid bit 
(protected by parity), is used as a hint to speed pro­
cessing of reads and writes encountered on the 
system bus. Finally, a CPU chip data cache duplicate 
tag store (protected by parity) functions as an 
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LATCH 
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BYPASS 
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invalidation filter and selects between update and 
invalidation strategies. 

The system bus interface watches for reads and 
writes on the bus, and looks up each address in the 
secondary cache. On read hits, it asserts B-shared 
on the bus, and, if the block is dirty in the sec­
ondary cache, it asserts B-dirty and supplies read 
data to the bus. On write hits, it selects between the 
invalidate and update strategies, modifies the con­
trol field in the secondary cache tag store appropri­
ately, and, if the update strategy is selected, it 
accepts data from the system bus. 

Unlike most bus devices, the CPU module's 
system bus interface must accept a new address 
every five cycles. To do this, it is implemented as 
two independent finite state machines connected 
together in a pipelined fashion. 

The tag state machine, which operates during 
bus cycles 1 through 5, watches for addresses, per­
forms all tag store reads (in bus cycle 4, just in time 
to assert B-shared and B-dirty in bus cycle 5), and 
performs any needed tag store writes (in bus cycle 
5). If the tag state machine determines that bus data 
must be supplied or accepted, it enables the data 
state machine, and, at the same time, begins pro­
cessing the next bus request. 

The data state machine, which operates during 
bus cycles 6 through 10, moves data to and from 
the bus and handles the reading and writing of the 
secondary cache data store. The highly pipelined 
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Figure 5 CPU Module 
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nature of the system bus makes reading and writing 
the data store somewhat tricky. Figure 6a shows 
a write hit that has selected the update strategy 
immediately followed by a read hit that must supply 
data to the bus. High performance mandates 
the use of clocked transceivers, which means the 
secondary cache data store must read one cycle 
ahead of the bus and must write one cycle behind 
the bus, resulting in a conflict in bus cycle 11. 
However, the bus transfers data in a fixed order, 
so the read will always access quadword O of 
the block, and the write will always access quad­
word 3 of the block. By implementing the data 
store as two 64-bit-wide banks, it is possible to han­
dle these back-to-back transactions without creat­
ing any special cases, as shown in Figure 6b. This 
example is typical of the sty le of design used in the 
ADU, which eliminates extra mechanisms wherever 
possible. 

The CPU interface handles the arbitration for the 
secondary cache and generates the necessary reads 
and writes on the system bus when the CPU sec­
ondary cache misses. 

The CPU chip is supplied with a clock that is not 
related to the system clock in frequency or phase. 
This factor made it easier to use both the 100-MHz 
frequency of the DC227 prototype chip and the 
200-MHZ frequency of the DECchip 21064 CPU. It 
also allowed us to vary the operating frequency 
during CPU chip debugging. However, the data 
buses connecting the CPU chip to the rest of the 
CPU module must cross a clock-domain boundary. 
Perhaps more significant, the secondary cache tag 
and data stores have two asynchronous sources of 
control, since the CPU chip contains an integrated 
secondary cache controller. 
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The bidirectional data bus of the CPU chip is con­
verted into the unidirectional data buses used by 
the rest of the CPU module by transparent cutoff 
latches. These latches, which are located in a ring 
surrounding the CPU, also convert the quasi-ECL lev­
els generated by the CPU chip into true ECL levels 
for the rest of the CPU module. These latches are 
normally held open, so the CPU chip is, in effect, 
connected directly to the secondary cache tag and 
data RAMs. Control signals from the CPU chip's inte­
grated secondary cache controller are simply ORed 
into the appropriate secondary cache RAM drivers. 

These latches are also used to pass data across 
the two-clock-domain boundary. Normally all 
latches are open. On reads, logic in the CPU chip 
clock domain closes all the latches and sends a read 
request into the bus clock domain. Logic in the bus 
clock domain obtains the data, writes both the sec­
ondary cache and the read latches, and sends an 
acknowledgment back into the CPU chip clock 
domain. Logic in the CPU chip clock domain 
accepts the first half-block of the data, opens the 
first read latch, accepts the second half-line of the 
data, and opens all remaining latches. Writes are 
similar. Logic in the CPU chip clock domain writes 
the first half-line into the write latch, makes the 
second half-line valid (behind the latch), and sends 
a write request into the bus clock domain. Logic in 
the bus clock domain accepts the first half-line of 
data, opens the write latch, accepts the second half­
block of data, and sends an acknowledgment back 
into the CPU chip clock domain. 

Logic in the CPU chip clock domain controls all 
latches. Only two signals pass through synchroniz­
ers: a single request signal passes from the CPU chip 
clock domain to the bus clock domain, and a single 

11 12 13 14 15 Figure 6a shows a conflict for access 
to the secondary cache RAMs caused 
by back-to-back cycles. In the marked 

R6 R7 RB R9 R10 
cycle, the cache writes the bus data 

W10 RB R9 R10 
that arrived in cycle W10, but it also 

R7 needs to read data to supply it during 

t cycle R7. 

11 12 13 14 15 Figure 6b shows how this conflict can 
be resolved by treating the cache as 
two independent banks (even and odd). 
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Figure 6 CPU Timing 
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acknowledge signal passes from the bus clock 
domain to the CPU chip clock domain. 

The secondary cache arbitration scheme is 
unconventional because the system bus has no stall 
mechanism. If a read or a write appears on the 
system bus, the bus interface must have uncondi­
tional access to the secondary cache; it cannot wait 
for the CPU to finish its current cycle. In fact, the 
bus interface cannot detect if a cycle is in progress 
in the CPU chip's integrated cache controller. 

Nevertheless, all events in the system bus inter­
face occur at fixed times with respect to bus arbi­
tration cycles. As a result, the system bus interface 
can supply a busy signal to the CPU interface, which 
allows it to predict the bus interface's use of the 
secondary cache in the immediate future. The CPU 
interface, therefore, waits until the secondary 
cache can be accessed without conflict and then 
performs its cycle without additional checking. 
This waiting is performed by the CPU chip's inte­
grated secondary cache controller for some cycles, 
and by logic in the CPU interface running in the bus 
clock domain for other cycles. To reduce latency, 
the CPU reads the secondary cache while waiting, 
and ignores the data if it is not yet valid. 

All operations use ownership of the system bus 
as an interlock. For example, if the CPU writes to a 
location in the secondary cache that is marked as 
shared, the CPU interface acquires the system bus, 
and then updates the secondary cache at the same 
time as it broadcasts the write. This does not elimi­
nate all race conditions; in particular, it allows a 
dirty secondary cache block to be invalidated by 
a system bus write while the CPU interface is wait­
ing to acquire the bus to write the block to memory. 
This is easily handled, however, by having the CPU 
interface generate a signal (always_update) that 
insists that the system bus interface select the 
update strategy. 

The combination of arbitration by predicting 
future events and the use of the system bus as an 
interlock makes the CPU module's control logic 
extremely simple. The bus interface and the CPU 
interface have no knowledge of one another 
beyond the busy and always_update signals. Since 
no complicated interactions between the CPU and 
the bus exist, no time-consuming simulations of the 
interactions needed to be performed, and we had 
none of the difficult-to-track-down bugs that are 
usually associated with multiprocessor systems. 

The CPU module contains a number of control 
registers. The bus cycles that read and write these 
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registers are processed by the system bus inter­
face as ordinary, but somewhat degenerate, cases. 
The local CPU accesses its local registers over the 
system bus, using ordinary system bus reads and 
writes, so no special logic is needed to resolve race 
conditions. 

To keep pace with our schedule, we arranged for 
most of the system to be debugged before the CPU 
chip arrived. By using a suitably wired integrated 
circuit test clip, we could place commands onto 
the CPU chip's command bus and verify the control 
signals with an oscilloscope. The results of these 
tests left us fairly confident that the system worked 
before the first chip arrived. 

We resumed testing the CPU module after the 
CPU chip was installed. We placed short (three to 
five instructions) programs into main memory, 
enabled the CPU chip for a short time, then 
inspected the secondary cache (using the CPU mod­
ule's test access logic) to examine the results. 

Eventually we connected an external pulse gen­
erator to the CPU chip's clock and an external 
power supply to the CPU chip. These modifications 
permitted us to vary both the operating frequency 
and the operating voltage of the CPU chip. By using 
a pulse generator and a power supply that could be 
remotely controlled by another computer, we were 
able to write simple programs that could run CPU 
chip diagnostics, without manual intervention, 
over a wide range of operating conditions. This 
greatly simplified the task of collecting the raw data 
needed by the chip designers to verify the critical 
paths in the chip. 

Storage Modules 
The ADU's storage modules must provide high 
bandwidth, both to service cache misses and to 
support demanding 1/0 devices. More important, 
they must provide low latency, since in the case of a 
cache miss, the processor is stalled until the miss is 
satisfied. It is also important to provide a modest 
amount of memory interleaving. Although the bus 
protocol allows only two memory subnodes to be 
active at once, higher interleave increases the prob­
ability that a module will be free when a memory 
request is issued. 

Each storage module is organized as two 
independent bus subnodes, so that even in a sys­
tem with one module, memory is two-way inter­
leaved. Each of the subnodes consists of four banks, 
each of which stores two longwords of data 
and their associated error correction bits. With 
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I-megabit (Mb) RAM chips, the capacity of each 
module is 64MB. Figure 7 shows the organization 
of the storage module. The module consists of 
two independent subnodes, each with four banks 
of storage. Control signals are pipelined through 
the banks so that the module can deliver or accept 
a 64-bit data word (plus ECC) every 20 ns. With 
the exception of the DRAM interface signals, all 
signals are ECL levels. The G014 gallium arse­
nide (GaAs) driver chip improves performance 
by allowing parallel termination of the DRAM 
address lines. 

A memory cycle consists of a five-bus-cycle 
access period followed by four bus cycles of data 
transfer. Each data transfer cycle moves two 39-bit 
longwords between the module and the backplane 
bus, for a total of 32 data bytes per memory cycle. 
This is the size of a CPU module cache block. A read 
operation takes 10 bus cycles to complete, but a 
write requires 11 cycles. 

Since a data rate of 1 word every 20 ns is beyond 
the capabilities of even the fastest nibble-mode 
RAMs, we needed an approach that did not require 
each RAM to provide more than 1 bit per access. 

--------------------------, 
I B~A_N_K_3~~~ .......... 
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We chose to pipeline the four banks of each sub­
node. Each of the four banks contributes only one 
7S-bit word to the block. The banks are started 
sequentially, with a one-cycle delay between each 
bank. 

The high performance of the storage module 
is achieved by maintaining ECL levels and using 
ECL IOOK components wherever possible. The 
RAM 1/0 pin levels are converted to ECL levels by 
latching transceivers associated with each bank. 
Fortunately, the timing of accesses to the two sub­
nodes of a module makes it possible to share these 
transceivers between the same banks of the mod­
ule's two subnodes. 

The DRAM chips are packaged on small daughter 
cards that plug into connectors on both sides of the 
main array module. There are 2 daughter cards for 
each bank within a subnode, for a total of 16 daugh­
ter cards per module. The DRAM address and con­
trol lines are carried on controlled impedance 
traces. Since each of the 39 DRAMS on an address 
line represents a capacitive load of approximately S 
picofarads, the loaded impedance of the line is 
about 30 ohms. 

The usual approach to driving the address and 
control lines of a RAM array uses series termination, 
as shown in Figure Sa. This arrangement has the 
advantage that the driver current is reduced, since 
the load impedance seen by the driver (Rs + Z

0 
is 

twice that of the loaded transmission line (Z
0
). 

Unfortunately, the RAM access time is increased, 
because the signal from the driver(~) must propa­
gate to the far end of the line, be reflected, and 
return to the driver before the first RAM on the line 
sees a full-amplitude signal. Since the capacitive 
loading added by the RAM pins lowers the signal 
propagation velocity in addition to reducing the 
impedance, the added delay can be a significant 
fraction of the overall cycle time. 

Since low latency was a primary design goal, we 
chose parallel termination of the RAM address and 
control lines, as shown in Figure Sb. Each address 
line is terminated to +3 volts with a series resistor 
(Rs) of 33 ohms, slightly higher than the line 
impedance. In this configuration, each line's driver 
must sink a current of almost 0.1 ampere. Since no 
commercial chip could meet this requirement at 
the needed speed, we commissioned a semicustom 
GaAschip.5 

As shown in Figure 9, each GaAs chip contains a 
register for eight address bits, row/column address 
multiplexing and high current drivers for the RAM 
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Figure 8 Address Line Termination 

address lines, and a driver for one of the three RAM 
control signals (RAS, CAS, Write). To reduce the cur­
rent switched by each chip, each address bit drives 
two output pins. One pin carries true data, and the 
other is complemented. The total current is there­
fore constant. Each pin drives one of the two RAM 
modules of a bank. A total of three GaAs chips 
is required per bank. In the present module, with 
IM- by I-bit RAM chips, only 10 of the 12 address 
drivers are used, so the system can be easily 
expanded to make use of 16M RAMs. 

The storage module contains only a small 
amount of control logic. This logic generates the 
control signals for the RAMs and the various 
transceivers that route data from the backplane to 
each bank. This logic also generates the signals 
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needed to refresh the RAMs and to assert the retry 
signal if another node attempts to access the mod­
ule while it is refreshing itself. 

1/0Module 
The 1/0 module for the ADU contains two 50MB/s 
1/0 channels and a local CPU subsystem. The 1/0 
channels connect to one or two DECstation 5000 
workstations, which act as 1/0 front -end proces­
sors and also provide console and diagnostic func­
tions. The local CPU subsystem is used to provide 
interval timer and time-of-day clock services to ADU 
processors. 

The original specification for the ADU 1/0 system 
required support only for serial line, small com­
puter systems interface (SCSI) disk, and Ethernet 
1/0 devices. We knew that the ADU would be used 
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to exercise new CPU chips and untested software. 
With this in mind, we organized the 1/0 system 
around a DECstation 5000 workstation as a front­
end and console processor. This reduced our work 
considerably, as all 1/0 is done by the workstation. A 
TURBOchannel module connects the DECstation 
5000 over a 50MB/s cable to the 1/0 module in the 
ADU. We selected 50MB/s in order to support the 
simultaneous, peak-bandwidth operation of two 
SCSI disk strings, an Ethernet, and a fiber dis­
tributed data interface (FDDI) network adapter. The 
1/0 module contains two of these channels, which 
allows two DECstation 5000 workstations to be 
attached. 

At the hardware level, the 1/0 system supports 
block transfers of data from the main memory of 
the workstation to and from ADU memory. In addi­
tion, the 1/0 module includes command and door­
bell registers, which are used by ADU processors to 
attract the attention of the 1/0 system. 

In software, 1/0 requests are placed by ADU pro­
cessors into command rings in ADU memory. The 
memory address of a command ring is placed into 
an 1/0 control register, and the associated doorbell 
is rung. The doorbell causes a hardware interrupt 
on the front-end DECstation 5000, which alerts the 
1/0 server process that action is needed. The 1/0 

server reads the command ring from ADU memory 
and performs the requested 1/0. 1/0 completion sta­
tus is stored into ADU memory, and an interrupt is 
sent to the requesting ADU processor. 

In addition to its role as an 1/0 front -end proces­
sor, the DECstation 5000 workstation acts as a diag­
nostic and console processor. When an ADU is 
powered on, diagnostic software is run from the 
workstation. First, the correct functioning of the 
1/0 module is tested. Then the ADU module identifi­
cation process determines the types and locations 
of all CPU and storage modules in the system. 
Diagnostics are then run for each module. 

Once diagnostic software has run, the console 
software is given control. This software is responsi­
ble for loading privileged architecture library (PAL) 
and operating system software. Once the operating 
system is running, the workstation becomes an 1/0 
server. 

The presence of the DECstation 5000 gave the 
chip team and operating system developers a stable 
place to stand while checking out their own com­
ponents. In addition, the complete diagnostic capa­
bility and error checking coverage of the ADU 
hardware helped to isolate faults. 
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The central features of the VO module, shown in 
Figure 10, are two lK- by 80-bit register files built 
from 5-ns ECL RAMs. These memories are cycled 
every 10 ns to simulate dual-ported memories at the 
20-ns bus cycle rate. One memory is used as a stag­
ing RAM for block transfers from the 1/0 processors 
to ADU memory. The other memory is shared 
between use as command register space for the 1/0 

system and a staging RAM for transfers from ADU 
memory to the 1/0 system. 

On the bus side, the register files are connected 
directly to the backplane bus transceivers. On the 
1/0 side, the register files are connected to a shared 
40-ns bus that connects to the two I/0 channels. 

The buses are time-slotted to eliminate the 
need for arbitration logic. As a consequence, the 
1/0 module control logic is contained in a small 
number of programmable array logic chips that 
implement the 1/0 channel controllers and a 
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block-transfer state machine that handles bus 
transfers. 

Each 1/0 channel carries 32 bits of data plus 7 bits 
of ECC in parallel on a SO-pair cable. Each data word 
also carries a 3-bit tag that specifies the destination 
of the data. The cable is half-duplex, with the direc­
tion of data flow under the control of software on 
the DECstation. Data arriving from the DECstation is 
buffered in lK FIFOs. These FIFOs carry data across 
the dock-domain boundary between the 1/0 

system and the ADU and permit both 1/0 channels 
to run at full speed simultaneously. 

Each 1/0 channel interface also has an address 
counter and a slot-mapping RAM, which are loaded 
from the workstation. The slot-mapping function 
sets the correspondence between ADU bus 
addresses and the geographically addressed storage 
and CPU modules. The address and slot map for 
each channel are connected to a common address 
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bus. This bus bypasses the register files and directly 
drives the backplane transceivers during bus 
address cycles. 

The far end of the 1/0 cable connects to a single­
width TURBOchannel module in the DECstation 
5000. This module contains ECC generation and 
checking logic, and FIFO queues for buffering data 
between the cable and the TURBOchannel. The FIFO 
queues also carry data across the clock-domain 
boundary between the 1/0 channel and the 
TURBOchannel modules. 

The 1/0 module has a local CPU subsystem con­
taining a 12-MHz Motorola 68302 processor, 128KB 
of erasable programmable read-only memory 
(EPROM), and 128KB of RAM. The CPU subsystem 
also includes an Ethernet interface, two serial 
ports, an SCSI interface, an Integrated Services 
Digital Network (ISDN) interface, and audio input 
and output ports. When in use, the local CPU sub­
system uses one of the 1/0 channels otherwise avail­
able for the connection of a DECstation 5000. 
Although the local CPU on the 1/0 module is capable 
of running the full ADU 1/0 system, in practice we 
use it for supplying interval timer and real-time 
clock service for the ADU. 

The 1/0 module was somewhat overdesigned for 
its original purpose of supplying disk, network, and 
console 1/0 service for ADU processors. This capa­
bility was put to use in mid-1991 when the demand 
for ADUs became so intense that we considered 
building additional systems. Instead, by using the 
excess 1/0 resources, the slot-mapping features of 
the hardware, and the capabilities of PALcode, we 
were able to use a three-processor ADU as three 
independent virtual computers. Independent 
copies of the console program shared the 1/0 hard­
ware through software locking and were allocated 
one CPU and one storage module each. 
Multiprocessor ADUs now routinely run both 
OpenVMS AXP and DEC OSF/1 AXP operating sys­
tems at the same time. 

Packaging 
Simplicity was the primary goal in the design of the 
ADU package. Our short schedule demanded that 
we avoid innovation and use standard parts wher­
ever possible. 

The ADU's modules and card cage are standard 9U 
(280 millimeter by 367 millimeter) Eurocard com­
ponents, which are available from a number of ven­
dors. The cabinet is a standard Digital unit, usually 
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used to hold disks. Power supplies are off-the-shelf 
units. Three supplies are required to provide the 
4,000 watts consumed by a system containing a full 
complement of modules. A standard power condi­
tioner provides line filtering and distributes pri­
mary AC to the power supplies. This unit allows the 
system to operate on 110-volt AC in the United 
States, or 220-volt AC in Europe. 

Cooling was the most difficult part of the packag­
ing effort. The use of ECL throughout the system 
meant that we had to provide an airflow of at least 
2.5 m/s over the modules. After studying several 
alternatives, we selected a reverse impeller blower 
used on Digital's VAX 6000 series machines. Two of 
these blowers provide the required airflow, while 
generating much less acoustic noise than conven­
tional fans. 

Since blower failure would result in a catas­
trophic meltdown, airflow and temperature sen­
sors are provided. A small module containing a 
microcontroller monitors these parameters as well 
as all power supply voltages. In the event of failure, 
the autonomous controller can shut down the 
power supplies. This module also generates the 
system clock. 

Conclusions 
Sometimes it is better to have twenty million 
instructions by Friday than twenty million instruc­
tions per second. -Wesley Clark 

One hundred CPU and storage modules and 35 1/0 

modules have been built, packaged as 35 ADU sys­
tems, and delivered to software development 
groups throughout Digital. Not just laboratory 
curiosities, these systems have become part of the 
mainstream AXP development environment. They 
are in regular use by compiler development groups, 
operating system developers, and applications 
groups. 

The ADU also provided a full-speed, in-system 
exerciser for the chips. By using the ADU, the chip 
developers were able to detect several subtle prob­
lems in early chip implementations. 

The ADU project was quite successful. ADU sys­
tems were in the hands of developers approximately 
ten months before the first product prototypes. 
The systems exceeded our initial expectations for 
reliability, and provided a rugged, stable platform 
for software development and chip test. The proj­
ect demonstrated that a small team, with focused 
objectives, can produce systems of substantial com­
plexity in a short time. 
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The Design of the DEC 3000 AXP 
Systems, Two Highperformance 
Workstations 

A family of high-performance 64-bit RISC workstations and servers based on the 
new Digital Alpha AXP architecture is described. The hardware implementation 
uses the powerful new DECchip 21064 CPU and emplays a sophisticated new system 
interconnect structure to achieve the necessary high bandwidth and low-latency 
cache, memory, and 1/0 buses. The memory subsystem of the high-end DEC 3000 
AXP Model 500 provides a 512KB secondary cache and up to 1 GB of memory. The l/0 
subsystem of the Model 500 has integral two-dimensional graphics, SCSI, ISDN, and 
six TURBOchannel expansion slots. 

The DEC 3000 AXP system family consists of both 
workstations and servers that are based on Digital's 
Alpha AXP architecture.' The family includes the 
desktop (DEC 3000 AXP Model 400) and desk-side 
and rack-mounted (DEC 3000 AXP Model 500) sys­
tems. The available operating systems are the DEC 
OSF/1 AXP and the OpenVMS AXP systems. All sys­
tems use the DECchip 21064 microprocessor. 2 

Table 1 gives the specifications for the three DEC 
3000 AXP systems. 

The DEC 3000 AXP systems are designed to be sig­
nificantly faster than all previous Digital work­
stations and to offer performance competitive with 
that of other reduced instruction set computer 
(RISC) workstations currently available. In general, 
RISC systems have larger code sizes and conse­
quently require more instruction-stream band­
width than complex instruction set computer 
(CISC) systems. Further, 64-bit machines require 
more data-stream bandwidth than 32-bit machines. 
To complement the power of the DECchip 21064 
microprocessor, the systems need a balanced 
system architecture, including a high-bandwidth, 
low-latency memory system and an efficient, high­
performance 1/0 subsystem. 

Traditional workstation designs that use a com­
mon system bus exhibit increased memory latency 
and reduced memory bandwidth due to system bus 
contention. This is a special concern for designs 
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using a large number of high-performance 1/0 
devices. Increased latency can also result from the 
additional levels of buffering and system bus load­
ing common to traditional architectures. Many 
system buses also exhibit multiplexing between 
address and data, leading to further performance 
degradation. 

To meet the goals of low memory latency, high 
memory bandwidth, and minimal CPU-1/0 memory 
contention in a cost-competitive manner, the 
designers implemented the DEC 3000 AXP system 
architecrure in an unusual way. They chose to build 
the system interconnect from inexpensive applica­
tion-specific integrated circuits (ASICs), as shown 
in Figure I. The ASICs act as a crossbar between the 
CPU, memory, and 1/0 buses. Addresses and data are 
switched independently by the crossbar. 

The system block diagram in Figure 2 shows the 
system architecture of the DEC 3000 AXP systems. 
The system crossbar in the center of the diagram is 
composed of six ASICs, consisting of the ADDR ASIC, 
the TIJRBOchannel (TC) ASIC, and four SLICE ASICs. 
The ADDR ASIC switches addresses between 
the CPU, the memory, and the TC ASIC. The four 
SUCE ASICs switch data between the CPU, the mem­
ory, and the TC ASIC. The TC ASIC switches I/0 
addresses and data between the ADDR and SLICE 
ASICs and the TIJRBOchannel bus. Connected to the 
TIJRBOchannel bus are the various 1/0 controllers, 
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Table 1 DEC 3000 AXP Family Specifications 

Desk-side 
Specifications Model500 

Height, inches 24.7 
Width, inches 12.75 

Depth, inches 29.7 
Maximum DC power 480 

output, watts 

Memory 
Standard, MB 32 
Maximum, MB 1024 

Internal hard disk 
Standard, MB 1050 
Maximum, MB 4200 

Serial ports 2 
ISDN port 1 

SCSI ports* 2 
Ethernet portst 2 
TURBOchannel slots 6 

Removable media* 2 

Integral graphics accelerator Yes 
Audio Yes 

Notes: 
• One internal and one external. 
t AUi (thick wire) and 1 OBase-T (twisted pair). 
* 5.25-inch half-height slots. 

CPU MEMORY 

I 
CACHE 

SYSTEM - 1/0 
CROSSBAR 

Figure 1 Simple Crossbar 

including the dual small computer systems inter­
face (SCSI) controller ASIC, the general 1/0 con­
troller ASIC, and the two-dimensional graphics 
accelerator ASIC (not present in DEC 3000 AXP 
Model 400 systems). In addition, six TIJRBOchannel 
option slots are available for expansion (three slots 
in DEC 3000 AXP Model 400 systems). 

CPU Module 
The DEC 3000 AXP systems are composed of two 
primary modules, the CPU module and the 1/0 mod­
ule. The CPU module contains the processor, 
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Rack-mount Desktop 
Model500 Model 400 

15.75 5 
17.5 20 

27 16.75 

480 295 

32 32 
1024 512 

1050 426 
4200 2100 

2 2 

1 1 
2 2 

2 2 

6 3 

2 1 

Yes No 
Yes Yes 

secondary cache, control logic, TURBOchannel 
interface and, in the Model 500, the two-dimen­
sional graphics subsystem. It has connectors for the 
1/0 module, four memory mother boards, a lights 
and switches module (LSM), three TIJRBOchannel 
options, and the power supply. Figure 3 shows the 
layout of the module. 

CPU 
The DECchip 21064 microprocessor is the CPU of 
the DEC 3000 AXP systems. On the Model 500, the 
CPU runs at 150 megahertz (MHz), and on the Model 
400, it runs at 133 MHz. The processor is a super­
scalar, fully pipelined implementation of the Alpha 
AXP architecture.2 It contains two on-chip 8-kilo­
byte (KB) direct-mapped caches, one for use as an 
instruction cache, the other as a data cache. Both 
the integer and floating-point units are contained 
on-chip. 

B-cache Subsystem 
The system employs a second-level cache (B-cache) 
to help minimize the performance penalty of 
misses and write throughs in the two relatively 
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MEMORY 
CONNECTORS 

MEMORY CLOCK TC 
CONNECTORS SUBSYSTEM CONNECTOR O 

1/0MODULE 
CONNECTOR 

TC 
CONNECTOR 1 

Figure 3 CPU Module 

small 8KB primary caches of the DECchip 21064 
processor. The B-cache is a 512KB, direct-mapped, 
write-back cache. A direct-mapped cache elimi­
nates the logic needed to choose among the multi­
ple sets of a set-associative cache, resulting in a 
faster cache cycle time. A write-back protocol was 
selected because it reduces the amount of write 
traffic from the B-cache to main memory, leaving 
more main memory bandwidth available for other 
memory transactions. 

Digital Technical Journal Vol. 4 No. 4 Speciallssue 1992 

The block size of the B-cache is 32 bytes, match­
ing the block size of the primary caches. The cache 
block allocation policy used is to allocate on both 
read miss and write miss. Hardware keeps the cache 
coherent on direct memory access (DMA) trans­
actions; DMA reads probe the cache and DMA writes 
update the B-cache (and invalidate the primary data 
cache). 

The DEC 3000 AXP systems are designed to be 
uniprocessor systems, which simplifies the cache 
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controller design in a number of ways. For example, 
since no other CPU's cache can contain a copy of a 
cache block, there is no need to implement cache 
coherency constructs such as a shared bit. Further, 
by loading the B-cache during the power-up 
sequence and keeping it coherent during DMA by 
using an always-update protocol, cache blocks in 
the B-cache are always guaranteed to be valid. This 
method eliminates stale data problems without 
needing to use a valid bit. 

In addition to the cache memory, the subsystem 
consists of the cache controller, the main memory 
controller, and the protocol control logic for mem­
ory access arbitration. A block diagram of the CPU 
and B-cache subsystem is shown in Figure 4. 

The B-cache is alternately controlled by the CPU 
and the external cache controller. When controlled 
by the CPU, the cache may be read by the CPU in five 
CPU cycles. The cache data bus width is 16 bytes; 
therefore two reads are necessary to fill a cache 

CPU ADDRESS BUS 

I I 
'\.21 MUX/ 

I 
I 

block. The Model 500 has a maximum cache read 
bandwidth of 480 megabytes per second (MB/s). 
The cache may be written by the CPU with an initial 
tag probe latency of five CPU cycles followed by up 
to two write cycles of five CPU cycles each. The 
Model 500 has a cache write bandwidth of 320 MB/s. 

When a CPU probe misses in the B-cache, or 
when the CPU accesses the external lock register, 
control of the cache is turned over to the external 
cache controller. This logic controls filling the 
cache with the required data from main memory, 
handing the data to the CPU during reads, merging 
CPU write data into the cache on writes, and main­
taining the contents of the external cache tag and 
tag control store. In addition, this logic maintains 
the architecturally defined lock flag and locked 
physical address register, which can be used to 
implement software semaphores and other con­
structs normally requiring atomic read-modify­
write memory transactions. 

DMA CACHE INDEX 

CACHE DATA/ECC CACHE TAG/PARITY CACHE TAG CONTROU 
STORE STORE PARITY STORE 

DECCHIP 
512KB 16K x 11-BITTAGS 16K x 2-BIT CONTROL 

21064 
16K x 32-BYTE BLOCKS TAGS SYSTEM 

MICROPROCESSOR CROSSBAR 

CPU DATA BUS I 
CPU TAG BUS 

) 

CPU TAG CONTROL BUS 

CPU/CACHE _J 
CONTROL LOGIC 
AND MEMORY CONTROL 
SEQUENCERS SIGNALS 

CPU STATUS SIGNALS ~ CROSSBAR STATUS SIGNALS 

CPU CONTROL SIGNALS CROSSBAR CONTROL SIGNALS 

CYCLE DECODER 

~ 
1/0 CONTROLLER STATUS 
SIGNALS 

1/0 CONTROLLER CONTROL 
SIGNALS 

MAIN SEQUENCER 

Figure 4 CPU and B-cache Block Diagram 
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The control logic for the B-cache consists of two 
interlocking state machines. These state machines 
control arbitration and decoding of processor and 
1/0 subsystem requests. They also generate the con­
trol signals needed to execute these requests to the 
CPU, B-cache, and main memory 

The state machines prioritize and arbitrate 
requests from various sources, including the CPU, 
the 1/0 subsystem, and the memory refresh logic. 
Arbitration is done according to a fixed priority. 
First priority goes to DMA requests from the 1/0 sub­
system. Second priority goes to memory refresh 
requests. Lowest in priority are requests made by 
the CPU. The one exception to this scheme occurs 
at the conclusion of a DMA transaction. In this case, 
the first arbitration cycle following the DMA 
changes the priority to memory refresh first, CPU 
request second, and DMA last. This guarantees that 
requests for CPU and memory refreshes are granted 
during heavy DMA traffic. 

The larger state machine, or main sequencer, 
examines the command generated by the smaller 
state machine, or cycle decoder, and initiates the 
control flow necessary to perform that command. 
Fifteen unique flows are implemented by the main 
sequencer. They are 

• Read cacheable memory with/without victim 
block 

• Write cacheable memory with/without victim 
block 

• Write noncacheable memory (diagnostic use 
only) 

• Full block write cacheable memory with/with-
out victim block 

• Tag space write (diagnostic use only) 

• Programmed VO read/Write 

• Load lock hit 

• Store conditional hit 

• Memory refresh 

• DMA read/write 

When a cache miss occurs and the new cache 
block replaces a cache block that has been modi­
fied, as indicated by the "dirty" status bit, the dis­
placed data is referred to as a "victim block" or 
"victim data." 

The many variants of cacheable reads and writes 
provide optimized flows that maximize the paral­
lelism of cache accesses and memory accesses. For 
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example, during the "read cacheable memory with 
victim block" flow, the main sequencer reads the 
victim block from the B-cache and stores it in che 
SLICE ASICs in parallel with reading the new block 
from main memory. The same flow without a vic­
tim block makes use of the main memory access 
time to update the tag store. The control flows for 
writes to cacheable memory also take advantage of 
this parallelism. A further write optimization is 
used when the cycle decoder determines that the 
entire cache block will be written; in this case the 
data from memory is completely overwritten, and 
therefore it is never fetched from memory 

DMA flows are entered upon request of the DMA 
controller in the 1/0 control section. DMA control 
flows start by asserting a "hold request" to the CPU, 
causing the CPU to cease B-cache operations within 
a specified time, after which it asserts a "hold 
acknowledge" signal. It should be noted that the 
CPU will continue to execute instructions inter­
nally until such time as it experiences a miss in one 
of its internal caches, or it requires some other 
external cycle. 

Each DMA write to memory results in a probe of 
the B-cache for the DMA target block, with a hit 
resulting in the B-cache block being updated in par­
allel with main memory and the corresponding pri­
mary data cache block being invalidated. DMA reads 
cause main memory to be read in parallel with 
probes and reads of the B-cache. If a cache probe 
hits, the B-cache data is used to fill the DMA read 
buffer in the SLICE ASICs; otherwise the main mem­
ory data is used. In this manner, cache coherence is 
maintained. 

Memory System and System Crossbar 
The DEC 3000 AXP Model 400 and Model 500 archi­
tecture supplants the traditional system bus with a 
system crossbar constructed from ASICs. Tightly 
coupled to the crossbar is the system memory Three 
types of ASICs- SLICE, ADDR, and TC- form the 
crossbar. SLICE and ADDR are discussed next and TC 
is discussed in the 1/0 Subsystem Interface section. 

SLICEASICs 
The four SLICE ASICs are used strictly for data path; 
together they form a 32-byte bus to main memory, a 
16-byte bus to the CPU and cache, and a 4-byte bus 
to the TC ASIC. It is helpful to think of the SLICE 
ASICs as a train station for data with the data buses 
as train tracks. Data can come and go on any track, 
different tracks have different speeds and widths, 
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and data can find temporary storage in the ASICs. 
The SLICE ASICs provide the systems with a location 
to buffer DMA, 1/0 read, 1/0 write, and victim data 
while the data waits to travel the next leg of its jour­
ney. The use of the SLICE ASICs also eliminates one 
to two levels of buffering between the dynamic ran­
dom-access memories (DRAMS) and the CPU, thus 
decreasing latency and improving bandwidth. 

A key design decision was determining the width 
of the memory data bus. A conventional design 
would have matched the width of the memory bus 
to the width of the cache bus (16 bytes). However, 
to reduce the memory latency of the second half of 
the cache block (cache line size is 32 bytes), the 
system reads the entire cache block from memory 
at once using a 32-byte memory bus. This technique 
elin1inates the additional latency from a second 
page-mode read. 

The DEC 3000 AXP Model 500 returns the entire 
block to the cache and CPU with an average latency 
of only 180 nanoseconds (ns) from the CPU memory 
request. In contrast, a less aggressive preliminary 
design using a system bus and 16-byte-wide mem­
ory bus yielded an average memory latency of 320 
ns. The 32-byte memory bus costs little more than a 
16-byte bus-two low-cost ASICs, resistor packs, 
and some address fan-out parts. 

ADDR ASIC 
The ADDR ASIC is a crossbar for addresses. ADDR 
sends addresses from the CPU to memory (CPU 
reads and writes), from the CPU to 1/0 (1/0 reads 
and writes), and from the 1/0 to CPU and memory 
(DMA reads and writes). ADDR selects between CPU 

~ DRAM I 
DRAM I 

-~ DRAM I 
DRAM I 

SIMM SIMM 

_,_ . 

read, victim write, and DMA addresses to send to 
memory. A counter that increments DMA addresses 
on long TURBOchannel DMAs also resides in ADDR. 

ADDR provides a home to the memory configura­
tion registers. At power-on time, the boot firmware 
writes and reads memory space, determines the 
memory configuration, and writes the configura­
tion registers. At run time, each memory address 
maps into a unique bank, regardless of the type and 
order of the single in-line memory modules (SIMMS) 
installed. 

ADDR also provides a home for miscellaneous 
functions such as tag parity checking, refresh 
counter, and the locked physical address register. It 
generates the cache probe index to check the cache 
tags for a hit or a miss on DMA probes. 

Memory Mother Board and SIMMs 
The memory system is composed of memory 
mother boards (MMBs) that rise from the system 
card, and SIMMs. This arrangement is a good solu­
tion to the problem of limited space on the system 
module. It allows for a wide data bus and for good 
signal integrity for short propagation times on the 
memory data bus. 

As shown in Figure 5, an MMB module supports 
up to eight SIMMs at a time (four SIMMS in Model 400 
systems). A minimum of two SIMMS is required for 
each board. A system always contains four MMBs. 
The MMBs act as a carrier for the SIMMs and also con­
tain drivers for address and control signals. 

A total of 8, 16, 24, or 32 SIMMS (maximum of 16 in 
Model 400 systems) can be plugged into the system. 
SIMMS may be single- or double-sided with 10 DRAMS 

1 TO 8 DRAMS INSTALLED 

~ DRAM I 
DRAM I 

-~ DRAM I 
DRAM I 

SIMM SIMM 

I 
MEMORY MOTHER BOARD 

I CACHE RAM I 
-11 CACHE DATA BUS 

MEMORY DATA BUS -l) 
SLICE ASIC I CPU I 

Figure 5 Memory and Cache Data Bus 
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per side. Each side of a SIMM constitutes one-eighth 
of a bank. Eight SIMMS must be plugged in to com­
plete a bank; hence the 320-bit-wide data bus (4 bits 
per DRAM by 10 DRAMS per SIMM by 8 SIMMS). One 
megabit (Mb), 4Mb, and 16Mb DRAMS are sup­
ported, and users are allowed to populate banks in 
any order. In this way, the DEC 3000 AXP Model 500 
can support from 8MB to 1 gigabyte (GB) of mem­
ory, and the DEC 3000 AXP Model 400 can support 
8MB to 512MB of memory. 

Main memory is protected by a single-bit-correct, 
double-bit-detect error-correcting code (ECC). In 
addition, the arrangement of data bits allows the 
detection of any number of errors restricted to a 
single DRAM chip. ECC corrections for CPU trans­
actions are performed by the CPU, and corrections 
for 1/0 transactions are done in the TC ASIC. 

Memory Transactions 
When data is stored in the B-cache by the CPU, it is 
not immediately sent to memory. Data is written to 
main memory only when a dirty block in the cache 
is replaced. Data destined for the cache is read from 
main memory only on cache misses. Reads to main 
memory, whether from the CPU or from DMA, 
always return 32 bytes. On CPU reads of main 
memory, data is returned to the cache and CPU in 
two halves by the SLICE ASICs. Likewise when the 
B-cache control writes victim data to main mem­
ory, two reads are made of the cache, but only one 
write is made to main memory. 

On DMA writes, 4 bytes of data arrive from the 
TURBOchannel interface ASIC each cycle and are 
stored in the SLICE ASICs. The SLICE ASICs can buffer 
up to 128 bytes of data prior to writing the data to 
main memory using page-mode writes, 32 bytes at a 
time. To maintain cache/memory coherence, data is 
also provided to the cache RAMs so that it may be 
written in the case of a cache hit. On DMA reads, up 
to 128 bytes of data are read page mode out of main 
memory and buffered in the SLICE ASICs. Data flows 
out to the TC ASIC and the TURBOchannel bus at the 
rate of 4 bytes per cycle (IOOMB/s). In the event of a 
cache hit, data is taken preferentially from the 
cache. 

The crossbar employs a technique that permits 
simultaneous transactions from CPU to main mem­
ory and DMA. The TURBOchannel bus supports DMA 
transactions of up to 512 bytes in length. Once the 
DMA starts, the system must be able to provide or 
receive data without any gaps. However, while the 
DMA buffer in the SLICE ASICS is sufficiently full (for 
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DMA reads) or empty (for DMA writes), the CPU is 
allowed to use memory. When the 1/0 controller 
detects that the buffer is too full or too empty, it 
requests memory time to service the DMA buffer. 
At this time, further CPU requests are temporarily 
ignored. This technique prevents the CPU from 
being locked out of main memory, even during long 
DMA transactions and even though DMA has priority 
over CPU transactions. 

The crossbar also permits simultaneous write 
transactions from the CPU to main memory and 
from the CPU to an 1/0 device. SLICE and ADDR ASICS 
can buffer one 1/0 write transaction of up to 32 
bytes in size. Once the ASICs have accepted the data 
and address, the cache and crossbar are free to pro­
cess other CPU transactions, which can include 
cache and main memory reads and writes. If the 
CPU issues an 1/0 write while a previous write 
is still pending in the ASICs, the cache controller 
simply stalls. 

1/0 Subsystem Interface/ 
TURBOchannelASIC 
The 1/0 system is based on the TURBOchannel, a 32-
bit high-performance, bidirectional, multiplexed 
address and data bus developed by Digital for work­
stations. 3 The DEC 3000 AXP supports up to six 
plug-in options, as well as the integral smart frame 
buffer (SFB) graphics ASIC, the 1/0 controller 
(IOCTL) ASIC, and the TURBOchannel dual SCSI 
(TCDS) ASIC. The TURBOchannel bus is synchronous 
and requires only five control signals in each direc­
tion between the system and the option cards. 

The system interfaces to the TURBOchannel bus 
by a data-path TC ASIC and control logic contained 
in a number of programmable array logic devices 
(PALs). The TC ASIC completes the system crossbar 
by passing addresses between the TURBOchannel 
bus and the address ASIC, and passing data between 
the TURBOchannel bus and the SLICE ASICs. 
Furthermore, the TC ASIC checks and generates par­
ity on the TURBOchannel, and checks, corrects, and 
generates ECC on the data bus to the SLICE ASICs. 
Parity checking of TURBOchannel data is optional 
and is enabled on a per-option basis through a con­
figuration register in the TC ASIC. Finally, the TC 
ASIC contains a number of counters for tracking 
DMA progress, as well as configuration and error 
registers. All control logic was implemented in PALs 
to minimize the impact to the project schedule of 
any design changes. The TURBOchannel interface 
block diagram in shown in Figure 6. 
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ADDRASIC 
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AND DECODE LOGIC OPTIONS 

Figure 6 TURBOchannel Interface Block Diagram 

There are two types of TIJRBOchannel opera­
tions: the system initiates 1/0 reads and writes, and 
the options initiate DMA reads and writes. On an 
1/0 operation, the system sends the 1/0 address 
from the ADDR ASIC to the TC ASIC, and from there 
to the TIJRBOchannel. For 1/0 reads, the option 
returns data on the TIJRBOchannel. This data passes 
through the TC ASIC and over the bus to the SLICE 
ASICs. The system includes some special hardware 
for byte masking of 1/0 read data. This hardware is 
used to provide support for VMEbus adapters. 

For 1/0 writes, the system sends data from 
the SLICE ASICs across the data bus to the TC ASIC. 
The TC ASIC then sends it to the option over the 
TIJRBOchannel. The DEC 3000 AXP workstation 
supports a block write extension to the original 
TIJRBOchannel protocol. In this mode, the system 
supplies a single address followed by multiple 
consecutive data transfers for improved 1/0 write 
performance. This extension is also configurable 
on a per-option basis through the TC configuration 
register. 

The TIJRBOchannel protocol specifies that before 
any option can use the bus for DMA, it must issue a 
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request to the system. The DEC 3000 AXP architec­
ture employs an arbitration scheme using rotating 
priority that prevents any option from being locked 
out. After being granted the bus, the option sup­
plies a DMA address on the TIJRBOchannel bus. This 
address routes through the TC ASIC and onto the 
address ASIC. In the case of a DMA write, data imme­
diately follows the address on the TIJRBOchannel. 
This data passes through the TC ASIC and onto the 
data bus to the SLICE buffers. 

DMA reads are more complicated than writes 
because the TIJRBOchannel bus does not transmit 
ahead of time the number of bytes of data to be read 
from memory. Instead, it continues to assert its 
read request signal for as long as it is requesting 
data. The SLICE buffers begin to fill up with DMA 
data, and only when they can guarantee that there 
will be no gaps in the DMA will the data transfer 
start. The TC ASIC receives the read data from the 
SLICE ASICs and sends it onto the TIJRBOchannel to 
the requesting option. 

Virtual DMA allows the system to map non­
contiguous regions of physical address space into 
contiguous regions of virtual address space. This 
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method allows TURBOchannel options to transfer 
large blocks of DMA data without knowledge of how 
that data is mapped in the physical address space in 
main memory. Virtual DMA enhances operating 
system performance because the memory mapping 
is performed before the transfer of DMA data. 

The DEC 3000 AXP workstation supports virtual 
DMA through the use of a scatter/gather (SG) map, 
which acts as a translation buffer. SG mapping is 
enabled on a per-option basis through the configura­
tion register in the TC ASIC. The SG map is organized 
as 32K 24-bit entries. Each entry contains a 17-bit 
physical page number (PPN), parity, and valid bit. 
Software sets up the map through VO space reads 
and writes. DMA byte address bits [27:13] index the 
SG map, which produces a 17-bit PPN (bits [29: 13]) to 
append to the virtual DMA byte address bits [12:0]. 
The resulting 30-bit physical DMA byte address can 
then address all lGB of the possible system address 
space. An SG map is shown in Figure 7. 

1/0 Subsystem 
Most of the 1/0 subsystem is implemented on 
its own module. This VO module, shown in Figure 
8, contains the connectors for attachment unit 

EXTERNAL SCSI 

interface (AUi) Ethernet, lOBase-T Ethernet, 
Integrated Services Digital Network (ISDN), alter­
nate console/serial printer, mouse/keyboard, com­
munications, internal and external SCSI, three 
TURBOchannel options, and audio module port. 
The various 1/0 controllers interface to the 
TURBOchannel through one of three ASICs. These 
ASICs are the smart frame buffer (SFB) on the CPU 
module and the TURBOchannel dual SCSI (TCDS) 
ASIC and the 1/0 controller (IOCTL) ASIC on the 1/0 

module. 

VIRTUAL DMA BYTE ADDRESS FROM TURBOCHANNEL 

33 28 27 1312 0 
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29 1312 0 
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Figure 7 Scatter/Gather Mapping 
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Figure 8 1/0 Module 
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I/0 Module-IOCTL ASIC 
A key 1/0 subsystem design decision was to reduce 
time-to-market by eliminating unnecessary new 
hardware and software development. To support 
most of the 1/0 functionality, the designers chose 
the IOCTL ASIC developed for the DECstation 5000 
Model 240. 

The IOCTL ASIC provides an interface to a 16-bit, 
general-purpose 1/0 bus, which supports the fol­
lowing devices: two Zilog Z85C30 serial communi­
cations controllers (SCCs), an AMO 7990 local area 
network controller for Ethernet (LANCE), a Dallas 
semiconductor DS1287 real-time clock, an AMD 
79C30A ISDN data controller (JDC), a SCSI con­
troller, and an AMO 27C020 256KB erasable pro­
grammable read-only memory (EPROM). 

The secs implement the keyboard, mouse, alter­
nate console/printer, and communications ports. 
The mouse and keyboard do not use OMA. The alter­
nate console/printer and the communications port 
douseDMA. 

The LANCE implements the Ethernet interface, 
which connects to the local area network (LAN) 
through either the AUi (thickwire) or IOBase-T 
(twisted-pair interconnect [TPIC]) connectors. Soft­
ware controls which one of these interfaces is 
enabled. 

The real-time clock provides time-of-year (TOY) 
reference and 50 bytes of nonvolatile RAM. A 
lithium battery supplies power in the event of 
system power-off or failure . 

The JDC implements both an ISDN interface and 
telephone-quality audio. The audio connects to the 
audio interface module (AIM), which provides the 
audio 1/0 in the Model 500. Audio 1/0 in the Model 
400 is on its 1/0 module. 

The AIM on the Model 500 supports audio input 
through either a Ya-inch minijack for microphone 
input, a 4-pin modular jack (MJ) connector for use 
of a telephone handset, or an RCA-style phonograph 
jack used as a line-in input. Output is provided by 
the MJ connector as well as by a Ya-inch stereo­
phonic jack. The stereophonic jack accepts only a 
stereophonic plug. If monophonic headphones are 
used, a mono-to-stereophonic adapter is required. 
On the Model 400, audio input and output is imple­
mented using a 4-pin MJ connector. 

Analysis of the complete audio system in a Model 
500 shows a frequency response of 145 Hz to 3,500 
Hz, with typical distortion in the 0.8 percent to 1.9 
percent range for the microphone and 0.4 percent 
to 1.5 percent for the telephone handset. The 
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signal-to-noise ratio ranged from 24 decibels with a 
minimal signal input to 58 decibels with a high­
level signal input. 

I/0 Module-TCDS ASIC 
Although the IOCTL ASIC contains an interface 
to a SCSI controller, the DEC 3000 AXP systems 
implement their SCSI interface using the TCDS 
ASIC. This design has several advantages. First, the 
TCDS ASIC supports two SCSI ports rather than 
the one supported by the IOCTL ASIC, permitting 
separate internal and external SCSI chains. Second, 
this design eliminates contention between the 
Ethernet controller and the SCSI controller for the 
IOCTL bus. Third, the TCDS ASIC supports much 
longer TURBOchannel OMA bursts (64-byte bursts 
rather than 16-byte bursts). Finally, the resulting 
ASIC design is used to implement a dual SCSI 
TURBOchannel option module. 

The TCDS ASIC implements two separate SCSI 
ports using two NCR 53C94 advanced SCSI con­
trollers (ASCs). The TCDS allows both controllers to 
have OMA transfers in progress simultaneously. 

TCDS TIJRBOchannel DMA transactions are 
aligned 64-byte blocks. Starting DMA addresses that 
are not aligned to these boundaries begin with a 
smaller OMA transaction. This technique aligns the 
address so that succeeding transactions are aligned 
64-byte blocks. Large, aligned transactions increase 
both TIJRBOchannel and memory access efficiency. 

The TCDS ASIC and the ASCs provide odd parity 
protection on major data paths. This protection 
includes 8-bit parity on the 16-bit bus between the 
TCDS and the ASCs, 32-bit parity on TCDS DMA buffer 
entries, and 32-bit parity on TIJRBOchannel trans­
actions, both 1/0 and OMA. 

Graphics 
The graphics subsystem on the Model 500 sys­
tem card provides integral 8-plane graphics with 
hardware enhancements for improved frame buf­
fer performance. These enhancements increase 
the performance of stipple, line drawing, and copy 
operations. The graphics system consists of an SFB 
ASIC, 2MB video RAM, and the Brooktree Bt459 
RAMDAC chip for sourcing the 8-plane RGB data. 
The user can select either a 66-Hz or a 72-Hz moni­
tor refresh rate through a switch on the back of the 
workstation. The graphics subsystem can draw 
615K two-dimensional vectors per second and can 
perform copy operations at 31.SMB/s. 
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The graphics subsystem is available separately as 
the TURBOchannel HX graphics option card. In addi­
tion, high-performance two-dimensional and three­
dimensional graphics accelerators are available 
through the TURBOchannel bus for all systems. 

Clock System 
The input clock circuitry to the DECchip 21064 CPU 
contains a differential 300-MHz oscillator (266 MHz 
for the Model 400), which drives an alternating cur­
rent (AC) decoupling circuit and the CPU chip. The 
CPU chip divides down the input clock frequency 
by a factor of two and operates internally at 150 
MHz. The DEC 3000 AXP Model 500 is capable of sup­
porting a 200-MHz CPU with a 400-MHz oscillator. 

The entire system, with the exception of some 
1/0 devices, runs synchronously. The master system 
clock is generated by the CPU chip at a frequency of 
25 MHz (22 MHz for the Model 400), resulting in 
system clock cycles of 40-ns duration. This master 
system clock is duplicated and distributed with 
differential pseudo-emitter coupled logic (PECL) 
to maintain minimum skew and to improve noise 
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margin. The PECL clocks are converted to transistor­
transistor logic (TfL) in the last stage of the clock 
fan-out tree. 

Two stages of system clock fan-out are used as 
shown in Figure 9. Two MC100Elll ECL clock buffer 
chips (PECL input and output) provide 18 low­
skew differential copies of the clock. Seventeen 
MC l00H641 ECL-to-TfL converters (PECL input, TfL 
output) are distributed throughout the system and 
1/0 boards to provide more than 100 clock lines. All 
clock lines are length matched to reduce skew, and 
PECL wires are separated from TfL. Worst-case 
SPICE simulation indicates a skew between typical 
components such as PALs to be 1.5 ns. Actual skews 
measured in the lab are approximately 0.5 ns. 

To give designers maximum flexibility, four 
phases of the system clock are generated, one every 
10 ns. Delay lines are used to generate an offset of 10 
ns. By swapping the high and low differential inputs 
to selected MC100H641 converters, the 20- and 30-
ns delayed clocks are generated. The master system 
clock is delayed using delay lines so that the even­
tual system clock is synchronous with the CPU chip. 
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Figure 9 Clock Distribution 
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Technology 
The goal in choosing semiconductor devices was to 
select mature silicon technologies and then push 
those technologies to the limit. Module- and chip­
level signal integrity was verified by correlating 
silicon bench characterization data to device simu­
lation modules. CAD tools were used to perform 
worst-case module timing and signal integrity sim­
ulation. This methodology minimized device costs, 
reduced risks, and shortened time-to-market. 

The nine ASICs in a DEC 3000 A.XP workstation 
use six unique LO-micrometer complementary 
metal-oxide semiconductor (CMOS) designs. (See 
Table 2.) Plastic quad flat packs (PQFP) are used as 
the packaging technology to limit device cost. 
Because the ASICs are 1/0 limited and the PQFPs do 
not have ground planes, the effects of simultaneous 
switching outputs (SSOs) were a concern. The 
potential effects of ssos in CMOS output buffers 
include corrupted data and undesirable oscil­
lations. Simulation and bench characterization 
were used to quantify the sso effects, and in some 
cases ssos were reduced by staggering output 
driver timing. 

Although ASICs were chosen for the data path, 
PALs were used for control logic due to their greater 
flexibility and faster turnaround time. A total of 63 
20XX (5 ns) and 22VIO (10 ns) PALs with 57 different 
codes was used. Exhaustive system-level simula­
tion and bench characterizations were performed 
to understand device behavior in the many differ­
ent loading scenarios. 

The CPU board technology proved moderately 
difficult for system-level assembly due to the large 
distance between the fine-pitch (25 mil) compo­
nents. There are 19 fine-pitch components on the 
14- by 16-inch CPU board, with a maximum distance 
of 14 inches between any two devices. With this 
large distance, an aggressive, true positional diam­
eter (TPD) tolerance requirement of 6 mils was 

implemented. TPD is defined as the total diameter 
of permissible movement from a theoretical exact 
location around the true position of the pads. This 
TPD requirement ensures proper positional accu­
racy between the solder paste stencil apertures and 
the surface-mount features. In addition, solder 
mask between pads on the fine-pitch components 
is used to reduce manufacturing defects. 

To reduce power and cost, the slower DEC 3000 
AXP Model 400 design substitutes CMOS technology 
for the BiCMOS cache SRAMs and for many of the 
bipolar PALs. 

Power and Packaging 
The following fixed disk drive options are currently 
available. 

• RZ25 3.5-inch half-height 426MB disk drive 

• RZ26 3.5-inch half-height 1050MB disk drive 

The following removable media options are also 
available. 

• RRD42 5.25-inch half-height 600MB CD-ROM drive 

• RX26 3.5-inch half-height 2.8MB floppy disk drive 

• TZKIO 5.25-inch half-height 525MB QIC tape 
drive 

• TIZ06 5.25-inch half-height 4000MB DAT drive 

The Model 500 has a 480-watt output, off-line, 
switching regulated power supply, which includes 
a capacitor-input, automatic voltage-selecting cir­
cuit to permit worldwide operation without a volt­
age-select jumper for 120 or 240 volt (V) input. The 
power supply provides five outputs to the load: 
+3.3 V, +5.1 V-CPU, +5.1 V-turbo, + 12.1 V, and -12.1 V. 

The power supply also provides power for three 
external fans. Temperature-sensing fan speed con­
trol is provided to reduce system noise. The power 

Table 2 ASICs Used on the DEC 3000 AXP Workstations 

Total Number Number of Number of Used Available 
Chip of Pins Pins Used Signal Pins Gates Gates 

SFB 184 184 150 21.6K 54K 

TC 184 182 144 12.1K 44K 

SLICE 184 184 153 11.2K 44K 

ADDA 184 183 148 5.7K 44K 

TCDS 120 120 94 26.5K 68K 

IOCTL 160 160 126 11 .2K 44K 
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supply senses tachometer outputs from the fans, 
and when a fan fails, it shuts down and illuminates 
an indicator. 

Manufacturability/ Testability 
The designers provided several debugging features, 
including test points on the module, tristate out­
puts on ASICs and PAL<i, an on-board diagnostic 
ROM, and programmable console ROM. Since the 
module is composed almost exclusively of surface­
mount devices, the designers specified as many vias 
as possible for use as test points. Consequently, all 
wires on the board have test points, which allows 
for 100 percent short-circuit coverage and 94 per­
cent open-circuit coverage. 

The DEC 3000 AXP workstation takes full advan­
tage of the serial ROM port on the DECchip 21064 
CPU. This port allows code to be directly loaded 
into the instruction cache. During prototype devel­
opment, designers loaded special debug programs 
into the CPU through this port. However, the real 
innovation is in also wiring this port to the output 
of a 64K by 8 EPROM on the module to provide 8 
programs that are individually selectable by moving 
a jumper on the module. On system reset, serial 
program data from the selected EPROM output is 

Table 3 System Performance 

CPU speed 
B-cache size 
B-cache read bandwidth 
B-cache write bandwidth 

Maximum main memory 
CPU memory latency (average) 
CPU memory read bandwith 
CPU read with victim write 

memory bandwidth 

TURBOchannel peak bandwidth 
1/0 read bandwidth 8 bytes 
1/0 write bandwidth 8 bytes 
Block 1/0 write bandwidth 32 bytes 
Block 1/0 write bandwidth 32 bytes with CPU 

read and victim write memory bandwidth 

DMA read bandwidth 512 bytes 
64 bytes 

DMA write bandwidth 512 bytes 
64 bytes 

64-byte DMA write bandwith with 
CPU reads from memory 
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loaded into the instruction cache. These programs 
include power-up code for loading the real console, 
a miniconsole, and five diagnostic programs for 
testing memory and the graphics subsystem. Other 
tests are available by replacing the EPROM. These 
programs are of great value in the manufacturing 
debug environment. 

Two flash EPROMs contain the console code for 
the system. On power-up, code in the serial ROM 
loads the console code into memory and begins 
executing it. Users can easily update the console 
ROMs (for example, to provide PAL code enhance­
ments) through a special utility booted off a CD­
ROM connected to the system. Field service can 
update the console code in the system remotely 
through the Ethernet. 

Conclusions 
The primary goal of this project was to design a bal­
anced system that exhibited low memory latency, 
high memory bandwidth, and minimal CPU-1/0 
memory contention in a cost-effective manner. 
Table 3 gives the measured peformance numbers 
for these characteristics. Except where noted, all 
numbers are for sustained performance. Of particu­
lar note are the numbers showing that the CPU 

DEC3000AXP 
Model 500 

150 MHz 
512KB 
480MB/s 
320MB/s 

1GB 
32 bytes/1 80 ns 
114MB/s 
160MB/s 

100MB/s 
13MB/s 
33MB/s 
67MB/s 
110=53MB/s 
MEM=107MB/s 

91MB/s 
57MB/s 
93MB/s 
59MB/s 
DMA=59MB/s 
CPU=30MB/s 

DEC3000AXP 
Model 400 

133 MHz 
512KB 
426MB/s 
284MB/s 

51 2MB 
32 bytes/203 ns 
101 MB/s 
141 MB/s 

89MB/s 
12MB/s 
29MB/s 
59MB/s 
110=47MB/s 
MEM=95MB/s 

81 MB/s 
51 MB/s 
82MB/s 
52MB/s 
DMA=52MB/s 
CPU=27MB/s 
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receives significant memory bandwidth even in the 
presence of heavy block 1/0 and DMA traffic. 

Another goal of the project was to offer per­
formance that is competitive with RISC worksta­
tions available from other vendors. The benchmark 
performance of any system derives from the inter­
dependent performance of the hardware, the oper­
ating system, and the compilers that generate the 
application code. The benchmark performance 
should improve as each element matures. Table 4 
shows the performance of the DEC 3000 AXP sys­
tems on a selected set of benchmarks as of the 
announcement dates of these products. Table 5 
compares the performance of the DEC 3000 AXP 
Model 500 to the published performance of several 
currently available competitive systems.4 
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Table 4 Benchmark Performance 

Clock (MHz) 

SPECmark89 

Dhrystones 
V1 .1 (Dhrystones per second) 
V2.1 (Dhrystones per second) 

UNPACK 64-bit double precision 
100 x 100 (MFLOPS)* 
1000 x 1000 (MFLOPS) 

X11PERF 
Two-dimensional vectors per second 
Two-d imensional pixels per second 

Note: "Million floating-point operations per second 

Table 5 Competitive Comparison 

DEC 3000 
Model500 

SPECmark89 121.5 

Dhrystones 
V1 .1 (Dhrystones per second) 257.7K 
V2.1 (Dhrystones per second) 281.2K 

UNPACK 64-bit double precision 
100 x 100 (MFLOPS) 26.4 
1000 x 1000 (MFLOPS) 79.9 

those who contributed to the design of original 
hardware: Dave Archer, Mark Baxter, John DeRosa, 
Chris Gianos, Leon Hesch, Dave Laurella, Bob 
McNamara, Dick Miller, Rick Rudman, Dave 
Senerchia, Petr Spacek, Bob Stewart, Ned Utzig, 
Debbie Vogt, and John Zurawski. The tight schedule 
could not have been met without the special efforts 
of the Power and Packaging, Console, Qualifi­
cation, Proto Management, and Technology and 
Operating Systems Groups. The design team for the 
DEC 3000 AXP Model 400 project is also recognized: 
John Day, Jamie Pierce, Dennis Rainville, and Ken 
Ward. The thorough device evaluations by Rob 
Zahara contributed significantly to the success of 
the projects. We would also like to acknowledge 
the contributions by FXO personnel. The Electronic 
Storage Development Group was responsible for 
the design of the DEC 3000 AXP Model 500 memory 
module. Significant efforts by the Maynard TME, 

Albuquerque, and Ayr Manufacturing Plants should 
be recognized for delivering quality hardware 

DEC 3000AXP DEC3000AXP 
Model 400 Model500 

133 150 

108.1 121.5 

228.3K 257.7K 
249.6K 281.2K 

26.4 30.2 
70.8 79.9 

564.0K 636.0K 
27.4M 31.0M 

IBM RS6000 HP9000 
Model 580 Model750 

126.2 86.6 

n/a 133.7K 
n/a 122.3K 

38.1 23.7 
84.0 n/a 

80 Vol. 4 No. 4 Spectallssue 1992 D igital Tecbntcal]ournal 



The Design of the DEC 3000 AXP Systems, Two High-performance Workstations 

during the development and production phases; a 
special thanks to Jim Ersfeld for his significant 
efforts in this regard. 

References 

1. R. Sites, ed., Alpha Architecture Reference 
Manual (Burlington, MA: Digital Press, Order 
No. EY-L520E-DP, 1992). 

2. D. Dobberpuhl et al., "A 200-MHz 64-bit Dual­
issue CMOS Microprocessor," IEEE Journal of 
Solid-State Circuits, vol. 27, no. 11 (November 

Dtgttal Tecbntcal Journal Vol. 4 No. 4 Special Issue 1992 

1992): 1555-1567 and Digital Technical journal, 
vol. 4, no. 4 (1992, this issue): 35-50. 

3. TIJRBOchannel Specifications, Version 2C (Palo 
Alto, CA: Digital Equipment Corporation, 
TRI/ADD Program, Order No. EK-TCDEV-DK-004, 
September 1991). 

4. Alpha AXP Workstation Family Performance 
Brief-OpenVMS, Second Edition (Maynard: 
Digital Equipment Corporation, Order No. 
EB-N0102-51, November 20, 1992). 

81 



Barry A. Mask.as 
Stephen F. Shirron 

Nicholas A. Warchol 

Design and Performance of the 
DEC 4000 AXP Departmental 
Server Computing Systems 

DEC 4000 AXP systems demonstrate the highest performance and functionality 
for Digitals 4000 series of departmental server systems. DEC 4000 AXP systems 
are based on Digitals Alpha AXP architecture and the IEEEs Futurebus+ profile B 
standard. They provide symmetric multiprocessing performance for Open VMS AXP 
and DEC OSF/1 AXP operating systems in an office environment. The DEC 4000 
AXP systems were designed to optimize the cost-performance ratio and to include 
upgradability and expandability. The systems combine the DECchip 21064 micro­
processor, submicron CMOS sea-of gates technology, CMOS memory and 1/0 periph­
erals technology, a high-performance multiprocessing backplane interconnect, and 
modular system design to supply the most advanced functionality for performance­
driven applications. 

The goal of the departmental server project was to 
establish Digital's 4000 family as the industry's most 
cost-effective and highest-performance depart­
mental server computing systems. To achieve this 
goal, two design objectives were proposed for the 
DEC 4000 AXP server. First, migration was necessary 
from the VAX architecture, which is based on a com­
plex instruction set computer (CISC), to the Alpha 
AXP architecture, which is based on a reduced 
instruction set computer (RISC). Second, for expan­
sion I/0 in an upgradable office environment enclo­
sure, migration was necessary from the Q-bus 
to the Futurebus+ 1/0 bus. 1 In addition, the new 
system had to provide balance between processor 
performance and 1/0 performance. Maintaining 
customer investments in VAX and MIPS applications 
through support of OpenVMS AXP and DEC OSF/1 
AXP operating systems was implicit in the archi­
tecture migration objective. Migration, porting, 
and upgrade paths of various applications were 
defined. 

This paper focuses on the design of the DEC 4000 
AXP hardware and firmware. It begins with a discus­
sion of the system architecture and the selection of 
the system technology. The paper then details the 
CPU, I/0, memory and power subsystems. It con­
cludes with a performance summary. 
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System Overview 
The DEC 4000 AXP system provides supercomputer 
class performance at office system cost. 2 This com­
bination was achieved through architecture and 
technology selections that provide optimized 
uniprocessor performance, low additional cost 
symmetric multiprocessing (SMP), and balanced 
1/0 throughput. High 1/0 throughput was accom­
plished through a combination of integrated con­
trollers and a bridge to Futurebus+ expansion 1/0. 
The system uses a modular, expandable, and 
portable enclosure, as shown in Figure I. With 
current technologies, the system supports up to 

2 gigabytes (GB) of dynamic random-access mem­
ory (DRAM), 24GB of fixed mass storage, and 16GB 
of removable mass storage. The DEC 4000 AXP 
system is partitioned into the following modular 
subsystems: 

• Enclosure (BA640 box) 

• CPU module (DECchip 21064 processor) 

• 1/0module 

• Memory modules 

• Mass storage compartments and storage device 
assembly (brick) 
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I _____ ___,.. 

, _____ -. 

Figure I DEC 4000 AXP System Enclosure 

• Futurebus+ Expansion 1/0, Futurebus+ con­
troller module (FBE) 

• Power supply modules - universal line front-end 
unit (FEU) 

- Power system controller (PSC) 

- DC-DC converter unit 5.0 volt (V) (DC5) 

- DC-DC converter unit 2.1 V, 3.3 V, 12.0 V (DC3) 

• Cooling subsystem 

• Centerplane module 

• Operator control panel (OCP) 

• Digital storage systems interface (DSSI) and small 
computer systems interface (SCSI) termination 
voltage converter (VTERM) 

Figure 2 shows these subsystems in a functional 
diagram. The subsystems are interconnected by a 
serial control bus, which is based on Signetic's 12C 
bus.3 

System Architecture 
From the beginning of the project, it was apparent 
that the 1/0 subsystem had to be equal to the 

Dtgttal Tecbntcal Journal Vol. 4 No. 4 Special Issue 1992 

increased processing power provided by the 
DECchip 21064 CPU. Although processing power 
was taking a revolutionary jump in performance 
with no cost increase, disk and main memory tech­
nology were still on an evolutionary cost and per­
formance curve. The metrics that had been used 
for VAX systems were difficult, if not impossible, to 
meet through linear scaling within a fixed cost 
bracket. These metrics were based on VAX-11/780 
units of performance (VUPs); they give main mem­
ory capacity in megabytes (MB)/VUP, disk-queued 
1/0 (QIO) completions in QIO/s/VUP, and disk data 
rate in MB/s/VUP. As an example, Table 1 gives 
the metrics for a VAX 4000 Model 300 scaled lin­
early to 125 VUPs and then nonlinearly scaled 
for the DEC 4000 AXP system implementation. 
Performance modeling of the DECchip 21064 CPU 
suggested that 125 VUPs was a reasonable goal for 
the DEC 4000 AXP. 

Without an Alpha AXP architecture customer 
base, we did not know if these metrics would scale 
linearly with the processor performance. The 
DECchip 21064 processor technology has the poten­
tial for attracting new classes of compute-intensive 
applications that may make these metrics obsolete. 
We therefore chose a nonlinear extrapolation of the 
metrics for our initial implementation. By trading 
off disk and memory capacity for 1/0 throughput 
performance, we kept within established cost and 
performance goals. The implementation metrics 
were not limited by the architecture; further scal­
ing up of metrics was planned. Of the four metrics, 
the disk capacity metric has the most growth 
potential. 

To ensure compliance with both the Alpha AXP 
architecture and the Futurebus+ specifications, the 
system was partitioned as shown in Figure 2. The 
bridge between the CPU subsystem and the 
Futurebus+ subsystem afforded maximum design 
flexibility to accommodate specification changes, 
modularity, and upgradability. The 1/0 module was 
organized to balance the requirements between 
CPU performance and 1/0 throughput rates. The 
DEC 4000 AXP system implementation is based on 
open standards, with a six-slot Futurebus+ serving 
as the expansion 1/0 bus and the system bus serving 
to interconnect memory, CPUs, and the 1/0 module. 
The modularity of the system enables module swap 
upgrades and configurability of the 1/0 subsystem 
such that performance and functionality may be 
tailored to user requirements. The modularity 
aspects of the system design extend into the storage 
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Table 1 Extrapolated VAX Metrics 

Memory capacity 

Disk capacity 

Disk QIO rate 

1/0 data transfer rate 

VAX4000 
Model300 
Metrics 

60 MB/VUP 

1.65 GB/VUP 

49 QIO/s/VUP 

1.4 MB/s/VUP 

compartment where each brick has a dedicated 
controller and power converter. Support for DSSI, 
SCSI, and high-speed lOMB/s SCSI provides maxi­
mum flexibility in the storage compartment. The 
modular mass storage compartments enable user 
optimization for bulk storage, fast access, or both. 

The cost of SMP was a key issue initially, since 
Digital's SMP systems were considered high-end sys­
tems. Pulling high-end functionality into lower­
cost systems through architecture and technology 
selection was managed by evaluation of perfor­
mance and cost through trial designs and software 
breadboarding. Several designs of a CPU module 
were proposed, including various organizations of 
one or two DECchip 21064 CPUs per module inter­
faced to 1/0 and memory subsystems. Optimization 
of complexity, parts cost, performance, and power 
density resulted in a CPU module with one proces­
sor that could operate in either of two CPU slots on 
the centerplane. Consequently, a system bus had to 
be developed that could be interfaced by proces­
sors, memory, and 1/0 subsystems in support of the 
shared-memory architecture. 

As development of the DECchip 21064 processor 
progressed, hardware engineers and chip designers 
established a prioritized list of design goals for the 
system bus as follows: 

1. Provide a low-latency response to the CPU's 
second-level cache-miss transactions and 110 
module read transactions without pending 
transactions. 

2. Provide a low-cost shared-memory bus, based 
on the cache coherence protocol, that would 
facilitate upgrades to faster CPU modules. This 
provision implied a simple protocol, synchro­
nous timing, and the use of transistor-transistor 
logic (TIL) levels rather than special electrical 
interfaces. 

3. Provide 1/0 bandwidth enabling local 1/0 to 
operate at 25 megabytes per second (MB/s) and 
the Futurebus+ to operate at lOOMB/s. 

Digital Technical Journal Vol. 4 No. 4 Special issue 1992 

Scaled 
Linearly 
to 125 VUPs 

7.5GB 

206 GB 

6,125 QIO/s 

175 MB/s 

Scaled 
Nonlinearly 
for DEC 4000 AXP 

2 GB 

100 GB 

>4,000 QIO/s 

210 MB/s 

4. Provide scalable memory bandwidth, based on 
protocol timing of 25 nanoseconds (ns) per 
cycle, which scales with improvements in DRAM 
and static memory (SRAM) access times. 

5. Use module and connector technology consis­
tent with Futurebus+ specifications. 

The cache coherence protocol of the system bus 
is designed to support the Alpha AXP architecture 
and provide each CPU and the 1/0 bus with a consis­
tent view of shared memory. To satisfy the band­
width and latency requirements of the processor's 
instruction issue rate, the processor's second-level 
cache size, 128-bit access width, and 32-byte block 
size were optimized to avoid bandwidth limits to 
performance. The block size and access width were 
made consistent with the system bus, which satis­
fied the 1/0 throughput metrics. Consideration was 
given to support of a 64-byte block on the 128-bit­
wide bus. Such support would have resulted in a 17 
percent larger miss penalty and higher average 
memory access time for the CPU and 1/0, more stor­
age and control complexity, and hence higher cost. 

Simplicity of the bus protocol was achieved by 
limiting the number and variations of transactions 
to four types-read, write, exchange, and null. The 
exchange transaction enables the second-level 
cache of the CPU to exchange data, that is, to per­
form a victim write to memory at the same time as 
the replacement read transaction. This avoided the 
coherence complexity associated with a lingering 
victim block after the replacement read transaction 
completed. 

To address the issue of bandwidth requirements 
over time as faster processors become available, an 
estimate of 40 percent bus utilization for each pro­
cessor with a lMB second-level cache was obtained 
from trace-based performance models. The utiliza­
tion was shown to be reduced by using a 4MB sec­
ond-level cache or by using larger caches on the 
DECchip 21064 chip. This approach was reserved as 
a means to support future CPU upgrades. 
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Figure 3 is a block diagram of the length-limited 
seven-slot synchronous system bus. To achieve 
tight module-to-module clock skew control for this 
single-phase clock scheme, clocks are radially dis­
tributed from the CPU 1 module to the seven slots. 
This avoided the added cost of a separate module 
dedicated for radial clock distribution, and enabled 
the bus arbitration circuitry to be integrated onto 
the CPU 1 module. 

Arbitration of the two CPU modules and the 1/0 

module for the system bus is centralized on the CPU 
1 module. To satisfy the 1/0 module's latency 
requirements, the arbitration priority allows the 
1/0 module to interleave with each CPU module. In 
the absence of other requests, a module may utilize 
the system bus continuously. Shared-memory state 
evaluations from the bus addresses during continu­
ous bus utilization causes CPU "starvation" from 
the second-level cache. To avoid CPU starvation 
from the second-level cache, the arbitration con­
troller creates one free cycle after three consecu­
tive bus transactions. 

Technology Selection 
The primary force behind technology selection was 
to realize the full performance potential of the 
DECchip 21064 microprocessor with a balanced 1/0 

subsystem, weighted by cost minimization, sched­
ule goals, and operation in an office environment. 
SPICE analysis was used to evaluate various module 
and semiconductor technologies. A technology 
demonstration module was designed and fabri­
cated to correlate the SPICE models and to validate 
possible technology. Based on demonstrations, the 
project proceeded with analytical data supported 
by empirical data. 

The 25-watt DECchip 21064 CPU was designed in 
a 3.3-V, 0.75-micrometer complementary metal­
oxide semiconductor (CMOS) technology and was 
packaged in a 431-pin pin grid array (PGA). The CPU 
was the only given technology in the system. The 
power supply, air cooling, and logical and electrical 
CPU chip interfacing aspects of the CPU module and 
system bus designs evolved from the DECchip 21064 
specifications. System design attention focused on 
powering and cooling the CPU chip. Compliance 
with power and cooling specifications was deter­
mined to be achievable through conventional volt­
age regulation and decoupling technology and 
conventional fan technology. 

To address system integrity and reliability 
requirements, all data transfer interconnects and 
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storage devices had to be protected. The DECchip 
21064 CPU's data bus and second-level cache are 
longword error detection and correction (EDC) pro­
tected. The system bus is longword parity pro­
tected. The memory subsystem has 280-bit-wide 
EDC-protected memory arrays. The Futurebus+ is 
longword parity protected. 

System, Bus Clocking 
To establish the 25-ns bus cycle time, analog models 
of the interconnect were developed and analyzed 
for 5.0-V CMOS transceivers. Assuming an edge-to­
edge data transfer scheme, the modelers evaluated 
the timing from a driver transition to its settled sig­
nal, including clock input to driver delay, receiver 
setup time, and module-to-module clock skew. The 
cycle time and the data transfer width were com­
bined to determine compliance with low latency 
and bandwidth. Further analysis revealed that the 
second-level cache access timing was critical for 
performing shared-memory state lookups from the 
bus. One solution to this problem was to store 
duplicate tag values of the second-level cache. This 
was evaluated and found to be too expensive to 
implement. However, the study did show that a 
duplicate tag store of the CPU's primary data cache 
had a performance advantage and was affordable if 
implemented in the CPU module's bus interface unit 
(BIU) chips. 

To evaluate second-level cache access timing, 
a survey of SRAM access times, density, availabil­
ity, and cost was taken. Results showed that a lMB 
cache using 12-ns access time SRAMs was optimal. 
With a 12-ns access time SRAM, the critical timing 
could be managed through the design of the BIU 
chips. The SRAM survey also showed that a 4MB 
second-level cache could be planned as a follow-on 
boost to performance, as SRAM prices declined. 
Trace-based performance simulations proved that 
these cache sizes satisfied performance goals of 125 
VUPs. This clock rate required a bus stall mecha­
nism to accommodate current DRAM access times 
in the memory subsystem, which will enable future 
enhancements as access times are reduced. 

The system bus clocks are distributed as positive 
emitter-coupled level (PECL) differential signals; 
four single-phase clocks are available to each slot. 
Each module receives, terminates, and capacitively 
couples the clock signals into noninverting and 
inverting PECL-to-CMOS level converters to provide 
four edges per 25-ns clock cycle. System bus hand­
shake and data transfers occur from clock edge to 
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clock edge and utilize one of two system bus 
clocks. A custom clock chip was implemented to 
provide process, voltage, temperature, and load 
(PVIl) regulation to the pair of application-specific 
integrated circuit (ASIC) chips that compose each 
BIU. The clock chip achieves module-to-module 
skews of less than 1 ns. 

Our search for a clock repeater chip that could 
minimize module-to-module skew and chip-to­
chip skew on a module, and yet directly drive high 
fan-out ASIC chips with CMOS-level clocks, led us 
to Digital's Semiconductor Operations Group. Such 
a chip was in design; however, it was tailored 
for use at the DEC 6000 system bus frequency. 
The Semiconductor Operations Group agreed to 
change the chip to accommodate the DEC 4000 AXP 
system bus frequency. 

l/0 Bus Technology 
Because of technology obsolescence, 1/0 buses 
have a 21-year life cycle divided into 3 phases. 
During the first 7 years of acceptance, peripherals 
and applications are developed and supported. 
Sustained acceptance takes hold in the next 7 years 
as peripherals and applications are enhanced. In 
the last 7 years, a phase out or migration of periph­
erals and applications occurs. For the DEC 4000 AXP 
systems, our first priority was selection of an open 
expansion 1/0 bus in the first third of its life cycle. 
In addition, we wanted to select an open IEEE stan­
dard bus that would attract third-party developers 
to provide 1/0 solutions to customers. The follow­
ing prioritized criteria were established for the 
selection of a new 1/0 bus: 

1. Open bus that is an accepted industry standard 
in the beginning third of its life cycle 

2. Compatibility with Alpha AXP architecture 

3. Minimum data rate of IOOMB/s 

4. Scalable features that are performance-exten­
sible through architecture (e.g., bus width), 
and/or through technology improvements 
(e.g., semiconductor device performance and 
integration) 

5. Minimum 64-bit data path 

6. Support of bridges to other 1/0 buses 

7. Minimal interoperability problems between 
devices from different vendors 
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After examination of several 1/0 buses that satis­
fied these criteria, the Futurebus+ was selected. At 
the time of our investigation, however, the 
Futurebus+ specification was in development by 
the IEEE and a wide range of interest was evident 
throughout the industry. By providing the right sup­
port to the Futurebus+ committee, Digital was in a 
position to help stabilize and bring the specifica­
tion to completion. 

A Digital team represented the project's interests 
on the IEEE P896.2 Specification Committee and 
proposed standards as the DEC 4000 AXP system 
design evolved. This team achieved its goal by help­
ing the IEEE Committee define a profile that 
enabled the Futurebus+ to operate as a high-perfor­
mance 1/0 expansion bus. To mitigate schedule 
impact due to instability of the Futurebus+ specifi­
cations, the 1/0 module's Futurebus+ interface was 
architected to accommodate changes through a 
more discrete, rather than a highly integrated 
implementation. Compliance with the Futurebus+ 
specifications influenced most mechanical aspects 
of the module compartment design, as is evident 
from the centerplane, card cage, module construc­
tion and size, and power supply voltage specifica­
tions and implementations. 

Module Technology 
Module technology was selected to maximize sig­
nal density within the fewest layers with minimal 
crosstalk and to provide a uniform signal distribu­
tion impedance for any module layer. Physical-to­
electrical modeling tools were used to create SPICE 
models of connectors, chip packages, power 
planes, signal lines of various lengths and 
impedances (based on the module construction 
technology), and multiple signal lines. Because the 
placement of components affects signal perfor­
mance and quality and system performance (e.g., in 
the second-level processor cache), module floor 
plans and trial layouts were completed. A module 
layout tool was used to ensure producibility com­
pliance with manufacturing standards as well as sig­
nal routing constraints. The module layout process 
was iterative. As sections of the module routing 
were completed, SPICE models of the etch were 
extracted. These extracted models were connected 
to SPICE models of chip drivers and run. Analysis 
was completed and required changes were imple­
mented and analyzed again. The process continued 
until the optimal specification conformance was 
achieved for all signals. 
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Module size was estimated based on system func­
tionality requirements and a study of the size and 
power requirements of that functionality. To simpli­
fy the enclosure design, module size specifications 
are consistent with the Futurebus+ module specifi­
cations. To achieve lower system costs, the proces­
sor, memory, and 1/0 modules are based on the 
same ten-layer controlled impedance construction. 

Chip engineers avoided the specification of fine­
pitch surface-mount chips when possible. Compo­
nent choices and module layouts were completed 
with a view toward manufacturability. Cost analysis 
showed that mixed, double-sided surface-mount 
components and through-hole components had 
insignificant added cost when fused tin-lead mod­
ule technology and wet-film solder-mask technol­
ogy were used. The required layer construction and 
impedances of 45, 70, and 100 ohms could easily be 
achieved within cost goals through this technology. 
Solder-mask over bare copper technology was also 
evaluated to determine if fine-pitch surface-mount 
components achieved higher yield through the sol­
der reflow process. This evaluation showed fused 
tin-lead technology was better suited, based on 
defect densities, for the manufacturing process. 
Consequently, all DEC 4000 AXP modules are imple­
mented with fused tin-lead module technology and 
wet-film solder-mask technology. 

Semiconductor Technology 
As a result of a performance, cost, power, and mod­
ule real estate study, CMOS technology was used 
extensively. The custom-designed PVTL clock chips 
were developed in LO-micrometer CMOS technol­
ogy to supply CMOS-level signals for driving directly 
into the BIU chips. Each module's BIU used the same 
0.8-micrometer ASIC technology and die size to 
closely manage clock skews. Each system bus mod­
ule's BIU is implemented by two identical chips 
operated in an even and an odd slice mode. Chip 
designers invented a method for accepting 5.0-V 
signals to be driven into their 3.3-V biased DECchip 
21064 CPU. Consequently, the selection and imple­
mentation of 5.0-V ASIC technology were easier. 
ASIC vendor selection was based on (1) perfor­
mance of trial designs and timing analysis of parity 
and EDC trees, (2) SPICE analysis of 1/0 drivers with 
direct-drive input clock cells, and (3) a layout abil­
ity to support wide clock trunks and distributed 
clock buffering to effect low skews. 

All memory chips on the CPU module, memory 
module, and 1/0 module were implemented in 
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submicron CMOS or BiCMOS technology. All the 1/0 

and power subsystem controller chips such as the 
SCSI and DSSI controllers, Ethernet controllers, 
serial line interfaces, and analog-to-digital convert­
ers were implemented in CMOS technology. 

Speed or high drive is critical in radial clock dis­
tribution, Futurebus+ interfacing, or memory mod­
ule address and control signal fan-out. In these 
special cases, lOOK ECL operated in positive mode 
(PECL) or BIPOLAR technology was employed. 

System Bus Protocol and Technology 
The cache coherence protocol for the shared-mem­
ory system bus is based on a scheme in which each 
cache that has a copy of the data from memory also 
has a copy of the information about it. All cache 
controllers monitor or snoop on the bus to deter­
mine whether or not they have a copy of the shared 
block. Hence the system bus protocol is referred to 
as a snooping protocol, and the system bus is 
referred to as a snooping bus.4 

The 128-bit-wide synchronous system bus pro­
vides a write update 5-state snooping protocol for 
write-back cache-coherent 32-byte block read and 
write transactions to system memory address space. 
Each module uses a 192-pin signal connector-the 
same connector used by Futurebus+ modules. Each 
module interfaces between the system bus and its 
back port with two 299-pin PGA packages contain­
ing CMOS ASIC chips, which implement the bus pro­
tocol. A total of 157 signals and 35 reference 
connections implement the system bus in the 192-
pin connector (6 interrupt and error, 8 clock and 
initialization, 128 command and address or data, 4 
parity, 11 protocol). All control/status registers 
(CSRs) are visible from the bus to simplify the data 
paths as well as to support SMP. 

To simplify the snooping protocol, only full 
block transactions are supported; masking or sub­
block transactions occur in each module's BIU. 
Transactions are described from the perspectives 
of a commander, a responder, and a bystander. The 
address space is partitioned into CSR space that can­
not be cached, memory space that can be cached, 
and secondary 1/0 space for the Futurebus+ and 1/0 
module devices. Secondary 1/0 space is accessible 
through an 1/0 module mailbox transaction, which 
pends or retries the system bus when access to very 
slow 1/0 controller registers conflicts with direct 
memory access (DMA) traffic. This software­
assisted procedure also provides masked byte read 
and write access to 1/0 devices as well as a standard 
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software interface. The use of 32-bit peripheral 
DMA devices avoided the need to implement hard­
ware address translators. The software drivers pro­
vide physical addresses; hence mapping registers 
are not necessary. 

The I/0 module drives two device-related inter­
rupt signals that are received by both CPU modules 
due to SMP requirements. One interrupt is associ­
ated with the Futurebus+, and the other is associated 
with all the device controllers local to the I/0 mod­
ule. The 1/0 module provides a silo register of 
Futurebus+ interrupt pointers and a device request 
register of local device interrupt requests. CPU 1 or 
CPU 2 is the designated interrupt dispatcher mod­
ule. Privileged architecture library software sub­
routines, known as PALcode, run on the primary 
CPU module and read the device interrupt register 
or Futurebus+ interrupt register to determine 
which local devices or which Futurebus+ device 
handlers are to be dispatched. 

The enclosure, power, and cooling subsystems 
are capable of interrupting both processors when 
immediate attention is required. A CPU can obtain 
information from subsystems shown in Figure 2 
through the serial control bus. The serial control 
bus enables highly reliable communications 
between field replaceable subsystems. During 
power-up, it is used to obtain configuration infor­
mation. It is also used as an error-logging channel 
and as a means to communicate between the CPU 
subsystem, power subsystem, and the OCP. The 
nonvolatile RAM (NVRAM) chip implemented on 
each module allowed the firmware to use software 
switches to configure the system. The software 
switches avoided the need for hardware switches 
and jumpers, field replaceable unit identification 
tags, and handwritten error logs. As a result, the 
hardware system is fully configured through 
firmware, and fault information travels with the 
field replaceable unit. 

The five-state cache coherence protocol assumes 
that the processor's primary write-through cache is 
maintained as a subset of the second-level write­
back cache. The BIU on the CPU module enforces 
this subset policy to simplify the simulation verifi­
cation process. Without it, the number of verifica­
tion cases would have been excessive, difficult 
to express, and difficult to simulate and check for 
correctness. The I/0 module implements an invali­
date-on-write policy, such that a block it has read 
from memory will be invalidated and then re-read 
if a CPU writes to the block. The 1/0 module parti-
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cipates in the coherency policy by signaling shared 
status to a CPU read of a block it has buffered. The 
five states of the cache coherence protocol are 
given in Table 2. 

The cache coherence protocol ensures that only 
one CPU module can return a dirty response. The 
dirty response obligates the responding CPU mod­
ule to supply the read data to the bus, since the 
memory copy is stale and the memory controller 
aborts the return of the read data. Bus writes always 
clear the dirty bit of the referenced cache block in 
both the commander module and the module that 
takes the update. 

A CPU has two options when a bus transaction is 
a write and the block is found to be valid in its 
cache. A CPU either invalidates the block or accepts 
the block and updates its copy, keeping the block 
valid. This decision is based on the state of the pri­
mary cache's duplicate tag store and the state of the 
second-level cache tag store. Acceptance of the 
transaction into the second-level cache on a tag 

Table 2 Five States of the Cache 
Coherence Protocol 

State Remarks 

1 NOT VALID 

2 VALID 
NOT SHARED 
NOT DIRTY 

3 VALID 
NOT SHARED 
DIRTY 

4 VALID 
SHARED 
NOT DIRTY 

5 VALID 
SHARED 
DIRTY 

Block is invalid. 

Valid for read or write, this 
cached block contains the only 
copy of the block; the copy is 
identical to the memory copy. 

Valid for read or write, this 
cached block contains the 
only cached copy of the block. 
The cached copy has been 
modified more recently than 
the memory copy. 

Block is valid for read or write, 
but a write must broadcast to 
the bus. This block may be in 
another cache, but the memory 
copy is identical. 
Block is valid for read or write, 
but a write must broadcast to 
the bus. This block may be in 
another cache, but the contents 
have been modified more 
recently than the memory copy. 
This is a transitional state that 
occurs when arbitrating for the 
bus to broadcast a write or 
when an unshared dirty block is 
returned to a bus read 
transaction. 
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match is called conditional update. When the com­
mander is the 1/0 module, the write is accepted by a 
CPU only if the block is valid. Depending on the 
state of the primary data cache duplicate tag store, 
two types of hit responses can be sent to an 1/0 
commander-1/0 update always and 1/0 conditional 
update. In the case of either 1/0 or CPU commander 
writes, if the valid block is in the primary data 
cache, the block is invalidated. The two acceptance 
modes of 1/0 writes by a CPU are programmable 
because accepting writes uses approximately 50 
percent more second-level cache bandwidth than 
invalidating writes. 

To implement the cache coherence protocol, the 
CPU module's second-level cache stores informa­
tion as shown in Figure 4 for each 32-byte cache 
block. 

Figure 5 shows the cycle timing and transaction 
sequences of the system bus. Write transactions 
occur in six clock cycles. Read, null, and exchange 
transactions occur in seven clock cycles. A null 
transaction enables a commander to nullify the 
active transaction request or to acquire the bus and 
avoid resource contention, without modifying 
memory. The arbitration controller monitors the 
bus transaction type and follows the transactions, 
cycle by cycle, to know when to rearbitrate and sig­
nal a new address and command cycle. Additional 
cycles can be added by stalling in cycle 2 or cycle 4. 
Transactions begin when the arbitration controller 
grants the use of the CPU module's second-level 

caches to a commander module. The controller 
then signals the start of the address and command 
cycle O (CA). The commander drives a valid address, 
command, and parity (CAD) in cycle 1. A comman­
der may stall in cycle 2 before supplying write data 
(WD) in cycles 2 and 3. 

Read data (RD) is received in cycles 5 and 6. The 
addressed responder confirms the data cycles by 
asserting the acknowledge signal two cycles later. 
The commander checks for the acknowledgment 
and, regardless of the presence or absence, com­
pletes the number of cycles specified for the trans­
action. Snooping protocol results are made 
available half way through cycle 3. As shown in 
Figure 5, the protocol timing from valid address to 
response of two cycles is critical. A responder or 
bystander may stall any transaction in cycle 4 by 
asserting a stall signal in cycle 3. The bus stalls as 
long as the stall signal is asserted. Arbitration is 
overlapped with the last cycle of a transaction, such 
that tristate conflict is avoided. 

A 29-bit lock address register provides a lock 
mechanism per cache block to assist with software 
synchronization operations. The lock address regis­
ter is managed by each CPU as it executes load from 
memory to register locked longword or quadword 
(LDx_L) and store register to memory conditional 
longword or quadword (ST:x_C) instructions.s The 
lock address register holds an address and a valid 
bit, which are compared with all bus transaction 
addresses. The valid bit is cleared by bus writes to a 

LWO CKO LW1 CK1 LW2 CK2 LW3 CK3 
LW4 CK4 LW5 CK5 LW6 CK6 LW7 CK? 

• TAG consists of 9 physical address bits with a 4MB second-level cache, or 11 physical 
address bits with a 1 MB second-level cache. 

• TAG PARITY (TP) bit indicates even parity. 

• VALID (V) bit indicates whether or not this block can be considered for a response to the 
snoop transaction. 

• SHARED (S) bit indicates whether or not this block may also be resident in another 
module's cache. 

• DIRTY (D) bit indicates whether or not this block has been modified by this processor. 

• CONTROL PARITY (CP) bit indicates even parity. 

• DATA (LW) bits organized as two 128-bit-wide half blocks; each 128-bit block is composed 
of four longwords. 

• CHECK (CKO through CK?) bits detect errors for each longword. 

Figure 4 Second-level Cache Structure 
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Figure 5 System Bus Transaction Sequences 

matching address or by CPU execution of STx_C 
instructions. The register is loaded and validated by 
a CPU's LDx_L instruction. This hardware and soft­
ware construct, as a means of memory synchroniza­
tion, statistically avoids the known problems with 
exclusionary locking schemes. Exclusionary lock­
ing schemes create resource dead locks, transaction 
ordering issues, and performance degradation as 
side effects of the exclusion. This construct allows 
a processor to continue program execution while 
hardware provides the branch conditions. The lock 
fails only when it loses the race on a write collision 
to the locked block. 

A bus transaction address that hits on a valid lock 
address register must return a snooping protocol 
shared response, even if the block is not valid in the 
primary and second-level caches. The shared 
response forces writes to the block to be broadcast, 
and STx_C instructions to function correctly. The 
NULL transaction is issued when a STx_ C write is 
aborted due to the failure of the lock to avoid 
system memory modification. 

CPU Module Subsystems 
Each CPU module consists of a number of subsys­
tems as shown in Figure 3. The CPU module's sub­
systems are 
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1. DECchip 21064 processor 

2. IMB or 4MB physically addressed write-back 
second-level cache 

3. BIU chips containing write merge buffers, a 
duplicate tag store of the processor's 8-kilobyte 
(KB) data cache for invalidate filtering and write 
update policy decisions, an arbitration con­
troller, a system bus interface, an address lock 
register, and CSRs 

4. System bus and processor clock genera­
tors, clock and voltage detectors, and clock 
distributors 

5. System bus reset control 

6. 8KB serial ROM for power-up software loading 
of the processor 

7. Microcontroller (MC) with serial system bus 
interface and serial line unit for communication 
with the processor's serial line interface 

8. NVRAM chip on the serial control bus 

Since a CPU module has to operate in either CPU I 
or CPU 2 mode, the CPU 2 connector was designed 
to provide an identification code that enables or dis­
ables the clock drivers and configures the CSRs' 

Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal 



Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems 

address space and CPU identification code. As a 
result, arbitration and other slot-dependent func­
tions are enabled or disabled when power is applied. 

A reliability study of a parity-protected second­
level cache showed that the SRAMs contributed 44.7 
percent of the failure rate. By implementing EDC on 
the data SRAM portion of the second-level cache, a 
tenfold improvement in per processor mean time to 
failure was achieved. Consequently, six SRAM chips 
per processor were implemented to ensure high 
reliability. 

The multiplexed interface to the second-level 
cache of the CPU module allows the processor chip 
and the system bus equal and shared access to the 
second-level cache. To achieve low-latency memory 
access, both the microprocessor and the system 
bus operate the second-level cache as fast as pos­
sible based on their clocks. Hence the second­
level cache is multiplexed, and ownership defaults 
to the microprocessor. When the system bus 
requires access, ownership is transferred quickly 
with data SRAM parallelism while the tag SRAMs are 
monitored. 

Many of the CPU module subsystems are found in 
the interface gate array called the O chip. Two of 
these chips working in tandem implement the BIU 
and the second-level cache controller. Write merge 
buffers combine masked write data from the micro­
processor with the cache block as part of an allo­
cate-on-write policy. Since the microprocessor has 
write buffers that perform packing, full block write 
around the second-level cache was implemented as 
an exception to the allocate-on-write policy. To 
meet schedule and cost goals with few personnel, 
one complex gate array was designed rather than 
several lower-complexity gate arrays. Hence the 
data path and the control functions were parti­
tioned such that the microprocessor could operate 
as an even or odd member of a pair on the CPU 1 or 
the CPU 2 module. 

The system bus clock design is somewhat inde­
pendent of the processor clock, but the range is 
restricted due to the implementation of the snoop­
ing protocol timing, the multiplexed usage of the 
second-level cache, and the CPU interface hand­
shake and data timing. Therefore, the system bus 
cycle time is optimized to provide the maximum 
performance regardless of the processor speed. 
Likewise, the processor's cycle time is optimized to 
provide maximum performance regardless of the 
bus speed. Considerable effort resulted in a second­
level cache access time that enabled the CPU's read 
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or write accesses to complete in four internal clock 
cycles, called the four-tick loop timing of the sec­
ond-level cache. To realize both optimizations, the 
CPU's synchronous interface is supported by an 
asynchronous interface in the BIU. Various timing 
relationships between the processor and the 
system bus are controlled by programmable timing 
controls in the BIU chips. 

To achieve the tight, four-tick timing of the sec­
ond-level cache, double-sided surface-mount tech­
nology was used to place the SRAM chips physically 
close together. This minimized address wire length 
and the number of module vias; hence the driver 
was loaded effectively. This careful placement was 
combined with the design of a custom CMOS 
address fan-out buffer and multiplexer chip (CAB) 
to achieve fast propagation delays. The CAB chip 
was implemented in the same CMOS process as the 
DECchip 21064 CPU to obtain the desired through­
put delay. Combined with 12-ns SRAM chips, the CAB 
chip enabled optimization of the CPU's second-level 
cache timing as well as the system bus snooping 
protocol response timing. 

1/0 Module, Mass Storage, and 
Expansion 1/0 Subsystems 
The 1/0 module consists of a local 1/0 subsystem 
that interfaces to the common I/0 core and a bridge 
to the Futurebus+ for 1/0 options. By incorporating 
modularity into the design, a broad range of appli­
cations could be supported. To satisfy the disk per­
formance and bulk storage metrics given in Table 1, 
mass storage was configured based on applications 
requirements. Fast access times of 3.5-inch disks 
and multiple spindles were selected for applica­
tions with results in QIO/s. The density of 5.25-inch 
disks was selected for applications requiring more 
storage space. As indicated in Table 1, the metrics of 
greater than 4,000 QIO/s determined the perfor­
mance requirements of the storage compartment. 
Each of the four disk storage compartments in the 
system enclosure can hold a full-size 5.25-inch disk 
if cost-effective bulk storage is needed. If the need 
is for the maximum number of I/Os per second, 
each compartment can hold up to four 3.5-inch 
disks in a mini array. 

Configurations of3.S-inch disks in a brick enable 
optimization of throughput through parallelism 
techniques such as stripe sets and redundant array 
of inexpensive disks (RAID) sets. The brick con­
figuration also enables fault tolerance, at the 
expense of throughput, by using shadow sets. With 
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this technique, each storage compartment is inter­
faced to the system through a separate built-in con­
troller. The controller is capable of running in 
either DSSI mode for high availability storage in 
cluster connections with other OpenVMS AXP or 
VMS systems, or in SCSI mode for local disk storage 
available from many different vendors. For applica­
tions in which a disk volume is striped across multi­
ple drives that are in different storage cavities, the 
benefit from the parallel seek operations of the 
drives combines with the parallel data transfers 
provided by the multiple bus interfaces. The main 
memory capacity of the system allows for disk 
caching or RAM disks to be created, and the process­
ing power of the system can be applied to managing 
the multiple disk drives as a RAID array. With cur­
rent technology, maximum fixed storage is 8GB 
with 5.25-inch disks and 24GB with 3.5-inch disks. If 
the built-in storage system is inadequate, connec­
tion to an external solution can occur through the 
Futurebus+. 

The BIU is implemented by two 299-pin ASIC 
chips. The bridge to the Futurebus+ and the inter­
face to the local 1/0 devices are provided with sepa­
rate interfaces to the system bus. Each interface 
contains two buffers that can each contain a hex­
word of data. This allows for double buffering of 1/0 

writes to memory for both interfaces and for the 
prefetching of read data by which the bridge 
improves throughput. These buffers also serve to 
merge byte and longword write transaction data 
into a full block for transfer over the system bus. In 
this case, the write to main memory is preceded by 
a read operation to merge modified and unmodi­
fied bytes within the block. 

The Ethernet controllers and SCSI and DSSI 
controllers can handle block transfers for most 
operations, thus avoiding unnecessary merge trans­
actions. As shown in Figure 3, the 1/0 module inte­
grates the following: 

1. Four storage controllers that support SCSI, 
high-speed SCSI, or DSSI for fixed disk drives 
and one SCSI controller for removable media 
drives 

2. 128KB of SRAM for disk-controller-loadable 
microcode scripts 

3. Two Ethernet controllers and their station 
address ROMs, with switch-selectable 
ThinWire or thick-wire interfaces 

4. 512KB flash erase programmable ROM 
(FEPROM) for console firmware 
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5. Console serial line unit (SLU) interface 

6. Auxiliary SLU interface with modem control 
support 

7. Time-of-year (TOY) clock, with battery backup 

8. 8KB of electrically erasable memory (EEROM) 
for console firmware support 

9. Serial control bus controller and 2 kilobits of 
NVRAM 

10. 64-bit-wide Futurebus+ bridge 

11. BIU, containing four hexwords of cache block 
buffering, two mailbox registers, and the 
system bus interface 

The instability of the Futurebus+ specifications 
and the use of new, poorly specified controller 
chips presented a high design risk for a highly inte­
grated implementation. Therefore the Futurebus+ 
bridge and local 1/0 control logic were imple­
mented in programmable logic to isolate the 
high risk design areas from the ASIC development 
process. 

Memory Subsystem 
As shown in Figure 3, up to four memory modules 
can reside on the system bus. This modularity of 
the memory subsystem enabled maximum configu­
ration flexibility. Based on the metrics listed in 
Table I, 2GB of memory were expected to satisfy 
most applications requirements. Given this 2GB 
design goal, the available DRAM technology, and the 
module size, the total memory size was configured 
for various applications. 

The memory connectors provide a unique slot 
identification code to each BIU, which is used to 
configure the CSRs' address space based on the slot 
position. Memory modules are synchronous to the 
system bus and provide high-bandwidth, low­
latency dynamic storage. Each memory module 
uses 4-bit-wide, 1- and 4-megabit-deep DRAM tech­
nology in various configurations to provide 64MB, 
128MB, 256MB, or 512MB of storage on each module. 

To satisfy memory performance goals, each 
memory module is capable of operating alone or in 
one of numerous cache block interleaving configu­
rations with other memory modules with a read­
stream capability. A performance study of stream 
buffers revealed an increase in performance from 
memory-resident read-stream buffers. The stream 
buffers allow each memory module to reduce the 
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average read latency of a CPU or 1/0 module. Thus 
more bandwidth is usable on a congested bus 
because the anticipated read data in a detected 
access sequence is prefetched. The stream buffer 
prefetch activity is statistically determined by bus 
activity. 

Overall memory bandwidth is also improved 
through exchange transactions, which use victim 
writes with replacement read parallelism. Intel­
ligent memory refresh is scheduled based on bus 
activity and anticipated opportunities. Write trans­
actions are buffered from the bus before being writ­
ten into the DRAMs to avoid stalling the bus. 

Data integrity, memory reliability, and system 
availability are enhanced by the EDC circuitry. Each 
memory module consists of 2 or 4 banks with 70 
DRAM chips each. This enables 256 data bits and 24 
EDC bits to be accessed at once to provide low 
latency for the system bus. A cost-benefit analysis 
showed a savings of DRAM chips when EDC is imple­
mented on each memory module. The processor's 
32-bit EDC requires 7 check bits as opposed to the 
128-bit EDC, which requires 12 check bits and uses 
fewer chips per bank. The selected EDC code also 
provides better error detection capability of 4-bit­
wide chips than the processor's 32-bit EDC. 

To improve performance, separate EDC logic 
is implemented on the write path and read path 
of each memory module's BIU. The EDC logic 
performs detection and correction of all single­
bit errors and most 2-bit, 3-bit, and 4-bit errors in 
the DRAM array. The EDC's generate function can 
detect certain types of addressing failures associ­
ated with the DRAM row and column address bits, 
along with the bank's select address bits. Failures 
associated with these addressing fields can be 
detected, thus improving data integrity. Software 
errors can be scrubbed from memory by the CPU 
when requested through use of PALcode subrou­
tines, which use the LDx_L and STx_ C synchroniza­
tion construct without having to suspend system 
operations. 

Enclosure and Power Subsystems 
The DEC 4000 AXP enclosure seen in Figure 1 is 
called the BA640 box and is 88.0 centimeters ( cm) 
high, 50.6 cm wide, and 76.2 cm deep. It weighs 118 
to 125 kilograms fully configured. The enclosure is 
designed to operate in an office environment from 
10 to 35 degrees Celsius. The power cord can con­
nect to a conventional wall outlet which supplies 
up to 20 amperes at either 120 v AC or 240 v AC. 
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The DEC 4000 AXP system is a portable unit that 
provides rear access and simplified installation and 
maintenance. The system is mounted on casters 
and fits easily into an open office environment. 
Modular design allowed compliance with stan­
dards, ease of manufacturing, and easy field servic­
ing. Constructed of molded plastics, the chassis 
is sectioned into a card cage, a storage compart­
ment, a base containing four 6-inch variable-speed 
DC fans and casters, an air plenum and baffle assem­
bly, front and rear doors, and side panels. The 
mass storage compartment supports up to 16 
fixed-storage devices and 4 removable storage 
devices. Expansion to storage enclosures is sup­
ported for applications that require specialized 
storage subsystems. 

Feedback from field service engineers prompted 
us to omit useless light-emitting devices (LEDs) in 
each subsystem, since access to most electronics is 
from the rear. As a result, the OCP was made com­
mon to all subsystems through the serial control 
bus and made visible inside the front door of the 
enclosure. It provides DC on/off, halt, and restart 
switches, and eight LEDs, which indicate faults of 
CPU, 1/0, memory, and Futurebus+ modules. The 
fault lights are controlled either by a microcon­
troller on either CPU module or by an interface on 
the 1/0 module. 

Futurebus+ slot spacing was provided by the IEEE 
specification. The system bus slot spacing for each 
module was determined by functional require­
ments. For example, the CPU module requires 300 
linear feet of air flow across the DECchip 21064 
microprocessor's 3-inch square heat sink, as seen in 
Figure 1, to ensure the 25-watt chip could be 
cooled reliably. Since VAX 4000 systems provide this 
same air flow across modules, cooling was not a 
major design obstacle. The module compartment's 
Futurebus+, system bus, and power subsystems can 
be seen in the enclosure back view of Figure 6. 

All electronics in the enclosure, as shown in 
Figure 7, are air cooled by four 6-inch fans in the 
base. Air is drawn into the enclosure grill at the top 
front, guided along a plenum and baffle assembly 
and down through the module compartment and 
power supply compartment to the base. Air is also 
drawn through front door louvers and across the 
storage compartments and down to the base. 
Electronics connected to the power subsystem 
monitor ambient and module compartment 
exhaust temperatures. Thus the fan speed can be 
regulated based on temperature measurements, 
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FUTUREBUS+ SYSTEM BUS 

POWER 

Figure 6 DEC 4000 AXP Enclosure Rear View 

reducing acoustic noise in an air-conditioned office 
environment. 

The centerplane assembly consists of a storage 
backplane, a module backplane, and an electromag­
netic shield. This implementation avoids depen­
dence on cable assemblies, which are unreliable 
and difficult to install and repair. Defined connec­
tors and module sizes allowed the enclosure devel­
opment to proceed unencumbered by module 
specification changes. The shielded module com­
partment provides effective attenuation of signals 
up to 5 gigahertz. There are six Futurebus+ slots, 
four memory slots, two CPU slots, one 1/0 slot, and 
four central power module slots, which include the 
FEU, PSC, DC5, and DC3 units. 

The storage compartment contains six cavities, 
as seen in the enclosure front view of Figure 8. 
Two cavities are for removable media, and four 
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are for fixed storage bricks. A storage brick consists 
of a base plate and mounting hardware, disk drives, 
local disk converter (LDC), front bezel assembly, 
and wiring harnesses. The LDC converts a dis­
tributed 48.0 V to 12.0-V and 5.0-V supplies and a 
5.0-V termination reference for the brick to ensure 
compliance with voltage regulation specifications 
and termination voltage levels of current and future 
disks. 

The 20-ampere power subsystem can deliver 
1,400 watts of DC power divided across 2.1 V, 3.3 V, 
5.0 V, 12.0 V, and 48.0 V The enclosure can cool 
1,500 watts of power and can be configured as a 
master or a slave of AC power application. Use of a 
universal FEU eliminates the need for selecting 
operating voltages of 120 V or 240 V AC. The FEU 
converts the input AC into 385 V DC, which is dis­
tributed to provide 48 V DC to two step-down DC­
to-DC converters, which work in parallel to share 
the load current. The combined 48 V DC output 
from these converters is delivered to the rest of the 
system. 

Control of distributed power electronics is diffi­
cult and expensive with dedicated electronics. A 
cost-effective alternative was use of a one-chip 
CMOS microcontroller, surrounded with an array of 
sensor inputs through CMOS analog-to-digital con­
verters, to provide PSC intelligence. Decision-mak­
ing ability in the power subsystem enabled 
compliance with voltage-sequencing specifications 
and fail-safe operation of the system. The micro­
controller can control each LDC and communicate 
with the CPU and OCP over the serial control bus. It 
monitors over and under voltage, temperature, and 
energy storage conditions in the module and stor­
age compartments. It also reports status and failure 
information either to the CPU or to a display on the 
PSC module, which is visible inside the enclosure 
back door. 

Firmware 
The primary goal of the console interface is to 
bootstrap the operating system through a process 
called boot-block booting. The console inter­
face runs a minimal 1/0 device handler routine 
(boot primitive) to read a boot block from a device 
that has descriptors. The descriptors point to the 
logical block numbers where the primary boot­
strap program can be found, and the console 
interface loads it into system memory. To accom­
plish this task, the firmware must configure and 
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OCP DC3 DCS CENTERPLANE FBE 

VT ERM PSC MEMORY 1/0 CPU 

Figure 7 DEC 4000 AXP Modular Electronics 

test the whole system to ensure the boot process 
can complete without failures. To minimize the 
bootstrap time, a fast memory test executes in the 
time necessary to test the largest memory module, 
regardless of the number of memory modules. If 
failures are detected after configuration is com­
pleted, the firmware must provide a means for diag­
nosis, error isolation, and error logging to facilitate 
the repair process. The DEC 4000 AXP system pro­
vides a new console command interface as well as 
integrated diagnostic exercisers in the loadable 
firmware. 

The firmware resides on two separate entities, a 
block of serial ROM on the CPU module and a block 
of FEPROM on the 1/0 module. The serial ROM con­
tains software that is automatically loaded into the 
processor on power-up or reset. This software is 
responsible for initial configuration of the CPU 
module, testing minimal module functionality, ini­
tializing enough memory for the console, copying 
the contents of the FEPROM into this initialized 
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console memory, and then transferring control to 
the console code. 

The FEPROM firmware consists of halt dispatch, 
entry/exit, diagnostics, system restart, system boot­
strap, and console services functional blocks. 

PALcode subroutines provide a layer of software 
with common interfaces to upper levels of sofware. 
PALcode serves as a bridge between the hardware 
behavior and service requirements and the require­
ments of the operating system. The system takes 
advantage of PALcode for hardware-level interrupt 
handling and return, security, implementation of 
special operating system kernel procedures such as 
queue management, dispatching to the operating 
system's special calls, exception handling, DECchip 
21064 virtual instruction cache management, 
virtual memory management, and secondary 1/0 
operations. Through a combination of hardware­
and software-dependent PALcode subroutines, 
OpenVMS AXP, DEC OSF/1 AXP, and future operating 
systems can execute on this hardware architecture. 
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Figure 8 DEC 4000 AXP System 
Enclosure Front View 

Per:formance Summary 
The DEC 4000 AXP Model 610 system's performance 
numbers as of November 10, 1992 are given in Table 
3. Its performance will continue to improve. 

Summary 
DEC 4000 AXP systems demonstrate the highest 
performance and functionality for Digital's 4000 
series of departmental server systems. Based on 
Digital's Alpha AXP architecture and the IEEE's 
Futurebus+ profile B standard, the systems provide 
symmetric multiprocessing performance for 
Open VMS AXP and DEC OSF/1 AXP operating systems 
in an office environment. The DEC 4000 AXP systems 
were designed to optimize the cost-performance 
ratio and to include upgradability and expandabil­
ity. The systems combine Digital's CMOS technol­
ogy, 1/0 peripherals technology, ahigh-performance 
multiprocessing backplane interconnect, and mod­
ular system design to supply the most advanced 
functionality for performance-driven applications. 
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Table 3 CPU Performance Summary for the DEC 4000 AXP System 

Futurebus+ Performance 

Peak 
Read 
Write 

Local Bus Performance 

Peak 
Read 
Write 

System Bus Performance 

Peak 
Read 
Write 
Exchange 

Latency 

16 bytes/1 00 ns 
16 bytes/182 ns 
16 bytes/133 ns 

Latency 

4 bytes/80 ns 
4 bytes/160 ns 
4 bytes/160 ns 

Latency 

16 bytes/25 ns 
32 bytes/175 ns 
32 bytes/150 ns 
64 bytes/175 ns 

Internal Cache Miss, Second-level Cache Hit (Four-tick) Performance 

Latency 

Read 
Write 

CPU Second-level Cache Miss Performance 

Read 
Write 
Exchange 

16 bytes/25 ns 
16 bytes/25 ns 

Latency 

32 bytes/275 ns 
32 bytes/200 ns 
64 bytes/275 ns 

DEC 4000 Model 610 SPECmark89 and SPECthruput89* Estimated CPU Performance Summary 

Note: 

Integer (INT) Benchmarks Ratio 

GCC 61.58 
ESPRESSO 82.91 
LI 93.05 
EQNTOTT 103.46 

Floating-point (FP) Benchmarks 

SPICE2G6 72.58 
DODUC 113.81 
NASA? 229.27 
MATRIX300 1019.17 
FPPPP 180.32 
TOMCAlV 128.70 

SPEC mark > 136.23 SPECthruput > 
SPEC int > 83.73 SPECintthruput > 
SPECfp > 188.45 SPECfpthruput > 

UNPACK - double precision 100 X 100 36.8 MFLOPS 
UNPACK - double precision 1000 x 1000 78.4 MFLOPS 
Dhrystone 165.0 MIPS 

Ratio 
1@ 54.80 
1@ 81.76 
1@ 92.19 
1@ 100.76 

1@ 68.19 
1@ 113.53 
1@ 221.56 
1@ 963.81 
1@ 177.89 
1@ 123.25 

1@ 131.18 
1@ 80.32 
1@ 181.92 

Bandwidth 

160MB/s 
88MB/s 

120MB/s 

Bandwidth 

50MB/s 
25MB/s 
25MB/s 

Bandwidth 

640MB/s 
182MB/s 
213MB/s 
365MB/s 

Bandwidth 

640MB/s 
640MB/s 

Bandwidth 

116MB/s 
160MB/s 
232MB/s 

Ratio 

2@ 50.78 
2@ 78.33 
2@ 92.18 
2@ 97.94 

2@ 64.95 
2@ 108.95 
2@ 197.80 
2@948.66 
2@ 175.83 
2@ 105.90 

2@ 124.40 
2@ 77.41 
2@170.68 

*Version 1.0 OpenVMS AXP operating system, 160-MHz clocked DECchip 21064 microprocessor, 1 MB second-level cache. Notice the 1.9 
scaling of the second CPU. 
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Technical Description 
of the DEC 7000 and 
DEC 10000 AXP Family 

The DEC 7000 and DEC 10000 products are mid-range and mainframe Alpha AXP 
system offerings from Digital Equipment Corporation. These machines were 
designed to meet the needs of large commercial and scientific applications and 
therefore are higl.rperformance, expandable systems that can be easily upgraded. 
The DEC 7000 and 10000 systems utilize the DECchip 21064 microprocessor operat­
ing at speeds up to 200 MHz. The higl.rspeed chips, large caches, multiprocessor 
system architecture, higl.rperformance backplane interconnect, and large memory 
capacity combine to create mainframe-class performance with a cost and size pre­
viously attributed to mid-range systems. 

The design of the DEC 7000 and 10000 systems pro­
vides a high-end platform and system environment 
for multiple generations of Alpha AXP chips. This 
platform, combined with a multiprocessor archi­
tecture, yields a multidimensional upgrade capabil­
ity that will allow the system to meet users' needs 
for several years. System upgrade can take place by 
adding processors, replacing existing processors 
with next-generation processors, or both. This 
upgrade capability ensures stability to the system 
in terms of the physical and fiscal aspects of the end 
user's computing environment. 

The DEC 7000 and DEC 10000 systems are 
the logical follow-on products of the highly suc­
cessful VAX 6000 family. 1 The new systems are capa­
ble of supporting either VAX processors or Alpha 
AXP processors. The capability to upgrade from 
a VAX processor to an Alpha AXP processor with­
out changes to the system is essential for mini­
mal disruption of large commercial applications. 
Most features of the VAX 6000 systems have 
been carried forward to the DEC 7000 and DEC 
10000 products, and any deficiencies have been 
corrected. 

The DEC 7000 and DEC 10000 products are 
derived from the same system design. The DEC 
10000 is a more fully configured system and 
includes an n+ 1 uninterruptible power system, 
additional 1/0 subsystems, and 1/0 expansion cabi­
nets. The DEC 7000 uses a 182-megahertz (MHz) 
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DECchip 21064 whereas the DEC 10000 uses a 200-
MHz DECchip 21064. 

A very important goal for the project that encom­
passed the development of the DEC 7000 and 10000 
systems was to provide a similar pair of systems 
based on a VAX microprocessor. A VAX microproces­
sor, called NVAX+, was designed to be pin com­
patible with the DECchip 21064 (the Alpha AXP 
microprocessor). 2,3 The system was designed to be 
somewhat microprocessor independent, and both 
VAX and Alpha AXP versions of the systems were 
implemented. The VAX products (VAX 7000 and VAX 
10000) were introduced in July 1992 and can be 
upgraded to DEC 7000 and DEC 10000 systems by a 
simple swap of CPU modules. 

System Architecture 
The DEC 7000 system consists of CPU(s), memory, 
an 1/0 port controller, and 1/0 adapters, as shown in 
Figure 1. The system is configured in a variety of 
ways, depending on the size and function of the 
system. A system backplane consists of nine slots 
and houses CPUs, memory, and an 1/0 port con­
troller. The 1/0 port controller resides in a fixed 
slot, and CPUs and memories occupy the remaining 
eight slots. The initial system offerings allow up to 6 
CPUs. (Architecturally, the system may support up 
to 16 CPUs.) Up to 14 gigabytes (GB) of memory can 
be supported if only 1 CPU module is present and 
all remaining slots contain memory 
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ALPHA AXP OR VAX 
PROCESSOR(S) 

MEMORY ARRAY 
64, 128, 256, 512MB 
2GB 

<::....-~~~-s_v_s_T_EM~Bu_s~i~6-4_0M_B_1_s~~~~::> 

1/0 PORT CONTROLLER 

XMI FUTUREBUS+ 

Note: All four 1/0 ports are identical. Any combination of XMI, 
Futurebus+, or "custom" interfaces may be configured. 

Figure 1 DEC 7000 and DEC 10000 
System Architecture 

The 1/0 subsystem consists of an 1/0 port con­
troller and four 1/0 ports which have been adapted 
to the XMI or the Futurebus+. The 1/0 ports are 
generic and may be adapted to other forms of inter­
connect in the future. The system backplane, 
power system, and up to two 1/0 backplanes are 
housed in the system cabinet. Additional 1/0 back­
planes (up to a system total of four) may be config­
ured in expansion cabinets. 

Technology 
The DEC 7000 system is built primarily of CMOS 
(complementary metal-oxide semiconductor) com­
ponents. The DECchip 21064 microprocessor is 
built using Digital's 0.75-micrometer CMOS-4 pro­
cess. All modules utilize LSI Logic LCAlOOK series 
gate arrays for the system bus interface and for 
on-board logic functions. The LSI Logic LCAlOOK 
features up to 235K two-input NAND gates. All 
modules use the same custom 1/0 driver circuit 
within their respective gate arrays to drive and 
receive the system bus. A custom 419-pin pin grid 
array (PGA) package was developed to house all bus 
interface gate arrays. Unlike the VAX 6000 series, a 
common bus driver part is not used in order to min­
imize the number of levels of buffering in the 
system. 

Module technology is standard 10-layer construc­
tion with 4 signal layers, 4 power layers, and top 
and bottom cap layers. Double-side, surface-mount 
construction is used extensively throughout the 
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system. Etch width is 5 mils with 7.5-mil minimum 
spacing. Via sizes down to 15 mils are used. A mix­
ture of physical component technologies is used 
with all large VLSI (very large-scale integration) 
parts in 100-mil PGA packages. Most standard logic 
utilizes 50-mil surface-mount technology. Module 
interconnect to the backplane is made through a 
340/420-connection, four-row, 100-mil-spaced pin 
and socket type connector. Forty-eight-volt power 
is distributed throughout the system; local regula­
tion is provided on the module for specific voltages 
required. 

System Interconnect 
The heart of the DEC 7000 system is a high-perfor­
mance system interconnect, called the I.SB, which 
allows communications between multiple proces­
sors, memory arrays, and 1/0 subsystems. It pro­
vides a low-latency, high-bandwidth data path 
among all components. A common shared view of 
memory is maintained by means of the system inter­
connect and cache logic on processor modules. 

Three types of modules are defined for the I.SB. 

• Processor modules, which contain the CPU chip, 
cache subsystem, and console functions. The ini­
tial DEC 7000 design has the capacity for a maxi­
mum of six processor modules. 

• Memory modules, which contain dynamic ran­
dom-access memory (DRAM) chips and a mem­
ory controller. A system can contain up to seven 
memory modules, each with a capacity of 64 
megabytes (MB) to 2GB. 

• 1/0 interface modules, which provide access to 
1/0 buses and 1/0 adapters. Only a single 1/0 port 
controller module may reside in the system. The 
1/0 port controller module can arbitrate at a 
higher priority than CPU nodes to improve 1/0 

direct memory access (DMA) latency and provide 
atomic DMA writes of data less than a cache 
block in size. 

The LSB is a limited-length, non-pended, pipe­
lined, synchronous, 128-bit-wide bus with distrib­
uted arbitration. All transactions occur in a set of 
fixed cycles relative to an arbitration cycle. Up to 
three transactions can be in the pipeline at a given 
time, enabling the full capability of the bus to be 
realized. Arbitration occurs on a dedicated set of 
control signals and may be overlapped with data 
transfer. Data and address are multiplexed on the 
same set of signals. The bus protocol supports 
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write-back caches, and all memory transfers are 64 
bytes in length. The cycle time of the bus is 20 
nanoseconds (ns), providing an overall data rate of 
800MB per second and a utilized system bandwidth 
of 640MB per second. 

The LSB transmits 40-bit physical addresses, pro­
viding a physical address space of 1 terabyte. Given 
the current rate of DRAM technology evolution, the 
LSB will have a useful life of 8 to 10 years before 
physical address space is exhausted. A 40-bit physi­
cal address was chosen to minimize the data path 
width in the processor bus control gate array. 

A non-pended pipelined bus was chosen instead 
of a traditional pended bus to allow for simple node 
interface designs. Transactions start and finish at 
precisely defined times. A "stall" function may be 
used if a given transaction cannot be completed 
within the system timing constraints. The "stall" 
function freezes the bus pipeline, maintaining the 
order of all transactions. Consequently, nodes can 
be designed with no queuing between the bus 
interface and local storage (DRAMs for main mem­
ory or static RAMs [SRAMs] for cache memory). The 
maintenance of strict bus transaction ordering also 
alleviates many potential lockout conditions expe­
rienced on pended buses. 

Digital's previous mainframe systems have used a 
switch-based system interconnect instead of a bus. 
This interconnect was typically required because 
these systems were based on emitter coupled logic 
(ECL) with only a small, single-level cache sub­
system; therefore, high bandwidth was required 
between main memory and the processor. The 
CMOS design of the DEC 7000 allows a large (4MB) 
second-level cache to complement the 16-kilobyte 
(KB) on-chip cache. The large amount of cache 
minimizes the need for memory bandwidth. A 
bus-based design was chosen over a switch-based 
design to minimize memory latency, minimize 
design complexity, and reduce system cost. 

ARBITRATE 

COMMAND 

CONFIRMATION 

SHARE/DIRTY 

DATA 

- I I- BUS CYCLE TIME = 20 NS 

1 2 3 
1 2 3 

1 2 

1 2 

1 1 

4 

3 

1 1 

1-- BUS ACCESS TIME= 340 NS --j 

Bus Data Rate = 16 bytes per 20 ns = SOOMB/s 

4 

3 

All LSB transactions consist of a single command 
cycle and four data cycles. These five cycles appear 
in fixed cycles relative to the arbitration cycles. Up 
to three transactions may be pipelined, as shown in 
Figure 2. 

The LSB uses a distributed arbitration scheme. 
Ten request wires are driven by the CPUs or the 1/0 
module that wishes to use the bus. Eight request 
lines are allocated to the eight potential CPU mod­
ules. The remaining two request lines are used by 
the 1/0 controller module. All modules indepen­
dently monitor the request wires to determine 
whether a transaction has been requested, and if so, 
which module wins the right to send a command 
cycle to start the transaction. 

The arbitration scheme employs a least-recently­
used rotating priority algorithm for CPU modules 
and a fixed high/low scheme for the 1/0 port con­
troller. The 1/0 port controller arbitrates using the 
highest and lowest priority levels, arbitrating high 
six times then low two times. This arrangement 
ensures that the 1/0 port controller can utilize 
greater than 50 percent of the available system bus 
bandwidth while still ensuring the CPUs some 
access to the system bus. The 1/0 port controller 
also uses its unique arbitration scheme to ensure 
atomic read/modify /write sequences on the bus 
necessary for performing writes of less than a full 
naturally aligned 64-byte quantity. The 1/0 port 
controller does the read at its next scheduled prior­
ity and then immediately follows up with the write 
at highest priority. This scheme ensures that no 
other node can access the data between the read 
and the write. 

All command/address and control/status register 
(CSR) cycles are protected with parity. Data cycles 
to and from memory are protected with error cor­
rection code (ECC). Transmit check is used by all 
modules to verify that what a given module is 
asserting on the bus is actually being seen on the 

5 6 
5 6 

4 5 6 
4 5 6 

2 2 2 2 3 3 3 3 4 4 44 5 5 5 5 6 6 6 6 

Utilized Bus Bandwidth= 16 bytes per 20 ns x 4 data cycles per 5 bus cycles= 640MB/s 

Figure 2 LSB Transaction Pipeline 
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bus. Transmit check allows the detection of bus col­
lisions and faulty bus drivers or receivers. 

The system intercormect is physically imple­
mented as a centerplane which is 350 millimeters 
(mm) wide and 500 mm high. There are four mod­
ule connections on one side, and five on the other. 
The centerplane-module connection is imple­
mented using a four-row pin and socket connector 
with connections on a 100-mil grid. Modules are 
410 mm high and 340 mm deep. This module size 
was chosen to allow the maximum module size 
within the constraints of an 865-mm-deep cabinet 
and of the centerplane technology. Modules are 
spaced on 65-mm centers and are contained within 
a box that provides customized air flow for each dif­
ferent module design. 

The DEC 7000 was designed with a centerplane 
interconnect to solve the problem of bus length 
and to meet the need for wide module spacing 
that allows for the anticipated heat-dissipation 
requirements of future processor chips. With a 
centerplane, the number of module slots available 
for a given length of bus increases by (n •2)-1 
where n is the number of slots available in a con­
ventional backplane. A centerplane configuration 
leaves little space on the backplane for termination 

DECCHIP 
21064 

CONTROL 

networks. Designers solved this problem by adopt­
ing a distributed termination scheme with bus ter­
minator networks present on all modules in the 
backplane. 

Processor Module 
The primary purpose of the processor module is to 
provide a large second-level cache to the processor 
chip and to act as an interface to the system bus and 
memory for missed cache references. The proces­
sor module in the DEC 7000 system was designed to 
use either VAX or Alpha AXP chips. As noted above, 
a common design is used in the implementation of 
the VAX and DEC 7000 and 10000 systems, with the 
only significant differences being the processor 
chip and the console/diagnostic code. Figure 3 is a 
block diagram of the processor module. 

The processor module provides a 4MB external 
cache, which is shared by the processor chip and 
the bus interface chips. The cache is organized as a 
single set (direct mapped), with a block and fill size 
of 64 bytes. The external cache conforms to a write­
back, conditional update, cache coherency proto­
col. The processor on-chip data cache is a proper 
subset of the external cache and uses a write­
through protocol.4 

BUS INTERFACE 
GATE ARRAYS 

PROCESSOR ADDRESS 

I D~ACHE I 

1 ,~ACHE I 

CPU 
W·BUFFER 

LATCH/MUX 

INVALIDATE 

B·CACHE B·CACHE 
TAG AND DATA 
STATUS 

DATA, ECC 

F646 

TAG, VALID . SHARED, DIRTY 

INIT 
ROM 

ROM WATCH 

LSB ADDRESS 

BACKMAP 
B·CACHE 

DATA,ECC 

FLASH 
ROM 

TAG , VALID 

UART 

BACKMAP 
D-CACHE 

WRITE 
BUFFER 

t 

VICTIM 
BUFFER 

Figure 3 Block Diagram of the DEC 7000 Processor Module 
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The structure of the cache is shown in Figure 4. 
Each cache line consists of 512 bits of data (with 112 
bits of ECC), 12 bits of tag (with 1 parity bit), and 3 
status bits (with 1 parity bit). The 12 bits of tag data 
applied to a 4MB cache size sets a processor physi­
cal address capability of 16GB. (This is a processor 
limitation, and future processors will address larger 
memory sizes.) The control bits contain informa­
tion that allows the cache and memory systems to 
maintain coherency. The control bits are defined as 
follows: 

• A valid bit, indicating whether or not this line 
contains valid data 

• A shared bit, indicating whether or not this line 
may also be resident in another processor's 
cache in the system 

• A dirty bit, indicating whether or not this line 
has been written to by this processor 

Upon detection of a cache read miss in the pro­
cessor on-chip cache, the processor accesses the 
external cache tag to see if the given block is resi­
dent. The processor chip contains the tag compari­
tor and status logic to determine a "hit." If the block 
is resident in the external cache, the processor then 
cycles the external cache data store twice, each time 
reading in 128 bits of data and 28 bits of ECC for a 
total of 32 bytes (internal processor cache block 
size is 32 bytes). The external cache cycles at a rate 
five times the processor chip dock period (and at 
two times the period for the VAX variant). Upon the 
detection of a "miss," the processor chip informs 
the bus interface chips by means of handshake sig­
nals and waits until the miss is serviced on the I.SB. 

Upon a data write by the processor, the data is 
written through to the external cache. If the data 
is already resident in the cache, it is updated and 
conditionally broadcast onto the system bus if 
marked as shared. If the selected cache line contains 
a different valid tag, the current (old) cache line is 
written to memory and replaced by the new tag and 
data. To improve performance during this opera-

tion, the current cache line is stored in a local victim 
buffer while the new data is read. After the new data 
has been placed in the cache, the old data is written 
back to memory as a background operation. 

A duplicate set of cache tags (backmaps) are kept 
by the bus interface logic for both the external 
cache and the internal processor chip D-cache. 
These backmaps are accessed by the bus interface 
logic on all bus references to determine the action 
necessary to maintain cache/memory coherency. 

On bus read requests, the processor bus inter­
face references its external cache backmap and sup­
plies data from the on-board cache if a "dirty" copy 
of the data is present. On bus writes, a check is per­
formed to see if the data is present in the processor 
on-chip D-cache. If the data line is present, the 
updated data is accepted. If the data line is not pre­
sent but is instead in the external cache, the line is 
invalidated. This cache update policy is an attempt 
to minimize false sharing of data by only updating 
on references to a cache line in the processor on­
chip cache, which is small and should contain only 
freshly referenced data. 

False sharing of data is a problem common to 
multiprocessor systems running fully symmetric 
operating systems. When a process is migrated 
from one processor to another, dirty data often 
remains in the cache of the previous processor. 
When the new processor requests that data, it 
becomes "shared," resulting in the need to update 
all copies by means of bus transactions on all subse­
quent modifications of the data. Since the process 
has migrated, there is no need to maintain the state 
of the data in the cache of the previous processor; 
doing so slows down execution of the process due 
to the bus transactions required to update. The 
write-update policy described in the previous para­
graph provides a means to estimate if "shared" data 
is still in use by the previous processor and pro­
vides a means to flush it from the previous cache if 
it has not been recently referenced. 

The external cache is 128 bits wide with long­
word ECC protection. The ECC scheme used to 
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VALID LONGWORD 15 ECC LONGWORD 14 ECC LONGWORD 13 ECC LONGWORD 12 ECC 
PARITY 

x 64K CACHE ENTRIES 

Figure 4 External Cache Structure 
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protect the external cache is identical to that used 
on the LSB, which allows flow-through ECC. The 
processor chip checks and corrects data for all pro­
cessor refills. The bus interface chips perform 
lookaside ECC checking for fault isolation purposes 
but do not perform ECC correction. 

The processor module also provides system con­
sole functions. The module includes universal 
asynchronous receiver/transmitters (UARTs) for 
communication with the console terminal and 
power subsystems, a time-of-year clock, and 896KB 
of flash read-only memories (ROMs) for console and 
diagnostic code. Each processor contains a com­
plete console subsystem, but only one module uses 
this function in a multiprocessor system. This 
approach allows static reconfiguration of the 
system in the event of a module failure. 

A 4MB module-level cache was chosen because 
it was the largest natural implementation using 
256K X 4 SRAMs driven by the 128-bit-wide cache 
data path defined by the DECchip 21064 micropro­
cessor. Denser SRAMs were not available at the nec­
essary speed (10 to 12 ns), and a multiway cache 
architecture is not easily implemented with the 
DECchip 21064. The fill size of 64 bytes was 
selected to efficiently use the 16-byte-wide system 
bus and provide 80 percent bus data efficiency. 

Figure 5 shows a photograph of side 1 of a pro­
cessor module. Additional cache RAMs and drivers 
reside on side 2. 

Memory Module 
The memory subsystem of the DEC 7000 comprises 
one to seven memory array modules with a single 
module capacity of 64 to 2048MB. The primary 
functions of the memory array modules are to 
respond to bus read/write functions, refresh the 
memory RAMs, and maintain ECC data for the mem­
ory. The design supports either 4MB or 16MB 
DRAMs, on-board interleaving on modules with 
greater than 64MB, and multimodule interleaving 
under many conditions. 

The DEC 7000 memory modules run synchro­
nous with the LSB. Memory transactions occur in 
fixed cycles relative to the system bus. All memory 
space transfers consist of 64-byte blocks that are 
transferred 16 bytes at a time over four contiguous 
data cycles. Read and write data wrapping is done 
on 32-byte naturally aligned boundaries. The 
DRAMs are 4-bit-wide parts, and an entire 64-byte 
block is read or written in parallel and buffered for 
bus transmission. 
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Data wrapping is a method used to provide a 
lower latency return of the data required by a read 
command. The bus contains an extra address bit 
that indicates in which half of a 64-byte block the 
requested data lies. The memory controller returns 
the half block containing the target data first, allow­
ing faster resumption of processing. Data wrapping 
has no benefit on write transactions but is done to 
simplify the design of the system. 

DEC 7000 memory modules are protected with a 
quadword ECC algorithm. The chosen ECC imple­
mentation allows detection and correction of sin­
gle-bit failures, detection of all 2-bit failures, and 
detection and correction of any error wholly con­
tained within a 4-bit-wide DRAM. Memory modules 
convert LSB longword (32-bit) ECC into quadword 
(64-bit) ECC that is stored with LSB data on writes. 
During LSB reads, quadword ECC is converted to 
longword ECC. Quadword ECC allows for higher 
packing densities on the memory module with 
fewer DRAM components. Longword ECC is used on 
the system bus because the DECchip 21064 micro­
processor dictates the use of longword ECC in its 
external caches, and the timing of the external 
cache will not allow a conversion to a different ECC 
for bus transactions. 

The memory module contains a hardware-based 
self-test that checks each bit on the module to be 
sure it can be set to either a O or a 1 state and initial­
izes the memory to a known good ECC state. All 
memory modules execute self-test in parallel upon 
system initialization at a rate of approximately 
35MB per second. This approach results in substan­
tial savings in boot time as compared to a system 
that tests memory with initialization code executed 
by the processor. Moreover, the self-test provides 
excellent error isolation in the event of a failure. 

DEC 7000 memory is designed in 64MB, 128MB, · 
256MB, 512MB, and 2GB modules. The 64MB, 128MB, 
and 256MB modules use 4MB DRAMs, double-side 
surface mounted. The 512MB modules use 4MB 
DRAMS mounted on soldered-in single in-line mem­
ory modules (SIMMs). (PC-style socketed SIMMs 
proved unreliable for large configurations.) The 
2GB modules use 16MB DRAMS mounted on sol­
dered-in SIMMS. 

1/0 Subsystem 
The DEC 7000 1/0 subsystem consists of an 1/0 port 
controller and four high-speed parallel ports. The 
1/0 controller provides an interface between 
the system bus and the parallel ports. Additional 
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POWER SUPPLY SYSTEM BUS INTERFACE 

Figure 5 Processor Module, Major Components Highlighted 

modules provide the interface between the high­
speed parallel ports and specific standard 1/0 buses. 
To date, interfaces have been designed for the XMI, 

which is used as the 1/0 bus on the VAX 6000 and 
VAX 9000 systems, and for the Futurebus+, which is 
an IEEE standard high-performance bus definition. 

The I/0 port controller and specific bus adapter 
architecture was adopted to allow a flexible bus 
strategy that can evolve over time, as well as to 
accommodate the physical separation of processor 
and I/0 subsystems necessary in an expandable 
system with multiple I/0 channels. The 1/0 port 
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controller cable(s) will function to a maximum 
cable length of 3 meters. This length allows 1/0 

expansion cabinets to be placed on either side of 
the main system cabinet. 

The aggregate bandwidth of the 1/0 port con­
troller is 256MB per second. Each parallel port is 
capable of operating at a maximum of 135MB per 
second for data flowing from the 1/0 subsystem to 
memory and at 88MB per second for data flowing 
from memory to the 1/0 subsystem. 

The 1/0 port controller module with its four 
parallel ports is a standard part of all DEC 7000 
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systems and resides in a dedicated system back­
plane slot. Various system configurations are avail­
able that contain between one and four XMI 1/0 

buses. The Futurebus+ subsystems will be available 
when Futurebus+ components become available in 
the computer industry. 

The 1/0 port controller provides a "mailbox" 
interface between the processor and 1/0 devices. A 
processor instruction cannot directly access a regis­
ter in an 1/0 device, as was possible on previous VAX 
implementations. To use the "mailbox" interface, a 
processor creates a work descriptor packet in mem­
ory and then issues a command to the 1/0 port con­
troller to execute the command. Command 
completion is asynchronous and the processor may 
choose to do other work while the command is exe­
cuted. The "mailbox" interface between proces­
sors and 1/0 devices was created to allow relatively 
slow 1/0 devices to interface to a high-speed, non­
pended system bus. If a processor were allowed to 
access the 1/0 device directly, the system bus would 
be stalled for large portions of time. 

Clearly the mailbox communications method is 
more complicated than traditional direct access. 
Fortunately the mailbox is used only when a pro­
cessor needs to directly access an 1/0 device. The 
I/0 device can directly access main memory (or 
possibly a CPU cache) with all necessary buffering 
done by the 1/0 port controller. Most modern high­
performance 1/0 adapters use high-level, packet­
based protocols, which require very little direct 
access of the 1/0 adapter by the processor. 

A typical CPU-initiated 1/0 transaction to an intel­
ligent disk controller on an XMI bus to read from 
the disk would have the following steps. 

• The CPU places a disk controller command 
packet requesting a disk read into system 
memory. 

• The CPU sets up an 1/0 mailbox structure with a 
command to inform the disk controller that 
there is a command packet in memory, writes a 
register in the 1/0 port controller to inform it 
that there is a mailbox transaction to complete, 
and then spins on a done bit in the mailbox 
structure. 

• The 1/0 port controller fetches the mailbox 
structure from memory, generates an XMI write 
command to the disk controller, and sets the 
done bit in the mailbox structure. The CPU sees 
the assertion of the done bit and goes on to other 
work. 
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• The disk controller receives the mailbox data 
and then generates an XMI request to read its 
command packet from memory. 

• The 1/0 port controller reads the specified com­
mand packet from memory 64 bytes at a time 
and sends it back to the disk controller 32 bytes 
at a time. 

• The disk controller decodes the command packet, 
reads the requested data from disk, and starts 
writing to system memory in 32-byte segments. 

• The 1/0 port controller buffers the 32-byte 
writes from the disk controller into 64-byte seg­
ments and writes the data to system memory. 

• The disk controller signals an interrupt on the 
XMI to indicate that the requested operation is 
complete, which is received by the 1/0 port con­
troller. The 1/0 port controller signals an inter­
rupt to the CPU. 

Console and Diagnostics 
Like many previous VAX systems, the DEC 7000 
system employs an embedded console. The console 
function is performed by code run on the proces­
sors within the system rather than by a dedicated, 
detached front-end processor. 

Unlike the strategy for previous VAX systems, a 
unified console and diagnostic strategy was 
adopted for the DEC 7000 and 10000, VAX 7000 and 
10000, and DEC 4000 systems. A single code base 
not only provides the basic console functions but 
also extends diagnostic support for manufacturing 
and field firmware upgrade support. This unified 
strategy has reduced the total development effort 
and promoted a common "look and feel" across the 
different systems. 

The console development also differed from that 
of previous VAX systems. The primary implemen­
tation language was C, with only various architec­
ture-specific code in Alpha AXP ( or VAX) assembly 
language. The console and processor diagnostic 
code was simulated prior to the arrival of hardware. 
This simulation greatly simplified early hardware 
debug; the console had basic functionality after a 
single debug session. 

At power-up, each processor acts independently 
to execute processor-specific diagnostics and con­
sole initialization. The processors then select a con­
sole primary, which then proceeds to test and 
configure the memory and 1/0 subsystems. The 
console primary also retains control of the console 
terminal line; console secondaries communicate 
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with the primary through memory-resident mes­
sages. After initialization, diagnostic or other con­
sole tasks can be assigned to any processor in the 
configuration. One benefit of this arrangement is 
that system diagnostics and exercisers can be run in 
parallel. 

Like previous DECsystem consoles (that is, sys­
tems based on MIPS Co. chips) , the DEC 7000 con­
sole provides a set of services, or callbacks, to the 
operating system. These services can be used to 
control automatic bootstrapping across operating 
system crashes as well as primitive I/0 services 
used by the operating system during bootstrap and 
system crash. The latter simplifies the operating 
system device support by providing simple 
read/write functions common to all devices. 

A feature of the power of the console is the field 
firmware update utility. Field upgrade of all system 
firmware (console and I/0 adapters) is accom­
plished by the DEC 7000 firmware update utility 
(I.FU). LFU is really a dedicated console image which 
is distributed on CDROM. The system console is 
used to boot LFU, which is then used to update all 
system firmware. 

System Packaging 
The DEC 7000 system cabinet is 1700 mm high 
by 800 mm wide by 865 mm deep. The cabinet 
houses the system backplane, up to two I/0 subsys­
tems, and disk arrays or batteries for the system bat­
tery-backup function . Expansion is possible by 
using one or two I/0 expander cabinets, each of 

which houses up to two additional I/0 subsystems 
and additional disk arrays. Further mass storage 
expansion is possible with Digital 's standard line of 
mass storage cabinets connected by CI, DSSI, or SI 
interconnects. 

The DEC 7000 cabinetry has been designed for 
easy system upgrade and servicing. The system 
backplane assembly, power system, and I/0 subsys­
tems are modular and easily replaced by field per­
sonnel. The process of future upgrades can be 
accomplished more quickly and reliably through 
the use of modular subassemblies. 

As shown in Figure 6, the DEC 7000 main system 
cabinet contains a central air mover with logic 
assemblies above and below it. The air mover is a 
single motor with a large molded vane assembly 
and can pull air through both the upper and the 
lower logic assemblies. An air flow of approxi­
mately 900 cubic feet per minute with velocities 
up to 1800 linear feet per minute is maintained 
through the upper logic assembly, which contains 
the processor and memory subsystems. Although 
not necessary for the DECchip 21064, this large 
volume of air movement was designed into the 
machine to allow upgrades through several genera­
tions of processor chips. By using standard air-cool­
ing techniques and customized module "boxes" 
that optimize local air flow, it is possible to cool 
processor chips of up to 70 watts in the DEC 7000 
system cabinet. 

Above the air mover are the system backplane 
and the modular power subsystem. Below the air 

Figut·e 6 DEC 7000 Main System Cabinet, Front (Left) and Rear (Right) Views 
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mover are four modular spaces for 1/0 bus back­
planes, disk drives, or batteries. 

I/0, disk, and battery subsystems occupy varying 
amounts of the four modular spaces. The XMI sub­
system occupies two spaces and is oriented front to 
back because of its rear-exit cabling scheme. The 
Futurebus+ subsystem occupies a single rear space. 
Disk subsystems consisting of up to six 5.25-inch 
(DSSI or SCSI [small computer system interface]) or 
fourteen 3.5-inch (SCSI only) drives may occupy any 
of the modular spaces. Batteries for the uninter­
ruptible power system occupy two modular 
spaces, which may be oriented either front to back 
(for XMI-based systems) or side to side (for 
Futurebus+ systems). 

The expander cabinet is identical to the main 
system cabinet, with two exceptions: disks may be 
packaged in the area occupied by the system back­
plane, and there is no control panel. Up to two XMI 
or Futurebus+ subsystems may be placed in an 
expander cabinet. 

Power Subsy s tem 
The power subsystem of the DEC 7000 family has 
a highly modular, hierarchical design. The basic 
power system provides 48-volt direct current (VDC) 
to all subassemblies which in turn further regulate 
to necessary voltages. Each module in the system 
backplane contains on-board regulation. This fea­
ture will allow the system to easily evolve with 
changing voltage requirements as CMOS technology 
moves to lower voltages to reduce power consump­
tion. Voltage tolerances can be tightly controlled 
since transmission drops are negated; a precise 
voltage level can be set at the time of module manu­
facture. The voltage and tolerance to a high-per­
formance CMOS processor must be very tightly 
controlled in order to extract maximum perfor­
mance. The XMI, Futurebus+, and disk subsystems 
all regulate the 48 VDC to lower voltages at a subsys­
tem-wide level, not at the module level. 

The 48-VDC modular power system consists of 
one to three parallel regulators, each of which pro­
duces 2400 watts of power. A maximally config­
ured cabinet needs no more than two power 
regulators. An additional regulator can be config­
ured into the system to provide an n+ 1 capability 
for higher availability. 

The power system also includes a battery 
standby function that provides 48 VDC throughout 
the system in the event of an AC power failure . 
Unlike earlier VAX systems in which power was 
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maintained only to system memory, the DEC 7000 
keeps the entire system powered, including in-cabi­
net mass storage. Depending on the system config­
uration, power is maintained for a minimum of 20 
minutes in an n+ 1 power configuration. N+ 1 
power with full battery backup is standard on all 
DEC 10000 systems. 

The DEC 7000 system employs a highly intelligent 
power subsystem with microprocessors in all 48-
volt regulators, which report status to processor 
modules by means of a serial interconnect. System 
software can therefore monitor a wide range of 
power system operating parameters, including 
voltage output, AC input, efficiency, and battery 
charge state. In a large configuration with optional 
expander cabinets, the expander cabinet power sys­
tems also communicate with the system processors 
to provide system-wide power status. 

Performance 
The DEC 7000 and DEC 10000 systems are the fastest 
uniprocessor and multiprocessor, microprocessor­
based computer systems in the world as of their 
introduction date (10 November 1992) and as 
defined by SPEC89 and SPEC92 benchmark data. For 
compute-intensive benchmarks, the DEC 10000 is 
approximately 10 percent faster than the DEC 7000, 
based entirely on the difference in processor clock 
speed. 

The base performance of the DEC 7000 and DEC 
10000 systems is determined by the speed of the 
processor chip and is heavily influenced by cache, 
memory, and 1/0 subsystems. The design goal for 
the DEC 7000 and DEC 10000 systems was to extract 
the maximum possible performance from the 
DECchip 21064 by providing an electrical and physi­
cal environment capable of supporting 200-MHz 
processor operation as well as large caches, a 
large and fast memory subsystem, and multiple I/0 
subsystems. 

While full system-level performance data is still 
being collected, the very high speed processor per­
formance measured on the SPEC benchmarks com­
bined with the very high performance cache, 
memory, and 1/0 subsystems of the DEC 7000 and 
DEC 10000 systems should yield very impressive 
overall system performance. See Table 1. 

Design Process 
The DEC 7000 system was specified, designed, and 
tested by a group of approximately 200 people in 
Boxboro, Massachusetts. The system design team 

109 



Alpha AXP Architecture and Systems 

Table 1 DEC 7000 and DEC 10000 System 
Performance Measurements 

DEC 7000 DEC 10000 

SPECmark89 167.4 184.1 
SPECint89 95.1 104.5 
SPECfp89 244.2 268.6 
SPECint92 96.9 106.5 
SPECfp92 182.1 200.4 

SPECthroughput89 
(4 CPUs) 604.4 654.6 

UNPACK double-precision 
100X100 (MFLOPS) 38.6 42.5 
1000x1000 (MFLOPS) 102.1 111.6 

was responsible for all aspects of the design except 
the DECchip 21064 microprocessor. 

Conceptual work on a system to follow the VAX 
6000 family was started in early 1989, although at 
that time design work was focused on implementa­
tions using VAX and MIPS R4000 processors. In the 
latter part of 1989, the decision was made to pursue 
the Alpha AXP strategy, and earlier concepts were 
reworked to incorporate much higher levels of per­
formance to accommodate the proposed Alpha 
AXPchip. 

In October-December 1989, a core team of 
approximately 10 engineers was assembled to 
firmly define system architecture and to produce 
specifications for all subassemblies. By July 1990 all 
specifications were complete, and implementation 
was started. The first processor module was pow­
ered up in June 1991, followed by a full system 
power-up in September 1991. The VMS operating 
system was booted on a DEC 7000 system on 
September 9, 1991, and OSF was booted in 
November 1991. 

A minimal DEC 7000 system includes 430,000 
gates of logic contained in gate arrays, whereas a 
minimal VAX 6000 Model 200 includes 94,000 gates. 
Despite more than four times the gate count, 
the design portion of the DEC 7000 program was 
completed in approximately 9 months as com­
pared to 12 months for the VAX 6000 program. This 
reduction in design time was achievable in part 
because of the maturing of the engineering pop­
ulation (many of the DEC 7000 engineers had 
worked on various VAX 6000 implementations), 
as well as advances in design tool technology and 
the availability of significantly more powerful 
computers for design simulation. At its peak, the 
DEC 7000 program was consuming 1500 VAX units 
of performance, or VUPs, of compute power 
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(primarily multiprocessor VAX 6000 Model 500 sys­
tems) and used over 325,000 hours of CPU time 
for simulations. 

Conclusion 
The DEC 7000 and DEC 10000 systems are the sec­
ond generation of highly configurable and expand­
able systems produced by Digital Equipment 
Corporation. These are the first systems expressly 
designed to accommodate multiple-processor archi­
tecture types. As computer technology moves for­
ward at an ever-increasing pace, this type of design 
will be demanded by computer users and will be 
necessary to manage engineering costs. 

The DEC 7000 and DEC 10000 system platform 
will accommodate new VAX and Alpha AXP proces­
sors for several years. Over that time, this platform 
will span a performance range of greater than 50: I. 
It will provide computer users with a stable system 
environment that should help minimize the changes 
caused by the continued development of new pro­
cessor chips. While this level of flexibility incurs 
additional initial engineering and product costs, it 
does provide a very cost-effective way to deal with 
the inexorable forward march of technology. 
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Porting OpenVMS 
from fflXtoAlphaAXP 

The Open VMS operating system, developed by Digital for the mx family of comput­
ers, was recently moved from the mx to the Alpha AXP architecture. The Alpha AXP 
architecture is a new RISC architecture introduced by Digital in 199'2. This paper 
describes solutions to several problems in porting the operating system, in addition 
to performance benefits measured on one of the systems that implements this new 
architecture. 

The VAX architecture is an example of complex 
instruction set computing (CISC), whereas the 
Alpha AXP architecture is based on reduced instruc­
tion set computing (RISC). The two architectures 
are very different.1 CISC architectures have perfor­
mance disadvantages as compared to RISC architec­
tures. 2 Digital ported the OpenVMS system to the 
Alpha AXP architecture mainly to deliver the perfor­
mance advantages of RISC to OpenVMS appli­
cations. This paper focuses on how Digital's 
OpenVMS AXP operating system group dealt with 
the large volume of VAX assembly language and 
with system kernel modifications that had VAX 
architecture dependencies. 

The OpenVMS AXP group had two impor­
tant requirements in addition to the primary goal 
of increasing performance: first, to make it easy 
to move existing users and applications from 
Open VMS VAX to Open VMS AXP systems; second, to 
deliver a high-quality first version of the product 
as early as possible. These requirements led us to 
adopt a fairly straightforward porting strategy with 
minimal redesigns or rewrites. We view the first 
version of the OpenVMS AXP product as a begin­
ning, with other evolutionary steps to follow. 

The Alpha AXP architecture was designed for 
high performance but also with software migration 
from the VAX to the AlphaAXP architecture in mind. 
Included in the Alpha AXP architecture are some 
VAX features that ease the migration without com­
promising hardware performance. VAX features 
in the Alpha AXP architecture that are important 
to OpenVMS system software are: four protec­
tion modes, per-page protection, and 32 interrupt 
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priority levels. The Alpha AXP architecture also 
defines a privileged architecture library (PAL) envi­
ronment, which runs with interrupts disabled and 
in the most privileged of the four modes (kernel). 
PALcode is a set of Alpha AXP instructions that exe­
cutes in the PAL environment, implementing such 
basic system software functions as translation 
buffer (TB) miss service. On Open VMS AXP systems, 
PALcode also implements some OpenVMS VAX fea­
tures such as software interrupts and asynchronous 
traps (ASTs). The combination of hardware archi­
tecture assists and OpenVMS AXP PAI..code made it 
easier to port the operating system to the Alpha 
AXP architecture. 

The VAX architecture is 32-bit; it has 32 bits 
of virtual address space, 16 32-bit registers, and a 
comprehensive set of byte, word (16-bit), and long­
word (32-bit) instructions. The Alpha AXP archi­
tecture is 64-bit, with 64 bits of virtual address 
space, 64-bit registers (32 integer and 32 floating­
point), and instructions that load, store, and oper­
ate on 64-bit quantities. There are also longword 
load, store, and operate instructions, and a canoni­
cal sign-extended form for a longword in a 64-bit 
register. 

The OpenVMS AXP system has anticipated evolu­
tion from 32-bit address space size to 64-bit address 
space by changing to a page table format that sup­
ports large address space. However, the OpenVMS 
software assumes that an address is the same size as 
a longword integer. The same assumption can exist 
in applications. Therefore, the first version of the 
Open VMS AXP system supports 32-bit address space 
only. 
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Most of the OpenVMS kernel is in VAX assembly 
language (VAX MACR0-32). Instead of rewriting the 
VAX MACR0-32 code in another language, we devel­
oped a compiler. In addition, we required inspec­
tion and manual modification of the VAX MACR0-32 
code to deal with certain VAX architectural depen­
dencies. Parts of the kernel that depended heavily 
on the VAX architecture were rewritten, but this 
was a small percentage of the total volume of VAX 
MACR0-32 source code. 

OJmpiling VAX MACR0-32 Code for the 
Alpha AXP Architecture 
Simply stated, the VAX MACR0-32 compiler treats 
VAX MACR0-32 as a source language to be compiled 
and creates native OpenVMS AXP object files just as 
a FORTRAN compiler might. This task is far more 
complex than a simple instruction-by-instruction 
translation because of fundamental differences in 
the architectures, and because source code fre­
quently contains assumptions about the VAX archi­
tecture and the OpenVMS Calling Standard on VAX 
systems.3,4 The compiler must either transparently 
convert these VAX dependencies to their OpenVMS 
AXP counterparts or inform the user that the source 
code has to be changed. 

Source Code Annotation 
We extended the VAX MACR0-32 source language to 
include entry-point declarations and other direc­
tives for the compiler's use, which provide more 
information about the intended behavior of the pro­
gram. Entry-point declarations were introduced to 
allow declaration of: (1) the register semantics for 
a routine when the defaults are not appropriate and 
(2) the specialized semantics of frameless subrou­
tines and exception routines to be declared. 

The differing register size between the VAX and 
the Alpha AXP architectures influenced the design 
of the compiler. On the VAX, MACR0-32 operates on 
32-bit registers, and in general, the compiled code 
maintains 32-bit sign-extended values in Alpha AXP 
64-bit registers. However, this code is now part 
of a system that uses true 64-bit values. As a result, 
we designed the compiler to generate 64-bit regis­
ter saves of any registers modified in a routine, 
as part of the "routine prologue code." Automatic 
register preservation has proven to be the safest 
default but must be overridden for routines that 
return values in registers, using appropriate entry­
point declarations. 
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Other directives allow the user to provide addi­
tional information about register state and code 
flow to improve generated code. Another class of 
directives instructs the compiler to preserve the 
VAX behavior with respect to granularity of mem­
ory writes or atomicity of memory updates. The 
Alpha AXP architecture makes atomic updates and 
guaranteed write granularity sufficiently costly to 
performance that they should be enabled only 
when required. These concepts are discussed in 
the section Major Architectural Differences in the 
OpenVMS Kernel. 

Identifying VAX Architecture 
and Calling Standard Dependencies 
As mentioned earlier, the compiler must either 
transparently support VAX architecture-dependent 
constructs or inform the user that a source change 
is necessary. A good example of the latter case is 
reliance on VAX JSB/RSB (jump to subroutine and 
return) instruction return address semantics. On 
VAX systems, a JSB instruction leaves the return 
address on top of the stack, which is used by the 
RSB instruction to return.3 System subroutines 
often take advantage of this semantic in order to 
change the return address. This level of stack con­
trol is not available in a compiled language. In 
porting the OpenVMS system to the Alpha AXP 
architecture, we developed alternative coding prac­
tices for this and many other nontransportable 
idioms. 

The compiler must also account for the dif­
ferences in the OpenVMS Calling Standard on the 
VAX and Alpha AXP architectures. Although trans­
parent to high-level language programmers, these 
differences are very significant in assembly lan­
guage programming. 4 To operate correctly in a 
mixed language environment, the code generated 
by the VAX MACR0-32 compiler must conform to 
the OpenVMS Calling Standard on the Alpha AXP 
architecture. 

On VAX systems, a routine refers to its arguments 
by means of an argument pointer (AP) register, 
which points to an argument list that was built in 
memory by the routine's caller. On Alpha AXP sys­
tems, up to six routine arguments are passed to the 
called routine in registers; any additional argu­
ments are passed in stack locations. Normally, the 
VAX MACR0-32 compiler transparently converts 
AP-based references to their correct Alpha AXP loca­
tions and converts the code that builds the list to 
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initialize the arguments correctly. In some cases, 
the compiler cannot convert all references to their 
new locations, so an emulated VAX argument list 
must be constructed from the arguments received 
in the registers. This so-called "homing" of the argu­
ment list is required if the routine contains indexed 
references into the argument list or stores or passes 
the address of an argument list element to another 
routine. 

The compiler identifies these coding practices 
during its process of flow analysis, which is similar 
to the analysis done by a standard high-level lan­
guage optimizing compiler. The compiler builds a 
flow graph for each routine and tracks stack depth, 
register use, condition code use, and loop depth 
through all paths in the routine flow. This same 
information is required for generating correct and 
efficient code. 

Access to AI,pha AXP 
Instructions and Registers 
In addition to providing migration of existing VAX 
code, the VAX MACR0-32 compiler includes support 
for a subset of Alpha AXP instructions and PALcode 
calls and access to the 16 integer registers beyond 
those that map to the VAX register set. The instruc­
tions supported either have no direct counterpart 
in the VAX architecture or are required for efficient 
operation on a full 64-bit register value. These 
"built-ins" were required because the OpenVMS 
AXP system uses full 64-bit values for some opera­
tions, such as manipulation of 64-bit page table 
entries (PTEs). 

Optimization 
The compiler includes certain optimizations that 
are particularly important for the Alpha AXP archi­
tecture. For example, on a VAX system, a reference 
to an external symbol would not be considered 
expensive. On an Alpha AXP system, however, such 
a reference requires a load from the linkage section 
to obtain the address of the symbol prior to loading 
the symbol's value. (The linkage section is a data 
region used for resolving external references.4) 

Multiple loads of this address from the linkage 
section may be reduced to a single load, or the 
load may be moved out of a loop to reduce memory 
references. 

Other optimizations include the elimination 
of memory reads on multiple safe references, regis­
ter state tracking for optimal register-based mem­
ory references, redundant register save/restore 
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removal, and many local code generation optimiza­
tions for particular operand types. Peephole opti­
mization of local code sequences and low-level 
instruction scheduling are performed by the back 
end of the compiler. 

In some instances, the programmer has knowl­
edge of register state or other code behavior that 
cannot be inferred from the source code alone. 
Compiler directives are provided for specifying reg­
ister alignment state, structure base address align­
ment, and likely flow paths at branch points. 

Certain types of optimization typically per­
formed by a high-level language compiler cannot be 
performed by the VAX MACR0-32 compiler, because 
assumptions made by the MACR0-32 programmer 
cannot be broken. For example, the order of mem­
ory reads may not be changed. 

Major Architectural Differences 
in the OpenVMS Kernel 
This section concentrates on architectural changes 
that affect synchronization, memory management, 
and 1/0. These are not the only architectural differ­
ences that cause significant changes in the kernel. 
However, they are the major differences and are 
representative of the effort involved in porting the 
OpenVMS system to the Alpha AXP architecture. 

For the most part, it was possible to isolate archi­
tecture-dependent changes to a few major sub­
systems. However, differences in the memory 
reference architecture had a pervasive impact on 
users of shared data and many common synchro­
nization techniques. Other differences such as 
those related to memory management, context 
switching, or access to 1/0 devices were confined 
mostly to the relevant subsystems. 

Effects of Architectural Differences 
in Memory Subsystems 
The following differences between the VAX and 
Alpha AXP memory reference architectures affected 
synchronization: 1,3 

• Load/store architecture rather than atomic mod­
ify instructions 

• Longword and quadword writes with no byte 
write instructions 

• Read/write ordering not guaranteed 

Load/store memory reference instructions are 
characteristic of most RISC designs. However, the 
other differences are less typical. The reasons for all 
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three differences were hardware simplification and 
opportunities for increased hardware perfor­
mance.' These differences result in significant 
changes in system software and in many opportuni­
ties for subtle errors, which can be detected only 
under heavy load. Adapting to these architectural 
changes without greatly impacting performance 
was one of the major challenges that faced the 
group in porting the OpenVMS system to the Alpha 
AXP architecture. 

A load/store architecture such as Alpha AXP can­
not provide the atomic read-modify-write instruc­
tions present in the VAX architecture. Thus, 
instruction sequences are necessary for many oper­
ations performed by a single, atomic VAX instruc­
tion, such as incrementing a memory location. The 
consequence is a need for increased awareness of 
synchronization. Instead of depending on hard­
ware to prevent interference between multiple 
threads of execution on a single processor, explicit 
software synchronization may be required. 
Without this synchronization, the interleaving of 
independent load-modify-store sequences to a sin­
gle memory location may result in overwritten 
stores and other incorrect results. 

The lack of byte writes imposes additional syn­
chronization burdens on software. Unlike VAX and 
most ruse systems, an Alpha AXP system has instruc­
tions to write only longwords and 64-bit quad­
words, not bytes or words. Thus to write bytes, the 
software must include a sequence of instructions 
that reads the encompassing longword, merges in 
the byte, and writes the longword to memory. As 
a consequence, software must be concerned not 
only with shared access to the same memory cell by 
multiple threads, but also with access to indepen­
dent but adjacent variables. Synchronization aware­
ness is now extended from shared data to data 
items that are merely near each other. 

The OpenVMS AXP operating system group 
avoided the above-mentioned problems introduced 
by the architectural changes in one of three ways: 

• Explicit software synchronization was added 
between threads. 

• Data items were relocated to aligned longwords 
or quadwords. 

• Alpha AXP load locked and store conditional 
instructions were used. 

The obvious solution of adding explicit synchro­
nization in the form of a software lock is not always 
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appropriate for several reasons. First, the problem 
may be independent data items that happen to 
share a longword. Synchronizing this sort of access 
in unrelated code paths is prone to error. Explicit 
synchronization may also have an unacceptable 
performance impact. Finally, deadlocks are a possi­
bility if one thread interrupts another. 

Ensuring that data items are in aligned longwords 
or quadwords both improves performance and 
eliminates interactions between unrelated data. 
This technique is used wherever possible but can­
not be used in two major cases. One case occurs 
when the replication factor is too large. Expanding 
an array of thousands of bytes to longwords may 
simply not be acceptable. The other major problem 
case is data structures that cannot be changed 
because of external constraints. For example, data 
may represent a protocol message or a structure 
primarily resident on disk. Separate internal and 
external forms of such data structures could exist, 
but the performance cost of continuous conver­
sions may not be acceptable. 

Often the easiest and highest-performance way 
to solve synchronization problems is to use 
sequences of load locked and store conditional 
instructions. The load locked instruction loads an 
aligned longword or quadword while setting a 
hardware flag that indicates the physical address 
that was loaded. The hardware flag is cleared if any 
other thread, processor, or VO device writes to the 
locked memory location. The store conditional 
instruction stores an aligned longword or quad­
word if and only if the hardware lock flag is still set. 
Otherwise, the store returns an error indication 
without modifying the storage location. These 
instructions allow the construction of atomic read­
modify-write sequences to update any datum that is 
contained within a single aligned quadword. These 
sequences of instructions are significantly slower 
than normal loads and stores due to the necessity of 
waiting for the write to reach a point in the mem­
ory hierarchy where consistency can be guaran­
teed. In addition, their use may inhibit many 
compiler optimizations because of restrictions on 
the instructions between the load and store. 
Although faster than most other synchronization 
methods, this mechanism should be used sparingly. 

The lack of guaranteed read/write ordering 
between multiple processors is another complica­
tion for the programmer trying to achieve proper 
synchronization. Although not visible on a single 
processor, this lack of ordering means that one 
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processor will not necessarily observe memory 
operations in the order in which they were issued 
by another processor. Thus, many obvious synchro­
nization protocols will not work when writes to 
the synchronization variable and to the data being 
protected are observed to occur out of order. 
A memory barrier instruction is provided in the 
architecture to ensure ordering. However, the nega­
tive impact of this instruction on system perfor­
mance requires that it be used only when 
necessary. 

As described in the previous section, we used 
various mechanisms to solve the synchronization 
problems. Having multiple solutions allowed us to 
choose the one with the least performance impact 
for each case. In some cases, explicit synchroniza­
tion was already in place due to multiprocessor syn­
chronization requirements. In other cases, we 
expanded data structures at a cost of modest 
amounts of memory to avoid expensive synchro­
nization when referencing data. 

Privileged Architecture Changes 
Unlike the pervasive architectural changes 
described in the previous section, the privileged 
architecture differences had a more limited impact. 
The primary remaining areas of change are the 
new page table formats and the details of process 
context switching. This section describes mem­
ory management as a representative example. 
However, many limited changes still amount to 
modifying virtually every source module in the 
OpenVMS kernel, even if only to add compiler 
directives. 

Memory Management Not surprisingly, the mem­
ory management subsystem required the most 
change when moving from the VAX to the Alpha 
AXP architecture. Aside from the obvious 64-bit 
addressing capability, two significant differences 
exist between the page table structures on the VAX 
and the Alpha AXP architectures. First, Alpha AXP 
does not have an architectural division between 
shared and process private address space. Second, 
the Alpha AXP three-level page table structure 
shown in Figure 1 allows the sharing of arbitrary 
subtrees of the page table structure and the effi­
cient creation of large, sparse address spaces. In 
addition, future Alpha AXP processors may have 
larger page sizes. 

To meet our schedule goals, we decided initially 
to emulate the VAX architecture's 32-bit address 
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space as closely as possible. This decision required 
creating a 2-gigabyte (GB) process private address 
region (i.e., VAX PO and Pl) and a 2GB shared 
address region (i.e., VAX SO and Sl) for each pro­
cess. This is easily accomplished by giving each 
process a private level 1 page table (LlPT) that con­
tains two entries for level 2 page tables (L2PTs). 
One of these L2PTs is shared and implements the 
shared system region, whereas the other is private 
and implements the process private address 
regions. Although the smallest allowed page size of 
8 kilobytes (KB) results in an 8GB region for each 
level 2 page table, we use only 2GB of each region 
to keep within our 4GB 32-bit limit. As shown 
in Figure 1, the L2PTs are chosen to place the 
base address of the shared system region at 
FFFFFFFF80000000 (hexadecimal), the same as the 
sign-extended address of the top half of the VAX 
architecture's 32-bit address space. 

Although changes were extensive in the memory 
management subsystem, many were not conceptu­
ally difficult. Once we dealt with the new page 
table structure, most changes were merely for alter­
native page sizes, new page table entry formats, and 
changes to associated data structures. We did 
decide to keep the OpenVMS VAX concept of map­
ping process page tables as a single array in shared 
system space for our initial implementation. 
Although not viable in the long term due to the 
potentially huge size of sparse process page tables, 
this decision minimized changes to code that refer­
ences process page tables. Having process page 
tables visible in shared system space turned out to 
be a significant complication in paging and in 
address space creation, but the schedule benefits 
derived from avoiding changes to other subsystems 
were considered worthwhile. We expect to change 
to a more general mechanism of self-mapping pro­
cess page tables in process space for a subsequent 
Open VMS AXP release. 

Retaining the VAX appearance of process page 
tables allowed us to meet our goals of minimum 
change outside of the memory management subsys­
tem. Unprivileged code is unaffected by the mem­
ory management changes unless it is sensitive to the 
new page size. Even privileged code is generally 
unaffected unless it has knowledge of the length or 
format of PTEs. 

Optimized Translation Buffer Use Thus far, we 
may have given the impression that architectural 
changes always create problems for software. This 
was not universally true; some changes offered us 
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opportunities for significant gains. One such 
change was an Alpha AXP translation buffer feature 
called granularity hints. TBs are key to performance 
on any virtual memory system. Without them, it 
would be necessary to reference main memory 
page tables to translate every virtual address to 
a physical address. However, there never seems to 
be enough TB entries. The Alpha AXP architecture 
allows a single TB entry to optionally map a virtu­
ally and physically contiguous block of properly 
aligned pages, all with identical protection 
attributes. These pages are marked for the hard­
ware by a flag in the PTE. 

Given granularity hints, near-zero TB miss rates 
for the kernel became attainable. To this end, we 
enhanced the kernel loading mechanisms to create 
and use granularity hint regions. 

The OpenVMS AXP kernel is made up of many 
separate images, each of which contains several 
regions of memory with varying protections. For 
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example, there is read-only code, read-only data, 
and read-write data. Normally, a kernel image is 
loaded virtually contiguously and relocated so that 
it can execute at any address. To take advantage of 
granularity hints, kernel code and data are loaded in 
pieces and relocated to execute from discontigu­
ous regions of memory. Only a very few TB entries 
are actually used to map the entire nonpaged ker­
nel, and the goal of near-zero TB misses was 
reached. 

The benefits of granularity hints became immedi­
ately obvious, and the mechanism has since been 
expanded. Now, the OpenVMS AXP system also uses 
the code region for user images and libraries. This 
feature extends the benefits not only to images sup­
plied by the OpenVMS system, but to customer 
applications and layered products as well. Of 
course, usage of this feature is only reasonable for 
images and libraries used so frequently that the 
permanent allocation of physical memory is 
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warranted. However, most applications are likely to 
have such images, and the performance advantage 
can be impressive. 

1/0 
Unlike the architectural changes, the new 1/0 archi­
tecture structures an area that previously was 
rather uncontrolled. The project goal was to allow 
more flexibility in defining hardware 1/0 systems 
while presenting software with a consistent inter­
face. These seem like contradictory aims, but both 
must be met to build a range of competitive, high­
performance hardware that can be supported with 
a reasonable software effort. 

The Alpha AXP architecture presents a number of 
differences and challenges that impacted the 
OpenVMS AXP 1/0 system. These changes spanned 
areas from longword granularity to device control 
and status register (CSR) access to how adapters 
may be built. 

CSR Access A fundamental element of 1/0 is the 
access of CSRs. On VAX systems, CSR access is 
accomplished as simply another memory reference 
that is subject to a few restrictions. Alpha AXP sys­
tems present a variety of CSR access models. 

Early in the project, the concept of 1/0 mailboxes 
was developed as an alternative CSR access model. 
The 1/0 mailbox is basically an aligned piece of 
memory that describes the intended CSR access. 
Instead of referencing CSRs by means of instruc­
tions, an 1/0 mailbox is constructed and used as 
a command packet to an 1/0 processor. The mail­
box solves three problems: the mailbox allows 
access to an 1/0 address space larger than the 
address space of the system; byte and word refer­
ences may be specified; and the system bus is sim­
plified by not having to accommodate CSR 
references that may stall the bus. As systems get 
faster, these bus stalls are increasingly larger imped­
iments to performance. 

Mailboxes are the 1/0 access mechanism on 
some, but not all, systems. To preserve investment 
in driver software, the OpenVMS AXP operating 
system implemented a number of routines that 
allow all drivers to be coded as if CSRs were 
accessed by a mailbox. Systems that do not support 
mailbox 1/0 have routines that emulate the access. 
These routines provide insulation from hardware 
implementation details at the cost of a slight perfor­
mance impact. Drivers may be written once and 
used on a number of differing systems. 
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Read/Write Ordering An 1/0 device is simply 
another processor, and the sharing of data is a 
multiprocessing issue. Since the Alpha AXP archi­
tecture does not provide strict read/write ordering, 
a number of rules must be followed to prevent 
incorrect behavior. One of the easiest changes is to 
use the memory barrier instructions to force order­
ing. Driver code was modified to insert memory 
barriers where appropriate. 

The devices and adapters must also follow these 
rules and enforce proper ordering in their interac­
tions with the host. An example is the requirement 
that an interrupt also act like a memory barrier in 
providing ordering. In addition, the device must 
ensure proper ordering for access to shared data 
and direct memory access. 

Kernel Processes Another important way in 
which the Alpha AXP architecture differs from the 
VAX architecture is the lack of an interrupt stack. 
On VAX systems, the interrupt stack is a separate 
stack for system context. With the new Alpha AXP 
design, any system code must use the kernel stack 
of the current process. Therefore, a process kernel 
stack must be large enough for the process and for 
any nested system activity. This burden is unreason­
able. A second problem is that the VAX 1/0 sub­
system depends on absolute stack control to 
implement threads. As a result, most of the 1/0 code 
is in MACR0-32, which is a compiled language on the 
OpenVMS AXP system that does not provide abso­
lute stack control. 

These facts resulted in the creation of a kernel 
threading package for system code at elevated inter­
rupt priority levels. This package, called kernel pro­
cesses, provides a set of routines that support a 
private stack for any given thread of execution. The 
routines include support for starting, terminating, 
suspending, and resuming a thread of execution. 

The private stack is managed and preserved 
across the suspension with no special measures on 
the part of the execution thread. Removing require­
ments for absolute stack control will facilitate the 
introduction of high-level languages into the 1/0 

system. 

Peiformance 
As stated earlier, the main purpose of the project 
was to deliver the performance advantages of RISC 
to OpenVMS applications. We adopted several 
methods, including simulation, trace analysis, and a 
variety of measurements, to track and improve 
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operating system and application performance. 
This section presents data on the performance of 
Open VMS services and on the SPEC Release I bench­
mark suite.5 Note that all Alpha AXP results are 
preliminary. 

Performance of Open VMS Services 
To evaluate the performance of the OpenVMS 
system, we used a set of tests that measure the CPU 
processing time of a range of OpenVMS services. 
These tests are neither exhaustive nor representa­
tive of any particular workload. We use relative CPU 
speed (i.e ., VAX CPU time divided by Alpha AXP CPU 
time) as a metric to truly compare CPU perfor­
mance. For 1/0-related services, a RAM disk was 
used to eliminate 1/0 latencies. 

The tests were run on a VAX system and an Alpha 
AXP system that are the same except for the CPU. 
Table I shows the configuration details of the two 
systems. Figure 2 shows the distribution of the rela­
tive CPU speed for the Open VMS services measured. 
Most tests ran between 0.9 and 1.7 times faster on 
the Alpha AXP system than on the VAX system. Table 
2 contains the results for a representative subset of 
the measured OpenVMS services. 

Application Performance 
Applications vary in their use of operating system 
services. Most applications spend the majority of 
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their time performing application-specific work 
and a small fraction of their time using operating 
system services. For these applications, perfor­
mance depends mainly on the performance of 
hardware, compilers, and run-time libraries. We 

Table 1 Configuration Details for OpenVMS Services Test Environment 

Model number 

Clock rate 

Memory size 

On-chip cache size 

Backup cache size 

Translation buffer 

Page size 

Number of registers 

OpenVMS version 

Key: 
I Instruction 
D Data 
ITB Instruction translation buffer 
OTB Data translation buffer 
GPR General-purpose register 

VAX System 

VAX 7000 Model 61 0 

91 MHz 

64MB 

1 KB virtual I-cache 
BKB physical I- and 
D-caches 

4MB I- and D-caches 

96 entries 

512 bytes 

16 32-bit GPRs 

Pre-release V5.5-2 

Alpha AXP System 

DEC 7000 Model 610 

182 MHz 

64MB 

BKB physical I-cache 
8KB physical D-cache 

4MB I- and D-caches 

12 ITB entries 
32 DTB entries 

8KB 

32 64-bit integer 
32 64-bit floating-point 

Pre-release V1 .0 

I 18 Vol. 4 No. 4 Special Issue 1992 Digital Tecbntcalfournal 



Table 2 Relative CPU Speed for a Subset 
of OpenVMS System Services 
and Primitives 

OpenVMS System Service 
or Primitive 

Memory Management Services 
Create virtual address space 
Delete virtual address space 
Expand address region 
Page fault without 1/0 

(soft page fault) 

Logical Name Services 
Translate a logical name 

Event Flag Services 
Set an event flag 
Clear an event flag 

Process Control Services 
Create a process and 

activate an image 

File System Services 
(File on a RAM Disk) 

File open 
File close 
File create 
File delete 

Record Management System (RMS) 
Services (File on a RAM Disk) 

Get record from a sequential file 
Put record into a sequential file 

Relative 
CPU Speed 

1.03 
1.44 
1.58 

1.05 

1.75 

1.45 
1.35 

1.17 

1.34 
1.21 
1.24 
1.31 

0.98 
0.96 

Note that the relative CPU speed equals the CPU time on a VAX 
system divided by the CPU time on an Alpha AXP system. A 
relative CPU speed greater than 1.0 implies that the Alpha AXP 
system is faster. 

used the SPEC Release 1 benchmarks as representa­
tive of such applications. Table 3 shows the details 
of the VAX and Alpha AXP systems on which the 
SPEC Release 1 suite was run, and Table 4 contains 
the results. The SPECmark89 comparison shows 
that the OpenVMS AXP system outperforms the 
Open VMS VAX system by a factor of 3.59. 

The performance of OpenVMS services and the 
SPECmark results are consistent with other studies 
of how operating system primitives and SPECmark 
results scale between CISC and RISC.6 Overall, the 
results are very encouraging for a first-version 
product in which redesigns were purposely limited 
to meet an aggressive schedule. 

Conclusions 
Some OpenVMS VAX features such as symmetric 
multiprocessing and VMScluster support were 
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deferred from the first version of the Open VMS AXP 
system. Beyond this, we anticipate taking signifi­
cant steps to better exploit the hardware architec­
ture, including evolving to a true 64-bit operating 
system in a staged fashion. Also, detailed analysis of 
performance results shows the need to alter inter­
nal designs to better match RISC architecture. 
Finally, a gradual replacement of VAX MACR0-32 
source with a high-level language is essential to sup­
port a 64-bit virtual address space and is an impor­
tant element for increasing performance. 

The OpenVMS AXP system clearly demonstrates 
the viability of making dramatic changes in the 
fundamental assumptions of a mature operat­
ing system while preserving the investment 
in software layered on the system. The future 
challenge is to continue operating system evolu­
tion in order to provide more capabilities to appli­
cations while maintaining that essential level of 
compatibility 
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The GEM compiler system is the technology Digital is using to build state-of the-art 
compiler products for a variety of languages and hardware/software platforms. 
Portable, modular software components with carefully specified interfaces simplify 
the engineering of diverse compilers. A single optimizer, independent of the lan­
guage and the target platform, transforms the intermediate language generated by 
the front end into a semantically equivalent form that executes faster on the target 
machine. The GEM system supports a range of languages and bas been successfully 
retargeted and rebosted for the Alpha AXP and MIPS architectures and for several 
operating environments. 

In the past, Digital has made major investments 
in optimizing compilers that were specifically 
directed at one hardware platform, namely VAX 
computers. When Digital began broadening its 
hardware offerings to include reduced instruction 
set computer (RISC) architectures, it became clear 
that new optimization technology was needed, as 
well as a new strategy for leveraging investments in 
compiler technology across an increasing number 
of hardware platforms. 

This paper presents a technical description of 
the GEM compiler technology that Digital uses to 
generate compiler products for a wide range of 
hardware and software combinations. We begin 
with an explanation of the GEM strategy of leverag­
ing investments by using portable, modular soft­
ware components to build compiler products. The 
bulk of the paper describes the GEM optimizer and 
code generator technologies, with a focus on how 
they address challenges posed by the Alpha AXP 
architecture. 1 We then move to a discussion of com­
piler engineering and conclude with an overview 
of some planned enhancements to the software. 

GEM Compiler Architecture 
Because of the many hardware platforms available, 
often with multiple operating systems and a variety 
of languages offered on those platforms, building a 
compiler from scratch for each combination is no 
longer feasible. To simplify the engineering of 
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diverse compilers, GEM compiler products share a 
basic architecture. The compiler is divided into sev­
eral major components, in effect, the fundamental 
building blocks from which a compiler is con­
structed. The interfaces among these components 
are carefully specified. The major components of a 
GEM compiler are the front end, the optimizer, the 
code generator, and the compiler shell. The logical 
division of GEM components and the range of GEM 
support is shown in Figure 1. Note that the host is 
the computer on which the compiler runs, and the 
target is the computer on which the generated 
object runs. 

The front end performs lexical analysis and pars­
ing of the source program. The primary outputs are 
intermediate language (IL) graphs and symbol 
tables, which are both standardized. In an IL graph, 
each node, referred to as a tuple, represents an 
operation. Front ends for all source languages 
translate to the single standard IL. All language-spe­
cific code is encapsulated in the front end. All 
knowledge of the source language is communi­
cated in the IL or through callbacks to the front end. 
Knowledge of the target hardware is represented in 
tables and in a minimal amount of conditional code. 

The optimizer transforms the IL generated by the 
front end into a semantically equivalent form that 
will execute faster on the target machine. A signifi­
cant technical achievement is that a single opti­
mizer is used for all languages and target platforms. 
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FRONT END SHELL CODE GENERATOR 

HOST TARGET 
LANGUAGES OPERATING SYSTEM HOST CPU OPERATING SYSTEM TARGET CPU 

Ada Open VMS Alpha AXP Open VMS Alpha AXP 
BLISS OSF/1 MIPS OSF/1 MIPS 
c ULTRIX VAX ULTRIX Others 

C++ Windows NT Windows NT 
COBOL 
Fortran 
Pascal OPTIMIZER 
PU1 
Opal 

Figure I GEM Components and Supported CPUs, Operating Systems, and Languages 

The code generator translates the IL into a list of 
code cells, each of which represents one machine 
instruction for the target hardware. Virtually all the 
target machine instruction-specific code is encap­
sulated in the code generator. 

The shell is a collection of common compiler 
functions such as listing generators, object file 
emitters, and command line processors. Basically, 
the shell is a portable interface to the external envi­
ronment in which the compiler is used. This inter­
face allows the other components to remain 
independent of the operating system. 

There are numerous benefits to this modular 
approach: 

• Adding a new feature to a common component 
enhances many products. 

• Source language compatibility is ensured among 
all compilers that use the same front end. 

• Standardized interfaces enable us to plug in a 
new front end to build a compiler for a new lan­
guage, or a new shell to allow the compiler to 
run on a new host. 

• When a new language is added, it can be offered 
quickly on many platforms. 

• When a new target CPU or operating system is 
supported, many languages are immediately 
available to that target. 

Order of Processing 
When compiling a program, the overall order of pro­
cessing must be carefully arranged so that each com­
ponent of the compiler can see a large portion of the 
program at one time. When processing one portion 
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of a program, certain information about other rele­
vant parts of the source program can be useful. 

Figure 2 illustrates the overall process of compil­
ing a program. Since GEM compilers include inter­
procedural optimizations, as much of the program 
as possible should be presented to the optimizer at 
the same time. For this reason, GEM compilers 
allow the user to process multiple source files in a 
single compilation. The front end parses these 
source files and constructs the symbol table and a 
compact form of IL in memory before invoking the 
GEM back end. The portion of the user's program 
thus compiled is called a compilation unit. 

The GEM back-end interprocedural optimization 
phase is the first to operate on the program. This 
phase analyzes the routines within a compilation 
unit to develop a call graph that shows which 
routines might call which other routines. 
Interprocedural optimizations are applied to the 
routines as a group. 

Next, the global optimizer and the code genera­
tor process each routine in a bottom-up order, 
resulting in a translation of the program to code 
cells that represent operations at machine level. 
This bottom-up order is convenient for certain opti­
mizations, as discussed in the Optimization section. 
The first action of the global optimizer is to trans­
late the routine's IL from the compact form pro­
vided by the front end to an expanded form used by 
the optimizer and the code generator. Since only 
one routine at a time is stored in expanded form, a 
much larger data structure can be used to store the 
results of the optimizer analysis. The expansion 
from compact form also expands certain shorthand 
forms, which are convenient for a front end, into 
explicit operations in the expanded IL, much like a 
macro expansion facility in a source language. 
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SOURCE PROGRAM 

• FRONT END 
SCANNER 
PARSER 
SEMANTIC PROCESSING 

! SYMBOL TABLE 
COMPACT INTERMEDIATE LANGUAGE 

INTERPROCEDURAL INLINING 
OPTIMIZATION 

COMPILATION ORDERING 

! SYMBOL TABLE 
COMPACT INTERMEDIATE LANGUAGE 

GLOBAL 
OPTIMIZATION INTERMEDIATE LANGUAGE EXPANSION 

FLOW GRAPH REDUCTION 
LOOP UNROLLING 
COMMON SUBEXPRESSION 
CODE MOTION 
VALUE AND CONSTANT PROPAGATION 
STRENGTH REDUCTION 
TEST REPLACEMENT 
SPLIT LIFETIME ANALYSIS 

! SYMBOL TABLE 
EXPANDED INTERMEDIATE LANGUAGE 

CODE 
GENERATION CODE SELECTION 

INTERMEDIATE LANGUAGE SCHEDULING 
REGISTER HISTORY 
REGISTER ALLOCATION 
CODE EMISSION 
STORAGE ALLOCATION 

! SYMBOL TABLE 
CODE CELLS 

INSTRUCTION 
PEEPHOLING PROCESSING 
CODE SCHEDULING 
BRANCH/JUMP RESOLUTION 

! SYMBOL TABLE 
CODE CELLS 

OBJECT MODULE 
CONSTRUCTION 

~ 
OBJECT MODULE 

The GEM Optimizing Compiler System 

COMPILER SHELL 
AND UTILITIES 

FILE 1/0 SUPPORT 
MESSAGING 
COMPILER DEBUGGING TOOLS 
LOCATOR PACKAGE 
COMMAND PROCESSING 
LISTING GENERATION 
MEMORY MANAGEMENT 

Figure 2 GEM Compiler Order of Processing 

Once all the routines have been processed by 
the global optimizer and the code generator, a 
complete description of the program is available at 
the machine instruction level. Certain machine­
specific optimizations, such as peephole opti-
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mizations and instruction scheduling, are per­
formed on this program description. Finally, the 
optimized machine instructions are converted to 
the appropriate object language for the target oper­
ating system. 

123 



Alpha AXP Architecture and Systems 

optimization 
The GEM compiler system's optimizer is state-of­
the-art and independent of the language and the tar­
get platform. The input to the optimizer is the IL 

and symbol table for multiple routines; the output 
is the semantically equivalent IL and symbol table, 
both modified to run faster on the target platform. 

GEM optimizations include interprocedural opti­
mizations, modern optimizations for superscalar 
RISC architectures such as the Alpha AXP archi­
tecture, plus a robust implementation of the classi­
cal global optimizations. In addition, GEM's code 
generator includes a number of optimization fea­
tures that help it produce extremely high local code 
quality. 

Design Principles 
Certain general design approaches or principles 
were applied throughout the optimizer. For 
instance, choices had to be made in the design of 
the IL; the front end could either provide a higher­
level description of program features or rely on the 
back end to derive the higher-level description 
from an analysis of a lower-level description. In 
cases where accurate, well-defined algorithms for 
deriving those higher-level features exist, GEM 
chooses to derive the descriptions. 

Describing source code loops is a key example of 
the implementation of this design principle. Most 
source languages have explicit syntax for writing 
loops, and the front end could translate these lan­
guages into a higher-level IL that designates those 
loops. Instead, GEM uses a lower-level IL with primi­
tives such as conditional branch and label opera­
tors. The advantage of this approach is that GEM 
recognizes all loops, even those constructed with 
GOTO statements. 

A general design approach that emerged from 
experience gained during the GEM project is the 
use of enabling or expanding transformations to 
support fundamental optimizations. Often, repre­
senting operations in the IL in a way that hides cer­
tain implicit operations is a compact and efficient 
approach. However at times, making these implicit 
operations explicit allows a particular optimization 
routine to operate on them. A good solution to this 
problem is to initially represent the operations in 
the IL in the compact form. Then, before applying 
optimizations that could benefit from seeing the 
implicit operations, apply expanding transforma­
tions to convert the IL into a longer form in which 
all operations are explicit. 
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Out of concern for the time required to compile 
large programs, GEM also established the design 
principle that the order of complexity as a function 
of the number of IL operations should be as close to 
linear as possible. 

Data Access Model and 
Side Effects Intetface 
Since GEM compilers translate all source languages 
to a common IL and symbol table format, the 
semantics of these languages must be specified 
precisely. Many optimizations require an exact 
understanding of which symbols are being written 
or read by operations in the IL, and which opera­
tions might affect the results computed by other 
operations. 

The GEM team developed a detailed specification 
known as the data access model, which defines 
those operations that can write to memory and 
those that can read from memory. Each of these 
memory-accessing operations can explicitly desig­
nate the symbol being accessed when it is known. 
The model also requires the front end to specify 
when symbols may be aliased with parameters and 
when they may be pointer aliased. A pointer­
aliased symbol may be accessed through pointers 
or other operations that do not specify the symbol 
that they access. 

The model can indicate that the pointer-aliased 
property is derivable, i.e., a symbol is pointer 
aliased only if an operation that stores its address is 
present in the IL A special IL operator marks such 
operations. When the derivation of this property is 
deferred, the optimizer can avoid marking symbols 
pointer aliased. 

The data access model provides a standard way 
for a front end to indicate how IL operations affect 
or depend upon symbols. However, some front 
ends can provide additional language-specific dis­
crimination of operations that cannot be allowed to 
interfere with one another. For example, a strongly 
typed language like Pascal may stipulate that an 
assignment to a floating-point target must refer to 
different storage than an integer read, even when 
the assignment target is accessed indirectly through 
a pointer. 

To represent language-specific rules while adher­
ing to the philosophy that the back end should have 
no knowledge of the source language, GEM compil­
ers employ a unique interface with the front end, 
called the side effects interface. The front end pro­
vides a set of procedures that GEM can call during 
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optimization to ask which IL operations have side 
effects and which IL operations depend upon those 
side effects. 

Interprocedural Optimization 
GEM's interprocedural optimization phase starts 
by walking over the IL for all routines to build 
the call graph. The call graph is a directed multi­
graph in which the nodes are routines, and the 
edges are calls from one routine to another. The 
graph is not a tree because recursion is allowed. 
A special virtual routine node represents all 
unknown routines that might call or be called by 
a routine in this compilation. 

GEM walks the graph to determine which local 
symbols that are potential targets of up-level access 
are actually referenced in a called routine. When 
up-level references do occur, GEM can also deter­
mine the most efficient way to pass that context 
from the routine that declares the variable to the 
routine that references it. 

On the same walk, GEM analyzes the use of sym­
bols whose pointer-aliased property is derivable. If 
operations that store the address of such a symbol 
are present, then the symbol is marked as pointer 
aliased. The front end's indication is also retained 
so that this analysis can be repeated after address 
storing operations are eliminated. 

The most significant interprocedural optimiza­
tion that GEM performs is procedure inlining. 
lnlining is a well-known method for reducing 
procedure call overhead and for increasing the 
effectiveness of global optimizations by enlarging 
the scope of the operations seen at one time. 
lnlining has additional benefits on superscalar 
RISC architectures, like the Alpha AXP system, 
because the optimization allows the compiler to 
schedule the instructions of the two routines 
together. 

GEM's inliner reviews all calls in the call graph 
and uses heuristic algorithms to determine which 
calls should be inlined for maximum speed without 
unreasonable increases in code size or compilation 
time. The heuristics consider the number and kind 
of IL operations, the number of symbols referenced, 
and the kinds of optimization that would likely be 
enabled or disabled by inlining. 

When callers pass constants as actual parame­
ters, better optimization is likely to result from 
inlining because the corresponding formal parame­
ter will have a known constant value. On the other 
hand, when two sections of the same array are 
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passed as arguments, and the corresponding for­
mals are described as not aliased with one another, 
eliminating the formal parameters through inlining 
discards valuable alias information. 2,3 

Also, the order in which inlining decisions are 
made can be important. In a chain of calls in which 
A calls B and B calls C, the call from A to B might be 
the most desirable inlining candidate. However, if 
the call from B to C is inlined first, the size of B may 
increase, making it a less attractive candidate for 
inlining into A. Consequently, GEM uses its heuris­
tics to preevaluate all calls and then orders the calls 
by desirability. GEM inlines the most desirable can­
didate first, and then reevaluates the caller's prop­
erties, possibly adjusting its position in the ordered 
list. 

In many C programs, the address of a variable 
(especially a struct) is passed to a called routine 
that refers to the variable through a pointer for­
mal parameter. After inlining, a symbol's address 
is stored in a pointer and indirect references are 
made through the pointer. Later, while optimizing 
the routine, GEM's value propagation often elimi­
nates the pointer variable. Finally, when one or 
more pointer-storing operations have been elimi­
nated, GEM reevaluates the pointer-aliased prop­
erty of derivable local symbols, and the variable that 
was once passed by address is no longer pointer 
aliased. 

After interprocedural analysis, the routines of the 
user's program pass through the optimizer and 
code generator one at a time. GEM's interprocedural 
phase chooses a bottom-up routine order in the call 
graph. Except for recursive cycles, this order causes 
GEM to generate the code for a called routine before 
generating the caller's code. GEM takes advantage of 
this property by recording the scratch registers that 
were actually used in a called routine and adjusting 
register usage at its call sites.4 GEM also determines 
whether or not the called routine requires an argu­
ment count. 

Intermediate Language Peepholes 
GEM uses a peephole optimizer to improve the IL. In 
addition to performing the many obvious simplifi­
cations such as multiplying by one or adding zero, 
the optimizer performs other transformations. 
Integer division by a constant is expanded into a 
multiply by a reciprocal operation, which can be 
efficiently implemented with a UMULH instruction. 
String operations on short fixed-length strings are 
converted into integer operations, to benefit from 
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various optimizations performed only on scalars. 
Also, integer multiply operations by a constant are 
converted into an equivalent set of shift and add or 
subtract operations. 

IL peepholes sometimes expose new optimiza­
tion opportunities by expanding complex opera­
tions into more explicit components. Also, other 
optimizations such as value propagation may create 
new opportunities to apply peepholes. To take 
advantage of these opportunities, GEM compilers 
apply these IL peepholes multiple times during the 
optimization of a routine. 

Data-flow Analysis 
In previous Digital compilers, the use of data-flow 
analysis was limited largely to the elimination of 
common subexpressions (CSEs), value propaga­
tions, and code motions. We generalized the data­
flow analysis technique to perform a wider variety 
of optimizations including field merging, induction 
variable detection, dead store elimination, base 
binding, and strength reduction. 

The process of detecting CSEs is divided into the 
tasks of 

• Knowing when two expressions would com­
pute the same results given identical inputs. 
Within GEM compilers, such expressions are said 
to be formally equivalent. 

• Verifying that the inputs to formally equivalent 
subexpressions are always identical. Such 
expressions are said to be value equivalent. This 
verification is accomplished by using the side 
effects mechanism. 

• Determining when an expression dominates a 
value equivalent expression.s This information 
guarantees that GEM will have computed the 
dominating expression whenever the dominated 
expression is needed. 

Code motions introduce the additional task of 
finding those places in the flow graph to which an 
expression could be legally moved such that 

• The moved expression would be value equiva­
lent to the original expression, and 

• The moved expression would execute less often 
than the original expression. 

The following sections describe how GEM 
detects base-binding and strength-reduction candi­
dates by substituting slightly different equivalence 
functions. 
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Base Binding 
On RISC machines, a variable in memory is refer­
enced by loading the address into a base register and 
then using indirect addressing through the base reg­
ister. To reduce the number of address loads, sets of 
variables that are closely allocated share base regis­
ters. GEM considers two address expressions for­
mally equivalent if they differ by an amount less than 
the range of the hardware instruction offset field. 
The CSE detection algorithm determines which 
address expressions are formally equivalent and 
thus can share a base register, and the code motion 
algorithm moves the base register loads out of loops. 

Induction Variables 
Some of GEM's most valuable optimizations require 
the identification of inductive expressions and 
induction variables, which is done during data-flow 
analysis. An expression in a loop is inductive if its 
value on a particular iteration is a linear function of 
the trip count. The simplest forms of inductive 
expressions are the control variables of counted 
loops. Expressions that are linear functions of 
induction variables are also inductive. 

GEM's implementation of data-flow analysis uses 
a technique for determining what variables are 
modified between basic blocks in the flow graph.6,7 
The variables modified between a basic block and 
its dominator are represented as a set called the 
/DEF set. The mapping from variables to set ele­
ments is done using the side effects interface. 

The algorithm for detecting induction variables 
starts by presuming that all variables modified in 
the loop are induction variable candidates. It then 
disqualifies variables not redefined as a linear func­
tion of themselves with a coefficient equal to one. 
The loops that GEM chooses to analyze have a loop 
top that dominates all nodes within the loop. The 
IDEF set for a loop top is exactly those variables that 
are modified within the loop and thus serves as the 
starting value for the induction variable candidate 
set, again using the side effects mapping of vari­
ables to set elements. During the walk of the loop, 
whenever a disqualifying store is encountered, the 
contents of the candidate set are updated. Thus, at 
the end of the walk, the remaining variables in the 
set are known to be true induction variables. 

Strength Reduction of Induction Variables 
Strength reduction is the process of replacing an 
expensive operation with a less expensive opera­
tion. The most basic example of strength reduction 
on induction is as follows: 
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If the original source program was 

DO 20 I = 1,10 
20 PRINT 1*4 

strength reduction would reduce the multiply to an 
add as follows: 

I' = 4 
DO 20 I = 1,10 
PRINT I' 20 
1'=1'+4 

Note that the most common array references are 
of the form A(I), which implies a multiplication of 
I by the stride of the array. Thus, strength reduction 
yields a significant performance improvement in 
array-intensive computations. 

To detect strength-reduction candidates, we 
redefine formal and value equivalence as follows: 

• Two inductive expressions are formally equiva­
lent if, given identical inputs, they differ only by 
a constant. 

• Two formally equivalent inductive expressions 
are value equivalent if their inputs are value 
equivalent or are direct references to induction 
variables. 

Thus, strength-reduction candidates appear 
loop invariant, and two expressions that are value 
equivalent can share a single strength reduction. 
Code motion yields the initial value of the strength 
reduction. 

Split Lifetime Analysis 
The GEM optimizer analyzes the usage of certain 
variables to determine if the stores and fetches of a 
variable can be partitioned, i.e., split, into disjoint 
variables or lifetimes. 

For example, consider the following program 
segment: 

1 : v x * y 
2: z = z * v 

3: v R + s 
4: T T + v 

The references to V can be divided into two dis­
joint lifetimes V' and V" without changing the 
semantics of the program as in: 

1 : V' 
2: Z 

3: V" 
4: T 

x * y 
Z * V' 

R + S 
T + V" 

V' and V'' can be treated as two completely 
independent variables. This has several useful 
applications. 
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• V' and V' ' can be assigned to different registers, 
each with shorter lifetimes than the original vari­
able V The allocator can thus pack registers and 
memory more tightly. 

• V' and V' ' can be scheduled independently. For 
example, the computation of Zin line 2 could be 
scheduled after the redefinition ofV in line 3. 

• A lifetime that begins with a fetch is an uninitial­
ized variable. GEM issues a diagnostic in such cases. 

• Any lifetime with only stores is effectively 
"dead," and thus, the stores can be eliminated. 

• When a lifetime of an induction variable con­
tains an equal number of stores and fetches, the 
variable is used only to compute itself. Thus, the 
whole lifetime can be eliminated. This is called 
induction variable elimination. 

• GEM uses split lifetime information to optimize 
the flushing and reloading of register variables 
around routine calls. 

• GEM uses split lifetime information to determine 
what variables are potentially referenced by 
exception handlers. 

• Lifetimes often need to be extended around loop 
tops and loop bottoms. Split lifetime analysis has 
full information in many cases in which the code 
generator's lifetime computation must make 
pessimistic assumptions. Thus, analyzed vari­
ables are allocated more efficiently inside loops. 

The technique GEM uses for split lifetime analysis 
is based on the VAX Fortran SPLIT phase.8 The tech­
nique includes several extensions in the areas of 
induction variables, unselected variables (the origi­
nal algorithm analyzed only a fixed number of vari­
ables), and exception handling. 

Code Generation 
The GEM code generator matches code templates to 
sections of IL trees.9 The code generator has a set of 
approximately 600 code patterns and uses dynamic 
programming to guide the selection of a least-cost 
covering for each statement tree in the IL graph pro­
duced by the global optimizer. 

Each code pattern specifies a set of interpretive 
code-generation actions to be applied if the tem­
plate is selected. The code-generation actions cre­
ate temporaries, determine their lifetimes, allocate 
registers and stack locations, and actually emit 
sequences of instructions. These actions are 
applied during the following four separate code­
generation passes over the IL graph for a procedure: 
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• Context. During the context pass, the code gen­
erator creates data structures that describe each 
temporary variable. The information computed 
includes the lifetime, usage counts, and a weight 
scaled by loop depth. 

• Register history. During the register history pass, 
the code generator does a dominator-order 
walk of the flow graph to identify potential 
redundant loads of values that could be available 
in registers. 

• Temp name. During the temp name pass, the 
code generator performs register allocation 
using the lifetime and weight information com­
puted during the context pass. The code genera­
tor also uses register history to allocate 
temporaries that hold the same value in the same 
register. If successful, this action eliminates load 
and move instructions. 

• Code. During the code pass, the code generator 
emits instructions and code labels. The resulting 
code cells are an internal representation at the 
assembly code level. Each code cell contains a 
single target machine instruction. The code cells 
have specific registers and bound offsets from 
base registers. References to labels in the code 
stream are in a symbolic form, pending further 
optimization and final offset assignment after 
instruction peephole optimization and instruc­
tion scheduling. 

Template Matching and Result Modes 
Code template enumeration and selection occurs 
during the context pass. The enumeration phase 
scans IL nodes in execution order (bottom-up) and 
labels each node with alternative patterns and 
costs. When a root node such as a store or branch 
tuple is reached, the lowest-cost template for that 
node is selected. The selection process is then 
applied recursively to the leaves for the entire 
tree. 10 

The IL tree pattern of a code-generation template 
consists of four pieces of information: 

• A pattern tree that describes the arrangement of 
IL nodes that can be coded by this template. The 
interior nodes of the pattern tree are IL opera­
tors; the leaves are either result mode sets or IL 
operators with no operands. 

• A predicate on the tree nodes of the pattern. The 
predicate must be true in order for the pattern to 
be applicable. 
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• A result mode that encodes the representation 
of a value computed by the template's generated 
code. 

• An integer that represents the cost of the code 
generated by this template. 

The result modes are an enumeration of the dif­
ferent ways the compiler can represent a value in 
the machine. 11 GEM compilers use the following 
result modes: 

• Scalar, for a value, negated value, and comple­
mented value 

• Boolean, for low-bit, high-bit, and nonzero values 

• Flow, for a Boolean represented as control flow 

• Result modes for different sizes of integer literals 

• Result modes for delayed generation of address­
ing calculations 

• Result modes indicating that only a part of a 
value has been materialized, i.e., the low byte, or 
that the materialized value has used a lower-cost 
solution 

As templates are matched to portions of the IL 
tree, each node is labeled with a vector of possible 
solutions. The vector is indexed by result mode, 
and the lowest-cost solution for each result mode is 
recorded on the forward bottom-up walk. When a 
root node is encountered, the lowest-cost template 
in its vector of solutions is chosen. This choice then 
determines the required result mode and solution 
for each leaf of the pattern, recursively. 

GEM Code Generator Action Language 
The GEM code generator uses and extends methods 
developed in the BLISS compilers, the Camegie­
Mellon University Production-Quality Compiler­
Compiler Project, and Digital's VAX Pascal 
compiler.12, 13 One key GEM innovation is the use of 
a formalized action language to give a unified 
description of all actions performed in the four 
code-generation passes. The same formal action 
descriptions are interpreted by four different inter­
preters. For example, the Allocate_TN action is 
used to allocate long-lived temporaries that may be 
in a register or in memory: This action creates a data 
structure describing the temporary in the context 
pass, allocates a register during the temp name 
pass, and provides the actual temporary location 
for code emission. 
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Tree-matching code generators were originally 
developed for complex instruction set computer 
(CISC) machines, like the PDP-11 and VAX comput­
ers. The technique is also an effective way to build 
a retargetable compiler system for current RISC 
architectures. The overall code-generation struc­
ture and many of the actions are target indepen­
dent. Some IL trees use simple, general code 
patterns, whereas special cases use more elaborate 
patterns and result modes. 

Register AJ,/ocation 
GEM compilers use a simple linear model to charac­
terize register lifetimes. The context, temp name, 
and code passes process the basic blocks and the IL 
nodes of each block in execution order. Each code 
pattern has a certain number of lifetime ticks to 
represent points at which a temporary value is cre­
ated or used. The lifetime of a temporary is then the 
interval defined by its starting lifetime tick and end­
ing lifetime tick. 

Simple expression temporaries have a linear life­
time contained within a basic block. User variables 
and CSEs may require that lifetimes be extended to 
cover loop tops and loop bottoms. The optimizer 
inserts special begin and end markers to delimit the 
precise lifetimes of variables created by the split 
lifetime phase. 

The code generator uses a number of heuristics 
to allocate registers to avoid copying. If a new 
lifetime begins at exactly the same tick as another 
lifetime ends, this may indicate that they should 
share a register. Otherwise, the allocator uses a 
round-robin allocation to avoid packing registers 
too tightly, which would inhibit scheduling. The 
Move_ Value action is used to copy one register to 
another and provides a hint that the source and des­
tination should be allocated to the same register. 

Actual allocation of registers and stack tempo­
raries occurs in the temp name pass. The allocator 
uses a bin-packing technique to allocate each com­
piler and user variable to a register or to memory. 14 
The allocator first attempts to assign variables to 
registers; lifetimes that conflict cannot be assigned 
to the same register. The allocator uses a density 
function to control the process. A new candidate 
can displace a previous variable that has a conflict­
ing lifetime if this action increases the density mea­
sure. After the allocation of temporaries to registers 
is completed, any unallocated or spilled tempo­
raries are allocated to stack locations. 
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Scheduling 
To take advantage of high instruction-issue rates in 
Alpha AXP systems, compilers must carefully sched­
ule the object code, interleaving instructions from 
several parts of the program being compiled. 
Performing instruction scheduling only once after 
registers have been allocated places artificial con­
straints on the ordering, as illustrated in the follow­
ing code example: 

Ldq 
stq 
Ldq 
stq 

rO, a(sp) 
rO, b(sp) 
rO, c(sp) 
rO, d(sp) 

; Copy a to b 

; Copy c to d 

If the load of c and store of d were to use some 
other register, the code could be rescheduled to 
save three cycles on the DECchip 21064 processor, 
as shown in the following code: 

Ld q 
Ldq 
stq 
stq 

rO, a(sp) 
r1, c(sp) 
rO, b(sp) 
r1, d(sp) 

; Copy a to b 
; Copy c to d 

On the other hand, scheduling only before regis­
ter allocation does not incorporate decisions made 
by the code generator. Therefore, instruction 
scheduling in GEM compilers occurs twice, before 
and after registers are allocated. This practice is 
fairly common in contemporary RISC compiler sys­
tems. In most other systems, scheduling is per­
formed only on machine code. GEM has two 
different schedulers-one that schedules machine 
code and one that schedules IL. 

Intermediate Language Scheduling 
IL scheduling is performed one basic block at a 
time. First, a forward pass over the block gathers 
information needed to control the scheduling, and 
then a backward pass builds the new ordered list of 
tuples. During the forward pass, the compiler 
builds dependence edges to represent the neces­
sary ordering relationships between pairs of tuples. 
Tuples that would require an excessive number of 
edges, such as CALL tuples, are considered markers. 
No tuples can be reordered across a marker. 

The compiler uses the data access model to 
determine whether two memory-access tuples con­
flict. Also, if two tuples have address operands with 
the same value (using data-flow information) but 
different offset attributes, the tuples must access 
different memory. Thus, no dependence edge is 
needed, and more rescheduling is possible. 
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The general code for an expression tuple places 
the result into a compiler-generated temporary, 
and the general code for a store into a register vari­
able moves the value from a temporary into the 
variable. Many GEM code patterns for expression 
tuples allow targeting, where the expression is 
computed directly into the variable instead of into 
a temporary. These code patterns are valid only if 
there are no fetches of the variable between the 
expression tuple and the store operation. Similarly, 
a fetch tuple need not generate any code (called 
virtual), if no stores exist between the fetch and its 
consumer. For example, 

T = A-1; A= B+1; C 

might generate the GEM IL 

1$: FETCHCA) 
2$: SUBC1$, [1]) 
3$: FETCHCB) 
4$: ADDC3$, [1]) 
5$: STORECA, 4$) 
6$: STORECC, 2$) 

T. , 

In this example, SUB operates directly on the reg­
ister allocated for A, and ADD targets its result to the 
register allocated for A. The obvious dependence 
edge is from FETCH(A) to STORE(A, ... ). However, IL 
scheduling must be careful not to invalidate the 
code patterns, which would happen if it moved 
FETCH(A) between ADD and STORE(A) or STORE(A) 
between FETCH(A) and SUB. To ensure valid code 
patterns, the first pass moves the head of depen­
dence edges backward from targeted stores to the 
expression tuple that does the targeting. Similarly, 
the first pass moves the tail of dependence edges 
forward from virtual fetches to their consumers. In 
this example, the edge runs from 2$ to 4$ and pre­
vents either of the illegal reorderings. 

In addition to building dependence edges, the 
first pass computes heuristics for each tuple, to be 
used by the second, i.e., scheduling, pass. One 
heuristic, the anticipated execution time (AET), 

estimates the earliest time at which the tuple could 
execute. The AET for tuple T is either the maximum 
AET of any tuple that must precede T, or the 
maximum AET plus the latency of T's operands. If 
some of the tuples that must precede T require the 
same hardware resources, the AET may be opti­
mistic. Nevertheless, the AET is a useful guide to the 
scheduling pass. 

The first pass also computes the minimum 
number of registers (separately for integer and 
floating-point registers) needed to evaluate the 
subexpression rooted at a particular tuple. The 
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value of this heuristic is the Sethi-Ullman number, 
i.e., the number of registers needed to evaluate the 
subexpressions in the optimal order, keeping their 
intermediate values, plus the additional registers to 
evaluate the tuple itself. 15 If the second pass sched­
ules tuples with a lower count later in the program, 
the register usage will be kept low. Without such a 
mechanism, scheduling before register allocation 
tends to cause excessive register pressure. 

CSEs can be treated similarly to subexpressions in 
this computation, but with two complications. The 
first pass cannot predict the last use of the CSE and 
therefore treats each use as the last one. The sched­
uler ignores any register usage associated with CSEs 
that are not both created and used within the block 
being scheduled. This action allows the register 
allocator to place the CSEs in memory, if the sched­
uled code has better uses for registers. 

The second pass of the IL scheduler works back­
ward over the basic block. The scheduler removes 
all the tuples up to the last marker and makes avail­
able those that have no dependence edges to tuples 
that must follow. The scheduler then selects an 
available tuple and places it in the scheduled out­
put, updates the state of each modeled functional 
unit, and makes available new tuples whose depen­
dences are now satisfied. When the marker is 
scheduled, the scheduler continues to remove the 
preceding group of tuples from the block until the 
entire block has been scheduled. 

The scheduler keeps track of the number of 
scheduled cycles and the estimated number of live 
registers. When choosing among tuples, the sched­
uler prefers one whose subtree can be evaluated 
within the available registers, or, failing that, one 
whose subtree can be evaluated with the fewest 
registers. When several tuples qualify, the sched­
uler chooses the one with the greatest AET. 

Limiting register pressure, while not important 
for all programs, is important in blocks with a lot of 
available parallelism. With this feature, IL schedul· 
ing is a significant contributor to the high perfor­
mance of GEM-compiled programs. 

Instruction Peepholing 
After code has been generated or code cells have 
been created directly, the instruction processing 
phases are run as a group. Instruction peepholing 
performs a variety of localized transformations, typ­
ically by matching patterns of adjacent instructions 
and replacing them with better patterns. From the 
perspective of instruction scheduling, the most 
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interesting function of the instruction peepholer 
is to perform a set of branch reductions. The peep­
holer also replicates short sequences of code to 
facilitate instruction scheduling and to eliminate 
the instruction pipeline effects of branches. 

A control flow processing phase follows the 
instruction peepholing phase. Currently, this phase 
determines labels that are backward branch targets 
for alignment purposes. This action occurs before 
instruction scheduling, because instruction align­
ment is important for the DECchip 21064 Alpha AXP 
processor, in which instructions must be aligned 
on quadword boundaries to exploit dual instruc­
tion issue. In the near future, the control flow pro­
cessing phase will collect register information for 
each basic block to allow additional scheduling 
transformations. 

Instruction Scheduling 
The instruction scheduler is the next phase. At this 
point, all register binding and code modifications 
other than branch/jump resolution have occurred. 
The scheduler does a forward walk over the basic 
blocks in each code section to determine the align­
ment of the first instruction in each block. 

For each basic block, the instruction scheduler 
does two passes that are effectively the inverse of 
the passes that the IL scheduler performs, namely a 
backward walk to determine instruction-ordering 
requirements and path length to the end of the 
block, and a forward pass that actually schedules 
the code. 

The backward ordering pass uses an AET compu­
tation similar to the one used by the IL scheduler. 
The instruction scheduler knows the actual instruc­
tions to be scheduled and has a more detailed 
machine model. For the DECchip 21064 processor, 
for example, the instruction scheduler has detailed 
asymmetric bypassing information and information 
about multiple issue. For architectures that have 
branch delay slots, the AET computation is biased 
so that instructions likely to be able to fill branch 
delay slots will occur immediately before branch 
operations. 

The forward scheduling pass does a cycle-by­
cycle model of the machine, including modeling 
multiple issue. The reasons for choosing this 
approach rather than an approach that just selects 
an ordering of the instructions are as follows: 

• For machines with significant issue limitations, 
e.g., nonpipelined functional units or multiple 
issue pairing rules, packing the limiting resource 
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well is often preferable to obtaining a good sched­
ule. A cycle model allows other instructions to 
"float" into the no-issue slots, while allowing the 
critical resource to be scheduled well. 

• Modeling the machine allows easy determination 
of where stalls are occurring, which in turn allows 
instructions from the current block or from suc­
cessor blocks to be moved into no-issue slots. 

• Modeling the machine in a forward direction 
captures the fact that processors are typically 
"greedy" and issue all the instructions that they 
can issue at a given time. 

• The cycle model allows a variety of dumps, 
which can be useful both to users of the com­
piler system and to developers who are trying to 
improve the performance of generated code. 

The forward pass does a topological sort of the 
instructions. The scheduler moves instructions that 
have either a direct dependence or an antidepen­
dence (e.g., register reuse) to a data structure 
called the issuing ring for future issue. 

The scheduler represents the instructions avail­
able for issuing as a list of data structures known as 
heaps, which are priority queues. Each heap on the 
list contains instructions with a similar "signature." 
For example, a heap might contain all store instruc­
tions. When looking for the next instruction to 
issue, the scheduler examines the top instruction in 
each heap. Within each heap, instructions are typi­
cally ordered by their AET values, with occasional 
small biases for different instruction properties, 
such as loads that may have a variable execution 
time longer than the projected time. 

The heaps are, in turn, ordered in the list accord­
ing to how desirable it is that a particular heap's top 
instruction be issued. All nonpipelined instruction 
heaps are first on the list, followed by all semi­
pipelined heaps and, last, all fully pipelined ones. 
A semipipelined resource may prevent particular 
instructions from issuing in certain future cycles 
but can issue every cycle. For example, stores on 
some machines interact with later loads. 

Instructions that use multiple resources are rep­
resented in the heap ordering. For example, float­
ing-point multiplies on the MIPS R3000 machine 
use both the multiplier and some of the same 
resources as additions. As a result, the heap that 
holds multiplies is always kept ahead of the heap 
that holds adds. This ordering scheme works well 
for both machines with a significant number of 
nonpipelined units, such as the MIPS processors, 
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and machines that have largely pipelined functional 
units with only particular combinations of multiple 
issue allowed, like the DECchip 21064 processors. 

Note that, other than the architecture-specific 
computation for AET and per-processor imple­
mentation data tables, the scheduler is completely 
target independent. For example, currently, proces­
sor implementation tables exist for the MIPS R3000 
and R4000 processors, the DECchip 21064 pro­
cessor, and Alpha AXP processors that are under 
development. 

Field Merging Example 
Generating efficient code for the extraction and 
insertion of fields within records is particularly 
challenging on RISC architectures, like Alpha AXP, 

that provide only 32-bit Oongword) or64-bit (quad­
word) memory operations. 

Often, a program will fetch or store several fields 
that are contained in the same longword. Without 
optimization, each fetch would load the longword 
from memory, and each store would both load and 
store the longword. However, it is possible to per­
form a collection of field fetches and stores with a 
single load and store to memory. As another exam­
ple, two bit tests within the same longword could 
be done in parallel as a mask operation. 

In the IL generated by the front end, each field 
operation is generated as a separate IL operation. 
Thus, the real task of optimizing field accesses is to 
identify IL operations that can be combined. 

In the initial IL, a field fetch or store is repre­
sented as an IL operator. The underlying problem is 
that the redundant loads and stores are not visible 
in this representation. The first part of the solution 
involves expanding the field fetch or store into 

1 $: FETCHXCRECORD, [OJ, [ 1 J) 

2$: FETCHXCRECORD, [ 1J, [ 1 J) 

(a) Pre-field merging IL 

1$: FETCHCRECORD) 
2$: EXTVC1S, [OJ, [ 1 J); 

3$: FETCHCRECORD) 
4$: EXTVC1S, [ 1], [ 1 J); 

(b) Post-field merging IL 

; 
; 

; 
; 

; 
; 

lower-level operators. The IL generated by the front 
end for two field extractions as shown in (a) of 
Figure 3 is expanded into the IL shown in (b) 
of Figure 3. With the loads exposed as fetches, data­
flow analysis is now capable of finding the common 
subexpressions of 1 $ and 3 $. 

Similarly, each field store expands into a fetch of 
the background longword, an insertion of the new 
data into the proper position, and a store back. 
Given two field stores, value propagation can elimi­
nate the second fetch, and then dead-store elimina­
tion can eliminate the first store. 

In some cases, a program operates on the field 
and thus eliminates the extract and insert opera­
tions. For example, the following example gener­
ates the machine code shown in Figure 4. 

typedef struct node { 
char n_kind; 
char n_flags; 
struct node *xl_car; 
struct node *xl_cdr; 

} NODE; 

#define MARK 1 
#define LEFT 2 

void demo(ptr) 
NODE *ptr; 

{ 

while Cptr) { 
if Cptr->n_kind == 0) { 

ptr->n_flags I= MARK; 
ptr->n_flags &= -LEFT; 

} 

ptr = ptr->xl_cdr; 
} 

} 

The unoptimized code would contain a load and 
an extract for each reference to n_kind or n_flags, 
plus an insert and a store for the latter two 
references. The optimizer has eliminated two of the 

Fetch the #1 Clow-order) bit 
from memory 
Fetch the #2 bit from memory 

Fetch the longword 
Extract the #1 from the longword 

Fetch the longword 
Extract the #2 from the longword 

Figure 3 Field Merging Example 
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demo:: 

L$7: 

BEG 
NOP 

ptr, L$5 

RO, (R16) 
RO, 255, R1 
R1, L$9 
256, R17 

The GEM Optimizing Compiler System 

Load n k ind and n_flags 
; Extract n_kind 

LDL 
AND 
BNE 
MOV 
BIS 
MOV 
AND 
STL 

RO, R17, R17; 
-513, R1 

Set MARK (in place) 

R17, R1, R17; Clear LEFT (in place) 
R17, (R16) ; Store back 

L$9: 
LDL 
BNE 

L$5: 
RET 

ptr, 8( R16) 
ptr, L$7 

R26 

Figure 4 Machine Code with Field Merging 

three loads, two of the three extracts, both inserts, 
and one of the two stores. 

Branch Optimization Examples 
Branch instructions can hurt the performance 
of high-performance systems in several ways. In 
addition to consuming space and causing time to be 
expended while issuing the instruction, branches 
can disrupt the hardware pipeline. Also, branches 
can inhibit optimizations such as code scheduling. 
Therefore, the GEM compiler system uses several 
strategies to avoid branches in the IL and generated 
code or to eliminate some bad effects of branch 
instructions. 

Some branches appear as part of a well-defined 
pattern that need not inhibit optimizations. GEM 

uses special operators for these cases. A simple 
example is the MAX function. For Alpha AXP sys­
tems, MAX can be implemented using the CMOVxx 

instructions, avoiding branch instructions entirely. 
For other architectures, the main benefit is that the 
branch does not appear in the IL. A more compli­
cated example involves the so-called "flow­
Boolean" operators. Consider the C code example, 

x = (p && *p ) ? *y: *z; 

which generates the following GEM IL: 

1$ : FETCH(P) 
2$ : NONZER0(1$) 
3$ : ANDSKIP(2$) 
4$ : FETCH(1 $ ) 
5$ : NONZE R0(4$) 
6$ : LANDC(3 $ , 5$) 
7$ : SELTHEN(6$) 
8$: FETCH(Y) 
9$ : FETCH(8 $ ) 
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10$: SELELSE(9$) 
11$: FETCH(Z) 
12$: FETCH(11$) 
13$: SELC(7$, 10$, 12$) 
14$: STORE(X, 13$) 

The ANDSKIP and LANDC tuples implement the 
conditional-AND operator. If tuple 2$ is false, tuples 
4$ and 5$ are skipped, and the result of the LANDC 
is false. Otherwise, the LANDC uses the result of 
tuple 5$. 

Similarly, the SELTHEN, SELELSE, and SELC tuples 
implement the select operator. If tuple 6$ is true, 
then tuples 8$ and 9$ compute the result, and 
tuples 11 $ and 12$ are skipped. If tuple 6$ is false, 
then tuples 8$ and 9$ are skipped, and tuples 11$ 
and 12$ compute the result. 

These operators allow programs to represent 
branching code within the standard basic-block 
framework but require branches in the generated 
code, to avoid undesired side effects of the skipped 
tuples. In some cases, though, GEM can determine 
that the skipped tuples have no side effects and then 
converts the operators to an unconditional form, 
allowing the generated code to be free of branches. 

GEM performs other transformations on the IL to 
eliminate branches and thus enable further opti­
mizations. For example, GEM transforms 

if (expr) var= 1; else var= O; 

into 

var= ((expr) != 0) 

Alpha AXP implementations typically include a 
branch prediction mechanism. Correctly predicted 
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branches take several cycles less time than mispre­
dicted branches. The fastest conditional branch is 
one that is correctly predicted not to be taken. GEM 
uses several strategies to arrange branches for best 
performance. 

GEM selects an order for the basic blocks of a pro­
gram that may differ from the order in the source 
program. For each basic block that ends with an 
unconditional branch, GEM places the target block 
next, unless that block has already been placed. 
Similarly, if a basic block within a loop ends with an 
unconditional branch, a target block within that 
loop is placed next, if possible. For example, 

whi Le (--i > 0) { 

} 

if Ca[i] != b[i]) return a[iJ-b[iJ; 
a[iJ = O; 

To eliminate the unconditional branch when the 
loop iterates, GEM transforms the pretested loop 
into a posttested loop. Since the return statement is 
outside the loop, the generated code looks like 

if (-- i > 0) 
do { 

if Ca[iJ != b[iJ) goto Label; 
a[iJ = O; 

} while (--i > 0); 

Label: return a[iJ-b[iJ; 

GEM can also unroll loops and thus reduce the 
number of times the branch back must be exe­
cuted. More important, GEM often allows opera­
tions from different iterations to be scheduled 
together. Unrolling by four transforms the above 
loop into a cleanup loop and the main loop into 
code that resembles 

do { 
if Ca[i] != b[i]) goto Label; 
a[iJ = O; 
if Ca[i-1] != b[i-1]) goto Label; 
a[i-1J = O; 
if Ca[i-2] != b[i-2]) goto Label; 
a[i-2] = O; 
if Ca[i-3] != b[i-3]) goto Label; 
a[i-3J = O; 

} while Ci -= 4); 

This code executes four fall-through branches 
and one taken branch, whereas the original code 
executed four fall-through branches and four taken 
branches. 

Certain code patterns generate code that is likely 
not to be executed. For example, when the com­
piler believes that a 16-bit value in memory is apt to 
be naturally aligned, but may be unaligned, it gen­
erates the instructions shown in Figure 5 to load 
the value, given the address in rO. The code runs 
quickly for the aligned case, because the branch is 
correctly predicted to fall through, but gets the cor­
rect value for unaligned data, as well. A similar code 
pattern handles stores. 

Compiler Engineering 
Engineering compilers for a large combination of 
languages and platforms required a considerable 
number of innovations in the area of project engi­
neering. In this section we describe some of the 
project methods and tools GEM uses. 

Opal Intermediate Language Compiler 
The task of a GEM compiler is to translate a pro­
gram presented by the front end in the form of an 
IL graph and symbol table into machine code. In 
the early stages of GEM development, no front 

3-instruction inline sequence if aligned 

20$: 

Ldq_u 
extwl 
blbs 

r1, CrO) 
r1, rO, r1 
rO, 10$ 

out-of-Li ne sequence to Load and merge 

10$: Ldq_u r28, 1Cr0) 
ext wh r28, rO, r28 
or r1, r28, r1 
br r31, 20$ 

Figure 5 Potentially Unaligned Load Code 
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ends existed to generate IL graphs and symbol 
tables. To fill this requirement, a syntactic speci­
fication of the IL and symbol table was designed 
and an IL assembler called Opal was built to com­
pile this syntax. Opal uses GEM components such 
as the shell and thus supports a robust set of fea­
tures including listing generation, object files, 
include files, debug support, and language editor 
diagnostics. 

Even with the availability of front ends, Opal 
remains a vital project tool: it allows GEM develop­
ers to exercise new features before front-end sup­
port is available; front-end developers use Opal to 
experiment with different IL alternatives; and the 
Opal syntax serves as the output format of the IL 
dumper. 

Attribute and Operator Signature Tables 
GEM tables give a complete description of all GEM 
data structures, including IL operators and symbol 
table nodes. The operator signature table contains 
the operator type, result type, number of operands, 
and legal operand types for IL operators. The 
attribute tables describe each component in a node 
including location, abstract GEM data type, legal val­
ues, node type for pointers, and special print for­
mats. When a new attribute is added to the GEM 
specification, the attribute is described once in the 
tables and automatically the Opal compiler under­
stands the syntax and semantics, the GEM dump 
utility is able to dump the attribute, and the GEM 
integrity checker is able to verify the structure. 

Automatic KFOW Builder 
The GEM compiler needs to evaluate constant 
expressions at compile time, which is referred to as 
constant folding. GEM's intermediate language has 
many IL operators and data types. A constant folder 
is thus a complicated routine with many cases, and 
the compile-time and run-time results must be 
identical. 

After writing our first , incomplete, handcrafted 
constant folder, we searched for a method to auto­
mate the process. No source language supported all 
the operators and data types of the GEM IL. The key 
insight was that there is one language in which IL 
programs can be written precisely and tersely: the 
GEM IL itself. Since GEM already embodies knowl­
edge of the code sequences to evaluate every IL 
operator, no other encoding is needed. 

The automatic KFOLD builder is a specialized 
GEM compiler that uses the standard GEM back end 
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but has a front end that compiles only one program. 
The KFOLD builder scans the GEM operator signa­
ture table and constructs a procedure that contains 
a many-way conditional branch to select a case 
based on the IL operator specified in the argument 
list . Each case fetches operand values from the 
argument list, applies the operator, and returns the 
result. Since most GEM IL tuples operate on several 
data types, additional subcases may be based on the 
operator type or result type. We have already recov­
ered the investment in developing the automatic 
KFOLD builder, and it significantly eases the task of 
retargeting GEM. 

Conclusion 
This paper describes the current GEM compiler 
system. However, a portable, optimizing compiler 
provides many opportunities that we have not yet 
exploited. Some enhancements planned for future 
versions are: 

• Additional IL operators and data types, to sup­
port more languages 

• Support for additional architecture and operat­
ing system combinations 

• Dependence analysis, to enable some of the 
following enhancements 

• Loop transformations, to improve the use of the 
memory hierarchy 

• Software pipelining, to increase parallelism in 
vectorizable loops 

• Better reordering of memory references during 
instruction scheduling 

• The scheduling of instructions into different 
basic blocks 

• The relaxing of the linear restriction on the 
lifetime model, i.e ., allowing holes in register 
lifetimes 

The GEM compiler system has met demanding 
technical and time-to-market goals. The system has 
been successfully retargeted and rehosted for the 
Alpha AXP and MIPS architectures and several oper­
ating environments. GEM supports a wide range of 
languages and provides high levels of optimization 
for each. The current version of GEM generates effi­
cient code for Alpha AXP systems, and the imple­
mentation is robust and flexible enough to support 
future improvements. 
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Binary translation is a technique used to change an executable program for one 
computer architecture and operating system into an executable program for a dif 
Jerent computer architecture and operating system. Two binary translators are 
among the migration tools available for Alpha AXP computers: VEST translates 
Open VMS VAX binary images to Open VMS AXP images; mx translates ULTRIX MIPS 
images to DEC OSF/1 AXP images. In both cases, translated code usually runs on 
Alpha AXP computers as fast or Jaster than the original code runs on the original 
!rchitecture. In contrast to other migration efforts in the industry, the VAX transla­
tor reproduces subtle CISC behavior on a RISC machine, and both open-ended trans­
lators provide good performance on dynamically modified programs. Alpha AXP 
binary translators are important migration tools-hundreds of translated 
Open VMS VAX and ULTRIX MIPS images currently run on Alpha AXP systems. 

When Digital started to design the Alpha AXP archi­
tecture in the fall of 1988, the Alpha AXP team was 
concerned about how to run existing VAX code and 
soon-to-exist MIPS code on the new Alpha AXP com­
puters.1·2 To take full advantage of the performance 
capability of a new computer architecture, an appli­
cation must be ported by rebuilding, using native 
compilers. For a single program written in a stan­
dard programming language, this is a matter of 
recompile and run. A complex software application, 
however, can be built from hundreds of source 
pieces using dozens of tools. A native port of such 
an application is possible only when all parts of the 
build path are running on the new architecture. 

Therefore, devising a way to run an existing (old 
architecture) binary version of a complex applica­
tion on a new architecture is an important interim 
measure. Such a technique allows a user to get 
applications up and running immediately, with 
minimal porting effort. Once a user's everyday envi­
ronment is established, applications can be rebuilt 
over time, using handwritten native code or par­
tially native and partially old code. 

Background 
Several techniques are used in the industry to run 
the binary code of an old architecture on a new 
architecture. Figure 1 shows four common tech­
niques, from slowest to fastest: 
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• Software interpreter (e.g., Insignia Solutions' 
SoftPC) 

• Microcoded emulator (e.g., PDP-11 compatibility 
mode in early VAX computers) 

• Binary translator (e.g., Hunter System's XDOS) 

• Native compiler 

A software interpreter is a program that reads 
instructions of the old architecture one at a time, 
performing each operation in turn on a soft­
ware-maintained version of the old architecture's 
state. Interpreters are not very fast, but they run 
on a wide variety of machines and can faithfully 

SOFTWARE 
INTERPRETER 

FASTER 

Figure 1 Common Techniques for Running Old 
Code on New Computers 
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reproduce the behavior of self-modifying pro­
grams, programs that branch to data, programs that 
branch to a checksum of themselves, etc. Caching 
interpreters gain speed by retaining predecoded 
forms of previously interpreted instructions. 

A microcoded emulator operates similarly to a 
software interpreter but usually with some key 
hardware assists to decode the old instructions 
quickly and to hold hardware state information in 
registers of the micromachine. An emulator is typi­
cally faster than an interpreter but can run only on 
a specific microcoded new machine. This technique 
cannot be used to run existing code on a reduced 
instruction set computer (RISC) machine, since RISC 
architectures do not have a microcoded hardware 
layer underlying the visible machine architecture. 

A translated binary program is a sequence of 
new-architecture instructions that reproduce the 
behavior of an old-architecture program. Typically, 
much of the state information of the old machine is 
kept in registers in the new machine. Translated 
code faithfully reproduces the calling standard, 
implicit state, instruction side effects, branching 
flow, and other artifacts of the old machine. 
Translated programs can be much faster than 
interpreters or emulators, but slower than native­
compiled programs. 

Translators can be classified as either (1) 

bounded translation systems, in which all the 
instructions of the old program must exist at trans­
late time and must be found and translated to new 
instructions,3,4.5 or (2) open-ended translation sys­
tems, in which code may also be discovered, cre­
ated, or modified at execution time. Bounded 
systems usually require manual intervention to find 
100 percent of the code; open-ended systems can 
be fully automatic. 

To run existing VAX and MIPS programs, an open­
ended system is absolutely necessary. For example, 
some customer programs write license-check code 
(VAX instructions) to memory, and branch to that 
code. A bounded system fails on such programs. 

A native-compiled program is a sequence of new­
architecture instructions produced by recompiling 
the program. Native-compiled programs usually 
use newer, faster calling conventions than old pro­
grams. With a well-tuned optimizing compiler, 
native-compiled programs can be substantially 
faster than any of the other choices. 

Most large programs are not self-contained; they 
call library routines, windowing services, data­
bases, and toolkits, for example. These programs 
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also directly or indirectly invoke operating system 
services. In simple environments with a single dom­
inant library, it can be sufficient to rewrite that 
library in native code and to interpret user pro­
grams, particularly user programs that actually 
spend most of their time in the library. This strategy 
is commonly used to run Windows and Macintosh 
programs under the UNIX operating system. 

In more robust environments, it is not practical 
to rewrite all the shared libraries by hand; collec­
tions of dozens or even hundreds of images (such as 
typical VAX ALL-IN-I systems) must be run in the old 
environment, with an occasional excursion into the 
native operating system. Over time, it is desirable to 
rebuild some images using a native compiler while 
retaining other images as translated code, and to 
achieve interoperability between these old and 
new images. The interface between an old environ­
ment and a new one typically consists of "jacket" 
routines that receive a call using old conventions 
and data structures, reformat the parameters, per­
form a native call using new conventions and data 
structures, reformat the result, and return. 

The Alpha AXP Migration Tools team considered 
running old VAX binary programs on Alpha AXP 
computers using a simple software interpreter, but 
rejected this method because the performance 
would be too slow to be useful. We also rejected 
the idea of using some form of microcoded emula­
tor. This technique would compromise the perfor­
mance of a native Alpha AXP implementation, and 
VAX compatibility would be nearly impossible to 
achieve without microcode, which is inconsistent 
with a high-speed RISC design. 

We therefore turned to open-ended binary trans­
lation. We were aware of the earlier Hewlett­
Packard binary translator, but its single-image HP 
3000 input code looked much simpler to translate 
than large collections of hand-coded VAX assembly 
language programs.6 One member of the team 
(R. Sites) wrote a VAX-to-VAX binary translator in 
October 1988 as proof-of-concept. The concept 
looked feasible, so we set the following ambitious 
product goals: 

1. Open-ended (completely automatic) translation 
of almost all user-mode applications from the 
OpenVMS VAX system to the OpenVMS AXP 
system 

2. Open-ended translation of almost all user-mode 
applications from the ULTRIX system to the DEC 
OSF/1 system 
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3. Run-time pe rformance of translated code on 
Alpha AXP compu ters that meets or exceeds the 
p erformance of the original code on the original 
architecture 

4. Optional reproduction of subtle old-architecture 
details, at the cost of run-time performance, e .g. , 
complex instruction set computer (CISC) 
instruction atom icity for multithreaded applica­
tions and exact ari thmetic traps for sophisti­
cated error handlers 

5. If translation is not possible , generation of 
explicit messages that give reasons and sp ecify 
what source changes are necessary 

While we were c reating the VAX translator, we 
discovered that the process of bu ilding flow graphs 
of the code and tracking data dependencies yielded 
information about source code bugs, performance 
bottlenecks, and dependencies on features not avail­
able in all Alpha AXP operating systems. This analy­
sis information could be valuable to a source code 
maintainer. Thus, we added one more product goal: 

6. Optional source analysis information 

OLD BINARY 
OPTIONAL 
INTERFACE 

IMAGE DESCRIPTIONS 

I 
I 

TRANSLATOR 
(VEST/MX) 

I 

I 

NEW BINARY IMAGE OPTIONAL 
• OLD DATA LISTING 
• OLD CODE AND ERROR 
• NEW CODE MESSAGES 

RUN-TIME 
SUPPORT 
(TIE/MX) 

I 

I 

PROGRAM 
LOADER 

Binary Translation 

To achieve these goals, the Alpha AXP Migration 
Tools team created two binary translators: VEST, 
which translates OpenVMS VAX binary images to 
OpenVMS AXP images, and mx, which translates 
ULTRIX MIPS images to DEC OSF/1 AXP images. 
However, binary translation is only half the migra­
tion p rocess. As shown in Figure 2, the other half is 
to build a run-time environment in which to exe­
cute the translated code. This second half of the 
process must bridge any differences between old 
and new operating systems, calling standards, 
exception handling, etc. For open-ended transla­
tion, this part of the process must also include a 
way to run old code that was not d iscovered ( or did 
not exist) at translate time. The translated image 
environment (TIE) and mxr run- time environment 
support the VEST and mx translators, respectively, 
by reproducing the old operating environments. 
Each environment supports open-ended transla­
tion by including a fallback interpreter of old code, 
and extensive run-time feedback to avoid using the 
interpreter except for dynamically created code. 
Our design philosophy is to do everything feasible 
to stay out of the interpreter, rather than to increase 
the speed of the interpreter. This approach gives 

I 
I I 

OPTIONAL OPTIONAL 
INTERFACE FLOW 
DESCRIPTION GRAPHS 

OTHER OTHER 
TRANSLATED NATIVE 
IMAGES IMAGES 

I I 
I 

Figure 2 Binary Translation and Execution Process 
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better performance over a wider range of programs 
than using pure interpreters or bounded transla­
tion systems. 

The remainder of this paper discusses the two 
binary translator/run-time environment pairs avail­
able for Alpha AXP computers: VEST/TIE and 
mx/mxr. To establish a basis for the discussion, the 
reader must understand the following terms: 
datum, alignment, instruction atomicity, granular­
ity, interlocked update, and word tearing. 
Definitions of these terms appear in the References 
and Note section.7 

VEST: Translating a VAX Image 
Translating a VAX image involves two main steps: 
analyzing VAX code and generating Alpha AXP code. 
The translated images produced are OpenVMS AXP 
images and may be run just like native images. 8 

Translated images run with the assistance of the 
translated image environment, which is discussed 
later in this paper. The VEST binary translator is 
written in C++ and runs on VAX, MIPS, and Alpha 
AXP machines. The TIE is written in the OpenVMS 
system programming languages, BLISS and Alpha 
assembler. 

Analysis 
To locate VAX code, VEST starts disassembling code 
at known entry points and recursively traces the 
program's flow of control. Entry points come from 
main and global routines, debug symbol table 
entries, and optional information files (including 
run-time feedback from the TIE). 

As VEST traces the program, it builds a flow graph 
that consists of basic blocks (i.e., straight-line code 
sequences) annotated with information derived 
from parsing instructions. VEST then performs sev­
eral analyses on the flow graph to propagate con­
text information to each basic block and eliminate 
unnecessary operations. Context information 
includes condition code usage, register contents, 
stack depth, and a variety of other information that 
allows VEST to generate optimized code. 

Analysis is important for achieving good perfor­
mance. For example, no condition codes exist in 
the Alpha AXP architecture. Without analysis it 
would be necessary to compute condition codes 
for each VAX instruction even if the codes were not 
used. Furthermore, several forms of analysis were 
invented to allow correct translation. For example, 
VEST automatically determines if a subroutine does 
a normal return. 
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Code analysis can detect many problems, includ­
ing some that indicate latent bugs in the source 
image. VEST can detect, for example, uninitialized 
variables, improperly formed VAX CASE instruc­
tions, stack depth mismatches along two different 
paths to the same code (the program expects data 
to be at a certain stack depth), improperly formed 
returns from subroutines, and modifications to a 
VAX call frame. A latent bug in the source image 
should be fixed, since the translated image may 
demonstrate incorrect behavior due to that bug. 

Analysis also detects the use of unsupported 
OpenVMS features including unsupported system 
services. The source image must be modified to 
eliminate the use of these features. 

Some problems reported by VEST result from 
code that is hackish in nature. For example, we 
found code that expects a call mask at an entry 
point to be executed as a no-op instruction so that 
the code preceding the subroutine can simply exe­
cute the call mask, rather than go through the over­
head of a VAX jump OMP) instruction. VEST 
reproduces the behavior of the VAX program, even 
if this behavior is a result of luck. 

A VEST-generated flow graph is displayed in 
Figure 3. Dashed lines represent code paths fol­
lowed if a conditional branch is taken. Solid lines 
indicate fall-through paths. A problem is high­
lighted by a wide, dashed pointer whose bottom 
end indicates the basic block in which the problem 
was uncovered. Full blocks show the path that 
reveals the error; empty blocks show basic blocks 
that are not in the error path. In Figure 3, a path 
exists by which register 3 (R.3) may be used without 
being set if the VAX BNEQ (branch if the register 
does not equal zero) instruction in the second basic 
block is true the first time through the code 
sequence. 

Code Generation 
The VEST translator generates code by converting 
each VAX instruction into zero or more Alpha AXP 
instructions. The architecture mapping is straight­
forward because there are more Alpha AXP registers 
than VAX registers. The VAX archltecture has only 15 
registers, which are used for both floating-point 
and integer operations. The Alpha AXP architecture 
has separate integer and floating-point registers. 
VAX RO through RI4 are mapped to Alpha AXP RO 
through R14 for all operations except floating 
point. Rl2, R13, and R14 retain their VAX desig­
nations as argument pointer, frame pointer, and 
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Figure 3 VEST-generated Flow Graph Showing 
Uninitialized Variable 

stack pointer, and R15 is used to resolve PC-relative 
references. Floating-point operations are mapped 
to FO through F14. 

The VAX architecture has condition codes that 
may be referenced explicitly. In translated images, 
condition codes are mapped into R22 and R23. 
Similar to the HP 3000 translator, R23 is used as a 
fast condition code register for positive/negative/ 
zero results.6 R22 contains all four condition code 
bits and is calculated only when necessary. All 
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remaining Alpha AXP registers are used as scratch 
registers or for Open VMS AXP standard calls. 

VEST connects simple branches directly to their 
translated targets. VEST performs backward sym­
bolic execution of VAX instructions to resolve as 
many computed branch targets as feasible. If more 
than one possible computed target exists, a run­
time lookup is done on the VAX target address. If the 
lookup fails to find a translated target, a fallback 
VAX interpreter is used, as described in the TIE sec­
tion Failure to Find All Code during Translation. 
Unlike bounded translation systems, which must 
achieve 100 percent resolution of computed tar­
gets, the VEST and mx binary translators require no 
manual intervention. 

Translated Images 
A translated image has the same format as an 
OpenVMS AXP image and contains the original 
OpenVMS VAX image as well as the Alpha AXP 
instructions that were generated for the VAX code. 
The run-time VAX interpreter TIE needs the original 
VAX instructions as a fallback. (Also, some error 
handlers look up the call stack for pointers to spe­
cific VAX instructions.) The addresses of statically 
allocated data in the translated image are identical 
to their VAX addresses. The image contains a VAX-to­
Alpha AXP address mapping table for use during 
lookups and may contain an instruction atomicity 
table, described in the VAX Instruction Guarantees 
section. 

Translated images use the OpenVMS VAX calling 
standard. Native images use different conventions, 
but translated images interoperate with native or 
translated shareable images. Automatic jacketing 
services are provided in the TIE to convert calls 
using one set of conventions into the other. In 
many cases, jacketing services permit substitution 
of a native shareable image for a translated share­
able image without modification. However, a jacket 
routine is sometimes required. For example, on 
OpenVMS AXP systems, the translated FORTRAN 
run-time library, FORRTL_TV, invokes the native 
Alpha AXP library DEC$FORRTL for 1/0-related sub­
routine calls. DEC$FORRTL has a different interface 
than FORRTL has on an OpenVMS VAX system. For 
these calls, FORRTL_TV contains handwritten jacket 
routines. 

Files Used 
Translating an image requires only one file-a VAX 
executable image. Several optional files make trans­
lation more effective. 
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I. Image information files (IIFs). VEST automati­
cally creates IIFs to provide information about 
shareable image interfaces. The information 
includes the addresses of entry points, names of 
routines, and resource utilization. 

2. Symbol information files (SIFs). VEST automati­
cally generates SIFs to control the global symbol 
table in a translated shared library, facilitating 
interoperation between translated and native 
images. 

3. Hand-edited information files (HIFs). The TIE 
automatically generates HIFs, which may be 
hand-edited to supply information that VEST can­
not deduce. HIFs contain directives to tell VEST 
about undetected entry points, to force it to 
change specific assumptions about an image dur­
ing translation, and to provide known interface 
properties to be propagated into an IIF. 

VEST Performance Considerations 
In evaluating translated code performance, we rec­
ognized that there was a significant trade-off 
between performance and the accuracy of emulat­
ing the VAX architecture. VEST permits users to 
select several architectural assumptions and opti­
mizations, including: 

• D-float precision. The Alpha AXP architecture 
provides hardware support for D-float with only 
53-bit mantissas, whereas the VAX architecture 
provides 56-bit mantissas. The user may select 
translation with either 53-bit hardware support 
(faster) or 56-bit software support (slower). 

• Alignment. Alpha AXP instructions support only 
naturally aligned longword (32-bit) and quad­
word (64-bit) memory operations. Unaligned 
memory operations cause alignment faults, 
which are handled transparently by software at 
significant run-time expense. The user may 
direct VEST to assume that data references are 
unaligned whenever alignment information is 
unavailable. 

• Instruction atomicity. Multitasking and multi­
processing programs may depend on instruction 
atomicity and memory operation characteristics 
similar to those of the VAX architecture. VEST 
uses special code sequences to produce exact 
VAX memory characteristics. VEST and the TIE 
cooperate to ensure VAX instruction atomicity 
when instructed to do so. This mechanism is 
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described in detail in the section Special 
Considerations for Instruction Atomicity. 

Untranslatable Images 
Some characteristics make OpenVMS VAX images 
untranslatable, including: 

• Exception handler issues. Images that depend 
on examining the VAX processor status longword 
(PSL) during exception handling must be modi­
fied, because the VAX PSL is not available within 
exception handlers. 

• Direct reference to undocumented system ser­
vices. Some software contains references to 
unsupported and undocumented system ser­
vices, such as an internal-to-VMS service, which 
parses image symbol tables. VEST highlights 
these references. 

• Exact VAX memory management requirements. 
Images that depend on exact VAX memory man­
agement behavior do not function properly and 
must be modified. These images include those 
that depend on VAX page size or that expect 
certain objects to be mapped to particular 
addresses. 

• Image format. Programs that use images as data 
are not able to read OpenVMS AXP images with­
out modifications, because the image formats 
are different. 

TIE Design Overview 
The run-time translated image environment TIE 
assists in executing translated OpenVMS VAX images 
under the OpenVMS AXP operating system. Figure 4 
and Table 1 show the contents of the TIE. 

Problems Solved at Run Time 
Complications may occur when translated 
OpenVMS VAX images are run under the OpenVMS 
AXP operating system. This section discusses the 
following related topics: the failure to find all code 
during translation, VAX instruction guarantees, 
instruction atomicity, memory update, and preserv­
ing VAX exceptions. 

Failure to Find All Code during Translation 
When the VEST binary translator encounters a 
branch or subroutine call to an unknown destina­
tion, VEST generates code to call one of the TIE 
lookup routines. The lookup routines map a VAX 
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instructio n address to a translated Alpha AXP code 
address. If an address mapping exists, then a trans­
fer to the translated code is performed. Otherwise, 
the VAX interpreter executes the destination code. 
When the VAX interpreter encounters a flow of con­
trol change, it checks for returns to translated code. 

If the target of the flow change is translated code, 
the interpreter exits to this code. Otherwise, the 
interpreter continues to interp re t the target. 

Lookup op erations that t ransfer control to the 
interpreter also record the starting VAX code 
address in an HIF file. The VAX image can then be 
re translated with the HIF information, resulting in 
an image that runs faster. 

TRANSLATED 
MAIN AND NATIVE 
SHAREABLE IMAGES 
IMAGES 

t 
OPENVMS AXP 

JACKETING EXCEPTION SYSTEM 
INTERFACE HANDLING CALLBACKS 

+ + + 
I I 

t t t 
JACKETING EXCEPTION SYSTEM 

INTERFACE HANDLING SERVICES 
EMULATION 

~ t ' 

VAX STATE 
MANAGER 

VAX _J 
INTERPRETER 

L COMPLEX 
INSTRUCTIONS 

Figure 4 VEST Run-time Environment 

Table 1 TIE Contents 

VAX-to-Alpha AXP Address Mapping 
(VAX State Manager) 

VAX Inst ruction Atomicity Controller 
(VAX State Manager) 

VAX Instruction Interpreter 

VAX Complex Instructions 

OpenVMS VAX Exception Processing 

Routines for Differences between OpenVMS 
VAX and OpenVMS AXP System Services 

TIE 

Lookup routines are also used to call native 
Alpha AXP (nontranslated) routines. The TIE sup­
plies the required sp ecial autojacketing processing 
that allows interop eration between translated and 
native routines with no manual intervention. At 
load time, each translated image identifies itself to 
the TIE and supplies a mapp ing table used by the 
lookup routines. The TIE maintains a cache of trans­
lations to speed up the actual lookup processing. 

Every translated image contains both the original 
VAX code and the corresponding Alpha AXP code. 
When a translated image identifies itself, the TIE 
marks its original VAX addresses with the page pro­
tection called fault on execute (FOE). An Alpha AXP 
processor that attempts to execute an instruction 
on one of these pages generates an access violation 
fault. This fault is processed by a TIE condition han­
d ler to convert the FOE page protection into an 
appropriate destination address lookup operation. 
For example, the FOE might occur when a trans­
lated routine returns to its caller. If the caller was 
interpreted, then its return address is a VAX code 
address instead of a translated VAX (Alpha AXP 
code) address. The Alpha AXP processor attemp ts 

Used to find computed destinations and other cases 
where VESf did not find the original VAX code. Each 
translated image has a mapping table included. 

Achieves VAX instruction atomicity for asynchronous 
events. This allows data sharing between the single 
asynchronous execution context (ASf) provided by 
OpenVMS and non-ASf level routines. 

Executes VAX instructions not found by VESf. 

Some VAX instructions do not have code generated in-line 
by VESf. Those instructions are processed in the TIE. 
Examples are MOVC3 and MOVC5 that move byte strings. 
Certain aspects of OpenVMS AXP exception processing 
are necessarily different from OpenVMS VAX. For 
example, the VAX computers have two scratch registers, 
but Alpha AXP computers have 15. Translated condition 
handlers are passed the VAX equivalents. 

Some operating system interfaces were rearchitected. 
The TIE intervenes to make the differences transparent. 
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to execute the VAX code and generates a FOE condi­
tion. The TIE condition handler converts this into a 
JMP lookup operation. 

VAX Instruction Guarantees Instruction guaran­
tees are characteristics of a computer architecture 
that are inherent to instructions executed on that 
architecture. For example, on a VAX computer, if · 
instruction 1 writes data to memory and then 
instruction 2 writes data to memory, a second pro­
cessor must not see the write from instruction 2 
before the write from instruction 1. This property 
is called strict read-write ordering. 

The VEST/TIE pair can provide the illusion that a 
single CISC instruction is executed in its entirety, 
even though the underlying translation is a series 
of RISC instructions. VEST/TIE can also provide the 
illusion of two processors updating adjacent mem­
ory bytes without interference, even though the 

Table 2 Single Processor Guarantees 

underlying RISC instructions manipulate four or 
eight bytes at a time. Finally, VESli'TIE can provide 
exact memory read-write ordering and arithmetic 
exceptions, e.g., overflow. All these provisions are 
optional and require extra execution time. 

Tables 2 and 3 show the visibility differences 
between various guarantees on VAX and Alpha AXP 

systems as well as for translated VAX programs. 

Special Considerations for Instruction Atomicity 
The VAX architecture requires that interrupted 
instructions complete or appear never to have 
started. Since translation is a process of converting 
one VAX instruction to potentially many Alpha AXP 
instructions, run-time processing must achieve this 
guarantee of instruction atomicity. Hence, a VAX 

instruction atomicity controller (IAC) was created 
to manipulate Alpha AXP state to an equivalent 
VAX state. When a translated asynchronous event 

Single Processor Guarantees Characterized by What an Observer Sees 
on the Same Processor That Executes the Data Change 

Topic 

Instruction 
Atomicity 

VAX 

An entire 
VAX instruction 

Table 3 Multiple Processor Guarantees 

Translated VAX 

An entire translated 
VAX instruction with 
/PRESERVE=INSTRUCTION 
_ATOMICITY and TIE's 
instruction atomicity 
controller, else a single 
Alpha AXP instruction 

Native Alpha AXP 

A single Alpha AXP 
instruction 

Multiple Processor Guarantees Characterized by What an Observer 
on a Different Processor Sees versus the One Executing the Data Change 

Topic VAX Translated VAX Native Alpha AXP 

Byte Granularity Yes, hardware Yes, with Yes, via LDx_L, 
ensures this /PRESERVE=MEMORY merge, STx_C 

ATOMICITY - sequence 

Interlocked Update Yes, for aligned Yes, for aligned datum Yes, via LDx_L, 
datum using interlock using VAX interlock modify, STx_C 
instructions instructions sequence 

Word Tearing Aligned longword Aligned longword or Aligned longword or 
writes change all quadword writes quadword writes 
bytes at once change all bytes change all bytes 

at once at once 
Other writes are 
allowed to change 
one byte at a time 

144 Vol. 4 No. 4 Spedal Issue 1992 Digital Technical Journal 



processing routine is called, the IAC is invoked. The 
IAC examines the Alpha AXP instruction stream and 
either backs up the interrupted program counter to 
restart at the equivalent VAX instruction boundary 
or executes the remaining instructions to the next 
boundary. Many VAX programs do not require this 
guarantee to operate correctly, so VEST emits code 
that is VAX instruction atomic only if the qualifier 
/PRESERVE=INSTRUCTION_ATOMICITY is specified 
when translating an image. 

VEST-generated code consists of four sections 
that are detected by the IAC. These sections have 
the following functions: 

• Get operands to temporary registers 

• Operate on these temporary registers 

• Atomically update VAX results that could gener­
ate side effects (i.e., an exception or interlocked 
access) 

• Perform any updates that cannot generate side 
effects (e.g., register updates) 

The VAX interpreter achieves VAX instruction 
atomicity by using the atomic move, register to 
memory (AMOVRM) instruction. The AMOVRM 
instruction is implemented in privileged archi­
tecture library (PAL) subroutines and updates a 
contiguous region of memory containing VAX 
state without being interrupted. At the begin­
ning of each interpreted VAX instruction, a read and 
set flag (RS) instruction sets a flag that is cleared 
when an interrupt occurs on the processor. 
AMOVRM tests the flag, and if set, performs the 
update and returns a success indication. If the flag 
is clear, the AMOVRM instruction indicates failure, 
and the interpreter reprocesses the interrupted 
instruction. 

Issues with Changing Memory VAX instruction 
atomicity ensures that an arithmetic instruction 
does not have any partially updated memory loca­
tions, as viewed from the processor on which that 
instruction is executed. In a multiprocessing envi­
ronment, inspection from another processor could 
result in a perception of partial results. 

Since an Alpha AXP processor accesses mem­
ory only in aligned longwords or quadwords, it 
is therefore not byte granular. To achieve byte 
granularity, VEST generates a load-locked/store­
conditional code sequence, which ensures that a 
memory location is updated as if it were byte granu­
lar. This sequence is also used to ensure interlocked 
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access to shared memory. Longword-size updates 
to aligned locations are performed using nor­
mal load/store instructions to ensure longword 
granularity. 

Many multiprocessing VAX programs depend 
on byte granularity for memory update. VEST 
generates byte-granular code if the condition 
/PRESERVE=MEMORY _ATOMICITY is specified when 
translating an image. In addition, VEST generates 
strict read-write ordering code if the qualifier 
/PRESERVE=READ_ WRITE_ORDERING is specified 
when translating an image. 

Preserving VAX Exceptions Alpha AXP instruc­
tions do not have the same exception characteris­
tics as VAX instructions. For instance, an arithmetic 
fault is imprecise, i.e., not synchronous with the 
instruction that caused it. The Alpha AXP hardware 
generates an arithmetic fault that gets mapped 
into an OpenVMS AXP high-performance arith­
metic (HPARITH) exception. To retain compati­
bility with VAX condition handlers, the TIE maps 
HPARITH into a corresponding VAX exception when 
calling a translated condition handler. Most VAX 
languages do not require precise exceptions. 
For those that do, like BASIC, VEST generates 
the necessary trap barrier (TRAPB) instructions 
if /PRESERVE=FLOATING_EXCEPTIONS is specified 
when translating an image. 

Open VMS AXP and 
OpenVMS VAX Differences 
Functional Differences Most OpenVMS AXP 
system services are identical to their OpenVMS VAX 
counterparts. Services that depend on a VAX-spe­
cific mechanism are changed for the Alpha AXP 
architecture. The TIE intervenes in such system ser­
vices to ensure the translated code sees the old 
interface. 

For example, the declare change mode handler 
($DCLCMH) system service establishes a handler for 
VAX change mode to user (CHMU) instructions. The 
handler is invoked as if it were an interrupt service 
routine required to use the VAX return from inter­
rupt or exception (REI) instruction to return to the 
invoker's context. On OpenVMS AXP systems, the 
handler is called as a normal procedure. To ensure 
compatibility, the TIE inserts its own handler when 
calling OpenVMS AXP $DCLCMH. When a CHMU is 
invoked on Alpha AXP computers, the TIE handler 
calls the handler of the translated image, using the 
same VAX-specific mechanisms that the handler 
expects. 
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Exception Handling OpenVMS AXP exception 
processing is almost identical to that performed in 
the OpenVMS VAX system. The major difference is 
that the VAX mechanism array needs to hold the 
value of only two temporary registers, RO and RI, 
whereas the Alpha AXP mechanism array needs to 
hold the value of 15 temporary registers, RO, RI, and 
R16 through R28. 

Complex Instructions Translating some VAX 
instructions would require many Alpha AXP 
instructions. Instead, VEST generates code that calls 
a TIE subroutine. Subroutines are implemented in 
two ways: (1) handwritten native emulation rou­
tines, e .g., MOVC5, and (2) VEST-translated VAX emu­
lation routines, e.g., POLYH. 

Together, VEST and TIE can translate and run most 
existing user-mode VAX binary images. As shown in 
Table 4, performance of translated VAX programs 
slightly exceeds the original goal. Performance 
depends heavily on the frequency of use of VAX fea­
tures that are not present in Alpha AXP machines. 

ULTRIX MIPS Translation 
mx is the translator that converts ULTRIX MIPS pro­
grams to DEC OSF/1 AXP programs. The mx project 

started after VEST was functional, and we took 
advantage of the VEST common code base for much 
of the analysis and Alpha AXP code assembly phases 
of the translator. In fact, about half of the code in 
mx is compiled from the same source files as those 
used for VEST, with some architectural specifics 
supplied by differing include files. The code-shar­
ing aspects of C++ have proven quite valuable in 
this regard. 

mxr is the run-time support system for translated 
programs. It provides services similar to TIE, emu­
lating the ULTRIX MIPS environment on a DEC OSF/1 
AXP system. mxr is written in C++, C, and Alpha 
assembler. 

Challenges 
Creating a translator for the MIPS R2000/R3000 
architecture presented us with a host of new oppor­
tunities, along with some significant challenges. 
The basic structure of the mx translator is much 
simpler than that of VEST. Both the source and 
the target architectures are RISC machines; there­
fore, the two instruction sets have a considerable 
similarity. Many instructions translate one for one. 
The MIPS architecture has very few instruction side 
effects or subtle architectural details, although 

Table 4 Translated VAX Performance, Normalized to Native-compiled OpenVMS AXP Code 

VAX Time 
on VAX 6610 

Program (83.3 MHz) 

SPECmark89 

gee 1.9 
expresso 3.1 
spice2g6 2.8 
doduc 2.9 
nasa7 4.4 
Ii 2.7 
eqntott 3.3 
matrix300 8.8 
fpppp 3.8 
tomcatv 5.3 

Geometric Mean 3.8 
(without gee) 

Notes: 

VEST 
Translated Time 
on DEC 7000 AXP 
(167 MHz)* 

_t 

2.7 
1.8 
3.0 
6.2 
4.2 
2.2 
4.2 
2.7 
2.9 

3.1 

Native Time 
on DEC 7000 AXP 
(167 MHz) 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

1.0 

The larger the number, the slower the performance. These performance numbers were measured on derated field test hardware and 
software at various times during 1992; production results will vary somewhat. The SPEC benchmarks are written in FORTRAN and C; 
no conclusions should be drawn about other classes of programs written in other languages. 

'The DEC 7000 system was running at a derated speed compared to production DEC 7000 systems. 

tTiming information for this run is not available. 

146 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal 



those that are present are particularly tricky. 
Furthermore, the format of an executable program 
under the ULTRIX system collects all code in a single 
contiguous segment and makes it easy for mx to 
reliably find close to 100 percent of the code in the 
MIPS application. The system interfaces to the 
ULTRIX and DEC OSF/1 systems are similar enough 
that most ULTRIX system calls have functionally 
identical counterparts under the DEC OSF/1 system. 

The challenges in mx stem from the fact that the 
source architecture is a RISC machine. For example, 
DEC OSF/1 AXP is a 64-bit computing environment, 
i.e., all pointers used to communicate with the 
operating system are 64 bits wide. This environ­
ment does not present a problem when the pointer 
is passed in a register. However, when a pointer (or 
a long data item, such as a file size) is passed in 
memory, it must be converted between the 32-bit 
representation, used by the ULTRIX system, and the 
64-bit AXP representation, even when the seman­
tics of the operating system call are the same on 
both systems. 

A significant challenge is the fact that our users' 
expectations for performance of translated pro­
grams are much higher than for VEST. Reasoning 
that the source and target machines are similar, 
users also expect mx to achieve a translated pro­
gram performance better than that of the source 
program, since Alpha AXP processors are faster. 
Thus, as our performance goal, we set out to pro­
duce a translated program that runs at about the 
same speed as the original program would run on a 
MIPS R4000 machine with a 100-megahertz (MHz) 
internal clock rate. 

Mapping the Architectures 
At first glance, it appears that we could simply 
assign each MIPS register to a corresponding Alpha 
AXP register, because each machine has 32 general­
purpose registers. The translated code would then 
have two scratch registers, since the MIPS architec­
ture does not allow user-level programs to use reg­
isters KO and K 1, which are reserved for the 
operating system kernel. 

Unfortunately, translation requires more than 
two scratch registers. The Alpha AXP architecture 
does not have byte or halfword (16-bit) loads or 
stores, and the code sequences for perform­
ing these operations require four or five scratch 
registers. Furthermore, mx requires a base register 
to locate mxr without having to load a 64-bit 
address constant at each call. Finally, the MIPS 
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architecture has more than 32 registers, including 
the HI and LO registers used by the multiply and 
divide instructions, and a floating-point condition 
register, whose layout and contents do not corre­
spond to the Alpha AXP floating-point condition 
register. 

In mx, we assign registers using standard com­
piler techniques. To assign registers to 33 MIPS 
resources (the 32 general registers plus one 64-bit 
register to hold both HI and LO), certain registers 
are permanently mapped, and other MIPS registers 
are kept in either AXP registers or memory. The 
MIPS argument-passing registers AO through A3 are 
permanently assigned to Alpha AXP registers R16 
through R19, which are the argument registers in 
the DEC OSF/1 AXP calling standard. This correspon­
dence simplifies the work needed when mxr must 
take arguments for an ULTRIX system call and pass 
them to a DEC OSF/1 system call. Similarly, the argu­
ment return registers VO and VI are mapped to the 
Alpha AXP argument return registers RO and R 1. The 
return address registers and stack pointer registers 
of the two machines are also mapped. MIPS RO is 
mapped to Alpha AXP R31, where both registers 
contain the same hard-wired zero value. We reserve 
Alpha AXP registers R22 through R24 as scratch reg­
isters and also use them when interfacing to mxr. 
We reserve Alpha AXP R14 as a pointer to an mxr 
communication area. Finally, we reserve three 
more registers as scratch registers for use by the 
code generator. 

The remaining 16 Alpha AXP registers are avail­
able to be assigned to the remaining 23 MIPS 
resources. After the code is analyzed and we have 
register usage information, the 16 most frequently 
used MIPS registers get mapped to the remaining 16 
Alpha AXP registers, and the remaining registers are 
assigned to memory slots in the mxr communica­
tion area. When a MIPS basic block uses one of the 
slotted registers, mx assigns it to one of the scratch 
registers. If the first reference reads the old con­
tents of the register, mx generates a load instruc­
tion from the communications area. If the value of 
the MIPS resource changes in the basic block, the 
scratch register is stored in the communication 
area before the end of the block. As in most compil­
ers, if we run out of registers, a spill algorithm 
chooses a value to save in the communication area 
and frees up a register. 

Alpha AXP integer registers are 64 bits wide, 
whereas MIPS registers are only 32 bits wide. We 
chose to keep all 32-bit values in Alpha AXP integer 
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registers as sign-extended values, with the high 32 
bits equal to bit 31. This approach occasionally 
requires mx to generate additional code to create 
canonical 32-bit integer results, but the 64-bit com­
pare operations do not need to change the values 
that they are comparing. 

The floating-point architecture is more complex. 
Each of the 32 MIPS floating-point registers is 32 bits 
wide. Only the even registers are used for single 
precision, and a double-precision number is kept 
in an even-odd register pair. We map each pair of 
MIPS floating-point registers onto a single 64-bit 
Alpha AXP floating-point register. Also, one Alpha 
AXP floating-point register represents the condition 
code bit of the MIPS floating-point control register. 
Thus, the mx code generator can use 14 scratch 
registers. mx goes to considerable effort to find 
paired loads and stores in the MIPS code stream, and 
to merge them into one Alpha AXP floating-point 
operation. 

MIPS single-precision operations cause problems 
with floating-point correspondence. Since on MIPS 
machines, the single-precision number is kept in 
only the even register of the register pair, the even 
and odd registers in a pair are independent when 
single-precision (or integer) operations are done in 
the floating-point unit. On Alpha AXP machines, 
computation must be done on a value extended to 
double format in the whole 64-bit register. We 
defined two forms for values in Alpha AXP floating­
point registers: computational form, in which com­
putation is done, and canonical form, which 
mimics the MIPS even and odd registers. If a MIPS 
program loads an even register and uses this regis­
ter as a single-precision value, mx loads the value 
from memory to be used computationally. If a MIPS 
program loads only an even register but does not 
use this register in the basic block, mx puts the 32-
bit value into half of the Alpha AXP floating-point 
register. This permits correct behavior in the patho­
logical case where half of a floating-point number is 
loaded in one place, and the other half is loaded in 
some other basic block. If a register is used as a sin­
gle-precision number in a basic block without first 
being loaded, the code generator inserts code to 
convert it from canonical to computational float­
ing-point form. If a single-precision value has been 
computed in a block and is live at the end of the 
block, it is converted to canonical form. 

mx inserts a register mapping table into the 
translated program that indicates which MIPS 
resources are statically mapped to which Alpha 
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AXP registers, and which MIPS resources are nor­
mally kept in memory. This table allows mxr to find 
the MIPS resources at run time. 

Finding Code 
As with the VEST translator, mx finds code by 
starting at entry points and recursively tracing 
down the flow of control. mx finds entry points 
using the executable file header, the symbol table 
(if present), and feedback from mxr (if present). 
Finally, mx performs a linear scan of the entire 
text section for unexamined words. mx analyzes 
any data that looks like plausible code but does not 
connect this data into the main flow graph. 
Plausible code consists of a series of valid MIPS 
instructions terminated by an unconditional trans­
fer of control. 

While finding code and connecting the basic 
blocks into a flow graph, mx looks for the code 
sequence that indicates a switch statement, i.e., a 
multi-way branch, usually through an element of a 
table. mx finds the branch table and connects each 
of the possible targets as successors of the branch. 

Code Analysis 
Our static analysis of hundreds of MIPS programs 
indicates that only 10 instructions account for 
about 85 percent of all code. These instructions are 
LW, ADDIU, SW, NOP, ADDU, BEQ, JAL, BNE, LUI, and 
SLL. The corresponding sequences of Alpha AXP 
code range from zero operation codes, or opcodes, 
(for NOP, since the Alpha AXP architecture does not 
require NOPs anywhere in the code stream) to two 
opcodes (for Sil). 

Code analysis for source programs is much more 
important in mx than in VEST, because the coding 
idioms for many common operations differ 
between the Alpha AXP and MIPS processors. The 
simple technique of mapping each MIPS instruction 
to a sequence of one or more Alpha AXP instruc­
tions loses much of the context information in the 
original program. 

For example, the idiom used to load a 32-bit 
constant into a register on MIPS machines is to gen­
erate a load upper immediate (LUI) opcode, placing 
a 16-bit constant in the high-order 16 bits of a 
register. This operation is followed by an OR imme­
diate (ORI) opcode, logically ORing a 16-bit 
zero-extended value into the register. The LUI 
corresponds exactly to the Alpha AXP load address 
high (LDAH) opcode. However, the Alpha AXP 
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architecture has no way of directly ORing a 16-bit 
value into a register and cannot even load a zero­
extended 16-bit constant into a register. When the 
high-order bit of the 16-bit constant is 1, the short­
est translation for the ORI is three instructions. The 
mx translator scans the code looking for such 
idioms, and generates the optimal two-instruction 
sequence of Alpha AXP code that performs the 32-
bit load. No opcode exists that corresponds to the 
ORI, but the results in the registers are correct. 

When we started writing the mx translator, 
we listed a number of code possibilities that we 
thought we would never see. In retrospect, this was 
a misguided assumption. For example, we have 
seen programs that branch into the delay slot of 
other instructions, requiring us to indicate that the 
delay slot instruction is a member of two different 
basic blocks-the block it ends, and the one it 
starts. We have observed programs that put soft­
ware breakpoint (BREAK) instructions in the branch 
delay slot, and thus BREAK ends a basic block with­
out being the last instruction. Some compilers 
schedule code so that half of a floating-point regis­
ter is stored and then reused before the other half is 
stored. The general principle that we intuit from 
these observations is "if a code sequence is not 
expressly prohibited by the architecture, some pro­
gram somewhere will use it." 

Code Generation 
After the program is parsed and analyzed and the 
flow graph is built, the code generator is called. It 
builds the register mapping table and then, in turn, 
processes each basic block, generating Alpha AXP 
code that performs the same functions as the MIPS 
code. 

At each subroutine entry, mx scans the code 
stream with a pattern-matching algorithm to see if 
the code corresponds to any of a number of stan­
dard MIPS library routines, such as strcpy. (Note that 
the ULTRIX operating system has no shared 
libraries, so library routines are bound into each 
binary image.) If a correspondence exists, the 
entire subroutine is recursively deleted from the 
flow graph and replaced with a canned routine to 
perform the subroutine's work on Alpha AXP pro­
cessors. This technique contributes significantly to 
the performance of translated programs. 

For each remaining basic block, the instructions 
are converted to a linked list of intermediate 
opcodes. At first, each opcode corresponds exactly 
to a MIPS opcode. The list is then scanned by an 
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optimization phase, which looks for MIPS coding 
idioms and replaces them with abstract machine 
instructions that better reflect the idiom. For exam­
ple, mx changes loads of immediate values to a non­
MIPS hardware load immediate (LI) instruction; shift 
and add sequences to abstract operations that 
reflect the Alpha AXP scaled add and subtract 
sequences; and sequences that change the floating­
point rounding mode (used to truncate a floating­
point number to an integer) to a single opcode that 
represents the Alpha AXP convert operation with 
the chopped mode (IC) modifier. 

MIPS code contains a number of common code 
sequences that cross basic block boundaries, 
but which can be compressed into a single basic 
block in Alpha AXP code. Examples of these are 
the min and max functions, which map neatly 
onto a single conditional move (CMOVxx) instruc­
tion in Alpha AXP code. The code generator looks 
for these sequences, merges the basic blocks, 
and creates an extended basic block, which 
includes pseudo-opcodes that indicate the MIPS 
code idiom. 

After the optimizer completes the list of instruc­
tions, it translates each abstract opcode to zero or 
more Alpha AXP opcodes, again building a linked 
list of instructions. This process may permit further 
improvements, so the optimizer makes a second 
pass over the Alpha AXP code. 

When processing a basic block, the code genera­
tor assumes that it has an unlimited number of tem­
porary resources. Since this is not actually true, the 
code generator then calls a register assigner to allo­
cate the real Alpha AXP temporary resources to the 
intermediate temporary registers. The register 
assigner will load and spill MIPS resources and gen­
erated temporary registers as needed. 

Finally, the list of Alpha AXP instructions is assem­
bled into a binary stream, and the instruction 
scheduler rearranges them to remove resource 
latencies and use the chip's multiple issue capability. 

Image Formats 
The file format for input is the standard ULTRIX 
extended common object file format (COFF). In 
most ULTRIX MIPS programs, the text section starts 
at 00400000 (hexadecimal) and the data at 
10000000 (hexadecimal). In virtually all programs, 
a large gap exists between the virtual address for 
the end of text and the start of the data section. 
When mx creates the output image, it places the 
generated Alpha AXP code after the MIPS code and 
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before the MIPS data. This allows the program to 
have one large text section. The Alpha AXP code 
begins at an Alpha AXP page boundary, so that we 
can set the memory protection on the MIPS code 
separately from the Alpha AXP code. 

The translated image is not in DEC OSF/1 AXP exe­
cutable format. Instead, it looks like a MIPS COFF 
file, but with the first few bytes changed to the 
string ··=!/usr/bin/mxr" . 

Executing a Translated Program 
When a translated image is run on DEC OSF/1 AXP, 

its modified header invokes mxr first. mxr uses the 
memory map (mmap) system call to load the trans­
lated program at the same virtual address that it 
would have had under the ULTRJX operating 
system. mxr resets the protection of the MIPS code 
to read/no-write/no-execute, the Alpha AXP code 
to read/no-write/execute, and the data to read/ 
write/no-execute. 

mxr allocates a communication area and ini­
tializes Alpha AXP R14 to point to this area. The 
communication area contains save areas for 
MIPS resources, initialized pointers to mxr ser­
vice routines, and other scratch space. mxr then 
constructs new command argument (argv) and 
environment vectors as 32-bit wide pointers (as the 
MIPS program expects), arranges to intercept cer­
tain signals from the DEC OSF/1 AXP system, and 
transfers control to the translated start address of 
the program. 

When a system signal is delivered to the program, 
control goes to the signal intercept code in mxr. 
This code transforms the signal context structure 
from the DEC OSF/1 AXP system and constructs an 
ULTRJX MIPS style context, which it then passes to 
the translated signal handler. 

Certain signals are processed specially. For 
instance, a program that attempts to transfer con­
trol to a location containing MIPS code rather than 
translated code gets a segmentation violation, since 
the MIPS code is not executable. This situation 
can occur if a routine modifies its return address 
to be a MIPS address constant. mxr will examine 
the target address and, if it corresponds to the start 
of a pretranslated MIPS basic block, divert the flow 
of control to the translated code for that block. 
If not, mxr enters the MIPS interpreter. The 
interpreter proceeds to emulate the MIPS code 
until a translated point is reached. mxr then 
resynchron izes its machine state and reenters the 
translated code. 
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Translation Goals and Classes 
of Programs Not Supported 
Our goal was to translate most user-mode MIPS pro­
grams compiled for a MIPS R2000 or R3000 machine 
running ULTRJX Release 4.0 (or later) to run identi­
cally on the DEC OSF/1 AXP system with acceptable 
performance. As shown in Table 5, performance of 
translated MIPS programs meets or exceeds the 
original goal. 

Table 5 Translated MIPS 
Relative Performance 

MIPS Time on Translated Time 
DECstation on DEC 3000 
5000 Model 240 AXP Model 500 

Program (40 MHz) (150 MHz) 

SPECint92 

espresso 
Ii 
eqntott 
compress 
SC 
gee 

Geometric Mean 
(without sc) 

SPECfp92 

spice2g6 
doduc 
mdljdp2 
wave5 
tomcatv 
ora 
alvinn 
ear 
mdljsp2 
swm256 
su2cor 
hydro2d 
nasa7 
fpppp 

Geometric Mean 
(without 
spice2g6) 

Notes: 

2.4 1.1 (1.0)* 
1.6 1.2 (1.0) 
1.6 2.1 (1.0) 
2.7 1.0 (1.0) 

_t 

2.1 1.2 (1.0) 

2.0 1.3 (1.0) 

1.7 1.0 
2.7 1.0 
1.1 1.0 
3.0 1.0 
1.5 1.0 
1.6 1.0 
1.7 1.0 
1.4 1.0 
2.3 1.0 
2.7 1.0 
2.9 1.0 
2.6 1.0 
2.2 1.0 

2.0 1.0 

The larger the number, the slower the performance. These 
performance numbers were measured on derated field test 
hardware and software at various times during 1992; production 
results will vary somewhat. The SPEC benchmarks are written 
in FORTRAN and C; no conclusions should be drawn about other 
classes of programs written in other languages. 

'The values in parentheses are from running once, then 
retranslating with the run-time feedback from the first run; 
this gave a significant performance difference only for the 
programs shown. 

tTiming information for this run is not available. 
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Due to extreme technical obstacles, some classes 
of programs will never be supported by mx. We 
decided not to translate programs that use privi­
leged opcodes or system calls or that need to run 
with superuser privileges. In cases where the file 
system hierarchy differs between the ULTRIX and 
DEC OSF/1 AXP systems, programs that expect files 
to be in particular places or in a particular format 
may fail. Similarly, programs that read /dev/kmem 
and expect to see an ULTRIX MIPS memory layout 
fail. 

Certain other classes of programs are not cur­
rently supported, but are technically feasible. 
These include big endian MIPS programs from non­
Digital MIPS environments, programs that use 
R4000 or R6000 instructions that are not present 
on the R3000 model, programs that need to be 
multiprocessor safe, and programs that require cer­
tain categories of precise exception behavior. 

Summary 
Building successful turnkey binary translators 
requires hard work but not magic. We built two dif­
ferent translators, VEST and mx. In both cases, the 
old and new environments are, by design, quite 
similar in fundamental data types, memory address­
ing, register and stack usage, and operating system 
services. Translators between dissimilar architec­
tures or operating systems are a different matter. 
Translating the code might be a reasonably straight­
forward task. However, emulating a run-time envi­
ronment in which to execute the code might 
present insurmountable technical and business 
obstacles. Without capturing the environment, an 
instruction translator would be of no use. 

The idea of binary translation is becoming more 
common in the computer industry, as various other 
companies start on their transitions to 64-bit 
architectures. 
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Porting Digitals Database 
Management Products to the 
AlphaAXP Platform 

The cornerstone software component of bigl:rend production systems is a database 
management system. Digital bas successfally ported the DEC Rdb for Open VilfS rela­
tional database management system and the DEC DBMS for OpenVilfS network 
database management system to the Alpha AXP platform. Rdb and DBMS were per­
haps the most complex layered products to be ported. The tight coupling of these two 
products to the Open VilfS VAX system made the port a challenging task. To avoid the 
future problem of integrating two source code bases, the porting team decided to 
use a common code base and to overlap current VAX development with the Alpha 
AXP port. The goal was to provide an easy migration path for software products to 
the Alpha AXP platform. 

Digital is one of a small number of vendors compet­
ing in the high-end, complex production systems 
market. Applications for this market support indus­
tries such as banking, stock exchanges, telecommu­
nications, and information services. The Alpha AXP 
platform is ideally suited to meet the response 
time, throughput, and availability requirements of 
these applications, since it offers increased perfor­
mance while maintaining the superb availability 
characteristics ofVMScluster systems. 

Although high-end production systems involve a 
collection of software packages, the cornerstone 
software component is a database management 
system. Digital offers two database management 
systems for high-end commercial systems: DEC Rdb 
for OpenVMS, a relational database management 
system, and DEC DBMS for OpenVMS, a network 
(CODASYL) database management system. Digital 
had to port the DEC Rdb for OpenVMS VAX and DEC 
DBMS for OpenVMS VAX database systems to the 
Alpha AXP platform as early as possible to continue 
to compete in this commercial arena. The resulting 
products are the DEC Rdb for OpenVMS AXP and 
DEC DBMS for OpenVMS AXP systems. (Since these 
two products for the Alpha AXP system are the 
same as those for the VAX system, hereafter, we 
will refer to the products as Rdb and DBMS.) 
Additionally, both software products drive many 
sales of Digital's OpenVMS operating system and 
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transaction processing and information manage­
ment products such as CDD, ACMS, and DEC RALLY, 
which integrate with the Rdb and DBMS systems. 

Database management systems are among the 
most complex of all software products. Applica­
tions expect these systems to have 7 by 24 availabil­
ity, sophisticated concurrency capabilities, fast data 
access, high-speed backup and restore mecha­
nisms, and large buffer pools. To provide such func­
tionality, the Rdb and DBMS products make 
extensive use of the Open VMS VAX system, the VAX 
run-time libraries, and the BLISS and VAX MACR0-32 
programming languages. The current release of the 
product set uses more than 100 system services or 
run-time library calls. The two products utilize 
almost every BLISS BUILTIN function, i.e., a machine­
specific function call that generates in-line code. 
Combined, Rdb and DBMS comprise more than 30 
different images. The products run in elevated pro­
cessing modes, both executive and kernel, and 
include user-written system services. 

Further compounding the complexity of porting 
the Rdb and DBMS software to the Alpha AXP plat­
form is the fact that they are mature products; DBMS 
was released in 1981, Rdb in 1984. Because various 
system capabilities did not exist in the early 1980s, 
the two database management systems include 
code that is no longer required. For example, both 
products have code to move bytes from one data 
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type to another. Also, during image rundown, the 
products rely on undocumented, operating system 
behavioral patterns such as the asynchronous 
system trap (AST) delivery protocols. In addition, 
the Rdb software contains a modified version of the 
OpenVMS SORT routine. 

Rdb and DBMS were initially designed to run 
only on the OpenVMS VAX operating system. 
Consequently, both products heavily utilize VAX­
specific features for performance gains.1 For exam­
ple, Rdb generates VAX machine code routines as 
part of query execution plans; the machine code is 
carefully generated for maximum execution effi­
ciency. This tight coupling of Rdb and DBMS to the 
OpenVMS VAX system made the port a challenging 
task. 

Since the OpenVMS and BLISS groups were busy 
with their own porting projects, we in the Database 
Systems Group had to accomplish our port with lit­
tle outside help. The task was noteworthy because, 
by necessity, the team had to port its product set to 
the Alpha AXP platform earlier than most of the 
other porting groups. At the same time, Rdb and 
DBMS were perhaps the most complex layered 
products that would be ported. Our goal was to 
port these two products in a timely fashion, so that 
Digital would truly succeed in providing an easy 
migration path for software products to the Alpha 
AXP platform. 

In this paper, we first present a brief description 
of the architecture of the two database manage­
ment system products. We next describe the guid­
ing policies we formulated to allow the port to 
proceed as efficiently as possible. Then, we docu­
ment porting issues that we resolved for the two 
products. Finally, we summarize our experiences 
related to this effort. 

Product Architecture 
Digital is unique in the database industry in that we 
provide two different types of database manage­
ment systems that layer on top of the same database 
kernel, which is called KODA. The KODA kernel 
provides journaling and recovery, locking, access 
methods (e.g., B-tree, hashing), record and page 
management, and buffer pool management. 

The Rdb software provides language preproces­
sors, an interactive query front end, a callable inter­
face, catalogue management, query optimization, 
and relational operations such as join, select, and 
project. Rdb supplies a relational interface to the 
database. 
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The DBMS product also provides language pre­
processors, an interactive query front end, and 
other software necessary to define, create, and 
manage data in simple or complex databases. In 
contrast to Rdb, DBMS provides a CODASYL inter­
face to the database. 

Figure 1 shows the relationship of the Rdb and 
DBMS software products to the KODA database 
kernel. 

Porting Policies 
Initially, we developed policies to guide our port to 
the Alpha AXP platform. These policies, which 
applied to the KODA, Rdb, and DBMS teams, were 
designed to simplify the port and to ease long-term 
maintenance requirements. 

Common Source Code Base 
Our most important decision was to have a com­
mon source code base. That is, we wanted to have 
one set of source code that could be compiled and 
run on either a VAX or an Alpha AXP system. At the 
time we began our port, the OpenVMS group was 
the only other software group that had started their 
port, and they had chosen to have two distinct code 
bases. (The OpenVMS AXP porting schedule dic­
tated the choice.) So with respect to code base, the 
path we chose was untested. We also decided to 
maintain common command procedures to com­
pile, build, and link, and common regression tests 
between the VAX and Alpha AXP systems. 

A primary reason for our code base decision was 
that we did not have the resources to manage two 
different code bases. Also, although two divergent 
code sources would have allowed for a stable code 

ROB DBMS 

I 

KODA DATABASE KERNEL 

OPENVMS OPERATING SYSTEM 

Figure 1 Relationship of Rdb and DBMS 
to the KODA Database Kernel 
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base with which to begin the Alpha AXP port, the 
group strongly wanted to avoid having to merge the 
two code bases at a future date. Consequently, 
since our preliminary investigation indicated that a 
single code base was feasible and that we could 
hide most of the platform dependencies through 
the superb macro capability of the BUSS language, 
we proceeded with the common source code 
implementation. The single code base allowed us to 
build and release Alpha AXP and VAX versions of our 
products at the same time. 

Concurrent Releases 
Our release schedule complicated the process of 
adhering to the single code base policy. To meet the 
schedule, we had to overlap some of the Alpha AXP 
port with our current VAX releases. That is, the sce­
nario we followed was NOT: work on a VAX release; 
complete all necessary code changes; stabilize the 
release; and then create a newer set of sources for 
the Alpha AXP port. Rather, for the beginning por­
tion of the Alpha AXP port, we also had to change 
source code destined for a VAX release. Thus, if a 
module had to be changed for the earlier VAX 
release and the same module had already been 
ported for the Alpha AXP release, the engineer had 
to propagate the code change to the Alpha AXP 
source code. 

To minimize the effect of double code changes, 
we first worked on those modules for the Alpha 
AXP release that were reasonably stable in the cur­
rent VAX code stream. For example, the BUSS 
REQUIRE files that we use for data definitions were 
reasonably stable for the VAX release by the time the 
Alpha AXP port began. The modules that did not 
change for the VAX release were also good candi­
dates for helping us to avoid making double code 
changes. When we finally began to port the bulk of 
the modules, they were mostly stable and, as a 
result, only bug fixes for the VAX release required 
that we manually modify the same module for the 
Alpha AXP release. 

Furthermore, once we began work on the Alpha 
AXP release, we needed the capability of being able 
to compile, link, and test on both the Alpha AXP 
and VAX platforms. So we had to modify our devel­
opment environment to allow us to identify the 
code change session as either an Alpha AXP or a VAX 
session. 

No New Functionality 
The Alpha AXP release of the database management 
system product set contains no new functionality. 
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On the first pass, we decided to port the VAX code 
without designing any new algorithms. We did 
clean up some code for style, convention, and per­
formance, but basically, the Alpha AXP release 
remains functionally equivalent to the latest VAX 
release. 

Correct and Fast Code Execution 
We did not prioritize our effort to first, be correct, 
and second, be fast. We decided that we must be 
correct and fast on certain key issues. For example, 
on VAX systems, our argument-passing mechanism 
utilized the argument pointer (AP). To minimize 
code changes, we could have used the ARGPTR con­
struct in the BLISS cross compiler. However, ARGPTR 
is inefficient and, therefore, not appropriate for our 
needs. Consequently, we ensured that our new 
argument-passing design was efficient, even 
though doing so was time-consuming. 

Minimizing Platform-specific Modules 
Code conditionalization, i.e., producing separate 
code for the VAX and the Alpha AXP platforms, 
requires various levels of code duplication. For 
example, the process may require the duplication 
of an entire module, routines within a module, or 
certain lines of code within a routine. To minimize 
the amount of code duplicated, we conditionalized 
on the smallest code segment possible, using a sen­
sible approach. For example, when forced into 
using conditional code, we avoided duplicating 
modules by choosing to keep within a single mod­
ule. Ideally, we conditionalized just a few lines. 
Wherever possible, BUSS macros were modified to 
hide the code conditionalization. 

RdblsRdb 
We wanted our database management products to 
"look and feel" the same on an Alpha AXP system as 
they did on a VAX system. So, to paraphrase from the 
OpenVMS operating system maxim, we wanted Rdb 
to be Rdb! That is, the ported Rdb should have the 
same utilities, the same data structures, the same 
data definition capabilities, the same data manipu­
lation constructs, etc., as the DEC Rdb for OpenVMS 
VAX product. Incorporated in this desire for same­
ness was the fundamental point that we were not 
going to change the on-disk structures. DBMS was 
ported with the same goal in mind. 

No Changes to On-disk Structures 
The KODA kernel stores records on database pages. 
Unfortunately, the database page is not naturally 
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aligned; page header fields and fields within the 
records are not aligned. Although aligning these 
fields would boost performance, to realign all the 
structures on the database page would require the 
database to be unloaded and then reloaded. Current 
customers cannot afford the downtime needed to 
perform the conversion, so we decided to maintain 
the same page/record structure. Furthermore, by 
maintaining the same on-disk structure for the VAX 
and Alpha AXP databases, we do not preclude 
future concurrent access to the database in a 
mixed-architecture VMScluster. Thus, our present 
design does not require an unload/reload opera­
tion, since performing that action would be too 
much of an impediment to migrating to the Alpha 
AXP platform. However, we do plan to investigate 
the potential performance boost from aligned 
pages/records and, if the gain is substantial, to offer 
some alignment solution. Note that this section 
refers only to data structures tied to on-disk struc­
tures. We did align all in-memory structures, and 
we elaborate on this topic in the next section. 

Porting Details 
In this section we describe a general set of issues 
and solutions that applied to all the groups involved 
in porting the database management system soft­
ware to the Alpha AXP platform. We then explain 
some of the more interesting issues and solutions 
pertaining to each group. 

Common Issues 
A collection of general porting issues applied to the 
Rdb, DBMS, and KODA groups. For example, all 
groups needed the capability to conditionalize 
code in a module, so that the compiler on an Alpha 
AXP system would produce one set of object code, 
and the compiler on a VAX system would produce 
another set. Common issues were: 

$PROBER (BASE, LEN= 4, MODE= 0) 
%IF KOD$K_ALPHA 
%THEN CBUILTIN PAL_PROBER; 

• Varianted code 

• Data alignment and field resizing 

• Argument-passing mechanism 

• BUILTIN functions 

• VAX testing 

• The CALLG mechanism and AP references 

• VAX MACR0-32 modules 

• Message file support 

Varianted Code To simplify conditional code, we 
added a set of literals, for example KOD$K_ VAX or 
KOD$K_ALPHA, that can be used in all our BLISS 
modules. We could then use these literals to condi­
tionalize code. The code example shown in Figure 
2 illustrates the conditionalizing of the PROBE 
instruction. The PROBE instruction checks the 
read/write access of a memory location. On Alpha 
AXP systems, the instruction is quite different from 
the corresponding instruction on VAX systems. 
However, BLISS easily handles this difference in a 
macro, which allows us to change the name and the 
order of the arguments, pass arguments by value 
instead of reference, and use an offset instead of a 
length. By developing such a macro, the actual 
source code did not have to change. 

Data Alignment and Field Resizing On the first 
pass, we immediately modified all in-memory data 
structures so that they were naturally aligned. This 
step avoided incurring a significant performance 
penalty on the Alpha AXP platform. In addition, 
since no single Alpha AXP instructions exist that 
could be used to easily manipulate bytes or words, 
many of our in-memory byte (8-bit) and word 
(16-bit) fields were changed to longwords (32 bits) 
to reduce the object code size and improve 
performance. 

PAL_PROBER (BASE, LEN - 1, MAX (MODE, $PREV_MODE))) 
%ELSE CBUILTIN PROBER; 

PROBER (%REF (MODE), %REF (LEN), BASE)) 
%FI %, 

Figure 2 Conditionalized PROBE Instruction 
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Once we aligned the in-memory data structures, 
two groups of data structures remained unaligned: 
those tied to the database root file, which records 
database parameters such as associated files and 
database settings, and the database pages that actu­
ally contain the data records. Since the database 
root file is relatively small (i.e., less than 100 blocks 
in size), it was aligned also. Thus, the root file is 
automatically re-created in a conversion that 
occurs when upgrading a database product to sup­
port both the Alpha AXP and VAX architectures. 
Since this conversion invariably takes place when 
converting to a newer version of either the Rdb or 
the DBMS product, the additional realignment of 
the root is a minor additional expense. 

Thus far, we have not pursued any potential mod­
ifications of the page data structures, such as align­
ing them once they are fetched into memory. Note 
that these structures do not generate unaligned 
faults. Instead, they force the compiler to generate 
a few additional instructions to handle the odd 
alignment. 

Argument-passing Mechanism The VAX and 
Alpha AXP argument-passing mechanisms are 
entirely different. Rather than using the standard 
BUSS mechanism, the existing code depended 
strongly on the VAX argument-passing mechanisms 
by using BUSS macros to reference arguments from 
the AP. This approach was not possible on Alpha 
AXP systems due to the lack of an AP register. (You 
could force the AP to be generated, but that process 
would be slow and would waste memory.) 
Therefore, we changed our procedure headings to 
declare a generic formal parameter list (e.g., Pl 
through PN) for both the Alpha AXP and the VAX 
systems and then developed another set of BLISS 
macros that allowed us to bind to the arguments 
based on the generated formal parameter list. Since 
this process involved changing every routine decla­
ration, we developed a text-processing tool that 
would automatically change the routine headings 
and thereby avoid the expensive and error-prone 
task of manually changing each routine. 

BUILTIN Functions Together, the KODA, Rdb, and 
DBMS code uses most of the BUSS BUILTIN func­
tions. This fact presented a problem for the team 
porting the software to the Alpha AXP platform. 
Some VAX BUILTINs were not supported, some 
behaved differently, and some were eliminated as 
BUILTINs but emulated by Starlet, an OpenVMS 
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support library. Again, we used BLISS macros to 
solve the problem. Essentially, our macros catego­
rized the BUILTINs and then performed the appro­
priate expansion, based on the category. For 
example, the PROBE BUILTIN differed markedly 
between the VAX and Alpha AXP implementations, 
as indicated by Figure 2. 

VAX Testing Another general problem that we 
had to guard against was the possibility that the 
Alpha AXP code changes would introduce bugs into 
the VAX versions of the products. Consequently, we 
adopted a policy whereby all Alpha AXP changes 
had to be tested on a VAX system. This policy 
ensured that we maintained a steady pattern of cor­
rect VAX behavior. Also, since the VAX environment 
was more stable than the Alpha AXP environment, 
testing on a VAX system helped tremendously in 
identifying and fixing bugs related to the port. 

The CALLG Mechanism and AP References The 
Alpha AXP platform does not directly support 
CALLG, a VAX procedure calling mechanism, and 
references to the AP. The CALLG mechanism and AP 
references are slow since they are simulated and 
automatically allocate stack space to accommodate 
the largest possible argument list (i.e. , 255). In situ­
ations where performance was not critical, for 
example, in an error handler, we replaced CALLG by 
a standard routine call on both the VAX and the 
Alpha AXP software versions. When performance 
was an issue, we used conditional code to retain the 
CALLG mechanism for the VAX code and to use a 
standard routine call in the Alpha AXP code. In 
instances where the CAllG mechanism is used to 
pass the argument list to the next rou tine, we con­
structed an argument vector and replaced CALLG by 
a special call linkage. The new mechanism passed. 
the pointer to the argument vector by means of a 
single parameter or a global register. This solution 
guaranteed good performance on both VAX and 
Alpha AXP systems yet avoided any conditionalizing 
of the code. 

VAX MACR0-32 Modules For a variety of reasons, 
we used VAX MACR0-32 to code some routines in 
the Rdb, DBMS, and KODA software. For example, 
basic operations such as record compression, record 
expansion, and buffer initialization are performed 
through calls to VAX MACR0-32 routines that are 
heavily optimized for efficient operation. Some 
routines are coded in VAX MACRO-32 for ease 
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of character manipulation. Also, we used VAX 
MACR0-32 to code machine instructions that were 
not available through a BLISS BUILTIN function. 

We adopted various solutions for these VAX 
MACR0-32 routines. For those routines where per­
formance was not an issue and BLISS generated 
acceptable code, we converted to BLISS code. For 
routines where performance was absolutely criti­
cal, we rewrote the routine in Alpha AXP MACR0-64 
to utilize the additional registers. Finally, in some 
cases where we could not rewrite the routine in 
BLISS code and did not have the resources to con­
vert to MACR0-64 code, we employed the Alpha 
MACRO cross compiler. 

Message File Support Due to the structure of the 
database products, as shown in Figure 1, each com­
ponent has separate message files. Both Rdb and 
DBMS have a message file that is separate from the 
KODA message file. Furthermore, the Rdb and DBMS 
software share the KODA message file. 

The message files are merged during the build 
cycle, so that customers are not required to be 
aware of the modular layout of the code. As a result, 
KODA messages, when appended to Rdb's message 
file, print as Rdb messages (e.g., RDMS-F-msgcode, 
message text). However, the Rdb source code still 
references the KODA message codes with the 
KOO$_ message prefix. 

Prior to the introduction of the Alpha AXP archi­
tecture, the KODA messages were defined with 
.LITERAL declarations in the message files. Since we 
occasionally link images with multiple message 
files, we wrote a program that would read an .OBJ 
file and write a new .OBJ file without writing the 
KODA literal declarations. This process would no 
longer work since Alpha AXP object files have a dif­
ferent format than VAX object files. As a result, we 

MODULE DBMKODMSG = 
BEGIN 

changed the mechanism to define the KOO$_ sym­
bolic values to be compatible with both the VAX 
and Alpha AXP architectures. 

First, we removed all .LITERAL declarations from 
the KODA message file. As a result, all KODA mes­
sages were defined strictly as ROMS or DBMS 
messages. Then, after passing the message source 
file through the message compiler to get the mes­
sage object file, we invoked the ANALYZE/OBJECT 
facility to get a listing of the message symbol codes 
and values for each message. Finally, we wrote a 
small utility to read the ANALYZE/OBJECT output 
and generate a BLISS .832 file, which is shown in 
Figure 3. 

This BLISS program, when compiled and included 
in an executable image, defines the appropriate 
KOO$_ message codes and their associated values. 
This procedure is used on both the OpenVMS VAX 
and the OpenVMS AXP operating systems to gener­
ate the message files. Furthermore, since this group 
no longer writes programs that read object code, 
the resulting method is easier to maintain. 

The following three sections discuss some prob­
lems encountered by each of the porting teams. 

Porting the KODA Database Kernel 
Among the issues that the KODA group dealt with 
were those related to calling mechanisms, kernel­
mode rundown handlers, and a bugcheck dump 
mechanism. 

Stack-switching/Stall Mechanism The KODA data­
base kernel performs its own multithreading activi­
ties. A single process can be actively attached to 
multiple databases in the context of a single instan­
tiation of the software. For example, in the DBMS 
interactive query (DBQ) facility, the user can per­
form the following operation: 

GLOBAL LITERAL KODS_ABORT WAIT 
GLOBAL LITERAL KODS_ACCVIO 
GLOBAL LITERAL KODS_AIJACTIVE 
GLOBAL LITERAL KOD$ AIJALLDONE 

%X '0028800C'; 
%X'002885EC'; 
%X'00288BA3'; 
%X'00288B33'; 

END 
ELUDOM 

Figure 3 BUSS Code to Generate KOD Message Definitions 
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dbq> ! Attach to first database as user1. 
dbq> BIND DB1 ON STREAM 1 
dbq> 
dbq> ! Attach to second database as user2. 
dbq> BIND DB2 ON STREAM 2 
dbq> 
dbq> ! Establish user1 context. 
dbq> SET STREAM 1 

This example has the user attached to two differ­
ent databases, DBI and DB2. To issue queries against 
either database, the user enters the SET STREAM 
command. In response, KODA establishes the cor­
rect data structures and stream context for this 
database session. This process involves switching 
data structures and stack context. Consequently, 
KODA manages its own stack for its executive mode 
code and data structures. This stack-switching 
mechanism is complex, and this code is intimately 
tied to the VAX procedure calling mechanism. For 
example, whenever a query must stall (e.g., while 
waiting for a lock request), KODA saves the current 
executive mode context and then switches back 
through the stream code out to user mode. This 
action allows the process to receive user-mode 
ASTs. This mechanism essentially saves a call frame 
so that after the user-mode stall has completed, 
KODA can set up the appropriate stack and return to 
the calling routine by means of the saved call frame. 

The calling/return mechanism is entirely differ­
ent for the VAX and Alpha AXP architectures. On 
Alpha AXP systems, for each routine, the compiler 
generates prologue code and epilogue code to man­
age the routine calling mechanism. Accordingly, 
the KODA stack mechanism had to rely on this new 
mechanism. In addition, for this level of support, 
the routine that was coded in BLISS for the VAX plat­
form had to be coded in MACR0-64 on the Alpha 
AXP platform. 

Kernel-mode Rundown Handlers Another exam­
ple of KODA's close tie to OpenVMS behavior 
involved the use of KODA's kernel-mode rundown 
handler. On VAX systems, in the event of an abnor­
mal failure, we must clean up certain data struc­
tures and release resources such as locks or 
channels. Furthermore, database recovery must 
start before the image rundown is completed, so 
that surviving processes cannot acquire locks on 
resources before the databases are recovered. 

We accomplish this image cleanup through the 
use of a user-defined system service (i.e., a system 
service not defined by the OpenVMS system), 
which acts as a kernel-mode rundown handler. 
In addition to releasing database resources, the 
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handler also cleaned up OpenVMS data structures 
such as the pending AST queue. These OpenVMS 
data structures changed significantly for the Alpha 
AXP architecture. For example, an Alpha AXP 
system has five pending AST queues instead of one. 
In addition, this handler routine would acquire the 
OpenVMS scheduler spinlock and perform "poor 
man's lockdown;' which effectively pages the entire 
routine into memory (since the code cannot incur a 
page fault at elevated interrupt priority level, IPL). 
For Alpha AXP, code and data cannot be located in 
the same PSECT, so this trick was not possible. 
Instead, we used the $LKWSET macro to lock pages 
in memory and then to clean up the OpenVMS data 
structures. 

After we completed and tested the code, the 
database and OpenVMS engineering teams decided 
that such intricacy was needlessly complex, and 
that the OpenVMS AXP software could clean up 
the data structures based on its image control 
block and related structures. This example shows 
how the Open VMS AXP system offers different func­
tionality than the OpenVMS VAX system, i.e., the 
port offered the opportunity to clean up existing 
mechanisms. 

Bugcheck Dump Mechanism Complex, sophisti­
cated software products are by nature difficult to 
debug. Most of these products utilize a data struc­
ture dumping mechanism whenever an internal 
software or hardware error is encountered. KODA 
has a mechanism called a bugcheck dump that per­
forms this service. When an unexpected exception 
is generated, the bugcheck dump code prints all rel­
evant data structures into a file. In addition, the 
dump includes a stack dump. On VAX systems, the 
bugcheck dump traces back down the stack using 
the saved call frames and prints out all the fields in 
each call frame, the routine name, and the argu­
ments passed. 

In particular, the method for printing the sym­
bolic name of the routines is especially clever. After 
linking an image, we utilize a program that scans 
the symbol table (.STB file) produced by the linker. 
Then the program creates its own object file, which 
includes a relative offset of all the routines and their 
symbolic names. Finally, the image is relinked, and 
this new object file is included into the image in a 
particular PSECT. When tracing back down the call 
frames, the bugcheck dump also checks the special 
PSECT to locate and print the correct routine name. 
This dump is an invaluable tool in determining the 
causes of unexpected errors. Figure 4 includes two 
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Saved PC= 000408AF : DIOSFETCH D8KEY + 0000004F 
ARG# Argument [data ... ]-------=---------------------------------------------

1 00206484: 0001FCFC 002064F4 0020650C 207C0000 000277C7 00010000 00020001 
2 00000001 

Handler= 00000000, PSW = 0000, CALLS= 1, STACKOFFS = 0 
Saved AP= 0020644C, Saved FP = 00206430, PC Opcode= EO 

SR2 002646DO: 00000000 00000000 00006918 FFDAA3E8 FFF63770 00000000 00000000 
SR3 00008C41: 013A2048 C2FFFFFF FFFFF85E E0009587 D512A4E0 40000000 18C00040 
SR4 00264680: 00000008 0020645C 002646AO 00000000 00000000 00000000 00000000 

20 bytes of stack data from 0020641C to 00206430: 
00264680000000010020648400000002 0000 ' .... 4d ..... OF&.' 

001C7D08 0010 '.} .. ' 

Saved PC= 00055241 : PSISMODIFY STITM + 00000033 
ARG# Argument [data ... ]--------=--------------------------------------------

1 00206484: 0001FCFC 002064F4 0020650C 207COOOO 000277C7 00010000 00020001 
2 00000096 
3 002646DO: 00000000 00000000 00006918 FFDAA3E8 FFF63770 00000000 00000000 

Handler= 00000000, PSW = 0000, CALLS= 1, STACKOFFS = 0 
Saved AP= 00206490, Saved FP = 00206464, PC Opcode= DD 

SR2 = 00256042: 00020096 0000005F 00000057 00000000 00000002 00010000 002E2A13 
SR3 = 00264680: 00000000 00000001 00000008 002646AO 00264670 00000000 00000000 

24 bytes of stack data from 0020644C to 00206464: 
002646D0000000960020648400000003 0000 ' .... 4d ..... PF&.' 

001C7CF8002646CO 0010 '@F&.xl .. ' 

Figure 4 Bugcheck Dump 

routine calls from a stack trace, indicated by the 
lines of code that begin with "Saved Pc." 

Alpha AXP systems have no equivalent to the VAX 
call frames, so it is impossible to use the call frame 
mechanism to trace down through the stack. As 
mentioned previously, Alpha AXP routines utilize 
prologue and epilogue code for returning from rou­
tine calls. Procedure descriptors contain informa­
tion such as entry address and register save 
information. 

On Alpha AXP systems, another Digital group 
supplied a set of routines that allows tracing the 
call sequence. This set provided the basic capabil­
ity to print the routine calling sequence that led to 
an abnormal exception. In addition, the Alpha AXP 
linker produced a symbol table file. However, we 
decided to simplify our bugcheck mechanism. 
Although we still search the symbol table file for all 
routine addresses, rather than create an Alpha AXP 
object file, we create a VAX MACR0-32 file that 
includes the routine name and address/offset. 
Then, we simply use the Alpha MACRO cross com­
piler to generate the Alpha AXP object, which gets 
linked into the image on the second pass. In fact, 
we changed our VAX bugcheck routine to produce a 
MACR0-32 file with routine name and offsets. This 
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process is simpler than directly creating an object 
file, as we did previously. 

Even though the routines provided this call trace­
back capability, we were missing the arguments 
passed to the routines, perhaps the most important 
part of the stack trace. The VAX mechanism cap­
tured this data, because very often a bugcheck 
results from one routine passing an improper argu­
ment to another routine. The Alpha AXP system 
does not provide a way to capture this information, 
because the routine calling sequence reuses regis­
ters RI6 through R21 for passing arguments. 

PortingRdb 
Some issues handled by the Rdb porting group 
were associated with the dispatch code, Alpha AXP 
code generation, Rdb precompilers, and Rdb 
system relations. 

Dispatch Code The dispatch code is the topmost 
layer of the Rdb software and is called directly by 
the user application by means of relational call 
interface (RCI) calls. 2 The main function of dispatch 
code is to direct the user request to the correct tar­
get Rdb executive (local or remote) for processing. 
On VAX systems, the dispatch code passes the user 
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arguments to the Rdb software using the CALLG 
linkage.3 On Alpha AXP systems, CALLG linkage is 
very inefficient. Therefore, the dispatch code was 
changed to build a user argument vector in the 
same style as the VAX argument list, and the pointer 
to the argument vector was passed as a single 
parameter. The code in Rdb was changed to bind to 
the user arguments using the offset from the 
pointer to the argument vector. 

Using two different calling mechanisms in the 
dispatch to pass user arguments was a careful 
design. On VAX systems, the existing CALLG mecha­
nism was retained to ensure backward compatibil­
ity between different versions of the Rdb dispatch, 
Rdb layered products, and gateways. A new calling 
mechanism was used on Alpha AXP systems to 
ensure good performance, since every user request 
to the Rdb executive goes through the dispatch. 

Code Generator Rdb uses compiled BUSS code 
and generated machine code to execute user 
requests. During request compilation, Rdb gener­
ates highly efficient routines using the target 
machine instructions. These routines perform 
basic data operations including data conversion, 
data movement between buffers, aggregation, and 
expression evaluation. 

The design of the Rdb code generator to produce 
Alpha AXP machine code was undoubtedly the 
most complex porting task. Use of a mechanism 
other than code generation would have reduced 
the porting effort. However, at the time we began 
porting Rdb, it was not clear if an alternate mecha­
nism would guarantee an acceptable level of perfor­
mance. Good performance was considered critical 
to the success of Rdb on Alpha AXP systems. 
Therefore, we decided to add functionality to the 
Rdb code generator to produce Alpha AXP code. To 
generate efficient Alpha AXP code sequences, we 
observed specific guidelines. 4 

On Alpha AXP systems, code that references data 
items with increasing memory addresses executes 
more efficiently. Therefore, the algorithm was 
changed to first order the data items by increasing 
memory addresses and then generate code to pro­
cess the data. 

In Rdb, each data item has a null bit that indicates 
whether or not the value of the data item is known. 
As shown in Figure 5, to conserve space, the null 
bits of different data items are stored together like 
a bit vector within a record. Loading/storing a 
null bit is an expensive operation on Alpha AXP 
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j oATA ITEM1 joATA ITEM21 NULL BIT VECTOR 

Figure 5 Rdb Record Layout 

systems.4 Therefore, the algorithm was modified to 
fetch a batch of null bits into a register. When all 
null bits in the register are processed, the batch is 
written and the next batch of null bits is fetched. 
This approach reduced the number of load and 
store instructions and made the code sequence 
much more efficient. 

On Alpha AXP systems, the machine code rou­
tines generated by Rdb use four different address­
ing modes to access data items: absolute address, 
base register plus offset, integer register content, 
and floating-point register content. Each of the 
Alpha AXP registers R12 through R15 is used as a 
base register. Thus, any data stored within 256K 
( 4 X 64K) of memory space can be accessed effi­
ciently. To maximize data access efficiency and 
caching, changes were made in the code generator 
to allocate data densely. To improve performance 
further, data items were allocated at quadword or 
longword aligned addresses. 

An Alpha AXP code sequence executes more 
efficiently when instructions can be multi-issued 
and executed in parallel. This can be achieved 
by reordering the sequence of instructions 
while maintaining any chronological dependency 
between instructions. To take advantage of this 
Alpha AXP feature, BLISS macros were developed 
to reorder and interleave the instructions in a gen­
erated code sequence. 

On Alpha AXP systems, backward branches in the 
code slow down the execution because of instruc­
tion stream invalidation. 4 Changes were made in 
the Rdb code generator to minimize backward 
branches. This change at times increased the size of 
the generated code but improved the code execu­
tion efficiency. Further, Boolean code generation 
algorithms were modified to incorporate branch 
prediction logic; code sequences with a smaller 
probability of execution were branched out of the 
main code stream. This technique maximized the 
effect of instruction stream caching. 

Rdb Precompilers An Rdb precompiler prepro­
cesses a user application program that includes 
Rdb statements and replaces these statements by 
standard RCI calls to the Rdb software.2 The Rdb 
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statements embedded in the applications can be 
one of three types: structured query language 
(SQL), Rdb preprocessors language (RdbPRE), or 
relational data manipulation language (RDML). 
There are three different Rdb precompilers to sup­
port these languages. 

The SQL precompiler, an industry-standard lan­
guage interface to Rdb, is a strategic Rdb compo­
nent. A long-term goal of this precompiler is 
flexibility in future developments and ease of main­
tenance. To meet this goal, the SQL precompiler was 
redesigned to use the GEM compiler on Alpha AXP 
systems to preprocess SQL application programs 
and produce Alpha AXP object code. 

The RdbPRE precompiler is a proprietary lan­
guage interface to Rdb. The long-term goal is no 
new functionality and minimal maintenance. So 
the main objective was to reduce the effort 
required to port this compiler. This was achieved by 
retaining the existing design and using the Alpha 
MACRO cross compiler to produce Alpha AXP 
objects from VAX MACR0-32 files. 

The RDML precompiler is also a proprietary lan­
guage interface to Rdb. Unlike the RdbPRE precom­
piler, this compiler does not produce VAX MACR0-32 
files. So porting it was an easy and straightforward 
task. 

Rdb System Relations Rdb uses system relations 
to record information about the user relations and 
the database. The system relations are stored on 
disk and loaded into memory on demand. Since 
they are frequently referenced during user request 
processing, efficient access to data in system rela­
tions is critical for performance. On Alpha AXP 
systems, accessing data from memory is efficient if 
it is located on either a longword or a quadword 
address boundary.4 Therefore, changes were made 
to the in-memory system data structures to align 
each data field to at least a longword address bound­
ary. Further, data fields that were a byte or a word 
were expanded to a longword. 

The data in system relations was accessed by 
using RdbPRE statements embedded in Rdb source 
modules. Porting such Rdb modules posed a 
dilemma. To compile these modules, first the 
RdbPRE compiler had to be ported to the Alpha AXP 
platform. Vice versa, to port and test the RdbPRE 
precompiler, Rdb had to be ported and running on 
the Alpha AXP platform. Moreover, RdbPRE was no 
longer a strategic language interface. Therefore, 
new BLISS macros were designed that replaced the 
embedded RdbPRE statements. 
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Porting DBMS 
This section discusses some experiences of the 
DBMS porting group, namely those related to the 
Database Control System (DBCS) interface, the 
H_FLOAT data type support, and the use of the 
Alpha User-mode Debugging Environment (AUD). 

DBM$32, the Primary Inteiface to the DBMS The 
DBCS for the DBMS software uses a single subrou­
tine (DBM$32) as its primary entry point. This entry 
point is used by the DBMS precompilers (FDML, 
for Fortran, and DML, for other languages except 
COBOL), as well as other layered products, such as 
COBOL and DATATRIEVE. 

After receiving control, DBM$32 performs some 
processing and then, using the CALLG mechanism, 
passes the entire argument list to lower-level rou­
tines for further processing. These lower-level rou­
tines, in turn, often pass on the argument list, 
sometimes as deep as five or six levels. 

Because we found CALLG to be inefficient, we 
decided to change the primary entry point into the 
DBCS. Rather than passing up to 26 separate argu­
ments, DBMS creates a vector of longwords; each 
longword contains an argument that would have 
been passed using a parameter. Once this vector is 
created (often during the compilation phase for the 
precompilers), DBM$32_ VEC (the VECTOR version 
of DBM$32) is called with a single parameter: the 
address of the argument list. An example is shown 
in Figure 6. 

Layered products using DBMS were advised of the 
new interface and were requested to use it as soon 
as possible. However, since the changed interface 
was incompatible with some existing products, the 
old interface was retained. DBM$32_ VEC uses the 
new interface, and DBM$32 homes the argument list 
(thus creating the above vector) and then passes 
that, by reference, to DBM$32_ VEC. 

Support of H_FLOAT Data Types The H_FLOAT 
data type is fully supported on the VAX processor, 
but the Alpha AXP processor has no high-precision 
floating-point formats. Although facilities exist on 
Alpha AXP processors to read an H_FLOAT data 
type, no such facility exists to write an H_FLOAT 
data type. 

As a result, DBMS customers are advised to elimi­
nate any H_FLOAT data in databases before moving 
them to an Alpha AXP system. The DBMS Database 
Restructure Utility (DRU) can be used to change all 
H_FLOAT data to another common floating-point 
format. 
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DBM$32 INTERFACE 

ARG1 = FIRST PARAMETER 
ARG2 = SECOND PARAMETER 

ARGN = NTH PARAMETER 

DBM$32_VEC INTERFACE 

ARG1 -+-..--~~~~~~----. 
LENGTH OF VECTOR 

FIRST PARAMETER 

SECOND PARAMETER 

NTH PARAMETER 

Figure 6 DBCS Routine-calling Interface 

In preparation for mixed VAX and Alpha AXP 
VMScluster systems, DBMS was modified such that 
databases with H_FLOAT data can still be accessed. 
However, a run-time conversion error occurs if 
H_FLOAT data is accessed from an Alpha AXP 
system. 

Use of AUD The Alpha User-mode Debugging 
Environment is a set of facilities that aids testing 
and debugging of native Alpha AXP code on any 
OpenVMS VAX system. AUD allowed as much Alpha 
AXP user-mode code as possible to be ported imme­
diately to the Alpha AXP system and to be substan­
tially debugged before Alpha AXP hardware was 
available. Early in the DBMS porting effort, we used 
AUD to verify our port and to ensure that our code 
was working correctly. 

However, several issues hampered the success of 
using AUD in porting the DBMS software: 

1. DBMS makes frequent use of signaled excep­
tions. AUD had difficulty in handling exceptions 
that cross the boundary between the Alpha AXP 
and VAX systems. 

2. DBMS uses special stack manipulation code 
(stream code) to perform multithreading func­
tions. AUD would become confused if the stack 
were to change unexpectedly. 

3. At the time we were using AUD, the DBCS had 
been ported, but KODA (i.e., the low-level ser­
vices used by the DBCS) had not. As a result, 
many variables needed to be defined as crossing 
the boundary between the Alpha AXP and VAX 
systems. The setup time to define this informa­
tion was significant. 

4. Since the code was still running on a VAX proces­
sor, many VAX dependencies were not caught by 
AUD. In particular, system services that changed 
in subtle ways would work as before because the 
operating system was still the OpenVMS system. 
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5. Most of the changes that we made in DBMS were 
not conditional, that is, the changes would affect 
both VAX and Alpha AXP systems. As a result, we 
were able to test our code on VAX systems with a 
fairly high degree of certainty that our code was 
correct, barring any operating system or com­
piler bugs. 

We did eventually get an AUD version of DBMS 
working. However, since we spent a considerable 
amount of time accomplishing this, and we did not 
actually find any bugs in our code by using AUD, we 
decided not to use AUD in further areas of DBMS. 

Shortly after using AUD, we received our Alpha 
Demonstration Unit (ADU) and could test our code 
on actual Alpha AXP hardware. The only problems 
we found, which were missed during our initial 
port, were VAX-style argument list assumptions. 
Some of our code assumed that routine arguments 
were contiguous in virtual memory; on Alpha AXP 
systems, this is not the case. 

Conclusion 
To conclude the paper, we discuss our plans for per­
formance testing and our reflections on the porting 
process. 

Performance 
We have only begun our performance tests. Cur­
rently, we are running the TPC-B performance 
benchmark. We also plan to test against all TPC 
benchmarks (A, B, and C) and other benchmarks 
such as the Wisconsin benchmark. We are trying to 
minimize the amount of time spent in PALcode, 
decreasing the code path length, reducing the cycles 
per instruction, and optimizing internal algorithms. 

Planned testing will also evaluate the effect of 
additional data alignment. As mentioned earlier, the 
ease-of-migration issue is paramount for our current 
customers. Consequently, we have not realigned 
the database pages because that action would 
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require too much downtime. Nevertheless, we do 
not want to preclude new customers, or current 
customers who need the performance boost, from 
utilizing a properly aligned database page. To test 
the potential performance improvement, we plan 
to create a test database that is completely aligned, 
in memory and on disk, and compare the TPC per­
formance against the standard database. 

Reflections 
At the beginning of the paper, we stated that our 
goal was for Digital to provide an easy migration 
path to the Alpha AXP platform for software prod­
ucts. Although we encountered some difficulties, 
we believe our Rdb and DBMS porting efforts attest 
to Digital's success in this endeavor. 

As one example of how the experience influ­
enced our approach to porting, we had to learn 
new methodologies, practices, and system behavior 
on the Alpha AXP machines. For instance, when 
stepping through a particular code sequence with 
the debugger, we would end up in an infinite loop; 
if we just ran the code, the sequence would work. 
Although this behavior was documented, we 
encountered the problem several times before we 
fully understood the ramifications and appropri­
ately changed our development methods. 

Overall, the porting effort had the following pos­
itive results: 

• The port allowed us to clean up our code, even 
though we tried to avoid algorithm changes. 
Because we had to port and review every line of 
code, we managed to move the code to a more 
consistent coding convention. 

• The port acted as a learning experience for most 
of the engineers. Most mature products contain 
some code that has not been modified in years. 
The port forced us to review and understand 
such code sequences. As a result, we ended up 
with more knowledgeable engineers. 

• The port allowed us to transform the code into 
a more portable state. As we moved away from 
tight ties to VAX behavior, we simplified future 
tasks such as moving to the OSF/1 and Windows 
NT operating systems. 

• Although overlapping current VAX development 
with the Alpha AXP port slowed down the port­
ing process, the decision to use a common code 
base eliminated the future need to integrate two 
divergent source codes. 
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• Surprisingly, the code did not grow appreciably 
in size or complexity. One strength of the Rdb 
and DBMS software has been the ability to easily 
modify the code and to add new functionality. 
Even after the port, we find that the products 
are as malleable and as easy to modify as before. 

• We found unreported bugs in our VAX products. 

Virtually all the groups involved did a masterful 
job. The program team and various Alpha AXP com­
mittees anticipated potential issues and ensured 
that the program proceeded smoothly and pre­
dictably. The cross compilers from the language 
groups worked superbly. The OpenVMS AXP and 
hardware groups delivered their products on time, 
and when a user logs in to an Alpha AXP system, the 
OpenVMS AXP system is not only familiar but faster. 

Acknowledgments 
The successful port of the Rdb and DBMS software 
to the OpenVMS AXP operating system was a result 
of the contributions made by many of the engineers 
in the Database Systems Group. The authors sin­
cerely acknowledge the effort of each engineer in 
achieving the project goal, that is, to be able to 
quickly offer correct versions of Rdb and DBMS on 
the Alpha AXP platform. Finally, an unsung hero in 
the company-wide effort was Digital's VAX Notes 
communications facility. VAX Notes functioned as 
an excellent medium for identifying and sharing 
problems and solutions. 

References 

1. T. Leonard, VAX Architecture Reference Manual 
(Bedford, MA: Digital Press, Order No. EY-3459E­
DP, 1987). 

2. DSRJ Handbook ( Maynard, MA: Digital Equipment 
Corporation, Order No. AA-GV71A-TE, 1986). 

3. OpenVMS Calling Standard (Maynard, MA: 
Digital Equipment Corporation, Order No. AA­
PQY2A-TK, 1992). 

4. R. Sites, ed., Alpha Architecture Reference 
Manual (Burlington, MA: Digital Press, Order 
No. EY-L520E-DP, 1992). 

Vol. 4 No. 4 Spedal Issue 1992 Digital Technical Journal 



James V. Colombo 
PamelaJ. Rickard 

Paul Benoit 

DECnet for OpenVMSAXP: 
A Case History 

The DECnet for Open VMS AXP networking software facilitates the integration of 
Open VMS AXP systems into existing DECnet computing environments. This new soft· 
ware product supports application migration by providing the following net­
working capabilities: support of compatible libraries, consistent application 
programming interfaces, and the assurance of a common semantic operation with 
the Open VMS VAX system. The team implemented a phased porting process and exe­
cuted the project cooperatively. The effort resulted in a solid knowledge base with 
which to approach future porting undertakings. Using common code where possi­
ble and avoiding architecture-specific code were lessons learned during the project. 

The DECnet for Open VMS AXP networking software 
product plays an important role in the integration 
ofOpenVMS AXP systems into existing DECnet com­
puting environments. The availability of DECnet 
software on the Alpha AXP hardware platform facil­
itates application migration. The networking capa­
bilities needed to support this migration activity 
include support of compatible libraries, consistent 
application programming interfaces (APis), and the 
assurance of a common semantic operation with 
the OpenVMS VAX system. The network features 
such as network file transfer, remote file access, 
remote login, downline load, and local and remote 
network management allow the OpenVMS AXP 
system to participate fully in a DECnet network. 

The purpose of this paper is to describe the pro­
cess of porting the DECnet-VAX product to the 
OpenVMS AXP operating system. The DECnet-VAX 
product consists of networking software written in 
the MACR0-32 and BIJSS-32 programming languages. 
The software contains privileged system code, 
device drivers, and user-mode utilities. 

This paper is divided into two major sections. 
The first section presents an overview of the proj· 
ect, including discussions about the DECnet fea­
tures supported in the OpenVMS AXP operating 
system, the project schedule, and the major DECnet 
for OpenVMS AXP components. The second major 
section details the process of porting DECnet-VAX 
software to the OpenVMS AXP operating system, 
including testing and debugging. This section pro­
vides information on nonportable coding practices 

Digita l Tecbnical journal Vol. 4 No. 4 Sp ecial Issue 1992 

and identifies specific problem areas. It concludes 
with a summary of the lessons learned during the 
course of the project. 

Project Overview 
In addition to presenting the DECnet for OpenVMS 
AXP features, this section details how we derived a 
project schedule and gives an overview of the soft· 
ware components. 

Software Code Base 
Prior to the formation of a team to port a DECnet 
product from VAX to the Alpha AXP architecture, 
the DECnet-VAX development group completed 
a feasibility study of porting DECnet-VAX Phase IV 
to the Alpha AXP architecture. This effort was nec­
essary because the DECnet-VAX software was not 
designed with porting in mind. The study con­
cluded that it would take four engineers twelve 
months (i.e ., 48 person-months) to port DECnet­
VAX to the OpenVMS AXP operating system. After 
examining the proposal and investigating the alter­
natives, we decided that the best approach would 
be to start by porting DECnet-VAX VS-4.3, a Digital 
Network Architecture (DNA) Phase IV implementa­
tion.1 One of the most important factors in making 
this decision was that this software version was 
in external field test and was nearly ready for 
shipment to customers. Another consideration was 
that some very important fixes had been made in 
that release, and we wanted to offer our customers 
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the highest quality possible in the first version of 
DECnet for OpenVMS AXP software. Since that time, 
we have continued to improve our DECnet software 
for the OpenVMS AXP operating system and have 
recently incorporated some fixes from DECnet for 
OpenVMS VAX V5.5-2. 

DECnet for Open VMS AXP Features 
The first release of the DECnet for OpenVMS AXP 
networking product is packaged with the Open VMS 
AXP operating system. The initial offering includes 
the support of DECnet Phase IV protocols running 
over Ethernet or fiber distributed data interface 
(FDDI) local area networks. This release supports 
distributed task-to-task communications using the 
same set of documented programming interfaces 
supported in the DECnet-VAX environment. At this 
time, DECnet for OpenVMS AXP software does not 
support wide area communications devices and 
host-based routing. Future releases of DECnet for 
OpenVMS AXP may include symmetric multi­
processor (SMP) and cluster alias support. 

Project Schedule 
The DECnet for Open VMS AXP project schedule was 
primarily driven by the overall OpenVMS AXP oper­
ating system product schedule, with the DECnet com­
ponent scheduled for delivery in November 1991. 
The DECnet-VAX porting project officially began in 
early January 1991, after the code base was selected. 

Porting Estimates After analyzing the work 
required to achieve the port, we developed general 
porting guidelines and estimates based on a num­
ber of factors, including the language the software 
was written in, the amount of software to port, and 
the number of software component modules. We 
then combined these estimates to determine an 
overall project schedule. Table 1 presents the 
guidelines we used for the porting estimates. 

We used two methods to estimate the amount of 
work required to complete the port. The Module 
Size Method takes into account the number of lines 

Table 1 Guidelines for Porting Estimates 

Language 

BLISS 

MACRO 
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Lines of Code 
(Per week) 

10,000 

3,000 

Module Count 
(Per week) 

10 

5 

of code per software module. The Module Count 
Method uses the number of modules per software 
component to determine the workload. Both meth­
ods take into consideration the programming lan­
guage used in each module. Table 2 presents details 
of the component module count and sizes. We fur­
ther categorized the software being ported into 
three groups: privileged code, device driver, and 
user-mode utility. The software type was used to 
estimate the amount of time needed for linking. In 
general, we allocated more time for privileged code 
and device drivers. 

The estimates were used to derive a first-pass 
schedule and to determine resource allocation. A 
number of other factors affected the final schedule. 
A major factor that we could not quickly estimate 
was the portability of the software. The software 
techniques encountered and described in this 
paper such as coroutines, up-level stack references, 
and condition code usage had a direct impact on 
the schedule. Also, during the first three months of 
the project, significant time was spent learning 
how to port code. During this learning period, we 
developed the skills, knowledge, and techniques 
used throughout the remainder of our porting 
work. 

Once we established the estimation metrics, the 
data was compiled and time estimates calculated 
for each component. Tables 3 and 4 show the aver­
age amount of time required to port each DECnet 
for Open VMS AXP component. 

Based on these calculations, we estimated that it 
would take 13 person-months just to port the 
DECnet-VAX software. We then used project man­
agement software to plan the schedule. The sched­
ule shown in Table 5 indicated that it would take 48 
person-months to meet the OpenVMS AXP sched­
uled completion date of November 22, 1991. We 
made our first network connection on July 25, 1991, 
20 person-months into the project. Although much 
work remained, we were well ahead of the 
November target date. 

Since we were ahead of schedule, we assisted in 
the porting of other components, including RTPAD, 
CTDRIVER, RTTDRIVER, and REMACP, all discussed 
later in the paper. In addition, we were able to add 
support for FDDI. 

Milestones The OpenVMS AXP project schedule 
consisted of a series of functional internal base 
levels numbered one to five. In terms of the whole 
OpenVMS AXP project schedule, DECnet for 
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Table 2 Component Module Count and Sizes 

Average 
Software Module Number Number 

Component Type Language Count of Lines of Lines 

DTR/DTS User MACRO 14 1937 138.36 
EVL Privileged BLISS 10 3821 382.10 
HLD Privileged MACRO 9 715 79.44 
MIRROR Privileged MACRO 1 131 131.00 
MOM Privileged BLISS 15 5835 389.00 

MACRO 7 1182 168.86 
Subtotal 22 7017 318.95 
NCP User BLISS 35 19371 553.46 

MACRO 2 712 356.00 
Subtotal 37 20083 542.78 
NETACP Privi leged MACRO 24 20871 869.63 
NETDRIVER* Driver MACRO 4 6891 1722.75 
NICONFIG User BLISS 7 2078 296.86 
NM Lt Privileged BLISS 31 19889 641.58 

MACRO 7 4997 713.86 
Subtotal 38 24886 654.89 
NETSERVER Privileged BLISS 3 303 101.00 

Notes: 
* Includes estimates for NDDRIVER 
t Includes estimates for NMLSHR 

Table 3 Module Size Method 

Total Time 
Component BLISS MACRO Link per Component 

DTR/DTS 0.00 0.65 2.00 2.65 
EVL 0.38 0.00 2.00 2.38 
HLD 0.00 0.24 2.00 2.24 
MIRROR 0.00 0.04 2.00 2.04 
MOM 0.58 0.39 4.00 4.98 
NCP 1.94 0.24 4.00 6.17 
NETACP 0.00 6.96 6.00 12.96 
NETDRIVER* 0.00 2.30 6.00 8.30 
NICONFIG 0.21 0.00 2.00 2.21 
NM Lt 1.99 1.67 4.00 7.65 
NETSERVER 0.03 0.00 2.00 2.03 
TOTAL 
Weeks 5.13 12.48 36.00 53.61 
Months 1.18 2.88 8.31 12.37 
Years 0.10 0.24 0.69 1.03 

Notes: 
* Includes estimates for NDDRIVER 
t Includes estimates for NMLSHR 

Note that the data presented is in weeks, unless otherwise specified. A week equals five working days, a month equals 4.33 weeks, and 
a year equals 12 months or 52 weeks. 
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Table 4 Module Count Method 

Total Time 
Component BLISS MACRO Link per Component 

DTR/DTS 0.00 2.80 2.00 4.80 
EVL 1.00 0.00 2.00 3.00 
HLD 0.00 1.80 2.00 3.80 
MIRROR 0.00 0.20 2.00 2.20 
MOM 1.50 1.40 4.00 6.90 
NCP 3.50 0.40 4.00 7.90 
NETACP 0.00 4.80 6.00 10.80 
NETDRIVER* 0.00 0.80 6.00 6.80 
NICONFIG 0.70 0.00 2.00 2.70 
NM Lt 3.10 1.40 4.00 8.50 
NETSERVER 0.30 0.00 2.00 2.30 

TOTALS 
Weeks 10.10 13.60 36.00 59.70 
Months 2.33 3.14 8.31 13.78 
Years 0.19 0.26 0.69 1.15 

Notes: 
• Includes estimates for NDDRIVER 
t Includes estimates for NMLSHR 

Note that the data presented is in weeks, unless otherwise specified. A week equals five working days, a month equals 4.33 weeks, and 
a year equals 12 months or 52 weeks. 

Table 5 Planned Project Schedule 

Code Total Time 
Component Port Debug Review Test per Component 

DTR/DTS 4.80 4.00 2.00 6.00 16.80 
EVL 3.00 4.00 2.00 6.00 15.00 
HLD 3.80 4.00 2.00 6.00 15.80 
MIRROR 2.20 4.00 2.00 6.00 14.20 
MOM 6.90 4.00 2.00 6.00 18.90 
NCP 7.90 4.00 2.00 6.00 19.90 
NETACP 10.80 8.00 6.00 6.00 30.80 
NETDRIVER* 6.80 8.00 6.00 6.00 26.80 
NICONFIG 2.70 4.00 2.00 6.00 14.70 
NMLt 8.50 4.00 2.00 6.00 20.50 
NETSERVER 2.30 4.00 2.00 6.00 14.30 
TOTALS 
Weeks 59.70 52.00 30.00 66.00 207.70 
Months 13.78 12.00 6.92 15.23 47.93 
Years 1.15 1.00 0.58 1.27 3.99 

Notes: 
• Includes estimates for NDDRIVER 
t Includes estimates for NMLSHR 

Note that the data presented is in weeks, unless otherwise specified. A week equals five working days, a month equals 4.33 weeks, and 
a year equals 12 months or 52 weeks. 
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OpenVMS AXP was targeted for base level five. 
However, it was highly desirable to provide file 
transfer and remote login capability over DECnet as 
early as possible. The project team worked closely 
with the OpenVMS AXP group to deliver this sup­
port prior to base level four. 

Common Code 
One of the most important decisions that helped us 
deliver our software ahead of schedule was build­
ing common code for the VAX and Alpha AXP 
systems. During the course of porting code, we dis­
covered two advantages to building common code. 
The first was having the ability to generate VAX and 
Alpha AXP images from a single set of source code. 
The second was being able to debug our ported 
changes in a stable OpenVMS VAX environment. We 
accomplished this by rewriting code that required 
change so that it worked on both platforms. We 

RTPAD REMACP DTS DTR 
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made architecture-specific code conditional on the 
platform on which it would execute. Our long-term 
goal is to incorporate common code into future 
DECnet for Open VMS products. 

DECnet for Open VMS AXP Components 
This section describes the major DECnet for 
OpenVMS AXP components and lists the porting 
issues relevant to each.2 Figure 1 shows the inter­
connection of the various components of the 
DECnet for OpenVMS AXP software. Detailed infor­
mation for each porting issue is further discussed in 
this paper under the Porting Issues heading. 

NETDRIVER NEIDRIVER is a pseudo device 
driver, i.e., a device driver that does not directly 
control any hardware devices. It implements the 
routing, end communication, and session control 
layers of the Phase IV version of DNA. 1 

USER RMS EVL NICONFIG 

NCP APPLICATION 

NICE MESSAGES 

LOCAL REMOTE 

PERMANENT - NMLSHR - NML 
DATABASE 

CTDRIVER 

I RTIDRIVER I 

$010 

NETDRIVER 

SESSION 

END COMMUNICATION 

ROUTING 

NETSERVER 

DATA LINK DRIVER 

Figure 1 DECnet for Open VMS AXP Components 
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The queue 1/0 request ($QIO) system service is 
the interface into the session control layer. The 
NETDRIVER routing layer communicates with other 
device drivers that implement the data link layer of 
DNA. NETDRNER communicates with NETACP 
(another component discussed later in this section) 
to perform network management functions, to 
report state and network topology changes, and to 
perform operations that require process context. 

NETDRIVER is written in MACR0-32 code and pre­
sented us with many porting issues, includ­
ing device driver changes, coroutines, memory 
management changes, page size dependencies, 
atomicity and granularity problems, OpenVMS AXP 
operating system data structure changes, unaligned 
references, and up-level stack references. 

MOM The maintenance operations module 
(MOM) image processes service operations defined 
by the maintenance operation protocol (MOP). One 
such service operation is downline loading remote 
systems. MOM uses NDDRIVER (described in the 
next subsection) to communicate with the remote 
system over a DECnet circuit. MOM communicates 
with NETACP to gather information about nodes 
requesting to be downline loaded. NETACP creates a 
process running the MOM image when a request for 
a service operation is received on a circuit enabled 
to perform service operations. 

MOM is written primarily in BUSS-32 code. Porting 
issues included removing dependencies on the for­
mat of a VAX argument list, condition handling 
changes, and Alpha AXP image header changes. 

NDDRIVER The pseudo device driver NDDRIVER 
implements an interface that allows MOM to use a 
DECnet circuit to perform service operations using 
DNA MOP. The MOM image uses the $QIO system 
service interface to send MOP messages to and 
receive MOP messages from NDDRNER, which then 
communicates with the data link device drivers to 
transmit and receive these messages. NDDRNER 
communicates with NETACP to perform tasks 
that require process context and to receive notifica­
tion of state changes to circuits enabled for service 
operations. 

NDDRIVER is written in MACR0-32 code. Porting 
issues included changes to device drivers, memory 
management, and OpenVMS AXP operating system 
data structures, as well as page size dependencies. 

CTDRIVER, RTTDRIVER, and REMACP CTDRIVER 
is a pseudo device driver for remote terminals using 
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the DNA command terminal (CTERM) protocol. 
CTDRIVER and RTTDRIVER perform similar func­
tions with the exception that RTTDRIVER is used for 
interoperability with older implementations of 
remote terminal support. REMACP is an ancillary 
control process (ACP) that receives incoming 
requests for remote terminal support. After REMACP 
establishes a connection with the remote node, 
either CTDRNER or RTTDRNER communicates 
directly with NETDRIVER to send and receive 
remote terminal protocol messages. 

CTDRIVER, RTTDRIVER, and REMACP are written in 
MACR0-32 code and presented the following port­
ing issues: device driver changes, unaligned refer­
ences, OpenVMS AXP operating system data 
structure changes, and for REMACP, changes in the 
interface with CTDRIVER. 

NETACP NETACP runs as an ACP that assists 
NETDRIVER in performing network operations that 
require process context. Examples include creating 
processes for incoming logical links and assigning 
channels to data link devices. NETDRIVER and 
NETACP also work together to maintain information 
about the state of the network. Another major func­
tion performed by NETACP is the management of 
the network configuration parameters residing in 
virtual memory. 

NETACP is written in MACR0-32 code. Porting 
issues included coroutines, usage of processor 
status longword (PSL) condition codes, memory 
management changes, page size dependencies, 
atomicity and granularity problems, OpenVMS AXP 
operating system data structure changes, and 
unaligned references. In addition, the use of "poor 
programmer's lockdown;' a method of locking 
pages into a working set, required modification. 

NETSERVER The NETSERVER image is run by 
server processes created to handle incoming logi­
cal link requests. NETSERVER invokes the image or 
command procedure associated with the network 
object specified by the incoming logical link. To 
avoid the overhead of process creation, a server 
process can be reused after the logical link it was 
servicing is terminated. Idle server processes regis­
ter themselves with NETACP so that they may be 
reused for another logical link. 

NETSERVER is written in BUSS-32 code. The 
only porting change necessary was the addition 
of the BLISS VOLATILE attribute to several data 
declarations. 
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NCP The network control program (NCP) is the 
user interface for network management. NCP com­
municates with other network management com­
ponents using the network information and 
control exchange (NICE) protocol. NCP can be used 
to manage the local node as well as remote nodes. 
When managing the local node, NCP exchanges 
NICE protocol messages with the NMLSHR shareable 
image. For remote management, NCP creates a logi­
cal link to the network management listener (NML) 
object on the remote node and exchanges NICE pro­
tocol messages over this logical link. 

NCP consists primarily of BLISS-32 modules. The 
major porting issue associated with NCP was chang­
ing the code to use LIB$TABLE_PARSE rather than 
LIB$TPARSE. 

NMLSHR NMLSHR is a shareable image that pro­
cesses NICE protocol network management mes­
sages on an OpenVMS system. NMLSHR decodes 
NICE messages received as input and performs the 
requested management operation. NMLSHR builds 
NICE protocol messages as a response to requests 
asking for network management information to be 
returned. NCP and NML both link with the NMLSHR 
image to call the routines that process the NICE pro­
tocol messages. 

NMLSHR is written in BLISS-32 and MACR0-32. 
Porting issues included dependencies on the for­
mat of a VAX argument list and changes required to 
link shareable images. 

NML The network management listener (NML) 
image is run when a remote node requests a con­
nection to the NML object to perform remote 
network management operations. NML sends NICE 
protocol messages to and receives them from the 
remote node. NML passes NICE protocol messages 
received from the remote node to NMLSHR for 
decoding and receives messages from NMLSHR to 
send to the remote node. 

NML is written in BLISS-32 code. The only porting 
change made to NML code was to add the BLISS 
VOLATILE attribute to one data declaration. 

EVL The event logger (EVL) receives event mes­
sages from the various DNA layers. EVL can also act 
as an event sink for messages generated at a remote 
node. EVL is started by NETACP and declares itself 
as a network object so that remote nodes can con­
nect to the EVL object and send event messages. EVL 
can log events to a file in binary form or format the 
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messages into something readable by a network 
manager. 

EVL is written in BLISS-32 code. Porting issues 
included adding the BLISS VOLATILE attribute to 
some data structure definitions and aligning data 
structure fields on natural boundaries. 

DTS and DTR The DECnet test sender (DTS) and 
the DECnet test receiver (DTR) are cooperating pro­
grams that can be used to test the network connec­
tion between two nodes. DTS runs on the local node 
and communicates with DTR on the remote node. 
DTS and DTR can be used to test the throughput and 
reliability of a line over which DECnet is running. 

DTS and DTR are written primarily in MACR0-32 
code. The two major porting issues associated with 
DTS and DTR were changing the code to use 
LIB$TABLE_PARSE rather than LIB$TPARSE and add­
ing some BLISS-32 code to support floating-point 
operations. 

RTPAD RTPAD provides the connection between 
a local terminal and the remote terminal services of 
a remote node. RTPAD is invoked as the result of 
executing the SET HOST command of the Digital 
Command Language (DCL). RTPAD communicates 
with REMACP and CTDRIVER or RTTDRIVER on the 
remote system to provide remote terminal support. 
RTPAD accepts input from the local terminal (which 
could be another remote terminal) and sends this 
data over the network to the remote node. Output 
from the remote node is received by RTPAD and dis­
played on the local terminal. 

RTPAD is written in MACR0-32 code. Porting 
issues included unaligned references and aligning 
data structure fields on natural boundaries. 

N/CONFIG NICONFIG is the Ethernet configurator 
that listens to the MOP system identification mes­
sages broadcast on Ethernet circuits and maintains 
a database of configuration information for all sys­
tems heard. NCP is used to manage and display the 
information maintained by NICONFIG. NICONFIG 
runs as a process created by NMLSHR and communi­
cates with NMLSHR over a DECnet logical link using 
the NICE protocol. 

NICONFIG is written in BLISS-32 code. The only 
porting change was to remove the module switch 
LANGUAGE. 

HLD The host loader (HLD) communicates with 
the DECnet-RSX satellite loader to downline load 
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tasks to an RSX-llS node. HLD is written in MACR0-
32 code. The only porting change was to update the 
structure definition language used to create one 
data structure. 

MIRROR The Ioopback mirror participates in 
network services protocol and routing layer Ioop­
back testing. MIRROR is written in MACR0-32 code. 
No porting changes were required though changes 
were made to the link procedure. 

DECnet-VAX Port to the openVMS 
AXP operating System 
This section discusses the development environ­
ment, process, and issues related to porting the 
DECnet-VAX product to the OpenVMS operating 
system. 

DECnet for Open VMS AXP 
Development Environment 
DECnet for OpenVMS AXP is built with and inte­
grated into the OpenVMS AXP operating system. 
Many changes were being made to system data 
structures that directly affected the DECnet soft­
ware. These changes required the DECnet for 
OpenVMS AXP software to be built with and tested 
on many interim operating system base levels 
before the combined OpenVMS AXP operating 
system and DECnet for OpenVMS AXP kit was 
shipped for layered product development. 

Because the development tools changed through­
out the project, we used the same tools to port the 
DECnet-VAX software as were used to develop the 
operating system base levels. When we copied por­
tions of an Open VMS AXP base level, we also copied 
the tool directories associated with the system 
build. We used cross compilers for MACR0-32 and 
BUSS-32, which allowed us to develop Alpha AXP 
software on an OpenVMS VAX system.3 In addition, 
we used the OpenVMS AXP linker, librarian, and 
system dump analyzer (SDA) cross tools on the VAX 
system.4·5 We also used the OpenVMS AXP debug­
ging tools Delta and XDelta on the Alpha AXP proto­
type hardware.6 

Initial DECnet for OpenVMS AXP testing was 
accomplished on a VAX system. Such testing was 
possible because we designed a majority of the 
DECnet for OpenVMS AXP code to run on both VAX 
and Alpha AXP hardware platforms. 

The Alpha AXP prototype system used for testing 
utilized a shared disk that contained the OpenVMS 
AXP operating system images. The images and test 
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procedures were copied onto the disk from a AXP 
system. Each time new DECnet for OpenVMS AXP 
images or test procedures had to be added to the 
shared disk during a test or debug session, the Alpha 
AXP test system had to be stopped, the disk 
mounted on the VAX system, images copied, the disk 
dismounted, and the Alpha AXP system rebooted. 
Providing file transfer support by means of the 
DECnet for OpenVMS AXP software early in the 
Alpha AXP project provided increased productivity 
for anyone testing on Alpha AXP prototype systems. 

Porting Process 
The process of porting the DECnet software from 
the VAX hardware platform to the Alpha AXP 
platform consisted of the following steps: code 
preparation, compilation, linking, code review, 
debug, and testing. We did not start the task of port­
ing DECnet-VAX with a completely clear vision of 
the total process. As we progressed and learned 
more about the tools and porting process, we 
improved our porting techniques and, as a result, 
our productivity. 

Our strategy was to begin by porting the drivers 
and privileged code. These components were the 
most complex; they were written completely in 
MACR0-32 code and had the greatest potential for 
change. We started with NETDRIVER and NETACP, 
assigning one engineer to work on each compo­
nent. As our porting group grew in number, we 
began to port, in parallel, the BUSS modules that 
comprise NCP, NML, NMLSHR, EVL, and MOM. 

The following is an overview of the process we 
used to port the DECnet-VAX software to the Alpha 
AXP platform. Later sections contain details of cod­
ing practices that had to change. 

Code Preparation Our first task was to create 
procedures that we could use early in the porting 
process to compile single modules of a DECnet for 
OpenVMS AXP component. We also ported the com­
ponent's build procedure to use the new Alpha AXP 
cross tools. 

Next, we began to prepare the code for initial 
compilation. MACR0-32 code must have each entry 
point identified prior to the initial compile. Entry 
points are identified by a compiler directive such as 
.JSB_ENTRY and .CALL_ENTRY. Each directive 
accepts optional parameters that identify register 
usage. However, this information is not required 
at this point in the porting process. The Alpha 
AXP MACR0-32 compiler will provide register 
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usage hints during the compilation, if so directed. 
A5 the team became familiar with the porting 
process, we were able to combine these steps 
and include the register usage information when 
declaring entry points. Also, as our experience 
increased, we were able to make changes to non­
portable coding practices prior to the initial com­
pile of a module. 

Our experience proved, as we expected, that 
BLISS code is far easier to port than MACR0-32 code. 
For the DECnet-VAX components containing BLISS 
modules, we began the port by running the compo­
nent's build procedure. BLISS routines do not 
require that entry points be identified. The com­
piler can process each module, identify errors, and 
provide warning and informational messages. 

Compile Process After we completed the initial 
code preparation and created customized build 
procedures, the real iterative process of porting 
began. At this point we compiled one or more 
modules, made additional modifications based on 
the compilation results, and recompiled until we 
were reasonably satisfied that all the errors were 
fixed. 

The Alpha AXP cross compilers, the MACR0-32 
compiler in particular, have the capability of pro­
viding a vast array of informational and warning 
messages. When compiling a module, we always 
requested all informational messages. The infor­
mation assisted us in identifying the input and out­
put registers as well as the registers that the 
compiler automatically preserved. Using this infor­
mation, we verified the register usage in each rou­
tine and added the information to the entry-point 
directives. Other informational and warning mes­
sages directed us to coding techniques that 
required change. By working with one module at a 
time, we avoided making repetitive porting errors 
in multiple modules prior to our complete under­
standing of how to solve the more complex porting 
problems. 

Some informational messages caution that cer­
tain coding techniques such as data alignment 
should be modified. We observed that attempting 
to make changes to align all data structure ele­
ments prior to completing preliminary debug and 
testing caused many debug problems. Therefore, 
we decided to establish a porting policy to change 
only as much code as was absolutely necessary 
prior to the initial debug and test of a DECnet for 
OpenVMS AXP software component. Adhering to 
this policy required careful consideration, since 
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some atomicity and granularity problems that are 
not resolved/addressed might cause code failures 
during debug.3 

NETDRIVER and NETACP contained architecture­
specific code, including memory management, 
driver tables, and structure definitions, which had 
to be made conditional for the OpenVMS AXP and 
OpenVMS VAX systems. A prefix file was added to 
each MACR0-32 module during the Alpha AXP com­
pilation step. This file contained an Alpha AXP dec­
laration that allowed us to include the directives 
required for conditional compilation. To compile 
the ported code on a VAX system, it was necessary 
to provide a VAX declaration and macros for the 
various entry-point directives that when expanded 
contained no instructions. These were placed in a 
common library file and conditionally compiled. 
The library file is included in each module. Figure 2 
is an example of a library file that contains a VAX 
declaration and macros. 

BLISS architecture-specific code was made 
conditional using the %if %bliss(bliss32v) or %if 
%bliss(bliss32e) constructs for OpenVMS VAX and 
OpenVMS AXP, respectively. 

After porting all the modules within a compo­
nent, the component's build procedure was run to 
ensure that each module had been ported without 
error. This was typically the first attempt to link the 
component. We also ran the OpenVMS VAX proce­
dure to ensure that the code would continue to 
compile and link on the OpenVMS VAX operating 
system. 

Linking The process of linking was difficult at 
times. The DECnet for OpenVMS AXP software con­
tains drivers, system images, and shareable images. 
Each component required changes to the link pro­
cedures. We made these procedures conditional for 
both the OpenVMS VAX and the Open VMS AXP oper­
ating systems. 

The process of linking the ported modules 
brought to light many unresolved references. In 
general, these references were to external routines 
that had changed for the OpenVMS AXP operating 
system. One of the most difficult aspects of the 
porting project was determining which changes 
to the OpenVMS operating system had an impact 
on our project. Determining these changes was 
difficult because DECnet for OpenVMS AXP is 
tightly integrated into the OpenVMS AXP operating 
system. The process of porting applications to 
the OpenVMS AXP environment should not be as 
difficult. 
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.SUBTITLE $DECNETDEF 

; 
; 
; 

Define all those symbols that should precede all DECnet 
macro modules. 

.MACRO $DECNETDEF 

.IF NOT_DEFINED Alpha_AXP 
; 
; 
; 

These make Alpha AXP code compile on VAX builds by doing 
nothing when encountered 

; 
VAX=1 
; • J SB_ENTRY 

.macro .jsb_entry, input, output, scratch, preserve 

.endm 
; .JSB32 ENTRY 

.macro .jsb32_entry, scratch, preserve 

.endm 
; . CALL_ENTRY 

.macro .call_entry, preserve, max_args=O,­
home_args=false, input, output, scratch 

.ENDC 

.ENDM 
I 

.endm 

Figure 2 Library File That Contains a VAX Declaration and Macros 

Code Review When all the known porting prob­
lems found during the compile and link phases had 
been corrected, we began our code review process. 
The original VAX code, the ported code, and a dif­
ference listing were available to the porting team. 
One or more members of the team reviewed the 
changes made and pointed out any problems that 
were identified to the person responsible for the 
module being reviewed. We all had previously 
agreed that the reviews would be friendly and that 
egos would be left out of the process. We found that 
our successful code reviews were well worth the 
effort. 

Initial reviews turned up differing philos­
ophies regarding the porting process. We discussed 
these differences and reached a consensus. The 
reviews uncovered errors in the porting process, 
and correcting these problems reduced the amount 
of debugging required. The review process also 
allowed us to agree on and maintain coding stan­
dards. 

Debugging Our approach to debugging the 
DECnet for OpenVMS AXP software was to build the 
common ported code for a VAX system and to 
replace the OpenVMS VAX images with our ported 
version on one of our workstations. We began by 
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loading the ported NETDRNER and NETACP compo­
nents. Since many of the required changes were 
common to both OpenVMS AXP and OpenVMS VAX 
systems, we were able to debug much of this code 
before we had access to Alpha AXP hardware. We 
found and fixed a number of problems using this 
technique. 

When we were reasonably confident that the 
ported code was working on the OpenVMS VAX 
operating system, we began testing on Alpha AXP 
prototype hardware, which fortunately had just 
become available. We completed the driver load 
and ACP initialization testing. The initial test uncov­
ered some problems that required special 
workarounds to allow debug to continue. These 
problems were corrected in later versions of the 
tools. Since the user interface had not yet been 
ported, test code was written to start DECnet for 
OpenVMS AXP and begin debugging the $QIO inter­
face to the driver. 

Eventually NCP, NML, and NMLSHR were ported, 
and more comprehensive debugging began. We 
used the OpenVMS AXP XDelta and Delta tools to 
debug the DECnet for OpenVMS AXP code on our 
Alpha AXP prototype hardware. System failures 
were debugged using the SDA cross tool on a VAX 
system. We learned how to trace call chains by 
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studying the OpenVMS calling standard."' 
Understanding the format of linkage pairs, proce­
dure descriptors, and register save areas made 
debugging much easier prior to the availability of 
these features in SDA. Debugging on an Alpha AXP 
system is more difficult than on a VAX system since 
most VAX instructions generate multiple Alpha AXP 
instructions whose positions are optimized by the 
compiler to take advantage of Alpha AXP architec­
ture features. Thus, it is not always easy to follow 
the Alpha AXP code line by line because the gener­
ated Alpha AXP code from one language statement 
is interspersed with Alpha AXP code generated 
from another language statement. 

Testing After solving the obvious problems dur­
ing the debug process, we began to test the DECnet 
for OpenVMS AXP code. Early versions of the 
OpenVMS AXP file system, record management ser­
vices (RMS), and the file access listener (FAL) were 
made available to us. We in turn provided the 
DECnet for Open VMS AXP code to the group porting 
OpenVMS RMS and FAL for their use in debugging. 
We were then able to run test scripts that used a 
variety of DCL commands to perform loops of 
remote copies, differences, and directory listings of 
remote files. DECnet network management scripts 
tested the network management interface. DTS and 
DTR were used to perform data transfer testing. 
Since the DECnet for OpenVMS AXP software was 
available early, it was used by other Alpha AXP port­
ing groups on Alpha AXP prototype hardware in 
various locations. As the code stabilized, a timeshar­
ing system was set up, which provided the opportu­
nity for more testing. 

Porting Issues 
When we began porting the DECnet-VAX software 
to the Alpha AXP hardware platform, we found 
many coding conventions could not be used. Most 
of these coding practices are called out by the cross 
compilers, which significantly helped the porting 
effort.3 

The following is a discussion of some problems 
we encountered while porting and how we solved 
them. 

Entry Points Approximately four months into the 
project, the porting team determined that using the 
.JSB_ENTRY directive in NETDRIVER was going to 
make porting difficult. The difficulty was due to 
the complexity of the code and the fact that some 
code paths contained more than a dozen layers of 
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subroutine calls. We concluded that the code, 
which had existed for a long time, already saved and 
restored the correct registers. We decided that try­
ing to communicate the correct list of input, out­
put, pass-through, and preserve registers to the 
compiler could be an impossible task, especially 
given our schedule. We investigated the possibility 
of using the .JSB32_ENTRY directive. This directive 
allows the specification of registers that must be 
preserved but does not take any input, output, or 
scratch parameters. The OpenVMS AXP MACR0-32 
cross compiler will not automatically preserve any 
registers when this directive is used. A great deal of 
care must be taken when using this entry-point 
directive. 

Our decision to use .JSB32_ENTRY to declare entry 
points led to an interesting problem with asyn­
chronously executing code that could interrupt 
other threads of execution. The DECnet-VAX code 
that we ported used PUSHR and POPR instructions 
to save and restore registers that were modified 
by DECnet-VAX code interrupting another thread of 
execution. When adding the .JSB32_ENTRY direc­
tives, we specified a register preserve parameter 
only on external entry points, assuming that the 
remainder of the original DECnet-VAX code was sav­
ing the proper registers. The preserve parameter 
ensures that all 64 bits of the registers specified are 
saved at routine entry and restored at routine exit. 
The PUSHR and POPR instructions preserve only 
the low-order 32 bits of the specified registers. 
However, if DECnet-VAX code in a routine without 
the .JSB32_ENTRY preserve parameter interrupts 
another thread of execution that makes use of the 
upper 32 bits of a register, these upper 32 bits 
would not be properly restored when control 
returned to the interrupted thread. The solution 
was to specify the register preserve parameter on 
the .JSB32_ENTRY directives used to declare the 
entry points of routines in DECnet for OpenVMS 
AXP that are capable of interrupting other threads 
of execution. 

Whenever we changed the input or output 
parameters to an internal subroutine, we also 
changed the name of that subroutine. This effort 
helped identify all the internal calls made to sub­
routines whose interface had changed. 

Coroutines A feature of the VAX architecture used 
throughout the NETACP and NETDRIVER com­
ponents is called a coroutine. Coroutines used 
in MACR0-32 allow a subroutine to call code frag­
ments in other subroutines. This technique uses the 
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jump-to-subroutine construct JSB @(SP)+ to jump 
between coroutines. The code example shown in 
Figure 3 demonstrates the use of the JSB construct. 

The general flow of the example is for MAIN to 
call COROUTINE with RO equal to O and RI equal 
to 1. Usually, COROUTINE changes the value of RI to 
2 and calls back MAIN at address SAVE. If COROUTINE 
is entered with RI not equal to 1, then RO is set to 1 
and the coroutine dialogue terminates. MAIN at 
address SAVE then tests RO and exits. Under normal 
circumstances, MAIN at address SAVE continues, 
storing the returned value of RI in DATA and calling 
back the coroutine at address FINAL. COROUTINE at 
address FINAL then changes the value of RI to 3, sets 
the return status in RO to 1, and returns to MAIN at 
address TERMINATE. TERMINATE then exits MAIN via 
the RSB instruction. 

All entry points in MACR0-32 code on an 
OpenVMS AXP operating system must have an entry 
directive. Thus, it is not possible to use theJSB con­
struct to jump to any random line of code, as the 
previous example demonstrates. To do so, the code 
shown in Figure 3 would have to be split into sub­
routines, each with a .JSB_ENTRY or .JSB32_ENTRY 
entry directive. Also, we had to change the imple­
mentation of coroutines. Rather than use the stack 
to pass return addresses, we passed each return 
address in a register. 

Since some coroutines ported were more com­
plex than the example shown in Figure 3, we devel­
oped a technique to port VAX coroutines to the 

MAIN: MOVL #0, RO 
MOVL #1, R1 
JSB COROUTINE 

SAVE: BLBS RO, TERMINATE 
MOVL R1, DATA 
JSB @(SP)+ 

TERMINATE: RSB 

COROUTINE: CMPL R1, #1 
BNEQ EXIT 
MOVL #2, R1 
JSB @(SP)+ 

FINAL: MOVL #3, R1 

EXIT: MOVL #1, RO 
RSB 

Alpha AXP architecture. When a coroutine is split 
into multiple routines, some code, such as that test­
ing returned values, may change relative location. 
In our example, the error processing at SAVE is no 
longer necessary. Instead, COROUTINE returns to 
MAIN if it detects an error, and MAIN simply returns 
to its caller with the status in RO. The VAX code 
example in Figure 3 was converted to Alpha AXP 
code using our technique. The resulting code is 
shown in Figure 4. 

The use of coroutines on Alpha AXP systems 
should be discouraged because of the overhead 
associated with storing the return address in regis­
ters and the additional consumption of stack space. 
Rather than a simple return address on the stack, 
there will be a register save area on the stack for 
each subroutine that makes up the coroutine. 
Recursive coroutines can consume large quantities 
of stack space. We have since converted coroutines 
used in main code paths to straight in-line subrou­
tine calls. 

Stack Usage MACR0-32 code uses a number of 
common coding techniques that require knowl­
edge of the state of the stack and that must be 
changed for the OpenVMS AXP operating system. 
One such technique, referred to as an up-level stack 
reference, occurs whenever a subroutine attempts 
to access information (address or data) stored on 
the stack by its caller. Parameter passing sometimes 
uses this technique. If a routine pushes arguments 

; Assume fai Lure 
; Set initial value 

Open a coroutine dialogue 

No change in value 
; Save the changed value 

Continue coroutine dialogue 

; Ex it with status in RO 

Should we change the value? 
; If not, exit routine 
; Change the value 
; Call back to coroutine 

; Final value 

; Signal success 
; Return 

Figure 3 VAX Code Example Showing the Use of the Construct ]SB @ (SP)+ to Jump between Coroutines 

176 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal 



DECnet for Open VMS AXP: A Case History 

MAIN: .JSB_ENTRY OUTPUT=<RO,R1>,­
SCRATCH=<R2> 

MOVL 
MOVL 
MOVAB 
BSBW 
RSB 

110, RO 
111, R 1 
SAVE,R2 
COROUTINE 

; Assume failure 
; Set initial value 
; Next coroutine address 
; Open a coroutine dialogue 
; Return to caller 

COROUTINE: .JSB - ENTRY INPUT=<R1,R2>,-
OUTPUT=<RO,R1,R2> 

CMPL R1, 111 ; Should we change the value? 
BNEQ EXIT ; If not, ex it routine 
PUSHL R2 ; Save next coroutine address 
MOVL 112, R1 ; Change the value 
MOVAB FINAL,R2 ; Coroutine address for SAVE to use 
JSB @(SP)+ ; Continue at SAVE 

EXIT: MOVL 111 , RO ; Set status 
RSB ; Return to MAIN 

SAVE: . JSB_ ENTRY INPUT=<R1,R2>,-
OUTPUT=<RO,R1> 

PUSHL R2 ; Save next coroutine address - FINAL 
MOVL R1, DATA ; Save the changed value 
JSB @CSP)+ ; Continue coroutine dialogue at FINAL 
RSB ; To COROUTINE 

FINAL: .JSB_ENTRY OUTPUT=<RO,R1> 
MOVL 113, R1 
RSB 

; Final value 
; To SAVE 

Figure 4 Alpha AXP Code Example Showing the Use of the Construct 
]SB @(SP)+ to Jump between Coroutines 

onto the stack prior to jumping to a subroutine, the 
called subroutine does up-level stack references to 

retrieve the arguments. Other techniques include 
using the stack as a common data area or attempt­
ing to manipulate the caller's return address in 
order to alter the program flow. 

All these techniques require re-coding. When we 
encountered code that passed parameters on the 
stack, we modified the code to pass parameters in 
registers. If a structure was being passed, separate 
memory was allocated and the address of the struc­
ture passed in a register. In one case, NETACP used 
coroutines to perform specific functions to update 
a common data area allocated on the stack. This 
code was redesigned to eliminate the coroutines 
and up-level stack references. Another alternative 
would have been to pass the address of the data area 
on the stack to the called routine. 

Altering the program flow when error condi­
tions were encountered was also a common tech­
nique used in the DECnet-VAX MACR0-32 code. 
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Subroutines removed the return address from the 
stack and returned to the caller's caller. We modi­
fied the code to remove the up-level stack refer­
ence (the caller's return address) and return a flag 
in a register to signal the caller that a change in the 
program flow was desired. 

Condition Codes The Alpha AXP architecture 
does not support global condition codes in the pro­
cessor status word. Some routines set condition 
codes and returned to the caller, which proceeded 
to perform a conditional branch on the results of 
the called routine. All occurrences of this tech­
nique were changed; routines now pass the result 
of any conditional test to the caller in a register. 

Granularity and Atomicity Issues8 The NETACP 
and NETDRIVER components access shared data 
structures. Since NETDRIVER can interrupt NETACP, 
the DECnet-VAX code relies on the atomicity of VAX 
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instructions to provide synchronized access to 
shared fields in the data structures. The DECnet-VAX 
code also relies on byte (8-bit) and word (16-bit) 
granularity for memory writes. Since the granular­
ity of Alpha AXP memory writes is either longword 
(32-bit) or quadword (64-bit), DECnet-VAX code 
that required atomic access to word fields had to 
be modified to protect against writes to neighbor­
ing byte and word fields sharing the same long­
word or quadword. In DECnet for OpenVMS AXP, 
word data structure fields shared by NETACP and 
NETDRIVER that required atomic access were 
moved to their own aligned quadwords to prevent 
interference from simultaneous writes to other 
byte and word fields sharing the same quadword. 
After the word fields were placed in their own 
aligned quadwords, the code generated by the 
MACR0-32 cross compiler for the ADAWI instruction 
was sufficient to provide atomic access to the word 
fields. We could also have used compiler directives 
to specify that VAX granularity and atomicity rules 
be preserved. 

BLISS-32 Code The BLISS-32 code in the DECnet­
VAX software was relatively simple to port. We 
made minor changes to add the VOLATILE parameter 
to data items that should not be cached in registers, 
to conditionally compile the exception handlers 
for VAX or Alpha AXP, and to remove unsupported 
built-ins. Other modifications were more exten­
sive, such as the changes to accommodate the new 
LIB$TABLE_FARSE. 

%IF %BLISS(BLISS32V) %THEN 

LIB$TPARSE Changes LIB$TPARSE and LIB$TABLE_ 
PARSE are the interface routines to a general­
purpose, table-driven parser for the OpenVMS 
VAX and OpenVMS AXP operating systems, respec­
tively. The call to these routines was made condi­
tional for the VAX and Alpha AXP architectures. 
Other changes were required because LIB$TPARSE 
and LIB$TABLE_FARSE differ in the way argument 
lists are passed. The method used by LIB$TPARSE to 
pass arguments is incompatible with the OpenVMS 
AXP calling standard. The LIB$TPARSE action rou­
tines required modification as a result of the 
required change to LIB$TABLE_PARSE for the 
OpenVMS AXP operating system. The LIB$TPARSE 
action routines received all or a subset of the argu­
ment block as parameters. LIB$TABLE_PARSE passes 
the address of the argument block to the action 
routines. The solution we used was to make the 
routine declaration conditional so that on the 
OpenVMS VAX operating system the action routines 
continued to receive the argument block parame­
ters, and on the Open VMS AXP operating system the 
action routines received the address of the argu­
ment block. Next, for the OpenVMS AXP operating 
system, the parameter names used by the common 
code were bound to the argument block. These 
changes are shown in Figure 5. 

As a result of this relatively simple though repeti­
tive change, no other changes had to be made in the 
action routines. If at some future time the Open VMS 
VAX operating system uses LIB$TABLE_PARSE, there 
will be no need for conditionals. 

GLOBAL ROUTINE ACT$INV_COMMAND (OPT,STRCNT,STRPTR,TKNCNT,TKNPTR,CHR, 
NUM,PARAM) = ! 

%ELSE 
GLOBAL ROUTINE ACT$I NV_COMMAND (PARSE STATE : REF $BBLOCK) %FI 

%IF %BLISS(BLISS32E) %THEN 
BIND 

%FI 

OPT 
STRCNT 
STRPTR 
TK NCNT 
TKNPTR 
CHR 
NUM 
PAR AM 
; 

PARSE_STATE[TPA$L_OPTIONSJ, 
PARSE_STATECTPA$L_STRINGCNTJ, 
PARSE_STATE[TPA$L_STRINGPTRJ, 
PARSE_STATE[TPA$L_TOKENCNTJ, 
PARSE_STATE[TPA$L_TOKE NPTRJ, 
PARSE_STATE[TPA$B_CHARJ, 
PARSE_STATE[TPA$L_NUMBERJ, 
PARSE STATE[TPA$L_PARAM] 

Figure 5 LIB$TPARSE Changes 
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Conclusion 
This porting effort not only provided a solid base of 
knowledge with which to begin the port of the 
DECnet/OSI for OpenVMS VAX software and the 
associated products, but also gave us an apprecia­
tion of common code and the avoidance of archi­
tecture-specific code. 

More and more software is being ported to new 
hardware platforms. The porting process is often 
carried out by individuals who did not develop 
the original software and who may not even be 
familiar with it. Our experience porting the 
DECnet-VAX code leads us to believe that new soft­
ware development should take into account the 
possibility that the code will be ported to new 
hardware platforms at some future date. As we con­
tinue to port the DECnet/OSI for OpenVMS VAX soft­
ware, it is becoming increasingly obvious that 
certain coding practices are difficult to port. As a 
general suggestion, if the code has knowledge of 
the architecture but can be written using system 
routines, system services, or run-time library func­
tions, write the code in that manner. These system 
routines will be ported with the operating system, 
and in a majority of the cases, the application code 
will not require modification. 

Also, if architecture-specific functions are 
required, provide only a minimum amount of code 
to perform these required functions and segregate 
the code. Document how the code works, why it 
had to be done that way, what the alternatives were, 
and why they were not taken. In addition to helping 
maintain the code, this information may provide 
valuable assistance to a person porting the code in 
the future. 

If a routine is written in assembly language for 
the sole purpose of performance improvement, 
consider rewriting it in a high-level language. It is 
possible that the assembly language coding conven­
tions that may have been optimal for one hardware 
platform will be slower on a different hardware 
platform. Using high-level language compilers, 
which generate optimized hardware-specific code, 
will eliminate additional porting effort and may 
very likely be the best performance solution. 

As we discovered during the process of porting 
the DECnet-VAX software, MACR0-32 code is signifi­
cantly more difficult to port than code written in 
higher-level languages. However, certain architec­
ture-specific functions may have to be written in 
assembly language. We recommend that these func­
tions be isolated. In addition, we recommend that 
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any other code written in MACR0-32 be rewritten, 
over time, in a higher-level language. 

We determined that the fastest approach to port­
ing was to make the minimum number of changes 
required to get the DECnet for OpenVMS AXP soft­
ware running. The porting process was accom­
plished in phases. The first phase included the 
initial port and addressed any errors that occurred 
until we successfully completed linking the image. 
This phase also included the initial debug, which 
was first performed on VAX systems because of our 
common code approach and, subsequently, done 
on Alpha AXP prototype hardware. When the prod­
uct was stable, we proceeded to the second phase 
in which we began to methodically align data struc­
tures and fix granularity and atomicity problems. 
Small changes could then be made and tested, and 
any new problems were generally easy to identify. 

Our team approach to the project worked 
extremely well. Each team member was initially 
responsible for porting specific portions of the 
code. As the project progressed, individuals worked 
on any part of the product that needed attention. 
This flexibility was also used when we began to 
debug the ported code and again when we began 
to respond to problem reports. Priorities were used 
to assign resources in order to solve problems as 
quickly as possible. Throughout the project, team 
members worked together to share knowledge and 
to solve problems efficiently. This effective team­
work allowed us to deliver the DECnet for Open VMS 
AXP product ahead of schedule. 
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Using Simulation to Develop 
and Port Software 

Among the tools developed to support Digital's Alpha AXP program were four soft­
ware simulators. The Mannequin and ISP instruction set simulators were used to 
port the OpenVMS and OSF/1 operating systems to the Alpha AXP platform. The 
Alpha User-mode Debugging Environment (AUD) allowed Alpha AXP user-mode 
code to be debugged with support from the OpenVMS rnx run-time environment 
on rnx hardware. AUD was built from a combination of new and existing Digital 
software components. The Alpha User-mode Debugging Environment for 
Translated Images (AUDI) allowed translated images to be debugged on a simulator 
running on a rnx computer. With these debugging environments, user-mode 
applications and code components could be tested before Alpha AXP hardware and 
operating system software were available. 

Digital developed several software simulators to 
support its Alpha AXP program.' These tools 
enabled engineers to develop and port software for 
the 64-bit RISC Alpha AXP architecture concur­
rently with hardware development. The simulators 
were used for a variety of purposes including port­
ing, testing, verification, and performance analysis. 
This paper discusses four Alpha AXP software simu­
lators: Mannequin, ISP, AUD, and AUDI. 

The Mannequin and ISP Simulators 
Two Alpha AXP instruction set simulators, 
Mannequin and ISP, were used to port operating 
systems to the Alpha AXP platform. The OpenVMS 
group used the Mannequin simulator to port the 
OpenVMS VAX system to the Alpha AXP platform. 
Likewise, the OSF/1 group used the ISP simulator in 
their port of the ULTRIX and OSF/1 operating sys­
tems to the Alpha AXP platform. Both simulators 
were also used for architectural and design verifica­
tion, and for performance modeling. 

The Mannequin simulator grew out of a simula­
tor developed for an earlier RISC project at Digital. 
The ISP simulator was written anew by engineers 
closely associated with the Alpha AXP architecture. 

The two development groups were requested to 
boot their respective operating systems on the sim­
ulators before attempting to boot on the Alpha 
Demonstration Unit (ADU), the Alpha AXP proto­
type hardware.2 The simulators were so successful 
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in tracking the Alpha AXP architecture and in root­
ing out software bugs that the OSF/1 group was able 
to boot the ULTRIX operating system on the hard­
ware on the first attempt. The OpenVMS group had 
similar success and booted the OpenVMS AXP oper­
ating system in a few hours. 

Note that the Alpha Demonstration Unit (ADU) is 
an Alpha AXP prototype hardware system and 
should not be confused with the Alpha User-mode 
Debugging Environment (AUD) or the Alpha User­
mode Debugging Environment for Translated 
Images (AUDI), two software simulator facilities dis­
cussed later in the paper. 

OpenVMS AXP Porting 
The Open VMS group used Mannequin as their Alpha 
AXP instruction simulator in porting the OpenVMS 
VAX operating system to the Alpha AXP hardware. 
Never before had an OpenVMS porting effort been 
able to debug as much operating system code 
in advance of hardware. Prior porting efforts 
debugged only up to VMB, a primary boot stage in 
the OpenVMS operating system. Using Mannequin, 
operating system developers were able to boot the 
entire operating system on the simulator and actu­
ally log in and debug utilities. 

Some developers used Mannequin's own win­
dows interface and debugging facilities to debug 
their code. Others ran the XDelta utility on top of 
Mannequin.3 XDelta is a low-level system debugger 
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used to debug the OpenVMS VAX kernel and drivers. 
However, the Mannequin interface was useful in ini­
tially debugging XDelta, since the Alpha AXP con­
sole allows neither breakpoints nor single stepping. 

To debug their code before the full OpenVMS AXP 
operating system was available, other developers 
used Mannequin in conjunction with the Alpha 
primary boot (APB) code and a test harness. 
Mannequin was especially useful in finding align­
ment faults in the boot sequence, since the align­
ment tools are not operational until the OpenVMS 
AXP system is completely booted. Alignment faults 
occur when an attempt is made to access a unit of 
data located at an address that is not a multiple of 
the size of the data. 

Microcode Speedup 
One main reason the OpenVMS team was able to 
debug a large part of the operating system in real 
time was the use of specially written microcode to 
speed up the simulator. Mannequin is capable of 
running with special user-written microcode on 
the VAX 8800 family of machines. 4 This microcode 
is an addition to the normal VAX microcode for 
the 8800 machines; the VAX microcode remains 
unchanged. With microcode support, a large subset 
of Alpha AXP instructions is executed in microcode 
and attains performance comparable to native VAX 
instructions. The Mannequin microcode occupies 
93 percent of the total 1,024 words of the user­
writable control store. 

Using microcode assistance greatly speeds up 
Mannequin execution, yielding from 350 thousand 
Alpha AXP instructions per CPU second (KIPS) to a 
peak performance of 1 million Alpha AXP instruc­
tions per CPU second (MIPS) on a VAX 8800. 
Without microcode assistance, Mannequin perfor­
mance is on the order of 10 KIPS. (For comparison, 
the ISP simulator operates at approximately 30 
KIPS.) Code streams that execute completely in 
Mannequin microcode show much better perfor­
mance than those that switch back and forth 
between microcode and the software simulator. 
With microcode assistance on an unloaded VAX 
8800, it takes from 20 to 30 minutes to boot the 
OpenVMS AXP system and reach the Digital 
Command Language (DCL) prompt after login. 
Because of this microcode speedup, software engi­
neers were able to simulate and debug a much 
larger part of the operating system and utilities than 
ever before. 
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OSF/1 AXP Porting 
The OSF/1 operating system group used the ISP sim­
ulator as an Alpha AXP instruction compute engine. 
The strategy was to connect the ISP simulator to 
dbx, a standard UNIX source-level debugger, via 
dbx's remote interface. An interface was added to 
the ISP to support the following low-level debugger 
commands: 

• Instruction stream examine and deposit 

• Data stream examine and deposit 

• Register examine and deposit 

• Single step 

• Continue 

• Boot 

The dbx debugger was modified to work with the 
64-bit Alpha AXP architecture. That is, addresses in 
the debugger were extended to 64 bits, and an 
Alpha AXP disassembler was provided. The ISP 
simulator and dbx debugger operated as separate 
processes communicating on the same machine 
by means of a socket. A socket is a protocol­
independent connection point for interprocess 
communications. 

Historically, the OSF/1 group used the ISP-dbx 
combination to port the ULTRIX operating system 
to the Alpha AXP platform as an advanced develop­
ment effort. When the group began to port the 
OSF/1 system, Alpha AXP prototype hardware 
(ADUs) and field-test compilers were available. 
Thus, the OSF/1 group used the ISP in its ADU mode, 
where the ISP simulator operated as a console to 
the ADU hardware system. The ADU consists of an 
Alpha AXP DECchip 21064 processor, memory, 
disks, Ethernet, and a DECstation 5000 workstation, 
which acted as the console interface. Instructions 
that normally execute on the simulator were trans­
ferred to the ADU for execution. However, the 
entire symbolic debugging environment remained 
unchanged. 

Simulator Specifics 
The ISP simulator was written entirely in portable 
C. The Mannequin simulator was a hybrid of the 
C++ and C languages. ISP consisted of approxi­
mately 25,000 lines of code, Mannequin 31,800 
lines. The two simulators shared common code: 
the ISP simulator provided Mannequin with float­
ing-point routines and a comprehensive instruction 
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test program; Mannequin provided ISP with 1/0 
device routines. Thus, the simulators verified the 
Alpha AXP architecture as well as each other. 

The Mannequin and ISP simulators tracked and 
supported changes in the evolving Alpha AXP archi­
tecture and in PALcode. PALcode is special machine­
dependent software that provides support for 
many low-level operating system services such as 
faults and exceptions. PALcode also provides 
instructions not in the base Alpha AXP hardware. 

The two simulators have features common to 
many simulators, including support for loading 
and running programs, setting breakpoints and 
watchpoints, accessing memory, and saving and 
restoring machine state. Also supported are many 
machine-specific features, such as 1/0 devices, 
interval timers, and configurable translation look­
aside buffers. Besides a command line interface, 
the Mannequin simulator has a graphical windows 
interface that allowed users to see most machine 
resources in a windows-based format, as shown in 
Figure 1. 

The Mannequin and ISP simulators support three 
basic devices: 

• A console device used for terminal 1/0 

• A disk device used to boot the operating system 

• An interval timer used for interrupts 

The disk device on the simulators can be either 
a file or a physical disk device. The OpenVMS 
group used a shared disk so that developers could 
boot from a common disk while running on the 
simulator. 

The simulators provide 16 megabytes (MB) of 
physical memory with a default page size of 8 kilo­
bytes (kB). The physical memory of the simulators 
may be increased to the practical limit of available 
virtual memory on a VAX system (minus a small 
amount for the actual simulator code). 

Both simulators have configurable instruction 
stream (I-stream) and data stream (D-stream) trans­
lation lookaside buffers (TLBs). A TLB is a small 
cache that holds recent virtual-to-physical address 
translation and protection information. The simula­
tor TLBs can have a variable number of entries in 
each of the four granularity hint block sizes. 
Granularity hints indicate to the translation buffer 
implementations that a block of pages can be 
treated as a single, larger page. In essence, there are 
four minitranslation buffers. The ISP simulator sup­
ports selectable TLB replacement algorithms, 
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whereas Mannequin supports only the not-last­
used (NLU) algorithm. The configurable TLBs 
allowed the operating system and chip design 
groups to analyze and finely tune the translation 
lookaside buffers for optimum performance. 

Peiformance Analysis and Benchmarking 
The Mannequin and ISP simulators also support 
execution of user-mode, stand-alone programs, i.e., 
those with little or no operating system run-time 
support, by providing program loaders for several 
formats. These formats include two UNIX object for­
mats (COFF and a.out), an OpenVMS AXP image for­
mat, and a system (raw data) image format. 

Programs were compiled with early field-test 
Alpha AXP compilers. Program execution was espe­
cially useful for hardware designers and compiler 
writers for performance analysis and benchmark­
ing purposes. Note that applications requiring full 
operating system support used the AUD facility, 
described in a later section. 

The simulators can generate trace files in a stan­
dard trace file format. This commonality enabled 
the two facilities to share the same trace analysis 
tools. The trace files generated by Mannequin 
and ISP were also used as input to the Alpha 
Performance Model, another simulator that gener­
ated detailed performance data. 

EVILIST and ALPHA$REPORT were two tools fre­
quently used to analyze trace files and generate 
statistics concerning machine resources used dur­
ing program execution. The types of data generated 
by ALPHA$REPORT include the following: 

• Instruction distribution by opcode, class, and 
format 

• Instruction and floating-point register utiliza­
tion summary 

• Distribution of code block run lengths 

• Opcode pair distribution by class 

• Control/branch instruction flow summary 

An actual trace analysis report generated by 
ALPHA$REPORT is shown in Figure 2. This example 
comes from a scaled version ofFPPPP (one of the 14 
benchmarks in the SPECfp92 floating-point test 
suite), with the constant NATOMS set equal to 2. 
Figure 2 displays a report listing instruction distri­
bution by opcode. 

Alpha AXP operating system developers and com­
piler writers relied heavily on the trace reports for 
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ALPHA Instruction Statistics Report 6-MAY-1992 
FPPPP -- Quantum chemistry calculation of a two-electron integral 
derivative 

Instruction Distribution by Opcode 
(Ranked from highest to Lowest) 

Instruction 
Class Mnemonic 
6 LDT 
8 MULT 
8 ADDT 
6 STT 
1 LDQ 
1 LDL 
1 STL 
4 BIS 
3 ADDL 
8 SUBT 

Occurrence 
2321155 
1732928 
1433798 

998446 
544385 
241142 
178828 
151120 
126321 

95045 

Percent 
25.41 
18.97 
15.70 
10.93 

5.96 
2.64 
1. 96 
1 • 6 5 
1. 38 
1. 04 

Cumulative 
Percent 

20 
40 
60 
70 

80 

Figure 2 Mannequin/ISP Trace Output 

help in designing critical sections of code. For 
example, the register usage distribution report 
helped determine how many registers should be 
preserved by a call and how many should be 
scratch (usable by a called routine without being 
preserved). 

The AUD Facility 
Whereas the Mannequin and ISP simulators were 
suitable for initial debugging of low-level software 
such as operating systems, direct use of these tools 
for user-mode applications, i.e ., layered products, is 
a different matter. Porting and debugging Alpha 
AXP user-mode code is at best difficult without the 
full run-time support of an operating system. User­
mode applications typically take advantage of a 
wide variety of run-time libraries, including com­
piled code support (such as the Fortran run-time 
library), mathematical routines, graphics 1/0 ser­
vices, and database software (such as Rdb for 
OpenVMS). Even if all this software were immedi­
ately available for Alpha AXP systems, running it 
under simulation would be prohibitively slow. 

Therefore, Digital developed a mixed-execution 
debugging environment. This Alpha User-mode 
Debugging Environment (AUD) was built from a 
combination of new and existing Digital software 
components. In the AUD environment, user-mode 
code being developed for or ported to the Alpha 
AXP platform could be compiled and executed as 
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Alpha AXP code using simulation on VAX hardware. 
At the same time, OpenVMS VAX run-time services 
called by the code could be executed as native VAX 
instructions. Thus, modules could be ported and 
debugged one at a time, until almost the entire 
application consisted of bug-free Alpha AXP code. 

During the design of the AUD environment, two 
key technical issues were 

• How to efficiently detect calls made by execut­
ing VAX code to a routine in Alpha AXP code that 
could be "executed" only by simulation, and 
conversely, how to detect calls made by Alpha 
AXP code being simulated to native VAX code. 

• How to effect the transformation of parameters, 
both location and representation, from that pro­
vided by the caller in one domain into the loca­
tions and representations expected by the called 
routine in the other domain. Although there 
existed well-defined and widely followed calling 
standards for both domains, a variety of special­
purpose, high-performance calling conventions 
were used in many situations. 

This mixed-execution environment was expected 
to have a relatively short lifetime, because it would 
become obsolete as soon as significant numbers of 
real Alpha AXP hardware systems became available. 
Consequently, AUD itself had to be simple and inex­
pensive enough to be created quickly and put into 
use. The development effort met this requirement. 
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The elapsed time from initial concept to first use 
was about eight months; the total development 
effort for AUD over its lifetime was between three 
and four man-years. 

AUD Components 
Despite the desire for simplicity, AUD consists of a 
number of cooperating components: 

• Callable Mannequin Alpha Simulator 

• AUD debugger 

• AUD linker 

• Alpha AXP native services 

• VAX jacketing services 

• AUD Linkage Analyzer (ALA) 

• Selected VAX jackets 

Callable Mannequin Alpha Simulator Callable 
Mannequin, the Alpha AXP instruction set simula­
tor, is essentially a subset of the Mannequin simu­
lator described earlier. In particular, Callable 
Mannequin omits the user interface and Alpha AXP 
machine state. Instead, the AUD debugger supplies 
the user interface. Also, storage for the Alpha AXP 
machine state is separately linked into the AUD 
environment to make this information globally 
accessible. Callable Mannequin does retain the 
microcode-assist feature . 

AUD Debugger The AUD debugger is a modified 
version of DEBUG-32, the user-mode debug utility 
on the OpenVMS VAX operating system. The AUD 
debugger provides most of the same features of 
DEBUG-32. A configuration option allows the 
DEBUG-32 utility to use an internal, low-level 
remote debugger interface to interface with a for­
eign target. (This capability was originally devel­
oped for use in other products such as VAXELN 
Ada.) We developed new code to join DEBUG-32 and 
Mannequin using this interface. As a result, the AUD 
debugger works directly with VAX code, in the 
usual manner, and works with Alpha AXP code by 
passing commands to the Callable Mannequin simu­
lator to set breakpoints, examine instructions, exe­
cute code, etc. 

AUD Linker The AUD linker is a variant of the 
Alpha AXP cross linker that reads Alpha AXP object 
modules as input and produces an OpenVMS VAX 
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format image as output. The standard VAX linker 
can therefore reference locations in the Alpha AXP 
image in the normal way, and the standard 
OpenVMS image activator can be used to load the 
Alpha AXP image for execution. However, to mini­
mize complexity, we did constrain the Alpha AXP 
image to be linked as an absolute image (i.e ., a 
based image, in OpenVMS jargon). This restriction 
eliminated the problem of how to relocate Alpha 
AXP instructions using the OpenVMS image activa­
tor. As mentioned previously, the Alpha AXP image 
also includes a global storage area to hold the simu­
lated Alpha AXP machine state. 

Alpha AXP Native Services Alpha AXP native ser­
vices is a special operating system shell, part of 
which executes as Alpha AXP code (under simula­
tion) and part of which is included in the AUD jack­
eting services. The native services provide the 
lowest-level support for hardware exception han­
dling and the OpenVMS condition-handling facility. 
While AUD ultimately supported frame-based con­
dition handling within the Alpha AXP image, inter­
operation of application exceptions between the 
Alpha AXP and VAX domains was not supported. 

VAX Jacketing Services VAX jacketing services is 
VAX code that supports the ability to write jackets 
that pass control back and forth between VAX and 
Alpha AXP code. The mechanics for accomplishing 
this are discussed in the Jacketing section. 

AUD Linkage Analyzer The ALA is a specialized 
compiler that reads a specialized jacket description 
language. This language describes how calls in 
one domain are to be transformed into calls in the 
other domain on a routine-by-routine, parameter­
by-parameter basis. The output from the ALA is 
an Alpha AXP object module and a linker options 
control file, both used to link the Alpha AXP image, 
and a VAX object module. The Alpha AXP object 
module provides a transfer vector into the Alpha 
AXP procedures. The linker options control file 
provides symbol definitions in an encoded form to 
manage calls from the Alpha AXP image to the main 
VAX image, which is linked later. The VAX object 
module contains a table that encodes the jacketing 
description. 

Selected VAX]ackets Selected VAX jackets are ALA 
jacketing files (in both source and compiled forms) 
for calling common VAX facilities from Alpha AXP 
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code. Jackets are provided for Open VMS system ser­
vices, the C run-time library, and some parts of the 
general-purpose, run-time library (UBRTL). The 
DECwindows group also supplied jacket definition 
files for use by other groups. AUD users are able to 
supplement these files as needed by creating and 
compiling their own jacketing descriptions for 
other VAX facilities. 

Figure 3 shows the main steps in building an AUD 
environment. The uppermost sequence shows the 
compilation and linking of the Alpha AXP comp~ 
nents, which results in the creation of the Alpha 
AXP image. The central sequence shows the compi­
lation of the jacket descriptions, which results in 
the creation of components that are included in 
both the Alpha AXP and the VAX images. The lower 
rows of Figure 3 show the compilation of the VAX 

ALPHAAXP 
PART OF - ALPHAAXP 

f-+-
ALPHA AXP 

APPLICATION COMPILER OBJECTS 
PROGRAM 
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part of an application and its linking with the AUD 
manager to create the VAX main image. When the 
mixed VAX and Alpha AXP application is executed, 
these images are combined in memory with 
Callable Mannequin, the AUD debugger, and other 
shareable images. This relationship is illustrated in 
Figure 4. 

Jacketing 

l 

Jacketing is the key feature that allows VAX and 
Alpha AXP interoperability, i.e., gives a processor 
the appearance of being able to execute both VAX 
and Alpha AXP instructions. Although the details of 
jacketing are intricate, the result is simple and ele­
gant. Calls can be made freely back and forth 
between VAX compiled code and Alpha AXP com­
piled code, without any special compilation modes 

ALPHA AXP r+- ALPHAAXP 
LINKER IMAGE 

J ALPHAAXP 
JACKET 
OBJECTS 

t 
JACKET - JACKET 
DESCRIPTIONS COMPILER 

! 
VAX 
JACKET 

l OBJECTS 

VAX r+- VAX 
LINKER IMAGE 

J VAX PART OF VAX VAX DEBUG 
APPLICATION - COMPILER f-+- OBJECTS IMAGE 
PROGRAM 

ENVIRONMENT VAX VAX CALLABLE 

MANAGER - COMPILER r+- OBJECTS - MANNEQUIN 
IMAGE 

Figure 3 Creating an AUD Application 
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ALPHAAXP 
LINK 

VAX 
LINK 

ALPHAAXP 
COMPONENTS 

ALPHAAXP 
COMPONENT SERVICES 

ALPHAAXP 
MACHINE STATE 

AUD AND JACKETING 
TABLES 

VAX COMPONENTS 

MAIN IMAGE 

CALLABLE MANNEQUIN 

AUD DEBUGGER 

OTHER IMAGES 

SHAREABLE LIBRARIES 

Figure 4 AUD Process Components 

on either side. The AUD support is fully recursive 
and reentrant. 

Static calls from VAX to Alpha AXP code are 
directed to dummy entry points in the object mod­
ule produced by the ALA compiler. Each entry point 
is simply an instruction that loads a pointer to the 
jacketing description table for the target Alpha AXP 
procedure, followed by a transfer into common 
jacket interpretation code. 

Calls from Alpha AXP code to VAX code use 
the fact that the Callable Mannequin component 
stops and returns control to the AUD environment 
when it detects an instruction that transfers control 
out of the Alpha AXP image. In this case, the appar­
ent address is an encoded integer (created by the 
ALA), whose high four bits make it look like an ille­
gal address (in the VAX reserved SI space) and 
whose remaining bits are a two-level index (i.e., 12 
bits of facility code and 16 bits of offset) into the 
jacket description table for the target VAX proce­
dure. This two-level scheme was chosen to allow 
jacket descriptions for different shared library facil­
ities to be prepared and compiled independently. 
The facility code is a number normally already asso­
ciated with that facility by software convention for 
other purposes. 

When a routine is called using a dynamically 
determined address, such as an address given in a 
function variable, a property of the VAX and Alpha 
AXP architectures is exploited to determine dynam­
ically whether the target routine is a VAX routine or 

188 

an Alpha AXP routine. According to the VAX archi­
tecture, the first 16 bits of a routine comprise a 
mask that encodes the registers to be preserved as 
part of the call. Bits 12 and 13 of this mask are 
unused and required to be O; if one of these bits is 
set at the time of a call, then a hardware exception 
results. According to the OpenVMS AXP software 
architecture, an Alpha AXP procedure address is 
actually the address of a procedure descriptor, 
which is a data structure and not the actual Alpha 
AXP code. By design, bits 12 and 13 of this data 
structure must be set to I. 

VAX execution of a VAX CALL instruction that 
attempts to transfer to an Alpha AXP procedure 
results in an exception. A special AUD exception 
handler intercepts the exception, determines if the 
illegal entry mask is caused by a reference into an 
Alpha AXP image, and if so, calls into the AUD jacket­
ing routines to reformat the call frame. This mecha­
nism also works for handling asynchronous system 
traps (ASTs) from the OpenVMS VAX operating 
system to Alpha AXP code. 

For computed calls from Alpha AXP code, com­
piled code calls an Alpha AXP run-time library rou­
tine to perform the comparable bit 13 test (under 
simulation). If bit 13 of the target location is set to I, 
then simulated execution continues and an Alpha­
to-Alpha call is carried out. Otherwise, control 
transfers to a special VAX code entry point in AUD, 
which terminates simulation and performs jacket­
ing back to the VAX target procedure. 
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Basic Operation 
To start executing a mixed application, the AUD 
environment first performs several initialization 
steps. In particular, AUD scans all the images loaded 
in process memory to identify the Alpha AXP image 
(only one was allowed and supported). 

Some AUD options are set through the use of 
OpenVMS logical names, which are interrogated 
during image initialization. These options include 

• Selecting Alpha AXP stack size 

• Enabling delivery of ASTs to Alpha AXP routines 

• Disabling the normal Alpha AXP stack consis-
tency checks 

• Disabling unaligned memory reference messages 

• Enabling AUD initialization tracing 

• Disabling integer overflow checking 

Debugging combined VAX and Alpha AXP code 
under the AUD environment is similar to debugging 
normal VAX code under the DEBUG-32 OpenVMS 
debugger. Basically, if the address involved in a 
debug command is within an Alpha AXP image, 
then the debugger calls the Mannequin simulator to 
perform the command for the Alpha AXP code. 
Otherwise, the DEBUG-32 debugger itself performs 
the command for the VAX code, as usual. Alpha AXP 
machine state is kept in static global storage by 
Mannequin and thus is visible to the AUD debugger. 

In the DEBUG symbol table (DST) representation, 
variables that are allocated in the Alpha AXP regis­
ters are described as being allocated in the corre­
sponding global state locations. This "trick" 
allowed AUD to handle the 64 Alpha AXP registers 
using the VAX DST representation, which can 
encode only the 16 VAX registers. 

Once simulation begins, Mannequin continues to 
simulate Alpha AXP instructions until it either 
detects an instruction that would transfer control 
outside of the Alpha AXP image, completes a single­
step request, or detects an error condition. Upon 
returning to the AUD environment, Mannequin sup­
plies status information that indicates the reason 
simulation ended. 

For a transfer of control from Alpha AXP to VAX 
code, AUD must first determine whether the trans­
fer is a return from Alpha AXP code as a result of a 
prior VAX call or a new call from Alpha AXP code to 
VAX code. AUD is fully reentrant, so AUD cannot 
make this determination from global state. If the 
target address is a distinguished address that AUD 
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supplies when it sets up a VAX-to-Alpha call (i.e., an 
address in the reserved SI part of the VAX address 
space), the address is interpreted as a return trans­
fer. Otherwise, AUD initiates a new Alpha-to-VAX 
call. 

For a return operation, the AUD code copies the 
return value or values from the Alpha AXP registers 
and passes them back to the VAX code. A VAX return 
instruction is then executed to resume execution 
of the calling VAX code. 

For a call operation, the VAX code fetches the 
Alpha AXP parameters and builds a VAX argument 
list, which is then used to call the target VAX rou­
tine. When the VAX routine returns, the contents of 
the result registers are copied to the corresponding 
Alpha AXP machine state locations, and Mannequin 
is restarted to resume executing Alpha AXP code. 

Despite some limitations (e.g., only one Alpha 
image and no exception handling across the VAX to 
Alpha AXP domains), AUD greatly aided the 
OpenVMS AXP porting effort. The simulator pro­
vided software groups with a pseudo-Alpha AXP 
environment in which to debug their Alpha AXP 
code, well before either Alpha AXP hardware or the 
OpenVMS AXP operating system was available. 
Many OpenVMS AXP groups successfully used AUD 
to facilitate their porting, including the Record 
Management Services (RMS), DECwindows, Forms 
Management System (FMS), various OpenVMS com­
mand utilities, text processing utility (TPU), DEBUG, 
and GEM compiler back-end groups. 

The AUDI Facility 
The VAX Environment Software Translator (VEST) is 
an important part of the initial Open VMS AXP offer­
ing.s VEST translates an OpenVMS VAX executable or 
shareable image into an OpenVMS AXP image that 
can then be executed with support on an OpenVMS 
AXP system. As for other user-mode layer software 
components, it was desirable to test VEST and 
images translated by VEST as early as possible in a 
simulation environment such as AUD. However, 
AUD could not be used directly to test translated 
images for two reasons: 

• VEST directly creates an Alpha AXP image. In 
effect, VEST is a combined compiler and linker. 
Thus, the symbol mapping protocols used by 
AUD were extraneous, and the linking protocols 
had to be completely replaced. 

• Actual execution of a translated image on 
an OpenVMS AXP system makes use of the 
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Translated Image Environment (TIE).5 The TIE 
is a shareable library that contains support rou­
tines for translated images. In particular, TIE 
provides support for VAX complex instruction 
processing, VAX-to-Alpha address mapping, and 
OpenVMS VAX exception handling. Creating a 
VAX version of the TIE to use with AUD required 
intimate interfaces with the OpenVMS VAX oper­
ating system as well as compatibility with AUD. 

Thus, the need to debug translated images led to 
the creation of the Alpha User-mode Debugging 
Environment for Translated Images (AUDI). Just as 
Callable Mannequin provided a key building block 
for AUD, AUD in turn provided a key building block 
for AUDI. Alpha AXP software teams and porting 
centers used AUDI to port both Digital and third­
party translated applications prior to the arrival 
of Alpha AXP hardware. The porting process was 
as follows: a VAX application was translated to 
Alpha AXP code by means of the VEST translator; 
this code was then run on a VAX system using the 
AUDI simulator. 

The AUDI process components shown in Figure 5 
include the 

• Callable Mannequin Alpha simulator 

• AUD debugger 

• VAX version of the TIE 

• Translated VAX code (AlphaAXP code) 

AUDI Environment 
Emulated VAX state in AUDI is maintained in a global 
context block. Emulated VAX registers RO through 
R14 are used exactly as their VAX counterparts. 
The correspondence between a translated and 

ORIGINAL VAX CODE 
AND 
TRANSLATED VAX CODE 
(ALPHA AXP CODE) 

TRANSLATED IMAGE 

equivalent VAX program counter (PC) is not directly 
available during execution, since translated code 
occupies different address space than the original 
VAX code. Thus, register RIS is used instead as an 
in-image index register. 

The user-mode VAX stack is split into a VAX stack 
and an Alpha and emulated VAX stack. The VAX 
stack services both the AUDI environment and any 
VAX system services or run-time library routines 
that the translated image may call. The Alpha and 
emulated VAX stack services Alpha AXP and trans­
lated code. 

Translated images contain calls to the TIE as nec­
essary to simulate VAX complex instructions and 
procedure calls. Complex instruction routines are 
used to simulate VAX instructions that would other­
wise expand into excessive Alpha AXP code. 
However, since AUDI is running on VAX hardware, 
complex instructions can be executed native on the 
VAX hardware. 

To initialize the AUDI environment, the translated 
image calls an initialization routine in the TIE by 
means of an initialization program section (PSECT). 
This routine determines the address range of the 
Alpha AXP code and the location of the VAX-to­
Alpha address mapping structure, saves the current 
Alpha AXP register state, and calls Mannequin to 
begin executing translated code at the appropriate 
entry point. Translated code uses the address map­
ping structure to find computed branch destina­
tions on the fly. Callable Mannequin then executes 
translated code until it encounters some instruc­
tion that would transfer control out of translated 
code. The cause of this transfer would be either a 
TIE-based procedure or complex instruction call, or 
calls to native VAX routines. 

I TRANSLATED IMAGE I ENVIRONMENT (TIE) 

I CALLABLE MANNEQUIN I 
I AUD DEBUGGER I 
I OTHER IMAGES I 

AUDI ENVIRONMENT 

Figure 5 AUDI Process Components 
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Like AUD, AUDI allows interoperation between 
translated VAX code (Alpha AXP code) and VAX 
code. Translated code can use existing VAX system 
services and run-time libraries. AUDI does not use 
the jacketing language described in the section The 
AUD Facility. Instead, AUDI automatically jackets 
procedure calls between the translated VAX code 
and the native VAX code. Autojacketing includes 
building proper parameter lists and call frames for 
the destination calling standard. 

The fact that AUDI does not use a jacketing lan­
guage leads to some procedure call limitations. 
However, note that these limitations do not appear 
when running translated code on actual Alpha 
AXP hardware. For incoming calls (VAX code to 
translated VAX code), all AST delivery and condition 
handlers execute as VAX code rather than as trans­
lated VAX code. Thus, translated programs may 

$ RUN HELLO_WORLD_TV 
Hello World from VAX BASIC 

AUDI V3.0 Runtime Statistics: 

Using Simulation to Develop and Port Software 

not function properly. For outgoing calls (trans­
lated VAX code to VAX code), routines in which 
a callee modifies its caller's stack frame argument 
list or return address may produce unpredictable 
results, since the autojacketing may be altered or 
disconnected. 

AUDI Example 
Figure 6 shows the execution of a translated image 
under AUDI. Note that both the BASIC image 
(HELLO_ WORLD) and the BASIC run-time library 
(BASRTL) are translated. Run-time libraries that are 
used by the AUDI environment cannot be translated 
under AUDI. Translating run-time libraries that AUDI 
itself uses causes a "circularity in activation" and 
incorrect or no execution. 

In the HELLO_ WORLD example, there are 28 calls 
to VAX routines, most likely those to LIBRTL and 

8085 Alpha AXP instructions were executed. 

TIE Lookups: 

Stayed in Alpha AXP routines: 
Went to VAX routines: 

Total: 

CALLx 

4 
28 

32 

JSB 

5 
0 

5 

JMP 

0 
0 

0 

28 VAX returns used (28 RET, 0 RSB) to resume Alpha AXP code. 
There were no Fault-On-Execute conditions converted to Lookups. 
21 CALLx Context Blocks were allocated - which were reused 7 times. 

There were 19 TIE-based 'complex instructions' executed. 
Instruction INSQUE COE) 2 
Instruction MOVC3 (28) 8 
Instruction MOVC5 C2C) 8 
Instruction MOVTUC C2F) 1 

There was 1 VAX routine call to Alpha AXP code. 

There were 2 images containing Alpha AXP code: 
HELLO_WORLD_TV X0.0 from BL3.3 VEST of Mar 30 1992 09:27:02 
BASRTL_TV X0.0 from BL3.3 VEST of Mar 30 1992 09:14:10 

Execution depended on 
LIBRTL_TV 
MTHRTL_TV 
TIE$SHARE 
MQN$SHARE 
DECW$DWTLIBSHR 
LBRSHR 

these images: 
DECW$XLIBSHR 
DECW$TRANSPORT 
VAXCRTL 
MTHRTL 
CONVSHR 
SORTS HR 

COMMON 
LIBRTL2 
LIBRTL 
DBGSSIS HR 

Figure 6 AUDI Example-Translated Hello World Image 
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OpenVMS system services. There are 21 unique 
CALLx contexts and 7 reused ones. In addition, the 
example uses four different complex instructions. 

Summary 
The software simulators Mannequin, ISP, AUD, and 
AUDI greatly aided Alpha AXP software porting 
and development efforts. Substantial parts of both 
system and application software were simulated 
and verified concurrently with hardware develop­
ment. When Alpha AXP hardware became available, 
most software could be plugged in simply and ran 
exactly as expected. The use of these simulation 
tools saved a year or more from the overall Alpha 
AXP schedule. 
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Peter F. Conklin I 

Enrollment Management, 
Managing the 
AlphaAXP Program 

Digital's multiyear Alpha AXP program has involved more than two thousand 
engineers across many disciplines. Innovative management styles and techniques 
were required to deliver this higl.rquality program on an aggressive schedule. 
The Alpha AXP Program Office used a four-point methodology for management: 
(1) establish an appropriately large shared vision; (2) delegate completely and 
elicit specific commitments; (3) inspect rigorously, providing supportive feed­
back; (4) acknowledge every advance, learning as the program progresses. 
We consciously used each project event to propel progress and gain momentum. 
Digital delivered the Alpha AXP program on schedule with industry-leadership 
capabilities. 

Introduction 
The program to develop the Alpha AXP systems 
has been the largest in Digital's history and one 
of the largest in the computer industry. During 
the course of the program, the Alpha AXP Pro­
gram Office developed a model that provided the 
tools necessary to manage the program. At times, 
this paper may seem to imply that the program 
team developed the tools and then used them in 
a pure form. In practice, the team developed these 
approaches based on many years of experience and 
on the management theories of experts; we also 
learned and applied these lessons as we managed 
the program. 

Although the positive effects of timely delivery 
and high quality are particularly noticeable results 
of such a large program, Digital has also used the 
tools to good effect on smaller projects. Moreover, 
teams within the Alpha AXP program used the tools 
recursively, project by project. The author's experi­
ence is that this management model is applicable to 
projects of nearly any size. 

The discussion that follows briefly defines the 
scope of the program and explains why traditional 
methods were inappropriate for managing the 
development of such a complex product set in a 
short time period. The Enrollment Management 
Model and the concept of cusps-a key element of 
the model-are then defined and clarified through 
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discussion of the model's evolution during the 
Alpha AXP Program. 

Size of the Al,Pha AXP Program 
Digital's Alpha AXP program encompassed the 
design of a world-leadership microprocessor chip, 
a new 64-bit system architecture, multiple hard­
ware systems (from personal computers to main­
frames), multiple operating systems, and hundreds 
of software products layered on these systems. The 
development of the first-generation products 
extended over several years and involved more than 
two thousand hardware, software, and systems 
engineers at its peak. Digital managed the overall 
development program from a Program Office 
staffed by eight professionals. 

Across Digital worldwide, the Alpha AXP pro­
gram development spanned more than 22 software 
engineering groups and 10 hardware engineering 
groups. The hardware effort included the semicon­
ductor design group and groups for each of the 
hardware systems platforms. The software efforts 
encompassed four operating systems groups, and 
groups designing migration tools, network sys­
tems, compilers, databases, integration frame­
works, and applications. Some groups peaked at 
more than 150 development engineers plus sup­
porting staff. Many also contracted with suppliers 
both within and outside Digital. 
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Inappropriate Organizational Approaches 
Implementing such a broad, complex program pre­
sented not only technological challenges but a man­
agement challenge as well. The Program Office 
therefore considered and rejected a number of tra­
ditional organizational approaches.1 

In the classic organizational model, a hierarchi­
cal, or line, organization is formed, containing all 
the primary implementers. The problem with this 
approach to large programs is that it takes too long 
to form the organization. Staffing the teams and 
establishing operational procedures take longer 
than the market window and available technology 
allow. The result is grand visions and projects deliv­
ered years behind schedule. Further, "temporary" 
organizations must be folded back into the main­
stream at the end of the program. The management 
goal of the Alpha AXP program was to keep exper­
tise concentrated to achieve synergy across many 
projects within a particular discipline.2 

An alternative approach is to form small 
entrepreneurial teams and challenge them to work 
long hours to achieve the goals. This works well in 
small projects suitable for "skunk works." The origi­
nal design work was conducted in this fashion. 
However, when this approach is applied to large 
programs, the result is that team members burn out 
without achieving the aggressive schedules 
demanded. Management then becomes frustrated 
and tries again with different teams, but the results 
are no better. 

The Program Office established the Alpha AXP 

program as an integration of project teams that 
would remain within the existing line organiza­
tions. Thus, for example, each hardware and soft­
ware project resided within its functional group 
(semiconductors, servers, OpenVMS, UNIX, compil­
ers, database, CPU development, networks, etc.). 
The Program Office integrated the work of the indi­
vidual project teams, which provided the addi­
tional advantage of program resilience in the face of 
functional group reorganizations. 

The Enrollment Management Model 
The Enrollment Management Model (Figure 1) for 
the Alpha AXP program comprises four stages. 

Vision-Enrollment 

Commitment-Delegation 

Inspection-Support 

Acknowledgment-Learning 
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PERSONAL 
PUBLIC 

ACKNOWLEDGMENT 
LEARNING 

INSPECTION 
SUPPORT 

REVIEW 
ENCOURAGEMENT 

VISION 
ENROLLMENT 

COMMITMENT 
DELEGATION 

TRUST 
ACCOUNTABILITY 
(TASK-OWNER-DATE) 

Figure 1 Enrollment Management Model 

The model in this form was developed by 
the author. Some elements are derived from man­
agement seminars and from consultants' recom­
mendations. The particular forms used for vision, 
commitment, and acknowledgment emerged dur­
ing the Alpha AXP program. The inspection­
support stage was developed by the author during 
many years of project management and reviews. 

Two concepts are key to implementing this 
model for large programs. First, the Program Office, 
which has already been mentioned, provides the 
necessary cohesion, program vision, and inspec­
tion structures, while allowing the skills and 
resources to remain within their natural organiza­
tions. Moreover, the office lends consistency across 
the program and encourages each contributing 
group to hold to its commitments. The small Alpha 
AXP Program Office, made up of a diverse group of 
product and operations managers, had no formal 
authority (not even budget authority); so it exerted 
influence only through rigorous enrollment and 
delegation outlined by the management model. 

The second key concept is the project "cusp;' 
which is a critical event that propels change. Cusps 
are further defined in the sections Inspection­
Support and Using Project Cusps below. 

Vision-Enrollment 
The Program Office uses vision to enroll the related 
groups in the goals of the program. For example, 
the vision can be the top-level business goals and 
customer needs. For subordinate projects, the 
vision can be the objectives of the larger project. In 
all cases, the enrollment happens only when the 
goals are set in the context of the audience (the 
project team). In particular, the Program Office is 
most effective when it expresses the program's 
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vision in the terms and language of the group being 
enrolled. The vision has to be large enough to 
encompass all the required commitments and the 
ultimate results. 

Commitment-Delegation 
As the manager of a project develops plans, he or 
she delegates the tasks to sub-groups and solicits 
specific commitments to content and schedule.3 
Since these commitments are made within the con­
text of the larger vision, the subordinate commit­
ments become quite strong for sub-project 
members. A key element of the delegation process 
is the explicit specification of the results such that 
they are measurable and identified with an individ­
ual owner. The owner is a single individual empow­
ered by the committing group and held 
accountable for the deliverable.4 An important 
point here is that the term "owner" does not neces­
sarily refer to the person who actually does the 
work. The owner is responsible and therefore 
accountable for getting the work done on time. In 
our particular program, the Program Office had to 
clarify and reinforce this distinction carefully as 
part of the enrollment stage. 

Inspection-Support 
The project manager trusts in the commitments 
made and continually inspects the project to ensure 
delivery on schedule. This inspection strictly takes 
the form of supportive feedback, thereby encourag­
ing people to disclose risks before they become 
problems. Whenever the projected results are at 
risk of falling short of the commitment, the project 
manager declares a project "cusp." 

The term "cusp" is adapted here from Gleick to 
describe the potential turning points, or critical 
events, in a project.s (Other terms in conventional 
parlance include "gotchas," setbacks, crises, turning 
points, project breakdowns, and "calls to action." 
The managers used these terms during the program. 
For our purposes, we adopt the term cusp as an 
emotionally neutral term. It is important that at any 
point in the project the term used be one that gives 
an opening for the possibility of making a difference 
and for moving the project forward.) At the point of 
a cusp, everyone is ready to embrace change 
because it furthers the overall program objectives. 

The management team collaborated to take 
advantage of cusps to propel project momentum 
toward the established goal. Examples of cusps in 
the Alpha AXP program are presented throughout 
this paper to demonstrate their integral value in the 
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application of the Enrollment Management Model 
and the role they played in the creation of the 
model itself. 

Acknowledgment-Learning 
At each step of the project, the Program Office 
acknowledges progress both personally and pub­
licly. For each event, the management team repeat­
edly asks what was learned and how managers and 
the team can do even better next time. Teams are 
frequently coached to improve their methods for 
better results. 

Using the Model 
In principle, the Program Office used the Enroll­
ment Management Model in each component proj­
ect. Of course in practice, not all groups used this 
methodology. Early in the program, only a few 
groups signed up. As the Alpha AXP Program Office 
began organizing the overall program, we started 
formalizing the methodology. As noted above, we 
learned extensively as events progressed. We found 
few useful manuals applicable to running such a 
large program effectively. Instead, the Program 
Office developed many of the tools "on the job," 
learning as the project unfolded.6 This paper exag­
gerates a pure model rather than presenting its 
incremental development. To balance the picture, 
we show some of the pitfalls and side paths. 

Most project managers followed the Enrollment 
Management Model either by instinct (experience) 
or by example. In several instances, they formally 
reached outside for training in running projects 
of this complexity. Depending on the size of the 
project or sub-project, managers used the model 
with varying degrees of rigor. For example, the 
larger projects and the program overall used formal 
inspection meetings and reviews. Subordinate 
projects were free to use formal or informal inspec­
tion processes. The program team inspected 
each group's inspection processes to ensure that 
there would not be any unfortunate management 
surprises. 

Using Project Cusps 
As described earlier, cusps are critical project 
events, or crises. Conventional project manage­
ment concentrates on rigorous planning to avoid 
such crises. The Program Office took the opposite 
approach: We strove to understand the critical 
events and milestones and used these cusps to 
increase project momentum, as Figure 2 illustrates. 
As the project approached each cusp, the Program 
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* 
BUSINESS AS USUAL 

I\ 
CUSP 

Figure 2 Cusps as a Way to Change Directions 

Office dealt with the event promptly to ensure that 
the project continued to move toward the overarch­
ing goal. In other words, the managers did not 
develop a plan just to follow the plan. Instead, they 
developed a plan to understand the overall project 
flow and used the milestones and other events as 
opportunities to adjust the project velocity to keep 
moving toward the goaJ.7 In many cases, we gener­
ated a cusp to propel the necessary change (for 
example, by creating a schedule crisis). In other 
cases, we took advantage of a cusp to make a neces­
sary change. 

As the management team became comfortable 
with using project cusps constructively, the 
Program Office actively solicited more of them. 
These increased the velocity and resulting momen­
tum of the program, thereby achieving a "slingshot" 
effect. The Program Office used each cusp to 
acknowledge progress. As the team acknowledged 
more and more progress, the program's momentum 
moved from very low to break-even, and finally into 
high gear. 

Vision-Enrollment Stage: 
Magnitude of the Program's Vision 
The vision for a program or project becomes the 
ultimate goal or deliverable. Thus, the Alpha AXP 
Program Manager's first task was to establish a 
vision shared by all groups that would contribute to 
the program. This vision had to be large enough to 
encompass all the work. 

Alpha AXP Systems as 
Fiftlrgeneration Computing 
The Alpha AXP family is at the confluence of five 
major trends in computing. 

1. Nineteen ninety-two is the first year in which 
it is feasible to achieve 64-bit computing on a 
single microprocessor. 
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2. Nineteen ninety-two is the first year in which 
microprocessors have achieved over 100 MIPS 

(million instructions per second) of computing. 

3. It is now cost-effective to place more than 4 giga­
bytes of main memory on a system; hence 32-bit 
addressing is insufficient. 

4. Networking technology now allows the con­
struction of networks with over 100-megabit 
throughput. 

5. Cost-effective storage systems now exceed 
the many-gigabyte range and are approaching 
terabytes. 

These computing systems will include large 
amounts of parallelism as compared with classical 
designs. The levels of performance and connec­
tivity finally allow computing to realize greater 
human productivity: mobile, highly interactive 
computing that supports group work with algo­
rithms that intelligently analyze, simulate, and 
synthesize in support of a wide variety of human 
endeavors. The application of this technology qual­
ifies as the fifth generation of computing.8,9 

The program vision for Alpha AXP systems, as 
shown in Figure 3, is to be the first family of systems 
to implement the technology and applications for 
the fifth generation of computing. This family is 
fully compatible across all members now and will 
be into future generations, ensuring that applica­
tion binary programs will run unchanged. With no 
compromise to future performance, the initial fam­
ily members also maintain a high degree of com­
patibility with current systems to allow easy 
migration for customers as they begin to require 
this technology. Delivering a family of high-quality 
systems in a timely fashion reestablishes Digital's 
reputation for technology and systems leadership. 
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(.) 
z 
<( 

~ 
re: 
0 
u.. 
re: 
UJ 
ll. 

• 64-BIT MEMORY 
• TERABYTES STORAGE .·· 

>100 MIPS 

1992 
TIME 

Figure 3 Al,pha AXP Vision 
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Getting Started 
The Alpha AXP program grew out of research 
on computing, specifically the technology and 
benefits of different RISC (reduced instruction set 
computing) architectures, and from advanced 
development in compiler designs, VLSI (very large­
scale integration) design, and semiconductor fab­
rication. In 1988, Digital's Executive Committee 
challenged Engineering to develop a system that 
would meet the customers' needs for competitive 
performance in all of Digital's computing envi­
ronments. Engineering formed a cross-disciplinary 
task force that developed the requisite systems 
architecture and designs and produced the above 
vision and hence the Alpha AXP program. Digital's 
Executive Committee approved the Alpha AXP pro­
gram in October 1989. 10 

First Cusp: Executive Challenge 
to Accelerate Schedule 
By the end of 1989, Digital had completed the 
advanced developments and signed off on the archi­
tecture and primary design documents. In a major 
review during January 1990, upper management 
challenged the program to improve the schedules 
to capture the market window for this new tech­
nology. The project managers understood the 
rationale for this demand but could see no way to 
meet the aggressive schedule. The result was a loss 
of rapport between management and the technical 
staff, with comments such as "Don't talk to me 
about crazy schedules" and "This is just going to be 
a lot of hard work." 

The Program Office viewed this cusp as an 
opportunity rather than the crisis that it appeared 
to be. The office enrolled key project managers in 
the overall vision, i.e., in the business value of a 
timely execution. For some projects, it was suffi­
cient to focus on the classic "time-to-market." 
However, for many, the ship date proved an insuffi­
cient motivator. Therefore the Program Office 
framed the vision differently, as follows. A program 
becomes profitable when it reaches break-even 
(i.e., cumulative revenues meet and then exceed 
cumulative expenses). 

The time taken to achieve this point is known as 
the "time-to-profit." 11 The Program Office estimated 
that the program's schedule would affect Digital's 
revenue at the rate of $1 million per hour. That is, 
for each hour that the project could improve 
(lower) the time-to-profit, Digital would achieve an 
additional $1 million of revenue. The Program 
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Office pointed out to the project managers that this 
revenue could translate to approximately $0.01 on 
the stock price for each hour of schedule improve­
ment. With this concrete business metric in mind, 
the key project managers were willing to consider 
new ways to tackle the program's challenge. 

Once the Alpha AXP program was approved, the 
Program Office began holding Alpha AXP quarterly 
review meetings. At these forums, groups reported 
plans and progress to a wide, cross-disciplinary 
audience. Initially, the audience was composed of 
engineering, manufacturing, and service groups. As 
the program gained momentum, other disciplines 
such as marketing and sales joined and began to 
report on their own progress. These forums helped 
generate belief and solidify enrollment. They also 
helped the Program Office identify problem areas 
before they became crises. 

First Cusp Result 
We established a program-wide understanding of 
the importance of volume deliveries in 1992. 

Commitment-Delegation Stage: 
Delegating and Eliciting Commitment 
With the key project managers sharing a common 
vision, the next step was to establish a work plan 
and to ensure that each group committed to deliver 
on its parts. 

It had been 15 years since Digital attempted to 
change simultaneously its architecture, hardware, 
operating systems, compilers, and other layered 
products. Since the introduction of the VAX systems 
in the fall of 1977, each component had progressed 
relatively independent of the development sched­
ules of the others. Fewer than half a dozen project 
team members had participated in the VAX design. 
For most participants, the system had always been 
in existence, and hence the developer of each sub­
system could invoke and depend on the existence 
of all the other subsystems. 

The need for the simultaneous development of 
multiple hardware and software systems compli­
cated the coordination task. The Program Office 
addressed this complex coordination in two dimen­
sions: technical and project management. In the 
technical dimension, the office formed a team of 
technical leaders from the core engineering groups, 
known as the EJST, shown in Figure 4. (EJST is an 
acronym for EVAXJoint Systems Team. EVAX was an 
early name for the Alpha AXP program. An earlier 
forum, the EVAX Technical Team, merged into the 
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Figure 4 The Alpha AXP Virtual Organization 

EJST process over time.) This group met weekly to 
set directions for important cross-group technical 
design and strategy issues. Since the group's charter 
was to resolve problems and ensure that solutions 
"stuck," the EJST became a group to which others 
brought technical problems for resolution. 

In the project management dimension, the pro­
gram manager formed a team of project managers. 
Members of this team were empowered by their 
contributing engineering development groups to 
make commitments and to be accountable for 
deliverables. This team was known as the ASPM 
(Alpha AXP System Project Managers). Given the 
magnitude of the overall task and the complexity of 
fully understanding the interdependencies, the 
project managers tended to view the project as 
impossibly complex. At the program level, the chal­
lenge then became to establish the Alpha AXP mas­
ter plan. A master plan, however, evolved much 
more slowly than expected. 

Second Cusp: Cannot Choose 
the Order of the Work 
Management's inability to provide an overall 
plan induced a crisis of disbelief. The project 
managers threatened to revolt (or move to other 
projects). The technical leaders were generating 
ever-larger design documents. The engineering 
development group managers declared that the 
Program Office had a crisis on its hands: We had to 
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establish a program-wide work plan that showed 
the order in which each sub-project must deliver its 
contribution. 

How does one coordinate without a plan? The 
Alpha AXP program manager kept asking the indi­
vidual groups for their plans. What do you depend 
on? How long will it take? What resources do you 
need? What are your milestones or metrics of 
progress? The repeated answer was "I don't know 
because I don't know what everyone else is doing 
and when they will be done with their piece." At 
this time, we had already established the cross­
functional ASPM team of experienced project man­
agers representing most of the development 
groups. This team was unable to develop the com­
ponent plans because they lacked a master plan. 

Choosing the Strategy 
The engineering development group managers 
met in a full-day meeting to establish the over­
all parameters of the Alpha AXP program's plan. 
First, they established the business goals and exam­
ined the various technical constraints. The group 
tested the inclusion of each component with 
the question "Is this component critical to the over­
all business success of the Alpha AXP program?" 
This process established solid reasons for the 
contents of the master plan and kept the respon­
sibility for the inclusion or exclusion of a compo­
nent with the responsible development group. The 
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group then determined the organizational impli­
cations of such a work plan. Members of the group 
balanced the dimensions of business, technology, 
and organization to establish the priorities and 
work order. We institutionalized this group into the 
Alpha AXP System Board of Directors (ASBOD). 

Representing the Plan 
With the major program priorities and constraints 
established, the Alpha AXP program manager then 
set off to establish the master plan. For all groups to 
see their contributions, he held the master plan to a 
single page. He established the content during an 
intense period in which he asked contributors to 
describe their assumptions and tasks and to show 
where on the overall plan their pieces would fall. 
The single-page format forced the management 
team to keep the plan to a high-level view and 
allowed contributors to see their pieces without 
adding the complexity of their own group's details. 
Further, in review meetings it was easy for everyone 
in the room to view the same picture so that the 
results could be seen, debated, and agreed upon. 

Once the management team had outlined the 
plan, it was recommended by the project managers 
(ASPM) and approved by the engineering develop­
ment group managers (ASBOD). Thus team mem­
bers knew their goals would not change without 
clearly stated reasons. Further, others could start 
building their plans based on a consistent set of 
assumptions. The resulting single page also became 
a reference, which we called the "straw horse," to 
establish and reinforce constancy of purpose. 
Figure S is an example of the Straw Horse Plan. (We 
later upgraded the name to be the "tin horse" to 
connote the increasing degree of solidity of the 
underlying plans and commitments.) 

Second Cusp Result 
We agreed on the overall single-page plan upon 
which teams could build their own plans. 

Enrollment and Delegation: 
Value of Each Contribution 
With the master plan outlined (the straw horse 
reviewed and approved), the next step was to 
obtain the commitment of each contributing 
group. To address continuing skepticism about the 
necessity of each component and its schedule, the 
program manager walked each group through the 
overall program and the economic value of its 
urgency. The group was then asked to contribute to 
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the overall system's value. A key prerequisite to this 
conversation was to establish a full-time project 
manager for each component group, who became 
the coordination point and who was held account­
able for each deliverable. 

Decide What to Do before How to Do It 
The Program Office found that each group went 
through a disbelief process similar to the one seen 
earlier for the program. The program manager 
urged each group to first focus on the "what" of 
their deliverable, before trying to decide the "how:' 
The program manager ensured that the group 
grounded its overall estimates in reality. For exam­
ple, a software group might count the number of 
modules to port and estimate the person-days per 
module. This kind of high-level, quantifiable esti­
mate allowed the project manager to make an over­
all estimate without needing to understand the 
order of the specific tasks. 

Third Cusp: Need for Project 
Management Expertise 
Members of several of the larger projects deter­
mined that they did not have sufficient project man­
agement experience. Previously, this realization 
would have resulted in replanning to move out 
the target schedule, perhaps repeatedly. Instead, 
given the group's commitment to the larger result, 
we found a much more aggressive behavior. For 
example, the OpenVMS AXP group publicly com­
mitted to their target schedule and stated, "We 
don't know how to achieve this, but we commit to 
finding a way." The next day they went to a project 
management consultant for training on how to 
build an aggressive, attainable schedule. This con­
sultant conducted the seminar many times through­
out the project for various groups.12 

Third Cusp Result 
Groups introduced education and rigor into project 
management. 

Inspection-Support Stage: 
Inspection with Supportive Feedback 
One of our vice presidents in the early 1980s had an 
aphorism: You get what you inspect, not what you 
expect. In other words, a common failing is that 
managers obtain someone's promise and expect 
that the results will be what they expected. 
Unfortunately, despite everyone 's best intentions, 
circumstances and unexpected requests can easily 
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Straw Horse Plan 
Aug 1990 

Stage 1: Technical Development System 
Fortran & C performance system; Single hardware platform 
English only 

Fortran, C, Bliss, Assembler, Debug, License Mgmt Facility, 
CASE tools (TPU, Code Mgmt System, Module Mgmt System, 
Performance Code Analyzer, Language Sensitive Editor, 
Digital Test Mgr), Compound Document Architecture, 
DECnet Phase IV task-to-task, DECwindows client via LAT 
SortMerge 

Stage 2: Commercial Development System 
Second hardware platform; 
International versions follow 3 months later 

COBOL, PASCAL, C++, ADA, CDD/Repository, Rdb, 
threads-rtl, RPC, GKS, PHIGS, Forms Mgmt System, DECforms, 
File Cache, VAXset, Distr Servers (name, time, file, queuing), 
Remote System Manager, ALL-IN-1 base, CDA suite, 
DECnet IV end node CTERM and DECwindows, 
TCP/IP, PATHWORKS, LATmaster, ABSS extensions 

Stage 3: Technical Robust System 
Open System; Symmetric Multi-Processing 

LISP, PL/I, user-written drivers, POSIX, disk shadowing, 
DBMS, ACMS, DAS or equivalent, full NAS, DECnet Vend node, 
X.25 access, ALL-IN-1 fully supported 

Stage 4: Commercial Robust System 
Alpha Clusters; International versions released 
simultaneously 

New Batch/Print, all System Integrated Products, 
DECnet V routing node, SNA access 

Stage 5: Transaction System 

Transaction Monitor, Exec threads 

Figure 5 The Singlepage Plan: An Extract from the Straw Horse Plan 

divert the promiser away from fulfilling the 
promise. Thus, managers learn to inspect regularly 
the progress of groups on whose commitments 
they depend. 

program and shared our sense of schedule urgency. 
Suddenly, we were shocked by a memo stating 
that a critical project's schedule had slipped sev­
eral months. Since virtually every other project 
depended upon it, this schedule slip could easily 
have led to a program disaster. Instead, we used the 
event to institute a regular operational inspection. 
Often, instituting such regular reviews is difficult 
and generally resisted by the reviewees. In this 
case, every group could see the danger of continu­
ing without regular inspections and readily agreed 
to this new process. 

The model, therefore, incorporates this tradi­
tional, essential project management practice. Its 
inclusion was prompted by another project crisis, 
described below. 

Fourth Cusp: Project Slips Motivate 
Formal Operational Inspection 
The Program Office knew that it was working with 
highly motivated teams. On the basis of the earlier 
planning work, we assumed that they were all 
tightly focused on the objectives of the Alpha AXP 
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The Program Office adopted the term "inspec­
tion," rather than "review;' because we have found 
this term to be neutral or positive. In the past, 
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reviews had been imposed by line management and 
tended to encourage the reviewees to cover up 
issues until it was too late to recover. In contrast, 
the program manager, operating under the Program 
Office model, had no line authority and set up the 
monthly operational inspections in an open and 
supportive environment. The presenters were the 
designated project managers from each develop­
ment group. The Program Office encouraged all 
presenters to bring in their risks and problems 
before it was too late to address them effectively. 
We used the single-page format again, as shown in 
Figure 6. Note that the simple, visual history of all 

milestones is at the top, so one can readily see any 
repetitive slips. The emphasis is on critical path 
events completed last month and those coming up 
next month. At the bottom are listed those issues 
that have been resolved and issues being opened, 
with clearly indicated ownership and due dates. 

Operational Excellence 
To ensure that every project implemented the 
strategies, the Program Office established the prin­
ciple of operational excellence across the Alpha 
AXP program. The office consistently recognized 
teams that accomplished their results on time and 

PROJECT: ALPHA/VMS 
April 8, 1992 DATE : 

SCHEDULE: 
I Q4 1991 Ql 1992 Q2 1992 Q3 1992 Q4 1992 
IOct Nov DeclJan Feb MarlApr May JunlJul Aug SeplOct Nov Dec 
[---[---[---[---[---[---[---[---[---[---[---[---[---[---[---
B 4 5 I E I Sep 91 

B 4 5 6 I E I Nov 91 
B 4 5 6 I E S I Jan 92 
B 4 5 6 I U E S IMar 92 
B 4 5 6 I U E S IApr 92 

Milestones 
B Base Level 3B (Editor, debugger, TIE, base DECnet) DONE 
4 Base Level 4 (More DECnet, utilities, and Oil clients) DONE 
5 Base Level 5 (EV4 support, TFF, perfonnance) DONE 
6 Base Level 6 (Perfonnance & Tapes) DONE 
I Internal field test & Pilot Porting Activity - FTl 
u Internal field test update - FT2 
E External field test & Early Support Program - FT3 
S Vl.O submit to SSB 

CRITICAL PATH EVENTS PAST MONTH: 
Shipped BL6 on March 12 - stable on ADU, Ruby, Cobra, Flamingo 
Shipped BL6 AMC porting toolkit 
Achieved FTl (PPA) code freeze 
Received 2 Flamingo systems in Varese, Italy, for POSIX development 
With SPE (CSSE), delivered worldwide field test support training 
FTl stabilization continuing 

ACTIVITIES ALONG THE CRITICAL PATH (NEXT MONTH): 
Ship FTl; revised target is Apr 10 
Ship FTl AMC porting toolkit 
Complete PPA Readiness Review 
Begin FT2 stabilization 

ISSUES I DEPENDENCIES RESOLVED : 
Flamingo SFB graphics support formally accelerated into Vl.O 

ISSUES I DEPENDENCIES NOT RESOLVED: 
GEM BL24 compilers needed for ESP integration: D.L., May 15 
Rollout support staffing is not in anyone's plan : J.S., May 29 

Figure 6 The Single-Page Review 

Digital Tee/mica/ J ou r n al Vol. 4 No. 4 Special Issue 1992 201 



Alpha AXP Program Management 

predictably. We also used the monthly program­
wide inspections to maintain a published record of 
progress. Thus, each project was encouraged to 
excel operationally and to learn from the experi­
ences and presentations of the others. 

Fourth Cusp Result 
The Program Office established monthly inspec­
tions using a consistent single-page document to 
record pertinent information. 

Acknowledgment-Leaming Stage: 
Building Momentum 
Developing the vision and plan resulted in a gen­
eral sense of euphoria. Shortly afterwards, the real­
ity of the work ahead descended like a cloud 
of despair. At this point, the primary challenge 
was to start building momentum in the program. 
In the Enrollment Management Model, building 
momentum-the acknowledgment-learning stage­
is tightly intertwined with the inspection stage; 
that is, events reported during inspections were 
used to build momentum. The Program Office rein­
forced the vision and used momentum building to 
minimize the time period during which the team 
felt despair about the work ahead. 

Fifth Cusp: Despair 
Since the overall program had such a formidable 
goal, many of the contributing teams became 
stalled with the magnitude of the task ahead of 
them. This manifested itself in the form of com­
ments about the large amount of work, the result­
ing potential for schedule delays, and a fear of 
overtime demands. This syndrome is common in 
any large project, especially when commitments 
are made that involve taking large risks. The 
approach the program team took was to start recog­
nizing each element of progress. As we distributed 
announcements of progress widely (using Digital's 
worldwide electronic mail network), we began to 
build momentum around the Alpha AXP program. 
Other groups picked up on this momentum and 
contributed to it themselves. This effect cascaded 
throughout the entire program-more groups per­
ceived their tasks ahead as achievable; rapidly each 
group wanted its own progress acknowledged; and 
momentum increased. 

The Program Office found that the members of 
a project appreciated and were motivated by the 
simple "thank you" represented by the public 
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acknowledgment of their work. This contrasts with 
the conventional management wisdom that it is 
necessary to give frequent monetary rewards to 
motivate people. Although everyone appreciates 
the financial rewards, the biggest motivator is the 
professional recognition that the contributor did a 
good and necessary job! 

The second benefit of the acknowledgment was 
its effect in creating a sense of momentum through­
out all the project teams. Repeatedly, peer man­
agers would comment that the Alpha AXP team was 
making significant progress. This in turn gave us a 
sense of accomplishment as well. So the program 
realized a double benefit from the original acknowl­
edgment and a further slingshot effect with recog­
nition coming back to the Program Office. 

Fifth Cusp Result 
Program-wide, managers established the norm of 
frequent acknowledgment of progress. 

As the Alpha AXP program made further prog­
ress, the Program Office actively solicited third­
party and customer involvement. This involvement 
provided good feedback on progress and had the 
effect of reinforcing the fact that the program was 
on track to meet customer needs. In some cases, the 
project teams altered the Alpha AXP plans to better 
help our customers address their business needs. 
This further contributed to the credibility and 
momentum of the program as well as the sense of 
accomplishment. 

Sixth Cusp: Broken Dependencies 
and Replanning 
Like any project, not every assumption and depen­
dency proves to be correct or totally accurate. At 
one point, one of the major Alpha AXP hardware 
systems slipped its schedule for delivery of proto­
types to software. After considering a number of 
alternatives, the operating system group proposed 
an alternate plan using a different hardware system 
and a changed order of events. They said in their 
management presentation at the time, "The ques­
tion is not one of blame. Instead our goal is to pre­
serve the ultimate schedule goal of the program, 
specifically its volume availability date." 

Sixth Cusp Result 
Program-wide, team members established the prin­
ciple of focusing on the desired state of time-to­
profit rather than on blaming others for failures. 
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At another point, one group was at risk because it 
needed a critical skill for a week. A (historically) 
competing hardware group responded by asking 
what sort of resource, and then freely supplied the 
resource despite its own very tight schedule. In the 
past, these groups would compete for the same 
resource without collaborating for the common 
good. 

Seventh Cusp: Incomplete Assumptions 
and the Need for the Performance Team 
Less than half way through the Alpha AXP program, 
the program team realized that some projects' 
assumptions were incomplete. RISC systems are 
notorious for requiring careful design and tuning to 
meet aggressive performance goals. Evidence from 
a related program at Digital suggested that some 
of our system performance homework was weak. 
The Program Office quietly asked the appropriate 
teams to assign some resources to measure key 
components and subsystems of the design. This 
confirmed the program team's concerns that the 
current plans were incomplete. Quickly, we pulled 
together a cross-disciplinary task force to analyze 
the information rigorously and to make recommen­
dations. These analyses resulted in changes in the 
architecture, the chip design, the systems designs, 
and the software. The changes have proved to 
increase performance substantially. 

Seventh Cusp Result 
The program established a performance team to 
change the design and plans as needed. 

Eighth Cusp: Prototype Allocation Process 
As manufacturing started to deliver prototypes, the 
Program Office found that the early manufacturing 
build rate was lower than planned. This was the 
result of normal start-up problems. At the same 
time, initial demand had increased substantially. 
Nevertheless, the project administrators continued 
to ship the systems to engineering and applications 
groups in the original order. If this had continued, 
dependent software would have been delivered 
progressively later because of inadequate testing 
cycles. Our impact analysis indicated that the Alpha 
AXP volume availability would slip by three 
months. 

The review team highlighted this problem in an 
early program readiness review. Traditionally, 
Digital uses readiness reviews to establish manufac-
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turing's readiness to build systems. The Alpha AXP 

Program Office broadened this process and asked 
for a program-wide readiness review to identify 
the "showstopper" risks. As a result, the Program 
Office centralized the allocation process so that we 
could maintain the prototype allocations in real 
time. The result was to reestablish sufficient soft­
ware test time and maintain momentum with mini­
mal program impact. 

Eighth Cusp Result 
The program teams decided that prototypes would 
be delivered based on program priorities, not solely 
on existing plans. 

Ninth Cusp: Need for Quality Metrics 
Each group in the Alpha AXP program adopted very 
high standards for the quality of its work. The man­
agement team repeatedly found reinforcement 
of Phil Crosby's dictum: "Quality is free ."13 Results 
in group after group showed that early and con­
tinuous attention to quality resulted in held or 
improved schedules. 

However, the program team noticed that we 
were not inspecting and measuring progress in 
quality at the total systems level; customers care 
about only the quality of the total result. As the 
projects started integrating into a total system, the 
Program Office established an independent group 
to measure overall quality levels. The classic reac­
tion to such independently derived quality metrics 
is that they are meaningless. Instead, since the 
program established the metrics at the moment 
when everyone saw the need, the reaction has 
been to focus on the total system's quality without 
dropping attention on the individual component 
metrics. 

Ninth Cusp Result 
The program formalized system-wide quality 
metrics. 

Results and Lessons Learned 
Digital met exactly the program's overall schedule 
to the month (i.e., date for high-volume shipments), 
despite numerous setbacks along the way. The 
Alpha AXP system is meeting the original per­
formance goals, and quality is excellent. Digital's 
Board of Directors has approved the full Alpha AXP 
program business plan and the investments neces­
sary to capitalize on the Alpha AXP family's early 
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successes. Initial reactions from customers have 
been favorable . Third parties have committed 
Alpha AXP support for their products in record 
numbers. 

What Worked Well 
The Program Office in conjunction with the 
Enrollment Management Model has worked well. If 
the management team had followed traditional 
approaches, we would still be getting organized. 
Using the model, each group has been able to bring 
its full capabilities to bear as problems have arisen. 
The project teams have accepted the introduction 
of multiple levels of inspection, and other programs 
within Digital are copying this aspect of the model. 
Further, the notion of using project cusps creatively 
has been an effective tool to build momentum. 
Finally, a common schedule and inspection disci­
pline allowed the schedule to become an opportu­
nity to reinforce a shared vision. This positive view 
contrasts with the conventional interpretation of 
a schedule as a burden. 

As a result, most groups met very aggressive goals 
on schedule. Several groups accelerated their deliv-

ALPHA/VMS SCHEDULE RESULTS 

MILESTONE 

Phase O closure 
Alpha VMS minimal login 
BLl ship - minimal login 
BL2 ship - RTLs , DW(l) & LAT 
BL3A ship - ISAM, linker 

erables despite having the most complex tasks. For 
example, the OpenVMS AXP system group not only 
met its original schedule but also accelerated num­
erous deliverables into earlier base levels or releases. 
Figure 7 shows the OpenVMS schedule and actual 
dates of availability; footnotes indicate functional 
accelerations. The networks group delivered DECnet 
on the AXP system an entire base level early. The 
database systems group accelerated its schedule by 
several months and demonstrated products four 
months early at Oigital's DECWORLD '92 trade show. 

Clearly one of the major lessons was to establish 
a constancy of purpose and hold to it while contin­
ually learning and updating the detailed plans. The 
single-page representation of the goals and master 
plan is a key element in maintaining this constancy. 

What We Would Do Differently 
Looking back, we would have approached the 
program differently in two areas. First, project 
teams would have benefited from broader early 
education on project methodology. Several projects 
had significant slips, causing undue hardship on 
other groups. The Program Office should have 

ORIGINAL ACTUAL 

Aug 30 , 1990 Aug 30 
Jun 17 , 1991 Mar 20 
Jul 15, 1991 May 31 
Aug 26, 1991 Jul 12 
n/a Aug 23 

BL3B ship - prog devel & TIE(2) , DECnet(3) 
BL4 ship 

Oct 
Nov 

7 , 
18, 

1991 Oct 10 
1991 Nov 15 

BL5 ship - functionally complete(4) 
BL6 ship - Ruby complete(5) 

FTl/PPA 
Phase 1 
FT2/PPA 
FT3/ESP (6) 
FT4/ESP 
Vl.O SSB submission (LRS) 

Notes : 

(1) DECwindows 

Dec 
Feb 

Apr 
May 
n/a 
Jul 
n/a 
Oct 

30 , 1991 Jan 
21 , 1992 Mar 

3 , 1992 Apr 
1992 May 
1992 May 
2 , 1992 Jul 
1992 Aug 
2 , 1992 Oct 

(2) Translated Image Environment (RTL for translated images) 
(3) DECnet accelerated from BL4 to BL3B 

10 
6 

10 
20 
22 
8 
14 
26 

(4) Full graphics support accelerated from next version to Vl.O 
(5) Support for multiple hardware platforms accelerated from next 

version to Vl . O 
(6) FDDI support accelerated from next version to Vl.O 

Figure 7 Original Open VMS Milestone and Delivery Dates 
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introduced Ron LaFleur's project methodology 
sooner and pervasively. Instead, we waited until 
each group saw the need and then tried to intro­
duce it. For groups such as the OpenVMS AXP 
system group, the methodology was introduced 
early. However, other groups needed (and still 
need) this discipline. 

Second, the office would have conducted more 
pervasive project inspections. Several groups were 
very late in producing schedules and plans that the 
Program Office could understand. The office was 
unable to obtain their cooperation to hold detailed 
and frequent inspections. Eventually, the Program 
Office was invited to set up and participate in 
appropriate inspections of schedule, process, etc. 
However, we should have insisted on these much 
sooner. 

Summary 
The Alpha AXP program is the most complex pro­
gram in Digital's history and has been delivered on 
schedule with high quality. The Alpha AXP Program 
Office used a rigorous management methodology 
to build the program-level teamwork necessary to 
accomplish this breakthrough. The office proved 
the effectiveness of the Enrollment Management 
Model: vision-enrollment, commitment-delega­
tion, inspection-support, and acknowledgment­
learning. Integral to this model and empowering to 
the team is to take each cusp head-on and to use 
them to increase momentum. The management 
team has been learning as the program progressed 
and has identified areas needing strengthening for 
future programs. 

Acknowledgments 
The author thanks the following senior managers 
for demonstrating the importance of good manage­
ment: Gordon Bell for architecture and a clear strat­
egy; Ken Olsen for demanding simple, single-page 
plans; Jeff Kalb for operational excellence; David 
Stone for the model of focusing on the desired 
state; Bob Supnik for the paradigm of the Program 
Office. 

The author also thanks key members of the Alpha 
AXP Program Office for their contributions in man­
aging the program and developing the Enrollment 
Management Methodology: Al Avery for systems 
integration and significant help preparing this 
paper; Scott Gordon for competitive benchmark­
ing; Ellen Salisbury for planning; and Ken Schultz 
for operations and inspection. 

Dig ital Technical Jounzal Vol. 4 No. 4 Spedal Issue 1992 

References and Note 

1. R. Waterman, T. Peters, and]. Phillips, "Struc­
ture is Not Organization," Business Horizons, 
no. 80302 (June 1980). 

2. C. Savage, Fifth Generation Management 
(Burlington, MA: Digital Press, 1990). 

3. W Oncken and D. Wass, "Management Time: 
Who's got the monkey," Harvard Business 
Review, vol. 18, no. 6 (November 1974): 75-79. 

4. M. McMaster and ]. Grinder, PRECISION: 
A New Approach to Communication (Bonny 
Doon, CA: Precision Models, 1980). 

5. ]. Gleick, CHAOS: Making a New Science 
(New York: Penguin Books, 1987). 

6. P. Senge, The Fifth Discipline: The Art and 
Practice of the Learning Organization (New 
York: Doubleday, 1990). 

7. A. Scherr, "Managing for Breakthroughs in 
Productivity," Human Resource Manage­
ment, vol. 28, no. 3 (Fall 1989): 403-424. 

8. L. Tesler, "Networked Computing in the 
1990s," Scientific American (September 
1991): 86-93. 

9. The five generations of computing are as fol­
lows: 1950s, standalone; 1960s, batch; 1970s, 
timesharing; 1980s, personal; 1990s, mobile 
distributed. 

10. R. Comerford, "How DEC Developed Alpha," 
IEEE Spectrum (July 1992): 26-31. 

11. C. House and R. Price, "The Return Map: 
Tracking Product Teams," Harvard Business 
Review, vol. 69, no. 1 (January 1991): 92-100. 

12. R. LaFleur, "A Seminar in Project Manage­
ment" (Scituate, MA: Project Management 
Assistance Co., 1990). 

13. P. Crosby, Quality Is Free: The Art of Making 
Quality Certain (New York: McGraw-Hill, 
1979). 

General References 

F. Brooks, The Mythical Man-month: Essays on 
Software Engineering (Reading, MA: Addison­
Wesley, 1975). 

R. Neustadt and E. May, Thinking In Time: The uses 
of history for decision makers (New York: The 
Free Press, 1986). 

205 



I Further Readings 

The Digital TechnicalJournal 
publishes papers that explore 
the technological foundations 
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Vol. 3, No. 3, Summer 1991, EY-H890E-DP 
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Vol. 3, No. 2, Spring 1991, EY-H876E-DP 
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and Fault-tolerant Systems 
Vol. 3, No. 1, Winter 1991, EY·F588E-DP 

VAX 9000 Series 
Vol. 2, No. 4, Fall 1990, EY-E762E-DP 
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Vol. 2, No. 3, Summer 1990, EY-E756E-DP 

VAX 6000 Model 400 System 
Vol. 2, No. 2, Spring 1990, EY-Cl97E-DP 
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Vol. 1, No. 6, February 1988, EY-8259E-DP 
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Vol. 1, No. 3, September 1986, EY-6715E-DP 
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(508) 493-2894, FAX: (508) 493-0637. Inquiries 
can be sent electronically to D1J®CRL.DEC.COM. 
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I Recent Digital U.S. Patents 

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied 
to us by the US. Patent and Trademark Office are reproduced exactly as they appear on the original 
published patent. 

0327,261 K. L. Korellis and R. T. Faranda Front Face Panel Portion for Enclosure Doors for a Computer 

0327,477 K. L. Korellis Front Panel for an Integrated Storage Assembly for Computer 
Storage Units 

5,092,631 M. G. M. Masnik and Safety Enclosure for Gas Line Fittings 
R. C. Martel 

5,093,628 

5,093,775 

5,094,980 

5,095,441 

5,095,460 

5,095,471 

5,095,613 

5,097,370 

5,097,387 

5,097,411 

5,097,436 

5,097,468 

5,099,367 

5,099,484 

5,099,485 

5,099,517 

5,101,106 

5,101,362 

5,101,402 

5,101,485 

5,101,493 

5,103,352 

I. T. Chan 

W. R. Grundmann, R. F. 
Boucher, and T. Fossum 

A. Shepela 

D. F. Hopper, E. G. Fortmiller, 
S. Kundu, and D. F. Wall 

T. L. Rodeheffer 

M. D. Sidman 

K. R. Hussinger and 
M. L. Mallary 

Y Hsia 

J. L. Griffith 

P. L. Doyle,]. P. Ellenberger, 
E. 0. Jones, D. C. Carver, 
S. D. Dipirro, B. J. Gerovac, 
W. P. Armstrong, E. S. Gibson, 
R. E. Shapiro, K. C. Rushforth, 
and W. C. Roach 

J. H. Zurawski 

E. Earlie 

M. D. Sidman 

D. W. Smelser 

W. F. Brockert, T. D. Bissett, 
D. Mazur,]. Munzer, F. Bernaby, 
and]. H. Bhatia 

A. Gupta, W. R. Hawe, 
M. F. Kempf, and C. S. Lee 

E. E. Cox,Jr. and M. P. Rolla 

E. Simoudis 

D. Chiu and R. Sudama 

F. L. Perazzoli,Jr. 

R. L. Travis and W. R. Laurune 

W. Y Moon and R. Y Noguchi 

Current-Pulse Integrating Circuit and Phase-Locked Loop 

Microcode Control System for Digital Data Processing System 

Method for Providing a Metal-Semiconductor Contact 

Rule Inference and Localization during Synthesis of Logic 
Circuit Designs 

Rotating Priority Encoder Operating by Selectively Masking 
Input Signals to a Fixed Priority Encoder 

Velocity Estimator in a Disk Drive Positioning System 

Thin Film Head Slider Fabrication Process 

Subambient Pressure Air Bearing Slider for Disk Drive 

Circuit Chip Package Employing Low Melting Point Solder for 
Heat Transfer 

Graphics Workstation for Creating Graphics Data Structure 
Which Are Stored Retrieved and Displayed by a Graphics 
Subsystem for Competing Programs 

High Performance Adder Using Carry Prediction 

Testing Asynchronous Processes 

Method of Automatic Gain Control Basis Selection and Method 
of Half-Track Servoing 

Multiple Bit Error Detection and Correction System Employing 
a Modified Reed-Solomon Code Incorporating Address Parity 
and Catastrophic Failure Detection 

Fault Tolerant Computer Systems with Fault Isolation 
and Repair 

Frame Status Encoding for Communication Networks 

Resonant Technique and Apparatus for Thermal Capacitor 
Screening 

Modular Blackboard-Based Expert System 

Apparatus and Method for Real time Monitoring of Network 
Sessions in a Local Area Network 

Virtual Memory Page Table Paging Apparatus and Method 

Digital Computer Using Data Structure Including External 
Reference Arrangement 

Phased Series Tuned Equalizer 
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5, 103,393 J. P. Harris, D. Leibholz, 
and B. Miller 

5,103,553 M. Mallary 

Method of Dynamically Allocating Processors in a Massively 
Parallel Processing System 

Method of Making a Magnetic Recording Head 

5, 105,055 W C. Mooney, J. R. Santandreu, Tunnelled Multiconductor System and Method 
and K. Kshonze 

5, 105, 183 K. 0. Beckman System for Displaying Video from a Plurality of Sources on 
a Display 

5, 105,322 E. L. Steltzer 

5, 105,408 N. K. S. Lee, J. W Howard, 
P. K. Tan, and W Hrytsay 

5, 107,398 D. A. Bailey 

5, 107, 462 W R. Grundmann, V. R. Hay, 
L. 0. Herman, and 
D. M. Litwinetz 

5, 107,503 C. M. Riggle, L. Weng, 
andP. N. Hui 

5, 107, 506 L. J. Weng and B. A. Leshay 

5,108,837 M. L. Mallary 

5, 109,307 M. Sidman 

5, 109,495 D. B. Fite, T. Fossum, W R. 
Grundmann, D. P. Manley, 
F. X. McKeen,J. E. Murray, 
R. M. Salett, E. Samberg, 
and D. P. Stirling 

5, lll ,352 S. C. Das and M. L. Mallary 

5,111,424 D. D. Donaldson and 
R. B. Gillett, Jr. 

5,111,465 B. C. Edem, R. P. Helliwell, 
J. T. Johnston, and R. F. Lary 

5, 112, 142 F. Titcomb and J. Cordova 

5,112,662 Q. Y Ng 

5, 113,352 J. L. Finnerty 

5, 113,515 D. B. Fite, R. C. Hetherington, 
M. M. McKeon, D. P. Manley, 
and]. E. Murray 

5, 113,521 F. X. McKeen, T. Fossum, 
D. P. Bhandarkar, and 
C.A. Wiecek 

5, 115,359 M. D. Sidman 

5, 115,360 M. D. Sidman 

5, 115,455 WA. Samaras, D. T. Vaughan, 
and A. D. Ingraham 

Transverse Positioner for Read/Write Head 

Optical Head with Flying Lens 

Cooling System for Computers 

Self Timed Register File Having Bit Storage Cells with 
Emitter-Coupled Output Selectors for Common Bits Sharing 
a Common Pull-Up Resistor and a Common Current Sink 

High Bandwidth Reed-Solomon Encoding, Decoding and Error 
Correcting Circuit 

Error Trapping Decoding Method and Apparatus 

Laminated Poles for Recording Heads 

Continuous-Plus-Embedded Servo Data Position Control 
System for Magnetic Disk Device 

Method and Apparatus Using a Source Operand List and 
a Source Operand Pointer Queue between the Execution Unit 
and the Instruction Decoding and Operand Processing Units 
of a Pipelined Data Processor 

Three-Pole Magnetic Head with Reduced Flux Leakage 

Lookahead Bus Arbitration System with Override of 
Conditional Access Grants by Bus Cycle Extensions for 
Multicycle Data Transfer 

Data Integrity Features for a Sort Accelerator 

Hydrodynamic Bearing 

Method for Providing a Lubricant Coating on the Surface of 
a Magneto-Optical Disk and Resulting Optical Disk 

Integrating the Logical and Physical Design of Electronically 
Linked Objects 

Virtual Instruction Cache System Using Length Responsive 
Decoded Instruction Shifting and Merging with Prefetch 
Buffer Outputs to Fill Instruction Buffer 

Method and Apparatus for Handling Faults of Vector 
Instructions Causing Memory Management Exceptions 

Fault Tolerant Frame, Guardband and Index 
Detection Methods 

Embedded Burst Demodulation and Tracking 
Error Generation 

Method and Apparatus for Stabilized Data Transmission 

5, 115,858 J. S. Fitch and W R. Hamburgen Micro-Channel Wafer Cooling Chuck 

5, 117,351 S. Miller Object Identifier Generator for Distributed Computer System 

208 Vol. 4 No. 4 Special Issue 1992 Digital Technical Journal 




	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Alpha AXP Architecture
	A 200-MHz 64-bit Dual-issue CMOS Microprocessor
	The Alpha Demonstration Unit: A High-performance Multiprocessor for Software and Chip Development
	The Design of the DEC3000 AXP Systems, Two High-performance Workstations
	Design and Performance of the DEC 4000 AXP Departmental Server Computing Systems
	Technical Description of the DEC 7000 and DEC 10000 AXP Family
	Porting OpenVMS from VAX to Alpha AXP
	The GEM Optimizing Compiler System
	Binary Translation
	Porting Digital's Database Management Products to the Alpha AXP Platform
	DECnet for OpenVMS AXP: A Case History
	Using Simulation to Develop and Port Software
	Enrollment Management; Managing the Alpha AXP Program
	Further Readings
	Recent Digital U.S. Patents
	Back cover



