
• RAID Array Controllers
• Workflow Models
• PC LAN and System Management Tools

Digital Technical Journal
Digital Equipment Corporation

Volume 6 Number 4
Fall 1 994

Cover Design
Our cover design is inspired by a system man­

agement topic in this issue. Manage WORKS
software is a system and network manage­

ment tool that presents an object-oriented,

graphical view of a heterogeneous LAN envi­

ronment. The multi color circles on the cover

represent the diverse objects, or entities, on

the networks among which a system adminis­

trato-r "navigates" using the integrated com­

ponents of the tool.

The cover was designed by Lucinda O'Neill

and joe Pozerycki,jr:, of Digital's Design

Group.

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W Beane
Donald Z. Harbert
William R. Hawe
Richard]. Hoi I ingsworth
Richard F Lary
Alan G. Nemeth
Jean A. Proulx
Robert M. Supnik
Gayn B. Winters

The Digital Technical journal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road '"102/D 10, Littleton, Massachusetts 01460.
Subscriptions to the journal are $40.00 (non-U.S. $60) for four issues and $75.00
(non-U.S. $115) for eight issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering and computer
science fields receive complimentary subscriptions upon request. Orders, inquiries,
and address changes should be sent to the Digital Technicatjournal at the published­
by address. Inquiries can also be sent electronjcally to dtj@digital.com. Single copies
and back issues are available for $16.00 each by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of thejou·rnal are also available on the Internet
at http://www.digital.com/info/DTJ/home.html. Complete Digital internet listings can
be obtained by sending an electronic mail message to irtfo@digital.com.

Digital employees may order subscriptions through Readers Choice by entering vrx
PROFILE at the system prompt.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright© 199 5 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty mem­
bers and are not distributed for commercial advantage. Abstracting with credit of
Digital Equipment Corporation's authorship is permitted. All rights reserved.

The information in the journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation or by the companies
herein represented. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in the journal.
ISSN 0898-901X

Documentation Number EY-Tll8E-TJ

The following are trademarks of Digital Equipment Corporation: AXP, Cl, DEC, DEC OSF/1,
DECmcc, DECmodel, DECnet, DECwindows, Digital, the DIGITAL logo, HSC, HSC50,
HSC60, HSC70, HSC90, HSJ, HSZ, InfoServer, KDM, ManageWORKS, Object Flow, Open VMS,
PATHWORKS, POLYCENTER, Storage Works, ULTRIX, VAX, VAXcluster, VAXstation, VMS,
and VMScluster.

Apple and AppleShare are registered trademarks of Apple Computer, Inc.

dBase IV is a registered trademark of Borland International, Inc.

Hewlett-Packard is a registered trademark of Hewlett-Packard Company.

i960 is a trademark of Intel Corporation.

IBM and NetView are registered trademarks of International Business Machines
Corporation.

Knowledge Craft is a registered trademark of Carnegie Group, Inc.

Microsoft and Visual C++ are registered trademarks and Windows and Windows NT
are trademarks of Microsoft Corporation.

NFS is a registered trademark of Sun Microsystems, Inc.

NetWare and Novell are registered trademarks of Novell, Inc.

OSF/ I is a registered trademark of the Open Software Foundation, Inc.

Sun M icrosystems is a registered trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively byX/Open Company Ltd.

X Window System is a trademark of the Massachusetts Institute ofTechnology.

Book production was done by Quantic Communications, lnc.

I Contents

5 The Architecture and Design of HS-series
StorageWorks Array Controllers
Stephen]. Sicola

26 Policy Resolution in Workflow Management Systems
Christoph]. BuBler

50 The Design of DECmodelfor Windows
Stewart V Hoover and Gary L. Kratkiewicz

RAID Array Controllers

Work.flow Models

PC IAN and System Management Tools

63 The Design of ManageWORKS: A User
Interface Framework

Dennis G. Giokas and John C. Rokicki

75 The Structure of the openVMS Management Station
James E. Johnson

89 Automatic, Network-directed operating System
Software Upgrades: A Platform-independent Approach
John R. Lawson, Jr.

1

I Editor's Introduction

Jane C. Blake
Managing Editor

Three computing topics are presented in this issue
of the Journal: a storage array controller for open
system environments, workflow architectures and
tools, and PC and LAN system management products.

The opening paper, by Steve Sicola, describes
Digital's new HS series of StorageWorks array con­
trollers. Designed for open systems, the control­
lers interface to host computers by means of the
industry-standard SCSI-2 interconnect, as well as
Digital's CI and DSSI host interconnects. Equally
important to designers as openness were controller
availability and performance. Innovative features
were introduced, including dual-redundant con­
trollers and Parity RAID firmware to ensure high
availability, and a write-back cache that significantly
improves performance. The paper concludes with
a description of the common controller processing
core for the SCSI, CI, and DSSI controller variants.

Workflow is the subject of two papers with dif­
fering perspectives. Christoph BuBler opens his
paper with introductory definitions and implica­
tions ofworkflow concepts. He argues that a work­
flow that uses roles for task assignment is limited,
especially in large, international enterprises. He
states that by adding the dimension of organiza­
tional dependencies for task assignment a complex
workflow is more precisely expressed. Using the
example of a travel expense reimbursement work­
flow, Christoph shows how the Policy Resolution
Architecture design principles support enterprise­
level workflow deployment-reusability, security,
generality, dynamics, and distribution. He also dis­
cusses the Policy Definition Language that formally
describes workflow elements.

A second paper about workflow presents a tool,
called DECmodel for Windows, for the development
of business process models and their graphical
presentation. Stew Hoover and Gary Kratkiewicz

2

explain the reasoning behind the creation of a pre­
sentation layer in DECmodel that provides a graphi­
cal view of the business process while hiding the
technical details of the model. The authors also
cover implementation details, including the deci­
sions to move from the original LISP environment to
a C++ programming environment and to imple­
ment the knowledge base for DECmodel in ROCK,
a frame-based knowledge representation.

We then shift the focus to ManageWORKS and
POLYCENTER tools that have been developed to
simplify the increasingly complicated job of system
management. The first of three papers describes
the development of the ManageWORKS Workgroup
Administrator software. Dennis Giokas and John
Rokicki discuss the design principles adopted for
this product that enables system and network man­
agement of heterogeneous LANs from a single PC
running Microsoft Windows. Key design elements
are plug-in, customizable modules for system
navigation and management, and the user inter­
face framework, which controls the flow between
modules. The authors offer scenarios to illustrate
interactions between components.

Managing OpenVMS systems from a PC running
the Microsoft Windows operating system can be
accomplished with the OpenVMS Management
Station, of which ManageWORKS is a key compo­
nent. Jim Johnson defines the need for this scalable
and secure client-server tool in OpenVMS envi­
ronments, which can be clustered, distributed,
expanded, and networked extensively. After a dis­
cussion of design alternatives, Jim describes the
functions of the Station's client, communication,
and server components.

The final paper is about an initial system load
(ISL) capability for automatic, network-directed,
operating system software upgrades. John Lawson
reviews goals for the POLYCENTER Software Distri­
bution layered product, compares the POLYCENTER
ISL process with the OpenVMS ISL process, and
steps through the requirements for expanding the
POLYCENTER Software Distribution capability to
other platforms and operating systems.

Our next issue will celebrate the journal's tenth
anniversary of publishing the technical achieve­
ments of Digital's engineers and partners. The issue
will feature database technologies and new Alpha
workstations and high-end server systems.

Biographies I

Christoph J. B~ler Christoph BuBler is a faculty member at the Technical
University of Darmstadt, Germany, where he is pursuing a Ph.D. degree. His
research is in workflow and organization modeling, with a focus on organizational
embedding of workflow management, and in architectures for enterprise-wide
deployment of workflow management systems. While at Digital from 1991 to 1994,
Christoph developed the Policy Resolution Architecture and its prototype imple­
mentation. He holds an M.C.S. (1990) from the Technical University of Munich and
has published many papers on workflow management and enterprise modeling.

Dennis G. Giokas Dennis Giokas is currently a senior associate with
Symmetrix, Inc. While at Digital from 1984 to 1995, he was a consulting engineer
in the PATHWORKS group. He co-led PATHWORKS VS.O and architected the user
interface and system management tools. He was also architect and manager for
the PC DECWindows program. Previously, Dennis worked at Arco Oil & Gas and
The Foxboro Company developing process control software. He holds a Bachelor
of Music from the University of Massachusetts at Lowell, a Master of Music from
the New England Conservatory, and an M.S.C.S. from Boston University.

Stewart V. Hoover Employed at Digital Equipment Corporation between
1984 and 1994, Stew Hoover is currently an independent consultant specializing
in modeling and simulation. Before joining Digital, he was an associate professor
of industrial engineering and information systems at Northeastern University.
Stew contributed to the development of the DECalc-PLUS application, Statistical
Process Control Software (SPCS), and the DECwindows version of Symmod. He
has written many papers and articles on simulation and is coauthor of
Simulation, A Problem-Solving Approach, published by Addison-Wesley.

James E. Johnson A consulting software engineer, Jim Johnson has worked
in the OpenVMS Engineering Group since joining Digital in 1984. He is currently
a member of the Open VMS Engineering team in Scotland, where he is a technical
consultant for transaction processing and file services. His work has spanned
several areas across Open VMS, including RMS, the DECdtm transaction services,
the port of OpenVMS to the Alpha architecture, and OpenVMS system manage­
ment. Jim holds one patent on commit protocol optimizations. He is a member
of the ACM.

3

Biographies

4

Gary L. Kratkiewicz Gary Kratkiewicz is currently a scientist in the Intelli­
gent Systems R&D Group at Bolt Beranek and Newman Inc. As a principal engi­
neer in Digital's DECmodel engineering group from 1991 to 1994, Gary
coordinated the architecture and high-level design specifications, and devel­
oped the knowledge base, script engine, API, and several user interface modules.
Earlier at Digital, he developed an expert system for shipping and was project
leader for a knowledge-based logistics system. Gary holds an S.B.M.E. from MIT
and an M.S. in manufacturing systems engineering from Stanford University.

John R. Lawson,Jr. John Lawson joined Digital in 1984. He has been a mem­
ber of the OpenVMS VAX Development Group and the POLYCENTER Software
Distribution Development Group. His code exists in several layered products
and in the Open VMS VAX and OpenVMS AXP operating systems. He holds a B.M.
degree from the Eastman School of Music (1984) and a B.S. in software engineer­
ing from the University of Rochester (1986). He is currently pursuing an M.S. in
mathematics and computer science from the Colorado School of Mines. John has
a U.S. patent pending for a unique sorting algorithm.

John C. Rokicki John Rokicki, the project leader for ManageWORKS Workgroup
Administrator, is a principal software engineer within Digital's Network
Operating Systems engineering organization. His primary responsibility is the
design and implementation of the base services of the ManageWORKS product.
Before joining Digital in 1990, he was employed by Data General Corp. and
Sytron Inc. John holds a B.S. (1989) in computer science from Worcester
Polytechnic Institute.

Stephen J. Sicola Consulting engineer Stephen Sicola is a member of the the
Array Controller Group in the Storage Business Unit. He is working on the next
generation of controllers and was the technical leader for the current
Storage Works controller product set. In earlier work, Steve developed software
and hardware for such products as the HSC, KDM70, and advanced development
controller projects. Steve joined Digital in 1979 after receiving a B.S.E.E. from
Stanford University. He received an M.S.C.E. from the National Technological
University in 1992.

Stephen]. Sicola I

The Architecture and Design
of HS-series StorageWorks
Array Controllers

The HS series of StorageWorks array controllers is a new family of Digital products
that includes models for both open systems and systems that use Digital's propri­
etary buses. The HS-series controllers combine performance, availability, and relia­
bility in total storage subsystem solutions that use industry-standard storage
devices. The architecture and design of StorageWorks array controllers represents
a balance between the market requirements and the available technology. The
engineering trade-offs led to an innovative design that incorporates product fea­
tures such as a dual-active controller configuration, write-back caching, Parity
RAID technology, and SCSI-2 device handling.

The HS series of Storage Works array controllers, a
new addition to Digital's storage subsystem family,
supports an open systems environment by allowing
the attachment of industry-standard Small Computer
Systems Interface (SCSI-2) devices to the controller. 1

Moreover, these controller products yield high avail­
ability and high performance. This paper describes
the architecture and the design of the HSJ30, HSJ40,
HSD30, and HSZ40 StorageWorks array controllers.
These controllers interface to host computers by
means of existing Digital interconnects, i.e., the
Computer Interconnect (CI) and the Digital Storage
System Interconnect (DSSI), as well as a SCSI-2 host
interconnect to VAX, Alpha, and most other com­
puters in the industry The paper documents the
design and development trade-offs and describes
the resulting controllers and their features.

StorageWorks array controllers represent a sig­
nificant change from Digital's original Hierarchical
Storage Controller (HSC) subsystem, the HSC50 con­
troller, which was designed in the late 1970s, and
also from other Digital controllers such as the
HSC60, HSC70, HSC90, and KDM70 controllers. The
StorageWorks controllers discussed in this paper
were designed to meet the following product goals:

1. Open systems capability. The goals for open sys­
tems capability were to use industry-standard
storage devices attached to the controllers and
to use an industry-standard host interconnect for
one controller model. Using industry-standard

D igital Tech 11 icalJour11al Vol. 6 No. 4 Fall 1994

devices would provide investment protection
for customers because they would not have to
change devices when a new controller was intro­
duced or when they changed controller modules
to use a different host interconnect. Industry­
standard devices would also reduce overall sub­
system cost because of the competitive nature of
the storage device industry The long-term use of
both Digital and non-Digital devices was desired
to provide a wide variety of device choices for
customers. The use of an industry-standard host
interconnect would allow StorageWorks con­
trollers to be used with Digital and non-Digital
host computers, further expanding the open sys­
tems capability. The SCSI-2 interconnect was cho­
sen as the device interface and the host interface
over other industry-standard interconnects for
cost and strategic reasons.

2. High availability. The goals for high availability
included both controller fault tolerance and
storage (disk configuration) fault tolerance.

Controller fault tolerance was achieved by devel­
oping a dual-redundant controller configuration
in combination with new StorageWorks enclo­
sures that provide redundant power supplies
and cooling fans. The goal of the dual-redundant
configuration was to have the surviving con­
troller automatically assume control of the failed
controller's devices and provide 1/0 service to

5

RAID Arr ay Controllers

them. As a side benefit, such a configuration
would provide load balancing of controller
resources across shared device ports.

The storage fault-tolerance goal was to develop
firmware support for controller-based redundant
array of inexpensive disks (RAID).2 The initial
Parity RAID implementation incorporated the
best attributes of RAID levels 3 and 5. The design
provided the basis for later implementations of
other forms of RAID technology, notably mirror­
ing. Parity RAID supports the goal of storage fault
tolerance by providing for continued 1/0 service
from an array of several disks in the event that
one disk fails. StorageWorks packaging that pro­
vides redundant power supplies and cooling
should be combined with the Parity RAID tech­
nology to extend storage fault tolerance.

3. High performance. The goals for high perfor­
mance were to specify controller throughput
(the number of 1/0 operations per unit of time),
latency (responsiveness), and data transfer rate
(controller bandwidth) for each of the three con­
troller platforms: CI, DSSI, and SCSI. The through­
put was specified in the maximum number of
read and write requests executed per second.
The controllers had to speed up the response
time for host 1/0 operations and thus deliver data
with lower command latency than the HSC con­
trollers. Storage Works controllers had to achieve
the highest possible data transfer rate and were
to do so on a common platform.

6

The platform-specific controller throughput
goals were as follows. The initial goal for the Ci­
to-SCSI controller was 1, 100 read requests per
second; the long-term goal was 1,500 to 1,700
read requests per second. The initial goal for the
DSSl-to-SCSI controller was 800 read requests per
second; the long-term goal was 1,300 read
requests per second. The initial goal for the SCSI­
to-SCSI controller was 1,400 read requests per
second; the long-term goal was 2,000 read
requests per second. The controller throughput
for write operations was slightly lower.

To reduce latency, the controller hardware and
firmware implemented controller 1/0 request
caching. Designers initially decided to include
16 to 32 megabytes (MB) of cache memory on
a separate optional cache module. Read caching
was the beginning goal for the project; however,
write-back caching was added during product

development as a result of RAID technology
investigations.

Another approach to reduce latency was to
develop controller-based disk striping, i.e .,
implement the RAID level O technology.2 Specific
goals were to achieve parallel access to all RAID
level O array members for read and write opera­
tions and to streamline firmware to increase
RAID level O performance.

The Parity RAID performance goal was to over­
come the well-known weaknesses of RAID level
3 (i.e., poor transaction throughput) and RAID
level 5 (poor small-write performance) and to
approach RAID level O striped array performance
for both small and large read and write requests. 2

A combination of hardware-assisted parity
computations and write-back caching helped
achieve this goal. Parity calculations in hardware
reduced firmware overhead to complete RAID
level 5 write operations. Write-back caching
minimized the effects of the RAID level 5 small­
write penalty.3 To meet the needs of customers
who require high data transfer rates with RAID,
RAID level 3-style algorithms must be added for
the Parity RAID design.

A common controller processing core had to
be architected and designed to meet the perfor­
mance needs of all the planned StorageWorks
controllers (based on host interface capabili­
ties). The platform had to execute the same base
firmware, coupling new host interface firmware
to the specific platforms. A common platform
was believed to ease product development and
to maximize reuse of firmware for the same
"look and feel" in all products.

open Systems Capability
For Storage Works controllers to enter the open sys­
tems market, product designers had to consider
the following aspects of open systems in the con­
troller definition: the use of industry-standard
device interconnects and industry-standard devices
attached to the controller, and the use of industry­
standard and Digital host interconnects.

SCSI-2 Device Interconnect
The SCSl-2 interconnect was chosen for the device
interconnect because of its wide acceptance in the
computer industry. During the controller defini­
tion phase, the StorageWorks packaging group was

Vol. 6 No. 4 Fall 1994 Digital Technical Journal

The Architecture and Design of HS-series StorageWorks Array Controllers

concurrently designing and building storage device
enclosures called shelves that would house up to
seven 3.5-inch devices or two 5.25-inch devices.
These shelves, connected to the controller, would
allow a wide variety of SCSI-2 devices to be incorpo­
rated and would do so at a low cost because of the
widespread use of SCSI-2 as a device interconnect.

StorageWorks controllers were designed to sup­
port the following types of SCSI-2 devices:

• Disk-rotating spindle disk drives and solid­
state disks

• Tape-individual tape drives, tape loaders, and
jukeboxes that contain robotic access to multi­
ple drives from a media library

• CD-ROM

• Optical-individual disks and jukeboxes that
contain robotic access to multiple drives from
a media library

StorageWorks Controllers in System
Environments
The desire to produce a controller with an open
system host interconnect was coupled with a com­
mitment to protect the investments of existing
Digital customers who currently use CI and DSSI
host interconnects. The strategy was to produce CI,
DSSI, and SCSI variants of the StorageWorks array
controller, all based on a common platform. As in
the selection of the device interconnect, the SCSI-2
host interconnect variant was chosen because of its
widespread use and low cost.

The controllers for the CI, DSSI, and SCSI intercon­
nects were named the HSJ30/HSJ40, the HSD30, and
the HSZ40, respectively. The designations of "30"
and "40" represent a code for the number of device
ports attached to the controller. The HSJ30 and
HSD30 controllers have three device ports each,
whereas the HSJ40 and HSZ40 have six device ports
each. The number of device ports selected for each
controller type was based on (1) the overall capabil­
ity of the host port interconnect to support the
aggregate capability of a number of device ports
and (2) the desire to amortize controller cost
against as many attached devices as possible.

StorageWorks controller configurations depend
on the controller host interface. Marked differ­
ences exist in the configurations supported by
CI-based OpenVMS VAXcluster configurations, DSSI­
based OpenVMS VAXcluster configurations, and
SCSI-based configurations in OpenVMS, DEC OSF/1,

Digital Technical Journal Vol. 6 No. 4 Fall 1994

and other industry system environments. The basic
differences are the number of hosts connected
and whether or not other storage devices can be
on the same host interconnect as the controller and
the other hosts.

The CI configuration supports up to 32 nodes per
bus. Each node may be either a storage controller
(i.e. , an HSJ30, an HSJ40, or an HSC device) or a host
computer (i.e., a VAX or an Alpha system).

The DSSI configuration supports up to 8 nodes
per bus. Each node may be either a storage con­
troller (i.e., an HSD30 or an HSDOS), a storage ele­
ment (e.g., an RF73 device), or a VAX or an Alpha
host computer.

The SCSI configuration supports up to 8 targets
per bus. The HSZ40 controller, with its standard
SCSI-2 host interface, may be connected to Digital
Alpha computers (i.e., DEC 3000 and DEC 7000/10000
computers running the DEC OSF/1 operating sys­
tem), Sun Microsystems computers, Hewlett­
Packard computers, and IBM computers. Digital
qualifies the HSZ40 controller for operation with
additional vendors' systems according to market
demand.

High Availability
To meet the goals of controller and storage fault tol­
erance, the designers of StorageWorks controllers
developed a number of scenarios from which the
controller can be fault tolerant with respect to fail­
ures in controller or attached storage components.
The first aspect of fault tolerance considered is that
of controller fault tolerance; the second is configu­
ration fault tolerance.

Controller Fault Tolerance
Designers achieved controller fault tolerance by
investigating the common faults that the controller
could tolerate without requiring extreme design
measures and incurring high costs. The results of this
investigation drove the design of what became the
dual-redundant HS-series controller configuration.
This configuration incorporates several patented
hardware and firmware features (patent pending).

The following faults can exist within a
StorageWorks array controller and the attached
StorageWorks packaging and do not make host data
unavailable:

• Controller failure. In a dual-redundant configu­
ration, if one controller fails, all attached storage
devices continue to be served. This is called

7

RAID Array Controllers

failover. Failover occurs because the controllers
in a dual-redundant configuration share SCSI-2
device ports and therefore access to all attached
storage devices. If failover is to be achieved, the
surviving controller should not require access to
the failed controller.

• Partial memory failure. If portions of the control­
ler buffer and cache memories fail, the controller
continues normal operation. Hardware error cor­
rection in controller memory, coupled with
advanced diagnostic firmware, allows the con­
troller to survive dynamic and static memory
failures. In fact, the controller will continue to
operate even if a cache module fails.

• Power supply or fan failure. StorageWorks pack­
aging supports dual power supplies and dual
fans. HS-series controllers can therefore be con­
figured to survive a failure of either of these
components.

• SCSI-2 device port failure. A failure in a single
SCSI-2 device port does not cause a controller
to fail. The controller continues to operate on
the remaining device ports.

The controller must be able to sense the fail­
ures just listed in order to notify the host of a fault­
tolerant failure and then to continue to operate
normally until the fault is repaired. The designers
deemed this feature vital to reducing the time

HOST
CPU

during which a controller configuration must oper­
ate with a failure present.

Another requirement of fault-tolerant systems
is the ability to "hot swap" or "hot plug" compo­
nents, i.e., to replace components while the system
is still operating and thus to not cause the system to
shut down during repairs. The designers made the
controller and its associated cache module hot
swappable. That is, one controller in the dual con­
figuration can be replaced without shutting down
the second controller, and the second controller
continues to service the requests of the attached
hosts. This feature, coupled with the hot-swap
capability of StorageWorks devices, creates highly
available systems.

Dual-redundant Controller Configuration Like
all StorageWorks components, HS-series con­
trollers are packaged in Storage Works shelves. The
Storage Works controller shelf contains a backplane
that accommodates one or two controllers and
their associated cache modules, as well as SCSI-2
device port connectors. The packaging is common
to all system environments. HS-series controllers
mounted in a single shelf may be combined in pairs
to form a dual-redundant controller configuration
(shown in Figure 1) in which both controllers can
access the same set of devices.

Figure 2 shows two HS-series controllers
installed in a StorageWorks controller shelf in

HOST
CPU

HOST INTERFACE

MAINTENANCE
TERMINAL
EIA-423 POAT

HS-SERIES
CONTROLLER

SCSl-2 DEVICE
PORTS (3 OR 6)

SCSI DEVICE PORTS
SHARED BETWEEN
CONTROLLERS

CACHE •-----~

FAILOVER COMMUNICATION

HS-SERIES
CONTROLLER

SCSl-2 DEVICE
PORTS (3 OR 6)

Figure 1 StorageWorks Controllers: System Block Diagram

MAINTENANCE ,
TERMINAL
EIA-423 PORT

8 Vol. 6 No. 4 Fall 1994 Digital Technical Journal

The Architecture and Design of HS-series StorageWorks Array Controllers

PROGRAM CARD
(PCMCIA)

CONTROLLER
HSJ40

MAINTENANCE
TERMINAL
CONNECTION

POWER SUPPLIES
(1 MANDATORY,
1 OPTIONAL FOR
FAULT TOLERANCE)

RESET
BUTION

-~ /

PORT
BUTIONS

CONTROLLER B

CONTROLLER A

Figure 2 StorageWorks Controller Shelf

a dual-redundant configuration. Figure 3 shows
two dual-redundant controller configurations
mounted in a StorageWorks cabinet with several
device shelves. The controllers connect to storage
devices with cables that emerge from the controller
shelf and attach to the device shelves.

The designers had to decide how the dual­
redundant controller configuration could achieve
high availability through fault tolerance. To meet
the high-availability goals, the team addressed the
concept of controller failover early in the design
process. One fault-tolerant option considered was
to run with a "hot-standby" controller that would
become operational only if the main controller
were to fail. A second option was to design a dual­
active controller configuration in which two con­
trollers would operate simultaneously. They would
share and concurrently use device port buses (not
devices), thus balancing the 1/0 load from host
computers.

Both options allow for direct failover of devices
without manual intervention. The hot-standby con­
troller option requires either automatic configura­
tion of the attached devices when the hot-standby
controller becomes operational or nonvolatile (i.e .,
impervious to power loss) shared memory to hold

Digital Technical Journal Vol. 6 No. 4 Fall 1994

the configuration information. The dual-active con­
troller option requires that each controller have
detailed knowledge about the other controller and
the device state; it does not require that the con­
trollers share a memory. The designers chose the
second option because it provided load balancing
and therefore potentially greater performance.
However, they faced the challenge of designing a
backplane and an interface between the controllers
that would achieve the dual-active configuration but
would not require a shared memory. The result of the
design effort was the StorageWorks controller shelf.

StorageWorks Controller Shelf The Storage Works
controller shelf is an architected enclosure that
allows a pair of Storage Works controllers and their
respective cache memory modules to be placed
into the dual-redundant configuration, as shown in
Figure 4. A cache module is attached to each con­
troller for performance purposes. The controller
shelf contains a backplane that includes intercon­
troller communication, control lines between the
controlle rs, and shared SCSI-2 device ports. Since
the two controllers share SCSI-2 device ports, the
design enables continued device availability if one
controller fails.

9

RAID Array Controller s

HOST INTERFACE
~~~~-- CABLES 

DEVICE SHELF 

Figure 3 StorageWorks Cabinet 

SLOTO SLOT 1 

CONTROLLER A 

t 

CACHE A 
LOCK 

COAL BUS 

COAL BUS 

CACHE BLOCK 

KILLS 

KILLA 

CACHE B 
LOCK 

COAL BUS 

CACHE A LOCK 

COAL BUS 

FAILOVER UART COMMUNICATION LINE 

3/6 SHARED SCSI DEVICE BUSES 

NOTE: Controller and Cache Present signals to each controller are not shown. 

CONTROLLER B 

t 

Figure 4 StorageWorks Controller Backplane: Controllers in a Dual-redundant Configuration 

10 Vol. 6 No. 4 Fa/1 1994 Digital Technical J ournal 



The Architecture and Design of HS-series StorageWorks Array Controllers 

The backplane contains a direct communica­
tion path between the two controllers by means 
of a serial communication universal asynchronous 
receiver/transmitter (UART) on each controller. The 
controllers use this communication link to inform 
one another about 

• Controller initialization status. In a dual-redun­
dant configuration, a controller that is initializ­
ing or reinitializing sends information about the 
process to the other controller. 

• "Keep alive" communication. Controllers send 
keep alive messages to each other at timed 
intervals. The cessation of communication by 
one controller causes a failover to occur once 
the surviving controller has disabled the other 
controller. 

• Configuration information. StorageWorks con­
trollers in a dual-redundant configuration have 
the same configuration information at all times. 
When configuration information is entered 
into one controller, that controller sends the 
new information to the other controller. Each 
controller stores this information in a controller­
resident nonvolatile memory. If one control­
ler fails, the surviving controller continues to 
serve the failed controller's devices to host com­
puters, thus obviating shared memory access. 
The controller resolves any discrepancies by 
using the newest information. 

• Synchronized operations between controllers. 
Specific firmware components within a control­
ler can communicate with the other controller 
to synchronize special events between the hard­
ware on both controllers. Some examples of 
these special events are SCSI bus resets, cache 
state changes, and diagnostic tests. 

The other signals on the backplane pertain to 
the current state of the configuration within the 
controller shelf and to specific control lines that 
determine the operation of the dual-redundant 
controller configuration. The backplane state and 
control signals include 

• Status about the presence of a controller's cache 
module. Each controller can sense the presence 
or absence of its cache to set up for cache diag­
nostics and cache operations. 

• Status about the presence of a second controller, 
which indicates a dual-redundant configura­
tion. Each controller can sense the presence 

Digital TecbnicalJournal Vol. 6 No. 4 Fall 1994 

or absence of the other controller in a dual­
redundant configuration. This assists in control­
ler setup of dual-controller operation as well 
as general controller initialization of the dual­
redundant configuration. 

• Status about the presence of the second con­
troller's cache. Each controller can sense the 
presence or absence of the other controller's 
cache for dual-controller setup purposes. 

• The "KILL" signal. In a dual-redundant config­
uration, each controller has the capability to use 
the KILL control signal to cause a hardware reset 
of the other controller. However, once one con­
troller asserts the KILL signal, the other control­
ler loses the capability. The KILL signal ensures 
that a failed or failing controller will not create 
the possibility of data corruption to or from 
attached storage devices. 

The KILL signal denotes that failover to the surviv­
ing controller should occur. A controller asserts 
the KILL signal when the other controller sends 
a message that it is failing or when normally 
scheduled keep alive communication from the 
other controller ceases. The KILL signal is also 
used when both controllers decide to reset one 
another, e.g., when the communication path has 
failed. 

The designers had to ensure that only one con­
troller could succeed in the KILL operation, i.e., 
that no window existed where both controllers 
could use the KILL signal. After firmware on 
a controller asserts the KILL signal to its dual­
redundant partner, the KILL recognition cir­
cuitry within the controller that asserted the 
signal is disabled. The probability of true simul­
taneous KILL signal assertion was estimated at 
10-20, based on hardware timing and the possi­
bility of synchronous dual-controller operation. 

• The cache LOCK signals. The cache LOCK signals 
control access to the cache modules. The dual­
controller architecture had to prevent one con­
troller from gaining access to a cache module that 
was being used by the other controller and had to 
allow the surviving controller to access the failed 
controller's cache. The access control had to be 
implemented in either firmware or hardware. 

A firmware solution would involve a software 
locking mechanism that the controllers would 
recognize and cooperatively use to limit cache 
module access to the associated controller. This 

11 



RAID Array Controllers 

method had an inherent problem: firmware 
alone may not prevent inadvertent cache access 
by a failing controller. The designers therefore 
had to implement a hardware lock mechanism 
to prevent such inadvertent access. 

The hardware lock mechanism was imple­
mented with control signals from each control­
ler. The signals are utilized by hardware to 
prevent inadvertent access and by firmware 
to limit cache module access to the associated 
controller. From each controller, the designers 
implemented two LOCK signals that extend indi­
vidually to each cache module and are visible to 
both controllers. The cache LOCK signals are 
illustrated in Figure 4. 

The LOCK signals allow a controller to achieve 
exclusive access to a specific cache module to 
ensure data integrity. LOCK signals from a con­
troller that has been "killed" by its dual-redundant 
partner are reset so that the partner may fail over 
any unwritten cache data in the write-back cache. 

Failover Controller failover is a feature of the 
dual-redundant configuration for StorageWorks 
controllers. Failover of a controller's devices and 
cache to the other controller occurs when 

• A controller fails to send the keep alive message. 
This situation can occur because of a controller 
failure in the dual UART (DUART) or in any other 
non-fault-tolerant portion of the controller mod­
ule. In this scenario, the surviving controller uses 
the KILL signal to disable the other controller, 
communicates to the failed controller's devices, 
and then serves the failed controller's devices to 
hosts. 

The fail over of a controller's cache occurs only if 
write-back caching was in use before the con­
troller failure was detected. In this case, the sur­
viving controller uses the failed controller's 
cache to write any previously unwritten data to 
the failed controller's disks before serving these 
disks to hosts. When the surviving controller has 
written the data to disks (i.e., flushed the data), 
it releases the cache to await the failed con­
troller's return to the dual-redundant configura­
tion through reinitialization or replacement. 

• A customer desires to change the load balance of 
one or more devices attached to one controller 
to the other controller. This specialized use 
of failover provides a load-balancing feature 

12 

that the designers considered valuable in a 
dual-active controller configuration. Load bal­
ancing is static in the controller, i.e., devices are 
allocated to one controller or to the other, not 
shared dynamically. To change allocation, the 
system manager must change the preferred path 
of device access. This is accomplished by access­
ing either the maintenance port of the controller 
or the configuration firmware through the host 
interface (e.g., the diagnostics and utilities pro­
tocol for CI and DSSI systems). 

• The cache module battery is low or has failed. 
This special case of failover is used in conjunc­
tion with Parity RAID operations for the reasons 
described in the Parity RAID technology portion 
of the following section. The main issue is to con­
tinue to provide as much data protection as possi­
ble for Parity RAID disk configurations when the 
battery on the write-back cache is low or bad. 

• The controller is unable to communicate with 
the devices to which it is currently allocated for 
host operations. This situation can occur if 
a device port on a controller fails. 

Storage Fault Tolerance 
Storage fault tolerance is achieved by ensuring that 
power or environmental factors do not cause 
devices to be unavailable for host access and by 
using firmware to prevent a device failure from 
affecting host accessibility. 

Environmental Factors StorageWorks enclosures 
provide for optional redundant power supplies and 
cooling fans to prevent power or fan failures from 
making devices unavailable. The SCSI-2 cables that 
connect device shelves to the controller shelf carry 
extra signals to alert the controller to power supply 
or fan failures so that these conditions may be 
reported to host computers. The enclosures must 
contain light-emitting diodes (LEDs) to allow a con­
troller to identify failed devices. In addition, a 
cache module can fail, and the controller will con­
tinue to operate. 

RAID Technology To prevent a device failure 
from affecting host access to data, the designers 
introduced a combined firmware and hardware 
implementation of RAID technology.2 The designers 
had to decide which RAID level to choose and what 
type of hardware (if any) was required for the 
implementation. 

Vol. 6 No. 4 Fall 1994 Digital Tecbntcal]ournal 



The Architecture and Design of HS-series StorageWorks Array Controllers 

The designers considered RAID levels I through 5 
as options for solving the problem of disk fail­
ures that affect data availability. RAID level I (disk 
mirroring, which is depicted in Figure Sa) was 
rejected because of its higher cost, i.e. , the cost of 
parts to implement the mirroring. 2 Each disk to 

(a) Mapping for a RAID Level I Array 

(c) Mapping for a RAID Level 3 Array 

be protected implies an inherent cost of one 
additional housed, powered, and attached disk. 
RAID level I was also discounted because software­
based solutions were available for many of the 
hosts for which the HS-series controllers were ini­
tially targeted. 

DATA DISKS 

ARRAY 
MANAGEMENT ,-....~~~~~~~~~~~~~ 
SOFTWARE 

CHECK DISKS 

(b) Mapping for a RAID Level 2 Array 

(d) Mapping f or a RAID Level 4 Array 

(e) A Typical Mapp ing for a RAID Level 5 Array 

Figure 5 Mappingf or RAID Levels I through 5 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 13 



RAID Array Controllers 

RAID levels 2 through 4, illustrated in Figures Sb 
through Sd, were rejected because they do not pro­
vide good performance over the entire range of 
1/0 workloads for which the controllers were tar­
geted. 4 In general, these RAID levels provide high, 
single-stream data transfer rates but relatively poor 
transaction processing performance. 

RAID level S in its pure form was rejected because 
of its poor write performance, especially for small 
write operations.2 The designers ultimately chose 
RAID level S data mapping (i.e., data striping with 
interleaved parity, as illustrated in Figure Se) cou­
pled with dynamic update algorithms and write­
back caching to overcome the small-write penalty. 
This implementation is called Parity RAID. 

An HS-series Parity RAID array appears to hosts as 
an economical, fault-tolerant virtual disk unit. 
A Parity RAID virtual disk unit with a storage capac­
ity equivalent to that of n disks requires n + 1 phys­
ical disks to implement. Data and parity are 
distributed (striped) across all disk members in the 
array, primarily to equalize the overhead associated 
with processing concurrent small write requests. 2 

If a disk in a Parity RAID array fails, its data can be 
recovered by reading the corresponding blocks on 
the surviving disk members and performing a par­
ity comparison (using exclusive-OR [XOR] opera­
tions on data from other members). Figure 6 
illustrates this regeneration of data.4 

HS-series controller developers overcame a num­
ber of challenges. Foremost among them was the 
elimination of the RAID level S write hole. Parity 
RAID with its RAID level S striping is susceptible 
to the RAID level S write hole. A write hole is data 
corruption that occurs when all the following 
events take place. 

• A controller failure occurs with a host's write 
request outstanding. 

• Either the updated data or the updated parity for 
the host's write request has been written to disk 
but not both. 

• A failure of a different disk occurs after the con­
troller failure has been repaired. 

To eliminate this write hole, designers had to 
develop a method of preserving information about 
ongoing RAID write operations across power fail­
ures such that it could be conveyed between part­
ner controllers in a dual-redundant configuration. 

Designers decided to use nonvolatile caching of 
RAID write operations in progress.s Three alterna­
tives were considered: 

1. An uninterruptible power supply (UPS) for the 
controller, cache, and all attached disk devices. 
This choice was deemed to be a costly and 
unwieldy solution because of the range of possi­
ble requirements. The indeterminate amount of 
data in the cache to be written and the power 
consumption of a wide variety of devices would 
necessitate a very large backup power source to 
ensure enough time for all cached write data to 
be written to attached devices. 

2. A battery in the controller and device enclosures 
(i.e., shelves) to allow enough time for the writ­
ing of cached data in the event of a power failure. 
StorageWorks device enclosures can accommo­
date either redundant power supplies or one 
power supply and one backup battery for con­
figurations that do not require redundancy. 
There is no provision for both redundant power 

.------. DATA O EB DATA 1 EB ....-------, 

14 

DATA 2 EB PARITY REGENERATED 
APPLICATION DATA FROM 

MEMBER 3 

MEMBER 
DISKO 

PARITY RAID ARRAY 

MEMBER 
DISK 4 
(PARITY) 

Figure 6 Regenerating Data in a Parity RAID Array with a Failed Member Disk 

Vol. 6 No. 4 Fall 1994 Digital Tech11ical Journal 



The Architecture and Design of HS-series StorageWorks Array Controllers 

supplies and a battery. This conflict between 
fault-tolerant StorageWorks shelf configurations 
with dual power supplies and the desire to add 
a battery for write-back caching was unaccept­
able to the designers because of the loss of power 
redundancy to gain write-back cache integrity. 

3. A controller-based nonvolatile cache. The options 
for controller-based nonvolatile caching included 
(a) a battery-protected cache for write data, (b) an 
additional nonvolatile random-access memory 
(NVRAM) on the controller to journal RAID writes, 
and (c) a battery-protected cache for both read 
and write data. 

With a battery-protected write cache, data must 
be copied if it is to be cached for subsequent 
read requests. Designers deemed the potential 
performance penalty unacceptable. 

Using controller NVRAM as a RAID write journal 
not only closes the RAID level 5 write hole but 
also provides a small write cache for data. This 
approach also requires data copying and creates 
an NVRAM access problem for the surviving con­
troller to the failed controller NVRAM to resolve 
any outstanding RAID write requests. 

The third controller-based nonvolatile cache 
option, to battery-backup the entire cache, 
solved the copy issue of option 3a and the 
failover issue of option 3b. 

The designers chose option 3c, the battery­
protected read/write cache module. A totally non­
volatile cache had the advantage of not requiring 
write-cache flushing, i.e., copying data between 
the write cache and the read cache after the write 
data has been written to devices. Segregated cache 
approaches (part nonvolatile, part volatile) would 
have required either copying or discarding data 
after write-cache flushing. Such approaches would 
have resulted in a loss of part of the value of using 
the caching algorithm by allowing only read caching 
of read data already read. Another benefit of a non­
volatile read/write cache is failover of the cache 
module in the event of a controller failure. This fur­
ther reduces the risk associated with a RAID level 5 
write hole because unwritten write operations to 
Parity RAID arrays can be completed by the surviv­
ing controller after failover. 

To achieve a total nonvolatile cache, the design­
ers opted for the battery solution, using two 3-by-5-
by-0.125-inch lead-acid batteries that supply up to 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

100 hours of battery backup for a 32-MB cache 
module. The batteries eliminated the need for 
a special (and costly) nonvolatile memory write 
cache and allowed data hold-up after power failure. 
The designers chose lead-acid batteries over NiCAD 
batteries because of their steady power retention 
and output over time. This option protects against 
most major power outages (of five minutes to five 
days) and all minor power outages (of less than five 
minutes). Most power outages (according to stud­
ies within Digital) last less than five minutes and are 
handled in the same manner as major outages, that 
is, by flushing write data immediately after power 
has been restored to the controller configuration. 
Battery status is provided to firmware, which uses 
this information to make policy decisions about 
RAID arrays and other virtual disk units with write­
back caching enabled. 

For an HS-series controller to support Parity RAID, 

its cache module must have batteries installed. The 
batteries make the cache nonvolatile and enable 
the algorithms that close the RAID level 5 write hole 
and permit the use of the write-back cache as a per­
formance assist, both vital for proper Parity RAID 

operation. If the controller firmware detects a low­
or bad-battery condition, write-back caching is dis­
abled. The controller that detects the condition 
tries to fail over Parity RAID units to the other con­
troller in the dual-redundant configuration to keep 
the units available to hosts. If the other controller 
cache module has a low- or bad-battery condition, 
the Parity RAID unit is made unavailable to hosts to 
protect against data loss or data corruption should 
a power failure occur. When the batteries are no 
longer low, Parity RAID units are again made avail­
able to hosts. Any Parity RAID units that had been 
failed over to the other controller would fail back, 
i.e., return, to the controller that originally con­
trolled them. The module hardware and firmware 
support read caching regardless of the presence of 
a battery. 

After solving the RAID level 5 write-hole problem, 
the designers decided to automate the Parity RAID 

recovery process wherever possible. This goal was 
adopted so that customers would not have to under­
stand the technology details in order to use the 
technology in the event of a failure. StorageWorks 
controller firmware developers, therefore, chose to 
add automatic Parity RAID management features 
rather than require manual intervention after fail­
ures. Controller-based automatic array management 
is superior to manual techniques because the 

15 



RAID Array Controllers 

controller has the best visibility into array problems 
and can best manage any situation given proper 
guidelines for operation. 

An important feature of Parity RAID is the ability 
to automatically bring a predesignated disk into ser­
vice to restore data protection as quickly as possi­
ble when a failure occurs. Other controllers in the 
industry mandate configurations with a hot-standby 
disk, i.e., a spare disk, dedicated to each Parity RAID 

unit. A hot-standby disk is powered and ready for 
firmware use if an active member disk of its Parity 
RAID unit fails. This concept is potentially wasteful 
since the probability that multiple Parity RAID units 
will have simultaneous single-member disk failures 
is low. The designers therefore had the options of 
making spare disks available on a per-Parity RAID 

unit basis or having a pool of spares, i.e., a spare set, 
that any configured Parity RAID unit could access. 
The designers chose the pool of spares option 
because it was simpler to implement and less costly 
for the customer, and it offered the opportunity to 
add selection criteria for spare set usage and thus 
maximize either performance or capacity efficiency. 

To allow more flexibility in choosing spare set 
members, designers made two spare selection 
options available: best fit and best performance. 
The best fit option allows for disk devices of differ­
ent sizes to compose the pool of spares. When a 
spare disk is needed after a member of a Parity RAID 

unit fails, the device with the best fit, that is, whose 
size most closely matches that of the failed disk 
(typically of the same size but possibly of greater 
capacity), is chosen. The best performance option 
can reduce the need for physical reconfiguration 
after a spare is utilized if a spare attached to the 
same device port as the failed array member can be 
allocated. The best performance option maintains 
operational parallelism by spreading array mem­
bers across the controller device ports after a fail­
ure and subsequent spare utilization. 

These features allow automatic sparing of failed 
devices in Parity RAID units and automatic recon­
struction after a spare device has been added to the 
Parity RAID unit.6 Furthermore, any drive of at least 
the size of the smallest member of a Parity RAID unit 
is a candidate spare, which reduces the need for 
like devices to be used as spares. (Typically, how­
ever, spare set members are like members.) 

A Parity RAID unit with a failed member will 
become unavailable and lose data if a second failure 
occurs. The HS-series automatic sparing feature 
reduces the window of possible data loss to the 

16 

time it takes to reconstruct one Parity RAID unit. 
Mean time between data loss (MTBDL) is a combina­
tion of the mean time to repair (MITR) and the fail­
ure rate of a second device in a Parity RAID unit. 
The automatic sparing feature reduces the MTIR 

and thus increases the MTBDL. Data loss can occur 
only in the highly unlikely event that a failure occurs 
in another RAID set member before the reconstruc­
tion completes on the chosen spare. During Parity 
RAID reconstruction, the controller immediately 
makes the host read or write request to the recon­
structing member redundant by updating parity 
and data on the spare after the host read or write 
operation. Parity RAID firmware quickly recon­
structs the rest of the Parity RAID unit as a back­
ground task in the controller. If the member that 
is being reconstructed happens to fail and other 
spare set members remain, reconstruction on a 
new spare begins immediately, further reducing the 
probability of data loss. 

Parity RAID member disk failure declaration is key 
to the efficient use of spares and to preventing 
unwarranted use of spares. If a write command to a 
RAID set member fails, RAID firmware assumes that 
the SCSI-2 disk drive has exhausted all internal meth­
ods to recover from the error. SCSI-2 disk drives auto­
matically perform bad block replacement on write 
operations as long as there is space available within 
the disk drive revector area (the area where spare 
data blocks can be mapped to a failed block). The 
designers chose this method over more complex 
retry algorithms that might encounter intermittent 
failure scenarios. Empirical information related to 
previous storage devices showed that localized 
write failures are rare and that this strategy was 
sound for the majority of disk access failures. 

When read failures occur, data is regenerated 
from the remaining array members, and a forced 
bad block replacement is performed. Metadata on 
the disk is used to perform this function atomically, 
that is, to perform the bad block replacement even 
if a power failure occurs during the replacement. 7 If 
the disk cannot replace the block, then the Parity 
RAID member disk is failed out and an attempt is 
made to choose a suitable spare from the spare set. 
If no spare is available, the Parity RAID unit operates 
in reduced mode, regenerating data from the failed 
member when requested by the hosts.• 

Parity RAID firmware uses the metadata to detect 
a loss of data due to catastrophic cache failure, inap­
propriate device removal, or cache replacement 
without prior flush of write data. The designers 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



The Architecture and Design of HS-series StorageWorks Array Controllers 

considered it important that the controller 
firmware be able to detect these data loss condi­
tions and report them to the host computers. 

The failure scenarios just described occur infre­
quently, and the StorageWorks Parity RAID firm­
ware is able to recover after such failures. During 
a typical normal operation, the main challenge for 
Parity RAID firmware is to achieve a high level of 
performance during write operations and a high 
level of controller performance in general. 

High Performance 
As discussed earlier, the performance goals for the 
StorageWorks controllers were in the areas of 
throughput and latency. Bandwidth goals were 
based on the architecture and technology of the 
controller platform. The designers met the perfor­
mance goals by producing a controller that had 
a low command overhead and that processed 
requests with a high degree of parallelism. The 
firmware design achieves low overhead by means 
of the algorithms running on the controller, cou­
pled with RAID and caching technology. The hard­
ware design that allows for low command overhead 
and high data transfer rates (bandwidth) is dis­
cussed in the section Common Hardware Platform. 

Command Processing 
The StorageWorks designers maximized the num­
ber of requests the controller can process per sec­
ond by reducing the command processing latency 
within the controller firmware. The firmware uti­
lizes controller-based caching and also streamlined 
command processing that allows multiple out­
standing commands to be present in the controller. 

To meet the varying needs of customer applica­
tions, the controller supports both Parity RAID and 
RAID level 0. The designers decided to include RAID 

level Oas a controller feature because of its inherent 
parallelism, even though RAID level O is not fault tol­
erant without external redundancy. 

StorageWorks controllers service all device 
types, but the designers felt that disk device per­
formance was the key metric for determining 
how well a controller supports RAID technology. 
The controller firmware was designed to efficiently 
control individual devices ( commonly referred 
to as "just a bunch of devices" [JBOD]) and Parity 
RAID, prioritizing requests to each of the SCSI-2 
device ports on the controller. StorageWorks 
controllers comply with SCSI-2 protocols and per­
form advanced SCSI-2 functions, such as tagged 

D igital TechntcalJournal Vol. 6 No. 4 Fall 1994 

queuing to all attached SCSI-2 storage devices for 
greater performance.1 

Discussions of the RAID level O technology and 
of how the designers used Parity RAID technology 
to overcome some of the performance bottlenecks 
follow. 

Striping-RAID Level O 
Digital has used RAID level O technology, that is, 
striping, in systems for at least five years, in its host 
computers using software as well as in its control­
lers. Striping allows a set of disks to be treated as 
one virtual unit. Device data blocks are interleaved 
in strips, i.e., contiguous sets of blocks, across all 
disks, which provides high-speed parallel data 
access. Figure 7 illustrates the mapping for a RAID 

level O array. 4 Since a striped disk unit inherently 
lacks fault tolerance (i.e., if one device in the set 
fails, data is lost), controller-based striping is typi­
cally used in conjunction with host-based mirror­
ing or in cases where data can be easily reproduced. 
Stripe sets achieve high performance because of 
the potential for parallelism by means of the device 
and data organization. The key difference between 
RAID level O and RAID levels 3 and higher is that 
striping results in the interdependence of data writ­
ten to different devices. 

Controller Caching 
Caching with StorageWorks controllers was origi­
nally read caching only. When the designers 
decided to use a nonvolatile cache to eliminate the 
RAID level 5 write hole, write-back caching on the 
controller became a viable option. 

Controller Read Caching Read caching was 
intended to reduce latency in the controller by min­
imizing the need to access devices continuously for 
repeated host read requests to the same locations on 
attached devices. Read caching must also address 
the issue of how to handle write data for later use. 
The design could have incorporated on-board con­
troller memory to hold write data. However, this 
would require copying the write data to the read 
cache after the write data had been written to the 
devices and would result in inefficient use of the 
read cache. Therefore, the designers decided to 
have the read cache serve as a write-through cache 
as well. Read caching would be disabled/enabled 
per logical unit presented to the host instead of hav­
ing global read caching, where a logical unit is one 
or more devices configured as one virtual device. 

17 



RAID Array Controller s 

Figure 7 Mapping for a RAID Level O Array 

Thus, customers can specify for which virtual 
devices they want caching enabled. 

The read and write-through caching firmware 
receives requests from other parts of the controller 
firmware (e.g., a host port, a device port, and the 
Parity RAID firmware) and proceeds as follows. 

For reads requests, the caching firmware provides 

1. The data pointers to the cached request, i.e. , the 
cache hit 

2. The data pointers for part of the request, i.e. , 
a partial cache hit, which means that the remain­
ing data must be retrieved from the device or 
devices being requested 

3. A status response of cache miss, which means 
that storage management must retrieve the data 
from the device or devices being requested 

For write requests, the caching firmware offers 
the cache manager data from the request. The cache 
manager places the previous data pointers into the 
read cache tables after the data is written through 
the cache to the devices. Firmware tells the device 
port hardware where to find write data, and the 
port hardware transfers the data. 

Read caching in the first version of the controller 
firmware allowed the controller to achieve the ini­
tial throughput goals across the three controller 
platforms. The current software version , version 
2.0, was shipped in October 1994 and exhibits even 
greater throughput performance. Table 1 shows the 
1/0 performance for the three StorageWorks con­
troller platforms with read caching enabled. 

18 

Table 1 StorageWorks Controller 1/0 
Performance with Read Caching 

Controller 

HSJ30/HSJ40 

HSD30 

HSZ40 

Read Requests 
per Second 

1,550 

1,000 

2,250 

Write Requests 
per Second 

1,050 

800 

1,500 

Write-back Caching- Perfonnance Aspects As 

noted earlier, when the cache module contains 
batteries, the memory is nonvolatile for up to 100 
hours. The StorageWorks controller can use the 
nonvolatile cache to increase controller perfor­
mance by reducing latency for write request Parity 
RAID performance to a level similar to that of RAID 

level O (simple disk striping). The controller can 
also utilize the write-back cache to reduce the 
latency of JBOD and RAID level O disk configura­
tions. As with read caching, write-back caching is 
disabled/enabled per logical unit. 

The write-back caching firmware controls the 
usage of both a surviving controller's cache module 
and a failed controller's cache module. When it 
receives a write request, the controller places the 
data in the cache, marks the request as complete, 
and writes the data based on internal controller 
firmware policies (write-back caching). To provide 
greater performance during Parity RAID operations 
than simple write-back caching could provide, the 
write-back cache firmware is also tied to the Parity 
RAID firmware. 

Vol. 6 No. 4 Fall 1994 Digital Tech11ical Jounial 



The Architecture and Design of HS-series Storage Works Array Controllers 

In addition to dealing with the continual prob­
lem of controller latency on write commands, 
designers had to overcome the RAID level 5 small­
write penalty with parity updates to RAID set mem­
bers. Write-back caching was chosen over RAID 
level 3 hardware assists as a Parity RAID strategy 
because RAID level 3 does not provide a wide range 
of benefits for all customer workloads. Write-back 
caching provides latency reductions for RAID and 
non-RAID configurations. Write-back caching also 
increases write-request throughput. For example, 
the published performance numbers for write 
throughput with write-back caching enabled in ver­
sion 2.0 firmware appear in Table 2. 

The use of write-back caching resulted in a 20 to 
30 percent increase in write throughput for all plat­
forms as compared to write-through caching. Before 
discussing the effect of write-back caching on 
latency for individual devices and for Parity RAID 
arrays, the paper describes how the write-back 
cache firmware was designed and tied directly to 
Parity RAID firmware. 

The features chosen for write-back caching were 
extensively benchmarked against data integrity 
issues. The addition of settable timers allows cus­
tomers to flush write data destined for devices that 
are idle for a specific length of time. To reduce the 
number of read/modify/writes required to update 
parity on small write operations, designers tied 
flush algorithms to RAID. Flush algorithms for write­
back caching are vital to customer data integrity 
and to latency reduction. The flush algorithms actu­
ally allow Parity RAID to simulate RAID level 3 oper­
ations because of the nonvolatile write-back cache. 

As mentioned earlier, Parity RAID configurations 
suffer a penalty on small write operations that 
includes a series of read and write operations and 
XOR operations on blocks of data to update RAID 
parity. The write-back cache firmware was 
designed with specific attributes to enhance Parity 
RAID write operations in general, and not just to 

Table 2 StorageWorks Controller 
Write Request Throughput 
with Write-back Caching 

Write Requests 
Controller per Second 

HSJ30/HSJ40 1,350 

HSD30 900 

HSZ40 1,850 

Digital Tech,itcalJournal Vol. 6 No. 4 Fall 1994 

enhance small write operations. The designers 
intentionally chose to overcome both the small­
write penalty and the inherent lack of high band­
width that Parity RAID delivers. 

The nonvolatile write-back cache module 
afforded the firmware designers more choices for 
Parity RAID write request processing and data flush 
algorithms. The designers pursued techniques 
to speed up all write operations by performing 
write aggregations (i.e. , combining data from mul­
tiple write requests and read cache data) in three 
dimensions: 

1. Contiguous aggregation, in which the firmware 
looks for consecutive block requests and ties 
them together into one device request, thus 
eliminating separate device requests. 

2. Vertical aggregation, in which the firmware can 
detect two write operations to the same block, 
thus eliminating one write operation. 

3. Horizontal aggregation (for Parity RAID opera­
tions only). This type of aggregation occurs 
when all data blocks within a Parity RAID strip 
are present in the write-back cache. In such 
cases, the firmware can write to all RAID set 
members at once, in combination with the FX 
chip (discussed later in this section) on-the-fly 
hardware XOR operations during the RAID set 
member writes. The original request can cause 
horizontal aggregation to take place if all blocks 
within a strip are part of the first write request. 
The firmware can also perform horizontal aggre­
gation after processing several write requests. In 
this way, the parity write operation directly fol­
lows the data write operations. Horizontal write 
aggregation potentially cuts physical device 
access in half when compared to normal RAID 
write operations that require data members to 
be read. 2,8 The result is pseudo-RAID level 3 oper­
ation, because the write-back cache is combined 
with the horizontal aggregation cache policy 

The performance gain for individual disks and for 
Parity RAID arrays from using write-back caching is 
dramatic, resulting in higher write throughput and 
low latency The write-back cache actually smoothes 
out differences in performance that are typical of 
workloads that have different read/write ratios, 
whether or not Parity RAID is utilized. 

Figure 8 shows the relative latency for a controller 
with and without write-back caching enabled. The 
configurations tested comprised individual devices 

19 



RAID Array Controllers 

50 

rii 
~ 40 
0 
t) 
UJ 
rn 30 
:J 
...J 

~ 
;; 20 
t) 
z 
UJ 

~ 10 

KEY: 

WORKLOAD 1 

JBOD ARRAY MODEL 

DREAD CACHE 

O WRITE-BACK CACHE 

WORKLOAD2 WORKLOAD3 

PARITY RAID ARRAY MODEL 

• READ CACHE 
O WRITE-BACK CACHE 

Figure 8 HSf 40 Array Latency Comparisons 

and Parity RAID units (in a five-plus-one configura­
tion). The performance measurements were taken 
from a version 2.0 HSJ40 array controller. 

Workload 1 has a read/write ratio of 70/30, i.e. , 
70 percent of the requests were read requests and 
30 percent were write requests. Workload 2 has 
a read/write ratio of84/16. Workload 3 has a ratio of 
20/80. In all workloads, the latency for individual 
devices and for Parity RAID units is lower when 
write-back caching is enabled than when only read 
caching is enabled. In fact, when write operations 
dominate the 1/0 mix, latency for Parity RAID units 
is the same as for the workloads in which read oper­
ations are predominant! 

RAID/Compare Hardware 
StorageWorks controllers contain a hardware Parity 
RAID and data compare accelerator called FX, a gate 
array that performs on-the-fly XOR operations on 
data buffers. Parity RAID and data compare firm­
ware use this gate array to accelerate Parity RAID 
parity calculations and host data compare requests. 
The FX chip is programmed to (1) observe the bus, 
(2) "snoop" the bus for specific addresses, (3) per­
form the XOR operation to compare the associated 
data on-the-fly with data in a private memory called 
XBUF memory, and (4) write the data back into 
the XBUF memory. 

XOR operations can take place as data is moving 
from buffer or cache memory to device ports or 
vice versa. The FX can also perform direct memory 
access (DMA) operations to move the contents of 
buffer or cache memory to or from XBUF memory. 

20 

The designers determined that hardware acceler­
ation of XOR operations for Parity RAID firmware 
would speed up RAID parity calculations and thus 
further improve Parity RAID latency and through­
put. The firmware also supports FX compare opera­
tions, which eliminates the need for SCSI-2 devices 
that have implemented compare commands and for 
speeding up compare requests from hosts. 

Common Hardware Platform 
To produce a high-performance controller in all 
three performance dimensions- latency, through­
put, and data transfer rate-the designers of 
StorageWorks controllers faced the challenge of 
creating a new controller architecture and using 
new technology. In addition, they had to do so at 
a reasonable cost. 

Although each has its own specific host interface 
hardware, the CI, DSSI, and SCSI controller variants 
share a common hardware core. Commonality 
was desired to control the development costs and 
schedules for such large engineering projects. To 
deliver high performance and commonality, the 
designers investigated several controller architec­
ture alternatives. The first architecture considered 
was similar to Digital's HSCS0-95 controller, incor­
porating similar bus structures, processing ele­
ments, and memories, but newer technology. 
Figure 9 shows the HSC architecture.9 

The HSC architecture is a true multiprocessor sys­
tem. It contains a private memory for its policy pro­
cessor, which manages the work that is coming 
from the host port interface and queues this work 
to the device interface modules. Data then flows 
between the host port and device modules to and 
from hosts. The modules have two interfaces 
(buses) for access to command processing and data 
movement. These buses are called the control mem­
ory interface and the data memory interface. The 
policy processor queues work to the host port and 
device modules through the control memory inter­
face, and then the modules process the data over 
the data memory interface. 

Using this architecture would have been too 
expensive. The controller cost had to be competi­
tive with other products in the industry, most 
of which currently cost considerably less than the 
HSC controller. The HSC bus architecture required 
three different memory interfaces, which would 
require three different, potentially large memories. 
The designers had to pursue other options that 
met the cost goals but did not significantly reduce 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



The Architecture and Design of HS-series StorageWorks Array Controllers 

CONTROL 
CONTROL BUS (6.6 MB/S) 

I< > 
MEMORY 

.·· I 
I . . . 

I 

POLICY LOAD DISK INTERFACE > 
HOST INTERFACE PROCESSOR -

DEVICE OR 
Cl BUS TAPE INTERFACE A 

< > (UP TO 8 TOT AL) ' 

> 

B B B -- TERMINAL > -SDI ORS Tl 
(4 PER 

I 
INTERFA 

DATA 
} 

CE) 

MEMORY 
DATA BUS (13.3 MB/S) 

Figure 9 Block Diagram of the HSCArchitecture 

performance. They considered single internal bus 
architectures, but during simulation, these options 
were unable to meet either the initial or the long­
term cost goals. 

Figure 10 shows the controller architecture 
option that became the common hardware base for 
StorageWorks controllers. This architecture con­
tains three buses and two memories. A third small 
memory is used for Parity RAID and data compare 
operations but does not drastically increase con­
troller cost. The architectural design allows the pol-

32-KB 
INSTRUCTION 
AND DATA CACHE 

32-KB 
NVR AM 

I 

i960 
MICROPROCESSOR 

I 

MDAL BUS BUS 

icy processor to access one memory while a device 
or host port processor accesses the other memory. 

The architecture achieves a lower overall cost 
than the HSC architecture yet achieves similar 
performance. The new architecture, with fewer 
memories, does not significantly reduce the perfor­
mance, while the newer technology chosen to 
implement the controller enhances performance. 
The bus bandwidth of the new controller is much 
higher than that of the HSC controller. Conse­
quently, a more cost-effective solution that uses 

PCMCIA 
PROGRAM 
CARD (2 MB) 

I 

DUAL 
UART 

I 
IBUS BUS 

CDAL BUS 

TIMER 
HARDWARE 

I 

CONTROL 
REGISTERS 

I 
> 

BUFFER 
MEMORY 
(8MB) 

DRAB " EXCHANGER~ " - ----- ,/!DRAB 

16- 0R 32-MB 
READ OR 
BATIERY 
BACKED UP 
WRITE-BACK 
CACHE 

CACHE 
MODULE 

I 
HOST PORT 
(Cl, DSSI, SCSI) 

NBUS BUS 

DEVICE PORT 
53C710 
PROCESSOR 

I 
DEVICE PORT 
53C710 
PROCESSOR 

DEVICE PORT 
53C710 
PROCESSOR 

I 
DEVICE PORT 
53C710 
PROCESSOR 

Figure JO HS:x40 Controller Architecture 

I 
DEVICE PORT 
53C710 
PROCESSOR 

I 
DEVICE PORT 
53C710 
PROCESSOR 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 21 



RAID Array Controllers 

a less-costly architecture can attain similar to better 
performance. 

The extreme integration of hardware to the very 
large-scale integration (VLSI) level allowed for a 
much smaller enclosure than that of the HSC control­
ler, even with a dual-redundant controller configura­
tion (see Figure 3). A StorageWorks dual-controller 
configuration measures 56.5 by 20.9 by 43.2 centi­
meters (22 by 8 by 17 inches), which is approxi­
mately one-tenth the size of the HSC controller. 

Common Controller Platform The common con­
troller platform consists of the controller without 
the associated host port. The common core of hard­
ware consists of the policy processor hardware, the 
SCSI-2 device port hardware, and the cache module. 
The controller-specific host port interface hardware 
includes either the CI, the DSSI, or the SCSI interface. 

Policy Processor Hardware The StorageWorks 
controller policy processor is Intel's 25-MHz i960CA 
microprocessor, which contains an internal instruc­
tion cache and is augmented by a secondary cache 
external to the processor. The secondary cache 
relieves the potential bottleneck created by shared 
memory between the policy processor and host/ 
device port processors. 

The designers had to make trade-offs in two 
areas: the memory speed/cost and the number of 
buses. After simulation, the external instruction 
and data cache showed a significant performance 
improvement, given the chosen shared-memory 
architecture. The cache covers the first 2 MB of 
buffer memory, where policy processor instruc­
tions and local processor data structures reside and 
where most of the performance gain for the policy 
processor would be achieved. 

The policy processor uses the IBUS exclusively to 
fetch instructions and to access the program stor­
age card, the NVRAM, the DUART, and the timers. 

Program Storage StorageWorks firmware is con­
tained on a removable program card for quick code 
upgrades and to eliminate the need for a boot read­
only memory (ROM) on the controller. The program 
card is a PCMCIA, 2-MB flash electrically erasable, 
programmable, read-only memory (EEPROM) card 
that contains the firmware image. Designers chose 
the PCMCIA card to facilitate code updates in the 
field, where host-based downline loading of 
firmware was not supported. Although the PCMCIA 
card cost more than EEPROM chips attached to the 

22 

module, the designers felt that the benefits of such 
a design outweighed the additional cost. 

On each initialization, the controller reads the 
firmware image on the program card and copies the 
image to the shared memory. The firmware exe­
cutes from the shared buffer memory. 

Dual UART (DUART) The DUART is used for two 
reasons: 

1. Maintenance terminal connection. The main­
tenance terminal is a means of entering con­
troller system management commands (with the 
command line interpreter, which is the user 
interface for controller configuration manage­
ment) and is also a status and error reporting 
interface. Designers made extensive use of this 
interface for debugging controller hardware and 
firmware. Use of the maintenance terminal con­
nection is optional. The interface remains on the 
controller so that users can direct controller 
management and status reporting, if desired. 

2. Failover communication between two control­
lers in a dual-redundant configuration. The com­
munication path is used to share configuration 
and status information between the controllers. 

Shared Buffer and Cache Memory The dynamic 
random-access memory (DRAM) buffer (or shared 
memory) has at its heart the dynamic RAM and arbi­
tration (DRAB) chip. This chip supports the buffer 
and cache memory accesses from the policy pro­
cessor and from the host and device ports. The data 
transfer rate supported by the shared memory is 
approximately 35 megabytes per second (MB/s). 

The DRAB chip contains error-correcting code 
(ECC) hardware to correct single-bit memory, to 
detect multibit errors, and to check and generate 
bus parity. This feature allows the controller to 
survive partial memory failures, which was a fault­
tolerant goal for the controller. 

The decision to use DRAM chips in the memory 
design rather than static random-access memory 
(SRAM) chips led to the use of ECC. DRAMs were 
chosen because of their cost and power savings 
over equivalent SRAM. However, because the 
designers expected large amounts of DRAM (as 
much as 40 MB) to be present on a controller and its 
associated cache module, the statistical error prob­
abilities were high enough to warrant the use of 
ECC on the memory. The combination of DRAM and 
ECC was less costly than an equivalent amount of 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



The Architecture and Design of HS-series StorageWorks Array Controllers 

more reliable SRAM. The use of parity on the buses 
is a standard feature in all Storage Works controllers. 
The bus parity feature provides further error detec­
tion capability outside the bounds of the memory 
because it covers the path from memory to or from 
external host or device interfaces. 

The DRAB chip also controls access to the cache 
module in conjunction with slave DRAB chips on 
the cache module associated with the controller. 
These DRAB chips provide refresh signals for the 
DRAM buffer or cache memory that they control; 
whereas, the master DRAB on the controller module 
provides arbitration for cache accesses that origi­
nate from the various sources on the controller 
module. Slave DRAB chips can also be accessed by 
the dual-redundant partner controller, depending 
on the two controller LOCK signal states. 

The controller firmware uses 8 MB of shared 
buffer memory to execute the program image, to 
hold the firmware data structures, and to read and 
write-through cache data (if no cache module is 
present). The i960CA policy processor and the host 
and device data processing elements on the NBUS 
can all access buffer memory. 

Cache Memory Each cache memory module 
contains one slave DRAB chip and 16 or 32 MB of 
DRAM, and also two ports into the module (one 
from each controller) for use in failover. Each cache 
module optionally contains batteries to supply 
power to the DRAM chips in the event of power 
failure for write-back caching and Parity RAID use. 
The cache modules are interchangeable between 
controller types. 

Parity RAID XOR and Compare Hardware The 
Parity RAID XOR and compare hardware consists of 
the FX gate array and 256 kilobytes (KB) of fast 
SRAM. The FX allows concurrent access by SCSI-2 
device port hardware and the policy processor. The 
FX compares the XOR of a data buffer (512 bytes of 
data) that is entering or exiting an attached device 
with the XOR buffers in the fast SRAM. The policy 
processor uses the FX to perform compare opera­
tions at the request of a host and perform DMA 
operations to move data to and from memories. 
This hardware is common across all the controller 
platforms for Parity RAID and compare firmware. 

SCSI-2 Device Port Hardware The device ports 
(three or six, depending on the controller model) 
are controlled by Symbios Logic (the former NCR 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

Microelectronic Products Division of AT&T Global 
Information Solutions Company) 53C710 SCSI-2 
processor chips. The SCSI-2 processor chips reside 
on the NBUS and access the shared-memory cache 
for data structure and data buffer access. These pro­
cessors receive their work from data structures in 
buffer memory and perform commands on their 
specific SCSI-2 bus for read or write operations. 

The Symbios Logic chip provided the most pro­
cessing power, when compared to the other chips 
available when the controllers were designed. The 
designers felt that direct control of SCSI-2 interfaces 
by the policy processor or a separate processor 
was too costly in terms of processor utilization 
and capital expense. The Symbios Logic chips do 
require some policy processor utilization, but the 
designers considered this acceptable because high­
performance architectural features in the policy 
processor hardware compensated for the extra pro­
cessor utilization. 

The SCSI-2 device port supports the SCSI fast, 
single-ended, 8-bit interface. 1 The data transfer 
rate supported by this interface is 10 MB/s. 

Host Port Hardware The host port hardware 
is either a CI, a DSSI, or a SCSI interface imple­
mented with gate arrays or Symbios Logic 53C720 
SCSI-2 processors. The host port hardware, the only 
noncommon hardware on a StorageWorks con­
troller, requires a separate platform to support each 
host interface. 

The CI interface is made up of a gate array and 
CI interface hardware that performs DMA write 
or read operations from shared memory or cache 
memory over the NBUS. The maximum data transfer 
rate supported by the CI hardware is approximately 
8MB/s. 

The DSSI interface utilizes a Symbios Logic 
53C720 chip coupled with a gate array and DSSI 
drivers to receive and transmit data to or from the 
DSSI bus. The DSSI interface is 8 bits wide, and the 
maximum data transfer rate supported by the DSSI 
hardware is 4.5 MB/s. 

The SCSI interface also uses a Symbios Logic 
53C720 chip coupled with differential drivers to 
provide a SCSI-2, fast-wide (i.e., 16-bit) differential 
interface to hosts. The maximum data transfer rate 
supported by the SCSI-2 interface is 20 MB/s for 
fast-wide operations. 

Table 3 shows the current (version 2.0) maxi­
mum measured (at the host) data transfer rate per­
formance numbers for StorageWorks controllers. 

23 



RAID Array Controller s 

Table 3 SCSl-2 Host Interface Performance 

Controller 
Read Data Transfer Rate 
(Megabytes per Second) 

HSJ30/HSJ40* 

HSD30 

HSZ40** 

6.7 

3.2 

14 

• In a multihost environment 

.. Measured for the HSZ40-B controller 

Summary 
The StorageWorks HS-series array controllers were 
designed to meet the storage subsystem needs of 
both Digital and non-Digital systems, thereby enter­
ing the world of open systems. The architecture for 
the HSJ30, HSJ40, HSD30, and HSZ40 controllers has 
achieved the initial project goals and provides 

l. Open systems capability. A SCSI-2 device interface 
allows many types of disk, tape, and optical 
devices to be attached to the HSJ30, HSJ40, and 
HSD30 controllers. The HSZ40 controller, which is 
currently a disk-only controller, provides a SCSI-2 
host interface that allows the controller to be 
attached to Digital and non-Digital computers. 

2. High availability. Controller fault tolerance and 
RAID firmware yielded a highly available 
StorageWorks storage subsystem. 

24 

The dual-redundant controller configuration 
allows each of a pair of active controllers to 
operate independently with host systems, while 
sharing device ports, configuration information, 
and status. This design allows both controllers 
to achieve maximum performance. The dual­
redundant configuration also provides fault 
tolerance if one controller fails, because the 
surviving controller serves the failed control­
ler's devices to the host computers. The dual­
controller configuration, combined with 
StorageWorks controller packaging, results in 
a highly available controller configuration with 
built-in fault tolerance, error recovery, and bat­
tery backup features. 

Parity RAID controller firmware, combined with 
StorageWorks device packaging, allows for highly 
available disk configurations that are less costly 
than mirrored configurations. Furthermore, 
Parity RAID firmware performs automatic Parity 
RAID management and error recovery functions 

Write Data Transfer Rate 
(Megabytes per Second) 

4.4 

2.8 
8.0 

in the event of a failure and utilizes spare device 
pools in conjunction with user-defined Parity 
RAID configuration management policies. The 
StorageWorks Parity RAID implementation 
exceeds the requirements of the RAID Advisory 
Board for RAID availability features. 

3. High performance. The HSJ30/HSJ40, HSD30, and 
HSZ40 controllers achieved the respective initial 
performance goals of 1,100, 800, and 1,400 I/Os 
per second. The controllers met the low request 
latency goals by streamlining firmware where 
possible and by introducing write-back caching. 
Write-back caching firmware dramatically 
reduces latency on all write requests, and write­
back cache hardware provides battery backup for 
data integrity across power failures. Further­
more, the write-back cache overcomes the RAID 
level 5 small-write penalty and high data transfer 
rate inefficiencies and thus provides high perfor­
mance with Parity RAID disk configurations. 
StorageWorks Parity RAID firmware implements 
many of the RAID Advisory Board optional perfor­
mance features to produce a high-performance 
RAID solution. 

A common controller processing core was 
successfully developed for the HSJ30/HSJ40, 
HSD30, and HSZ40 controllers. More than 85 per­
cent of the firmware is common to all three con­
troller platforms, which allows for ease of 
maintenance and for the same look and feel for 
customers. The architecture and the technology 
used resulted in a core controller design that 
supports a high data transfer rate for all 
Storage Works controller platforms. 

These achievements represent the large engi­
neering investment that Digital has made to move 
into the open systems market with new technology 
for its storage solutions. These controller platforms 
are the basis for future controller architectures and 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



The Architecture and Design of HS-series StorageWorks Array Controllers 

platforms that utilize the knowledge and experi­
ence acquired during the development of the 
Storage Works HS-series array controllers. 

Acknowledgments 
The StorageWorks array controller project was the 
cooperative effort of a large number of engineers 
who sacrificed considerable personal time to 
achieve the project goals. The following people and 
groups contributed to the success of the product: 
Bob Blackledge, Diana Shen, Don Anders, Richard 
Woerner, Ellen Lary, Jim Pherson, Richard Brame, 
Jim Jackson, Ron McLean, Bob Ellis, Clark Lubbers, 
Susan Elkington, Wayne Umland, Bruce Sardeson, 
Randy Marks, Randy Roberson, Diane Edmonds, 
Roger Oakey, Rod Lilak, Randy Fuller, Joe Keith, 
Mary Ruden, Mike Richard, Tom Lawlor, Jim 
Pulsipher, Jim Vagais, Ray Massie, Dan Watt, Jesse 
Yandell, Jim Zahrobsky, Mike Walker, Tom Fava, 
Jerry Vanderwaall, Dave Mozey, Brian Schow, Mark 
Lyon, Bob Pemberton, Mike Leavitt, Brenda Lieber, 
Mark Lewis, Reuben Martinez, John Panneton, Jerry 
Lucas, Richie Lary, Dave Clark, Brad Morgan, Ken 
Bates, Paul Massiglia, Tom Adams, Jill Gramlich, 
Leslie Rivera, Dave Dyer, Joe Krantz, Kelly Tappan, 
Charlie Zullo, Keith Woestehoff, Rachel Zhou, 
Kathy Meinzer, and Laura Hagar. Thanks to the CAD 
team, the StorageWorks packaging and manufactur­
ing team, the software verification team, and the 
problem management team. A final thanks to our 
OpenVMS and DEC OSF/1 operating system partners 
and to the corporate test groups, all of whom 
worked with our engineering team to ensure inter­
operability between the operating systems and the 
controllers. 

References and Notes 

1. Information Systems-Small Computer Systems 
lnterface-2 (SCSJ-2), ANSI Xl.131-1994 (New York: 
American National Standards Institute, 1994). 

2. D. Patterson, G. Gibson, and R. Katz, "A Case for 
Redundant Arrays of Inexpensive Disks (RAID)," 
Report No. UCB/CSD 87/391 (Berkeley: University 
of California, December 1987). 

3. The RAID level 5 small-write penalty results 
when a small write operation does not write all 
the blocks associated with a parity block. This 
situation requires disk reads to recalculate parity 
that must then be written back to the RAID level 
5 unit to achieve data redundancy. 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

4. P. Massiglia, ed., The RA!Dbook: A Source Book 
for Disk Array Technology, 4th ed. (St. Peter, 
Minnesota: The RAID Advisory Board, September 
1994). 

5. P. Biswas, K. Ramakrishnan, D. Towsley, and 
C. Krishna, "Performance Analysis of Dis­
tributed File Systems with Non-Volatile Caches," 
ACM Sigmetrics (1993). 

6. Parity RAID unit reconstruction of data and parity 
from a failed array member means regenerating 
the data block-by-block from the remaining array 
members (see Figure 6) and writing the regen­
erated data onto a spare disk. Reconstruction 
restores data redundancy in a Parity RAID unit. 

7. Metadata is information written in a reserved 
area of a disk. The information, which takes up 
approximately 0.01 percent of the total disk 
capacity, describes the disk's configuration and 
state with respect to its use in a Parity RAID unit. 

8. P. Biswas and K. Ramakrishnan, "Trace Driven 
Analysis of Write Caching Policies for Disks," 
ACM Sigmetrics (1993). 

9. R. Lary and R. Bean, "The Hierarchical Storage 
Controller, A Tightly Coupled Multiprocessor 
as Storage Server," Digital Technical Journal, 
vol. 1, no. 8 (February 1989): 8-24. 

25 



Christoph J. Bu.filer I 

Policy Resolution in Wor"/iflow 
Management Systems 

One crucial function of a work/low management system (WFMS) is to assign tasks 
to users who are eligible to carry them out. Except in simple workflow scenarios, 
roles such as secretary and manager are not a sufficient basis for determining eligi­
bility. Additionally, WFMSS are deployed not only in group settings by small compa­
nies but also worldwide by large enterprises. Since local laws and business policies 
have to be followed, task assignment policies for the same task generally differ from 
country to country and, therefore, must be specified locally. The Policy Resolution 
Architecture (PRA) model provides more generality and expressiveness than role 
models do and at the same time supports the independent specification of task 
assignment policies in different parts of an enterprise. PRA can be used to model 
arbitrary organization structures and to define realistic task assignment (eligibil­
ity) rules by means of precisely defined organizational policies. Thus, PRA provides 
real-world organizations with a precise, simple means of expressing their complex 
task assignment policies. 

A workflow management system (WFMS) is a soft­
ware system that manages the flow of work 
between participants or users according to formal 
specifications of business processes called work­
flows. A workflow specifies tasks to be performed 
and their execution order. Additionally, a workflow 
specification defines the internal flow of data 
between tasks as well as all applications required to 
carry out the tasks. For example, a travel expense 
reimbursement workflow specifies the tasks of fill­
ing, checking and signing a form, and reimbursing 
an amount. This workflow specifies that the form 
must be signed before an amount is reimbursed. 
The workflow specification also defines the flow of 
the expense form between tasks and the required 
spreadsheet application. Finally, for each task of a 
workflow, some rule has to be in place that speci­
fies the users who are eligible to carry out the task. 
This set of eligible users is determined at run time, 
and the task is subsequently assigned to them. 

One of the key issues in successfully deploying 
WFMSs in an enterprise is the correct assignment 
of a given task to eligible users. An eligible user is 
one who is capable of and responsible for carrying 
out an assigned task. This distinction is impor­
tant because not every user who is capable of per­
forming a task is necessarily responsible for it. The 

26 

successful completion of a task, however, often 
requires that crucial, irreversible decisions be made 
by a person who is responsible for the task. Making 
the right decisions and then carefully and responsi­
bly carrying out the task is essential to conducting 
business successfully. 

The criteria used to determine an eligible user for 
a task are manifold. A user must have a specific set 
of capabilities to be able to carry out the task. 
Additionally, the position of a user in the organiza­
tion hierarchy and/or the reporting structure of the 
organization can determine if the user is responsi­
ble for the task. Furthermore, limits placed on 
a user's decision-making authority can affect eligi­
bility. For example, not every salesperson is autho­
rized to accept an order that leads to a significant 
increase in manufacturing output. Such an order 
requires special attention and internal coordi­
nation by a senior sales representative. When 
cost-optimized task assignments are made, the 
experience of the user as well as the user's skill set 
has to be taken into consideration. Highly experi­
enced users are in most cases expensive resources, 
but usually they can complete tasks faster than 
users with average exp erience. Although users 
with either level of experience may have sufficient 
experience to carry out a specific task, if deadlines 

Vol . 6 No. 4 Fall 1994 Digital Technical journal 



are involved or extreme caution with respect to 
quality is necessary, a highly experienced user 
might be appropriate. In such cases, the additional 
cost would be justified. 

The previous discussion demonstrates the neces­
sity of a precise definition of eligible users for a 
given task. Such a definition, i.e., set of task assign­
ment rules, should contain all the criteria used to 
determine eligible users for the task. Early in the 
development of Digital's ObjectFlow WFMS prod­
uct, the concept of roles was considered sufficient 
to model the assignment of tasks to users.1 How­
ever, an analysis of distributed enterprise-wide pro­
duction workflows clearly showed that using roles 
as the only assignment mechanism has limited 
value in determining eligibility. 2 The need for a far 
more expressive, general, and flexible approach 
became obvious. The analysis also revealed that 
workflows are often reused in different parts of 
an enterprise. A prominent example is the travel 
expense reimbursement workflow, which is dis­
cussed throughout this paper. Although a work­
flow is reused, however, the task assignment 
policies may differ greatly in the various parts of an 
enterprise. This difference is due to the need to 
adhere to local laws and/or to business-related devi­
ations from the general rules. 

Based on the requirements derived from several 
case studies of complex workflows, the Policy 
Resolution Architecture (PRA) was developed to 
provide a comprehensive way of specifying task 
assignment rules. 2 To support the fact that different 
parts of an organization may require different 
assignment rules, PRA and its implementation were 
designed as separate components. PRA incorpo­
rates three major elements and thus provides 

• Concepts that enable the modeling of any orga­
nization structure (not just roles and groups) 
without prescribing structures that are applica­
tion dependent. 

• Task assignment rules as entities in themselves, 
separate from a workflow specification. This 
makes it possible for each of the different parts 
of an enterprise to have its own set of task assign­
ment rules for the same workflow. 

• A language that enables the explicit specification 
of organization schemas and task assignment 
rules. Specifications are processed by a compo­
nent called the policy resolution engine during 
workflow execution. 

Digital Tecb 11icalJou r 11al Vol. 6 No. 4 Fall 1994 

Policy Resolution in Workflow Management Systems 

Before explaining PRA in detail and providing the 
rationale for its development, the paper introduces 
the key concepts of workflow management. This 
introduction presents a seemingly simple workflow 
that specifies travel expense reimbursement, which 
is later used to introduce the design objectives of 
PRA. Note that a real travel expense reimbursement 
workflow for production is by far more complex 
than the example used in this paper. A large dis­
tributed enterprise endeavors to reuse the same 
workflow in all of its parts because reuse facilitates 
administration and leverages the development 
investment. At the same time, such an enterprise 
probably sponsors numerous business trips, which 
makes the travel expense reimbursement workflow 
an excellent candidate to use as an example. 

Worliflow Management 
This section introduces a model of workflow man­
agement. The discussion begins with a survey of 
preliminary work. The survey suggests the motiva­
tion for workflow management and enumerates 
some areas in which workflow management is 
deployed. The key concepts of the workflow model 
are then used to model a workflow example, i.e., 
the travel expense reimbursement workflow. The 
section concludes with a definition of workflow 
management systems. 

Historical Survey 
Looking back in history reveals that workflow man­
agement has many roots. The most important are 
office automation, software process management, 
manufacturing, and transaction processing. The fol­
lowing short survey of achieved results is given 
to help the reader understand the motivation 
for workflow management. The discussion also 
explains the choice of workflow management con­
cepts. The list of previous and related works indi­
cates the range of literature that exists. 

Office Automation One of the primary roots of 
workflow management is undoubtedly office 
automation. Early research led to the development 
of models and tools to support office workers. 3-9 

What emerged were not only desktop applications 
that imitate concepts such as in basket, out basket, 
forms, and documents but also models of the pro­
cedures that the office workers follow while doing 
their jobs.10•11 Furthermore, systems were devel­
oped that execute the office procedures to actively 
manage the flow of work within offices. 12,13 

27 



Workflow Models 

Software Process Modeling A second major root 
ofworkflow management is software process mod­
eling and execution.14-25 The focus of research in this 
area is the automated support of software develop­
ment processes. Concepts comprise process mod­
els like the waterfall model or the spiral model, 
deliverable code, installation and operation manu­
als, requirements documents, and test cases. 26,27 

Manufacturing Traditionally, formalized proce­
dures that are executed repeatedly are inherent to 
manufacturing, another root of workflow manage­
ment. Manufacturing involves not only production 
processes but also preproduction procedures start­
ing from, for example, the release of computer­
aided design (CAD) drawings to the preparation of 
shop floor schedules.2s-31 

Transaction Processing Another important area 
that influenced the development of workflow 
management is transaction processing. After the 
concept of atomicity, consistency, isolation, and 
durability (ACID) transactions was developed, 
researchers proposed more advanced transaction 
models for processing several interdependent tasks 
that must be transactional and recoverable.32-39 

Coordination Theory, Enterprise Modeling, and 
Speech Act Theory Another area of research that 
contributed to the idea ofworkflow management is 
coordination theory. 4o,41 This area looks at pro­
cesses as one form of coordination and tries to 
apply interdisciplinary research results to it. The 
research area of enterprise modeling focuses on 
the modeling of the whole multifaceted enter­
prise. 42· 49 Enterprise activities are one part of an 
enterprise that drives the enterprise processes. The 
speech act theory is an attempt to model the con­
versation between humans. 50 Some research fol­
lows the direction that a workflow is an interwoven 
chain of speech acts. 51 

Early Application-independent Approaches In 
addition to the application-specific roots of work­
flow management, early approaches that modeled 
processes independent of application areas pro­
vided motivation for workflow management. 52-54 

The term process appears in all the areas of work 
mentioned above. Also, all these research areas deal 
with data, e.g., documents, CAD drawings, and 
orders. Most approaches have some notion of sub­
ject or agent. The question arose among researchers, 
Does each area need its own definition of terms, 

28 

modeling language, and execution mechanism, or 
is it possible to provide general concepts that need 
to be customized only for a specific area of applica­
tion? This question triggered the development of 
the concept of workflow, whose goal it is to serve 
as the general and customizable concept. 

Workflow Management Concepts 
After the specific application semantics (e.g. , docu­
ments, office workers, release procedures, and CAD 
drawings) have been abstracted, the basic concepts 
of workflow management can be distilled from the 
various approaches mentioned above. Although 
workflow management is independent of specific 
application semantics, it does support all the appli­
cation areas cited. It provides an integrated set 
of underlying concepts that can be customized 
to model the semantics of each application area. 
Workflow management is analogous to relational 
database systems. Such systems know how to 
model and implement tables and how to process 
queries; however, they do not know about the 
specific concepts of an application area that are 
implemented by user-defined tables, e.g., addresses 
and orders. 

The following list introduces the basic concepts 
ofworkflow management by enumerating the major 
aspects that make up a workflow specification: 14 

• Functional aspect. The functional aspect 
describes what has to be done, without say­
ing how, by whom, and with which data. The 
functional aspect provides two concepts: ele­
mentary workflows and composite workflows. 
Elementary workflows are tasks that can be car­
ried out by one person, program, or machine. 
For brevity, elementary workflows are called 
steps. Composite workflows bundle either 
elementary workflows or other composite 
workflows to higher-level tasks. In this way, 
a reuse hierarchy is built, since the bundled 
workflows may very well stand by themselves. 
Generally, these higher-level tasks can no longer 
be achieved by a single person, program, 
or machine but require several such entities. 
A workflow that bundles other workflows refer­
ences them. As a naming convention, a work­
flow that is referenced by some other workflow 
is called a subworkflow. The referencing work­
flow is called the superworkflow. The topmost 
workflow of a reuse hierarchy is called the top­
level workflow. 

Vol. 6 No. 4 Fall 1994 Digital Technical journal 



• Behavioral aspect. The behavioral aspect 
describes the execution order of the subwork­
flows of a workflow. Constructs that describe 
the order include sequence, conditional branch­
ing, parallel branching, and the looping and/or 
joining of parallel or conditional execution paths. 

• Informational aspect. The informational aspect 
is twofold: first, it describes the local variables of 
a workflow and the external data referenced; 
second, it describes the flow of data from sub­
workflow to subworkflow. 

• Organizational aspect. The organizational aspect 
describes who is eligible to carry out a step. The 
"who" can be a human (e.g., an office worker), 
a program (e.g., a compiler in a software pro­
cess), or a machine (e.g., a cell in a shop floor). 
The term user was chosen to represent all three. 
Most available WFMSs offer the concept of roles to 
model the organizational aspect. A role usually 
groups a set of users. At run time, tasks are 
assigned to roles and all users grouped by these 
roles are assigned the task. Although this method 
of task assignment is adequate for certain work­
flows such as departmental workflows, as shown 
later in the section Task Assignment in a Travel 
Expense Reimbursement Workflow, roles are not 
sufficient to handle workflows that are deployed 
in an enterprise-wide or international setting. 

The literature discusses additional aspects, e.g., 
a historical aspect and a technological aspect. 55 
The historical aspect is used to specify the kind of 
information to be stored in a historical database 
during the execution of a workflow, e.g., starting 
times or values of variables. Instead of having the 
default strategy of saving all data, the workflow 
specifies in the historical aspect only the important 
data that must be stored. The technological aspect 
allows the definition of which application program 
or programs are available to carry out a step. At run 
time, these application programs are made avail­
able to the user. In principle, it is not possible to 
enumerate all necessary aspects completely in 
advance. Depending on the application area to be 
modeled, additional aspects might appear and 
require support. 

The paper now shows how the key concepts 
of workflow management can be applied, i.e., cus­
tomized, to model a specific workflow type. The 
example used is a sample travel expense reimburse­
ment workflow. 

Digital Technical Journal Vol. 6 No. 4 Fall 199 4 

Policy Resolution in Workflow Management Systems 

Travel Expense Reimbursement Work.flow 
Figure 1 shows the graphical representation of 
a simplified workflow for the reimbursement 
of travel expenses. (Examples of workflow lan­
guage can be found in the literature.55,56) The work­
flow consists of four steps: (1) fill, (2) check, 
(3) sign, and (4) reimburse. The graphical represen­
tation shows the functional aspect (task structure) 
as ovals and the behavioral aspect (control flow) as 
solid arrows. The informational aspect (data flow) 
is displayed as forms; dotted arrows indicate the 
direction of the flow of data. The organizational 
aspect is omitted since the paper will focus later on 
this topic. The technological aspect is represented 
by icons of the software applications that are avail­
able to carry out the steps. The historical aspect is 
represented by icons that symbolize logs in which 
information must be recorded. 

Step 1 of the travel expense reimbursement 
workflow, the fill step, enables a user to enter the 
relevant expenses incurred during a business trip 
into an electronic travel expense form. After a user 
has finished entering the data, validation must take 
place. The check step enables a user to look at the 
contents of the travel expense form. This user is 
prompted to validate the contents but cannot 
change entries. If the user who checks the form 
detects an error, the form is sent back to the user 
who initially filled it out, with a note that explains 
the reason for rejection. Otherwise, the form is for­
warded to the next user who has to sign the form to 
approve the amount. After the sign step is com­
plete, the amount can be reimbursed. The last step, 
reimburse, enables a user to add the amount spent 
to the next paycheck of the user who requested 
reimbursement. 

This sample workflow is intentionally kept sim­
ple because beginning with the next section, the 
paper focuses solely on task assignment rules. In 
a real organizational setting, the workflow would 
involve more steps and additional execution paths. 
For example, a user who has to sign the form might 
detect an error. In this case, as in the check step, the 
form would be sent back to the user who initially 
filled it out. 

Workflow Management Systems 
Managing the flow of work among users is done by 
a software system called a workflow management 
system (WFMS). A WFMS contains all the specifica­
tions of the workflow types (e.g., a travel expense 

29 



Workflow Models 

D
NOTE 

~--------- · -------1 
' ' ' ' 

TravelExpenseReimbursement 

11 c:::J :: i ·----IDBI·--- i 
CHECK: ~ REIM~URSE 

:.,rn !~--: : 1-·lrn !~--: : 
' 

. 
' ' 

. 
' ' t 

Q_ Q_ Q_Q_ Q_ 

KEY: I .. ;."I l"''""I 
C) TASK 

CONTROL FLOW 

DATA FLOW 

[I§ ELECTRONIC FORM SPREADSHEET MONEY TRANSFER 
APPLICATION APPLICATION 

Q INFORMATION LOG 

Figure I Travel Expense Reimbursement Work.flow 

reimbursement or a capital equipment order) that 
are modeled and released for production. If a user 
issues a request to start a workflow (e.g., if, after 
a business trip, a traveler starts a travel expense 
reimbursement workflow), the WFMS creates an 
instance of the requested workflowtype. Ofcourse, 
more than one instance of the same workflow type 
can exist simultaneously. A WFMS assigns the steps 
of a workflow to users according to the specified 
order of the behavioral, functional, and organiza­
tional aspects. 

In general, a WFMS performs the following 
actions to execute a workflow instance: 

• Determine the next steps to be executed. 

• Determine the eligible users for these steps. 

• Assign steps to eligible users. 

• Wait for the result of each step. 

• Transfer the result back to the step's superwork­
flow and record the step as complete. 

The WFMS repeats these actions until all steps of 
a workflow are executed.55.57-59 This list of actions 
has to be slightly modified if, in addition to steps, 
a workflow contains composite workflows in its 
list of subworkflows. In this case, the subworkflow 

30 

is not assigned to users and the list of actions is 
applied to each of the subworkflows. 

Each user who can potentially be involved in 
a workflow is connected to a WFMS by a private 
worklist, which is a graphical representation of 
a list of steps assigned to the user. Each entry in a 
user's worklist represents a task the user is eligible 
to carry out. A user can participate in more than 
one workflow at the same time. Normally, the user 
is free to choose from the worklist any item on 
which to start. In well-designed systems, the WFMS 

automatically starts the application programs that 
the user will require to accomplish the work. In 
this way, the user can begin work immediately. 

Almost all prototype implementations or prod­
uct developments allow the modeling of the four 
main aspects described previously. The list of work­
flow management systems is growing rapidly, and 
references to relevant literature are readily avail­
abJe. 37.57-64 References to literature that describes 
the deployment of workflow management systems 
in an application area are rare, however.51,61,65-67 

The reminder of the paper focuses on the orga­
nizational aspect of workflow management. The 
paper discusses the derivation of the requirements 
that concepts of this aspect must meet and then 
introduces PRA as the model whose concepts 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



address the requirements. An analysis of the travel 
expense reimbursement workflow illustrates some 
of these requirements. Additional requirements are 
also described to provide a more complete set. 

Task Assignment in a Travel Expense 
Reimbursement Workflow 
The requirements that must be fulfilled by the con­
cepts of the organizational aspect were derived 
from the travel expense reimbursement workflow 
example, the author's project work experiences, 
and Marshak's "Characteristics of a Workflow 
System-Mind Your P's and R's."68 The following 
list describes task assignment rules for each step of 
the travel expense reimbursement workflow: 

• Fill. The fill step can be executed by anyone in 
an organization who has the potential to travel. 
This assignment rule enables an employee to fill 
in a travel expense reimbursement form after 
a business trip. (An employee who did not travel 
can also fill in a form and claim expenses; how­
ever, the check and sign steps are intended to 
detect such misbehavior and to reject the form.) 
The user who fills in the form is referred to as 
the applicant and is known at run time. 

• Check. The check step must be executed by 
a user who is able to play the role of secretary. 
To be able to validate the contents of the form, a 
user in this role is expected to know how a travel 
expense reimbursement form is structured and 
how to correctly fill in the form. This user is also 
expected to know the destination and the travel 
dates, and if the travel actually took place. Not all 
secretaries in an enterprise have this knowledge, 
but the secretary of the applicant 's manager can 
be expected to know the information. This sec­
retary usually plans the trip and often the meet­
ings of the traveler. If the user who is able to play 
the role of secretary determines that the con­
tents of the travel expense reimbursement form 
are sound, the form is forwarded to the next 
step; otherwise it is sent back to the applicant. 

The overall task assignment rule is therefore: 
Everyone who is able to play the role of secretary 
and reports to the same manager as the applicant 
is eligible to execute the check step. (Note that 
the term manager means a user who is able to 
play the role of manager.) 

• Sign. The sign step has to be executed by a man­
ager of the applicant because the manager 

Digital TeclmicalJou·,·11al Vol. 6 No. 4 Fall 1994 

Policy Resolution in Workflow Management Systems 

normally has to approve spending by subordi­
nates. Usually, there is only one user to whom 
the applicant reports and who is able to play the 
role of manager. If there are two such users, 
either can be responsible for signing the form 
and only one has to sign it. 

The overall task assignment rule is: Everyone 
who is able to play the role of manager and 
to whom the applicant reports is eligible to exe­
cute the sign step. 

• Reimburse. The reimburse step must be exe­
cuted by a financial clerk who is responsible for 
the group to which the applicant belongs. 

The overall task assignment rule is: Everyone 
who is able to play the role of financial clerk and 
who is responsible for the applicant's group is 
eligible to execute the reimburse step. 

The requirements thus far derived from the 
example are 

• Organization structure dependencies. To select 
one user relative to another (e.g., a user playing 
the role of secretary reporting to a user playing 
the role of manager) requires describing the 
users, the roles, and the dependencies (relation­
ships). This description is called an organization 
structure. An organization structure contains all 
organizational object types like "user," "group," 
or "role," and the relationships among them like 
"reports to" or "supervises." Given such a struc­
ture, users can be selected based on their rela­
tionships to others. Users can also be selected 
based on attributes such as their absence status 
(i.e. , whether they are on vacation or on a busi­
ness trip) or their workload. 

• Historical access. In some cases, the eligible user 
for a step cannot be determined locally, and his­
torical information is required. For example, 
determining the user who can play the role of 
manager in one step might require knowing 
which user started the workflow. Therefore, it 
must be possible to query a log of the history of 
a workflow to derive the information necessary 
to make task assignments. 

The following are additional requirements: 

• Data dependency. In the travel expense reim­
bursement example used in this paper, the man­
ager to whom the sign step is assigned can sign 
for any amount. In other cases, however, this 

31 



Workflow Models 

signatory power may have limitations. For 
instance, if the amount exceeds a certain value, a 
vice president and not the manager of the appli­
cant must sign the travel expense reimbursement 
form. As this last example shows, task assignment 
may depend on data in the workflow. 

• Delegation. A manager who is out of the office 
may want to delegate his/her tasks to keep busi­
ness operations running smoothly. The appro­
priate task assignment rule would then have to 
be extended to incorporate the delegation of 
tasks. Depending on the status of the manager 
(e.g., on a business trip or on vacation), the work 
would be assigned to someone else (i.e., dele­
gated). However, task assignment rules that 
incorporate delegation can be complex. Con­
sider the situation in which a manager leaves 
on a business trip after work has already been 
assigned. In this situation (and also in the case 
where a manager has an excessive amount of 
work to accomplish), the manager must be able 
to dynamically delegate some or all of the already 
assigned tasks. Further consider that a manager 
may want to delegate different types of tasks not 
to the same user but to different users, depend­
ing on the type of task. To avoid leaking informa­
tion or making an inexpedient assignment, the 
task assignment rule must make sure that the tar­
get users are eligible to receive the delegated 
task assignment. 

• Separation of duty. Some scenarios require a sep­
aration of duty, i.e., two tasks must be per­
formed by different users. For example, in the 
transfer of a large amount of money, two man­
agers must sign the transfer form to double­
check the transaction. Regarding the travel 
expense reimbursement workflow, a user who 
fills out the claim form should not also sign it. 
Task assignment rules must ensure that there is 
a separation of duty. 

• Responsibility. As previously stated, a subwork­
flow can be either a step or a group of steps that 
may be a reuse of building blocks for larger 
workflows. A second use of a composite work­
flow is to explicitly express responsibility for 
workflows. Sometimes an application domain 
requires a user to take responsibility for a set of 
tasks even though the user does not actually exe­
cute the tasks. For example, consider a work­
flow that implements the start of a new product 
development. The investment plan depends on 

32 

the development plan, which is based on a mar­
ket analysis. A manager or a vice president is usu­
ally responsible for these three complex tasks 
(market analysis, development plan, investment 
plan) but not involved in the detailed work. In 
a WFMS, this situation would be modeled as a 
workflow called Product Development Start, 
which contains the three complex tasks as sub­
workflows. The Product Development Start 
workflow could then be assigned to a manager 
or a vice president to model responsibility. The 
assignment to this user means only that the user 
must acknowledge the start of the assigned 
workflow and therefore accept responsibility 
for it. The assignment does not imply that the 
user has to perform the detailed work. Thus, 
a WFMS must be able to assign not only steps to 
users but also composite workflows. 

• Early/late allocation. Often, the application 
semantics clearly indicates the single user who 
should execute a task. In such cases, the related 
task assignment rule (e.g., the role of manager 
of applicant) passes to this user at run time. In 
other scenarios, however, successful execution 
of a task requires some capability that more than 
one user possesses. This capability is often 
expressed through a role (e.g., financial clerk, 
which is a role usually played by more than one 
user in large enterprises). In the single-user case, 
the task is assigned to that user regardless of the 
user's workload; this process is called early allo­
cation. The user must carry out the task unless it 
is feasible to delegate it. In the multiple-user 
case, the task appears on the worklist of all users 
able to play the role. One user starts the task; in 
most cases, this user would not have the highest 
workload. Therefore, the final allocation of the 
task is made not by the WFMS but by the set of 
eligible users themselves. This process is called 
late allocation. In this case, if one user starts 
work on a step, the other users are no longer 
allowed to begin the task.5,59 Subsequently, their 
assignment must be revoked. "Implementing 
Agent Coordination for Workflow Management 
Systems Using Active Database Systems" describes 
a general mechanism for handling the revoca­
tion of assignments.69 

The travel expense reimbursement workflow is 
used in the following discussion about the limita­
tions of roles as a basis for task assignment rules. 
These limitations influenced the major design 
objectives of PRA, which are then discussed. 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



Roles As Task Assignment Rules 
As stated earlier, roles have limited use as task 
assignment rules. Applying the role concept to the 
task assignment rules introduced above illustrates 
the limitations. Certainly, the term role has many 
definitions. In this paper, a role is an abstraction of 
a set of users. The abstraction criteria are the set 
of capabilities of a user. Whether or not a particular 
user belongs to the set of users abstracted by a role 
is defined by an explicit relationship between 
a user and a role called the "plays" relationship. A 
user who has a plays relationship with a role has the 
capabilities defined by that role, i.e., the user is able 
to play the role. For example, if both Ann and Joe 
are users who are able to play the role of clerk, then 
each one has the capabilities defined by this role 
and each is capable of executing the task. A user 
might have a wide range of capabilities and be able 
to play several roles at the same time. For example, 
a user might be able to play the role of employee 
and the role of manager simultaneously. Although 
this definition of role is not the only one, it is very 
common and often applied.6.t4.s1,s2.62,63.70,71 

For each task assignment rule that was intro­
duced in the travel expense reimbursement exam­
ple, a discussion follows about the extent to which 
roles support the requirements. 

• Fill. The task assignment rule for the fill step is 
the only rule of the example that can be modeled 
completely with a role . Assume that every user is 
able to play the role of employee. If the fill step 
is assigned to the role of employee, every user 
can execute the step, thus modeling exactly the 
task assignment rule of the fill step. 

• Check. Assigning the check step to the role of 
secretary does not model the full semantics 
of the desired task assignment rule. Such an 
assignment models only the requirement that 
a user has to be able to play the role of secretary 
to carry out the step. The assignment does not 
model the additional requirement that only 
those users who report to the same manager as 
the applicant are eligible. 

• Sign. Analogous to the situation in the check 
step, assigning the sign step to the role of man­
ager does not model that only a user to whom 
the applicant reports is eligible but that any man­
ager is eligible. 

• Reimburse. Assigning the reimburse step to the 
role of financial clerk ensures only that the step 

Dtgttal Techntcal]our 11 a l Vol . 6 No. 4 Fall 1994 

Policy Resolution in Workflow Management Systems 

is assigned to a capable user. The assignment 
does not fulfill the additional requirement that 
this user must also be responsible for the group 
to which the applicant belongs. 

The discussion of the last three task assignment 
rules demonstrates two tightly coupled limitations 
of using roles to model requirements. 

1. The concept of roles cannot express organiza­
tional dependencies, such as relationships 
between users (e.g., "reports to" and "responsi­
ble for") . It only relates users to roles by a plays 
relationship. Furthermore, roles do not provide 
a means of introducing additional objects of 
organization structures like "group" and "depart­
ment." The only two objects the concept of 
roles provides are "role" and "user." 

2. The concept of roles, therefore, does not pro­
vide a sufficiently sophisticated language to 
express, for instance, that a user not only has 
to play a certain role but also has to relate to 
some other user in a particular way (e.g., 
"reports to" a particular user). 

In addition, the other requirements like historical 
access, delegation, and separation of duty cannot 
be modeled at all using roles. 

To overcome these limitations, PRA introduces 
the concepts of organization schema and organiza­
tional policy and the Policy Definition Language. 
A brief introduction follows. Details are presented 
in the section Policy Resolution Architecture. 

Organization Schema 
One of the fundamental concepts of PRA is a freely 
definable organization schema. An organization 
schema contains all types of organizational objects 
and relationships that are available for modeling 
a particular organization. Figure 2a gives an exam­
ple of an organization schema. If a defined schema 
is instantiated, it contains an organization struc­
ture. Since other objects besides roles are required 
to model an organization, relationships other than 
"plays" must be available. Some necessary addi­
tional relationships are "reports to;' which relates 
two users, and "is responsible for" and "belongs to," 
which relate a user and a group. A freely definable 
organization schema, such as the one provided by 
PRA, allows designers to define roles as required 
by the workflow application. 

Such a freely definable organization schema may 
seem to be a luxury, and a fixed organization 

33 



Workflow Models 

ROLE 

PLAYS 

~6POR,T,s ___ ', ~6~:~~?.1.~.:\ D GROUP 

,' ', .... .,,,,.'.,. 

\, kl L / B;:;NGS ',, __ .,.. u TO 

USER 

(a) Sample Organization Schema 

SALES MANUFACTURING ENGINEERING ADMINISTRATION 

AL NINA KEN SUSAN MATI CHARLES MIKE 

88 8 
(b) Sample Organization Structure 

Figure 2 Sample Organization Schema and Organization Structure 
for the Travel Expense Reimbursement Example 

schema that provides the most relevant objects and 
relationships may seem sufficient. An analysis of 
various organization structures in different enter­
prises clearly shows, however, that a single organi­
zation schema is not adequate for all situations 
in which WFMSs can be deployed. An enterprise 
that deploys a schema in which the semantics of 
the modeled objects are fixed has to follow the 

34 

semantics completely. Consequently, such a 
schema does not meet enterprise-specific needs. 

Figure 2a shows a graphical representation of a 
sample schema for the travel expense reimburse­
ment example. Although this schema may appear 
general and an adequate alternative to an all­
embracing schema, it does not contain required 
organizational objects such as task forces with 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



a limited life span, committees, and departments. 
Also, this sample schema does not consider objects 
or relationships necessary for modeling delegation 
and relocation of employees. Figure 2b displays a 
superficial organization structure, i.e., an instantia­
tion of the schema. Objects like user and role are 
depicted as icons, and relationships are depicted as 
arcs and solid, dashed, and dotted lines between 
the icons. 

Approaches that go beyond using roles as a basis 
for task assignment commonly provide organiza­
tional objects in addition to roles and users, usually 
group and/or department objects.2,6.s.s9,72 The litera­
ture contains evidence that the schemas and the 
task assignment rules are fixed and have to be used 
as they are. Additionally, these approaches do not 
separate the workflow from the workflow specifi­
cation, which makes the reuse of a workflow in a 
different organizational setting very difficult. 

Organizational Policies As Task 
Assignment Rules 
A second fundamental PRA concept is that of an 
organizational policy, which up to this point has 
been called a task assignment rule. An organiza­
tional policy specifies all the eligible users for a 
task by stating the criteria a user must meet. These 
criteria can include a role or roles that a user has 
to be able to play and relationships that a user has to 
have with other users or groups. 

(a) 

Policy Resolution in Workflow Management Systems 

Figure 3a shows an example of an informal orga­
nizational policy for the sign step. This organiza­
tional policy specifies that if the WFMS is to assign 
the sign step, it will assign the step to the manager 
of the applicant if the amount is less than $1,000. 
Otherwise, it will assign the step to the vice presi­
dent responsible for the applicant's group. A more 
advanced rule would not fix the amount at $1,000 
but would make this amount dependent on the 
authorization level of the manager, as illustrated in 
Figure 3b. 

The Policy Definition Language is PRA's formal 
language for specifying organizational policies. 
Policies written in this language are precise and 
executable by an execution engine called the pol­
icy resolution engine. Each time the WFMS is about 
to assign a step, the system evaluates the corre­
sponding organizational policy to determine the 
set of users who can execute the task. 

Policy Resolution Architecture 
WFMSs operate in global, open, and distributed 
environments and in group, department, enter­
prise, and multiple-enterprise settings. The 
enterprise-level deployment of workflows is pos­
sible only if the underlying concepts and sys­
tems are developed appropriately. PRA is therefore 
based on several design principles that ensure a 
general approach that supports enterprise-level 
deployment. 

WORKFLOW TravelExpenseReimbursement 
STEP sign 
CRITERIA IF amount< 1000 

(b) 

THEN manager of applicant 
ELSE VP responsible for applicant's group 
ENDIF 

WORRFLOW TravelExpenseReimbursement 
STEP sign 
CRITERIA IF amount< authorization level of applicant's manager 

THEN manager of applicant 
ELSE VP responsible for applicant's group 
END IF 

Figure 3 Informal Organizational Policies for the Sign Step of the 
Travel Expense Reimbursement Workflow 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 35 



Workflow Models 

Design Principles 
The PRA design principles are reusability, security, 
generality, dynamics, and distribution. 

Reusability In the travel expense reimbursement 
example, the sign step was modeled to approve 
travel expenses. Other workflows, like capital 
equipment orders, can reuse the sign step for simi­
lar tasks, e.g., to approve an order. If an organiza­
tional policy were attached to the step type itself, 
this assignment rule would serve to determine eligi­
ble users independent of the workflow in which 
the step is reused. Viewed from an organizational 
perspective, however, the reuse of steps in differ­
ent workflows requires several policies. For exam­
ple, the signing of a travel expense reimbursement 
form is carried out by a manager of the applicant, 
whereas the signing of a capital equipment order 
for an amount that exceeds a certain value is carried 
out by an appropriate vice president. Therefore, 
the sign step in the context of a travel expense reim­
bursement workflow has an organizational policy 
that defines the manager of the applicant to be eligi­
ble, whereas the sign step in the context of the cap­
ital equipment order workflow has a different 
policy, one that defines an appropriate vice presi­
dent as eligible for the task. 

The observation that a policy for a step depends 
not only on the step itself but also on the workflow 
in which the step is reused led to the decision 

(a) 

to make organizational policies objects in them­
selves, independent of a workflow specification. 
Organizational policies name not only the step in 
which they are used but also the surrounding work­
flow. The design of organizational policies for a 
step depends on the context in which the step is to 
be reused. 

As mentioned earlier, making organizational poli­
cies independent objects allows different organi­
zation structures to reuse a workflow. To achieve 
such reuse, each organizational setting has its own 
set of organizational policies for the workflow to be 
reused. These organizational policies are tailored 
to the specific needs and circumstances of the orga­
nizational setting. 

Organizational policies can themselves be reused. 
Different steps may require the same set of eligible 
users, and, therefore, one policy would be suffi­
cient for more than one kind of step (e.g., sign and 
fill) or for more than one use of the same kind of 
step. For example, a manager signs not only travel 
expense forms but also capital equipment orders. 
In both workflows, the organizational policy that 
defines the manager of the applicant depends on 
the authorization level. Both workflows can reuse 
the sign step, as can be seen in the policy shown 
in Figure 4a. If the authorization level depends on 
the workflow, the policy changes to take into con­
sideration the specific kind of workflow, as shown 
in Figure 4b. 

WORKFLOW' TravelExpenseRe:imbursement I CapitalF.quipmentOrder 
STEP sign 
CRITERIA IF amount< authorization level of applicant's manager 

THEN manager of applicant 

(b) 

ELSE VP responsible for applicant's group 
END IF 

WORKFLOW' TravelExpenseRe:imbursement I CapitalF.quipmentOrder 
STEP sign 
CRITERIA IF amount< authorization level of applicant's 

manager depending on workflow type 
THEN manager of applicant 
ELSE VP responsible for applicant's group 
ENDIF 

Figure 4 Informal Organizational Policies Showing Reuse of the Sign Step 

36 Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



Security Because changing an organizational pol­
icy may affect daily business operations, all users 
should not be able to make changes at will. For 
example, a user (applicant) should not be able to 
approve his/her own travel request. Organizational 
policies are therefore objects that must be properly 
secured to prevent users from performing unau­
thorized tasks. The decision to design organiza­
tional policies as objects makes it easier to secure 
the policies, because security mechanisms such as 
access control lists (ACLs) can be applied directly 
to objects.73 

Designers considered and rejected the alter­
native approach of securing the workflow specifi­
cation and, consequently, the organizational 
policies included in the specification. Workflow 
types do have to be secured to prevent unautho­
rized changes; however, securing the workflow 
specification would allow those who are eligible 
to change the workflow type to also change the 
associated organizational policies. Such an all­
encompassing security design inhibits the separa­
tion of duty between workflow designers who care 
about how a business process is implemented by 
a workflow and organization designers who care 
about the organization structure and the user capa­
bilities and responsibilities. Protecting workflows 
independently of organizational policies allows 
users to modify a workflow without allowing them 
to modify organizational policies and thus gain or 
grant unauthorized eligibility. Similarly, organiza­
tion schemas and organization structures must be 
secured independently to prevent users from 
changing roles or relationships to gain or grant 
unauthorized authority. 

Generality Although several standard organiza­
tion structures prevail-strong hierarchical, matrix­
shaped, function-oriented, and networked-hybrid 
organization structures exist, which contain a myr­
iad of anomalies and exceptions. Independent of 
their organization structure, most enterprises have 
business processes that are potential candidates for 
a WFMS implementation. A WFMS that claims to be 
able to implement business processes in all kinds of 
enterprises must therefore be able to support all 
possible organization structures. A fixed organiza­
tion schema is inadequate for such a universal 
implementation capability. Consequently, PRA 
supports the modeling of arbitrary organization 
schemas and allows WFMSs to implement any orga­
nization that might exist. 

D igita l Tecbuical Journal Vol. 6 No. 4 Fall 1994 

Policy Resolution in Workflow Management Systems 

Following this general approach, it is apparent 
that a fixed set of assignment rules is also inade­
quate. The PRA design hence provides a language 
that enables users to define task assignment rules 
(organizational policies) as required by the work­
flows of an enterprise. 

Dynamics Organizations change for many rea­
sons, e.g., employee numbers fluctuate, restructur­
ing takes place, groups join or split because of new 
product strategies, etc. Business operations and 
therefore workflows, however, must continue unin­
terrupted. To do so, the organization structure and 
the organizational policies of a WFMS must change 
to reflect the changes in the real organization. The 
decision to separate workflows from organization 
structures and organizational policies enables users 
to change versions independently. For example, an 
organizational policy can change while a workflow 
that uses it is running. If the change takes place 
before the WFMS assigns the step to a user, the 
WFMS will use the new version of the organiza­
tional policy instead of the old version. Policy 
changes result in neither the shutting down of the 
WFMS nor the stopping and restarting (from the 
beginning) of the workflow. This independence 
allows WFMSs to deal with the dynamics of an orga­
nization and make correct task assignments while 
changes are taking place. 

Distribution Not only are enterprises becom­
ing more distributed, but they are also increasing 
their worldwide operation. Nations have different 
local laws and policies because they decide 
autonomously on these issues. A local subsidiary 
has to adhere to local law, even though it belongs 
to a company that operates worldwide. For exam­
ple, U.S. companies have a position called vice 
president. A U.S. company may have the rule 
that contracts with external suppliers of manu­
facturing parts must be signed by the vice presi­
dent of manufacturing. If the U.S. company has a 
German subsidiary, by German law, this subsidiary 
is a company in itself and must have a person called 
Gescbiiftsfubrer who is responsible for the opera­
tions of the company. If the subsidiary wants to 
enter into a contract with a supplier, German law 
requires the Gescbiiftsfuhrer to sign the contract 
even though the U.S. corporate organizational pol­
icy requires the vice president of manufacturing 
to sign. Although the same type of workflow is 
running in both countries, e.g. , the contract with 

37 



Workflow Models 

external supplier workflow, the organizational 
policies for the approval step differ. The U.S. 
version of the organizational policy specifies the 
vice president of manufacturing is the only eligible 
user, and the German version specifies that the 
Gescbiiftsfubrer is the only eligible user. 

Domains were introduced to deal with the issue 
of autonomous policies. A domain is an abstract 
entity of management. Organizational policies as 
well as workflows are related to domains. The pre­
vious example might involve two domains: "USA" 

and "GERMANY." (The domains could be further 
subdivided.) 

The principles just discussed guided the PRA 
design. As mentioned in the previous section, 
PRA defines the concepts of organization schema, 
organizational policy, and a formal language to 
model policies. In addition, PRA defines interfaces 
for an execution engine and their use by a WFMS. A 
detailed discussion of the PRA components follows. 

Organization Schema and 
Organization Structure 
The PRA organization schema is a set of objects and 
relationships that can be freely defined, thus 
enabling users to model arbitrary organizations. 
Each member of the set can be instantiated to popu­
late an organization schema, that is, to produce an 
organization structure. PRA allows users to define 
constraints on the organization structure to avoid 
erroneous structures. For example, if an enterprise 
has the policy that an employee must not report 
to more than two people, PRA enables the user to 
define a constraint that specifies that one p erson 
can be related to only two others through a "reports 
to" relationship. If a modeler adds a third reporting 
line, the system detects the violated constraint. 

Organizational Policy 
An organizational policy specifies a set of eligible 
users for a given workflow, which can be either ele­
mentary (a step) or composite. A set of users is not 
stable and therefore fixed but specified through an 
expression called an organizational expression. An 
organizational expression specifies the selection of 
users with particular properties from an organiza­
tion structure. For example, an expression might 
enumerate users, select all users able to play a par­
ticular role, or select a user related to some other in 
a specific way. Additionally, organizational expres­
sions can refer to the history of a workflow or to its 

38 

internal data, such as local variables, and thus be 
dependent on the workflow state. Consequently, 
the set of users for the same step in two different 
instances of the same workflow might be differ­
ent. Consider, for example, the travel expense reim­
bursement workflow, with the user selection for 
the sign step dependent on the authorization level. 
In two instances of the workflow, the amounts to 
be reimbursed might differ such that different peo­
ple, e.g., the manager and the vice president, must 
execute the two sign steps. 

To provide a general mechanism for determining 
a set of eligible users for a workflow, PRA organiza­
tional policies accommodate operations in addi­
tion to executing a step or taking responsibility for 
a composite workflow. Delegating a workflow and 
undoing a workflow are two examples. To delegate 
a workflow, an organizational policy has to ensure 
that both the person who delegates the workflow 
and the person to whom the workflow is assigned 
are eligible users. The operation of undoing a work­
flow ( i.e. , to undo the results achieved thus far) and 
starting again can result in wasted effort and unre­
coverable work. Therefore, a WFMS must carefully 
choose eligible users for this operation. 

To deal with various workflow operations, a PRA 
organizational policy relates a workflow type and 
one of its operations in a given domain to an organi­
zational expression. An organizational policy is 
defined as the tuple <workflow type, operation, 
domain, organizational expression>. For example, 
the organizational policy for the fill step in 
the travel expense reimbursement example is 
<TravelExpenseReimbursement.Fill, execute, USA, 

'every user who plays the role of employee'>. Since 
an applicant should be able to undo the step and 
start again, the WFMS must also specify the organi­
zational policy <TravelExpenseReimbursement.Fill, 
undo, USA, 'the user who started fill'>. (The next 
section describes PRA's formal language for specify­
ing organizational policies.) 

When a WFMS determines that a workflow in 
a particular domain is to be executed, it calls 
the policy resolution engine, which looks for the 
appropriate organizational policy and evaluates 
its organizational expression. The engine returns 
the results of the evaluation, i.e ., the set of eligible 
users, to the WFMS, which subsequently assigns the 
workflow to those users. One organizational policy 
can be reused for several workflow types, domains, 
etc., by entering a set in the appropriate element 
of the tuple. For example, if the organizational 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



Policy Resolution in Workflow Management Systems 

policy for the fill step of the travel expense reim­
bursement workflow is the same in the U.S. 
as it is in Europe, the policy could be modeled as 
<TravelExpenseReimbursement.Fill, execute, {USA, 
EUROPE}, 'every user who plays the role of 
employee'>. 

Policy Definition Language 
From the organizational viewpoint, the following 
elements are necessary to run a workflow: an organi­
zation schema together with its instantiation, the 
organizational policies for this workflow, and the rel­
evant organizational expressions. To describe these 
elements in a formal way, PRA defines a language 
called the Policy Definition Language (PDL), which 
consists of several parts. The first part enables the 
definition of an organization schema and its popula­
tion. The second part is concerned with organiza-

ORGANIZATION_TYPE Role 
ATTRIBUl'ES name: String 

tional expressions. Finally, the third part supports 
the definition of organizational policies. 

The following figures illustrate the POL for a sam­
ple organization schema and organization struc­
ture, some organizational expressions, and some 
organizational policies for the travel expense reim­
bursement workflow. Figure 5 shows the POL for 
the organization schema displayed in Figure 2a. The 
POL for the instantiation displayed in Figure 2b 
appears in Figure 6. 

The organization schema definition part of the 
POL looks like a data definition language (ODL) in a 
relational database. Two differences exist, though: 
(1) POL distinguishes organizational object types 
from organizational relationship types, and (2) POL 

allows complex data types (e.g., sets as attributes). 
If a policy resolution engine is built on top of a rela­
tional database, a compiler or a translator within 

authorization_ level: set(task, amount); 
KEYS name; 

ORGANIZATION_TYPE Group 
ATTRIBUl'ES name: String 
KEYS name; 

ORGANIZATION_TYPE User 
ATTRIBUl'ES name: String 

office_tel_#: String 
e_mail: String 
absence: {vacation, ill, business, available} 

KEYS name; 

RELATIONSHIP_TYPE Reports_to 
FROM User 
TO User 
ATTRIBUTES kind: {line, fwlctional, none} 

RELATIONSHIP_TYPE Plays 
FROM User 
TO Role 
ATTRIBUTES duration_fran: date 

duration_to: date 

RELATIONSHIP_TYPE Responsible_for 
FROM User 
TO Group 

RELATIONSHIP_TYPE Belongs_to 
FROM User 
TO Group 

Note that, for s~licity, we assume user names to be unique. In reality, 
this is not the case and the modeling must deal with nonunique names. 

Figure 5 Policy Definition Language for the Sample Organization Schema Shown in Figure 2a 

Digital Teclmical]ournal Vol . 6 No. 4 Fall 1994 39 



Workflow Models 

40 

Role "~loyee", {} 
"Manager", { (TravelExpenseReimbursement.Sign, 1000), 

(CapitalEquipraentOrder.Sign, 5000)} 
"FinancialClerk", {} 
"Secretary", {} 
"Enqineer", {} 
"VP", { (TravelExpenseReilllbursement. Sign, *) , 

(CapitalEquipnentOrder.Sign, *)} 

Group "Sales" 
"Manufacturing" 
"Engineering" 
"Administration" 

User "Al", "[11 125-5589", 
"Nina", "[11 125-5590", 
"Ken", "[11 125-5601", 
"Busan", "[11 125-5609", 
"Matt", "[11 125-4499", 
"Charles"," [11 125-4580", 
"Mike", "[11 125-0101", 

Reports_to "Al", ''Nina", 
"Ken", "Nina", 
"Nina", ''Mike", 
"Susan", "Matt", 
"Charles", "Matt", 
"Matt", "Mike", 
"Mike", "" , 

"al@center. can", available 
"nina@center. can", available 
''ken@center. can", available 
"susan@center.can", business 
"matt9center.can", available 
"charles@center . can", available 
"mike@center. can", available 

line 
line 
line 
line 
line 
line 
none 

Plays "Al", "Errployee", 01-02-88, 0-0-0 (* open ended*) 
"Al", "FinancialClerk", 01-02-88, 0-0-0 
"Nina", "Err;>loyee", 01-02-90, 
"Nina", "Manager", 01-02-90, 
"Ken", "Employee", 01- 02-91, 
"Ken", "Secretary", 01-02-91, 
"SU.San", "Elr;;>loyee", 01- 02-92, 
"Susan", "Secretary", 01- 02- 92, 
"Matt", "E:11\Ployee", 01-02-88, 
"Matt", "Ma.nag-er", 01-02-88, 
"Charles", "~loyee", 01-02-88, 
"Charles", "Engineer", 01-02-88, 
"Mike", "Enl)loyee", 01-02-90, 
"Mike'', "VP", 01-02-93, 

Responsible_for "Al", 
"Al", 
"Al", 
"Mike", 
"Mike", 
"Mike" , 

"Sales" 
"Manufacturing" 
"Eng'ineering" 
"Sales" 
"Manufacturing" 
"Enqineering" 

Belongs_to "Al", 
"Nina", 
"Ken", 
"Susan", 

"Administration" 
"Enqineering" 
"Administration" 
"Administration" 

"Matt", "Engineering" 
"Charles", "Enqineering" 
"Mike", 

0-0-0 
0-0-0 
0-0-0 
0-0-0 
0-0-0 
0- 0-0 
0-0-0 
0-0-0 
0-0-0 
0-0-0 
0-0-0 
12-31-97 

Figure 6 Policy Definition Language for the Sample Organization 
Structure (Instantiation) Shown in Figure 2b 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



the engine translates the organization schema defi­
nition part of POL into a set of OOL statements. 

Figure 7 lists the organizational expressions 
required to formulate the organizational policies 
for the travel expense reimbursement workflow. 
Note that the organizational expression for employ­
ees selects all users who play the role of employee. 
The RETURNS statement indicates the search for 
users. The definition of the plays relationship type 
in Figure 5 indicates that the employee is of the 
type role. This information is sufficient to formu­
late a query to the underlying database system in an 
implementation of a policy resolution engine. 

The POL for the organizational policies for the 
travel expense reimbursement example appears in 
Figure 8. The WFMS applies the first organizational 
policy when assigning the fill step in a travel expense 
reimbursement workflow. The policy is valid in 
three domains, USA, EUROPE, and ASIA, for the exe­
cute operation, which has no parameters. The pol­
icy engine returns a set of all users who are able to 
play the role of employee. The second policy listed 
in Figure 8 returns a set of all users who play the 

Policy Resolution in Workflow Management Systems 

role of secretary and who report to the same user 
as the applicant. 

Independent from the travel expense reimburse­
ment example are the sample separation of duty 
and delegation policies shown in Figures 9 and 10. 
The organizational policy that specifies separation 
of duty ensures that the user who signs the expense 
form is different from the user who fills out the 
form. The policy that models the delegation opera­
tion contains a parameter that specifies to which 
person the sign step is to be delegated. Only the 
manager of the applicant can call this operation 
and then only if the parameter specifies either the 
next higher manager or the responsible vice presi­
dent. The step can be delegated only to one of these 
two users. 

Since the POL is well defined, it can be used not 
only by designers to model organizations and poli­
cies but also by developers of graphics-oriented 
tools. Such tools could present graphical symbols to 
users to be manipulated. When a user decides to 
commit the changes, the tool generates a POL script, 
which is fed into the policy resolution engine. 

ORGANIZATIONAL_EXPRESSION employees() 
RETURNS user: user 

user plays employee 

ORGANIZATIONAL_EXPRESSION secretaries() 
RETURNS user: user 

user plays secretary 

ORGANIZATIONAL_EXPRESSION manager_of(User: a_user) 
RETURNS User: user 

a_user reports_to user 

ORGANIZATIONAL_EXPRESSION subordinates_of(User: a_user) 
RETURNS User: user 

user reports_to a_user 

ORGANIZATIONAL_EXPRESSION group_of(User: a_user) 
RETURNS Group: group 

a_user belongs_to group 

ORGANIZATIONAL_EXPRESSION VP_responsible_for_group_of(User: a_user) 
RETURNS User: user 

user plays VP 
INTERSECTION 
user responsible_for group_of(a_user) 

ORGANIZATIONAL_EXPRESSION executinq_agent (WOrkflow: a_workflow) 
RETURNS User 

(* provided by the historical services of WFMS *) 

Figure 7 Organizational Expressions for the Travel Expense Reimbursement Example 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 41 



Workflow Models 

ORGANIZATIONAL_POLICY 
WORKFLOW TravelExpenseRei.mbursement.Fill 
OPERATION Execute () 
DOMAIN USA, EUROPE, ASIA 
ORGANIZATIONlU._EXPRESSION employees() 

ORGANIZATIONAL_POLICY 
WORKFLOW TravelExpenseRei.mbursement.Check 
OPERATION Execute ( ) 
DOMAIN USA, EUROPE, ASIA 
ORGANIZATIONAL_EXPRESSION 

secretaries ( ) 
INl'ERSECTION 

subordinates_of ( 
manager_of( 

ORGANIZATIONAL_POLICY 

executing_agent ( 
TravelExpenseRei.mbursement . Fill) ) ) 

WORKFLOW TravelExpenseRei.mbursement.Sign 
OPERATION Execute () 
DOMAIN USA, EUROPE, ASIA 
ORGANIZATIONAL_EXPRESSION 

manager_of( 
executing_agent( 

TravelExpenseRei.mbursement.Fill) ) 

ORGANIZATIONAL_POLICY 
WORKFLOW TravelExpenseRei.mbursement.Rei.mburse 
OPERATION Execute() 
DOMAIN USA, EUROPE, ASIA 
ORGANIZATIONAL_EXPRESSION 

financial_clerks () 
INl'ERSECTION 

User: user responsible_for 
group_of( 

executing_agent( 
TravelExpenseRei.mbursement.Fill)) 

Figure 8 Organizational Policies for the Travel Exp ense Reimbursement Example 

ORGANIZATIONAL_POLICY 
WORKFLOW TravelExpenseRei.mbursement.Sign 
OPERATION Execute() 
DOMAIN USA, EUROPE, ASIA 
ORGANIZATIONlU._EXPRESSION 

manager_of( 
executing_agent ( 

TravelExpenseRei.mbursement.Fill)) 
DIFFERENCE 
executing_agent( 

TravelExpenseRei.mbursement .Fill) 

Figure 9 Organizational Policy for the Separation of Duty 

Approaches like the ones mentioned earlier in 
the paper provide a fixed set of types for modeling 
an organization or a fixed set of functions, such as 
"role player" or "supervisor," from which to select 

users for a workflow. None of these approaches 
provides a language like PDL that can freely define 
the organizational aspect as the application seman­
tics requires. 

42 Vol. 6 No. 4 Fa/11994 D igital Tecb11icaljournal 



Policy Resolution in Work.flow Management Systems 

ORGANIZATIC6AL_POLICY 
WORJCFLOW TravelExpenseReilllbursement.Sign 
OPERATION Delegate (User: a_user) 
DOMAIN USA, EUROPE, ASIA 
ORGANIZATIONAL_EXPRESSION 

IF a_user IN 
(manager_of ( 

manager_of( 
executing_agent( 

TravelExpenseRei.mbursement.Fill))) 
OR 

VP_responsible_for_group_of( 
executi.ng_agent( 

TravelExpenseRei.mbursement.Fill))) 
THEN 

manager_of( 
executing_agent( 

TravelEx;penseReimbursement.Fill)) 

Figure JO Organizational Policy for the Delegate Operation 

Policy Resolution Engine 
The policy resolution engine is a mechanism that 
evaluates organizational policies for a WFMS. Serving 
as a base service, the policy resolution engine 
manages organizational policies and organizational 
expressions, as well as the organization schema and 
its population. The engine also provides interfaces 
for the definition, modification, and evaluation 
of these objects. The interfaces are distinguished 
by the kind of service they provide. There are basi­
cally two kinds of interfaces: evaluation interfaces 
and management interfaces. 

Evaluation Interfaces Policy resolution engine 
clients use evaluation interfaces to evaluate organi­
zational policies or organizational expressions 
when necessary. The engine provides four evalua­
tion interfaces: two for organizational policies 
("resolve" and "conform to") and two for organi­
zational expressions (also "resolve" and "conform 
to"). The resolve operation for organizational poli­
cies expects a workflow reference and one of its 
operations as input values. This operation selects 
an appropriate organizational policy, evaluates it, 
and returns a set of users eligible to execute the 
given task of the workflow. The conform to opera­
tion for organizational policies expects a workflow 
reference, one of its operations, and a user as input 
values. This operation resolves the appropriate 
organizational policy for the workflow and checks 
whether the user is contained in the set of results 
for that organizational policy (i.e., if the user con­
forms to the policy). If the user is contained in the 

Digital TecbntcalJournal Vol. 6 No. 4 Fall 1994 

set of results, the conform to operation returns the 
value "true"; otherwise it returns the value "false." 
Policy resolution engine clients use this operation 
to validate a request by a user to execute a certain 
task of a workflow. 

The resolve and conform to operations for orga­
nizational expressions work analogously. Instead 
of a workflow reference, the operations expect 
the name of an organizational expression as input. 
The operations evaluate the named organizational 
expression and return the set of results, which 
is used if the resolve operation is called. The con­
form to operation returns true and false values as 
described in the previous paragraph. 

Management Interfaces Management interfaces 
are used to define, modify, or delete organizational 
policies, organizational expressions, or organiza­
tion schemas and their populations. These inter­
faces look like the following operations that are 
provided for organizational policies: create, delete, 
modify, list, get. The create operation creates an 
organizational policy; the delete operation deletes 
a policy; the modify operation allows users to 
change an organizational policy to adjust to new 
requirements; the list operation returns the identi­
fiers of all policies; and the get operation returns 
the complete description of a policy. 

Designers do not call these management inter­
faces directly, since they communicate their 
changes through user-friendly interfaces or tools. 
These tools are either graphics oriented or language 
oriented. In a graphics-oriented tool, a designer 

43 



Workflow Models 

manipulates icons and graphical symbols, which in 
turn results in calls to the appropriate management 
interfaces. Alternatively, a graphics tool can gener­
ate a POL script according to the manipulations of a 
user and submit this script to the policy resolution 
engine. In this case, the engine interprets the sub­
mitted script and changes its internal state accord­
ingly. Language-oriented tools enable a designer to 
directly express changes using POL These tools take 
specifications and translate them into management 
interface calls. Of course, they can also submit the 
language specifications directly as POL scripts to 
the policy resolution engine, as described above. 

Legacy Databases Many large enterprises have 
developed databases that contain some or all of the 
organizational data the policy resolution engine 
needs to evaluate organizational policies. These 
databases, called legacy databases, might be self­
implemented or based on standards efforts like 
those related to providing directory services on 
networks, i.e., X.500.74 In general, organizations 
must deal with one of the following scenarios: 

• No legacy database exists. No existing database 
has to be considered, and the policy resolution 
engine can use its own database to build up orga­
nizational knowledge. 

• Legacy databases contain all relevant data. To 
use the policy resolution engine, the database 
must provide a sufficiently expressive query 
interface, on top of which queries issued from 
the engine can be evaluated. The only additional 
information that has to be stored is organiza­
tional policies and organizational expressions. 
The organization has to choose whether to 
extend the legacy databases or to use the 
database within the policy resolution engine. 

• A legacy database contains some relevant data. 
In addition to organizational policies and orga­
nizational expressions, organizational objects 
and relationships must be stored in either the 
legacy database or the database of the policy res­
olution engine. 

If the relevant data is stored in several databases, 
the querying interface must be built in such a way 
that the policy resolution engine can issue the nec­
essary queries, which might span several databases. 
Furthermore, semantics issues have to be dealt 
with in heterogeneous environments.75,76 

Architectural Considerations-Clients of a Policy 
Resolution Engine From an architectural point of 
view, there are two possible ways to design a policy 
resolution engine: 

1. Incorporate the policy resolution engine into 
a WFMS. The engine would be a module, whose 
operations are hidden by the exported inter­
faces of the WFMS. All calls to the engine opera­
tions would be made through the interface of 
theWFMS. 

2. Make the policy resolution engine an indepen­
dent component. The engine would be a server 
with a WFMS system as one of its clients. All 
clients of the engine, including the WFMS, would 
be able to directly access the exported opera­
tions of the engine. 

PRA recommends the implementation of a policy 
resolution engine as an independent base service, 
which can be used by clients other than a WFMS. 
For example, an electronic mail system can be 
a client of the policy resolution engine. Since elec­
tronic mail is sent to users, rather than enumerate 
the electronic mail addresses of the recipients by 
hand, organizational expressions can provide the 
addresses. For example, a manager could send an 
electronic mail message to "all my subordinates" or 
an engineer could send an electronic mail message 
to "all my colleagues who are engineers." The sam­
ple operational expression shown in Figure 11 
returns all electronic mail addresses of all subordi­
nates of a given user. 

Another possible client is a transaction process­
ing monitor, which incorporates workflow man­
agement. 77 Dayal et al. reference a service called 
role resolution, which is an earlier development of 
policy resolution. 78 

ORGANI:ZATIONAL_EXPRESSION subordinates(User: a_user) 
RETURNS String: user_e_mail 

user reports_to a_user 

Figure 11 Organizational Expression for Electronic Mail 

44 Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



Figure 12 shows a schematic representation of 
a policy resolution engine with three clients-a 
WFMS, a transaction processing monitor, and an 
electronic mail system. 

Summary 
The sample workflow discussed in this paper, that 
is, the travel expense reimbursement workflow, 
illustrates that roles are sufficient as task assign­
ment rules for only the simplest scenarios. Since 
workflow management systems are deployed in sit­
uations where complex workflows are modeled 
and executed, a more general and powerful model 
called the Policy Resolution Architecture (PRA) was 
developed. PRA provides the concept of an organi­
zational policy. An organizational policy is more 
general than a role in that it relates a workflow type 
to an organizational expression that determines the 
set of eligible users for the workflow. Because they 
state all criteria a user has to fulfill and do not limit 
the selection based on their properties or interrela­
tionships, organizational policies specify all eligible 
users. Since an organizational expression is related 
to a workflow type by an organizational policy, task 
assignment through organizational policies is a very 
general approach. Organizational policies are eval­
uated based on organization schema and their 
populations (organization structures). Since PRA 
provides a way to model arbitrary complex organi­
zation schemas, arbitrary organizations can be mod­
eled and subsequently populated. This generality, 
in conjunction with organizational policies, pro­
vides a powerful and flexible approach to task 
assignment in workflow management. 

Acknowledgments 
I want to thank the anonymous referees whose 
remarks helped me a great deal in revising this 

WORK FLOW 
MANAGEMENT 
SYSTEM 

TRANSACTION 
PROCESSING 
MONITOR 

POLICY 
RESOLUTION 
ENGINE 

ELECTRONIC 
MAIL SYSTEM 

Figure 12 Client-server Structure 
of a Policy Resolution Engine 

Digital Tecbntcal]ournal Vol. 6 No. 4 Fall 1994 

Policy Resolution in Workflow Management Systems 

paper. Susan Thomas assisted me by improving my 
English and thus making the paper more readable. 
Kathy Stetson was always very helpful in coordinat­
ing the writing and revision processes. 

References 

1. T. May, "Know Your Work-Flow Tools," BYTE 

(July 1994). 

2. T. Kreifelts and P. Seuffert, "Addressing in 
an Office Procedure System," Message Hand­
ling Systems, State of the Art and Future 
Directions: Proceedings IFIP WG 6.5 Working 
Conference on Message Handling Systems, 
R. Speth, ed. (Amsterdam: North-Holland, 
1987). 

3. S. Chang and W Chan, "Transformation 
and Verification of Office Procedures," IEEE 

Transactions on Software Engineering, vol. 
SE-11, no. 8 (August 1985). 

4. W Croft and L. Lefkowitz, "Task Support in an 
Office System," ACM Transactions on Office 
Information Systems, vol. 2, no. 3 (July 1984). 

5. C. Ellis and G. Nutt, "Office Information Sys­
tems and Computer Science;' Computing 
Surveys, vol. 12, no. 1 (March 1980). 

6. C. Ellis and M. Bernal, "Officetalk-D: An 
Experimental Office Information System," 
First SIGOA Conference on Office Informa­
tion Systems (1982). 

7. C. Ellis, "Formal and Informal Models of 
Office Activity," Information Processing 83, 
R. Mason, ed. (Amsterdam: North-Holland, 
1983). 

8. B. Karbe and N. Ramsperger, "Concepts and 
Implementation of Migrating Office Pro­
cesses," Verteilte Kunstliche Intelligenz und 
Kooperatives Arbeiten: 4. Internationaler 
GI-Kongrefl Wissensbasierte Systeme, Infor­
matik Fachberichte 291, W Brauer and 
D. Hernandez, eds. (Munich: Springer-Verlag, 
October 1991). 

9. T. Kreifelts, "Coordination of Distributed 
Work: From Office Procedures to Custom­
izable Activities," Verteilte Kunstliche 
Intelligenz und Kooperatives Arbeiten: 4. 
Internationaler GI-Kongrefl Wissensbasierte 
Systeme, Informatik Fachberichte 291, 
W Brauer and D. Hernandez, eds. (Munich: 
Springer-Verlag, October 1991). 

45 



Workflow Models 

10. C. Cook, "Streamlining Office Procedures­
An Analysis Using the Information Control 
Net Model," AF/PS Conference Proceedings of 
the 1980 National Computer Conference, 
Anaheim, California (May 1980). 

11. I. Ladd and D. Tsichritis, "An Office Form Flow 
Model," AF/PS Conference Proceedings of the 
1980 National Computer Conference, Ana­
heim, California (May 1980). 

12. L. Baumann and R. Coop, "Automated Work­
flow Control: A Key to Office Productivity," 
AF/PS Conference Proceedings of the 1980 
National Computer Conference, Anaheim, 
California (May 1980). 

13. M. Zisman, "Representation, Specification 
and Automation of Office Procedures," Ph.D. 
dissertation (Philadelphia: University of Penn­
sylvania, Wharton School, 1977). 

14. B. Curtis, M. Kellner, and ]. Over, "Process 
Modeling," Communications of the ACM, vol. 
35, no. 9 (September 1992). 

15. W. Deiters and V Gruhn, "The Funsoft Net 
Approach to Software Process Management," 
International Journal of Software Engineer­
ing and Knowledge Engineering, vol. 4, no. 2 
(1994). 

16. W. Deiters, V Gruhn, and H. Weber, "Software 
Process Evolution in MELMAC," The Impact of 
CASE Technology on Software Processes 
Series on Software Engineering and Knowl­
edge Engineering, vol. 3, D. Cooke, ed. (Singa­
pore: World Scientific Publishing, 1994). 

17. D. Harel et al., "STATEMATE: A Working Envi­
ronment for the Development of Complex 
Reactive Systems," Proceedings of the Tenth 
International Conference on Software Engi­
neering (1988). 

18. W. Humphrey and M. Kellner, "Software Pro­
cess Modeling: Principles of Entity Process 
Models," Proceedings of the Eleventh Inter­
national Conference on Software Engineer­
ing (May 1989). 

19. M. Jaccheri and R. Conradi, "Techniques for 
Process Model Evolution in EPOS," IEEE Trans­
actions on Software Engineering (December 
1993). 

46 

20. T. Katayama, "A Hierarchical and Functional 
Software Process Description and Its Enac­
tion," Proceedings of the Eleventh Interna­
tional Conference on Software Engineering 
(May 1989). 

21. P. Mi and W. Scacchi, Operational Semantics 
of Process Enactment and Its Prototype 
Implementations (Los Angeles: University 
of Southern California, Computer Science 
Department, April 1991). 

22. P. Mi and W. Scacchi, Modeling Articulation 
Work in Software Engineering Processes (Los 
Angeles: University of Southern California, 
Computer Science Department, April 1991). 

23. P. Mi and W. Scacchi, "A Knowledge-Based 
Environment for Modeling and Simulating 
Software Engineering Processes," IEEE Trans­
actions on Knowledge and Data Engineer­
ing, vol. 2, no. 3 (September 1990). 

24. L. Osterweil, "Software Processes Are Soft­
ware Too," Proceedings of the Ninth Interna­
tional Conference on Software Engineering 
(March/April 1987). 

25. L. Williams, "Software Process Modeling: 
A Behavioral Approach," Proceedings of the 
Tenth International Conference on Software 
Engineering (1988). 

26. W. Royce, "Managing the Development of 
Large Software Systems," Proceedings of the 
Ninth International Conference on Software 
Engineering (March/April 1987). 

27. B. Boehm, "A Spiral Model of Software Devel­
opment and Enhancement," ACM Software 
Engineering Notes, vol. 11, no. 4 (August 1986). 

28. C. Hegarty and L. Rowe, "Control Loops and 
Dynamic Run Modifications Using the Berke­
ley Process-Flow Language," Proceedings of 
the Third International Conference on Data 
and Knowledge Systems for Manufacturing 
and Engineering, Lyons, France (1992). 

29. S. Jablonski, "Data Flow Management in Dis­
tributed CIM Systems," Proceedings of the 
Third International Conference on Data 
and Knowledge Systems for Manufacturing 
and Engineering, Lyons, France (1992). 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



30. Proceedings of the Third International Con­
ference on Data and Knowledge Systems for 
Manufacturing and Engineering, Lyons, 
France (1992). 

31. H. Yoshikawa and]. Goossenaerts, eds., Infor­
mation Infrastructure Systems for Manufac­
turing (Amsterdam: North-Holland, 1993). 

32. T. Harder and A. Reuter, "Principles of 
Transaction-oriented Database Recovery," 
ACM Computing Surveys, vol. 15, no. 4 
(December 1983). 

33. P. Attie, M. Singh, A. Shet, and M. Rusinkiewicz, 
"Specifying and Enforcing Intertask Depen­
dencies," Proceedings of the Nineteenth 
International Conference on Very Large 
Databases (VLDB), Dublin, Ireland (1993). 

34. Y Breitbart, A. Deacon, H. Sebek, and 
G. Weik.um, "Merging Application-centric 
and Data-centric Approaches to Support 
Transaction-oriented Multi-system Work­
flows," SIGMOD Record, vol. 22, no. 3 (Sep­
tember 1993). 

35. U. Dayal, M. Hsu, and R. Ladin, "A Transac­
tional Model for Long-Running Activities," 
Proceedings of the Seventeenth Interna­
tional Conference on Very Large Databases 
(VLDB), Barcelona, Spain (September 1991). 

36. H. Garcia-Molina and K. Salem, "Sagas," Pro­
ceedings of the 1993 ACM SIGMOD Interna­
tional Conference on Management of Data 
(1987). 

37. Bulletin of the Technical Committee on Data 
Engineering, vol. 16, no. 2 (June 1993). 

38. S. Jablonski, "Transaction Support for Activity 
Management," Proceedings of the Workshop 
on High Performance Transaction Processing 
Systems (HPTS), Asilomar, California (1993). 

39. H. Wachter and A. Reuter, "The ConTract 
Model;' in Transaction Models for Advanced 
Database Applications, A. Elmagarmid, ed. 
(San Mateo, California: Morgan Kaufmann, 
1992). 

40. T. Malone and K. Crowston, "The Interdisci­
plinary Study of Coordination," ACM Comput­
ing Surveys, vol. 26, no. 1 (March 1994). 

D igital Tech11i cal Jour11al Vol. 6 No. 4 Fall 1994 

Policy Resolution in Workflow Management Systems 

41. T. Malone, K. Crowston,]. Lee, and B. Pentland, 
"Tools for Inventing Organizations: Toward a 
Handbook of Organizational Processes," ccs 
WP #141, Sloan School WP #3562-93 (Cam­
bridge: Massachusetts Institute of Technology, 
Center for Coordination Science, May 1993). 

42. R. Burkhart, "Process-based Definition of 
Enterprise Models," Proceedings of the First 
International Conference on Enterprise Inte­
gration Modeling Technology (ICEIMT), 

Hilton Head, South Carolina (June 1992). 

43. C. BuBler, "Enterprise Process Modeling and 
Enactment in GERAM;' Proceedings of the 
International Conference on Automation, 
Robotics and Computer Vision (ICARCV '94), 
Singapore (November 1994). 

44. M. Fox, "The TOVE Project: Towards a Com­
mon-Sense Model of the Enterprise;' Proceed­
ings of the First International Conference on 
Enterprise Integration Modeling Technology 
(ICEIMT), Hilton Head, South Carolina CTune 
1992). 

45. Proceedings of the First International Con­
ference on Enterprise Integration Modeling 
Technology (ICE/MT), Hilton Head, South Car­
olina (June 1992). 

46. R. Katz, "Business/enterprise Modeling," IBM 

Systems journal, vol. 29, no. 4 (1990). 

47. ]. Sowa and]. Zachman, "Extending and For­
malizing the Framework for Information Sys­
tems Architecture;' IBM Systems Journal, vol. 
31, no. 3 (1992). 

48. F. Vernadat, "Business Process and Enterprise 
Activity Modelling: CIMOSA Contribution to 
a General Enterprise Reference Architecture 
and Methodology (GERAM)," Proceedings 
of the International Conference on Automa­
tion, Robotics and Computer Vision (ICARCV 

'94), Singapore (November 1994). 

49. T. Williams, "Architectures for Integrating 
Manufacturing Activities and Enterprises," 
Information Infrastructure Systems for Man­
ufacturing, H. Yoshikawa and]. Goossenaerts, 
eds. (Amsterdam: North-Holland, 1993). 

50. F. Flores and T. Winograd, Understanding 
Computers and Cognition (Reading, MA: 
Addison-Wesley, 1987). 

47 



Workflow Models 

51. R. Medina-Mores, R. Winograd, T. Flores, and 
F. Flores, "The Action Workflow Approach to 
Workflow Management Technology," Proceed­
ings of the ACM 1992 Conference on Com­
puter Supported Cooperative Work (CSCW), 

Toronto, Ontario, Canada (November 1992). 

52. T. Danielsen and U. Pankoke-Babatz, "The 
Amigo Activity Model," in Research into Net­
works and Distributed Applications, R. Speth, 
ed. (Munich: North-Holland, Elsevier Science 
Publishers BV, 1988). 

53. R. Fehling, K. Joerger, and D. Sagalowicz, 
Knowledge Systems for Process Management 
(Palo Alto, CA: Teknowledge Inc., 1986). 

54. ]. Guyot, "A Process Model for Data Bases," SIG­

MOD Record, vol. 17, no. 4 (December 1988). 

55. C. BuBler and S. Jablonski, "An Approach to 
Integrate Workflow Modeling and Organiza­
tion Modeling in an Enterprise;' Proceedings 
of the Third IEEE International Workshop on 
Enabling Technologies: Infrastructure for 
Collaborative Enterprises (WET ICE), Mor­
gantown, West Virginia (April 1994). 

56. S. Jablonski, "MOBILE: A Modular Workflow 
Model and Architecture," Proceedings of the 
Fourth Working Conference on Dynamic 
Modelling and Information Systems, Noord­
wijkerhout, Netherlands (September 1994). 

57. M. Hsu, A. Ghoneimy, and C. Kleissner, "An 
Execution Model for an Activity Management 
System," Proceedings of the Workshop on High 
Peiformance Transaction Systems (1991). 

58. M. Hsu and M. Howard, "Work-Flow and 
Legacy Systems," BYFE (July 1994). 

59. F. Leymann and W Altenhuber, "Managing Busi­
ness Processes as an Wormation Resource," 
IBM Systems journal, vol. 33, no. 2 (1994). 

60. Workflow Management Software: The 
Business Opportunity (Ovum Reports, 
December 1991). 

61. T. White and L. Fischer, "New Tools for New 
Times: The Workflow Paradigm (Alameda: 
Future Strategies Inc., Book Division, 1994). 

62. ). Bair, "Contrasting Workflow Models: Get­
ting to the Roots of Three Vendors," Proceed­
ings of the Groupware '93 Conference, San 
Jose, California (1993). 

48 

63. S. Sarin, K. Abbot, and D. McCarthy, "A Process 
Model and System for Supporting Collabora­
tive Work," Proceedings of the ACM SIGOIS 

Conference on Organizational Computing 
Systems (November 1991). 

64. M. Shan, "Pegasus Architecture and Design 
Principles," Proceedings of the 1993 ACM SIG­

MOD International Conference on Manage­
ment of Data, Washington, D.C. (May 1993). 

65. M. Ansari, L. Ness, M. Rusinkiewicz, and 
A. Sheth, "Using Flexible Transactions to Sup­
port Multi-System Telecommunication Appli­
cations," Proceedings of the Eighteenth 
International Conference on Very Large 
Databases (VLDB), Vancouver, British 
Columbia, Canada (1992). 

66. D. Evans, "Putting Elves to Work: Workflow 
Technology in a Law Firm," Proceedings of 
the Groupware '93 Conference, San Jose, 
California (1993). 

67. D. Sng, "A National Information Infrastructure 
for the 21st Century Collaborative Enter­
prise," Proceedings of the International Con­
ference on Automation, Robotics and 
Computer Vision (ICARCV '94), Singapore 
(November 1994). 

68. R. Marshak, "Characteristics of a Workflow 
System-Mind Your P's and R's," Proceedings 
of the Groupware '93 Conference, San Jose, 
California (1993). 

69. C. BuBler and S. Jablonski, "Implementing 
Agent Coordination for Workflow Manage­
ment Systems Using Active Database Systems," 
Proceedings of the Fourth International 
Workshop on Research Issues in Data Engi­
neering: Active Database Systems (RIDE-ADS 

'94), Houston, Texas (February 1994). 

70. C. Ellis, S. Gibbs, and G. Rein, "Groupware­
Some Issues and Experiences;' Communica­
tions of the ACM, vol. 34, no. I (January 1991). 

71. L. Lawrence, "The Role of Roles," Computers 
and Security, vol. 12, no. I (1993). 

72. L. Aiello, D. Nardi, and M. Panti, "Modeling 
the Office Structure: A First Step towards the 
Office Expert System," Second ACM SIGOA 

Conference on Office Information Systems 
(ACM SIGOA), vol. 5, nos. 1 and 2 (1984). 

Vol. 6 No. 4 Fall 1994 Digital Tech11ical]ournal 



73. D. Denning, Cryptography and Data Security 
(Reading, MA: Addison-Wesley, 1983). 

74. Blue Book, Volume VIII, Fascicle VIJJ.8, Data 
Communication Networks: Directory, Rec­
ommendations X500-X521 (Study Group 
VII), Comite Consultatif Internationale de 
Telegraphique et Telephonique. 

75. S. Ceri and]. Widom, "Managing Semantic 
Heterogeneity with Production Rules and Per­
sistent Queues," Proceedings of the Nine­
teenth Conference on Very Large Databases 
(VLDB), Dublin, Ireland (1993). 

76. W Kent, "Solving Domain Mismatch and 
Schema Mismatch Problems with an Object-

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

Policy Resolution in Workflow Management Systems 

Oriented Database Programming Language," 
Proceedings of the Seventeenth Interna­
tional Conference on Very Large Databases 
(VLDB), Barcelona, Spain (September 1991). 

77. U. Dayal et al., "Third Generation TP Moni­
tors: A Database Challenge," Proceedings of 
the 1993 ACM SIGMOD International Confer­
ence on Management of Data, Washington, 
D.C. (May 1993). 

78. C. BuBler, "Capability Based Modeling," 
Proceedings of the First International Con­
ference on Enterprise Integration Modeling 
Technology (ICE/MT), Hilton Head, South 
Carolina (June 1992). 

49 



Stewart V. Hoover I 
Gary L. Kratkiewicz 

The Design of DECmodel 
for Windows 

The DECmodel for Windows software tool represents a significant advance in the 
development of business process models. The DECmodel tool allows rapid devel­
opment of models and graphical representations of business processes by provid­
ing a laboratory environment for testing processes before propagating them into 
workflows. Such an approach can significantly reduce the risk associated with 
large investments in information technology. The DECmodel design incorporates 
knowledge-based, simulation, and graphical user interface technology on a PC plat­
form based on the Microsoft Windows operating system. Unique to the design is the 
manner in which it separates the model of the business processes from the views or 
presentations of the model. 

Many approaches have been developed for under­
standing, specifying, testing, and validating busi­
ness processes. In the late 1980s, Digital began to 
reengineer some of its most complex and mission­
critical business processes. It soon became appar­
ent that modeling methodologies and tools were 
needed to document, test, and validate the reengi­
neered processes before they were implemented, 
as well as to provide a high-level specification for 
their design and implementation. Consequently, 
Digital decided to provide the business process 
engineer with tools similar to those used by archi­
tects, mechanical designers, and computer and soft­
ware engineers. 

The first implementation of Digital's dynamic 
business modeling technology, Symbolic Modeling, 
was developed at Digital's Artificial Intelligence 
Technology Center. The technology was embodied 
in an application called Symmod, which in 1991 ran 
only on a VAXstation system. 1 Symmod's knowledge 
base and simulation engine were implemented 
using the LISP programming language and the 
Knowledge Craft product, a frame-based knowl­
edge representation package with modeling and 
simulation features. 2 Because models were written 
in LISP code, users had to be computer program­
mers as well as business consultants. The applica­
tion contained a graphical presentation builder and 
viewer implemented in the C programming lan­
guage that used a relational database for presenta­
tion storage. The user had to start the knowledge 

50 

base component and the presentation component 
as separate processes. A primitive mailbox system 
was used for interprocess communication. To serve 
the needs of nontechnical business users and to 
achieve the necessary product quality, Symmod 
needed to be completely redesigned and rebuilt. 

In early 1991, the Modeling and Visualization 
Group decided to build a product version of the 
Symmod application, which would be released as 
the DECmodel tool. The team drafted requirements, 
specifications, and an architecture. The DECmodel 
product was initially targeted at two platforms: 
VAXstation workstations running under the 
DECwindows operating system and personal com­
puters (PCs) running under the Windows NT oper­
ating system. As users were interviewed and 
requirements were accumulated, it became clear, 
however, that by far the most important platform 
for DECmodel users was the PC platform based 
on the Windows operating system. Consequently, 
the DECmodel development effort shifted to this 
platform. 

During 1991, the team enhanced the existing ver­
sion of Symmod so that it would meet user needs 
until the release of the product version for PCs. The 
most significant enhancement was the develop­
ment of an X Window System interface for building 
and editing models. A second important enhance­
ment was a graphical shell program that trans­
parently started up the knowledge base and 
presentation components for the user. 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



In March 1992, Digital officially announced Phase 
0 (the strategy and requirements determination 
phase) of the DECmodel for Windows product. 

Design and Development Goals 
The DECmodel product design team had the follow­
ing goals: 

• Provide a modeling tool that maps directly to 
business processes 

• Allow the modeling of both the static and the 
dynamic characteristics of the business process 

• Allow multiple views of the business process 
model by separating the model from the presen­
tation of the business process during simulation 

• Allow the user to interact with the tool and to 
make decisions while the business process is 
being simulated in order to let the user "test­
drive" the business process 

• Provide a tool that is easy to use for business con­
sultants and that requires no programming 

Note that the designers intentionally omitted the 
following goals from the DECmodel design: 

• Include resource constraints and queuing 

• Allow the user to perform a statistical analysis 
of the behavior of the business process 

By far the most important goal for the DECmodel 
design was the first one listed, an obvious mapping 
between elements of the model and business pro­
cesses. The anticipated users of the DECmodel tool 
were business analysts and consultants, not system 
designers and software engineers. The designers 
felt that adding levels of abstractions to a modeling 
tool would make it less acceptable to the intended 
users. A notable corollary to providing an obvious 
mapping was modeling both the static and the 
dynamic characteristics of the business process. 

To engage the user in interacting with the model 
and test-driving the business process required 
a graphical interface that was separate from the 
model. This "presentation" layer of the DECmodel 
tool provides a layout and graphical appearance 
that has the look and feel of the actual business pro­
cess, hiding the irrelevant technical details of the 
model. The presentation enables the user to step 
through the business, watching information and 
material flows occur, and thus see where the 
dependencies and concurrencies exist. 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

The Design of DECmodel for Windows 

Designers believed that while simulating the 
business, the user should be able to interact with 
the model and thereby select and test more than 
one scenario. The DECmodel tool was intended to 
be a working scale model of the business, giving the 
user a sense of how the business process would 
work as different choices were made. The tool, by 
design, neither predicts congestion and through­
put as a function of resource constraints nor pro­
vides information through statistical reports. The 
DECmodel product was designed to provide a slow, 
deliberate simulation of the business, not to com­
press weeks or years of activities into a few sec­
onds, leaving behind only a statistical summary. 

The team's development goals for the DECmodel 
product were to 

• Provide a tool that runs on a popular hardware 
platform used by business consultants 

• Achieve a short time-to-market, i.e., delivery 
within one year 

• Utilize a widely accepted software base technol­
ogy (for maintainability) 

The DECmodel World View 
Every modeling and simulation tool is based on 
a predefined view of the world.3 In the DECmodel 
world view, a business process is composed of 
aggregate centers capable of performing one or 
more tasks or work steps. Each aggregation is 
referred to as a process, and the tasks that can occur 
in a process are called activities. Processes commu­
nicate through the exchange of messages, which 
are sent by activities and received by another pro­
cess or other processes or by the same process that 
contains the activity.4 

This view differs significantly from the one taken 
by the typical workflow model in which work steps 
are directly linked. In the DECmodel model, an 
activity that sends a message to a process has no 
knowledge of what work steps will occur next. For 
example, when a customer (a process) sends an 
order (a message) to a supplier (another process), 
the customer does not know what work steps 
(activities) the supplier will initiate when it 
receives the order. It is invisible to the customer 
whether or not the supplier decides to change its 
work rules, for instance, by sending the order to a 
second source because materials are not available. 
Similarly, when the supplier's activities have been 
completed and the material that was ordered has 

51 



Workflow Models 

been sent to the customer, the supplier has neither 
knowledge of nor dependencies on the work steps 
that the customer undertakes next. In contrast, in 
a workflow model each task is directly linked to 
another task. Changes in the supplier's way of doing 
business force changes in how the customer's tasks 
connect to the supplier's tasks. More succinctly, the 
DECmodel tool encapsulates the behaviors and 
work rules of each individual process in the larger 
business process. This difference between the pro­
cess and workflow models is shown in Figure 1. 

Processes, Activities, and Messages 
As described above, the DECmodel model repre­
sents a business process as a collection of smaller 
encapsulated processes. The behavior of each pro­
cess is defined by the activities that it contains. The 
DECmodel tool provides three general types of 
activities: generating activities, processing activi­
ties, and terminating activities. Generating and ter­
minating activities represent the boundaries of the 
model; processing activities represent the work 
steps in the business process. 

An activity is characterized by (1) a receive rule, 
which defines the messages that the activity needs 
for initiation, (2) a duration, and (3) a send rule, 
which defines the messages that the activity sends 
out at the end of its duration. Generating activities 
have only send rules, and terminating activities 
have only receive rules. 

52 

PROCESS A PROCESS B 

(a) Process Model 

(b) Workjlow Model 

Figure 1 The Process Model versus 
the Work.flow Model 

Activities can send messages to processes only. 
The receiving process makes the message known to 
every activity that uses the message in its receive 
rule. Messages are universal to the model, and the 
same message type can be sent by activities in dif­
ferent processes. 

Processes can have state knowledge (attributes) 
that can be assigned values as a side effect of an 
activity being completed. The activity can use 
a process attribute value to decide what messages 
to send out and where to send them. That is, pro­
cesses have a state that can be altered to change the 
behavior of the model. 

Like processes, messages can contain infor­
mation, which is stored in their attributes. When 
a process receives a message and passes it on to 
an activity, information in the message can be used 
in both the receive rule and the send rule of the 
activity. Additionally, the information in a received 
message can be copied into the attributes of 
any message that an activity sends. In this way, the 
DECmodel tool supports information propagation. 

The DECmodel representation of business bor­
rows heavily from both the stochastic-timed Petri 
net (STPN) model and the object paradigm found in 
object-oriented design. s,6 

The Stochastic-timed Petri Net Model versus the 
DECmodel Model An STPN model represents a 
system as a collection of places, transitions, arcs, 
and tokens. Places contain tokens and act as inputs 
to transitions. A transition results in the movement 
of a token to another place if an arc exists between 
the transition and the place. Before a transition can 
occur, a token must be present at each place that is 
connected to the transition by an arc. Associated 
with each transition is an exponentially distributed 
random variable that expresses the delay between 
the enabling of the transition and the firing of the 
transition. 

The DECmodel model welds the STPN place, tran­
sition, and arc elements into a single object called 
an activity. The analogous elements of the STPN and 
DECmodel models are 

STPN 
Place 
Transition 
Token 
Arc 

DECmodel 
Activity receive rule 
Activity duration 
Message 
Activity send rule 
Process 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



The DECmodel model goes beyond the STPN 
model by 

1. Adding the process object between the activity 
send rules (arcs) and the activity receive rules 
(places). Each process can have multiple activity 
send rules. As the process object receives mes­
sages (tokens), it dispatches them to the appro­
priate activity receive rule (place). 

2. Allowing more than one type of message (token) 
to exist. 

3. Storing information in both the processes and 
the messages (tokens). 

4. Using AND, OR, and message-matching receive 
rules in the activity receive rules (places). 

The Design of DEC model for Windows 

5. Not restricting durations to being exponentially 
distributed random variables. 

Like an STPN model, a DECmodel model does not 
explicitly have resources bu t can represent the 
availability of a resource by sending a message to a 
process when the resource is available. 

Figure 2 shows the workflow system from 
Figure 1 as both an STPN model and a DECmodel 
model with the process receiving messages from 
the activities. 

The DECmodel Model and Object-oriented Design 
The elements of object-oriented design that the 
DECmodel model fully draws upon are encapsula­
tion of information and the message-method para­
digm. Information is encapsulated within DECmodel 

ACTIVITY 1 ACTIVITY 2 ACTIVITY 3 ACTIVITY 4 

tRJ?J? 
KEY: 

O PLACE 

TRANSITION 

J ARC 

• TOKEN 

(a) Stochastic-timed Petri Net Model of a Four-activity Work.flow 

PROCESS A 

KEY: 

C=:> PROCESS 

O ACTIVITY 

ACTIVITY RECEIVE RULE 

J ACTIVITY SEND RULE 

• MESSAGE 

(b) A DECmodel Model of a Four-activity Work.flow with a Process 
Dispatching Messages between Activities 

Figure 2 The Stochastic-timed Petri Net Model versus the DECmodel Process-activity Model 

Digital Technical Journal Vol. 6 No. 4 Fa/11994 53 



Workflow Models 

objects and is not available globally. However, an 
important difference exists between DECmodel sys­
tems and object-oriented systems. In DECmodel 
systems, a number of messages may by required to 
trigger a behavior; whereas, in classical object­
oriented systems, each message triggers a method. 

The DECmodel tool supports polymorphism, in 
that the same message can be sent to different pro­
cesses, which can result in different behaviors. 
Developers investigated going beyond standard 
polymorphism by using one message to trigger dif­
ferent activities within the same process. The 
approach considered was to use process "filters" to 
examine the information in a message and then 
decide which activity or activities in the process 
should receive it. This feature was not completely 
developed because of time constraints and a less­
than-clear mapping between the concept and the 
actual practices in most business. Further, using 
activity send rules that utilize the information con­
tained in messages can provide a similar capability. 

The DECmodel tool does not support inheri­
tance, but the underlying technology of the prod­
uct does support this feature. As in the case of 
nonstandard polymorphism, time-to-market pres­
sures and the lack of clear evidence that the feature 
would be used in business processes drove the 
decision not to include inheritance support. Also, 
the DECmodel product does not currently support 
class types beyond the built-in classes of the pro­
cess and the three activity types. 

Process Hierarchies 
To address the goal of having a strong mapping 
between the model and real business processes, the 
DECmodel model supports processes within pro­
cesses. Processes can receive messages in two ways: 
hierarchical routing and peer-to-peer routing. 

In a business process, a message sent to a high­
level process should travel through the process hier­
archy to the activity that is to act upon the message. 
For example, an activity in the sales process should 
be able to send a message to the manufacturing pro­
cess and not be concerned that manufacturing con­
tains several subprocesses. The knowledge of how 
to relay a message should be in the receiving pro­
cess, not the sending process. 

In business, however, much communication 
occurs on a peer-to-peer basis, with information 
seldom routed up and down the organization hier­
archy. For example, the results of a marketing 
research activity go directly to the manufacturing 

54 

planning function without traveling down through 
the various levels of the manufacturing organiza­
tion. In a DECmodel model, as in most businesses, 
when an activity is completed, a message can be 
sent directly to any process in the business. 

The DECmodel design feature that allows pro­
cesses to receive messages and then pass them on to 
subprocesses and activities can result in multiple 
message receipts for a single send operation. That 
is, one activity can send a single message that is 
received by every activity in the model that includes 
the message in its receive rule. Modeling experts dis­
agree about how well this phenomenon maps to 
real business processes. The DECmodel user can 
avoid this effect, if desired, by using uniquely named 
messages in the send rules of activities. 

The Presentation 
The first DECmodel design goal was supported by the 
modeling paradigm of processes, activities, and mes­
sages. The presentation aspect of the DECmodel tool 
supports the goals of a strong separation between 
the model and the graphical representation of the 
business process and the need to support user inter­
action and decisions during model simulation. 

The presentation of the model is based on views 
that contain networked nodes. Each node in a view 
can represent zero or more processes in the model; 
however, no process can be represented by more 
than one node in a single view. This mapping 
between the processes in the model and the nodes 
in a view allows the user to develop and animate 
multiple views of the model simultaneously. For 
example, one view may show the model at its low­
est level of detail, with each process in the model 
mapped to a single node. Another view may show 
a higher level of mapping, with multiple processes 
mapped to the same node. A third view may map 
processes based on attributes such as geographic 
location, the organizational chart, or technology. 
The construction of the views is left to the creativ­
ity of the analyst building the model. 

During model simulation, the DECmodel tool 
uses animation to show the movement of messages 
from one process to another. The user can also 
view the messages and their attributes. 

To accommodate user interaction, the DECmodel 
tool provides a menu send rule in the definition of 
an activity. If an activity uses the menu send rule, 
just before the activity fires, a menu appears that 
allows the user to make a choice that determines 
what messages are to be sent by the activity and 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



which processes are to receive them. The user is 
unaware of the actual send rule; the choice made 
forces one of a set of send rules to be selected. The 
use of menus, animation of messages moving 
between processes, and user-controlled stepping 
through the simulation gives the user the feeling of 
test-driving the business process. 

Architecture and Development Process 
The overall DECmodel architecn1re, shown in Figure 
3, contains two layers. The inner layer of the architec­
ture is the internal engine, which provides the means 
for representing, storing, and executing (simulating) 
models. The internal engine is designed using ROCK, 
a frame-based, object-oriented knowledge repre­
sentation system, and AMP, a modeling and simula­
tion frame-class library implemented in ROCK.7 The 
outer layer of the architecture is the user interface, 
which provides the means for all user interaction 
with the DECmodel model and has two major com­
ponents: the model builder and the presentation 

.------------------~ 

MODEL PRESENTATION -BUILDER BUILDER 

-
I ~.':'.!) GENERIC USER INTERFACE CLASSES 

I MICROSOFT FOUNDATION CLASSES 

USER INTERFACE 

(API\ 
SCRIPT ENGINE -
SIMULATION -
ENGINE 

KNOWLEDGE BASE 

ANALYSIS 

I AMP 

I ROCK 

INTERNAL ENGINE 

DECMODEL APPLICATION 
---- ----------- ----

r ---- ----------- ---

I REPORT I 
DECMODEL 

FILES MODELING LANGUAGE 
FILES 

I 
I 
I 

I PERSISTENT STORAGE I [ _____________ _____ ~ 

Figure 3 DECmodel Architecture 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

The Design of DECmodel for Windows 

builder. The user interface is designed as a set of 
classes specialized from the Microsoft Foundation 
Classes. Interaction between the two layers is 
achieved with an internal application programming 
interface (API). 

This architecture was chosen for both technical 
and pragmatic organizational reasons. The parti­
tioning into two layers allowed the internal engine 
to be built using state-of-the-art knowledge repre­
sentation technology and the user interface to be 
built using state-of-the-art graphical user interface 
technology. The disadvantages in this separation 
were the necessity of designing an internal API and 
the need to duplicate some data (nominally stored 
in the knowledge base) in the user interface. 

The partitioning mapped well to the human 
resources available in the DECmodel team. The 
DECmodel engineers had strong skills in developing 
USP, knowledge-based, and X Window System appli­
cations but little experience in developing C++, 
ROCK, or Microsoft Windows applications. With the 
architectural separation, one team was able to 

focus on the internal engine using C++ and ROCK 
and, therefore, did not have to learn much about 
Windows programming. The other team was able to 
focus on the user interface using C++ and Windows 
programming tools and did not have to learn any­
thing about ROCK. The engineering team felt that 
the efficient use of human resources in the develop­
ment process overcame the technical disadvan­
tages of the approach. 

DECmodel development proceeded with the two 
teams. Since the bulk of their development work 
was completed first, the members of the knowl­
edge base team also worked on the user interface 
team toward the end of the development process. 

Design and Implementation 
This section describes the design of the two 
DECmodel layers: the internal engine and the user 
interface. 

Internal Engine 
The internal engine represents models of dynamic 
business processes in a knowledge base and exe­
cutes these models using discrete event simulation. 
This layer provides a set of services for interacting 
with the knowledge base. These services are 
accessed through the DECmodel tool's internal APL 
The internal engine contains the DECmodel knowl­
edge base, simulation engine, and means of persis­
tent storage. Using the DECmodel methodology to 

55 



Workflow Models 

represent and execute business process models, 
the internal engine 

• Represents the structure, attributes, and behavior 
descriptions of the business processes in a knowl­
edge base. (This representation is the model.) 

• Represents the structure, attributes, and behav­
ior descriptions of the animated visualization 
of the model in a knowledge base. (This repre­
sentation is the presentation.) 

• Represents the connections between the model 
and the presentation in a knowledge base. 
(This representation is the model-presentation 
mapping.) 

• Represents the dynamic behavior of the business 
processes by allowing for discrete event simula­
tion of the knowledge base. 

Knowledge Base The DECmodel knowledge base 
contains the frame-based, object-oriented rep­
resentation of the model, the presentation, and 
the connections between them. It also main­
tains the model relations, attributes, and methods. 
The knowledge base contains both classes and 
instances. The classes specify DECmodel objects; 
sets of instances make up specific models and pre­
sentations. In addition to containing all the infor­
mation about model and presentation behavior and 
structure, the knowledge base contains all the 
graphical information used by the model builder 
and the presentation builder. This information is 
updated in real time. 

Knowledge Representation Technology The 
DECmodel knowledge base and simulation engine 
are implemented in ROCK, a frame-based, object­
oriented knowledge representation system written 
in the C++ programming language. ROCK imple­
ments the IMKA knowledge representation technol­
ogy and is used as a set of API functions in a C++ 
programming environment. 

ROCK provides useful features such as frames, 
multiple inheritance of data and methods, user­
defined relationships, and contexts. The basic unit 
of knowledge in ROCK is a frame, which represents 
an object or a concept. A frame is a collection of 
slots that contain the attribute, relationship, and 
procedural information about the object or the con­
cept. Attribute slots store values, relation slots 
store user-defined links between frames, and mes­
sage slots store methods (functions) that are 

56 

executed when the frame receives the approp­
riate message from the application program. Class 
frames represent object types or categories. 
Instance frames represent particular members of 
a class. ROCK requires frame classes to be organized 
in a class hierarchy. Attr ibute slots and message 
slots can inherit values and methods from classes at 
a higher level in the hierarchy. This mechanism can 
be used to define default values for frame classes. 
Both frame classes and frame instances are objects, 
and both can be dynamically created , operated on, 
and deleted during run time. With respect to the 
C++ language, all frames appear to have the same 
data type. Slots are objects, whose behavior is 
defined independent of the frames. 

Portions of the knowledge base are built using 
AMP, a modeling and simulation frame-class library 
implemented in ROCK. AMP contains objects for 
representing process models that contain entity 
flow, for constructing and running discrete-event 
simulations, and for generating, collecting, and 
reducing statistical data. 

The DECmodel frame classes are subclasses of 
ROCK and AMP classes and contain relations, 
attributes, and methods that describe the content 
and behavior of DECmodel objects. Some DECmodel 
frame classes are abstract classes used only as 
a basis for more specific subclasses; others are used 
for instantiation of DECmodel objects. The 
DECmodel tool contains three types of frame 
classes: model objects, presentation objects, and 
project objects. A specific DECmodel project is rep­
resented within the knowledge base as a set of 
model, presentation, and project instances. These 
instances are created in the knowledge base by 
loading a DECmodel modeling language (DML) file 
or through interaction with the model builder or 
the presentation builder. 

Persistent Storage The DML is a subset of the 
ROCK frame definition language and is used by 
the knowledge base for persistent storage. 
A DECmodel project is stored as ASCII text in three 
files that contain the model, presentation, and map­
ping objects. The language employs ROCK syntax 
but uses only the frame classes and slots defined in 
the DECmodel knowledge base. 

The DECmodel tool utilizes the ROCK frame defi­
nition interpreter as the DML interpreter. Since the 
ROCK interpreter was not intended to be used for 
persistent storage, the DECmodel developers made 
several minor modifications to obtain the desired 

Vol. 6 No. 4 Fall 1994 Digital TechntcalJournal 



error handling capabilities. The DECmodel tool 
contains its own DML code generator. 

Simulation Engine The simulation engine exe­
cutes a discrete event simulation of the model in 
the knowledge base. This simulation can be per­
formed either interactively or in a batch mode. The 
simulation engine was designed to be so robust 
that a model can be simulated at any stage of its 
development, regardless of inconsistencies or 
undefined elements. 

The simulation engine interacts with the presen­
tation builder to control simulation, animation, and 
graphics. The user controls simulation through 
the presentation builder. The presentation builder 
calls simulation engine API functions to perform 
the requested actions, such as starting, step­
ping through, pausing, ending, and reinitializing 
the simulation. 

Script Engine and Compiler Scripts provide 
a means of specifying user-defined actions to cus­
tomize model animation and to perform spe­
cial presentation actions during simulation. The 
DECmodel tool contains a language for defining 
scripts, a script compiler, and a script engine for 
executing the scripts. Although the DECmodel team 
wanted to avoid requiring any programming in the 
tool, developers decided that a script language was 
the only way to implement these features in the 
available time frame. 

The script language contains functions for 

• Annotating, hiding, showing, flashing, moving, 
highlighting, and scaling presentation icons 

• Playing sounds and sound loops 

• Animating connections between nodes 

• Showing, hiding, and clearing certain kinds of 
windows 

• Starting other applications 

• Temporarily stopping execution 

• Loading a new project 

• Starting and pausing the simulation 

• Displaying files 

• Displaying a list of DECmodel development team 
members 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

The Design of DEC model for Windows 

Analysis and Reporting Services The knowledge 
base contains services that allow the user to ana­
lyze models and presentations in the knowledge 
base and to generate reports. 

The consistency advisor checks models, presenta­
tions, and mappings for inconsistencies and poten­
tial problems at any point in the model development 
process. This check is analogous to the syntax check 
performed by a compiler. The consistency advisor 
check is the primary model-building debugging aid 
for users. Inconsistencies in the model do not pre­
vent a model from being simulated. 

The model description report lists the descrip­
tion, messages sent, and messages received for each 
activity and process. The model table report con­
tains the basic model information in a table format 
for easy access by another application, database, or 
spreadsheet. The simulation summary report con­
tains information on simulation performance. 

Design and Implementation Decisions The inter­
nal engine for the first DECmodel product release, 
DECmodel for Windows version 1.0, was imple­
mented as a Windows dynamic link library (DLL) 
using the Windows version of ROCK version 1.0, the 
Windows version of AMP version 1.0, and Microsoft 
CIC++ version 7.0. For DECmodel for Windows 
version 1.1, developers ported the internal engine 
to Microsoft Visual C++ version 1.0. 

Several options existed for implementing the 
DECmodel knowledge base. The knowledge base of 
the Symmod application, the precursor to the 
DECmodel product, was implemented in a LISP envi­
ronment. The DECmodel engineering team wanted 
to move to a more standard programming environ­
ment and, therefore, focused on C++ and C++-based 
tools. However, a straight C++ implementation 
would have required the reimplementation of 
knowledge representation, simulation, and model­
ing technology available in other tools. 

Another modeling and simulation technology, 
the Modeling and Simulation System (MSS), had 
been developed for Digital's Artificial Intelligence 
Technology Center by the Carnegie Group, Inc. 
(CGI).8 This graphical tool was designed at a lower 
level than Symmod. It used a modeling simulation 
language and was developed to implement the next 
version of Symmod. However, the MSS modeling 
paradigm was not compatible with that of the 
DECmodel tool. 

IMKA had also been recently developed by 
CGI, funded by a consortium of companies, as a 

57 



Workflow Models 

replacement for the Knowledge Craft product. 
IMKA's implementation, ROCK, lacked some of the 
class libraries included in Knowledge Craft for sim­
ulation and process modeling but ran significantly 
faster than Knowledge Craft. The engineering team 
decided to use ROCK to implement the knowledge 
base because of its knowledge representation 
power and its C++ compatibility. Digital contracted 
with CG! to port the class libraries to ROCK. The 
team, therefore, had a head start in designing and 
implementing the internal engine. The portability 
of ROCK was also an advantage; switching to the 
Windows platform from the DECwindows platform 
caused no disruption in development. 

The original intent of the engineering team was 
to implement the DECmodel tool as a single exe­
cutable file. The knowledge base contains much 
global data, however, and restrictions on the 
number of data segments required developers to 
implement the internal engine as a DLL. This encap­
sulation of the internal engine allows it to be used 
in other applications and enables easy porting to 
other platforms. The DECmodel team developed 
a set of internal AP! functions and structures to 
allow interactions between the DLL-based internal 
engine and the executable-based user interface. 

The Symmod application had a modeling 
language based on LISP for persistent storage of 
models and used a relational database for persistent 
storage of presentations. Consideration was given 
to developing a modeling language specific to 
the DECmodel tool. Instead, the engineering team 
decided to use the ROCK frame definition lan­
guage, since it was already completely defined and 
debugged and had an interpreter. The team used 
this language for persistent storage of both models 
and presentations to allow easy sharing of projects 
between users and to simplify debugging by users 
and DECmodel developers. 

The knowledge base team was responsible for 
implementing the internal AP! between the user 
interface and the knowledge base. This interface was 
specified in detail early in the project. The team kept 
the specification up-to-date throughout the project. 
It prepared 19 revisions and produced a final docu­
ment of more than 200 pages. This specification kept 
interface problems to a minimum, thus defusing 
a potential source of major technical problems. 

The team specified the objects in great detail 
early in the project. It also held several internal 
and external design reviews. These measures 
reduced the number of potential design problems 

58 

and thus yielded a higher-quality product and 
a faster implementation. 

User Interface 
The user interface provides the means for all user 
interaction with the DECmodel tool. It has two 
major components: the model builder and the pre­
sentation builder. 

The user interface is designed as a set of classes 
specialized from the Microsoft Foundation Classes. 
Most of these special DECmodel user interface 
classes correspond to frame classes in the knowl­
edge base; the remainder are necessary for imple­
menting the user interface. The three main types of 
user interface classes-windows, graphic objects, 
and dialog boxes-are used by both the model 
builder and the presentation builder. 

Window Classes The user interface contains sev­
eral types of window classes: graphics windows, 
text windows, and a frame window. 

The graphics window classes are all derived from 
the generic DECmodel graphics window class. 
Graphics windows contain graphic objects, such as 
boxes or lines. Users act upon these windows 
through menu commands or through the Windows 
messages generated by the mouse and mouse but­
tons. The graphics windows are the model window, 
the view windows, and the palettes. Menu com­
mands specific to each graphics window are han­
dled by message handlers within the window class. 

The text window classes are derived from the 
generic DECmodel text window class. Text win­
dows are generally read-only and display various 
types of textual information, such as descriptions, 
the text of files, and clock information. As in the 
case of graphics windows, menu commands spe­
cific to each text window are handled by message 
handlers within the window class. 

The one frame window class, i.e., the top win­
dow class, is derived from the CMDIFrameWnd 
Microsoft Foundation Class and serves as the frame 
window for the application. The menu commands 
not specific to a particular window are handled by 
default message handlers within this window. 

Graphics Classes Graphics window classes use 
graphic objects to build models and presentations. 
These classes implement the processes, activities, 
nodes, connections, and annotations displayed in 
the Model Editing Window and in the views. 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



Dialog Box Classes The DECmodel tool contains 
a large number of dialog boxes derived from the 
CModalDialog Microsoft Foundation Class. The tool 
uses these dialog boxes to define the information 
and relationships contained in the DECmodel 
objects. 

Menus The DECmodel tool uses a set of menus 
individualized to match the capabilities of the 
window currently in use. When a user starts the 
DECmodel application, the tool presents a reduced 
menu that allows the user to start a new project 
or to load an existing one. Once a project is in 
memory, the menu changes as the user switches 
between the Model Editing Window, the views, and 
the other windows. Menu commands activate mes­
sage handler functions within the window classes. 

The Design of DECmodel for Windows 

Appearance of the User Interface Figure 4 shows 
a small but typical DECmodel model. The figure dis­
plays each process and its member activities. Note 
that each of the three activity types is denoted by 
a different icon. Lines indicate the potential flow 
of messages. Figure 5 shows the DECmodel presen­
tation for the model that appears in Figure 4. The 
presentation contains both a view and the support­
ing windows, e.g., the simulation clock and the 
description windows. 

Design and Implementation Decisions The team 
implemented the user interface for DECmodel for 
Windows version 1.0 using Microsoft CIC++ ver­
sion 7.0 and Microsoft Foundation Classes version 
1.0. For DECmodel for Windows version 1.1, devel­
opers ported the user interface to Microsoft Visual 

Patient· ~- 11 
... Do'dtor. 

I J I.\ 
,. ' I :'\ 

~ 

lns~rance Carrier 
ID Make Dia ~(tsis \ · 11 

Home Treatment a Schedu~;\,.ab Tests 
Contact Hospital \ a [I] 

Visit 1octor 

IJ 
Prepare for Hospital 

1 
II 

Begin T~atment 

a 
Pay Bill 

~ .,.,...--

I Iii Evaluate Lab Tests 

Notify ~tient a 
II Evaluate Symptoms 

Arrange Discharge 

; 

Ho$pital Admissions 
t a 

~ 

Laboratory 
[ 

I 
1 a Schedule Room 

Hosf)ital Records 

"{ 

a 
Confirm Coverage 

• >, 

Padent Billlng 
it 
II 

Set u1 Billing 

II 
~ '­

II 
Perform Lab Tests 

Contact Insurer 

' Close f llling 

a 
Bill Patient 

Admit Patient 
Locate or Create Records a 

Notify Billing 

Figure 4 Typical DEC model Model 

Digital Tecbntcal Journal Vol. 6 No. 4 Fall 1994 59 



Workflow Models 

I • 

Services • • 

Patient is Not Well Do or Insurance Company "" Ph sician Services . ... 
$ 100.00 

llit..L 

nk- 1. Days 
AdmiS11ions lab 

II i'uti<UII $ 1000.00 
Records V11'lw ii 

• • 
Trace Time ...... 

[NOTE: Use of MENU Send to determine) 
[ whether patient needs hospitalization. ) 

MeS11age sent by : Hospital AdmiS11ions • 
message name : Record Request 
received by : Hospital Records 

100.00 Hours 

Figure 5 Typical DECmodel Presentation (for the Model Shown in Figure 4) 

C++ version 1.0 and Microsoft Foundation Classes 
version 1.5. 

As stated at the beginning of the paper, the 
DECmodel product was initially targeted at both 
VAXstation workstations running under the 
DECwindows operating system and PCs running 
under the Windows NT operating system. Conse­
quently, when developers decided to focus solely 
on the PC platform running under the standard 
Windows operating system, the user interface 
development effort was disrupted. Engineers had 
done a significant amount of design work toward 
achieving a DECwindows implementation. 

The DECmodel engineering team considered 
other class libraries and user interface implementa­
tion packages (such as XVT), but most were defi­
cient in Windows features or in the look and feel. 
Since the Windows operating system was the only 
platform for the foreseeable future, the engineering 
team felt that using Microsoft Foundation Classes 
was the best choice. However, they made this deci­
sion after they had performed a significant amount 
of development work with one of the tools. Much 
of the work had to be redone, which contributed to 
the schedule delay. 

60 

During the design and development of the 
DECmodel product, the team debated how graphical 
to make the user interface, that is, to what extent dia­
log boxes should be used. Although the goal was to 
make the user interface as graphical as possible, the 
tight schedule forced the team to postpone plans for 
graphical editors in favor of dialog boxes, which 
were faster to implement. For example, the team had 
initially planned to implement an Activity Editing 
Window and had partially developed it. This window 
was to provide a complete view of an activity and 
allow graphical editing of its information. Schedule 
constraints required the team to abandon this plan 
and to develop a set of dialog boxes that were not as 
easy to use but were faster to implement. 

The user interface design was not specified or 
committed to storyboards in any detail at the begin­
ning of the project, partially to save time after 
the disruptions in the development work. This deci­
sion led to more lost time later in the project, 
though, because user interface features were 
designed quickly and sometimes incompatibly, and 
consequently required reworking. In addition, the 
resulting user interface was not as easy to use as it 
could have been if better planned. 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



External review of the user interface design was 
not performed until late in the project. The review 
yielded some ideas that would have resulted in 
a more usable product; however, there was not 
enough time left in the schedule to implement them. 

Delivery 
A discussion of the released product and the team's 
success in achieving the design and development 
goals follows. 

Release 
Digital released version 1.0 of the DECmodel for 
Windows product in November 1993 and version 
1.1 in April 1994. Version 1.0 contained the basic 
capabilities for building models and presentations 
of business processes; version 1.1 added a set of 
minor enhancements and bug fixes. Because of its 
small, focused market and the large cost savings 
that can result from its use, the DECmodel tool was 
introduced as a low-volume, high-priced product. 
The product includes the software, example mod­
els, documentation, and a week of hands-on train­
ing. The DECmodel tool is an integral part of Digital 
Consulting's reengineering practice. 

Success of Design Choices 
The separation of the model from the presentation 
is the single most important element of the prod­
uct's success. This feature, along with animation, 
distinguishes the DECmodel tool from its competi­
tion. Some users have even requested the capability 
of building the presentation first and then gener­
ating the corresponding model. Such capability 
would require considerable investigation. 

The paradigm of process-activity encapsulation 
is difficult for some users to become accustomed 
to. Many still prefer to build a model using a work­
flow approach, which the DECmodel tool can sup­
port, rather than by defining each process and its 
behavior independently. 

The exclusion of resource constraints has limited 
the application of the DECmodel tool to system 
design, thus preventing its use in modeling sys­
tem performance. Although the capability was orig­
inally not a product goal, many users would like 
a future version of the DECmodel product to pro­
vide this feature. 

To perform special user-defined actions during 
the simulation, a script language was included in 
the DECmodel tool. This design feature violated the 

Digital Technical j ournal Vol. 6 No. 4 Fall 1994 

The Design of DECmodel for Windows 

goal of requiring no programming, and some users 
found scripts hard to use. However, many users have 
requested that a future DECmodel version provide 
more script functions and extend the script language 
to be more like the BASIC programming language. 

Also, to enhance the use of the DECmodel tool in 
the design of business processes, a future version 
should support classes to make generic processes 
available as building blocks of a business process. 

Development Successes and Lessons 
The DECmodel engineering team successfully 
released a software product on the Microsoft 
Windows platform, the one most popular with busi­
ness consultants. This achievement was significant 
because the group of engineers began the project 
with no PC experience. The team did not meet its 
one-year delivery goal, and the goal slipped to one 
and one-half years after the Phase O announcement. 
However, this time frame was still extremely short 
for developing a complex PC product from scratch. 

The product retained the existing Symbolic 
Modeling paradigm (i.e., a process-activity-message 
model and a strong distinction between model and 
presentation) and exhibited performance an order 
of magnitude better than that of the Symmod prod­
uct, which it replaced. The product utilized the 
most widely accepted modern programming tech­
nology base (C/C++ ), which simplified maintain­
ability and reduced the need for special training 
of maintainers. 

Splitting the development team into two sub­
teams worked well. It distributed the amount of 
learning about new technologies required by the 
engineers and minimized the overall development 
time. Key factors in the success of this approach 
were the detailed object and internal API specifica­
tions that were kept up-to-date throughout devel­
opment and thus provided a reliable interface 
between the two parts of the project. 

After the product was released, the DECmodel 
team identified certain factors that could have 
made the team and the product even more success­
ful. The entire engineering team would have bene­
fited from Windows training at the onset of the 
project. The Windows design of the user interface 
should have been specified and committed to story­
board in much greater detail much earlier in the 
project. In addition, the team should have arranged 
for Windows experts to review the design. These 
changes in the engineering process would have 
helped the team produce a cleaner, easier-to-use, 

61 



Workflow Models 

more maintainable user interface and would have 
reduced implementation time. The project sched­
ule should have been created using a bottom-up 
rather than a top-down process. The initial one-year 
schedule was based on an unrealistic, management­
imposed release date. When the engineering team 
revised the schedule and calculated a release date 
based on their detailed estimates, the team met the 
new date. 

Summary 
Modeling and simulating business processes is an 
important part of business process reengineering. 
Digital developed the DECmodel tool specifically 
for this type of simulation. Although it borrows 
many ideas from other disciplines of modeling and 
simulation, as well as from object-oriented design, 
the DECmodel product is unique in the way it mod­
els business processes, separates the model from 
the presentation, and represents the model as 
frames in a knowledge base. 

Acknowledgments 
The authors would like to acknowledge the follow­
ing people who also contributed to the design of 
the DECmodel product: Ty Chaney, David Choi, 

62 

Laurel Drummond, Peter Floss, Amal Kassatly, Mike 
Kiskiel, Kip Landingham, and Janet Rothstein. 

References 

1. Symmod User's Guide (Maynard, MA: Digital 
Equipment Corporation, 1990). 

2. Knowledge Craft Reference Manual (Pittsburgh, 
PA: Carnegie Group, 1988). 

3. S. Hoover and R. Perry, Simulation, A Problem 
Solving Approach (Reading, MA: Addison­
Wesley, 1989). 

4. DECmodel for Windows: Modeler's Guide (May­
nard, MA: Digital Equipment Corporation, 1994). 

5. ]. Peterson, Petri Net Theory and Modeling of 
Systems (Englewood Cliffs, NJ: Prentice-Hall, 
1981). 

6. G. Booch, Object Oriented Design (Redwood 
City, CA: Benjamin-Cummings, 1991). 

7. ROCK Software Functional Specification, Ver­
sion 2.0 (Pittsburgh, PA: Carnegie Group, 1991). 

8. Modeling and Simulation System User's Guide 
(Pittsburgh, PA: Carnegie Group, 1991). 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



Dennis G. Giokas I 
John C. Rokicki 

The Design of ManageWORKS: 
A User Interface Framework 

The ManageWORKS Workgroup Administrator for Windows software product is 
Digital's integration platform for system and network management of heteroge­
neous local area networks. The Manage WORKS product enables multiple, heteroge­
neous network operating system and network interconnect device management 
from a single PC running under the Microsoft Windows operating system. The 
Manage WORKS software is a user interface framework; that is, the services it pro­
vides are primarily targeted at the integration of the user interface elements of 
management applications. It manifests the organizational, navigational, and func­
tional elements of system and network management in a coherent whole. Viewers, 
such as the hierarchical outline viewer and the topological relationships viewer 
that are components of the Manage WORKS software, provide the organizational 
and navigational elements of the system. Management applications developed by 
Digital and by third parties through the Manage WORKS Software Developer's Kit 
provide the functional elements to manage network entities. This paper discusses 
the user interface design that implements these three elements and the software sys­
tem design that supports the user interface framework. 

The ManageWORKS Workgroup Administrator for 
Windows software product is Digital's strategic 
tool for providing system and network manage­
ment of heterogeneous local area networks (LANs). 
It serves as Digital's platform for the integration 
of PC LAN management. From the perspective 
of the end user, i.e., the LAN system administrator 
and network manager, the ManageWORKS product 
comprises a suite of modules that integrates 
a diverse set of management activities into one 
workspace. From the perspective of the developer 
of system and network management applications, 
the ManageWORKS product is an extensible and 
flexible software framework for the rapid develop­
ment of integrated management modules, all of 
which presents a consistent user interface. 

The design of the management system was user 
centric, i.e., usability was the top priority. Thus, 
we began the design work without any precon­
ceived notions about the management software sys­
tem design. The design that emerged and that is 
documented in this paper was driven solely by the 
user interface paradigm developed and tested with 
our customers. 

Digital Teclmicaljour11al Vol. 6 No. 4 Fall 1994 

This paper focuses on how the ManageWORKS 
software presents and integrates its functionality 
to the end user. Specifically, the paper presents 
details of the user interface paradigm and discusses 
the design rationale and the design methods 
employed. The paper also discusses the design of 
ManageWORKS software in support of the user 
interface framework. 

Driving Forces behind the Design 
The ManageWORKS software was first released 
as a component of the PATHWORKS version 5.0 
for DOS and Windows product. The foci for 
that PATHWORKS release set the tone for the 
ManageWORKS design. The PATHWORKS version 5.0 
design objectives were to 

1. Enhance the usability of the PATHWORKS prod­
uct. Since the PATHWORKS system was rooted in 
a command line-based user interface, the goal 
was to develop a graphical user interface for the 
system that was based on the Microsoft Windows 
operating system. Such a user interface would be 
contemporary, easier to learn, and easier to use. 

63 



r 

PC IAN and System Management Tools 

2. Enhance the manageability of the PATHWORKS 
product. The goal was to reduce the cost of own­
ership by improving the installation, configura­
tion, and administration of the system. 

The ManageWORKS design team used two voice­
of-the-customer techniques to provide more depth 
and detail for the two high-level product design 
objectives. First, the team used Contextual Inquiry 
to determine a customer profile and to develop 
a clearer statement of the user's work. 1 Then, the 
team tested user interface prototypes with cus­
tomers by means of formal usability testing. From 
15 to 20 customers and users participated in each 
of three rounds of usability testing. 

Early in the investigation, Contextual Inquiry 
revealed that the profile of the PATHWORKS system 
administrator had changed drastically during the 
five years since the PATHWORKS product was first 
released. A typical system administrator in the era 
of PATHWORKS version 1.0 had been a VAX/VMS sys­
tem manager who inherited the responsibility of 
installing and managing a PC file and print-sharing 
product. The interface into the system was a VT-class 
terminal running command line-based utilities. 
Today, a system administrator is usually a PC user 
who is quite familiar with graphical user interfaces. 
Such an administrator is more likely to be trained in 
the installation, configuration, and management of 
PCs and PC networking software than his/her pre­
decessors. This change in the profile encouraged 
us to shift the PATHWORKS focus from using host­
based command line utilities to manage the system 
to using client-based graphical utilities. 

We also profiled the customer network configu­
ration. During the same five years, it changed from 
a very simple and homogeneous environment with 
just a few PATHWORKS servers to a medium-to-large 
heterogeneous PC LAN. At present, configurations 
comprise network operating systems that consist 
of Novell NetWare, Microsoft LAN Manager, and 
Apple AppleShare file and print services, as well 
as other services that are emerging in the PC LAN 
environment. The network operating systems are 
deployed on their native platforms and by Digital 
on the OpenVMS and DEC OSF/1 platforms. Each sys­
tem has its own tools to manage the clients and 
the servers. Each has a different user interface that 
results in a long learning curve and thus high train­
ing costs or low productivity for system administra­
tors. Customers reported that they desired tools 
with a consistent user interface to manage this 
diversity. 

64 

The team employed software usability testing 
throughout the development life cycle. Two usabil­
ity tests were performed with early design proto­
types; the final test was performed with our first 
pass at a detailed concept design. We performed 
the usability testing with customers to test user 
interface and functional element design concepts 
that we developed as a result of the Contextual 
Inquiry. The user thus served as a design partici­
pant. With each iteration of the formal testing, we 
tested specific functional concepts in three key 
areas: (1) mechanisms to navigate among the man­
aged entities, (2) mechanisms to organize these 
entities, and (3) the functional capability inherent 
in the management directives supported. (Note 
that, in this paper, the servers, services, and 
resources managed by means of the ManageWORKS 
software are collectively referred to as managed 
entities.) The major lessons that we learned from 
this testing effort and then applied to the user inter­
face and software designs are as follows: 

1. The ManageWORKS software had to provide 
mechanisms to navigate among a diverse set of 
managed entities on the LAN or in some user­
defined management domain. Users want to be 
able to view and thus "discover" the entities that 
are to be managed. The system had to present 
the managed entities in graphical display formats 
that were familiar and enticing to users. Users 
welcome the ability to support different styles 
of presentation. Finally, users need easy mecha­
nisms to navigate through the hierarchy of 
an entity. 

2. Navigation mechanisms, as just described, work 
well for novice users but become tedious and 
constraining for more experienced users, as we 
could attest to after our experience with the pro­
totypes. The solution that we presented to users 
allowed them to create custom views of their 
managed entities, i.e., to organize their manage­
ment domains. This concept was well received 
by users during usability testing. 

3. The ManageWORKS product had to provide 
mechanisms that consistently performed the 
functions that were common among a diverse 
set of management applications. The product 
design presents users with an object-oriented 
view of the managed environment. The building 
block of this design is the object, an abstraction 
of a manageable entity such as a server or a net­
work router. Each object is a member of a single 

Vol. 6 No. 4 Fa/11994 Digital Technical Journal 



The Design of ManageWORKS: A User Interface Framework 

object class that describes the set of object 
instances within it. The ManageWORKS appli­
cation renders objects to the user as icons in a 
viewer. For example, for a LAN that contains 
three NetWare servers, the object class called 
NetWare Servers would contain three objects, 
each of which represents one of the three indi­
vidual NetWare servers on the LAN. When users 
focus on an object, the tool reveals which 
actions are valid in the object's current context. 
This approach differs from the traditional com­
mand line approach in which the user first 
selects the utility (action) and then specifies 
the objects upon which to act. Interestingly, 
whereas novice users found this object-focused 
concept easy to grasp, those who considered 
themselves strong users of the traditional com­
mand line management utilities experienced dif­
ficulty in grasping the new concept. 

4. The typical customer has a diverse and large 
(200 to 1,000) number of entities to manage. To 
address this need, the prototype testing pre­
sented users with the ability to manage more 
than one entity at the same time and the ability 
to manage many entities as one. Users liked 
being able to view and modify the properties 
of multiple entities at the same time as well as 
being able to modify the same property across 
a set of like entities. 

5. In addition to providing a consistent user inter­
face, the ManageWORKS product should integrate 
the management tools into one workspace. User 
feedback led to the design of the user interface 
framework as the delivery vehicle for a diverse 
set of management applications. 

The Key Software Design Principles 
At this point in the development cycle, the design 
focus shifted from developing and testing user 
interface and functionality concepts to designing 
the ManageWORKS software itself. With what we 
considered to be a good understanding of the user's 
needs, we proceeded to design a software architec­
ture to support those requirements. 

Prior architectures that were familiar to the 
design team served as starting points for the design. 
The following two examples represent sources of 
design concepts that we employed and adapted to 
suit our objectives. Each represents an opposing 
end of the spectrum with respect to design objec­
tives and implementation. 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

The ManageWORKS team adopted the concept of 
plug-in modules, a software design that is supported 
by the Windows Dynamic Link Library (DLL) archi­
tecture. 2 The design is also in common use by many 
Windows applications including the Windows 
Control Panel, the utility that manages the local 
desktop's configuration and user preferences.3 

The next challenge was to decide how much 
constraint to impose on the design of the 
ManageWORKS' plug-in modules and how consis­
tent the modules must be. Digital's extensible enter­
prise management director, the DECmcc product, 
incorporated some excellent concepts. 4 In particu­
lar, our design was influenced by the way in which 
DECmcc layered the management responsibility 
into presentation modules, functional modules, 
and access modules. Early in the design process, we 
decided to separate the navigation and presenta­
tion of managed entities from the access and func­
tional management of the entities. 

Another DECmcc concept, which is used, for 
example, in the access module layer, was the pre­
sentation of a consistent view to the layers above. 4 

This concept, however, was not suitable for the 
ManageWORKS design because it would have placed 
constraints on the user interface design, in particu­
lar, on the presentation of the attributes of man­
aged entities. The design team was not willing to 
compromise on this aspect of the design. 

Thus, we decided on a ManageWORKS design that 
can best be described as a user interface frame­
work. The initial release, which was a component 
of PATHWORKS version 5.0 for DOS and Windows, 
offered few services other than to tie together the 
user interface elements required for system and 
network management. The user interface services 
needed were dictated by the five user interface 
requirements previously described. 

The ManageWORKS design incorporates two types 
of plug-in modules: navigation modules, referred to 
in the ManageWORKS product as Object Navigation 
Modules (ONMs), and application modules, referred 
to as Object Management Modules (OMMs). The 
ManageWORKS framework controls the control 
flow and messaging between the modules. 

ONMs allow for any number of navigation models 
to be supported and used singly or simultaneously 
by the user. Although, by design, ONMs possess no 
knowledge of the managed entities or entity rela­
tionships they display, they do possess the ability 
to display entities with the relationships inherent 
in them. ONMs also provide the mechanisms for 

65 



PC LAN and System Management Tools 

browsing and navigating through the management 
hierarchy. In addition to navigation capabilities, 
ONMs provide the user interface for organizing enti­
ties into a user-defined management domain. 

The OMMs are responsible for managing the enti­
ties. The OMM design has three key components. 

1. OMMs provide the methods used to manage the 
entities. These methods include the functions of 
discover, create, view, modify, and delete. The 
OMMs also have the option of presenting to the 
user additional methods. That is, since each OMM 
knows how to manage the entities for which it is 
responsible, it knows which actions can be 
applied to an entity based on the entity's current 
state and the user's context. 

2. OMMs provide access to the managed entities. 
An OMM can use any interprocess communica­
tion mechanism to access or to manage an entity. 
Examples include the task-to-task, remote pro­
cedure call, and object request broker mecha­
nisms. Since a PC LAN environment affords no 
common way for a management director to com­
municate with all the types of devices present, 
the design team decided to leave the choice of 
access mechanism up to the OMM. 

3. OMMs provide the user interfaces required for 
managing the entities. This design component 
allows developers to present an interface that 
best suits the needs of the user and best maps 
to the entity being managed. It also allows for 
flexibility, evolution, and innovation in the user 
interface of OMMs. The ManageWORKS design 
team did not want to impose a user interface 
style or present a user interface that was com­
promised by the diversity of applications that we 
envisioned running within the context of the 
framework, e.g., by being the least common 
denominator. Even though one of the key prod­
uct design goals was a consistent user interface, 
we felt that it was important to allow the OMMs 
to control the user interfaces. First, we thought 
the design benefits outweighed the risk of any 
inconsistency. Second, we encouraged, but did 
not enforce, consistency by means of a user 
interface style guide and common libraries that 
implemented those guidelines. 5,6 

The plug-in modules also have a residual benefit. 
Because these modules can easily be added to or 
removed from the environment, they provide 
an easy way to extend and to customize the 
ManageWORKS product. Digital and third parties 

66 

can develop new ONMs and OMMs and simply enroll 
them into the system. Users have the additional 
benefit of being able to customize the product to 
support only the ONMs and OMMs that are useful in 
their environment. 

The User Interface ofONMs and OMMs 
Given the key software design elements presented 
in the previous section, the focus of the paper now 
returns to the user interface. This section describes 
what was implemented to support the customer 
requirements and the design framework. 

The user interface framework manifests the orga­
nizational, navigational, and functional elements of 
system and network management in a coherent 
whole. For example, the first three menus on the 
ManageWORKS menu bar-Viewer, Edit Viewer, and 
Actions-are all the tools the user needs to manage 
entities. A discussion of the Viewer and Edit Viewer 
menus follows. 

By means of the ManageWORKS Viewer menu, 
ONMs present display elements, called viewers, to 
the user. Each instance of a window that an ONM 
creates is considered a viewer. A ManageWORKS 
viewer is one of the organizational elements for the 
user and is the root-level object for navigation. Each 
viewer is a viewport into a set of managed entities 
that the user may be browsing and navigating 
through. A viewer is analogous to a word proces­
sor's document, i.e. , a viewer is a ManageWORKS 
"document." Just as you can create new documents 
and open, close, or edit existing documents when 
you use a word processing application, you can per­
form the same functions on viewers when using the 
ManageWORKS software. 

ManageWORKS ONMs are responsible for the nav­
igational and organizational display properties. The 
current ManageWORKS release comes with two 
ONMs. One ONM supports a hierarchical display of 
managed entities. This display is rendered in a sin­
gle viewer window graphically as a tree or textually 
as an outline. The other available ONM supports the 
relational display of managed entities, rendered as 
a map. The map ONM can also support a hierarchy; 
each map is rendered in a new viewer instance. 
Figure 1 shows ManageWORKS with two hierarchi­
cal viewer styles and a map viewer. The hierarchical 
views are the Outline view (shown in the Browser 
viewer) and the Outline Tree view (shown in the IP 
Hierarchical View viewer). In addition to the map 
viewer (shown in the IP Discovery viewer), note the 
navigation window for the map viewer (shown in 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



The Design of ManageWORKS: A User Interface Framework 

.. ... 
Ylewer .E_dlt Viewer Bctlons Iools Qptions ~ndow ):jelp 

16 124 144 173 

16.124.144.166 -16124.144.0 

11; ' 24 144 167 

16.124.144.0_Hosts 

Browser 

- 1111 LAN Manager Domains 
-!iii PATHWORKS 

LARRY AUG 

'!Iii! MOSAIC 

-a t.tWORKS 
-Q 

@JA 

'iJ CORIVE 

llif;J CLIENTS 
q;j DOWNLOAD 

il[JfDRIVE 

IP Oiscovery (Naviga1or) 

• .. 
16.124.1H.16Bj 

lip 

c, Cl -116. 124.144.17J j 

16.12-l 144.1 

' • • . 16.124.1H.18Bj 

C) W 16.124.1H.250j 

C:> W 16.124.H'4.254 j 

a ________ ._· 

Figure 1 ManageWORKS Viewers 

the IP Discovery (Navigator) viewer). This view 
shows a scaled map; the entire contents of the map 
viewer appears in a rectangular outline, which rep­
resents the user's current viewport into the data. 
The user can use the PC pointing device to drag and 
reposition the viewport. 

Because the ONM maintains context when the 
user "edits," i.e., modifies, the contents of a viewer, 
the user can customize or organize the managed 
entities as desired. By means of the Edit Viewer, 
ONMs allow user customization within a viewer 
with the support of user-definable hierarchies. For 
example, each instance of a viewer can represent 
a different management domain for the user. The 
benefit is that the user can find objects and then 
arrange them into hierarchies that are most useful. 

As stated earlier, OMMs control the user inter­
faces for displaying and modifying managed entity 
properties. The ManageWORKS framework pro­
vides for consistency in how the OMMs invoke the 

Digital Tecb,iical]our11al Vol. 6 No. 4 Fall 1994 

user interfaces and in how the user interfaces inter­
relate to the ONMs. 

The consistency starts with the ManageWORKS 
Actions menu. The basic management directives on 
managed entities originate from this menu. The 
major challenge in designing this menu was to avoid 
using too many menu items, menu items that would 
change constantly (i.e., by addition or deletion), 
menu items that had three or four levels of hierar­
chy, and menu items that were not context sensitive 
to what the user was doing. The objective was to 
find a small set of words that conveyed the manage­
ment functions the user would most often perform. 
We felt that these words should always be present 
in the Actions menu, but to eliminate confusion for 
the user, they should be rendered inactive when 
not valid. On the other hand, we realized that this 
small set of menu choices could never fully support 
the actions on managed entities; therefore, the soft­
ware had to provide an extensibility mechanism. 

67 



PC IAN and System Managem ent Tools 

We began the design process by developing an 
entity/action matrix. One axis contained a list of 
the entities that we envisioned being managed 
from the ManageWORKS software. The other axis 
contained a list of the actions that could be per­
formed on the entities. We marked the intersec­
tions of the axes. In forming the list of actions, we 
chose words that were used in existing products 
that managed the same entities, words that we 
thought should be considered in a good user inter­
face, and finally, synonyms to those words already 
listed. This approach gave us a clear picture of the 
common actions and also provided a thesaurus of 
words from which to choose. The common actions 
on managed entities that emerged from this exer­
cise were 

1. Make a new entity of some type. 

2. Display all the managed entities. 

3. View and modify the entity's properties. 

4. Eliminate the entity. 

The ManageWORKS software supports these 
common actions through the following Action 
menu choices: 

I. Create. Choose Create to make a new entity 

2. Expand. Choose Expand to view all the entities 
that the ManageWORKS software is managing. 

3. Properties. Choose Properties to display a dialog 
box that manifests all the entity's properties. The 
user can then view the properties and make 
modifications, as appropriate. 

4. Delete. Choose Delete to eliminate the entity 

The design of the Properties dialog box is one 
of the key user interface style elements of the 
ManageWORKS product; however, ManageWORKS 
does not enforce or provide for this element. 
Rather, the consistency is a function of a user inter­
face style guide for OMMs and some common 
library routines that support this user interface 
style.5,6 Figure 2 shows the dialog boxes of two 
of the three OMMs that come with the current 
ManageWORKS product: the Simple Network 
Management Protocol (SNMP) Manager OMM and 
the LAN Manager (IM) server management OMM. 
(The third OMM, for NetWare servers, is not shown.) 
Note the Selected Objects field in the SNMP dialog 
box. The ManageWORKS software allows the user to 

68 

select multiple objects of the same class from 
a viewer and to invoke an OMM method. The list of 
selected objects is contained within this drop­
down list box. The user can easily view the 
attributes of different objects from the same dialog 
box. The dialog box displays various sets of man­
aged entity properties. The user can select the 
desired set of properties from the View or Modify 
drop-down list boxes. 

Figure 2 demonstrates that two dialog boxes can 
be active at the same time. This feature supports the 
ManageWORKS design requirement that the user be 
able to manage more than one entity at a time. The 
ManageWORKS product supports, in effect, threads 
of execution to allow multiple OMMs to be active 
simultaneously Support for the design principle 
of managing many entities as easily as one is not 
a function of the ManageWORKS software but of 
the OMMs, since OMMs control the methods used to 
manage entities. 

The Software System Design 
of ManageWORKS 
The focus of the paper now shifts to the 
ManageWORKS internals that support the design 
principles and user interface just described. 

The Application Framework 
As an application, the ManageWORKS product is 
merely a software framework for integrating its top­
level user interface with the user interfaces of the 
OMMs and ONMs. The ManageWORKS application 
consists of two main components: (1) the user inter­
face shell and (2) the dispatcher. Figure 3 depicts 
the relationship between these ManageWORKS com­
ponents and the OMMs and ONMs. 

The user interface shell is a standard Microsoft 
Windows application that supports the top-level 
Windows user interface components-the main 
application window and its menu bar, tool ribbon, 
and status bar. The user interface shell translates all 
user interaction by means of the menus, tool rib­
bon, and mouse actions into OMM and ONM appli­
cation programming interfaces (APis) to perform 
work for the end user. The shell is also responsible 
for initializing and terminating the application, 
including the dispatcher. 

The dispatcher is responsible for maintaining 
a link between the user interface shell and all 
the OMMs, as well as for providing service routines. 
The dispatcher loads and initializes all OMMs 

Vol. 6 No. 4 Fall 1994 Dtgttal Technical Journal 



The Design of ManageWORKS: A User Interface Framework 

1111 ManageWORKS Workgroup Administrator .. 111111 
YJewer Edit Viewer Actions Iools .Qptlons .window Help 

=I Properties of SNMP Router 16.124.144.254 

Selected Objam: l1s.121.11us4 L!J ... I _o_K __ 

Propertiet: IGeHral lofannalion L!J ! Ce.near 

j114.SNMPRoutet.lP [!] ~1-Ap- p-ly~ 

~,IY"O~~ll\'Cl-~-no-t-,pe-cifi_a_d--~~--== 
Type: - - - - ~ -- -- - -- ~ 

, ,, I 1t 11• l' ~•·I 

Syc1um Contact 

Syv1em OHcriplion: I DECNIS m aoN,n,ra version 112.3-4 

Group: 

Allow modification by IP Auto-discovery @ :(es O .tto 

r
Polling 

Poll Interval: (secs) I Ill 

Timeout (s8ca) 10 

Monmir d!is node Ilia polling: Cf Vea f' No 

Protocol used to monitor this host: Gi SNMP f"' ICMP 

SNMP Community N11mes 
Sat: ..-------------

Get 

p ... 2'JU onus 
Redirector --- -me 

0 

:tlil812 

Hutp 

Ml8 ... Zero Counters 

Sel\/8r 

™ 
10)S.8i))j 

Connections 

Mn.de: 
Failed: 

Buffers Extiaust 

Big: 
Requett: 

·- . -- -- .... -- - . . ·-----.a. --- - - - - - -- ----- - - - - - - ------- - -- -- - - - -- c 

Figure 2 ManageWORKS OMM Properties Dialog Boxes 

OBJECT 
NAVIGATION 
MODULE 

,-----------------1------------------, 
: USER INTERFACE SHELL I 

I : 
I I 

: DISPATCHER 

l ____ ------------ -----------1-----j 
OBJECT OBJECT OBJECT 
MANAGEMENT MANAGEMENT MANAGEMENT 
MODULE MODULE MODULE 

MANAGED 
ENTITY 

MANAGED 
ENTITY 

DATABASE 

MANAGED 
ENTITY 

Figure 3 ManageWORKS Application 
Architecture 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

present based on an initialization file that the 
end user configures at installation time (or, if sub­
sequent modules are added, by means of the 
Management Module Setup program). To enable 
this routing to occur, the dispatcher maintains a list 
of all OMMs loaded and the object classes that they 
support. 

One service that the dispatcher provides for 
OMMs and ONMs is the ability to modify the menu 
bar. OMMs and ONMs may add and set menu items 
but only through the APis. The ManageWORKS soft­
ware ultimately controls what gets displayed in the 
menus based on what objects are selected in a 
viewer, which prevents the modules from directly 
manipulating the menu bar. 

The Application Programming Interfaces 
Once we had defined the concepts of the 
ManageWORKS user interface and object classes, we 
designed a common set of APis that all OMM and ONM 
developers would employ. The APis that emerged 
focused primarily on the object- both its class 
and its instance. Because the current set of object­
oriented languages and tools does not map well to 

69 



PC IAN and System Man agem en t Tools 

the services supplied by the Windows system, these 
APis are in a more conventional C/Pascal program­
ming language style rather than in a C++ style. 

The APis that an OMM must support fall into three 
categories based upon their scope of operation: 
(1) module based, (2) class based, and (3) object 
based. All APis have parameters that contain infor­
mation pertinent to the API call, including the 
object identifier (OID), which identifies the object 
on which to perform the operation. 

Module-based APis perform initialization, termi­
nation, and information reporting for the entire 
OMM. The initialization includes determining how 
many object classes an OMM supports. This func­
tion is important because an OMM can support 
more than one class, e.g., a hierarchy of classes. By 
checking for software dependencies on the operat­
ing system or support libraries, the OMM can also 
make sure that the computer environment is capa­
ble of supporting the OMM. For example, Digital's 
implementation of the OMM that manages NetWare 
servers requires that the NetWare client be installed 
and configured on the PC. Module termination 
occurs before the ManageWORKS software termi­
nates, which allows OMMs to clean up any 
resources they may have used. The information 
function provides information such as the module's 
name and copyright information. 

Class-based APis support the actions that apply to 
all objects within a class. These functions include 
initialization, termination, configuration, and 
reporting information about what actions and 
properties can be accessed by the end user in the 
ManageWORKS user interface. A class-based config­
uration API presents a configuration window for 
each class to the user; the user can then change the 
behavior of the object class. For example, the user 
can indicate whether or not files on a disk with hid­
den or system attributes or hidden LAN Manager file 
services should be displayed. 

Object-based APis provide the ability to manipu­
late individual objects within the ManageWORKS 
software. With these APis, OMMs can accomplish all 
the base actions and those operations provided for 
in the user interface. These APis include functions 
to create, delete, insert, remove, copy, get and set 
properties, display a properties dialog box, main­
tain containership relationships (e.g., technology­
based hierarchies), and maintain classes that can be 
created and inserted into an object. Approximately 
30 APis (a small manageable set) must be imple­
mented to be ManageWORKS compliant. 

70 

Each class- or object-based API requires an OID 
or list of oms on which to perform the opera­
tion. When called, each class API acts on a single 
object class. The caller manages all memory needed 
for the successful completion of an API, i.e. , no 
API returns a pointer to data. APis that can return 
a variable amount of information use a two-step 
calling convention. The first call determines the 
buffer size required to hold all the data; the second 
call retrieves that data. This two-call approach 
requires OMMs to efficiently gather informa­
tion using OMM-specific information caches to 
store information retrieved from the managed 
entity. 

ONMs contain all the module-, class-, and object­
based APis that exist in a standard OMM but also 
contain some viewer-specific APis. These APis 
include functions to display viewers, select dis­
played objects, expand objects, update objects, and 
retrieve displayed objects. New ONMs can be devel­
oped using these APis. 

The Object Identifier 
To represent objects within the ManageWORKS soft­
ware, we chose the approach of assigning an om to 
each object in the system. This number embodies 
the information of the class to which the object 
belongs as well as the uniqueness of the individual 
instance of an object within the class. 

The assignment of an om to an object is the 
responsibility of the OMM. The ManageWORKS soft­
ware dynamically assigns to an object class an om 
that represents the class, and the OMM is responsi­
ble for creating the unique instance values within 
the context of that class. This approach allows 
OMMs the flexibility of using any strategy to assign 
these values, e.g., sequential assignment or map­
ping to a particular technology, such as an external 
database record. 

Each om is a 32-bit number; the high 12 bits con­
tain information that identifies the class to which 
the object belongs. This bit arrangement places a 
limit, 212 -1, i.e., 4095 (a value of O is invalid), on 
the number of classes that can be active with 
ManageWORKS at any one time. The low 20 bits pro­
vide the uniqueness for each object instance within 
the class, providing for up to 220-1, i.e., more than 
1 million, individual instances within a single class. 
The advantages to using an om lie in allowing 
objects to store information in any format they 
wish and using access functions to get at that infor­
mation in a consistent manner. 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



Tbe Design of Manage WORKS.' A User Intetface Framework 

Storing Information about Objects 
Although the OMMs are responsible for assigning 
oms to objects within a class and for storing infor­
mation about each object that can be managed, we 
did not want every OMM under development to 
have to create its own mechanism to accomplish 
these tasks. We decided to create an object database 
that would store information about objects and gen­
erate new oms for the OMMs. 

Initial designs of this object database were to 
support multiple users and thus allow the sharing 
of information between multiple ManageWORKS 
users and other applications. Because the schedule 
for the first release of the ManageWORKS software 
did not give us ample time to employ a commer­
cially available database, we decided to create our 
own database to support the management of 
object classes and object instances. This database 
supports only a single user and consists of indexed 
files for (1) object information, (2) class infor­
mation, and (3) containership information. The 
existence of these files is hidden under a database 
API, which supports all the management aspects 
of objects, from creating and deleting classes 
and objects to reading and modifying attributes of 
those objects. 

To allow future changes in the underlying tech­
nology of the database, we placed the database 
code into a Dll. For the second release, we created 
a new database Dll, with the same APis, that works 
with Borland's dBase IV database implementation. 
By simply replacing the database DLL, all OMMs can 
now take advantage of having information shared 
between ManageWORKS users across the network. 
This design allows for comanagement of the LAN by 
multiple network administrators who have the 
same information available. The OMMs do not have 
to make any source code changes to work with this 
new database DLL, but additional APis are present to 
allow for the use of advanced database features. 

Before an OMM can create objects in the data­
base, the object class itself must be created in 
the database. Because it dynamically assigns oms, 
the object database must store unique information 
about the class along with the om. Each OMM must 
register an object class, where each class has a name 
that can be presented to the user in the user inter­
face, and a class tag. The class tag is a 64-byte char­
acter string that must be unique among all OMMs. 
The database dynamically assigns an om to a newly 
created class and maintains that mapping to the 
class tag. We decided that using a unique 64-byte 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

character string would result in less conflict among 
OMM developers than assigning hard-coded om val­
ues to each customer that wanted to develop an 
OMM. By not hard-coding the values, we ensured 
that each newly created object class would receive 
the next om value. Thus, different end users who 
are using different sets of OMMs may have different 
om values assigned to each of the object classes. 

OMMs can use this object database to create 
object classes or objects within those classes, and 
to store any amount of information with each 
object. Most objects store enough information 
to get to another data source, thereby prevent­
ing information in the database from becoming 
inconsistent with the managed entity. For example, 
a NetWare Server OMM saves only the server 
name in the database because with that name the 
OMM can make NetWare API calls to retrieve other 
information. 

When the object database creates an object, it 
assigns the object an om within the space of that 
object class. Thus, OMMs can rely on the database for 
creating unique oms for each object in the system. 

Another feature of the object database is the 
concept of transient and permanent objects. The 
object database DLL writes transient objects not 
into the database files but rather to global system 
memory in the Windows operating system. Having 
the objects in memory creates a large performance 
gain and avoids the problems associated with disk 
thrashing. To indicate the type of object that is 
created, the object database reserves bit 19 of 
the om to use as a flag. If the bit is set by the OMM 
or ONM, the object is transient. When an object is 
created in the database, the om for the class is 
passed to the database DLL with or without bit 19 
set, thus determining whether the object is tran­
sient or permanent. 

In our initial development work, we quickly dis­
covered that creating all the om entries in a 
database file diminished performance. This prob­
lem was most evident in the development of the 
DOS file system OMM. This OMM enumerates direc­
tories, which causes a disk seek operation and 
a disk read operation for the enumeration. Next a 
write of the object to the database file on the same 
disk causes another disk seek/write operation. This 
resulted in tremendous disk thrashing. We envi­
sioned that many OMMs would enumerate and cre­
ate a list of contained objects each time an object is 
expanded, so we wanted this operation to be fast 
and efficient. 

71 



PC IAN and System Management Tools 

Introducing New OMMs and ONMs into 
the ManageWORKS Software 
In traditional software development, the addition 
of new functionality into an application generally 
requires source code modification and recom­
pilation. Clearly, this approach would not allow 
ManageWORKS developers to meet the goal of 
providing an extensible application framework. 
Developers needed a way to write software that 
could become part of the ManageWORKS applica­
tion without requiring changes to the application. 

Since the ManageWORKS software runs in the 
Microsoft Windows operating system environment, 
software developers were able to take advantage of 
many features of the Windows system. We used 
DLLs to provide an extensible framework for the 
ManageWORKS product. 

By creating a DLL that conforms to the set of 
APis needed to manage an object or to implement 
a viewer, we can add new DLLs at any time to add 
functionality to the ManageWORKS software. There­
fore, all OMMs and ONMs must be implemented as 
DLLs. The registration process needed to be simple 
and dynamic for these DLLs. Using a Windows appli­
cation initialization (INI) file, the dispatcher reads 
the list of entries in the file and attempts to load and 
initialize all OMMs and ONMs defined. End users can 
add new OMMs by running the ManageWORKS 
Management Module Setup program, which simpli­
fies the installation of any OMMs provided by either 
Digital or a third-party vendor. 

When an OMM is introduced, the ManageWORKS 
software needs to assign an OID to each object 
class that the OMM handles. This is accomplished 
by asking the dispatcher for an OID for the class 
based upon a supplied class tag. The dispatcher 
then uses the object database to have the om 
assigned. The dispatcher's use of the object data­
base ensures that the OID for the class is unique 
to that class. OMMs can ask the object database 
directly, but this is merely a side effect of the 
dispatcher's use of the object database and is not 
recommended. 

Interactions between ManageWORKS 
Components 
Most ManageWORKS events occur when the user 
interacts with the user interface, although OMMs 
and ONMs can generate events that cause commu­
nication to occur between the components of 
the system. The usual flow of control through 
the ManageWORKS software begins with a viewer, 

72 

the set of selected objects in a viewer, and the valid 
managed entity actions in the Action menu. The 
application uses the dispatcher to call a particular 
API to the correct OMM for the class of object being 
operated upon. In this section, we walk through 
three typical user interaction scenarios. For each 
scenario, we describe key elements of control flow 
between the user interface shell, the dispatcher, 
the ONM involved, and the OMM involved. These 
scenarios illustrate how the ManageWORKS elements 
fit and work together to achieve our primary objec­
tive, i.e., to design a user interface framework with 
consistent mechanisms to display, organize, and 
navigate through management entities for the pur­
pose of managing one or more of those entities. 

Scenario 1 This scenario outlines the process of 
displaying the properties dialog box of the selected 
object(s) in a viewer. 

I. The user has selected one or more objects of the 
same class in a viewer by clicking with the mouse. 

2. The user then chooses the Properties menu item 
from the Actions menu. As a reminder, this action 
invokes the properties dialog box, which by style 
guide convention, supports the viewing and 
modification of a managed entity's properties. 

3. The ManageWORKS software queries the selected 
viewer for the list of selected objects and obtains 
the oms of the objects from the viewer. 

4. The ManageWORKS dispatcher decodes the 
object class portion of the OID. 

5. The ManageWORKS software tells the OMM of 
that object class to display the properties dialog 
box for the list of objects (OIDs) supplied. 

6. The OMM displays a properties dialog box that 
contains all the supplied objects. The OMM has 
complete control of the user interface for this 
window and complete control over the access to 
the managed entity mechanism to get and set the 
properties from the managed entities. 

Scenario 2 This scenario outlines the process of 
expanding a selected set of objects in a hierarchical 
viewer. Expanding an object results in the display 
of the object's descendants within the hierarchy 
defined by the OMM. The user may render this dis­
play in a hierarchical fashion with one of the hierar­
chical view styles or as a descendant portion of 
a topological view. 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



The Design of ManageWORKS: A User Interface Framework 

1. The user has selected one or more objects in 
a viewer by clicking with the mouse. The objects 
may be of the same class or of different classes. 

2. The user then chooses the Expand menu item 
from the Actions menu. 

3. The ManageWORKS software queries the selected 
viewer for the list of selected objects and obtains 
the oms of the objects from the viewer. 

4. The ManageWORKS software tells the selected 
viewer to expand the list of objects supplied (the 
selected objects from the last call). 

5. For each selected object to be expanded, the 
viewer queries the object by means of the dis­
patcher for the list of contained objects within 
that object. The dispatcher calls the OMM that 
supports the object to get the list of contained 
objects. The viewer repeats this process for all 
oms to be expanded. 

6. For a hierarchical view, the viewer places the list 
of objects into the viewer in a hierarchical fash­
ion. For a topological map view, the viewer 
either creates a new window or replaces the cur­
rent window, depending on the choice the user 
has indicated through the customization dialog 
box. The window shows the descendant set of 
objects with their topological relationships. 

7. For each of the contained objects, the viewer 
queries the object's OMM by means of the dis­
patcher for its name and bitmap, and to deter­
mine whether it can potentially be expanded by 
the user. The viewer repeats this process for 
each contained object to be displayed and then 
renders each item. 

Scenario 3 This scenario outlines the process of 
dragging and dropping an object onto another 
object in a viewer. The OMM of the target object 
controls the semantics of this operation. 

1. The viewer controls drag-and-drop operations. 

2. The viewer determines the OIDs of the object(s) 
that the user is dragging. 

3. As the user moves the mouse, the viewer 
receives mouse move messages from the 
Windows system and determines if the mouse is 
over a viewer. The window messages are sent 
directly to the viewer window. 

Digital 1ecbnical Journal Vol. 6 No. 4 Fall 1994 

4. If it is over a viewer, the mouse tells the target 
viewer what objects the user is dragging over it. 
The source ONM sends a ManageWORKS-defined 
Windows message to the target viewer window 
with the list of OIDs being dragged. 

5. The target viewer determines what object the 
mouse is over and if that object is selected. The 
set of objects targeted to receive the dropped 
object comprises either the individual object, or 
if selected, all the selected objects in the viewer. 

6. The target viewer queries the OMM of each target 
object about what class of object can be dropped 
on it. If all the target objects can accept the 
dragged objects, the cursor changes shape to 
reflect a potentially successful drop. Otherwise, 
the cursor changes to reflect that the drop 
would not succeed at this mouse location. 

7. When the user drops the objects, the same verifi­
cation occurs as during the drag operation. If the 
drop is not going to be successful, the viewer 
that initiated the drag operation returns the 
mouse cursor to the original location. 

8. If the drop operation passes the verification 
step, each object that the user is dragging is 
copied by the OMM to each target object. This 
is done iteratively for each dragged object, and 
each copy has the potential for failure. For exam­
ple, a DOS file can be dragged to a DOS disk class 
object, but when the copy is attempted, the disk 
may not have enough free space to successfully 
copy the file. When each dragged object is 
copied, the OMM of the target object is told that it 
should now contain the new object. This causes 
the hierarchy to be properly updated. A drag­
and-drop operation that is intended to move an 
object is implemented as a copy followed by 
a removal of the original. 

Cot1Clusions 
We feel that we have been successful at building a 
unique user interface framework that integrates a 
diverse set of applications; the design essentially 
meets all but one of the objectives we established. 
Because by design we limited the scope of services 
provided by the framework, we could not meet all 
of our end-user objectives. Specifically, the respon­
sibility of allowing the user to manage many enti­
ties as though they were one fell on the OMMs and 
not on the framework itself. Although we would 
have liked the framework to provide this service, 

73 



PC IAN and System Management Tools 

such a design was not feasible, given that the OMM 
controlled both the access to the managed entity 
and the user interface to view and modify entity 
properties. 

The reader should observe that the first two 
major releases of the ManageWORKS software pro­
vide few core services. The core services include 
the user interface shell, the viewers, and the object 
database that ship with the ManageWORKS product 
and the ManageWORKS Software Developer's Kit. 
These components serve as a unifying framework 
for the functional modules, which provide the user 
with tools to manage entities and are thus the "heart 
and soul" of the environment. Future development 
of core framework services is under consideration. 
Among the areas under active consideration are 
Windows Object Linking and Embedding (OLE) sup­
port and scripting support for inter- and intra-OMM 
control. Such services would make ONMs and 
OMMs more consistent, useful, and powerful for the 
end user. At the same time, these services would 
free the individual developer from writing this 
code and thus provide the developer the freedom 
to focus on the value-added functionality 

Acknowledgments 
Many people contributed a great deal to the design 
and implementation of the Manage WORKS product. 
Although the contributors are too numerous to men­
tion individually, we would like to acknowledge 
the functional groups within the PATHWORKS 

74 

organization to which they belong, namely, 
Business Management, Marketing, Human Factors 
Engineering, Systems Quality Engineering, Docu­
mentation, Release Engineering, Field Test Admin­
istration, and, of course, Software Development 
Engineering. 

References 

1. K. Holtzblat and S. Jones, "Contextual Inquiry: 
A Participatory Technique for System Design" in 
Partidpatory Design: Principles and Practice, 
A. Namioka and D. Schuler, eds. (Hillsdale, NJ: 
Lawrence Erlbaum Associates, Inc., 1993). 

2. Microsoft Windows Guide to Programming 
(Redmond, WA: Microsoft Press, 1990). 

3. Windows 3.1 Software Developer's Kit, Control 
Panel Applets in Online Help (Redmond, WA: 
Microsoft Press, 1992). 

4. C. Strutt and D. Shurtleff, "Architecture for an 
Integrated, Extensible Enterprise Management 
Director" in Integrated Network Management, 
vol. 1, B. Meandzja and]. Westcott, eds. (Amster­
dam: North-Holland, Elsevier, 1989): 61-72. 

5. ManageWORKS Programming Guide (Maynard, 
MA: Digital Equipment Corporation, Order No. 
AA-QADFB-TE, 1994). 

6. ManageWORKS Programmer's Reference (May­
nard, MA: Digital Equipment Corporation, Order 
No. AA-QADGB-TE, 1994). 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



James E.Johnson I 

The Structure of the OpenVMS 
Management Station 

The OpenVMS Management Station software provides a robust client-server 
application between a PC running the Microsoft Windows operating system and 
several Open VMS cluster systems. The initial version of the Open VMS Management 
Station software concentrated on allowing customers to handle the system man­
agement functionality assodated with user account management. To achieve these 
attributes, the OpenVMS Management Station software uses the data-sharing 
aspects of Open VMS cluster systems, a communications design that is secure and 
that scales well with additional target systems, and a management display that is 
geared for the simultaneous management of multiple similar systems. 

Overview 
The OpenVMS Management Station version 1.0 soft­
ware provides a robust, scalable, and secure client­
server application between a personal computer 
(PC) running the Microsoft Windows operating 
system and several OpenVMS systems. This man­
agement tool was developed to solve some very 
specific problems concerning the management of 
multiple systems. At the same time, the project 
engineers strove for a release cycle that could bring 
timely relief to customers in installments. 

Before the advent of this new software, all 
Open VMS base system management tools have either 
executed against one system, such as AUTIIORIZE, 
or against a set of systems in sequence, such as 
SYSMAN. Furthermore, the existing tools that do 
provide some primitive support for the manage­
ment of multiple systems either do not take advan­
tage of or do not take into account the inherent 
structure of a VMScluster system. 

In contrast, the OpenVMS Management Station 
product was designed from the outset for efficient 
execution in a distributed, multiple system configu­
ration. The OpenVMS Management Station tool 
supports parallel execution of system manage­
ment requests against several target OpenVMS 
systems or VMScluster systems. Furthermore, the 
software incorporates several features that make 
such multiple target requests natural and easy for 
the system manager. 

Dig ita l Tecbntcal]ournal Vol. 6 No. 4 Fa/11994 

Data from customer surveys indicated the need 
for a quick response to the problems of managing 
Open VMS systems. For this reason, the project team 
chose a phased delivery approach, in which a series 
of frequent releases would be shipped, with sup­
port for a small number of system management 
tasks provided in an individual release. 

The initial version of the Open VMS Management 
Station software concentrated on providing the 
system management functionality associated with 
user account management. This goal was achieved 
by using a project infrastructure that supported 
frequent product releases. This paper describes 
the OpenVMS Management Station software, con­
centrating on the client-server structure. It also 
presents the issues and trade-offs that needed to be 
faced for successful delivery. 

M anaging openVMS User Accounts 
Managing user accounts on an OpenVMS operating 
system is a relatively complicated task. 1 The man­
ner in which the user is represented to the system 
manager is the cause of much complexity The 
attributes that define a user are not located in one 
place, nor is much emphasis placed on ensuring 
consistency between the various attributes. 

For example, Table 1 gives the attributes of an 
OpenVMS user stored in various files, including the 
user authorization file (SYSUAF.DAT), the rightslist 
file (RIGHTSUST.DAT), and the DECnet network 

75 



PC IAN and System Man agement Tools 

Table 1 Breakdown of Data Stores and Management Utilities for OpenVMS Users 

Data Store Attributes Management Utility 

SYSUAF.DAT Username, AUTHORIZE 
Authorizat ion data (e.g., 
passwords), process quotas, 
login device, and directory 

RIGHTSLIST.DAT 

NET$PROXY.DAT 

Rights identifiers 

Remote<->local user 
DECnet proxy mappings 

AUTHORIZE 

AUTHORIZE 

VMS$MAIL_PROFILE.DAT 

QUOTA.SYS (per disk) 

Login directory 

TNT$UADB.DAT 

User's mail profile MAIL 

User's disk quota 

User's home directory 

DISKQUOTA 

CREATE/DIRECTORY 

<new with OpenVMS 
Management Station 
software> 

User's location, phone number, 
and organization information 

proxy file (NET$PROXY.DAT). Prior to the OpenVMS 
Management Station product, these files were man­
aged by a collection of low-level ut ilities, such as 
AUTHORIZE. Although these utilities provide the 
ability to manipulate the individual user attributes, 
they offer little support for ensuring that the overall 
collection of user attributes is consistent. For 
instance, none of these utilities would detect that 
a user's account had been created with the user's 
home directory located on a disk to which the user 
had no access. 

All of these factors create additional complexity 
for an Open VMS system manager. This complexity is 
compounded when a number of loosely related 
OpenVMS systems must be managed at various sites. 
The user account management features of the 
Open VMS Management Station product are designed 
to alleviate or remove these additional complexi­
ties for the Open VMS system manager. 

OpenVMS System Configurations 
The Open VMS operating system can be used in many 
ways. The features of the VMScluster method allow 
systems to expand by incrementally adding storage 
or processing capacity. In addition, the OpenVMS 
operating system is frequently used in networked 
configurations. Its inherent richness leads to a large 
and diverse range in the possible OpenVMS configu­
rations. The skill and effort required to manage the 
larger configurations is considerable. 

For instance, Figure 1 shows a possible customer 
configuration, in which a number of VMScluster 
systems extend across a p rimary and a backup site. 
Each cluster has a somewhat different p urpose, as 
given in Table 2. Here OpenVMS workstations are 

76 

deployed to users who need dedicated processing 
power or graphics support, and personal computers 
are deployed in other departments for data access 
and storage. Finally, the table lists some groups of 
users who need access to multiple systems, some­
times with changed attributes. The system manager 
for this type of configuration would rep eatedly per­
form many tasks across several targets, such as sys­
tems or users, with small variations from target to 
target. The OpenVMS Management Station product 
was designed to operate well in configurations 
such as this. 

A distributed system is clearly necessary to sup­
port effective and efficient systems management for 
configurations such as the one shown in Figure 1. 
A distributed system should support p arallel execu­
tion of requests, leverage the clusterwide attributes 
of some system management operations, and pro­
vide for wide area support. These characteristics 
are expanded in the remainder of this section. 

Supp orting Parallel Execution 
Support of parallel execution has two different 
implications. First, the execution time should rise 
slowly, or preferably remain constant, as systems 
are added. This implies that the execution against 
any given target system should be overlapped by 
the execution against the other target systems. 
Second, for parallel execution to be usable in a wider 
range of cases, it should be easy and straightforward 
to make a request that will have similar, but not iden­
tical, behavior on the target systems. For instance, 
consider adding a user for a new member of the 
development staff in the configuration shown in 
Figure 1. The new user would be privileged on the 

Vol. 6 No. 4 Fall 1994 Digital Technicaljour,za l 



DECPC 
425 

DECPC 
425 

DEC PC 
425 

DECPC 
425 

DEC PC 
425 

DEC PC 
425 

VAXSTATION 
4000 

DISK DISK 

CLUSTER A 

DISK 

The Structure of the Open VMS Management Station 

VAXSTATION 
4000 

DISK DISK 

CLUSTER B 

DISK 

ETHERNET 

DISK DISK 

CLUSTERC 

Figure 1 Distributed OpenVMS System Configuration 

development VMScluster system, but unprivileged 
on the production cluster. It should be straightfor­
ward to express this as a single request, rather than 
as two disparate ones. 

Leveraging VMScluster Attributes 
OpenVMS system management tasks operate 
against some resources and attributes that are 
shared clusterwide, such as modifications to the 
user authorization file, and some that are not 
shared, such as the system parameter settings. 

In the first case, the scope of the resource 
extends throughout the VMScluster system. Here, it 
is desirable (and when the operation is not idempo­
tent, it is necessary) for the operation to execute 
once within the VMScluster system. In the latter 
case, the operation must execute against every sys­
tem within the cluster that the system manager 
wants to affect. Also, the set of resources that falls 
into the first case or the second is not fixed. In the 
OpenVMS op erating system releases, the ongoing 
trend is to share resources that were node-specific 

Table 2 Usage and User Community for Sample Configuration 

Name 

A 

B 

c 

Usage 

Main production cluster 

Development cluster 

Backup production cluster and 
main accounting cluster 

Workstations 

Digital Tech11ical Jottrnal Vol. 6 No. 4 Fall 1994 

User Community 

Operations group 
Production group 
Development group (unprivileged) 

Operations group 
Development group 
(full development privileges) 

Operations group 
Development group (unprivileged) 
Production group 
Accounting group 

Workstation owner 
Some of operations group 

77 



PC IAN and System Management Tools 

throughout a VMScluster system. The OpenVMS 
Management Station software must handle 
resources that have different scopes on different 
systems that it is managing at the same time. 

Wide Area Support 
Management of a group of Open VMS systems is not 
necessarily limited to one site or to one local area 
network (LAN). Frequently there are remote backup 
systems, or the development site is remote from the 
production site. Almost certainly, the system man­
ager needs to be able to perform some management 
tasks remotely (from home). Therefore, any solu­
tion must be able to operate outside of the LAN 
environment. It should also be able to function rea­
sonably in bandwidth-limited networks, regardless 
of w hether or not the slower speed lines are to 
a few remote systems, or between the system man­
ager and all the managed systems. 

openVMS Management 
Station Structure 
The resulting structure for the OpenVMS Man­
agement Station software is shown in Figure 2. The 
components contained within the dashed box are 
present in the final version 1.0 product. The other 

components were specified in the design, but were 
unnecessary for the initial release. 

The client software on the PC uses the 
ManageWORKS management framework from 
Digital's PATHWORKS product. This extensible 
framework provides hierarchical navigation and 
presentation support, as well as a local configura­
tion database.2 The framework dispatches to 
Object Management Modules (OMMs) to manage 
individual objects. OpenVMS Management Station 
has three OMMs that are used to organize the system 
manager's view of the managed systems. These are 
Management Domains, VMScluster Systems, and 
OpenVMS Nodes. In addition, two OMMs manage 
user accounts: OpenVMS Accounts and OpenVMS 
User. The first OMM is used to retrieve the user 
accounts and to create subordinate OpenVMS User 
objects in the ManageWORKS framework hierarchy. 
The second contains the client portion of the 
OpenVMS user account management support. 
Underlying the last two OMMs is the client commu­
nications layer. This provides authenticated com­
munications to a server. 

The server software on the OpenVMS systems 
consists of a message-dispatching mechanism and 
a collection of server OMMs that enact the various 
management requests. The dispatcher is also 

NETVIEW 
SYSTEM 

,----------- - --- - ------ - -----
I PC CLIENT 

I 
I 
I 
I 
I 
I 
I 
~ 

I 

PROXY 
AGENT 

API 

LOCAL 
CLIENT 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

USER 
OMM 

SERVER INFRASTRUCTURE 

UASERVER 
OMM 

MANAGEWORKS FRAMEWORK 

COMMUNICATION LAYER 

FORWARDING COMMUNICATION LAYER 

.,.._ _ __, LOCAL 
CONFIGURATION 

--- DATA 

SERVER INFRASTRUCTURE 

UASERVER 
OMM 

FORWARDING COMMUNICATION LAYER 

L- - ----- - -- -- - - - --- - -- -- - -- - - -- -- -- - ---

Figure 2 OpenVMS Management Station Structure 

78 Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



responsible for forwarding the management 
request to all target VMScluster systems and inde­
pendent systems, and for gathering the responses 
and returning them to the client. The version 1.0 
server contains two OMMs: UAServer and Spook. 
The former implements the server support for both 
the OpenVMS Accounts and OpenVMS User OMMs. 
The Spook OMM implements the server component 
of the authentication protocol. 

Other clients were not built for version 1.0 but 
were planned into the design. Specifically, these 
items are (1) a local client to provide a local applica­
tion programming interface (API) to the functions 
in the server, and (2) a proxy agent to provide 
a mapping between Simple Network Management 
Protocol (SNMP) requests and server functions. 

Design AUernatives 
Before this structure was accepted, the designers 
considered a number of alternatives. The two areas 
with many variables to consider were the place­
ment of the communications layer and the use of 
a management protocol. 

Communications Layer Placement The first 
major structural question concerned the place­
ment of the communications layer in the overall 
application. 

At one extreme, the client could have been a dis­
play engine, with all the application knowledge in 
the servers. This design is similar to the approach 
used for the X Window System and is sufficient for 
the degenerate case of a single managed system. 
Without application knowledge in the client, how­
ever, there was no opportunity for reduction of 
data, or for the simplification of its display, when 
attempting to perform management requests to 
several target systems. 

At the other extreme, the application knowledge 
could have been wholly contained within the 
client. The server systems would have provided 
simple file or disk services, such as Distributed 
Computing Environment (DCE) distributed file 
server (DFS) or Sun's Network File Service (NFS). 
Since application knowledge would be in the 
client, these services would provide management 
requests to either a single managed system or to 
multiple systems. However, they scale poorly. For 
instance, in the case of user account management, 
seven active file service connections would be 
required for each managed system! Furthermore, 
these services exhibit very poor responsiveness if 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

The Structure of the Open VMS Management Station 

the system manager is remotely located across 
slower speed lines from the managed systems. 
Finally, they require that the client understand the 
scope of a management resource for all possible tar­
get OpenVMS systems that it may ever manage. 

These various difficulties led the project team to 
place the data gathering, reduction, and display 
logic in the client. The client communicates to one 
of the managed systems, which then forwards the 
requests to all affected independent systems or 
VMScluster systems. Similarly, replies are passed 
through the forwarding system and sent back to the 
client. The chosen system is one that the system 
manager has determined is a reasonable choice as 
a forwarding hub. 

Note that the forwarding system sends a request 
to one system in a VMScluster. That system must 
determine if the request concerns actions that 
occur throughout the VMScluster or if the request 
needs to be forwarded further within the 
VMScluster. In the second case, that node then 
acts as an intermediate forwarding system. 

This structure allows the client to scale rea­
sonably with increasing numbers of managed sys­
tems. The number of active communication links 
is constant, although the amount of data that is 
transferred on the replies increases with the num­
ber of targeted managed systems. The amount of 
local state information increases similarly. Although 
it is not a general routing system, its responsiveness 
is affected less by either a system manager remote 
from all the managed systems, or by the manage­
ment of a few systems at a backup site. Finally, it 
allows the managed VMScluster system to deter­
mine which management requests do or do not 
need to be propagated to each individual node. 

Use of Standard Protocols The second major 
structural question concerned the use of de facto or 
de jure standard enterprise management protocols, 
such as SNMP or Common Management Information 
Protocol (CMIP).3,4 Both protocols are sufficient 
to name the various management objects and to 
encode their attributes. Neither can direct a request 
to multiple managed systems. Also, neither can han­
dle the complexities of determining if management 
operations are inherently clusterwide or not. The 
project team could have worked around the short­
comings by using additional logic within the man­
agement objects. This alternative would have 
reduced the management software's use of either 
protocol to little more than a message encoding 

79 



PC LAN and System Management Tools 

scheme. However, it was not clear that the result 
would have been useful and manageable to clients 
of other management systems, such as NetView. 

On a purely pragmatic level, an SNMP engine was 
not present on the OpenVMS operating system. The 
CMIP-based extensible agent that was available 
exceeded the management software's limits for 
resource consumption and responsiveness. For 
instance, with responsiveness, a simple operation 
using AUTHORIZE, such as "show account attributes;• 
typically takes a second to list the first user account 
and is then limited by display bandwidth. For suc­
cessful adoption by system managers, the project 
team felt that any operation needed to be close to 
that level of responsiveness. Early tests using the 
CMW-based common agent showed response times 
for equivalent operations varied from 10 to 30 sec­
onds before the first user was displayed. Remaining 
user accounts were also displayed more slowly, but 
not as noticeably. 

In the final analysis, the project engineers could 
have either ported an SNMP engine or corrected 
the resource and responsiveness issues with the 
CMIP-based common agent. However, either choice 
would have required diverting considerable project 
resources for questionable payback. As a result, the 
product developers chose to use a simple, private 
request-response protocol, encoding the man­
agement object attributes as type-length-value 
sequences (TI.Vs). 

Qient Component 
With the OpenVMS Management Station, the client 
is the component that directly interacts with the 
system manager. As such, it is primarily responsible 
for structuring the display of management infor­
mation and for gathering input to update such man­
agement information. This specifically includes 
capabilities for grouping the various OpenVMS 
systems according to the needs of the system man­
ager, for participating in the authentication pro­
tocol, and for displaying and updating user account 
information. 

Grouping Open VMS Systems for 
Management Operations 
The system manager is able to group individual sys­
tems and VMScluster systems into loose associa­
tions called domains. These domains themselves 
may be grouped together to produce a hierarchy. 
The system manager uses hierarchies to indicate 
the targets for a request. 

80 

Note that these hierarchies do not imply any 
form of close coupling. Their only purpose is to aid 
the system manager in organization. Several differ­
ent hierarchies may be used. For a given set of sys­
tems, a system manager may have one hierarchy 
that reflects physical location and another that 
reflects organization boundaries. 

Figure 3 shows a typical hierarchy. In the figure, 
the system manager has grouped the VMScluster 
systems, PSWAPM and PCAPT, into a domain called 
My Management Domain. The display also shows 
the results of a "list users" request at the domain 
level of the hierarchy. A "list users" request can also 
be executed against a single system. For instance, to 
obtain the list of users on the PCAPT VMScluster sys­
tem, the system manager need only expand the 
"Open VMS Accounts" item directly below it. 

Participation in the 
Authentication Protocol 
It was an essential requirement from the start for 
the OpenVMS Management Station software to be at 
least as secure as the traditional OpenVMS system 
management tools. Furthermore, due to the rela­
tively insecure nature of PCs, the product could not 
safely store sensitive data on the client system. For 
usability, however, the product had to limit the 
amount and frequency of authentication data 
the system manager needed to present. 

As a result, two OMMs, the VMScluster and the 
OpenVMS Node, store the OpenVMS username that 
the system manager wishes to use when access­
ing those systems. For a given session within the 
ManageWORKS software, the first communication 
attempt to the managed system results in a request 
for a password for that username. Once the pass­
word is entered, the client and the server perform 
a challenge-response protocol. The protocol estab­
lishes that both the client and the server know the 
same password without exchanging it in plain text 
across the network. Only after this authentication 
exchange has successfully completed, does the 
server process any management requests. 

The hashed password is stored in memory at the 
client and used for two further purposes. First, if 
the server connection fails, the client attempts to 
silently reconnect at the next request (if a request is 
outstanding when the failure occurs, that request 
reports a failure). This reconnection attempt also 
undergoes the same authentication exchange. If the 
hashed password is still valid, however, the recon­
nection is made without apparent interruption or 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



The Structure of the Open VMS Management Station 

= ManageWORKS aa 
tlelp 

-e My management domain 
-:"'!, Open VMS Accounts 

e DANA on SYSMGT 

Ill DAVIDSON on SYSMGT 
A living legend (at least in his mind) 
Stu Davidson 

[DANA) 

[DAVIDSON! 
[DCESSERVER) 
[USER) 
[DEFAULT] 

(DEVARA.JANI 
(DECNET] 
(DNSSSERVER) 

[DPLSSERVERI 
[DOSSSERVERI 
(DQSSSERVERI 

e DCESSERVER on PCAPT 
e DEFAULT on PCAPT 

DCE Services 

e DEFAULT on SYSMGT 
:,"ft DEVARA.JAN on SYSMGT 

'1."f'Jf, DFSSFS_RESD on SYSMGT 
1,."f'/f, DNSSSERVER on SYSMGT 

e DPLSSERVER on SYSMGT 
1,."f'/f, DOSSSERVER on PCAPT 
"9'1/, DOSSSERVER on SYSMGT 

OpenVMS provided account template 
OpenVMS provided account template 
A. Devarajan 

DFS server access 
DNSSSERVER 
DECplan Server 
DOSSSERVER default account 
DQSSSERVER default account 

~ DUTKO on PCAPT 
~ DUTKO on SYSMGT 

Nestor Dutko (CLIENT meister) (DUTKO! 
Nestor Dutko (CLIENT meister) (DUTKO) 

"9'tff/; DZIEDZIC on SYSMGT 
'1.'Yt, DZIEDZIC_N on SYSMGT 

+,sf SYSMGT 

Tony Dziedzic 
Tony Dziedzic 

[DZIEDZIC) 

(DZIEDZIC_NJ 

-,sJPCAPT 

+ &"'!I OpenVMS Accounts • 
+ 

Figure 3 Management Domain View 

requests for input from the system manager. 
Second, the hashed password is used as a key to 
encrypt particularly sensitive data, such as new 
passwords for user accounts, prior to their trans­
mission to the server. 

The resulting level of security is quite high. It cer­
tainly exceeds the common practice of remotely 
logging in to OpenVMS systems to manage them. 

Display and Update of User 
Account Information 
The OpenVMS Management Station version 1.0 
client software primarily supports user account 
management. This support is largely contained in 
the OpenVMS User OMM. This module presents the 
OpenVMS user account attributes in a consistent, 
unified view. 

The main view from the OpenVMS User OMM is 
called the zoom display. This series of related win­
dows displays and allows modification to the user 
account attributes. The displays are organized so 
that related attributes appear in the same window. 

Dtgttal Tecbtlical]our,ral Vol. 6 No. 4 Fall 1994 

For instance, all the mail profile information is in 
one window. 

The first window to be displayed is the character­
istics display, which is shown in Figure 4. This win­
dow contains general information about the user 
that was found during usability testing to be needed 
frequently by the system manager. Occasionally, 
information was needed in places that did not 
match its internal structure. For instance, the "new 
mail count" was found to have two windows: the 
user flags display, which had the login display 
attributes, and the mail profile display 

The OpenVMS User OMM and the zoom display 
organize the attributes into logical groupings, 
simplify the display and modification of those attri­
butes, and provide fairly basic attribute consistency 
enforcement. The project team did encounter one 
case in which no standard text display proved suffi­
ciently usable. This was in the area of access time 
restrictions. All attempts to list the access times 
as text proved too confusing during usability test­
ing. As a result, the project developers produced 

81 



PC LAN and System Managem ent Tools 

!LternaM: IJJOHNSON on PS\1/APM Iii 
A!trihute(al: lc haraicleriali~ w 

0.l!IIK Jim, Johnson 

Location: 
Phone: 

ACCOUMina .6.rCMJp: iARGU sj l\imil,: j4 ~ 
;Ho.e I Login cmk-------

Di4!j WSERS: (=] Din,cl0t~ I [JJO~fiSON 

Did :lluota:j.-3_ 0_0_0 ___ lit S poce used (blocbl: 9JIU1 f31 %) 

Figure 4 User Characteristics Display 

a specialized screen control that displayed the time 
range directly, as shown in the Time Restrictions 
section of Figure 5. Later, system managers who 
participated in the usability testing found this to be 
very usable. 

The display and presentation work for the 
OpenVMS User OMM was necessary for usability. 
However, this does not directly address the need 
to support requests against multiple simultaneous 
targets. For the OpenVMS User OMM, these targets 
may be either multiple VMScluster systems or inde­
pendent systems, multiple users, or a combination 
of either configuration with multiple users. 

At its simplest, this support consisted of simply 
triggering a request to have multiple targets. This is 
done through the Apply to All button on any of the 
zoom windows. By pressing this button, the system 
manager directs the updates to be sent to all user 
accounts on all target systems listed in the 
user name field. This action is sufficient if the sys­
tem manager is performing a straightforward task, 
such as "set these users ' accounts to disabled." It is 
not sufficient in a number of cases. 

For example, one interesting case involves user 
account resource quotas. One reason a system 

82 

manager changes these settings is to accommodate 
a new version of an application that needs increased 
values to function correctly. Prior to the develop­
ment of the OpenVMS Management Station tool, the 
system manager had to locate all the users of this 
application, examine each account , and increase 
the resource quotas if they were below the appli­
cation's needs. Conversely, with the OpenVMS 
Management Station product, the system manager 
selects the users of the application in the domain 
display (Figure 3), and requests the zoom display 
for the entire set. The system manager then 
proceeds to the user quota display and selects the 
quotas to change. The selection takes the form of 
a conditional request-in this case an At Least 
condition-and the value to set. The system man­
ager then presses the Apply to All button, and 
the changes are carried out for all selected users. 
Figure 6 shows the user quota display. 

Communications Component 
The communications component is responsible for 
managing communications between the client and 
servers. It provides support for transport-indepen­
dent, request-response communications, automated 

Vol. 6 No. 4 Fall 1994 Digital Tech11ical]ournal 



Monday 
Tuesday 
Wednesday 
Thursday 
Friday 

Figure 5 

The Structure of the Open VMS Management Station 

.1 .O.K I 
,.J. ~ I 
h APP!,, ) I' 
I AR.Pfy to All I . 
I 1t• I 

~--,,Dap 
Saturday 
Sunday 

s D 

.. • ' •• t .. 

6AM 9AM Noon 
I 

User Time Restrictions Display 

.U.aerw IJJ.OHNSON on PSWAPM ri] •• 
Altriiute(a): ., o:~las . [iJ. I 

,calteooirr.. s,._ DJINlllic M~ ~'ao, 1111' 1=,.,.-~*-:--; ---------- ,~' 
System O namrc Memor 

J[uff!lfedlO: 

~ 
10: 

jEqual lo 

I Equal lo 

jEqual lo 

JM:f 
.. J!l l 

[iJ I 
I Equal lo JiJ'.J 

.file LW:l "'~ ... :--~:-:-::---......... ,·-.... , ... 1 ... ,1t----
. ,lob logicals: IE qual lo · 1it l 

I Equal lo W I 

Figure 6 User Quota Display 

325 11 
100 11 

95536 11 
100 Ii . 

~ooo_ I 
200 11 

4096 11 
120 11 

Digital Technical]m,rnal Vol. 6 No. 4 Fall 1994 83 



\ 

PC LAN and System Management Tools 

reconnection on failure, and support routines for 
formatting and decoding attributes in messages. 

Because of the request-response nature of the 
communications, the project team's first approach 
was to use remote procedure calls for communica­
tions, using DCE's remote procedure call (RPC) 
mechanism. 5 This matches the message traffic for 
the degenerate case of a single managed system. 
Management of multiple systems can easily be mod­
eled by adding a continuation routine for any given 
management service. This routine returns the next 
response, or a "no more" indication. 

The RPC mechanism also handles much of the 
basic data type encoding and decoding. A form of 
version support allows the services to evolve over 
time and still interoperate with previous versions. 

The project team's eventual decision not to use 
DCE's RPC was not due to technical concerns. The 
technology was, and is, a good match for the needs 
of the OpenVMS Management Station software. 
Instead, the decision was prompted by concerns 
for system cost and project risk. At the time, both 
the OpenVMS Management Station product and the 
OpenVMS DCE port were under development. The 
DCE on OpenVMS product has since been delivered, 
and many of the system cost concerns, such as 
the license fees for the RPC run time and the need 
for non-OpenVMS name and security server sys­
tems, have been corrected. 

In the end, the OpenVMS Management Station 
software contained a communications layer that 
hid many of the details of the underlying implemen­
tation, offering a simple request-response para­
digm. The only difference with an RPC-style model 
is that the data encoding and decoding operations 
were moved into support routines called directly 
by the sender or receiver, rather than by the com­
munications layer itself. In future versions, the goal 
for this layer is to support additional transports, 
such as simple Transmission Control Protocol/ 
Internet Protocol (TCP/IP) messages or DCE's RPC. 
An investigation into providing additional trans­
ports is currently under way. 

The remainder of this section describes the com­
munications layer in more detail, including the 
mechanisms provided to the client OMMs, how 
reconnection on failure operates, and the message 
encoding and decoding support routines. 

Client Request-response Mechanisms 
The OMMs in the client system call the communica­
tions layer directly. To make a request, an OMM first 

84 

updates the collection of systems that are to receive 
any future management requests. Assuming this 
was successful, the OMM then begins the request 
processing by retrieving the version number for the 
current forwarding server. Based on that, the OMM 
then formats and issues the request. Once the 
request has been issued, the OMM periodically 
checks to see if either the response has arrived or 
the system manager has canceled the request. Upon 
arrival of the response, it is retrieved and the mes­
sage data decoded. 

To perform this messaging sequence, the OMM 
uses a pair of interfaces. The first is used to estab­
lish and maintain the collection of systems that are 
to receive any management requests. The second 
interface, which is compatible with X/Open's XTI 
standard, is used to issue the request, determine if 
the response is available, and to retrieve it when 
it is.6 A third interface that supports the encoding 
and decoding of message data is described in a fol­
lowing section. 

Reconnection on Failure 
The OpenVMS Management Station product 
attempts to recover from communications failures 
with little disruption to the system manager 
through the use of an automated reconnection 
mechanism. This mechanism places constraints on 
the behavior of the request and response messages. 
Each request must be able to be issued after a recon­
nection. Therefore, each request is marked as either 
an initial request, which does not depend on server 
state from previous requests, or as a continuation 
request, which is used to retrieve the second or 
later responses from a multiple target request and 
does depend on existing server state. 

If an existing communications link fails, that link 
is marked as unconnected. If a response were 
outstanding, an error would be returned instead of 
a response message. When the communications 
layer is next called to send a request across the 
unconnected link, an automated reconnection is 
attempted. This involves establishing a network 
connection to a target system in the request. Once 
the connection has been established, the authenti­
cation protocol is executed, using the previously 
supplied authentication data. If authentication 
succeeds, the request is sent. If it is a continuation 
request, and the target server has no existing state 
for that request, an error response is returned. 

At most, the resulting behavior for the system 
manager is to return an error on a management 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



request, indicating that communication was lost 
during that request's execution. If no request was 
in progress, then there is no apparent disruption of 
service. 

Message Encoding and Decoding 
Messages from the OpenVMS Management Station 
tool are divided into three sections. The first sec­
tion contains a message header that describes the 
length of the message, the protocol version number 
in use, and the name of the target OMM. The second 
section contains the collection of target systems for 
the request. The third section contains the data 
for the OMM. This last section forms the request and 
is the only section of the message that is visible to 
theOMMs. 

The OMM data for a request is typically con­
structed as a command, followed by some number 
of attributes and command qualifiers. For instance, 
a request to list all known users on a system, return­
ing their usernames and last login time, could be 
described as this: 

COMMAND 
MODIFIER 
ATTRIBUTES 

LI ST _USE RS 
USERNAME = "*" 
USERNAME, 
LAST_LOGIN_TIME 

The OMM data for a response is typically a status 
code, the list of attributes from the request, and the 
attributes' associated values. There may be many 
responses for a single request. Using the UST_USERS 
example from above, the responses would each 
look like a sequence of: 

STATUS SUCCESS 
ATTRIBUTES USERNAME (<value>) 

LAST_LOGIN_TIME (<value>) 

There are many possible attributes for an OpenVMS 
user. To make later extensions easier and to limit 
the number of attributes that must be retrieved 
or updated by a request, the OMM data fields are 
self-describing. They consist of a sequence of mes­
sage items that are stored as attribute code/item 
length/item value. The base data type of each 
attribute is known and fixed. 

Message encoding is supported by a set of rou­
tines. The first accepts an attribute code and its 
associated data item. It appends the appropriate 
message item at the end of the current message. 
This is used to encode both requests and responses. 
The second routine takes a message buffer and an 
attribute code, returning the attribute's value and 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

The Structure of the OpenVMS Management Station 

a status code indicating if the attribute was present 
in the message buffer. The client uses this routine 
to locate data in a response. The third routine takes 
a message buffer, a table listing the attribute codes 
that are of interest to the caller, and an action rou­
tine that is called for each message item that has an 
attribute code found in the table. The server OMMs 
use this routine to process incoming requests. 

Handling of Complex Data Types 
In general, the interpretation of data between the 
client and server systems did not pose a significant 
concern. There was no floating-point data, and the 
integer and string data types were sufficiently simi­
lar not to require special treatment. However, the 
OpenVMS Management Station software did need 
a few data types to process that were not simple 
atomic values. These required special processing to 
handle. This processing typically consisted of for­
matting the data type into some intermediate form 
that both client and server systems could deal with 
equally well. 

For instance, one such data type is the time­
stamp. In the OpenVMS operating system, times 
are stored as 64-bit quadword values that are 
100-nanosecond offsets from midnight, November 
18, 1858. This is not a natural format for a Microsoft 
Windows client. Date and time display formats vary 
greatly depending on localization options, so the 
data needed to be formatted on the local client. The 
developers used an approach that decomposed the 
native Open VMS time into a set of components, sim­
ilar to the output from the $NUMTIM system or the 
UNIX tm structure. This decomposed time struc­
ture was the format used to transmit timestamp 
information between the client and server. 

Server Component 
With the OpenVMS Management Station product, 
the server component is responsible for enacting 
management requests that target its local system. 
The server also must forward requests to all other 
VMScluster systems or independent systems that any 
incoming request may target. The server is a multi­
threaded, privileged application running on the 
managed OpenVMS systems. It consists of an infra­
structure layer that receives incoming requests and 
dispatches them, the server OMMs that enact the 
management requests for the local system, and a for­
warding layer that routes management requests to 
other target systems and returns their responses. 

85 



PC IAN and System Management Tools 

Server Infrastructure 
The server infrastructure, shown in Figure 7, is 
responsible for dispatching incoming requests to 
the server OMMs and the forwarding layer. It has a 
set of threads, one for each inbound connection, a 
pair of work queues that buffer individual requests 
and responses, and a limited set of worker threads 
that either call the appropriate OMM or forward the 
request. 

The inbound connection threads are responsible 
for ensuring that the request identifies a known 
OMM and meets its message requirements. The 
connection threads must also ensure that the OMM 
version number is within an acceptable range and 
that the link is sufficiently authenticated. The 
inbound threads are then responsible for repli­
cating the request and placing requests that have 
only one target system in the request work queue. 
Once a response appears in the response work 
queue, these threads return the response to the 
client system. 

A fixed number of worker threads are responsi­
ble for taking messages from the request work 
queue and either forwarding them or calling the 
appropriate local OMM. Each result is placed in the 
response queue as a response message. A fixed 
number of five worker threads was chosen to 
ensure that messages with many targets could not 
exhaust the server's resources. Responsiveness and 
resource usage were acceptable throughout the 

development and testing phases of the project, and 
the number of worker threads was kept at five. 

In addition to the basic thread structure, the 
infrastructure is responsible for participating in the 
authentication exchange for inbound connections. 
This is accomplished through the use of a special­
ized server OMM, called Spook. The Spook OMM 
uses the basic server infrastructure to ensure that 
authentication requests are forwarded to the appro­
priate target system. This mechanism reduced the 
amount of specialized logic needed for the authen­
tication protocol: for this reason, the server OMMs 
must declare if they require an authenticated link 
before accepting an incoming request. 

Server OMM Structure 
The server OMMs are at the heart of the server. 
These OMMs are loaded dynamically when the 
server initializes. 

Figure 8 shows the structure of the UAServer OMM 
in OpenVMS Management Station version 1.0. The 
server OMM consists of the main application mod­
ule, the preprocessing routine, and the postprocess­
ing routine. The interfaces are synchronous, passing 
OMM data sections from the request and response 
message buffers. In addition, the main application 
module executes in the security context, called a 
persona, of the authenticated caller. This allows nor­
mal access checking and auditing in the OpenVMS 
operating system to work transparently. 

OUTGOING I FORWARD I INCOMING 

RE~=~T __ J__ __R_EQ_U_E_s_T __ 1s TARGET LOOK UP OMM NAME -c- L~':.':_L:EST 

J LOCAL? AITACH AUTHENTICATION J 

J YES '\_ REQUEST WORK QUEUE / CONTEXT TO REQUEST J 

: ""111111111 I ~~~L~~~TiA~~~~E;~;TEM : 

WAIT FOR SERVER GET NEXT I I STALL WAIT FOR 
RESPONSE OMM REQUEST THREAD NEXT 

i / I 111111111 ~ MATCH RESPONSE TO "'.:::OING 
____ -r _. _______ .,..../ RESPONSE WORK QUEUE REQUEST J RESPONSE 

INCOMING SEND RESPONSE - -r- -->-
RESPONSE I 

I I 
I FIVE WORKER THREADS ONE THREAD PER CONNECTION J 

L _____________________ ___________ J 

Figure 7 Server Infrastructure and Message Row 

86 Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



FORWARD 
TO TARGET 

YES 

RESOURCE I 
MANAGERS 

u. 
<( 
::) 

The Structure of the Open VMS Management Station 

APPLICATION 

:? 
(/) 

UJ 

CD I- >-I-
Cl 

(/) x 
I >- 0 
(!) <( (/) cc ::) a: UJ a. 

...J 
u: 

UJ 
0 z 
<( 
z 
UJ 
I-z 
~ 
:? 

POSTPROCESSING 
ROUTINE 

FROM 
TARGET 

MANAGES 
SYSUAF.DAT 

MANAGES 
TNT$UADB. DAT 

CREATES LOGIN 
DIRECTORY AND 
MANAGES 

Figures 

The preprocessing and postprocessing routines 
are used to ease interoperation of multiple ver­
sions. They are called if the incoming request has 
a different, but supported, OMM version number 
than the one for the local OMM. The resulting OMM 
data section is at the local OMM's version. These 
routines hide any version differences in the OMM's 
data items and free the main application from the 
need to handle out-of-version data items. If the pre­
processing routine is called, the server infrastruc­
ture always calls the postprocessing routine, even if 
an error occurred that prevented the main OMM 
application from being called (for instance, by a 
link failure during forwarding). This allows the two 
routines to work in tandem, with shared state. 

The actual management operations take place in 
the main application portion of the server OMM. It 
is structured with an application layer that provides 
the interface to the management object, such as the 
user account. This uses underlying resource man­
agers that encapsulate the primitive data stores, 
such as the authorization file. The application layer 

Digital Technical journal Vol. 6 No. 4 Fall 1994 

DISK QUOTA 

UAServer OMM 

knows what resources are affected by a given man­
agement request. Each resource manager knows 
how to perform requested modifications to the 
specific resource that it manages. 

For instance, the UAServer application layer 
knows that the creation of a new user involves 
several resource managers, including the authoriza­
tion file and file system resource managers. How­
ever, it does not specifically know how to perform 
low-level operations such as creating a home direc­
tory or modifying a disk quota entry. In comparison, 
the file system resource manager knows how to do 
these low-level operations, but it does not recognize 
the higher level requests, such as user creation. 

The application layer for all OMMs offers an inter­
face and a buffer. The request message passes the 
OMM data section to the interface, and the buffer 
holds the OMM data section for the response mes­
sage. Similarly, all resource managers accept an 
OMM data section for input and output parameters, 
ignoring any OMM data items for attributes outside 
their specific resource. Because of the loose 

87 



PC IAN and System Management Tools 

coupling between the resource managers and the 
application layer, the resource managers can be eas­
ily reused by server OMMs developed later. 

Summary 
The OpenVMS Management Station tool has demon­
strated a robust client-server solution to the manage­
ment of user accounts for the OpenVMS operating 
system. It provides increases in functionality and 
data consistency over system management tools pre­
viously available on the Open VMS operating system. 
In addition, the OpenVMS Management Station soft­
ware is focused on the management of several 
loosely associated VMSduster systems and indepen­
dent systems. It has addressed the issues concern­
ing performance, usability, and functionality that 
arose from the need to issue management requests 
to execute on several target systems. 

Acknowledgments 
I wish to thank the Argus project team of Gary 
Allison, Lee Barton, George Claborn, Nestor Dutko, 
Tony Dziedzic, Bill Fisher, Sue George, Keith 
Griffin, Dana Joly, Kevin McDonough, and Connie 
Pawelczak for giving me a chance to work on such 
an interesting and exciting project. I also wish to 
thank Rkh Marcello and Jack Fallon for providing 

88 

support and encouragement to the team through­
out the project, and for their further encourage­
ment in writing about this experience. 

References 

I. Open VMS AXP Guide to System Security 
(Maynard, MA: Digital Equipment Corporation, 
May 1993): 5-1 to 5-37. 

2. D. Giokas and ]. Rokicki, "The Design of 
ManageWORKS: A User Interface Framework," 
Digital Technical Journal, vol. 6, no. 4 (Fall 
1994, this issue): 63-74. 

3. ]. Case, M. Fedor, M. Schoffstall, and ]. Davin, 
Network Working Group, Internet Engineering 
Task Force RFC 1157 (May 1990). 

4. DECnet Digital Network Architecture, Common 
Management Information Protocol (CMIP), Ver­
sion 1.0.0 (Maynard, MA: Digital Equipment Cor­
poration, Order No. EK-DNAOl-FS-001,July 1991). 

5. ]. Shirley, Guide to Writing DCE Applications 
(Sebastopol, CA: O'Reilly &Associates, Inc., 1992). 

6. X/Open CAE Specification, X/Open Transport 
Interface (XTI), ISBN 1-872630-29-4 (Reading, 
U.K.: X/Open Company Ltd., January 1992). 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



John R. Lawson,Jr. I 

Automatic, Network-directed 
Operating System Software 
Upgrades: A Platform­
independentApproach 

The initial system load (ISL) capability of Digitals layered-product POLYCENTER 
Software Distribution (formerly known as RSM) version 3.0 provides Open VMS sys­
tem managers with a network-directed tool for performing automatic operating 
system software upgrades. The design of the POLYCENTER Software Distribution 
product integrates a number of new and varied software architectures to perform 
the ISL A description of the POLYCENTER Software Distribution implementation of 
the ISL for the Open VMS operating system details the steps of the ISL process. The soft­
ware's modular ISL mechanism can be expanded for use on other Digital and non­
Digital operating systems and hardware platforms. 

The POLYCENTER Software Distribution version 3.0 
product provides automatic, centrally delivered, 
network-directed operating system software 
upgrades through a process called the initial system 
load.1 The term initial system load (ISL) has existed 
for a number of years in various forms and has come 
to describe the act of loading the operating system 
software onto brand-new (virgin) systems without 
the need for locally attached tape drives or other 
removable media devices. This term, more loosely 
applied, may also be used to describe other opera­
tions such as operating system upgrades. 

The ISL technology provides many advantages 
over the traditional means of performing upgrades. 
Typically, upgrades are performed one system at 
a time, at each console by the system manager, who 
must maintain the correct set of installation media 
for each client system's unique set of peripherals 
and answer each question as the upgrade pro­
cedure prompts. In a network managed by the 
POLYCENTER Software Distribution product, operat­
ing system upgrades are performed simultaneously. 
Any number of ISL operations can be invoked by 
using a single installation medium and often by issu­
ing a single command. In addition, the ISL mecha­
nism can be used for system disk maintenance 
operations, such as upgrade, replacement, replica­
tion, backup, or compression. 

Dtgttal Technical Journal Vol. 6 No. 4 Fall 1994 

The POLYCENTER Software Distribution product 
can be extended for use with non-Digital operating 
systems and hardware platforms all controlled 
from its one user interface. In most cases, no back­
ups need be performed on the clients' system disks. 
A halted client system, of course, must be launched 
into the first step manually. 

This paper describes the POLYCENTER Software 
Distribution version 3.0 product. It begins by dis­
cussing the software environment and the software 
technologies used by the ISL process. It then states 
the project team's goals for the product. The paper 
next relates the ISL scheme implemented by 
the POLYCENTER Software Distribution version 3.0 
product for the OpenVMS operating system. The 
paper concludes with a discussion of the details of 
expanding the ISL to other platforms. It is assumed 
that candidate operating systems are capable of at 
least simple task-to-task communication through 
the DECnet network (or some emulation), but other 
communication mechanisms could be devised 
instead. 

Software Environment 
The POLYCENTER Software Distribution product 
defines operating system software as everything on 
the volume that is typically called the system disk. 
This includes boot files, data files, configuration 

89 



PC IAN and System Managem ent Tools 

files, utilities, compilers, layered products, and cus­
tomizations. It even includes user directories, if 
they exist on that system disk. 

The POLYCENTER Software Distribution product 
allows the individual operating system to deter­
mine the definition of upgrading the operating sys­
tem software. For the OpenVMS operating system, 
upgrading could mean the complete replacement 
of the contents of the system disk volume, includ­
ing the utilities, compilers, database, and custom­
izations. For the OpenVMS AXP operating system, 
it could also mean the installation, without touch­
ing the rest of the volume, of only newly acquired 
OpenVMS operating system files and images. For 
other platforms, it could mean any one of several 
other techniques. Each platform can define what is 
needed to perform operating system upgrades or 
installations. 

A network managed by the POLYCENTER Soft­
ware Distribution product consists of one or more 
centrally located server systems; each server is 
responsible for performing certain operating 
system maintenance functions on its assigned set 
of client systems. The server system runs the 
OpenVMS operating system. Client systems run any 
of a number of operating systems. The POLYCENTER 
Software Distribution version 3.0 software sup­
ports backups, user authorizations, and layered­
product installations for clients running the VAX 
VMS, OpenVMS VAX, OpenVMS AXP, and ULTRIX 
operating systems. The software includes support 
for ISL procedures to clients running the VAX VMS, 
OpenVMS VAX, and OpenVMS AXP operating 
systems. The software's ISL architecture, however, 
supports expansion to other operating systems 
and platforms. 

Design of the POLYCENTER Software 
Distribution Product 
The design of the POLYCENTER Software Distri­
bution version 3.0 product integrates a number of 
new and varied software architectures. The soft­
ware development required the cooperation and 
synchronization of two layered-product and two 
operating system development groups. 

Software Technologies 
No single software technology is capable of auto­
matically upgrading system disks. Several must be 
used in combination. A brief description of a num­
ber of such technologies that could be used to 

implement the ISL process follows. 

90 

• Maintenance Operations Protocol (MOP) is a net­
work protocol used to download system software 
into the memory of adjacent network nodes. 

• Remote triggering enables one client system to 
cause another client system to reboot. The client 
system must have triggering enabled and have 
a triggering password defined and known to the 
server node. 

• The load assist agent is a shareable image run­
ning in the context of the maintenance opera­
tions monitor (MOM) process on the server 
system. This code permits a server to control 
and customize (if necessary) the system soft­
ware being downloaded to the client. 

• The local area disk (LAD) protocol allows locally 
attached disks or container files on server sys­
tems to be presented to the local area network 
(LAN) for use as virtual disks on client systems. 
The lnfoServer is the most common server of the 
LAD protocol. OpenVMS systems running the 
POLYCENTER Software Distribution product can 
also act as LAD servers. A system can be a LAD 
virtual disk. 

• The processor-specific primary bootstrap is 
a low-level program that is loaded into the mem­
ory of a booting client. This program can be 
loaded from a disk drive, a tape drive, the net­
work interconnect (NI), or read-only memory 
(ROM). A small but self-contained program, it is 
capable of communicating with the machine's 
console subsystem, most of the machine's inter­
nal resources, and the system disk from which it 
loads a secondary bootstrap or the full operating 
system. 

Note that some operating systems (OpenVMS 
included) claim that their bootstrap programs 
are processor-independent. However, if the 
operating system is under development, support 
will be added eventually to this bootstrap for 
new CPU models and/or hardware variations. 
Thus the processor-independent bootstrap pro­
gram from an earlier version of an operating sys­
tem may not support all the processor types 
supported by a later version of this same pro­
gram. Therefore, processor independence is tied 
to the set of processors supported by that par­
ticular version of the operating system. For this 
reason, the POLYCENTER Software Distribution 
product specifically stores an image of the boot­
strap program in a private directory alongside 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



Automatic, Network-directed Operating System Software Upgrades 

the container file that houses a virtual system 
disk (a bootable snapshot of the version of the 
operating system). 

• The system start-up command procedure is a 
command script that is responsible for bringing 
the recently booted operating system to its full 
configuration. In an ISL, this command proce­
dure is tailored to configure only the resources 
needed to perform the ISL. Sometimes, limited 
command-level access is allowed, but seldom is 
full user access or timesharing permitted. 

• In the OpenVMS operating system, the BACKUP/ 
IMAGE command can duplicate a system disk 
either directly from disk to disk, or indirectly 
from a saveset file (which might be located on 
tape or across the network) to disk. 

• Standalone BACKUP is a self-contained, diskJess 
operating system capable of executing BACKUP/ 
IMAGE commands but not capable of network 
operations. 

• The SYS$UPDATE:VMSKITBLD.COM procedure in 
the OpenVMS operating system is used to create 
a generic system disk, using the current system 
disk software as a model. 

• The POLYCENTER Software Installation (PCSI) 
utility is capable of creating or upgrading a sys­
tem disk from a configuration file and a descrip­
tion file (possibly located at a remote network 
location) or the current system disk. 

All these software technologies are utilized in the 
POLYCENTER Software Distribution ISL, except stand­
alone BACKUP and SYS$UPDATE:VMSKITBLD.COM, 
because the former cannot be used remotely, and 
the latter produces uninteresting system disks. 
Anyone expanding the ISL, however, can use what­
ever techniques they choose, including those two. 

Goals for the ISL Process 
The development team had the following goals for 
the POLYCENTER Software Distribution implemen­
tation of the ISL process. 

• The process must be totally automatic; only 
halted client systems are permitted to require 
human intervention. 

• Multiple ISL processes must run concurrently. 
No specific limits should be placed on the num­
ber running in parallel (except for practical per­
formance reasons). 

Digital Tecbntcal]ournal Vol. 6 No. 4 Fall 1994 

• The software library must store several operat­
ing system images. They can be images of differ­
ent operating systems and/or different versions 
of the same operating systems. 

• Client systems must not be restricted to specific 
peripheral hardware. 

• The software must make no assumptions about 
the hardware to which it is delivering software. 
Whatever configurations are legal to a particular 
operating system must also be supported by the 
POLYCENTER Software Distribution product. 

• The client software must make no assump­
tions about the server system directing the ISL. 
Therefore, it would be inappropriate to store 
operating system images in BACKUP saveset 
files, which are unique to the OpenVMS operat­
ing system. 

• Client software, including temporary system 
disks, must be taken from the clients themselves. 
Prepackaged operating system software is dis­
couraged because it becomes obsolete as new 
versions of the operating system are developed, 
and because it is rarely capable of being cus­
tomized by the user. 

• The ISL process should be expandable to other 
operating systems and hardware platforms with­
out changes to the current product. 

• The POLYCENTER Software Distribution product 
should be able to use Digital-supplied distribu­
tion media as operating system images, such as 
the PCSI-based OpenVMS AXP version 6.1 CD-ROM. 

• The operating system image should occupy as 
little disk space as possible. 

• The ISL process should work over all valid 
DECnet network configurations. This require­
ment was only partially achieved: the LAD proto­
col works over the LAN only. 

From these requirements, two achievements were 
gained: the totally modular organization and the 
compatibility with the OpenVMS AXP operating 
system distribution CD-ROM. The former permits 
support for other operating system and hardware 
platforms to be added incrementally. The latter 
enables system managers to simply load the latest 
copy of the distribution media, invoke the PCSI util­
ity to record their configuration choices, and then 
enter a single command to upgrade all their client 
systems at once. 

91 



PC IAN and System Management Tools 

Description of the ISL Steps 
Regardless of the operating system or hardware 
platform, the ISL process requires the following 
simple steps: 

• Load a processor-specific primary bootstrap 
into the memory of the client system. 

• Boot a (usually read-only) version of the operat­
ing system from some form of temporary system 
disk. 

• Determine the parameters of the ISL to be 
performed. 

• Move the operating system software to the 
target system disk. 

• Initiate the cleanup, configuration, tuning, and 
reboot of the target system disk (which would 
then contain the new version of the operating 
system software). 

Figure 1 shows the steps of the ISL process in the 
POLYCENTER Software Distribution Installation. 

This section provides a description of each 
step in the ISL process, contrasting the OpenVMS 
implementation with the POLYCENTER Software 
Distribution implementation of the ISL for the 
OpenVMS operating system. The discussion 
includes both the traditional standalone installa­
tion based on the BACKUP command and the 
OpenVMS-defined ISL or upgrade based on the PCSI 

SERVER LAD PROTOCOL 
SYSTEM 

LAD 
PROTOCOL .- ----------. 

I PROCESSOR- 1 

-~ SPECIFIC ~--
BOOTSTRAP 1 : 

IMAGE I ---- --- -- -· 

' ' ·-- +-

----, 

CLIENT 
SYSTEM 

' ' ' 

:OPERATING 
:SYSTEM 

' ' 

INSIDE THE BOOTSTRAP 
IMAGE, A WORKSPACE 
CONTAINS THE ISL 
PARAMETERS 

TARGET B 
SYSTEM 
DISK 

92 

Figure 1 ISL Process in the POLYCENTER 
Software Distribution Installation 

utility. The PCSI-based upgrade very closely resem­
bles the ISL process of the POLYCENTER Software 
Distribution version 3.0 product. 

The modular layout of the POLYCENTER Software 
Distribution implementation and the extension of 
the ISL to other operating systems are discussed in 
the section Platform Independence. 

Processor-specific Primary Bootstrap 
The primary bootstrap is responsible for establish­
ing the connection needed between the client sys­
tem and the temporary (or virtual) system disk, 
wherever that might be maintained. 

OpenVMS Implementation If the distribution 
medium is local, then the ROM bootstrap or a boot­
strap file on the medium is sufficient to boot the 
operating system contained there. If the distribu­
tion medium is served to the IAN by an InfoServer 
system, then the bootstrap image must be down­
loaded from an adjacent DECnet node with service 
enabled on its NI circuit common to that client, using 
MOP. In OpenVMS AXP, this image is called APB.SYS; 
in OpenVMS VAX, it is ISL_SVAX.SYS or ISL_LVAX.SYS 
(for small or large VAX systems, respectively). 

The system manager requests the image to be 
downloaded (at the console of each client system) 
by entering special processor-dependent boot com­
mands. The MOM process on the adjacent node 
drives the MOP delivery of the bootstrap image 
to each client. Before the connection between 
the client system and the temporary system disk 
can be established, the system manager must navi­
gate a series of menus to select the name of the 
InfoServer service under which that distribution 
medium is presented. 

POLYCENTER Software Distribution Implemen­
tation The client system boots from its NI 
adapter, generating a MOP load request. The server 
keeps the client's hardware NI address in its 
database so it can detect and process this request. 
This activates the load assist agent (LAA) under 
the MOM process. The LAA retrieves the various 
answers to the operating system configura­
tion questions from the POLYCENTER Software 
Distribution library. It then passes those answers 
plus the operating system version-specific pri­
mary bootstrap (APB.EXE for OpenVMS AXP or 
ESS$ISL_ VMSLOAD.EXE for Open VMS VAX) back to 
the MOM process to be downloaded to the client's 
memory. Among these configuration answers are 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



Automatic, Network-directed Operating System Software Upgrades 

the name and password of a LAD service, presented 
by the server in a file containing the temporary sys­
tem disk. This primary bootstrap establishes the 
logical connection between the client system and 
this virtual system disk. 

Temporary System Disk 
The temporary system disk is a tailored copy of 
the operating system to be installed. This system 
disk is usually customized in such a way that its 
only purpose is to perform the ISL 

Open VMS Implementation If it is mounted locally, 
the temporary system disk is the distribution 
medium. If the medium is presented to the client by 
an InfoServer service, then the temporary system 
disk is a virtual disk bound to that LAD service. In 
either case, the temporary system disk is mounted 
as read-only. 

The operating system booted from that medium 
is either standalone BACKUP (for traditional installa­
tions) or OpenVMS (for PCSI-based ISL installations 
or upgrades). Since standalone BACKUP can per­
form only BACKUP operations, there is an extra, 
time-consuming step. The system manager must 
enter an appropriate BACKUP/IMAGE command to 
move a portion of the operating system software 
(the so-called REQUIRED saveset file) to the target 
system disk and then boot onto the target system 
disk (containing this partial OpenVMS operating 
system) to continue the installation. 

POLYCENTER Software Distribution Implemen­
tation The temporary system disk always con­
tains the full operating system to be installed. In 
most cases, this temporary system disk is actually a 
fully functional image of a model system disk taken 
from another client system by an earlier FETCH 
OPERATING_SYSTEM command. 2 The fetch process 
(discussed later) has replaced this temporary sys­
tem disk's system start-up command procedure 
with a script that runs the remaining steps of the ISL 
process. 

Previous versions of this product (also known as 
RSM) included a prepackaged temporary system 
disk with a fixed contents that was built by hand. 
Software developers routinely captured the latest 
versions of Open VMS system disks inside boot con­
tainer files as small as 14,000 blocks! Although 
an interesting academic achievement, this proved 
to be an impractical approach. Digital releases 
new processors from time to time, and each new 

Digita l Tech 11 i ca l jo11r11 a l Vol. 6 No. 4 Fall 1994 

processor requires a new minimum version of the 
OpenVMS operating system. The system disks cap­
tured in the boot container could not be easily 
upgraded in the field. An engineering change order 
was required for the POLYCENTER Software Distri­
bution product each time support was added to the 
OpenVMS system for a new processor. 

These previous versions also stored the operat­
ing system image in a BACKUP saveset file. This 
method could be more space-efficient (page, swap, 
and dump files consume no space in a saveset file), 
but it violates one of the design goals. 

In version 3.0, the software developers eliminated 
the concept of separate BACKUP saveset files and 
boot containers. Since the operating system support 
for the new processors exists in the software saved 
in the operating system image, the clients can be 
booted directly from that image. The POLYCENTER 
Software Distribution version 3.0 product stores the 
image of the model system disk directly into a con­
tainer file. This approach produced an interesting 
side effect. If a particular processor is not supported 
by the version of OpenVMS saved in the operating 
system image, it is not possible to boot that proces­
sor into the ISL. As a result, an older version of the 
OpenVMS operating system cannot be installed on 
hardware that requires a newer version. 

Parameters of the ISL 
When operating system software is being installed, 
system configuration choices must be selected 
from a number of variables. At a minimum, the 
name of the target system disk must be known. 
Answers might also be needed for questions such 
as: which subsets of the operating system files are 
to be installed? The ISL procedure must be capable 
of obtaining these answers, either by prompting 
a user at the console of the client system or by some 
automatic means. 

OpenVMS Implementation At this point, the 
OpenVMS operating system is running, and a spe­
cial system start-up command procedure has con­
trol. The system manager now answers a series of 
prompts at the console. Only rarely does the 
upgrade procedure ask all its questions at once 
(and state that it is finished asking questions) before 
commencing any time-consuming tasks. If it did, 
the system manager could leave the console of one 
machine to move to the console of the next 
machine and so on. In this way, multiple upgrades 
could be performed concurrently. 

93 



PC IAN an d System Management Tools 

POLYCENTER Software Distribution Implemen­
tation The parameters of the ISL were down­
loaded along with the primary bootstrap image. 
The system start-up procedure of the ISL executes a 
program that locates the list of parameters in mem­
ory and returns them as logical names, which are 
easier for command procedures to manipulate. 
(Other operating systems would use their own eas­
ily accessible data storage mechanisms.) 

The system start-up procedure starts the DECnet 
networking software and establishes a network con­
nection with the POLYCENTER Software Distribution 
server system, permitting access to larger amounts 
of data than might fit into the bootstrap image. The 
BACKUP saveset file used by previous versions of 
the POLYCENTER Software Distribution product was 
accessed through this DECnet connection. 

Move the Operating System Software 
Each operating system has specific requirements 
for creating or duplicating system disks. This step 
uses the client operating system's standard proce­
dure to duplicate or upgrade the target system disk, 
generally using the temporary system disk as its 
source (or model). However, another means, such 
as network files or library files, may be used. 

Open VMS Implementation From this point, there 
is no difference between an upgrade and an installa­
tion using the traditional standalone OpenVMS 
mechanisms. 

The OpenVMS mechanism now performs a series 
of complex file replacements in a peculiar order, 
which requires several reboots to complete. This 
maximizes the existing free space on the target sys­
tem disk. After all the reboots have completed, the 
old operating system files will have been deleted, 
and the new files will have been delivered. 

The PCSI-based upgrade does not need to perform 
the several reboots, since the target system disk is 
treated as a data disk. Its operating system files are 
simply replaced with new versions taken from the 
temporary system disk. This is one reason that 
the PCSI-based OpenVMS upgrade is faster than the 
traditional OpenVMS upgrade. 

POLYCENTER Software Distribution Implemen­
tation Since full OpenVMS (including DECnet) is 
running, all the resources of the OpenVMS operat­
ing system are available for manipulating the target 
system disk, which is also treated as a data disk. 
Alternatives such as VMSKITBLD.COM (which ere-

94 

ates duplicate basic system disks), the BACKUP/ 
IMAGE command (which duplicates system disks in 
their entirety), and the PCSI utility (which upgrades 
system disks in place) could be utilized at this point. 

The BACKUP/IMAGE command moves the image of 
the temporary system disk to the target system disk. 
The PCSI utility replaces the operating system files 
on the target system disk with the new operating 
system files from the temporary system disk. In the 
BACKUP/IMAGE case, any system-specific customiza­
tions or layered-product files that were saved into 
the container file by the FETCH OPERATING_SYSTEM 
process are now in place. In the PCSI case, how­
ever, all system-specific customizations or layered­
product files are left undisturbed. 

Cleanup, Configuration, Tuning, 
and Reboot 
Any final changes needed before allowing the client 
to use its new system disk are performed during the 
cleanup, configuration, tuning, and reboot phase. 
The client now boots from its newly upgraded 
target system disk, and the temporary system disk 
is no longer needed. 

OpenVMS Implementation As a final step, the 
AUTOGEN procedure tunes the operating sys­
tem parameters to the hardware on which it is 
intended to run. Any other configuration issues 
(such as the network node name and address) 
remain as exercises for the system manager to per­
form at some later time. The system reboots one 
last time. For traditional installations, this reboot 
may have been the fifth or sixth. Some of these may 
have been manual reboots, which require the sys­
tem manager to issue nonstandard, processor­
specific console commands. 

POLYCENTER Software Distribution Implemen­
tation When the BACKUP/IMAGE command is 
used, customizations specific for the ISL, which are 
all stored under the [RSMO.] directory tree, must be 
removed from the target system disk, which, before 
this step, is a perfect image of the temporary system 
disk. In addition, the DECnet software must be 
reconfigured. The DECnet databases still contain 
the configurations saved in the temporary system 
disk; these must be updated to reflect the hardware 
on this client. As a final step, the client reboots 
onto the target system disk, and the temporary sys­
tem disk is no longer required. With the PCSI-based 
ISL, no cleanup is required. 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



Automatic, Network-directed Operating System Software Upgrades 

Fetching and Installing Operating 
System Software 
The POLYCENTER Software Distribution product 
keeps images of model operating systems in its 
private software library. The act of placing soft­
ware into the library is called a fetch. The act of 
delivering that software to a client system is called 
an install. The operating system commands are 
FETCH OPERATING_SYSTEM and INSTALL or UPGRADE 
OPERATING_SYSTEM.3 A model system disk cannot 
be installed without first being fetched from a 
client system or suitable distribution medium. 

The Fetch Operation 
The FETCH OPERATING_SYSTEM command takes 
a parameter that is the symbolic name of the operat­
ing system to be fetched. The POLYCENTER Software 
Distribution product uses and records this sym­
bolic name because it is the key to a naming scheme 
used to activate program modules later. 

Table I lists several symbolic names and the 
operating systems they might represent. It is impor­
tant to remember that there is no built-in mapping 
between these names and the operating systems to 
which they are mapped. This list is a theoretical 
sampling of what mappings could be configured on 
a particular server system. 

When processing an INSTALL OPERATING_SYSTEM 
AVMS command, the POLYCENTER Software Dis­
tribution product uses the OpenVMS system 
run-time library routine LIB$FIND_IMAGE_SYMBOL 
in order to dynamically activate the shareable image 
SYS$SHARE:RSM$ISL_INSTALL-AVMS.EXE. This image 
is called the ISL Director. It is used for both fetch 
and install operations. The POLYCENTER Software 
Distribution product calls the ISL Director routine 
RSM$ISL_FETCH and passes to it a context data struc­
ture (described in the section Platform Indepen­
dence). This routine uses the software's remote 
command execution agent (CEA) to issue Digital 
command language (DCL) commands on the client 
system. Non-Open VMS clients would need to imple­
ment their own communications mechanism, so 
that the server system could direct the client to per­
form any required actions. 

These DCL commands cause the client to mount 
the LAD virtual disk presented from the fetch toolkit 
container file RSM$SDS_DATA:RSM$FETCH-AVMS.DSK. 
The client executes the command procedure 
[RSMV3.0]RSM$ISL_BOOT-AVMS.COM from the fetch 
toolkit virtual disk. This command procedure 

• Determines the size of the client's system disk 

• Reports that system disk size to the ISL Director 

Table 1 Required Files for Sample Operating Systems 

Symbolic 
Name 

VMS 

AVMS 

ULTRIX 

OSF1 

VMS5 

AVMS5 

WINDOWS 

Operating System 

OpenVMSVAX 
orVAXVMS 

OpenVMSAXP 

ULTRIX 

OSF/1 

OpenVMSVAX 
with DECnet Phase V 

OpenVMSAXP 
with DECnet Phase V 

MS-DOS running 
Microsoft Windows 

Dig ital Tee/mica/ ]011rnal Vol. 6 No. 4 Fall 1994 

Required ISL Files 

SYS$SHARE:RSM$1SL_INSTALL-VMS.EXE 
RSM$SDS_DATA:RSM$FETCH-VMS.DSK 
SYS$SHARE:RSM$1SL_LAA-VMS.EXE 

SYS$SHARE:RSM$1SL_INSTALL-AVMS.EXE 
RSM$SDS_DATA:RSM$FETCH-AVMS.DSK 
SYS$SHARE:RSM$1SL_LAA-AVMS.EXE 

SYS$SHARE:RSM$1SL_INSTALL-ULTRIX.EXE 
RSM$SDS_DATA:RSM$FETCH-ULTRIX.DSK 
SYS$SHARE:RSM$1SL_LAA-ULTRIX.EXE 

SYS$SHARE:RSM$1SL_INSTALL-OSF1.EXE 
RSM$SDS_DATA:RSM$FETCH-OSF1.DSK 
SYS$SHARE:RSM$1SL_LAA-OSF1.EXE 

SYS$SHARE:RSM$1SL_INSTALL-VMS5.EXE 
RSM$SDS_DATA:RSM$FETCH-VMS5.DSK 
SYS$SHARE:RSM$1SL_LAA-VMS5.EXE 

SYS$SHARE:RSM$1SL_INSTALL-AVMS5.EXE 
RSM$SDS_DATA:RSM$FETCH-AVMS5.DSK 
SYS$SHARE:RSM$1SL_LAA-AVMS5.EXE 

SYS$SHARE:RSM$1SL_INSTALL-WINDOWS.EXE 
RSM$SDS_DATA:RSM$FETCH-WINDOWS.DSK 
SYS$SHARE:RSM$1SL_LAA-WINDOWS.EXE 

95 



PC IAN and System Management Tools 

The server creates an appropriately sized LAD 
container file to receive the snapshot of the 
client's system disk and serves it to the client. 

• Mounts the new virtual disk 

• Issues a BACKUP/IMAGE command to copy the 
system disk to the virtual disk 

• Provides the server with access to the processor­
specific primary bootstrap image (APB.EXE) 

The server saves the APB.EXE image in its library 
alongside the newly created container file . 

• Customizes the virtual disk so it can be used as 
the temporary system disk during an ISL 

The boot command procedure uses programs 
and command procedures from the fetch toolkit 
virtual disk to accomplish this step. In a FETCH 
OPERATING_SYSTEM AVMS, this final step includes 
creating a special system root [RSMO.SYSEXE] , 
placing a private system start-up command pro­
cedure [RSMV3.0]RSM$ISL_STARTUP-AVMS.COM, 
installing a program to retrieve the parameters 
of the ISL [RSMV3.0]RSM$ISL_CLIENT-AVMS.EXE, 
and installing a command procedure to remove 
these customizations [RSMV3.0]RSM$ISL_CLEANUP­
AVMS.COM. 

The two virtual disks are then dismounted, and the 
server closes the container file and makes it avail­
able, write-protected, for ISL operations. These LAD 
services can be accessed with binary passwords 
known only to POLYCENTER Software Distribution 
servers, so no casual access to the data contained 
within is ever allowed. 

The Install Operation 
The POLYCENTER Software Distribution product 
retrieves the symbolic name of the operating 
system (e.g., AVMS) from the database. The software 
product uses the symbolic name to activate the 
ISL Director image (SYS$SHARE:RSM$ISL_INSTALL­
AVMS.EXE) and passes control to its universal rou­
tine RSM$ISL_INSTALL. This routine enables the LAA 
(SYS$SHARE:RSM$ISL_LAA-AVMS.EXE) and prepares 
a data file RSM$SDS_ WORK:ISL_client.DAT for use 
by the LAA after the client system requests it to be 
downloaded. 

If a DECnet connection is possible between the 
server system and the client system, then the com­
mand execution agent issues appropriate shutdown 
and reboot commands to launch the ISL. If not, the 
POLYCENTER Software Distribution process assumes 

96 

that the client is halted and that the system manager 
will launch the client into the ISL manually. 

When the MOM process detects the client's NI 
address, it activates the LAA and passes control to 
the routine at offset 0000 in the image. The parame­
ters to this procedure call (which are described in 
the section Platform Independence) include the 
node name of the client system and the address of 
a callback routine used to deliver the bytes of the 
bootstrap image to the client. The callback routine 

• Reads the RSM$SDS_ WORK:ISL_client.DAT file 
( described in the section Platform Independence) 

• Retrieves the processor-specific bootstrap 
image (APB.EXE) from the library 

• Locates and writes the parameters of the ISL into 
the bootstrap image's work space 

• Releases these bytes to MOM for delivery to the 
client 

Once this is downloaded, the server system 
assumes a passive role, waiting for the client to 
announce its own completion. 

The processor-specific bootstrap image has 
control of the client system. It locates the LAD ser­
vice name and password in the parameters of the 
ISL to establish the connection to the temporary vir­
tual system disk (which is being presented by the 
server system) and boots the OpenVMS AXP operat­
ing system. 

The system start-up command procedure 
(RSM$ISL_STARTUP-AVMS.COM) then receives con­
trol and 

• Starts enough of the Open VMS operating system 
to mount local disks and start the DECnet net­
working software 

• Executes the program RSM$ISL_CLIENT-AVMS.EXE 
to retrieve the ISL parameters 

With the parameters of the ISL stored in logical 
names, the system start-up procedure then 

• Configures the target system disk 

• Initializes the target system disk if necessary 

• Starts the DECnet networking software 

• Solicits further instructions (if any) from the 
server system 

• Issues a BACKUP/IMAGE command to move the 
operating system software from the temporary 
system disk to the target system disk 

Vol . 6 No. 4 Fall 199 4 Digital Technical Journal 



Automatic, Network-directed Operating System Software Upgrades 

• Executes the RSM$ISL_CLEANUP-AVMS.COM com­
mand procedure to remove the customizations 
specific for the ISL 

The target system disk now appears to be identi­
cal to the model system disk just before the fetch 
operation. 

The UPGRADE OPERATING_SYSTEM and 
FETCH CONFIGURATION Commands 
The contents of the PCSI-installable distribution 
medium for OpenVMS AXP bears a striking resem­
blance to a POLYCENTER Software Distribution tem­
porary system disk. This is no coincidence. The 
Open VMS AXP development team modeled the distri­
bution medium after the POLYCENTER Software 
Distribution boot container, so the product would be 
plug-compatible. The obvious difference, however, is 
that the system start-up procedure invokes the PCSI 
utility instead of the BACKUP/IMAGE command. 

The client system boots from the distribution 
medium under the direction of the POLYCENTER 
Software Distribution product. Next the procedure 
starts the DECnet network software using the 
parameters of the ISL. Then the PCSI configuration 
answers are taken from the server system rather 
than being prompted manually at the console. 
Everything else is the same. 

Before any of this is possible, however, the sys­
tem manager invokes the PCSI utility to record the 
answers to all the configuration questions using 
the RSM$TRIAL_INSTALL.COM command procedure. 
The PCSI configuration file is then inserted in the 
POLYCENTER Software Distribution library using 
the FETCH CONFIGURATION command. 

Note that when recording configuration files, the 
PCSI utility permits users to defer answers until 
installation time. Unfortunately, because of the 
product's stipulation that no human intervention 
be required, such deferrals cause the ISL to fail. 

Platform Independence 
The following section details how the ISL process 
can be expanded to other platforms and operating 
systems. Table I gives a sample list of symbolic 
names and their corresponding operating systems. 
The POLYCENTER Software Distribution version 3.0 
kit provides only the VMS (for the VAX VMS and the 
OpenVMS VAX operating systems) and the AVMS (for 
the OpenVMS AXP operating system) ISL kits. 

To add ISL support for other operating systems 
and/or hardware platforms, the following require­
ments must be met. 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

• The operating system must be bootable from a 
read-only LAD virtual disk. (Among others, the 
MS-DOS, ULTRIX, and DEC OSF/1 operating sys­
tems are known to have this capability.) 

• The hardware platform must be MOP down­
loadable. (Most Digital processors have this 
capability.) 

• The operating system's processor-specific boot­
strap image must have an LAA-writeable scratch 
area for the parameters of the ISL. 

• The parameters of the ISL must be retrievable 
by the operating system's system start-up com­
mand procedure. 

• The operating system must have a mechanism 
for moving the contents of the temporary sys­
tem disk to the target system disk, which will 
never be identical media. (Most operating sys­
tems have this capability.) 

• The ISL Director shareable image (SYS$SHARE: 
RSM$ISL_INSTALL-opera.EXE), containing entry 
points RSM$ISL_FETCH and RSM$ISL_INSTALL, 
must be active on the server system (running 
Open VMS). 

• The contents of the fetch toolkit container file 
(RSM$SDS_DATA:RSM$FETCH-opera.DSK) need be 
known only to the ISL Director. This file resides 
on the server system (running OpenVMS) but is 
read only by the client system and only during 
a fetch operation. 

• The load assist agent (SYS$SHARE:RSM$ISL_LAA­
opera.EXE) must be capable of delivering the 
operating system's processor-specific primary 
bootstrap image (plus the parameters of the ISL) 
to the client system, which runs on the server 
system (running OpenVMS). 

Table I lists the names of the files required to 
support various operating systems. Note the nam­
ing scheme for the files. Each set of three files, 
which compose a single ISL kit, implements the 
entire ISL fetch and install functionality. The ISL 
Director routine RSM$ISL_FETCH works in conjunc­
tion with the fetch toolkit. The ISL Director routine 
RSM$ISL_INSTALL works in conjunction with the 
load assist agent. Table 2 gives the naming conven­
tion used for all resources shared between these 
three files. The term opera identifies the symbolic 
name of the operating system. The term server 
identifies the DECnet node name of the server 

97 



PC IAN and System Management Tools 

Table 2 Naming Conventions Used by ISL Resources 

Name Description 

RSM$1SL_INSTALL-opera. EXE 

RSM$1SL_LAA-opera.EXE 

RSM$FETCH-opera.DSK 

RSM$FETCH_server-opera 

RSM$1SL_BOOT-opera. COM 

RSM$SDS_OS_LIBRARY: 
[opsys.OPERSYS]SYSO.DSK 

RSM$1SL_server-opsys 

RSM$1SL_STARTUP-opera.COM 

RSM$1SL_CLEANUP-opera.COM 

RSM$1SL_server 

RSM$1SL_server _EVMS 

Shareable image containing the ISL Director routines, which runs on 
the POLYCENTER Software Distribution server (running OpenVMS). 

Shareable image containing the load assist agent, which runs on 
the POLYCENTER Software Distribution server (running OpenVMS). 

Container file containing the fetch toolkit, which resides on the 
POLYCENTER Software Distribution server system (running OpenVMS) 
but is read only by the client system. 

LAD service name for the fetch toolkit, which is served by the 
POLYCENTER Software Distribution server (running OpenVMS) 
to the client. 

Command procedure responsible for actually performing the save 
of the operating system software from the client's system disk to 
the virtual disk, which runs on the client system. 

Container file for the fetched operating system, which resides on 
the POLYCENTER Software Distribution server system (running 
Open VMS). 

(This directory may also be used to store the bytes of the processor­
specific bootstrap image so the load assist agent has easy access.) 

LAD service name of the temporary system disk containing the 
fetched operating system image, which is served from the 
POLYCENTER Software Distribution server system (running 
OpenVMS) to the client system. 

Command procedure responsible for actually delivering the operat­
ing system software from the temporary system disk to the target 
system disk. It runs on the client system but is booted from the 
temporary system disk. 

Command procedure for removing customizations specific to the 
initial system load from a temporary system disk. It runs on the client 
system but is booted from the temporary system disk. 

LAD service name of the VAX "boot container'' for operating systems 
fetched prior to version 3.0, which is served from the POLYCENTER 
Software Distribution server system (running OpenVMS) to the client 
system (which in this case must be running OpenVMS VAX or VAX VMS). 

LAD service name of the AXP "boot container" for operating systems 
fetched prior to version 3.0, which is served from the POLYCENTER 
Software Distribution server system (running OpenVMS) to the client 
system (which in this case must be running OpenVMS AXP). 

system, and the term opsys ide ntifies the user­
defined pseudonym for the fetched operating sys­
tem image. 

The pertinent fields of the QENTRY data structure 
passed to RSM$ISL_FETCH are 

The ISL Director 
The ISL Directo r is a shareable image activated by 
LIB$FIND_IMAGE_SYMBOL; the refore it need not 
have transfe r vecto rs, as long as the two required 
entry points are declared UNIVERSAL. These two 
routines are called in user mode. They are passed 
a single p arameter, the address of a data st ructure 
called the QENTRY. 

98 

char p s eudo nym[ 6 4 ] ; 

c har c li e n t_no de[128 ]; 

c har Li b rary_no d e[ 1 28 ] ; 

c har opera_ house[8]; 

Vol. 6 No. 4 Fall 1994 Digital Technical Journa l 



Automatic, Network-directed Operating System Software Upgrades 

and the pertinent fields of the QENTRY data struc­
ture passed to RSM$ISL_INSTALL are 

char ethernet[19]; 

char client_node[128J; 

char library_node[128]; 

char opera_house[SJ; 

In both routines, the field called opera_house con­
tains the symbolic name of the operating system 
(e.g., AVMS). 

RSM$ISL_FETCH is responsible for copying a 
bootable snapshot of the client's system disk into 
the LAD container file SYSO.DSK. The LAD virtual 
disk should be organized into the native format of 
the operating system being fetched. The server sys­
tem will never attempt to read these files. To the 
server system, this container is simply a large series 
of bytes, whose meaning (to the client system) is 
unimportant. This routine is responsible for obtain­
ing the size of the container file to be created, 
creating that container file, and then serving it, 
writeable, to the LAD. Once the fetch operation has 
concluded, the container should be served again in 
read-only format. 

RSM$ISL_INSTALL is responsible for enabling the 
LAA for the new client system. Since the LAA runs 
under the MOM process, which is a non-POLYCENTER 
Software Distribution environment, this routine 
should also collect any and all information (such 
as the DECnet node name and address of the server 
system) needed by the LAA, and store that infor­
mation in the file RSM$SDS_ WORK:ISL_client.DAT. 
The content of this file is shared only between 
RSM$ISL_INSTALL and the LAA; therefore, the format 
of the file is implementation-dependent. 

The Fetch Toolkit 
The fetch toolkit is also a LAD virtual disk organized 
in a format that is native to the client's operating 
system. Again, the server system will never read 
this virtual volume. This virtual volume contains 
the native operating system pieces necessary to 
save a snapshot of the model system disk, make it 
bootable as the temporary system disk, and restore 
it to its original state. These are usually three sepa­
rate command procedures. The command proce­
dure that saves the system disk image must also 

Digital Techuical Journal Vol. 6 No. 4 Fa/11994 

store the bytes of the operating system's primary 
bootstrap image for future access by the LAA. 

The Load Assist Agent 
The LAA delivers the bytes of the processor-specific 
primary bootstrap image to the client system. The 
MOM process activates this shareable image dynam­
ically, but not using LIB$FIND_IMAGE_SYMBOL. 
Therefore, the one required entry point to this 
image must occur at offset 0000 in the image. (The 
name of the entry point is unimportant.) This is 
best accomplished using a single transfer vector. 

This routine is called in user mode with three 
parameters, the addresses of three data structures: 
the MOMIDB, the MOMARB, and the MOMODB. 

The offset MOMIDB$A_PARAM_DSC contains any 
text from the NCP load assist parameter field. This 
field contains arbitrary text that RSM$ISL_INSTALL 
placed there. Normally, this field contains a handle 
used to retrieve the file RSM$SDS_ WORK:ISL_ 
client.DAT. A good handle is the DECnet node name 
of the client system. 

The offset MOMARB$A_SEND_DATA is the address 
of a routine to deliver data to the client. The LAA 
need only collect and/or generate the data to be 
delivered to the client; this callback routine deliv­
ers it to the client. Its two parameters are a string 
descriptor identifying which and how many bytes 
are to be delivered, and the relative address in the 
client's memory to place these bytes. This callback 
routine may be called repetitively. 

The offset MOMODB$L_TRANSFER_ADDRESS must 
be filled with the relative transfer address of the pro­
cessor-specific bootstrap image that was loaded into 
the client's memory by MOMARB$A_SEND_DATA. For 
OpenVMS VAX, this offset is traditionally zero, 
because certain older VAX processors are not capa­
ble of using any other value. That is one reason why 
the transfer address for ISL_SVAX.SYS is always zero. 

Summary 
The ISL mechanism installs, maintains, and 
upgrades operating system software. These simple 
descriptions provide the framework for expanding 
the ISL process implemented in the POLYCENTER 
Software Distribution version 3.0 product to plat­
forms other than OpenVMS VAX and OpenVMS AXP 
operating systems. This expansion can make work 
easier for system managers of multiple platforms 
and may even start a de facto standard for perform­
ing operating system upgrades. 

99 



PC IAN and System Manage m ent Tools 

Acknowledgments 
I would like to thank Richard Bishop and Charlie 
Hammond in the OpenVMS AXP Development 
Group for allowing me to unify the POLYCENTER 
Software Distribution version 3.0 ISL and the PCSI­
based Open VMS AXP version 6.1 upgrade. 

Note and References 

I. POLYCENTER Software Distribution is the new 
name for Digital's Remote System Manager 

100 

product. The installed software continues to use 
its traditional acronym RSM. 

2. POLYCENTER Software Distribution Manage­
ment Guide (Maynard, MA: Digital Equipment 
Corporation, Order No. AA-JG05E-TE, May 1994). 

3. POLYCENTER Software Distribution Command 
Reference (Maynard, MA: Digital Equipment 
Corporation, Order No. AA-JG03E-TE, May 1994). 

Vol. 6 No. 4 Fall 1994 Digital Technicaljo11r11a/ 



I Further Readings 

The following technical papers were written by 
Digital authors: 

R. Abugov and K. Zinke, "Wafer Level Tracking 
Enhances Particle Source Isolation in a Manu­
facturing Environment," Fifth Annual IEEE/SEMI 
Advanced Semiconductor Manufacturing 
Conference and Workshop (November 1994). 

]. Card, A. McGowan, and C. Reed, "Neural Network 
Approach to Automated Wirebond Defect Classifi­
cation," ASME Proceedings of the Artificial Neural 
Networks in Engineering (ANNIE '94) Conference 
(November 1994). 

S. Cheung, D. Jensen, and G. Mooney, "Ultra-High 
Purity Gas Distribution Systems for Sub O.Sum ULSI 
Manufacturing," Fifth Annual IEEE/SEMI Advanced 
Semiconductor Manufacturing Conference and 
Workshop (November 1994). 

R. Collica, B. Cantell, and]. Ramirez, "Statistical 
Analysis of Particle/Defect Data Experiment Using 
Poisson and Logistic Regression," IEEE Interna­
tional Workshop on Defect and Fault Tolerance 
in VLSI Systems (October 1994). 

B. Doyle, K. Mistry, and C-L. Huang, "Analysis of 
Gate Oxide Thickness Hot Carrier Effects in Surface 
Channel P-MOSFET's," IEEE Transactions on 
Electron Devices (January 1995). 

]. Edmondson, "Internal Organization of the Alpha 
21164," IEEE First International Symposium on 
High-performance Computer Architecture (HPCA) 
(January 1995). 

L. Elliott, D. Paine, and]. Rose, "The Microstructure 
and Electromigration Behaviour of Al-0.35%Pd 
Interconnects," Materials Research Society 
Symposium Proceedings: Materials Reliability 
in Microelectronics JV Symposium (April 1994). 

C. Gordon and K. Roselle, "An Efficient and Accu­
rate Method for Estimating Crosstalk in Multicon­
ductor Coupled Transmission Lines," IEEE Third 
Topical Meeting on the Electrical Performance 
of Electronic Packaging (November 1994). 

D. Heimann, "Using Complexity-Tracking in the 
Software Development Process," Thirty-second 
Annual Spring Reliability Symposium (April 1994). 

Dtgttal 1ecbntcal]ournal Vol . 6 No. 4 Fall 1994 

A. John, "Dynamic Vnodes: Design and Imple­
mentation," USENIX 1995 Technical Conference 
on UNIX and Advanced Computing Systems 
(January 1995). 

D.Jones and V Murthy, "Advancing Reliability 
with State of the Art Software Tools," University 
of Manchester School of Engineering Third 
Reliability Software Seminar and Workshop 
(December 1994). 

N. Khalil,]. Faricelli, and D. Bell, "The Extraction 
ofl'wo-Dimensional MOS Transistor Doping via 
Inverse Modeling," IEEE Electron Device Letters 
(January 1995). 

A. Labun, "Profile Simulation of Electron Cyclotron 
Resonance Planarization of an Interlevel Dielectric," 
Journal of Vacuum Science and Technology B 
(JVST B) (November/December 1994). 

K. Mistry and B. Doyle, "How Do Hot Carriers 
Degrade N-Channel MOSFETs? ;' IEEE Circuits and 
Devices (January 1995). 

C. Ozveren, R. Simcoe, and G. Varghese, "Reliable 
and Efficient Hop-by-Hop Flow Control," ACM SIG­
COMM 94 (October 1994). 

R. Razdan and M. Smith, "A High-Performance 
Microarchitecture with Hardware-Programmable 
Functional Units," Proceedings of the Twenty­
seventh Annual International Symposium on 
Microarchitecture (MICR0-27) (December 1994). 

R. Rios and N. Arora, "Determination of Ultra-Thin 
Gate Oxide Thickness for CMOS Structures Using 
Quantum Effects," IEEE International Electron 
Devices Meeting/IEDM Technical Digest 
(December 1994). 

N. Sullivan, "Semiconductor Pattern Overlay," 
Proceedings of the International Society of 
Photo-Optical Instrumentation Engineers (SPIE) 
Microelectronic Processing: Integrated Circuit 
Metrology and Process Control (Critical Review) 
(September 1994). 

B. Thomas, "OpenVMS 1/0 Concepts: CSR Access," 
Digital Systems Journal (Novembe r/December 
1994). 

101 



I Recent Digital US. Patents 

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied 
to us by the us. Patent and Trademark Office are reproduced exactly as they appear on the original pub­
lished patent. 

5,208,692 D. McMahon 

5,208,768 E. Simoudis 

5,210,854 A. Beaverson and T. Hunt 

5,210,865 S. Davis, W Goleman, and 
D. Thiel 

5,217,198 V. Samarov, W Pauplis, and 
G. Doumani 

5,218,678 B. Kelleher and S-S. Chow 

5,220,661 J. Wray, A. Mason, P. Karger, 
P. Robinson, W-M. Hu, and 
C. Kahn 

5,224,206 E. Simoudis 

5,224,884 M. Singer, R. Noftke, and 
D. Gilmour 

5,233,684 R. Ulichney 

5,235,697 S. Steely and J. Zurawski 

5,239,634 B. Buch and C. MacGregor 

5,239,637 S. Davis, W Goleman, and 
D. Thiel 

5,241,564 J. Tang andJ.L. Yang 

5,242,761 Y. Uchiyama 

5,243,241 C-H. Wang 

5,247,464 R. Curtis 

5,247,618 S. Davis, W Goleman, D. Thiel, 
R.Bean,andJ.Zahrobsky 

5,251,147 J. Finnerty 

5,251,227 T. Bissett, W Bruckert, 
J. Munzer, D. Kovalcin, and 
M. Norcross 

5,253,249 J. Fitzgerald and D. Shuda 

5,253,353 J.C. Mogul 

5,257,264 H. Yang and 
K.K. Ramakrishnan 

5,261,077 J,R. Duval, K.R. Peterson, 
and T.E. Hunt 

102 

High Bandwidth Network Based on Wavelength Division 
Multiplexing 

Expert System Including Arrangement for Acquiring Redesign 
Knowledge 

System for Updating Program Stored in EEPROM by Storing 
New Version into New Location and Updating Second 
Transfer Vector to Contain Starting Address of New Version 

Transferring Data between Storage Media While Maintaining 
Host Processor Access for 1/0 Operations 

Uniform Spatial Action Shock Mount 

System and Method for Atomic Access to an Input/Output 
Device with Direct Memory Access 

System and Method for Reducing Timing Channels in Digital 
Data Processing Systems 

System and Method for Retrieving Justifiably Relevant Cases 
from a Case Library 

High Current, Low Voltage Drop Separable Connector 

Method and Apparatus for Mapping a Digital Color Image from 
a First Color Space to a Second Color Space 

Set Prediction Cache Memory System Using Bits of the Main 
Memory Address 

Memory Controller for Engineering/Dequeuing Process 

Digital Data Management System for Maintaining Consistency 
of Data in a Shadow Set 

Low Noise, High Performance Data Bus System and Method 

Magnetic Recording Medium and Method of Manufacture 
Thereof 

Totally Magnetic Fine Tracking Miniature Galvanometer 
Actuator 

Node Location by Differential Time Measurements 

Transferring Data in a Digital Data Processing System 

Minimizing the Interconnection Cost of Electronically Linked 
Objects 

Resets for a Fault Tolerant, Dual Zone Computer System 

Bidirectional Transceiver for High Speed Data System 

System and Method for Efficiently Supporting Access to 1/0 
Devices through Large Direct-mapped Data Caches 

Automatically Deactivated No-owner Frame Removal 
Mechanism for Token Ring Networks 

Configurable Data Path Arrangement for Resolving Data Type 
Incompatibility (This case is related to PD89-0300.) 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



5,261,085 L.B. Lamport 

5,265,092 S.R. Soloway, A.G. Lauck, and 
G. Verghese 

5,265,257 R.J. Simcoe and R.E. Thomas 

5,274,811 A. Borg and OW Wall 

5,276,712 J.D. Pearson 

5,276,809 J.K. Grooms, R.L. Sites, 
L.A. Chisvin, and OW Smelser 

5,276,828 ]. Dion 

5,276,851 C. Thacker and D. Conroy 

5,276,874 R.G. Thomson 

5,278,974 R. Ramanujan, PJ. Lemmon, 
and].C. Stickney 

5,280,478 H. Yang, PW. Ciarfella, 
K.K. Ramakrishnan 

5,280,575 C.A. Young and N.F. Jacobson 

5,280,582 H. Yang, K.K. Ramakrishnan, 
and A. Lauck 

5,280,627 J.E. Flaherty and A. Abrahams 

5,283,857 E. Simoudis 

5,283,873 S.C. Steely and D.J. Sager 

5,287,438 B.M. Kelleher 

5,287,485 L. Umina and R. Ansehno 

5,287,534 T. Reuther 

5,291,494 T. Bissett, W. Bruckert, and 
]. Melvin 

5,293,620 W. Barabash and 
W.S. Yerazunis 

5,296,392 G.J. Grula and W.C. Metz 

5,297,269 D. Donaldson, M. Howard, 
D. Orbits,]. Parchem, 
D. Robinson, and D. Williams 

Digital Technical Journal Vol. 6 No. 4 Fall 1994 

Fault-tolerant System and Method for Implementing a 
Distributed State Machine 

Synchronization Mechanism for Link State Packet Routing 

I 

Fast Arbiter Having Easy Scaling for Large Numbers of 
Requesters, Large Numbers of Resource Types with Multiple 
Instances of Each Type and Selectable Queueing Disciplines 

Method for Quickly Acquiring and Using Very Long Traces 
of Mixed System and User Memory References 

Method and Apparatus for Clock Recovery in Digital 
Communication Systems 

Method and Apparatus for Capturing Real-time Data Bus 
Cycles in a Data Processing System 

Methods of Maintaining Cache Coherence and Processor 
Synchronization in a Multiprocessor System Using Send and 
Receive Instructions 

Automatic Writeback and Storage Limit in a High-performance 
Frame Buffer and Cache Memory System 

Method for Creating a Directory Tree in Main Memory Using 
an Index File in Secondary Memory 

Method and Apparatus for the Dynamic Adjustment of Data 
Transfer Timing to Equalize the Bandwidths of Two Buses in 
a Computer System Having Different Bandwidths 

No-owner Frame and Multiple Token Removal Mechanism for 
Token Ring Networks 

Apparatus for Cell Format Control in a Spreadsheet 

No-owner Frame and Multiple Token Removal for Token Ring 
Networks 

Remote Bootstrapping a Node over Communication Link by 
Initially Requesting Remote Storage Access Program Which 
Emulates Local Disk to Load Other Programs 

Expert System Including Arrangement for Acquiring Redesign 
Knowledge 

Next Line Prediction Apparatus for a Pipelined Computer 
System 

System and Method for Drawing Antialiased Polygons 

Digital Processing System Including Plural Memory Devices 
and Data Transfer Circuitry 

Correcting Crossover Distortion Produced When Analog 
Signal Thresholds Are Used to Remove Noise from Signal 

Method of Handling Errors in Software 

Method and Apparatus for Scheduling Tasks in Repeated 
Iterations in a Digital Data Processing System Having Multiple 
Processors 

Method for Forming Trench Isolated Regions with Sidewall 
Doping 

Cache Coherency Protocol for Multi Processor Computer 
System 

103 



Recent Digital US. Patents 

5,298,464 RW Doe, R.D. Gates, 
D.P Goddard, S.C. Hsu, and 
R.L. Schlesinger 

5,301,327 W: McKeeman and S. Aki 

5,303,382 B. Buch and C. MacGregor 

5,303,391 R.J. Simcoe and R.E. Thomas 

5,313,387 W:M. McKeeman and S. Aki 

5,313,464 EH. Reiff 

5,313,641 R.J. Simcoe and R.E. Thomas 

5,315,480 V. Samarov, G. Doumani, and 
R. Larson 

5,317,708 R. Edgar 

5,319,651 R. Helliwell, R. Lary, B. Edem, 
and ].Johnston 

5,321,724 B. Long and M.J. Hynes 

5,321,841 M.C. Ozur, S.M. Jenness, 
J.W: Kelly, J.J. Walker, and 
J.A. East 

5,325,531 W:M. McKeeman and S. Aki 

5,327,368 R.A. Eustace andJ.S. Leonard 

5,327,557 J.P Emmond 

5,330,881 A. Sidman and S. Fung 

5,337,404 P Beaudelaire, M. Gangnet, 
]. Herve, T. Pudet, and 
J.V. Thong 

5,339,449 PA. Karger, A.H. Mason, 
].C.R. Wray, PT. Robinson, 
A.L. Priborsky, C.E. Kahn, 
and T.E. Leonard 

5,345,587 L.G. Fehskens, C. Strutt, 
S. Wong,J.E Callander, 
PH. Burgess, K.J. Nelson, 
M.J. Guertin, D.L. Smith, 
MW Sylor, KW Chapman, 
R.C. Schuchard, S.I. Goldfarb, 
R.R.N. Ross, L.B. O'Brien, 
PJ. Trasatti, D.O. Rogers, 
B.M. England, J.L. Lemmon, 
R.L. Rosenbaum, and 
additional inventors 

5,345,588 R. Peterson, B. Schreiber, 
and S. Greenwood 

104 

Method of Manufacturing Tape Automated Bonding 
Semiconductor Package 

Virtual Memory Management for Source-code Development 
System 

Arbiter with Programmable Dynamic Request Prioritization 

Fast Arbiter Having Easy Scaling for Large Numbers of 
Requesters, Large Numbers of Resource Types with Multiple 
Instances of Each Type and Selectable Queueing Disciplines 

Re-execution of Edit-compile-run Cycles for Changed Lines of 
Source Code, with Storage of Associated Data in Buffers 

Fault Tolerant Memory Using Bus Bit Aligned Reed-Solomon 
Error Correction Code Symbols 

Fast Arbiter Having Easy Scaling for Large Numbers of 
Requesters, Large Numbers of Resource Types with Multiple 
Instances of Each Type and Selectable Queueing Disciplines 

Conformal Heat Sink for Electronic Module 

Content Addressable Memory 

Data Integrity Features for a Sort Accelerator 

Interference Suppression System 

Server Impersonation of Client Processes in an Object-based 
Computer Operating System 

Incremental Compiler for Source Code Development System 

Chunky Binary Multiplier and Method of Operation 

Single-keyed Indexed File for TP Queue Repository 

Microlithographic Method for Producing Thick Vertically 
Walled Photoresist Patterns 

Process for Making Computer-aided Drawings 

System and Method for Reducing Storage Channels in Disk 
Systems 

Extensible Entity Management System Including a Dispatching 
Kernel and Modules Which Independently Interpret and 
Execute Commands 

Thread Private Memory Storage for Multithread Digital Data 
Processing 

Vol. 6 No. 4 Fall 1994 Digital Technical Journal 



Call for Authors 
from Digital Press 

Digital Press has become an imprint of Butterworth-Heinemann, a major inter­

national publisher of professional books and a member of the Reed E lsevier 

group. Digital Press remains the authorized publisher for Digital Equipment 

Corporation: the two companies are working in partnership to identify and pub­

lish new books under the Digital Press imprint and create opportunities for 

authors to publish their work. 

Digital Press remains committed to publishing high-quality books on a wide 

variety of subjects. We would like to hear from you if you are writing or thinking 

about writing a book. 

Contact: Frank Satlow 

Publisher 

Digital Press 

313 Washington Street 

Newton, MA 02158 

Tel :  (617) 928-2649 

Fax: (617) 928-2640 

fps@world.std.com 



ISSN 0898-90lX 

Printed in U.S.A. EY-T l l 8E-Tj/95 04  1 4  1 4.5  Copyright © Digital Equipment Corporation. A l l  Rights Reserved. 


	Front cover
	Contents
	Editor's Introduction
	Biographies
	The Architecture and Design of HS-series Storageworks Array Controllers
	Policy Resolution in Workflow Management Systems
	The Design of DECmodel for Windows
	The Design of ManageWORKS: A User Interface Framework
	The Structure of the OpenVMS Management Station
	Automatic, Network-directed Operating System Software Upgrades: A Platform-independent Approach
	Further Readings
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover



