
Digital
Technical
Journal

GRAPHICAL SOFTWARE DEVE LOPMENT

SYSTEMS ENGINEE RING

Volume 7 Number 2
1 995

I

Editorial
Jan<.: C. 1\lakc, Managing Ediror
Kathleen J\'1. Sr..:rson, Editor
Hdcn L. Parrerson, Ediror

Circulation
Catherine: M. Phillips, Adrninisrrator
Dor·orhea B. Cassady, Secretary

Production
Terri Aurieri, Producrion Editor
AnneS. Katzcff, Typographer
Peter R. vVoodbury, Illustrator

Advisory Board
Samuel H. hrller, Chairman
Richard W. Beam·
Donald Z. Harbert

William R. Hawe
Ric bard J. Hollingsworrh
Richard 1-'. Lrry
Alan G. Ncmcrh
Jean A. Proulx
Roberr M. Supnik

Cover Design
DEC l'USE software, described in this issue,
is an integrated set of programming tools
for UNIX developers. Our cover image of
unique puzzle pieces being tittc:d rogcthcr
conveys the DEC FUSE concept of an inte­
grated collection of independent tools
cooperating within a graphical dcvclopmellt
environment.

The cover was designed by Lu cinda O'Neill
of Digital's Design Group.

The: Digilctl Technical]ournu/ is a rdcrc:cd
j ournal published quarterly by Di gital
Equipment Corporation, 30 Porter Road
1 .)02/ D I 0, Lirtleron, Massachusetts 01460.
Subscriptions ro rhe.fournolare $40.00
(non- U.S $60) tor four issues and $75.00
(non- U.S. $115) lcH eight issues and musr
be prepaid in U.S. tlrnds . University and
collq;e prokssors and Ph. D. students in
the electrical engineering and computer
sci�nce fields receive complimentary sub­
scriptions upon request. Orders, inquir·ics,
and address changes should be scm ro rhc
D(qital Technical.fournalar the published­
by address . Inquir-\cs can also be scm elec­
tronically ro dtj@digital.corn. Single copies
and back issues arc available for $16.00 each
by calling DECdirect at 1-800-DJGITAL
(1-800-344-4825). Recent back issues of t he
journal are also available on rhe Internet at
hrrp:j jwww.digiral.com/into/DTJ/homc.
hrml. Complete Digital Internet listings can
be obtained by sending an electronic mail
message to info@digiral.com.

Digital employees may or-der subscriptions
through Readers Choice by entering VTX
PROFILE clt rhe system prompt.

Comments on the conrenr of any paper
are welcomed and may be sent ro the
mmaging editor at the published-by or
network address .

Copyright© l 995 Digita l Equipment
Corporation. Copying without fee is per­
mitted provided that such copies are made
for usc in eduGrtional institutions by f

.
<eulry

members and are nor distributed tor com­
mercial advantage. Abstracting wirh credit
of Digital Equipment Corporation's author­
ship is perrnitted. All rights reserved .

The intonmtion in rhejounwl is subject
ro change without noricc and should nor
be construed as a commitment by Digital
Equipment Corporation or by rhc compa­
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the Journal.

ISSN 0898-90 I X

Dou.rmcntation Number EY-UOO!E-TJ

Book production was done by Quanti..:
Communi..:cuions, Inc

Tbc following clrc rradem<rrks of Digital
Equipment C:mporarion: Digital, the
DIGITAL logo, ACrviS, CDD/ Repositorv,
DEC, DEC: FUSE, DECI.rdebug, DECmcc,
DEC:ner, DECsr:uion, DECwindows ,
ObjccrBrokcr, Open VMS, l'ATHWORKS,
POLYCENTER, ULTIUX, VAX, VA)(10000,
VAX C, <lnd VAXcluster.

AJ X cmd IBM <lre registered trademarks
and Common User Access is <1 trade­
mark of l ntcrnariona l Business Machines
C:orporarion.

AT&T and SeeSoft arc r·egisrcrcd
trademarks of AnlCI·icm Telephone
and Telegraph Com pany.

13T is a registered trademark of British
Tekcon1municarions pic.

Fujitsu is a registered rradcm;lrk of
Fujitsu Lim ired.

Hcwlerr-Packard, H P Soft Bench, and
HP-UX are registered rradermrks of
Hewlett-Packard Companv.

Hitachi is a registered rrcrdemark of
Hitachi, Ltd.

Hyper-Help is :r n·ackmark of Rrisrol
Technology, Inc.

Lcgo is a registered rradernark of
lnrerlego AG.

J'vlorif, OSF, and OSF/Morifarc regis­
tered trademarks of Open Sotnvarc
Foundation, Inc.

MS and MS-DOS are regisren:d track­
marks and Windows and Windows NT
are trademarks of Microsoft Corporation .

NEC is a registered trademark ofNEC
Corporation .

Object Plus is a trademark of Prorosoft, Inc.

OPEN LOOK is a registered trademark
of UNIX System Laboratories, Inc.

Sun JVlicrosy srems is a registered trade­
mark and SPAR.Cworks <lnd Sun OS are
trademarks of Sun Mi..:rosysrems, Inc.

UNIX is a registered trademark in the
United States and other countries, licensed
exclusively through X/Open Colnpany Ltd.

X/ Open is a trademark of X/Open
Company Limited.

X Window System is a trademark of the
Massachusetts lnsti turc of Tc:..:hnology.

..

Contents

Foreword Mahendra R . Patel 3

GRAPHICAL SOFTWARE DEVELOPMENT

DEC FUSE: Building a Graphical Software Richard 0 . Hart and Glenn Lupton 5
Development Environment from UNIX Tools

Adding a Data Visualization Tool to DEC FUSE Donald A. Zaremba 20

SYSTEMS ENGINEERING

Multivendor Integration Architecture: Standards, Eric A. Newcomer 34

Compliance Testing, and Applications

Integrating Applications with Digital's James R. Kirkley and William G. Nichols 47

Framework-based Environment

Project Gabriel: Automated Software Deployment Owen H. Tallman 56

in a Large Commercial Network

Digital Technical Journal Vol. 7 No. 2 1995

2

Editor's
Introduction

The integration of distinct parts to
form a useful and effective whole is
the underlying theme for two sets of
topics in this issue. The opening papers
describe the integration of program­
ming tools to create a graphical soft­
ware development environment. The
second set of papers addresses the inte­
gration oflarge, complex systems­
systems that encompass all the software
and hardware components needed to
serve the user's purpose.

The DEC FUSE software develop­
ment product is designed to take
advantage of UNIX workstations'
graphical capabilities, supporting
such programming languages as C,
C++, and Fortran. Rich Hart and
Glenn Lupton review the origins
of DEC FUSE in the FIELD environ­
ment developed at Brown University
and compare FUSE with similar envi­
ronments based on a tool integration
model. The authors present two key
aspects of the product design: graphi­
cal user interfaces built on top of
UNIX commands and a multicast
messaging mechanism that allows
the tools to work together.

A tool recently integrated into the
DEC FUSE suite is the Data Visualizer,
which allows software developers to
display thousands of lines of code with
associated statistics. Don Zaremba
describes the process of taking the
tool from advanced development
through implementation and relates
what the engineers learned as they
adapted current visualization research
to their goals and built prototypes of
the technology. He concludes with
a description of the resulting product
and plans for future work.

Digital Technical Journal

Our next three papers explore
experiences with different aspects
of systems-level engineering and inte­
gration. Eric Newcomer's overview
of the Multivendor Integration
Architecture (MIA) effort, initiated
by Nippon Telegraph and Telephone
(NIT), highlights many factors that
in general make systems integration
challenging. NIT sought, through
standardization, to resolve the costly
problem ofincompatible application
environments. Eric discusses the MIA's
chosen direction based on the need
for portability, interoperability, and
a common user interface. He then
describes Digital's contribution in
the area of distributed transaction
processing and summarizes the MIA
consortium's successes and continu­
ing work.

A specific object-oriented product
developed to integrate systems appli­
cations is the subject ofJim Kirkley's
and Wick Nichols' paper. Compris­
ing Jacobson's and Rumbaugh's
methodologies, third-party software,
and Digital's COREA-compliant
ObjectBroker, the Framework-based
Environment (FBE) product addresses
the need for new and legacy applica­
tions to interoperate in a distributed
manufacturing system. The authors
step through a typical integration
project and expand on trade-offs that
must be addressed in an integration
project that takes an object view of
the system environment.

A major systems engineering proj­
ect to solve the problem of ongoing
introductions of software into a large
computer network is described in the
concluding paper by Owen Tallman.

Vol. 7 No. 2 1995

The project, commissioned by a large
French bank, extended over a net­
work of data center clustered servers,
branch servers, and thousands of
workstations and personal computers.
Owen outlines the customer's require­
ments and Digital's role as developer
of the automated software deploy­
ment facility. He reviews the configu­
ration management model (CMM)
and other models that were the basis
for the project team's work. His dis­
cussion of the implementation encom­
passes examples that illustrate the
intricacies of a rigorously managed
software deployment process.

The editors thank Mikael Rolfhamre
ofDigital's UNIX Business Segment,
Ed Balkovich ofDigital's Corporate
Research Group, and Hank Jakiela
of the Systems Business Unit for their
help in developing this issue. At the
end of the issue, we also acknowledge
and thank the referees for their very
valuable reviews of manuscripts sub­
mitted during this past year.

Upcoming topics in the Journal are
Digital's high-performance Fortran
compiler and parallel software envi­
ronment, and the Sequoia 2000
global change research project.

Jane C. Blake
Managing Editor

Foreword

Mahendra R. Patel
Corporate Consulting Engineer
Vice President, Systems Engineering

Systems engineering is the engineer­
ing of complete systems as opposed
to parts of systems. Exactly what this
means depends on one's point of
view. One person's system is another
person's component. From chips
to boards to boxes to clusters to net­
works, subsystems are combined into
ever larger and more -complex aggre­
gates. At Digital, systems engineering
means the engineering of systems at
a level of aggregation above individ­
ual hardware or software products.
Individual processors, storage subsys­
tems, network hubs, operating systems,
database systems, and applications are
viewed as components of the system.
For example, a nationwide network
for interactive securities trading, built
from hundreds of nodes at dozens of
sites, is one system.

A number of trends in the computer
industry make it more challenging for
a computer company to practice sys­
tems engineering:

• Commoditization: Component
products, from microprocessors
to applications, are increasingly
becoming low-cost, high-volume
commodities. Ironically, as the
cost of the components drops,
the cost of integrating them into
complete systems becomes a larger
fraction of total system cost.

• Distributed systems: While they
provide new opportunities for bet­
ter performance, scaling, and fault­
tolerance, distributed systems also
present new engineering challenges
for ensuring these same attributes.

• Heterogeneous systems: Increas­
ingly, computers from a variety of
vendors, running a variety of oper­
ating systems, are being connected

together and are expected to work
together correctly.

• Complexity: Distributed systems
are becoming more complex for
a number of reasons. The number
of components is growing. The
number of types of components
that must work together is grow­
ing. And the variety of unique
configurations is growing.

During the last decade, the
computer industry has changed from
one that offered vertically integrated
systems built from proprietary CPUs,
disks, networks, operating systems,
and layered products to one that pro­
duces commodity products conform­
ing to de jure or de facto standards.
Unlike the manufacture of automo­
biles or aircraft, a single computer
manufacturer seldom produces all
the components of a complete work­
ing system. The hardware, system
software, and applications often come
from three different vendors. Systems
engineering, as now practiced in the
computer industry, places less empha­
sis on top-down design of hardware
and software components and their
interfaces to meet system-level goals.
Rather, it is based on anticipating
a broad spectrum of system designs.

From the point of view of a com­
puter company, systems engineering
must now be concerned with assem­
blies of commodity hardware and
software products. Thus, four areas
are of special interest to systems engi­
neering in the computer industry:
interoperability, performance, scala­
bility, and availability.

Interoperability of components,
including components from different
vendors, is difficult to verify because

Digital Technical Journal Vol. 7 No. 2 1995 3

4

of the virtually infinite number of
possible combinations of compo­
nents. For example, the introduction
of a new component often can expose
bugs in system components previously
thought to be working. Systems engi­
neering work in this area includes the
development of tools for effective
testing and the development of indus­
try standards for interoperability.

The performance of a system can
depend in a complicated way on
the performance ofits components.
Sophisticated tools are needed to
predict the performance of a complex
system from the performance ofits
parts or to diagnose subtle interac­
tions between components. Today,
performance tools for distributed sys­
tems are not as sophisticated as those
for individual computers.

Scalability refers to the ability of
a system to start small and grow big.
Size may be measured in terms of
numbers of users, computers, disks,
applications, or a combination of
parameters. The ability to scale up
distributed systems over two orders
of magnitude by adding components
is one of their most attractive attrib­
utes. However, scaling effectively
requires careful analysis and design
of the system. For example, a system
design based on cost-effective pack­
aging of functionality at a small scale
can exhibit bottlenecks as computers
are added to the system to handle
increased workloads.

A distributed system is inherently
less reliable unless care is taken to
improve availability by adding redun­
dant components. Simply partitioning
functionality between a client and
server computer requires that both
the client and the server be working
for the functionality to be available.
Given technology with the same fail­
ure and repair characteristics, distrib­
uting functionality between two
computers results in a system that is
less available than one with the com­
plete functionality on one computer.
Often this is an academic point in
simple systems, given the levels of
component reliability. However, dis­
tributed systems with critical availabil­
ity requirements (e.g., a nationwide

Digital Technical Journal

network for interactive securities
trading) demand careful analysis and
design to add appropriate redundancy.

Systems engineering is important
to Digital because even the best com­
ponent products are of no value to
customers until they are integrated
into complete working systems that
meet business needs. Ideally, one
would like to be able to build large,
complex systems by simply snapping
together small, simple components,
as if they were Lego blocks. It is
tempting to assume that this should
be easy because many of the compo­
nents are available as inexpensive,
mass-produced, reliable commodities.
However, building complex systems
from simple parts is still difficult and
requires engineering work, especially
when the overall system stretches the
limits of the technology.

Systems engineers play a vital role
in major systems integration projects
that push the edge of the technology
envelope in some way. The system
may combine components never
before used together. The trend
toward heterogeneous systems makes
this more likely. The system may
stretch scaling limits by having more
nodes or network connections or
users or data than ever before. The
trend toward large distributed systems
makes this scaling possible. The sys­
tem may need to meet demanding
requirements for overall system per­
formance or dependability. Increas­
ingly, heterogeneous, distributed
systems are being used for mission­
critical business applications.

Engineering analysis and design is
needed at all phases of a complex inte­
gration project, from the definition
of the technical requirements to the
design of the system to final testing
and verification. Custom software or
hardware may need to be developed,
either to glue together components
that were not built to work together or
to substitute for standard components
in order to meet demanding require­
ments for performance or scaling.

Systems engineers also develop
tools and methods to simplify the task
of integrating complete systems.
Digital's systems engineers are active

Vol. 7 No. 2 1995

in the development ofindustry stan­
dards for ensuring the interoperability
of components from different ven­
dors. In this issue of the journal,
Eric Newcomer's paper describes
the development of standards for use
in the telecommunications industry.
Often, a system has legacy compo­
nents. Digital's systems engineers
are also active in the development of
frameworks that apply object-oriented
programming technologies to encap­
sulate legacy applications and data,
simplifying the incorporation of
legacy components into new systems.
A framework for the integration of
manufacturing applications is described
in the paper by James Kirkley and
William Nichols. The Systems Engi­
neering group has developed test
tools and methods, and operates an
extensive laboratory for testing, verifi­
cation, and performance characteriza­
tion of combinations of products
from Digital and other vendors.
Testing and characterization data are
the basis for configuration guidelines
for systems intended to run a number
of popular commercial applications.

Computers, disks, network switches,
database systems, desktop applications,
and many other components are now
available as inexpensive, reliable com -
modities. Hardware and software
components from various manufac­
turers can be put together to build
a wide variety of systems, from one
as simple as a PC to one as complex
as a worldwide distributed system.

While the cost of the components
has dropped dramatically in recent
years, the cost of integrating these
simple components into complex dis­
tributed systems remains high and
therefore represents a larger fraction
of the total cost of the system. Today,
Digital's ability to successfully build
complex distributed systems provides
great value for our customers, often
greater than the value of the com­
modity components from which the
systems are built. For the future,
improvements in tools and methods
for building complex systems will
lower the cost of these systems sig­
nificantly, making new types of appli­
cations feasible and affordable.

DEC FUSE: Building
a Graphical Software
Development
Environment from
UNIX Tools

DEC FUSE is an integrated programming envi­

ronment for UNIX systems. It is an evolution

of the FIELD environment developed at Brown

University. To take advantage of the features

of workstations developed during the 1980s,

these environments were designed to provide

graphical user interfaces for commands com­

monly used by UNIX software developers. DEC

FUSE uses two methods to create an environ­

ment from smaller and simpler software com­

ponents. These methods are sending messages

between components and layering graphical

interfaces on top of UNIX commands. DEC FUSE

uses these methods to create an easy-to-use,

integrated environment with more features

than its individual components.

I
Richard 0. Hart
Glenn Lupton

The UNIX operating system originated at Bell
Laboratories in 1969 and rapidly grew more popular,
first within Bell Labs, then at universities and, since the
early 1980s, at commercial enterprises. One reason
cited for its success is that it is a good operating system
for programmers.1 The wealth of simple tools and the
ability to combine them easily into new tools provides
an attractive environment for software development.
Projects organize their development processes around
the capabilities ofUNIX tools like sccs for version con­
trol and make for application building. Developers
build project-specific tools using UNIX commands
in shell scripts and have become proficient in the use
of tools like the dbx debugger and the emacs and vi edi­
tors.2 Developers have also become accustomed to
commands for text manipulation (sed, awk), searching
(grep), and comparing (diff), and the use of these in
combination with other commands to do special tasks.

In the late 1980s, workstations came into common
use for software development. Workstations provided
additional compute power and were capable of display­
ing complex graphics and providing point-and-click
interfaces. The UNIX tools and shell environment,
designed around character-cell video terminals and
hard-copy devices, did not make effective use of these
workstation capabilities. Different tools and a different
approach to combining them were needed to provide
an effective workstation-based development environ­
ment that would take advantage of the additional
compute power available to workstation users and the
graphical interfaces available using the X Window
System.3

In this paper, we define the characteristics of
some integrated software development environments
designed to take advantage of modern UNIX work­
stations. We describe the DEC FUSE product as an
example of one of these environments and present two
methods used to create the DEC FUSE product. With
the first method, we show how tools are built as
graphical user interfaces (GUis) on top of existing
UNIX commands. Then, we show how messaging
enables these tools to work together. We present
trade-offs and design alternatives for each method.

Digital Technical Journal Vol. 7 No. 2 1995 5

6

Integrated Software Development Environments

Integrated software development environments are
collections of software programs, or tools, that are used
together to accomplish one or more phases of soft­
ware development. DEC FUSE and other integrated
software development environments, including HP
SoftBench from Hewlett-Packard and SPARCworks
from Sun Microsystems, are based on a control inte­
gration model.4- 7 Control integration enables tools
to make requests of other tools for information or to
do required tasks.s

The DEC FUSE, HP SoftBench, and SPARCworks
environments were strongly influenced by work done
at Brown University on the FIELD programming
environment by Steven P. Reiss.8,9 DEC FUSE, in fact,
continues to use some code originally written as part
of FIELD. These environments share the following
features with FIELD:

• Environments are collections of cooperating tools.
Each tool addresses a single aspect of the software
development process such as editing, searching,
debugging, or building. This follows the UNIX
philosophy of making tools or commands simple
and focused on a single problem. As a result, they
are easier to build, maintain, and use. The tools
cooperate with each other by performing opera­
tions at the request of other tools. For example, the
builder tool can request that the source code cor­
responding to an error be displayed, and the text
editor will present the code.

• Tools use a selective broadcasting communications
method. Tools send simple, usually textual, mes­
sages to communicate with other tools. 10 A message
may be either a request for a service or a notification
of the occurrence of an event. Tools register their
interest in receiving particular messages. A message is
then broadcast without requiring the sender to spec­
ify who will receive it. Since requests are not directed
to a particular tool, a tool can be replaced with a sim­
ilar tool that responds to the same messages without
making changes to the sender. Because messages are
broadcast, multiple tools can receive a notification
and each can take appropriate action.

• Source files and annotations are viewed using a sin­
gle text editor. Each tool that needs to present
source text to the user does so by sending request
messages that are processed by a single source text
editor. The text editor displays the desired source
files, and it may also place annotations next to
source lines ofinterest. Annotations are used to link
the sources with other parts of the environment.
For example, the location of breakpoints is pro­
vided by the debugger, the location of build errors
by the builder, and the location of strings matching
a pattern by the search tool. Each of these locations

Digital Technical Journal Vol. 7 No. 2 1995

is identified with an annotation symbol next to
a line of source code in the editor display.

• GUis are built on top of UNIX tools. Many of the
tools in the environment are GUis fitted to existing
UNIX commands such as make, grep, and dbx.
These interfaces provide menu and button access to
these commands and their options; they also inter­
pret the results of the commands, presenting them
in formatted, interactive displays.

• Program information is presented pictorially. The
graphical display capabilities of the workstation are
used to pictorially present information that may be
complex or extensive. For DEC FUSE, this includes
a program's function call graph, the dependencies
in a makefile, or the execution times of each func­
tion in a program. This issue of the Digital
Technical Journal presents another example of
displaying information pictorially with DEC FUSE
in the paper "Adding a Data Visualization Tool
to DEC FUSE."11

• Users continue to use familiar tools and methods.
Because the FIELD and DEC FUSE environments
are built using existing tools such as make, secs, and
dbx, users can continue to use tools with which they
are familiar. They can also use existing makefiles
and source libraries in the environment. In addi­
tion, users can make a gradual switch to an environ­
ment such as DEC FUSE. They can use DEC FUSE
when it is most advantageous and continue to use
older tools and methods when that is preferable.

DEC FUSE Overview

The primary goal of the DEC FUSE product was
to create a commercially useful, integrated software
development environment supporting a variety of pro­
gramming languages, including C, C+ +, and Fortran.
The DEC FUSE environment takes advantage of the
capabilities of the UNIX workstation, while allowing
software developers to preserve their investment in
familiar UNIX tools. DEC FUSE designers adopted
some FIELD components, which were converted to
use Motif. Extensions were also made to the FIELD
environment to create the DEC FUSE product. These
extensions are described in the next sections. Several
tools have been added to the environment through
successive releases of DEC FUSE. The tools supplied
with DEC FUSE version 2.1 are listed in Table 1 and
are described in subsequent sections.

Selective Broadcasting Mechanism
The messaging used by DEC FUSE, called the multi­
cast messaging system, has been extended in two ways
beyond its FIELD origins. First, messages have been
made more functional in nature. In the FIELD envi­
ronment, messages are strings that are assembled by

Table 1
Tools Supplied with Dig ital 's DEC FUSE Version 2. 1

DEC FUSE Tool

Editors

Debugger

Search

Builder

Code manager

Man page browser

Cross-referencer
Call graph browser
C++ class browser

Profiler

Compare

Help

DEC FUSE shell

UNIX Commands Used

emacs, vi (and a Motif-based
editor)

dbx or DECladebug (on Digital
platforms)

grep,fgrep, egrep

make, gnumake

SCCS, res

man

Use common data from
compilers or other
source scanners.

prof, gprof, pixie

diff

HyperHelp

sh, csh, ksh, ...

the sending tool and delivered to receiving tools. The
receiving tools have registered an interest in particular
messages by describing them using a pattern string.
DEC FUSE uses a more functional interface that more
closely resembles a remote procedure calling mecha­
nism. Each tool defines the messages that it can send
and receive as function definitions using the DEC
FUSE tool integration language (TIL). Second, a set of
components called the DEC FUSE EnCASE facility has
been developed to support the integration of new tools
and new messages into the DEC FUSE environment.5

These components include the TIL compiler and the
Message Monitor tool, described later in this paper.

Choice of Source Code Editor

Instead of having a different editor as part of each tool,
the FIELD environment provided a single GUI-based
editor. Because most users have strong preferences
about which text editor they use, DEC FUSE
extended the environment to allow each user to
choose from three different editors: emacs, vi, and the
DEC FUSE editor.2 Both emacs and the DEC FUSE
editor support use of annotations supplied through
interactions with other tools. Users of the vi editor do
not see annotations, but other tools can still position vi
on source lines of interest.

DEC FUSE Tools

The tools described in this section are currently available
in DEC FUSE. Figure 1 shows the DEC FUSE C++
class browser, builder, code manager, and profiler tools.

• The search tool searches files for strings matching
a literal string or regular expression using grep.
Options available through the user interface allow
for specifying whether the search should be case­
sensitive, whether lines matching or not matching

should be displayed, and whether the search should
be limited to a single directory or an entire direc­
tory tree.

• The builder builds applications using the make
or gnumake commands and existing makefiles or
makefiles generated by the builder. A scrollable
results window shows the output for the build
operation, including diagnostic messages. The build
dependencies between the files for the application
that are described in the makefile are displayed
graphically. The builder also distributes build
actions across hosts on a local area network (LAN)
and provides a user interface for specifying those
hosts and for monitoring the progress of the build.

• The debugger provides a GUI to command line
debuggers. This interface provides a source display
with annotations for breaks, conditional breaks,
and the current execution point. Debugging com­
mands can be executed using buttons, menus, and
a command line interface. Special windows provide
for viewing and changing variables, breakpoints,
and machine registers, and for monitoring the
values of expressions.

• The compare tool displays the differences between
two text files in a side-by-side display with related
areas highlighted and graphically connected. The
analysis of the differences is provided by the diff
command.

• The code manager provides a GUI to the version
management tools res and secs. The code manager
displays the revision history of the managed files.
Details such as author, date created, and comment
can be displayed for each version. In addition, the
code manager uses the compare tool to display dif­
ferences between revisions or revisions and files.

• The man page browser displays the reference pages
for commands, system calls, subroutines, and spe­
cial files. References to other manual pages in
the text are hot links, and the user can click on a
reference to display the other page. The man
page browser can also display an index of selected
reference pages. Users control the index content
by specifying a keyword to match in the reference
page description or a prefix to match to the refer­
ence page name. These allow users to find reference
pages when they are unsure of the function or com­
mand name.

• The profiler runs an application to collect run-time
statistics and displays the results at the function and
line level. Statistics include the CPU time used
by functions or source lines, function-call counts,
line-execution counts, and function and line test
coverage.

• The cross-referencer displays source locations for
declarations, references, and function calls whose

Digital Technical Journal Vol. 7 No. 2 1995 7

0
0

Fi
gu

re
 1

co
un

t.
c

lli
-'f

::i
 W

1
9

9
2

/0
4

/,o
's

1
4

:5
0

:5
7

llJ

 1
.2

(!

)
1

9
9

2
/0

4
/0

4
 1

4
:4

5
:4

5

llJ
 1

. 1

(!
)

1
9

9
2

/0
3

/3
0

 1
4:

 1
5

:4
0

Ii

 c
ou

nt
.h

[j

 f
ll

eo
ps

.c

D
E

C
 F

U
S

E
 C

+
+

 C
la

ss
 B

ro
w

se
r,

 B
ui

ld
er

, C
od

e
M

an
ag

er
, a

nd
 P

ro
fi

le
r

names match a regular expression. Queries can be
constrained by declaration types and locations
among other things.

• The call graph browser graphically displays the
call relationships within a program. Relationships
between functions, source files, and source direc­
tories can be shown. The user can constrain the
display to selected parts of the program.

• The C++ class browser displays the C++-class
hierarchy graphically. Inheritance paths and
detailed information about each member and class
can be displayed.

• Editors include the DEC FUSE text editor, emacs,
and vi. The DEC FUSE and emacs editors allow
other DEC FUSE tools to supply annotations
on source text lines of interest. In addition, other
DEC FUSE tools can be invoked from the editor,
including the builder, the code manager, and the
man page browser. The DEC FUSE emacs editor is
a standard emacs, with additional keys defined for
DEC FUSE functions.

• The help tool works with the HyperHelp tool from
Bristol Technology, Inc. to display on-line help and
training.

• The DEC FUSE shell supplies a terminal emulator
window running a standard UNIX shell in the
context of the user's DEC FUSE development
environment.

In addition to the tools listed above, DEC FUSE
includes a control panel tool that starts tools and
manages their environment.

Using the DEC FUSE Tools Together
The messaging mechanism allows each of the tools to
make selected operations available to other tools. For
example, the editor makes its ability to open and dis­
play a source file and to position to a specific line avail­
able to the other DEC FUSE tools through messages.
The man page browser accepts a message that causes it
to display a manual page for a specified topic. The fol­
lowing scenario, summarized in Figure 2, shows how
messaging ties together DEC FUSE tools into an inte­
grated environment.

1. To locate places in an application that need to be
changed, the developer starts the DEC FUSE
search tool and looks through C source files for
occurrences of a particular name. The files and lines
containing a match are displayed in the search tool.
By double-clicking on a line, the corresponding file
is loaded into the DEC FUSE editor, and the line is
displayed with an annotation that the search tool
provided the location. (The search tool is used in
this scenario, but the cross-referencer can also be
used to do this task.)

------. 1. POSITION 4. COMPILE --......----.
TO LINE FILE

SEARCH BUILDER

grep make

5. POSITION
EDITOR TO LINE

Figure 2

CODE
MANAGER

res

DEC FUSE Tool Communications

3. OPEN FILE

2. After inspecting the source, the user decides to
modify the code, but must first check it out using
res. By choosing the "check out" menu item in the
editor, the user starts the DEC FUSE code man­
ager, which shows the user the revision being
checked out and allows the user to browse the
library before confirming the check-out operation.

3. The code manager sends a message to the editor
telling it to load the file to ensure that the user is
editing the latest version.

4. The user edits the file and then starts a compilation
using the "compile file" menu item in the editor.
This starts the DEC FUSE builder, which runs
make and displays compiler diagnostics.

5. By double-clicking on a diagnostic, the user gets
back into the editor on the line containing the error.

The messaging mechanism allows for automated
switching between the tools. Information is passed
between the tools, thus eliminating retyping or cut­
ting and pasting. Other features also contribute to the
feeling of an integrated environment in DEC FUSE.
These include consistent GUis for all tools, global
preference setting, saving and restoring of state infor­
mation, and centralized help and training. However, it
is the messaging that ties tools together, making DEC
FUSE an integrated environment rather than a simple
collection of tools.

We have now examined the features of integrated
software development environments in general and
the DEC FUSE environment as an example of these
environments. In the next two sections, we examine
two important aspects of the design of DEC FUSE.
First, we discuss the mechanisms used to add graphical
interfaces to existing UNIX commands. Then we pre­
sent the design of DEC FUSE messaging.

Digital Technical Journal Vol. 7 No. 2 1995 9

Building Graphical Interfaces for Existing
UNIX Commands

Most DEC FUSE tools consist of a graphical program
that provides a point-and-dick interface for invoking
UNIX commands. This program interprets the results
from the execution of the commands and presents
these results graphically. This approach has several
advantages over building a completely new tool.
These are examined in this section, along with the
implementation techniques used.

Rationale for Building a Graphical Interface for
Existing Commands
Using an existing command to perform functions
needed by a new command is a technique that is often
used on UNIX systems. DEC FUSE tools use existing
commands for the following reasons:

User Investment Protection Two types of investments
must be made in software development environments.
One investment is training: software developers have
learned the concepts and capabilities of the underlying
tools. Since the graphical interfaces of an integrated
environment are built on tools that are familiar to
users, they can be learned in considerably less time.
For example, the concept of revisions, the semantics of
revision numbers, and the capabilities of res are the
same whether res is invoked from the command line or
selected from the DEC FUSE code manager.

Second, a project may have invested in procedures
and software that depend on project tools such as
make and secs. Users often use many makefiles that
have been tailored to meet the needs of their project.
Likewise, most projects use secs and res in ways that
must be supported by scripts. By building the code
manager and builder on the existing res, secs, and make
utilities, this investment is preserved. (The DEC FUSE
code manager provides mechanisms to support user­
written scripts used in combination with secs and res.)

Easier to Invoke Operations Although the UNIX
command line environment is extremely flexible, most
users find themselves frequently referring to reference
pages to check command syntax and option flags. By
replacing commands with menu items and buttons
and by replacing flags with toggle buttons and fill-in­
the-blank dialog boxes, users interact with the tools
faster with less typing and less browsing through refer­
ence pages. This is especially true for novices who have
not defined their own collection of aliases and scripts.

For example, searching all the header files in a direc­
tory hierarchy for the occurrence of a string requires
a command like the following:

find /usr/include -name "*.h"
-exec g rep -i FLT M {} /dev/null \;

10 Digital Technical Journal Vol. 7 No. 2 1995

This is a typical example of a command that a software
developer might need to use from time to time. The
command would be entered on one line. A first-time
user, however, might not correctly input all the details
of the command for the following reasons:

• The"* .h" designation includes quotation marks so
that it is not immediately expanded by the shell in
the user's current directory, but instead expanded
by find in all the subdirectories in the /usr/include
tree.

• If the search is to be case-insensitive, the -i switch
must be used with the grep command.

• The grep command supplies the name of the file
where the string is found only if more than one
file is supplied in the grep argument list. / dev /null
is added to make grep include the file names in
the output.

• The find command requires that subcommands
that it will execute be terminated with a semicolon.
Because a semicolon is also recognized by the shell,
it must be preceded with a backslash (escaped),
so that find will see it.

To do the same operation from the DEC FUSE search
tool, the user fills in some fields and sets a toggle (see
Figure 3). This can be done easily and correctly the
first time by both novice and experienced UNIX users.

/ u~/1r,elu:1Nfloat. ,n

Figure 3

69 • FLUIANT_DIG
72 * FLT_HIN_EXP
73 • FLT_HIN
74 • FLT_HIN_10_EXP
75 • FLT _HAX_EXP
76 * FLU1AX
n • FLUtAlUO_EXP

130 ldeftne FLUtANT_DIG

DEC FUSE Search Tool

NuPlber of bits in the
Exponent of S111allest
S111allest NORMALIZED f'J
H 1 ni11U111 base 10 l!J<pcl'II
Exponent of largest Nl
Largest NORHAL I ZED fie
Largest base 10 expcni

24

When the user spots an interesting occurrence in
the output from a grep command and wants to edit
the file, a command line interface requires the user to
enter the command to edit the file and to type the file
name and line number. Using the DEC FUSE search
interface, the user double-clicks on the interesting line
in the search tool and the editor automatically loads
the file and sets the position to the desired line, saving
typing and eliminating the possibility of errors.

Hiding Details Another advantage of graphical inter­
faces on underlying commands is the ability to hide
details of particular commands. For example, the DEC
FUSE code manager supports both secs and res with the
same graphical interface. A user does not need to know
the differences between res and secs; by using the
graphical interfaces, the user can see similar version his­
tory information from either underlying library format.

Graphical Presentation One advantage of a work­
station is its ability to present information graphically.

Figure4
DEC FUSE Builder Tool with Dependency Graph

A GUI layered on a command line tool can analyze the
output of the tool and present it to the user graphi­
cally, making the information in the output easier to
understand.

An example of this is the dependency graph in
the DEC FUSE builder, as shown in Figure 4 . The
graph displays the build dependencies for the user's
application as specified explicitly or implicitly in the
application's makefile. This display is an analysis and
presentation of the output provided by make when
run with options that produce debugging information
about makefiles. Nodes designated orange in the
graph represent the files that have changed. Nodes
designated red in the graph represent the files that
need to be rebuilt because of their dependency on the
changed files.

Another example of using the graphical capabilities
of the workstation is the DEC FUSE compare tool,
which is built on the UNIX diff utility. The output of
the UNIX diff utility is textual; an example is shown in
Figure 5. In contrast, Figure 6 shows how the DEC

Digital Technical Journal Vol. 7 No. 2 1995 11

cs h II diff file1.txt file2.txt
5,9d4
< These are Lines th at are only in file 1.
< These are Lines that are only in file 1.
< These are Lines that are only in file1.
< These are Lines that are only in file1.
< These are Lines that a re only in file1.
11a7,10
> These are Lines that are only in file2.
> These are Lines that are only in file2.
> These are Lines that are only in file2.
> These are Lines that are only in file2.
14,17c13,16
< These are Lines that are different in file 1.
< These are Lines that a re different in file1.
< These are Lines that are different in file1.
< These are Lines that are different in file1.

> These are Lines that a re different in file2.
> These are Lines that are different in file2.
> These are Lines th at are different in file2.
> These are Lines that are different in file2.

Figure 5
Sample diff Output

Figure 6
DEC FUSE Compare Tool

12 Digital Technical Journal Vol. 7 No. 2 1995

FUSE compare utility displays these differences graph­
ically, using highlighting to indicate the differences
and shapes to connect regions in the two files that
relate. The display allows differences to be viewed in
the context of the lines before and after them and the
lines that correspond to them in the other file.

Reduced Tool Development Work An obvious advan­
tage for the developers of the interface is that building
on a command line tool may involve considerably
less work than designing and implementing a new
tool that includes all the capabilities of the command
line tool. Furthermore, not every capability needs to
be provided through the user interface of the tool,
because users have access to less-used capabilities
through the command line. For example, the seldom­
used administrative features of secs and res can be omit­
ted from the user interface. Thus, with a minimum
amount of effort, it is possible to provide a convenient
interface to the most important underlying capabilities.

Managing Command Interlaces
It is common on UNIX systems to use the output of
one tool as input to another. In the case of DEC
FUSE, the output of command-line tools is being used
as input to DEC FUSE tools. The DEC FUSE tools
construct commands and pass them to a separate
process for execution. The results of these commands
are then interpreted by the DEC FUSE tools so that
desired information can be presented to the user. The
methods used to issue commands and to analyze their
results vary from one DEC FUSE tool to another.

One method used by DEC FUSE tools is to directly
issue commands using the popen library function,
which both starts execution of the command and
creates a pipe to the process running the command.
This is done by tools like the man page browser and
search. Output from the man or grep commands
that they issue is parsed by the DEC FUSE tool, often
using a simple mechanism such as the standard C
library function fscanf, which applies a format string
to a line to parse it. Some tools also make use of lex
with or without yacc to aid in parsing the output of
the commands.12,13

Other tools use PMAT (pattern matching) routines
for examining command output for desired patterns.
The PMAT functions were developed by Steven Reiss
as part of the FIELD environment. They are used in
FIELD both for managing messaging as well as for
interpreting the output of UNIX commands. For DEC
FUSE interfaces to UNIX commands, the patterns
used by the PMAT routines are organized in tables.
Portions of two of these tables are shown in Figure 7.
These examples are for the output of gnumake and
a make program supplied with Digital UNIX.14 For
this analysis, there are two significant parts of each

pattern table entry: a text pattern that may be found
in the command output, and the name of a routine
to be called if the associated pattern is found. For
example, when the error message "Failed to remake
target file '%ls'" is recognized, the function named
make_giving_up is called with arguments that match
specifications in the pattern string.

Additional values from the table (omitted in the fig­
ure) are also passed as arguments to the routine. The
string '%ls' in the pattern is similar to the conversion
specifications used by scanf. It represents a field in the
output that will be passed to the recognition routine
when a pattern is recognized. Some of the field specifi­
cation characters used are given in Table 2. The num­
ber preceding most field specification characters tells
the pattern match what position this field should hold
in the argument list passed to the recognition routine.
When there is no number with a field specification
character, that field is not passed to the recognition
routine.

Choosing the Appropriate Command
Interlace Method
The DEC FUSE product was designed to be portable
across several hardware platforms and many operating
system versions. DEC FUSE was developed on the
ULTRIX system and has been ported to SunOS, AIX,
HP-UX, and Digital UNIX operating systems. It was
released to customers on all these platforms, except
AIX. Since portability across platforms and versions
is a goal, interfaces for different command implemen­
tations and versions need to be considered. The choice
of interface method is made based on the complexity
of the interface (the number of commands and
expected responses), the number of different inter­
faces needed because of system differences, and the
rate at which the interfaces are evolving.

Most common UNIX commands, such as grep, man,
and d iff, have regular output that seldom changes. The
versions of these commands on the desired platforms
and operating systems have few differences, so it is not
difficult to write portable code that can issue these
commands and interpret the output using the lex, yacc,
or the scanf functions.

In cases in which the output is less regular and varies
across commands and platforms, the PMAT facilities
are more appropriate. This includes the DEC FUSE
builder, which must support several different make
programs on the supported platforms. The PMAT
facilities allow for interpreting a large number of dif­
ferent format lines and for selecting tables of patterns
appropriate to the underlying command. This makes it
easier for the builder to accommodate a variety of
make programs and interpret both output from make
and output from compilers.

Digital Technical Journal Vol. 7 No. 2 1995 13

14

Figure 7

!****** Pattern table for gnu make*** ***/
static MAKE_PAT gnu_pattern_table[J = {

};

{"Re ad i n g make f i Les ... ", gnus ca n_m a k e f i Le, ..• } ,
{"Considering target file'%1s'", gnuscan_consider, ... },
{"Found an implicit rule for' %1s"', gnuscan_flags, ... },
{"Updating goal targets ..•. ", gnuscan_makefile, ••. },
{"File'%1s' was considered already", gnuscan_done,
{"Must remake target ' %1s'", gnuscan_flags,
{"Failed to remake target file' %1 s' " , make_g i ving_up,
{ No need to remake target '%1s'", gnuscan_flags,
{ # F i L es " , gnus can_ f i L e s , ... } ,

... } ,
... } ,

... } ,
... } ,

{#Not a target:", gnuscan_notarget, ... },
{ # commands to execute", gnuscan_setrules, ... },
{ # Phony target", gnuscan_defflags, •.. },
{ # Precious file", gnuscan_defflags, ..• },
{ # VPATH Search Paths", gnuscan_files, .•. },
{ # gnumake: Entering directory' %1 s'", gnuscan_proj, ... },
{ # gnu make : Le av i n g di rectory ' % 1 s ' ", gnus ca n_p r o j , ... } ,
{"%1s: %2r", gnuscan_def, ••• },
{" %1 s:", gnuscan_def, ... },

/****** Pattern table for dee make******/
static MAKE_PAT dec_pattern_table[J = {

} . ,

{"doname(%1s, %2d)", decscan_consider, ••• },
{ " set v a r : @ = % 1 s no re s e t " , de c s can_ f L a gs , ... } ,
{ " s et v a r : ? = % 1 r " , de cs can_ f L a gs , .•• } ,
{" ! = % 1 r", de cs ca n_a d just, ... } ,
{"Look for explicit deps. %1d", decscan_flags, ... },
{"Look for implicit rules. %1d", decscan_flags, •.. },
{"Current working directory for make is %1s",

{" %1s: %2r",
{" %1 s:",
{"Reading %1s",

decscan_proj, ... },
makescan_def, ..• },

makescan_def, ... },
decscan_makefile, •.. },

make PMAT Patterns

Table2
Some PMAT Field Specification Characters

Field
Character

d
x
c
s
q

r

e,f,g

Data Type

Decimal number
Hexadecimal number
A single character

A string, delimited by white space
A string, del imited by quotation marks
A string, from the current location to
the end of the line
Floating-point numbers

The tool with the most complex command interface
is the debugger. The debugger shares the following
issues with other tools, but demonstrates them most
forcefully:

Digital Technical Journal Vol. 7 No. 2 1995

1. Debuggers are big and complex. Debuggers are
more complex than the commands used in other
DEC FUSE tools. Each debugger engine accepts
many commands, all of which have their own out­
put that must be parsed. The debugger engine also
continues to run while the user works. Unlike most
other tools, the debugger engine is not restarted
every time the user wants more information, so the
debugger process must be managed over a long
period of time.

2. Debuggers are evolving more quickly. Debuggers
frequently change to support new needs (for exam­
ple, new languages like C+ +, threads, or hardware
architectures), so new debugger commands or new
output from old commands can be expected often.

3. Synchronizing the front end and the debugger
engine is a complex task. The graphical front end

must remain synchronized with the debugger
engine it is running. Preserving this synchroniza­
tion is made more difficult for three reasons. First,
users can enter debugger commands directly as
text, making it difficult for the front end to deter­
mine their effect. These commands may require
updates to the graphical displays or the internal
state information used by the front end. Second,
the debugger may not be in a state where it can
accept commands (when the user program is run­
ning for example), so the front end cannot update
displays. Third, spontaneous and unexpected
debugger engine output may occur as the result of
traces or certain breakpoints.

4. Different debuggers use different commands.
Commands on different debuggers can be different
in both name and design. For example, with the
dbx debugger available on SunOS, AIX, and Digital
UNIX, the commands func and file can be used to
find the currently active function and the name of
the source file where that function is defined. The
xdb debugger used on HP-UX, however, uses the L
command to present both the current function and
the name of the file where it is defined, as well as to
display the current source code line.

5. The same debugger commands have different out­
put. Other commands, although similar in name
and design, can produce output that is different
enough to cause problems. One example is the
where command used in dbx on both Digital UNIX
and SunOS platforms. This command returns the
current stack information. The Digital version
includes a pointer character (>) to show which
stack entry is the current scope; however, the
SunOS version does not supply this scope informa­
tion. Therefore, a debugger GUI program must be
carefully designed to get needed scope information
ifit must support both debugger engines.

6. The output of some debugger commands is com­
plex, and the results of some debugger commands
are difficult to parse. For example, in the display of
the content of a data structure, the format of the
output will vary depending on the source language
used in the application.

Experiences with DEC FUSE suggest that there is
no easy solution. Addressing these issues results in
many specialized routines in the DEC FUSE debugger
tool to both construct debugger commands and inter­
pret the results. Techniques that help to make the
problems more manageable include the following:

• Cleanly separate generic-GUI and command­
specific code. The design of the debugger GUI
identifies the operations that it requires of the

debugger engine and the data that it must get from
the engine. These are provided by a set of functions
whose implementation will vary from one engine to
another. These functions will be modified over time
to accommodate the evolution of the engines.
Another method being designed now is to use
C+ + classes to encapsulate code for each sup­
ported debugger engine.

• Limit the details that the GUI depends on. One
way to limit the dependency of the GUI on the
details of the engine is to provide GUI support for
only the most frequently used debugger opera­
tions, while providing a command interface for the
remaining operations. Another technique is to
avoid interpreting the output of the engine when
possible and simply display the output of the com­
mand in a text window.

• Implement special interface commands in the
engine. When it is possible to change the underly­
ing debugger, special commands and output can be
implemented by the debugger designed exclusively
for use by the GUI front end. For example, the
DECladebug debugger engine has been modified
with the introduction of two new commands for
use by the graphical interface that simplify the task
of displaying data structures in the GUI. Although
other commands display data structures for the
user, the format of the output of these commands is
designed to be easily interpreted by the GUI. These
commands are designed for the exclusive use of the
GUI. They need not be changed for the user, for
example, to improve readability; thus the evolution
is controlled.

Fortunately, most UNIX tools are not as complex as
the debugger. In fact, building a GUI for commands
with output that seldom changes and is consistent
across implementations is a straightforward task.

Using Messaging to Make Independent Tools
Work Together

As described earlier, each DEC FUSE tool focuses on
a single, separate software development task. This
design philosophy, sometimes called "divide and con­
quer," combined with the DEC FUSE multicast mes­
saging system (MCMS) makes it easier to maintain or
replace tools. DEC FUSE tools can therefore be easily
replaced with alternative tools that provide the same
function.

MCMS is the key to making independent tools work
together. Any message sent by a tool is delivered to all
tools that express an interest in receiving the message.
Some messages, called notifications, are defined to
have no response. Other messages, called requests,

Digital Technical Journal Vol. 7 No. 2 1995 15

have responses for which the sending tool usually waits.
A tool can also eavesdrop on requests that will be han­
dled by other tools. A DEC FUSE component called
the DEC FUSE message server keeps track of the active
tools and which messages each can send and receive.

1. Attributes: This is a collection of tool attributes
such as the string to be used in the DEC FUSE tools
menu and the command to invoke the tool.

2. Messages: This section lists definitions for all mes­
sages sent and received by the tool, including their
arguments and return values. Messages that have
return values defined are called requests, and the
returned value is expected by both the message
switch and the tool that sent the request. Messages
with no return value (the type is void) are called
notifications. The keyword trigger is used if the
message should automatically start the tool.

Messaging with MCMS
Messages used by tools are easily defined in a TIL file,
written in the DEC FUSE tool integration language.
An example is the manager.til file used by the DEC
FUSE code manager. Part of manager.ti! is shown in
Figure 8. Each TIL file can define one or more tool
classes. Each class definition describes how a single
DEC FUSE tool will be integrated with the rest of
DEC FUSE. A class definition contains three parts:

3. States: This section describes when each message
may be used during the execution of the tool. This
section defines one or more states in which the tool

class MANAGER= {

} . ,

Figure 8

Attributes {
Label
accel
path

= "Code Manager";
= "Meta+M";
= 11 $(FUSE_SH_BIN)/manager 11

;

} . ,

Messages <
I* messages accepted by the FUSE code manager*/
char *TooLReconfigure(char *working_directory,

char *target_directory, char *target, char *other);

trigger char *Checkln (char *Libraryname, char *filename,
char *revision, ch a r *comment, int keepfile,
int filemode);

I* messages sent by the FUSE code manager*/
void Checkln Notification (int instance_id,

char *Libraryname, char *workdir, char *filename,
char *revision, int status);
};

States {
start {

} . ,

};

receives {
ToolReconfigure,

};
sends {

};

running {

} . ,

receives {
TooLReconfigure,
Checkln,
Checkout, } ;
sends {
TooLReconfigure,
ChecklnNotification, } ;

DEC FUSE Tool Integration Language File

16 Digital Technical Journal Vol. 7 No. 2 1995

may exist. Tools can change their state, and within
each state only the listed messages may be used.
Most DEC FUSE tools need only two states: an
initialization or start state used during tool start-up
and a running state. Other states may be needed by
some tools. For example, the builder uses a build­
ing state to advise the message server that a build
is in progress and that some requests (like another
build request) are not allowed.

A TIL compiler translates the TIL files of DEC
FUSE tools into the data files needed to run DEC
FUSE. Figure 9 summarizes how the files generated
by the TIL compiler for a DEC FUSE tool (named
fuse_tool) fit into the architecture of DEC FUSE.

The TIL compiler combines information from the
fuse_tool TIL file with TIL files for tools already
installed on a system. The TIL compiler generates
three files:

1. fuseschema.msl - This file tells the message server
which tools wish to receive which messages.

2. tools.re - This file tells the control panel how to
start each tool. Tools may be started in response
to a trigger message or manually from the Tools
menu found in each DEC FUSE tool.

3. FUSE_fuse_tool.c - This file contains functions for
each of the messages that the tool wishes to send.
This file is compiled and linked with fuse_tool
along with libfuse.a. Messages are sent by simply
calling these functions. This file also contains an ini­
tialization function in which callback functions for
messages that the tool receives are registered.

The use of the TIL compiler in DEC FUSE provides
a mechanism similar to a remote procedure call facility.

SYSTEM
__ -_TIL FILES

This allows tools to send a message using a single func­
tion call. This contrasts with the messaging mecha -
nisms used in the HP SoftBench and Sun SPARCworks
products, which require a number of calls to the mes­
saging application programming interface (API) to
allocate, assemble, send, and free a message. These
mechanisms also require tools to assemble and register
patterns corresponding to the messages that they want
to receive, a function handled by the initialization func­
tion in the C source file generated by the TIL compiler.

To simplify the task of integrating tools, DEC FUSE
also supplies a DEC FUSE message monitor. This tool
monitors and debugs messages sent by tools and pro­
vides a mechanism for integrating shell scripts as tools
that can send and receive messages.

Simplified Tool Replacement
MCMS does not require the user to specify the tool
that does the work. When a tool sends a message using
MCMS, it does not specify what tool should service
the message. This allows for replacement of the tool
that services the messages with an equivalent tool,
without making any change to the sender. This mech­
anism is used in DEC FUSE to allow users to select
which of three editors they want to use and whether
they want to use a GUI debugger based on dbx or
DECladebug.

This mechanism also facilitates upgrading the DEC
FUSE environment. Recently, the Motif help widget
in DEC FUSE was replaced with the HyperHelp tool.
The replacement was facilitated by continuing to use
the existing messages. This isolated all changes to the
DEC FUSE help tool. The help tool continues to
receive messages of the form

MESSAGE
SERVER

fuse_tool TIL
fuseschema.msl

MESSAGES MESSAGES

fuse_tool CONTROL PANEL

TILC-CODE TILC-CODE

libfuse.a libfuse.a tools.re

fuse_tool.c

Figure 9
Use ofTIL-generated Files in the DEC FUSE Architecture

Digital Technical Journal Vol. 7 No. 2 1995 17

trigger void HelpShowTopicCchar *product,
char *mode,
char *topic);

In the previous version, the message argument, topic,
was a string that identified what kind of help was
desired. The new help tool uses numbers instead of
names to identify help topics, Consequently, a simple
mechanism was designed to translate the strings
received in the HelpShowTopic messages to the
desired Hyper Help topic number.

Conclusion

DEC FUSE provides an integrated programming envi­
ronment for UNIX software development that takes
advantage of the graphical capabilities of workstations.
Two key techniques are used to implement DEC
FUSE:

• The layering of GUis on existing UNIX command
line tools

• A multicast messaging mechanism that permits
tools to interoperate without limiting the environ­
ment to specific tools

The GUis provide point-and-click interfaces for
invoking operations and specifying options and use
pictures and diagrams in addition to text to display
information. At the same time, the use of traditional
UNIX commands to perform programming tasks pre­
serves the user's investments in those underlying tools.

The GUls interpret the output of UNIX commands
and present the information in pictorial and interactive
displays. A variety of techniques can be used to process
the output of a command line tool, depending on the
complexity of the tool output. Simple text-processing
techniques are usually adequate for interpreting the
output of command line tools. When the underlying
tool output is syntactically complex or evolving, or
when considerable state information is frequently
needed from the underlying tool, it becomes difficult
to apply these techniques. Under these conditions,
designs that avoid the processing of human readable
output are preferred.

The use of messaging is consistent with the UNIX
philosophy of creating simple tools and letting the
user combine them in any way that might be useful.
The messaging mechanism ties the individual tools
together into an integrated environment by allowing
tools to invoke operations in other tools on the user's
behalf. This eliminates steps for the user, and it also
eliminates the potential for errors. Because the tools
are still autonomous and interface solely by means of
the messaging, equivalent tools that accept the same
messages can be substituted, allowing for user and
project preferences.

18 Digital Technical Journal Vol. 7 No. 2 1995

Acknowledgments

We would like to thank the many past and present
members of the DEC FUSE team who contributed to
the design and implementation of the DEC FUSE
product. We also want to acknowledge the work on
FIELD done at Brown University by Steven P. Reiss
and his students that laid the groundwork for DEC
FUSE and other software development environments.

References

1. B. Kernighan and R. Pike, The UNIX Programming
Environment(Eng1ewood Cliffs, N.J.: Prentice-Hall,
Inc., 1984).

2. R . Stallman, GNU Emacs Manual (Cambridge, Mass.:
Free Software Foundation, 1988).

3. R. Scheifler and J. Gettys, "The X Window System,"
ACM Transactions on Graphics, vol. 5, no. 2 (April
1986).

4. DEC FUSEHandbook(Maynard, Mass.: Digital Equip­
ment Corporation, Order No. AA-Q8ZMA-TE, 1994).

5. DEC FUSEEnCASEManual(Maynard, Mass.: Digital
Equipment Corporation, Order No. AA-Q8ZPA-TE,
1994).

6. M. Cagan, "The HP Sofi:Bench Environment: An
Architecture for a New Generation of Software Tools,"
Hewlett-Packard journal (June 1990): 36-47.

7. Common Desktop Environment: Getting Started
Using Too/Talk Messaging (Mountain View, Calif.:
Sun Microsystems, Inc., 1994).

8. S. Reiss, The Field Programming Environment:
A Friendly Integrated Environment for Learning
and Development (Boston: Kluwer Academic Pub­
lishers, 1995).

9 . S. Reiss, "Interacting with the FIELD Environment,"
Software-Practise and Experience, vol. 20 (June
1990): 89- 115.

10. S. Reiss, "Connecting Tools Using Message Passing in
the Field Environment," IEEE Software, July 1990:
57-66.

11. D. Zaremba, "Adding a Data Visualization Tool to
DEC FUSE," Digital Technical journal, vol. 7, no. 2
(1995, this issue): 20-33.

12. M. Lesk and E. Schmidt, "Lex-A Lexical Analyzer
Generator," Computer Science Technical Report
No. 39 (Murray Hill, N.J.: Bell Laboratories, 1975).

13. S. C. Johnson, "Yacc: Yet Another Compiler­
Compiler" (Murray Hill, N.J.: Bell Laboratories).

14. R. Stallman and R. McGrath, GNU Make- A Pro­
gram for Directing Recompilation (Cambridge,
Mass. : Free Software Foundation, 1993).

Biographies

Richard 0. Hart
Rich Hart joined Digital in 1980 and is currently a member
of the FUSE Group. Prior to his work on the DEC FUSE
programming environment, Rich was a member ofUEG
(ULTRIX Engineering Group) and led the first version of
the Palladium distributed printing project at MIT's Project
Athena. As one ofDigital's representatives to the X/Open,
POSIX, and ANSI standards groups, Rich has contributed
to the development of software standards for transaction
processing, printing, and CASE environments. He earned
a Ph.D. from the University of Connecticut and is a mem -
ber of ACM and IEEE.

Glenn Lupton
Glenn Lupton is a consulting software engineer and
has been with Digital for 20 years. During this time,
he has worked primarily on programming environments
and tools, including Bliss compilers and DECset. For the
last two years, he has been the technical director of the
DEC FUSE project with responsibility for the overall tech­
nical content of DEC FUSE. Glenn received B.S.E.E. and
M.E.E.E. degrees from Rensselaer Polytechnic Institute.

Digital Technical Journal Vol. 7 No. 2 1995 19

Adding a Data
Visualization Tool
to DEC FUSE

Digital's Data Visualizer tool uses condensed
file views to display thousands of lines of source
code. These displays can include the output
of many other tools. As part of the DEC FUSE
programming environment, the tool helps soft­
ware developers by providing capabilities for
displaying large bodies of text with associated
events or statistics. The Data Visualizer tool
combines the results of other tools into a single
display, keeps track of work items, and scales
up to support large software projects.

20 Digital Technical Journal Vol. 7 No. 2 1995

I
Donald A. Zaremba

In January 1993, Digital began research on a tool for
visualizing large sets of data. The design of the Data
Visualizer tool was complete in March 1995, and the
tool is scheduled for inclusion with the next major ver­
sion of the DEC FUSE software. DEC FUSE is a pro­
gramming environment for UNIX that provides an
integrated suite of graphically oriented tools built on
the commonly used UNIX programming tools. For
more information on the DEC FUSE environment,
see the paper "DEC FUSE: Building a Graphical
Software Development Environment from UNIX
Tools" in this issue.I

In this paper, we focus on the technology that was
used in the data visualization tool and the process by
which this tool was taken from an advanced develop­
ment project to become a part of an existing product.
We start with a discussion of the problems encoun­
tered when visualizing large sets of data, the various
graphical techniques that are used to solve these prob­
lems, and the implementation of these techniques in
a demonstration tool. We then describe the design of
the final tool, its evolution from the prototype into a
product, and its integration with the other DEC FUSE
tools. We then give a functional overview of the tool
and scenarios of how it can be used. We conclude with
comments on the process from advanced development
work into final product.

Development of a Data Visualization Tool

Software development of even a moderately sized
project typically involves working with many files and
hundreds of thousands of lines of source code.
Working with so much data in so many files is difficult
because most software tools are written to work on a
single file at a time (like a compiler or an editor). Those
tools that do operate on multiple files (like a grep tool
used with wildcards) produce a stream of output that
can be large and that can only be associated with the
source code by identifying a line number or by display­
ing a single line of source in context. Although these
tools do provide the requested answer, they provide lit­
tle of the context that would help the user see how tl1is
answer relates to the source code or how it would relate

to other answers. It is often hard to see how these
detailed answers fit into the large picture.

One technique for solving this problem is to use
computer graphics in the display portion of software
development tools. Graphics are used to display infor­
mation such as build dependencies, cross-reference
data, call tree data, and class hierarchies.

Unfortunately, when the application becomes large,
the graphic displays become too dense to provide any
real insight into the relationships between the com -
ponents in the application. The screen is simply not
large enough to display all the information. The lay­
out of nodes on a two-dimensional display is often
inadequate to effectively represent the complexity
of the underlying structure and relationships in the
code. The common use of overlapping windows of
data actually hides data, preventing users from see­
ing important relationships among the windows or
even knowing which windows contain relevant data.
In effect, programmers who must work on today's
complex software applications are confronted with

Figure 1
Main Window of the Data Visualizer

a situation similar to entering a large dark room with a
complicated piece of machinery in it. Current technol­
ogy hands the engineers a penlight and says figure out
what the machine is, how its parts work, and then
make enhancements to it.

The Data Visualizer tool addresses some of these
problems by providing a condensed view of source
code; the tool is capable of displaying thousands of
lines of code in a single view. This condensed display is
used as a backdrop for showing the output from tools
and how it relates to the source code. Figure 1 is a
sample screen output from the Data Visualizer tool
being used in conjunction with a search tool to find
occurrences of a particular string. This simple example
shows many of the features of the Data Visualizer. The
rendering of each file in the view shows the indenta­
tion of the source code. Source code is colored to
show comments in green, the beginning of functions
or procedures in red, and the actual code in gray. The
sizes of files and functions are readily apparent. The
results of the search inquiry are highlighted.

Digital Technical Journal Vol. 7 No. 2 1995 21

22

Graphical Techniques

During the early phases of this work, research was
done to find appropriate graphical techniques. This
section describes in detail three techniques that influ -
enced our design and appear in some form in the Data
Visualizer tool. It also gives references to related work.

Condensed File View
One technique that looked promising from the very
beginning was the condensed file representation done
by Stephen Eick in 1993. In his paper "Graphically
Displaying Text," he describes a program called
SeeSoft that is used to display statistics associated with
lines of text.2,3 He has used this technique to show
statistics about lines of program source code and other
text files, such as text from the Bible or revision history
of text paper. He also uses the technique to analyze
computer log files and describes that work in a sepa­
rate paper. 4

The idea behind the SeeSoft program is to create
small pictures of files that reveal information about
a file in a nontextual manner. The size of the rectangle
is scaled to the number oflines in the file. Each line of
text is shown with the correct indentation and length.
In addition, lines can be color-coded either to reveal
program structure or to highlight some point of inter­
est. As an example, green lines could be used for com­
ments, red lines to indicate the start of each function,
and gray lines for executable code. As can be seen in
Figure 2, the information reveals the size of each file
and some information about the file contents. It is easy
to see where function definitions begin, because the
red lines stand out. Also, the indentation of the code

brush.cxx pen.cxx draw.cxx

- ------ ---- 10 - ----
20 -- -- --
30 --- -- - 40 --

- 50 -

Figure 2
Condensed File View

Digital Technical Journal Vol. 7 No. 2 1995

helps the viewer recognize programming structures
like if then else statements or case statements.

One of the appeals of this method was the ability to
display many lines of source code. (Eick's SeeSoft tool
claims to display as many as 50,000 lines of code.)
Programmers can get a clear and complete overview of
their code. From the simple view shown in Figure 2,
with no additional data, we can see the size of each file,
the relative size ofindividual functions in a file, and the
frequency and distribution of comments.

Multiple Levels of Details
We investigated a second technique that seemed
appropriate: the drawing of objects in multiple sizes
and in multiple levels of details. The concept of adjust­
ing the amount of detail presented to the user as a func­
tion of the apparent size of an object is a technique
developed in a unique computer interface model
called Pad. 5 Pad provides an infinite two-dimensional
information plane that the user can browse using por­
tals (analogous to magnifying glasses) to zoom into
the data.

The larger the object, the more details are revealed.
This corresponds to the notion that things that inter­
est us are the ones we bring closest to us; they require
the greatest amount of detail. Those items of lesser
interest are placed in the background and drawn
smaller. As can be seen from the pictures in Figure 3,
as the size of the file increases, more details are shown
about the file. The smallest picture reveals only the
major structural parts of the file; we call this chunk
level. Each chunk is drawn as a colored rectangle and
represents either a group of comments (green), the
start of a function (red), or lines of executable source
code (gray). The next picture shows line-level detail
like that shown in Figure 2, and the last picture shows
each line large enough to be drawn as readable text.
Note also that the largest picture begins to look like
a text editor and that the scroll bar on the right is a
chunk-level rendering of the file.

bruah.cxx

Figure 3
Multiple Sizes of Files

1/zbrush
II OefauH conlstruclor tor class
zBrush:::zBrushO
{

_handle = NULL;
_color= WHITE;
_size = DefaultSlze;

H Lwlndow I= NULL)
{

getBackgroundLwlndow);
setBackground(thls);

The Use of the Third Dimension
We also chose to investigate the use of the third
dimension for ways to better visualize large, dense
graphs. We did not pursue this work for several rea­
sons, which we describe later in this paper.

We did find a simple use of three-dimensional (3-D)
viewing that was beneficial when trying to visualize
certain types of data. We converted the condensed file
pictures into 3-D views by adding a small side to each
picture. We could use that area to show line-related
data as in Figure 4. This example shows a numeric
value (the blue lines) associated with a line of source
code. The horizontal dotted line is a threshold, and
values that exceed the threshold are drawn in red.
We use this type of graphic to show source code profil­
ing data, like execution counts and CPU time. Even
though it is a simple drawing, it uses a 3-D effect that
helps the user visually organize a great deal of infor­
mation. It is relatively easy for a user to look at the
front data at one moment and put the side data off
into the background, and then change focus and
examine the side data. The effect is even more notice­
able and useful when many of these 3-D file pictures
appear in the same display. An example of this is given
later in the section on the SoftVis Program.

The Advanced Development Project

This section describes the advanced development
phase of the project. It discusses the process used, the
software prototypes produced, and the major design
decisions made during this phase.

The Advanced Development Process at Digital
The type of work done in Digital's Advanced
Development Group, working with new technologies
and implementing new ideas, is difficult to do within

Figure4
3-D File Picture

a schedule-constrained product development organi­
zation. Although the goals of advanced development
work may be well specified, only a vague idea of a pos­
sible solution and of the time needed to find the solu­
tion is known. These two facts make it impossible to
schedule advanced development work in a product's
project plan. At Digital, the Advanced Development
Group is a separate organization that operates outside
the product schedule constraints of other groups. It is
staffed by engineers from the development groups,
who rotate into the Advanced Development Group,
perform their work, and then return to their sponsor­
ing group to transfer the technology into a product.

The stated goal at the beginning of our project was
to enhance the software browsers available in the
DEC FUSE product by adapting the results of current
research in visualization techniques. Of particular
interest was the ability to browse large software sys­
tems containing large amounts of source code. We
were also looking for techniques that would provide
new information about source code and new ways of
looking at source code. Our objective was to add fea­
tures to DEC FUSE that were not currently available
in other products.

The process we used was to research as many dif­
ferent techniques as possible and select those that
appeared most promising for prototyping. The proto­
types gave us experience in the technology and helped
us in our evaluation. We then sought input from our
sponsoring group to determine which prototypes
were feasible to add to the product, and we continued
to develop and refine these.

Using 3-D Computer Graphics
At the beginning of the project, we wanted to explore
the 3-D graphics technique. For this research, we used
a DECstation 5000 /20 workstation with a 3-D graph­
ics accelerator option installed. The code was written
in C+ +. We used the Motif standard to build the win­
dows and menu part of the user interface and the pro­
grammers hierarchical interactive graphical standard
(PHIGS) to write the 3-D graphics code.

We quickly built three demonstration programs to
gain experience in 3-D graphics programming. The
first program was an instrumented C+ + class library
that created and destroyed color-coded cubes in 3-D
space as constructors and destructors were called.
Message passing was shown by connections between
the cubes. The z-axis was used for time: the older an
object became, the farther back it would appear on the
z-axis. The second demonstration drew hierarchies in
3-D space and gave the user limited capabilities for
manipulation in 3-D. The third demonstration visual­
ized a C+ + class as a cube in 3-D space, with different
sides being assigned different types of data. One side

Digital Technical Journal Vol. 7 No. 2 1995 23

contained a class inheritance graph, another contained
a condensed view of the interface to the class, and the
third side contained a window into the source code of
the class.

After a short period, for several reasons, we stopped
working with 3-D graphics. We realized that the types
of visualizations we were doing would require 3-D
accelerators on users' workstations, and we knew that
would not be acceptable. In addition, development of
this technology would take a great deal of time, and
we felt we could make better progress working on
other graphics techniques.

Early Prototypes
Having seen the work done by Stephen Eick, we
decided to experiment using his technique. We also
started to think about the concept of building a frame­
work that we could use to build prototypes of different
techniques. Eventually, this evolved into the design we
describe later in this paper. At this time, we also con­
sidered what platform to use. Our sponsoring group
had developed the DEC FUSE product for the UNIX
environment, but other groups were starting to work
on the Windows NT operating system for personal
computers. Since we were interested in learning more
about the Windows programming environment, we
decided to produce code that would work on either
platform and to build prototypes on both platforms.
In hindsight, our decision to support multiple win­
dowing systems was a diversion that did not directly
contribute to the project goals, but it was a valuable
learning experience.

To achieve cross-window system portability, we
developed a class library that encapsulated parts of the
programming interfaces on the MS Windows system
and the X Window System. We decided to restrict our
class library, collectively referred to as the "ZWindow"
or "ZWIN component," to encapsulate only the low­
level graphics drawing routines (e.g., line and rectan­
gle) and avoid trying to encapsulate all the graphical
interface components like windows, icons, and menus.
We encapsulated at the level of the graphics device
interface (GDI) on MS Windows and the X library
interface (Xlib) on the X Window System. This
worked well; we achieved portability of our graphics
drawing code, which was our area of concentration.
The fact that we had to do separate implementations
for the remainder of our user interface (that is, the
menus, toolbars, and dialog boxes) was not a hin­
drance since the bulk of our code was still portable.

Designing the ZWIN interface was fairly straight­
forward. The line and shape drawing routines were
easy to encapsulate because they existed on both plat­
forms. The drawing contexts were different. The MS
Windows system has color pens and brushes to control

24 Digital Technical Journal Vol. 7 No. 2 1995

drawing attributes; but on the X Window System, all
drawing attributes are defined in a single data struc­
ture, the graphics context (GC). We decided to create
classes for pens and brushes and to handle the X
Window System implementation by encapsulating an
appropriate GC in the pen and brush classes. The
largest class in the ZWIN component was the canvas
class. It encompassed a DrawingArea Widget on the X
Window System and a window on MS Windows. It
had member functions that provided all the drawing
functions available (e.g., line or rectangle), as well as
functions to select the appropriate drawing object
(pen or brush).

The condensed file view was implemented in two sets
of classes. A set of file-type-dependent scanner classes
was developed to handle the parsing of C, C+ +, Ada,
makefiles, etc. Once scanned, a single file visualization
class could perform the rendering of the object on the
display. Speed was a concern since we wanted to be
able to visualize an entire directory of files very
quickly. To do this, we wrote a small, efficient scanner
for each type of file that could pick out only the rele­
vant information as quickly as possible. Throughout
our work on all the prototypes and into the final prod­
uct, we found that we could always fill a complete dis­
play without any noticeable delay to the user.

Figure 5 shows part of the first prototype. It displays
a condensed file view of all the text files in the default
directory. Files were sized to fit within the size of the
window, with an appropriate level of detail shown.
Files could also be individually selected and resized.
Files are shown in the three different levels of detail
described in Figure 3. Most of the files are drawn at
the chunk level and reveal only the relative size and
location of each function in the file. Two of the files
have been enlarged to show line-level details, and one
file has been fully enlarged to be a readable size.

Later prototypes improved upon the design of this
condensed file view. We also implemented other views
that we thought would be useful. The C+ + class view
rendered a condensed picture of a C+ + class with its
member functions and data members. It is described
later in this section.

SohVis Program
Throughout the process of creating the first few pro­
totypes, we kept in mind the concept of building a
framework that we could use to speed up the delivery
of new graphical techniques. The SoftVis demonstra­
tion program used that design. Based on a View­
O bject-Tool architecture, its concept was that a view
would set the backdrop and style for the display, such
as the condensed file view. We would render objects
into that view style and support many different types
of objects per view. Tools would then be written to

l!Z. . SottvJare Vl~uallz~r Dl .2 . [gli;j

.~ / /

Figure 5
First Demonstration Program

interact with the objects in the view. Our objective was
to develop a "plug-and-play" architecture that sup­
ported the following:

• View
- Condensed file view
- Condensed file 3-D view
- c+ + class view

• O bject
- C+ + source code
- C source
- Ada source
- .o (object files)
- .a (library files)
- executable files

• Tool

I .. lllltt••••

' ,
'

zworkm.c~

I to•, 11 1•11••.l•ul••••••i••••• :
' : ,.,,.""'
I 1••1 111111,

..... • • o11 · · ·--··

,
I "t•••• ... ,
I ~ ··· t, ,,

' , .. ,.._,
' I_.
'

........ 11.1•111 1 11. •• •·
,1•u1•u • •11111., 11&.1-., ... •

:::::·.-:~::'.'·~:.-If··-·--
..... _ 1 11, ····~ ' ... , ,

•1n•,

- Magnify tool
- Probe tool
- Cross-reference tool
- Search tool
- IF-DEF lens tool

.!::lP.lp

The goal was to be able to create a view containing all
the files in a directory and displaying an appropriate
visualization for each of the file types (either a text file
or a binary file), and to enable the tools to operate on
all the objects in the view. For example, the magnify
tool would show a readable view of the text in a source
file; however, when used on a binary object file, it
would show information about the size, address, and
type of segments in the file.

Digital Technical Journal Vol. 7 No. 2 1995 25

Figures 6 and 7 are screen captures from the proto­
type. Figure 6 shows a cross-reference tool being used
on C+ + source files. The list box shows functions from
all the source programs, and the highlighted function
color-coded lines point to where that function is first
declared, implemented, and called. Figure 7 shows the
magnify tool used in the 3-D file view to show source
code details and profiling data. In this case, the profiling
data is a mock-up of line execution counts; the real tool
will use this space to report actual data.

Figure 8, also a screen shot from the prototype,
shows the C+ + class view. This view uses a condensed
representation of a C+ + class. Each line in the class
corresponds to either a member function or a data
attribute of the class. These are grouped together as
public, protected, and private members. Member
functions are shown in red; data elements are shown in
blue. Inheritance is shown by connected arcs.

SohVis Design
The system is divided into several components. Each
component can be built separately; has its own make­
file; and, in most cases, its own test programs. Table 1
gives an overview of these components and their rela­
tive sizes as of the latest base level.

The SoftVis design begins by supporting the desired
prototype architecture of View-Object-Tool. A com­
ponent was developed for each of these; it contained
a base class, derived classes, and supporting classes.

From Advanced Development to End Product

This section describes the effort required to turn parts
of the final advanced development prototype into
a product-quality tool for release with DEC FUSE.

.._, ---- ,,,...,. - ,~r
I

File

JI • .Ill
ii
Ill
~

Figure 6

/ur/UNn./HnlN/90ft•b/od/ ...

-

Demonstration of the Cross-reference Tool

26 Digital Technical Journal Vol. 7 No. 2 1995

l!I
8 /•r/UNr9/aaN1911J•fh19/Mf/

• II • • 121

Figure 7

RETURN VALUE:

1 vrirultipleVersionFileView: :confi9Chang

tt (DBG l DBG_VllW)

cout « "vl'lllt ip l eVe r1ionP1leVieY e
cout << ~ hei9ht :" << height « "\n

I _ n.usH() ;

-.:!t~~t • • v~~}htt;
iapeoct'dtnatelyst•(O .O, 1.0, o .o, 1.0 ..

Demonstration of the 3-D View with Profiling Data

Finding a Place for the Work
At the conclusion of the advanced development proj­
ect, we returned to our sponsoring group and
attempted to introduce the data visualization technol­
ogy into the product. A number of obstacles had to be
overcome: The SoftVis program was written in C+ +,
and DEC FUSE had been written almost entirely in C.
The requirements for the next release of DEC FUSE
had been gathered, and the goals were set. Where
exactly would the new data visualization technology fit
into the DEC FUSE product set?

At first we tried to build a class of reusable software
components that DEC FUSE tools could use to incor­
porate the new technology. This would be a set of
Motif widgets that encompassed the techniques pro­
totyped in the SoftVis program. Although progress
was made on building the widgets, no progress was
made incorporating these into any of the DEC FUSE
tools. Their incorporation wou_ld have required major
changes to the user interfaces of these tools, and it was
not clear that the benefits would justify these changes.

In hindsight, we realize that the plug-and-play
design we used for the prototype did not match the
DEC FUSE design of loosely coupled separate tools
that passed data by means of simple messages.
Although the plug-and-play approach made it easy to
add new components into the model, its tightly cou­
pled design made it difficult for us to take parts of that
design and use them in the DEC FUSE product.

The proposal that was finally accepted was to develop
a new, separate tool, called the Data Visualizer, that

~ « ~-- -- ------ - - cv2 --- -- ---- - · - ----- ---~- ---Ja
I - - - - -- - - - --

-~.

"'o!ld.i..t.or

IJ& ll U VO I. ink

~SJ E
'1CD1r•otocv ~
11=.!- 11 ~·····;i···'"""

Figure 8
Demonstration of the C++ Class View

Table 1
Components in the Prototype Design

Component Description

VO Base classes, voObject, and voEditor. Also, voFile class and other classes
derived from voObject. Implements features for selecting, moving,
resizing, and drawing objects.

TOOL Base tool class, voTool, and classes derived from it. Includes volens,
voProbe, voMagTool, and voXRefTool.

VIEW The vBaseView class is derived from voEditor. The three main views
of the tool are then derived from vBaseView. The main views are
vFileView, vFile3dView, and vClassView. This component also contains
executable test programs for each view.

SDM The software data model component contains the language-specific
scanners and parsers. The base class AnnotatedFile is used by text
and binary files.

ZWIN Portable graphics interface. A single class interface for windowing and
drawing functions is provided. Two separate implementations of the
interface exist, one for MS Windows and one for the X Window System.

UTIL Various miscellaneous classes for data structures, file access, etc. It also
contains an interface to some common operating-system-dependent
routines.

Total

Digital Technical Journal

Lines
of Code Classes

5,000 10

2,500 10

2,400 4

4,500 15

11,000 30

3,300 12

28,700 81

Vol. 7 No. 2 1995 27

would build upon our advanced development work.
Building a separate tool had a number of advantages:
We could develop a data visualization tool apart from
the other DEC FUSE tools. We could implement it in
C+ + and thus use some of the design from the
Soft:Vis tool, if not the code. The impact on current
tools was minimal: only small changes to their user
interfaces and an added capability for sending data to
the Data Visualizer were needed. By implementing a
separate tool that receives messages from other tools,
we would be following the style of tool integration
used in the DEC FUSE environment.

Many changes had to be made to the prototype
to move this work from advanced development into
a product. Functions had to be added and removed.
The design was changed in a number of places. Some
changes resulted from the requirement to follow the
tool integration standards for the DEC FUSE product.
Other changes were merely good ideas that came
about once we started the work of integration.

Data Visualizer Tool
Two major features were added to integrate the Data
Visualizer tool into the DEC FUSE programming
environment. First, all the data that composed the
view was coming from outside the tool, unlike the
prototype where data for the view was generated inter­
nally by analyzing source files. Now activities per­
formed in other tools would generate this data and
send it to the Data Visualizer. Second, multiple tools
would be sending data that would need to be merged
within the Data Visualizer into a single view. The
remainder of this section summarizes the features in
the Data Visualizer tool.

The Visualization Dataset File The Visualization DataSet
file is used to pass information to the Data Visualizer
for display. It contains two types of data. Software
component data describes the files, directories,
libraries, and functions to be visualized. Event data
describes the data to be associated with these compo­
nents. The types of events are defined in the file by the
tool creating the file, but they must adhere to one of
the predefined formats . An example of an event is
a memory leak detected by a memory analysis tool. In
the file, the memory analysis tool defines an event type
for memory leaks and then passes as many events of
this type as there are leaks detected. By allowing event
types to be defined in the Visualization DataSet file,
the Data Visualizer can easily support any tool that
creates a file in this format.

Each set of events sent to the Data Visualizer from
a particular tool is logically grouped into an entity
called a DataSet. For example, a single DataSet con­
tains all the results from a single search tool inquiry.
Subsequent searches yield separate DataSets.

28 Digital Technical Journal Vol. 7 No. 2 1995

Condensed File Views In this paper, software com­
ponents are shown in both the condensed file view
introduced in Figure 2 and the 3-D view depicted in
Figure 4. Each of these gives the tool a concise, infor­
mation-dense representation capable of displaying up
to 30,000 lines of source code. Program structure is
revealed by the indentation and color coding.

Event Highlighting, Filtering, and Tracking Events in
the DataSet are highlighted on the screen in a number
of ways. Event types are assigned a color, and that
color is used to color the line of the associated event.
The coloring can occur in the foreground of the line
or the background. Once a user's attention has been
drawn to the line, the user can obtain more informa­
tion about the event at that line from the small
descriptive window that appears whenever a hot cursor
is moved near that line. Figure 9 shows an example
produced by the Data Visualizer tool. In addition,
when the event contains more information than can
be displayed on a single line, for example, when a com­
plete program call stack is logged with the event, a sep­
arate window appears with this information. This is
also shown in Figure 9.

The tool's legend/filter control window shown in
Figure 10 serves the dual purposes of providing a color
key to the events that appear in the view and a mecha -
nism for toggling on/ off the appearance of events of
a particular type. This control window also allows the
user to toggle on/ off the appearance of all the events
in a DataSet. When multiple DataSets are present, they
are placed on top of each other. Each DataSet can be
thought of as a transparency that contains only the
event's highlighted coloring. These transparencies are
stacked on top of each other (the user can control the
ordering) to show all the events together.

The Data Visualizer also provides a mechanism for
keeping track of events that are seen or unseen by the
user. This feature can be used when there are many
events to examine and the user needs assistance in
tracking what work has been finished and what
remains to be done. This information can be saved
between invocations of the tool so that a user can put
this work aside and come back to it at a later date.

Merging Datasets As mentioned earlier, one of the
important features that was added was the ability to
merge the data received from multiple tools into a sin­
gle displayed view. This allows the combination of the
results of two or more tools that normally could not
be merged or even know of each other. For example,
the output from a memory analysis tool that shows
where memory leaks occur and their size can be com­
bined with the output from a search tool that locates
the occurrence of a function name in the program.

Figure 9
Highlighted Event with Call Stack

Figure 10
Event Filtering

The tool uses a number of methods for merging
DataSets, and the type of merge that is performed
depends on the types of events. The simple trans­
parency model described earlier explains how events
can be additively combined to display the sum of all
events. In this model, when two or more events are
associated with the same line in a file, they are treated
as separate events that pertain to that line. For some
event types, however, this is not the case. The tool sup-

ports the combination of same line events in different
ways. For exan1ple, two runs of a performance analysis
tool generate line execution times that can be com­
bined by averaging the execution time values to give
the user a reading on the average performance of the
code. As an alternative, these same two events can be
combined by creating a new event that shows the dif­
ference of the execution times to reveal improvements
that may have occurred between runs.

Digital Technical Journal Vol. 7 No. 2 1995 29

Integration with Other DEC FUSE Tools The Data
VisuaLizer is well integrated with the other tools in the
DEC FUSE programming environment. The profiler,
the heap analyzer, and the search tool all have the abil­
ity to send data to the Data Visualizer at a user's
request. The Data Visualizer makes good use of the
DEC FUSE editors to examine source code in detail.
From within the Data VisuaLizer, the user can double­
click at any point in any of the displayed files to have
that source loaded into their preferred editor. This
capability is shown in Figure 11, where the results
obtained from the search tool are used to create a view
in the Data Visualizer and load files into the editor.

Revised Design
As seen in Table 2, some of the prototype components
were reused in the final product design. We changed
the SDM component internally to handle more data,
but we retained the basic design. We also retained the
design of the UTIL component. Since portability
between MS Windows and the X Window System was
no longer a concern, we redesigned the ZWIN com­
ponent into the WinDraw component. Due to this
change, the size of this component decreased by 7 ,600
Lines of code.

In addition to modifying components, we developed
three new components. The FUSETool component
handles the code common to all the DEC FUSE tools.

Figure 11
Integration with Other DEC FUSE Tools

30 Digital Technical Journal Vol. 7 No. 2 1995

It contains abstract base classes that can be used to
derive new tools. The DVfool component contains the
main program and the bulk of the user interface code.
The View DataSet File (VDSF) component provides
functions for reading and writing these files. It contains
class Libraries for C+ + programs and C routines.

Note that this design maintains some of the plug­
and-play characteristics of the earlier design. Although
the tool component no longer exists, the VO (Visual
Object) and the view components are present and pro­
vide extensibility for future objects and views.

Conclusions

The last section gives an overview of the software design
from advanced development into final product. The
section concludes with some future plans for this work.

Project History
During the process of transferring this work from
advanced development into a product, many impor­
tant features were added to enhance the usefulness
of this technology. The final product retained the abil­
ity to visualize large amounts of data in a condensed
yet comprehensible format; it also included features,
like event tracking and DataSet merging, that made it
a much more useful productivity tool. Figure 12
shows how the design evolved over time. The events

Table 2
Components in the Data Visualizer

Lines
Component Description of Code Classes

FUSETool Base class for building a DEC FUSE tool. Contains code common to all
DEC FUSE tools.

3,000 8

DVTool The Data Visualizer main classes. Contains the main program and most
user interface classes.

2,400 10

VO Contains the svObject base class and it s derivations, t he svFile, the
svDirectory, and the svlibrary.

2,000 5

VIEW Contains the svView class and its derivations, the svFileView and
svFile3dView classes.

3,500 8

SDM Software data model component. Contains the language-specific
scanners and parsers. Defines the program's internal data model.

3,500 15

WinDraw Provides C++ encapsulat ion of graphics drawing functions. 4,1 00 12

VDSF The Visual izationDataSet Format component provides reading and
writing routines for this file format.

1,000 4

UTIL Various miscellaneous classes for data structures, file access, etc. It also
contains an interface to some common operating-system-dependent
routines.

2,000 8

Total

described in this paper occurred over the course of two
years and three months. The advanced development
project began in January 1993, and the final design of
the Data Visualizer tool was complete in March 1995.

In Figure 12, the rectangles represent software
components of the design. A software component is a
collection of C+ + classes that was designed to accom­
plish a single function; these components correspond
to the design components described earlier in this
paper. The oval shapes represent prototypes that were
built from these components. Solid arcs connecting
components with prototypes show which components
were used to build that piece of software. Dotted lines
between components show how components evolved
overtime.

Figure 12 indicates that the work involving 3-D
objects and some of the early prototype components
were never used. It also shows that the condensed file
view component and the ZWIN component did
evolve into the final product. Figure 12 further reveals
that toward the end of 1994 several documents were
produced, but no work was done on the design or any
of the components. During this period of negotiation
and redesign, the advanced development technology
was being converted into a product.

Future Work
We would like to expand the capabilities of the Data
Visualizer tool in several areas.

Many of the capabilities for merging DataSets are
not available for selection by the user. We would like to
extend the tool to have the added flexibility of allow­
ing the user to decide how DataSets should be merged
and how events should be combined. For example, the

21,500 70

tool might show only the intersection of two DataSets,
that is, display only those events that point to a file-line
combination that is common in both sets.

We will also consider other ways of displaying in a
condensed file format and additional types of files to
visualize. The file types might be complete directories
shown as a single, condensed object, or shared and
nonshared libraries as a single object.

We have an ongoing effort to take the output from
existing tools and visualize it in this tool.

Final Remarks

The decision to include the Data Visualizer tool in the
next major release of the DEC FUSE programming
environment was not an easy one to make. Many
important features were being considered, but not
enough resources were available to perform the work.
Prioritized goals were established, and all work items
were evaluated against these goals. The Data
Visualizer tool was included for two important rea­
sons. First, it supported the short-term goals of the
project by adding features that current tools could use
in the upcoming release. Second, it provided long­
term benefits by opening up the DEC FUSE product
to new capabilities in the area of software visualization.
We believe that the presence of both these reasons was
necessary for its inclusion in the DEC FUSE product.
Had it provided support for only the short-term prod­
uct goals, it would have been evaluated against the
many other short-term work proposals and probably
would not have been selected. Had it supported only
the long-term goals, it would have been left out for
lack of ties to the current tools.

Digital Technical Journal Vol. 7 No. 2 1995 31

9. <l!
l. Pi.
 ;;, r,
 [. e.

o
' g

3·
D

 O
B

JE
C

T
S

e.

JA
N

,
FE

B
,

M
A

R
 1

99
3

Fi
gu

re
 1

2
P

ro
je

ct
 H

is
to

ry

C
LA

S
S

 C
U

B
E

S

C
O

N
T

A
IN

E
D

H

IE
R

A
R

C
H

IE
S

C
O

N
D

E
N

S
E

D

F
IL

E
 V

IE
W

Z
W

IN

--

Z
W

IN

3-
D

 F
IL

E
 V

IE
W

-
-
-
-
-
-
-
-
-
-
-
-

3
-D

 F
IL

E
 V

IE
W

C
O

N
D

E
N

S
E

D

F
IL

E
 V

IE
W

... ---

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-~

~
~

-:
_

-:
_

-:
a~

~
-v

i
EW

~C
-L

A~
ss

 ...
...

/
/

/

/
/

/

V
IS

U
A

L
O

B
JE

C
T

S

/
.
.
-
~
~
~
~

..

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

~
:
~

,
,
/
'.

~
-
-
-
-
-
~

l~
W

~I
N

_D
_R

A~
W

~-

/

/
/

,
/

/

V
IS

U
A

L
O

B
JE

C
T

S

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

'

A
P

R
,

M
A

Y
, J

U
N

 1
99

3
JU

L,
 A

U
G

,
S

E
P

 1
99

3
O

C
T

, N
O

V
,

D
E

C
 1

99
3

JA
N

, F
E

B
,

M
A

R
 1

99
4

A
P

R
,

M
A

Y
, J

U
N

 1
99

4
JU

L,
 A

U
G

, S
E

P
 1

99
4

O
C

T
, N

O
V

,
D

E
C

 1
99

4
JA

N
, F

E
B

,
M

A
R

 1
99

5

I
I

I
F

IR
S

T
 R

E
P

O
R

T

S
E

C
O

N
D

 R
E

P
O

R
T

T

H
IR

D
 R

E
P

O
R

T

I
F

IN
A

L
R

E
P

O
R

T

I
D

V
T

 P
R

O
P

O
S

A
L

I
D

V
T

 F
U

N
C

T
IO

N
A

L
S

P
E

C
IF

IC
A

T
IO

N

D
V

T
D

E
S

IG
N

S

P
E

C
IF

IC
A

T
IO

N

Acknowledgments

I would like to thank a number of people who sup­
ported me during this effort: John Ellenberger for his
continuing guidance throughout the entire process;
Mike Candella for the early work we did together in
the Advanced Development Group; Glenn Lupton for
his help in deciding how this prototype would fit into
the DEC FUSE product; the DEC FUSE management
team for supporting and encouraging this work; and
finally, everyone on the DEC FUSE development
team.

References

1. R. Hart and G. Lupton, "DEC FUSE: Building a Graph­
ical Software Development Environment from UNIX
Tools," Digital Technical journal, vol. 7, no. 2 (1995,
this issue): 5-19.

2. S. Eick, "SeeSoft-A Tool for Visualizing Line Oriented
Software Statistics," IEEE Transactions on Software
Engineering, vol. 18, no. 11 (1992): 957-968.

3. S. Eick, "Graphically Displaying Text," Journal of
Computational and Graphical Statistics, vol. 3, no. 2
(1994): 127-142.

4. S. Eick, M. Nelson, and J. Schmidt, "Graphical Analysis
of Computer Log Files," Communications of the ACM,
vol. 27, no. 12 (1994): 50-56.

5. K. Perlin and D. Fox, "PAD-An Alternative Approach
to the Computer Interface," SIGGRAPH 93 Proceed­
ings (1993): 57-64.

Biography

Donald A. Zaremba
The project leader of the FUSE Data Visualization team,
Don Zaremba is a principal software engineer in Digital's
Unix Development Environment Group. He was respon­
sible for designing and implementing the Data Visualizer
tool. Since joining Digital in 1980, Don has contributed to
the DEC Test Manager project and has worked on software
development tools and fault analysis tools. He received a
B.A. in mathematics from the State University of New York
and an M.S. in software engineering from Wang Institute.

Digital Technical Journal Vol. 7 No. 2 1995 33

Multivendor Integration
Architecture: Standards,
Compliance Testing,
and Applications

The Multivendor Integration Architecture

(MIA) is a user-driven initiative that addresses

the practical application of open systems

software standards to business requirements.

This paper provides historical background

and context for this standardization effort

and describes Digital's contributions to the

effort, particularly in the area of distributed

transaction processing. Digital complied

with the MIA specifications, integrated com­

pliant products into a complete platform, and

delivered a large application on the platform.

34 Digital Technical Journal Vol. 7 No. 2 1995

Eric A. Newcomer

In today's competitive environment, an enterprise's
computer systems help determine its success or failure.
The need for large enterprises to separately manage
applications on different computer vendors' platforms
distracts the enterprises from performing their main
business functions and adds to their operations cost.
Corporate mergers and acquisitions often compound
the problem.

While the business need for high-quality computer
systems has never been greater, established computer
users find themselves in a poor position due to the
tremendous burden of their legacy systems. Newer
companies almost automatically gain a competitive
advantage from their more flexible, state-of-the-art
computer systems.

The availability of open, standards-based systems
enables critical business systems to be built on a com­
mon platform that can be purchased from multiple
vendors at competitive prices. This offers everyone the
same level of basic functionality with which to build
new systems. These systems must be capable of
integrating components from multiple vendors into
a single, large application.

This paper provides background information
for user-driven standardization efforts, with a focus
on Nippon Telegraph and Telephone's (NTT's)
Multivendor Integration Architecture (MIA). The
paper discusses the MIA's principles, including
three multivendor interfaces, NTT's major types
of computer processing, specification development,
and Digital's approach to addressing integration prob­
lems related to transaction processing (TP). Also dis­
cussed are implementation and systems integration
issues and the delivery process. Digital's contributions
to the open systems software integration effort are
described. Digital was instrumental in defining the
MIA specifications for TP, and it developed the first
MIA-compliant application.

User-driven Standardization Efforts

About 25 years ago, NTT, one of the world's largest
corporations, developed its first computing system pro­
curement specifications. These detailed specifications

included designs for special hardware and operating sys­
tems to meet the enterprise's demanding requirements.

The procurement specifications focused on systems
of sufficient capacity and robustness with which to
automate the fundamental business operations of a
large telephone company. They did not require porta­
bility or interoperability. NTT presented the specifica­
tions to Hitachi, Fujitsu, and NEC and ordered
hardware and software that conformed. In addition
to the Japanese suppliers, IBM also responded to the
procurement request and became an NTT supplier.

Following the successful implementation of the
original specifications, NTT developed applications on
top of the various vendors' platforms. Like many other
large enterprises, NTT created separate teams to tackle
the vendors' systems individually.

In 1988, NTT established the MIA consortium to
resolve the inefficient practice of having separate teams
develop and manage applications on different vendors'
platforms. The consortium was charged with address­
ing the associated problems that interfere with the way
these applications communicate, share code, share
data, or move to a new technology base.

The MIA initiative was conducted as a Japanese
industrial collaborative research project with the goal of
resolving the problems of multivendor application
environments. NTT invited computer vendors to join
the project by issuing a public subscription announce­
ment and then selected participants from among the
respondents. Fujitsu, Hitachi, NEC, and IBM were the
first consortium members. Digital was also selected
because ofits expertise in networking and client-server
computing. The MIA initiative set out not only to
resolve the problems with a multivendor environment
but also to move NTT's computing systems forward
by incorporating distributed processing functionality.

One of NTT's goals was to eliminate all visible
differences among the vendors' platforms. "Visible"
meant perceptible to (1) the humans who interact
with the computers as end users, in application devel­
opment and deployment, in system administration,
and in network configuration and management, and
(2) the protocols for communication between the dif­
ferent vendors' computers. A guiding principle of the
MIA initiative was that the systems with which people
interact should appear identical, regardless of the man­
ufacturer who created the hardware or software being
used or the purpose for which it was being used.

As a member of the MIA consortium, Digital
helped develop detailed specifications that met NTT's
requirements for open systems software components
that any vendor could implement. In particular,
Digital developed new multivendor specifications for
distributed TP, an area of computing for which stan­
dards did not exist.

The results of the MIA project were published in
1991 as 11 volumes of detailed procurement specifica­
tions that describe a complete application develop­
ment platform for large-scale systems. 1 Applications
created using software that conforms to the specifica­
tions can be developed and implemented on any
vendor's computer.

The concepts behind the MIA specifications were
put to the test at a public demonstration at Interop
Tokyo in July 1994. After considerable debugging and
testing, the concepts were proven to work. 2 The next
measure of success is whether sufficient demand and
cost savings exist to induce vendors to market con -
forming products, in particular, off-the-shelf products.

Digital's involvement in specifying solutions to user­
driven open systems software requirements continues
at the Service Providers' Integrated Requirements for
Information Technology (SPIRIT) consortium, which
is sponsored by the Network Management Forum.
SPIRIT members include the world's largest telecom­
munications service providers and computer vendors.
The MIA specifications were submitted as base input
documents for SPIRIT, along with other documents
from AT&T, Bellcore, BT, and ETIS (a consortium
that represents 27 European postal, telegraph, and
telephone administrations). 3

It is unknown whether this user-driven approach to
standardization will succeed and meet the important
goals of portability, interoperability, and multivendor
procurement.4 Nonetheless, users and vendors are
learning some important lessons as a result of the
users' strong efforts in this area.

MIA Principles

When NTT turned its attention toward creating the
MIA procurement standards, it began to attack the
problem of multivendorization, which NTT believes is
strategic to its future business. "Because a computer
system must be able to provide as broad a range of busi­
ness services as possible, it is desirable to construct such
a computer system flexibly enough to include different
computers, each of which covers the area of business in
which the vendor's model is the most powerful."5

Early in the MIA project, NTT established the basic
requirement that solutions be based on open systems
standards where possible. However, since the corpora­
tion's existing complex legacy of applications was criti­
cal to business operations, the new standards had to
allow for the same degree of functionality and robust­
ness as the software for the existing platforms. Also, if
it was to replace its current applications with applica­
tions that took advantage of commodity technology,
NTT needed a way to migrate to the new while inter­
operating with the old. "Based on the assumption that

Digital Technical Journal Vol. 7 No. 2 1995 35

a variety of hardware and operating systems of vendor­
specific design is widely accepted in the general­
purpose computer market, MIA specifications must
be a feasible extension of, and coexist with, vendor­
specific architectures. "5

The MIA effectively grouped related functionality
to match the existing requirements for business appli­
cations and added support for distributed client-server
computing. Using the resulting architectural frame­
work, the MIA consortium matched existing standards
to NTT's needs, identified missing functionality, and
created new multivendor specifications to achieve the
additional functionality.

Three Interfaces
At the start of the MIA project, NTT identified what
it considered the three most important issues of
multivendorization:

1. Duplicated development of application programs

2. Difficulties in resource sharing

3. Differences in operating methods5

For each of these problems, NTT identified solutions
in terms of standard, i.e., multivendor, interfaces,
as follows:

• Application portability using standard application
programming interfaces

• Interoperability using standard communication
protocols

• Common user interface using a windowing style
guide

Figure 1 illustrates the basic architecture as specified
by the MIA consortium. The configuration incorpo­
rates three systems-the end user, the departmental
computer, and the host computer- and includes three
types of interfaces-human user interface (HUI),
application programming interface (API), and systems
interconnection interface (Sil). The figure represents
the fundamental goal of MIA conformance for each

END USER WORKSTATION

APPLICATION

API

HUI CONTROL SYSTEM
SOFTWARE

KEY:

HUI HUMAN USER INTERFACE
API APPLICATION PROGRAMMING INTERFACE
Sii SYSTEMS INTERCONNECTION INTERFACE

Figure 1
MIA System Configuration

36 Digital Technical Journal Vol. 7 No. 2 1995

vendor, i.e., to offer conforming interfaces and proto­
cols that allow NTT to purchase the same level of
compatible software functionality from multiple ven­
dors and create new applications that are inherently
distributable, portable, and interoperable. Another
reason NTT focused on these three interfaces was that
if the MIA specifications contained too many low-level
interfaces, the vendor-specific strengths would be
removed and the specifications would not support the
NTT strategy ofmultivendorization.

Through the standardization of the three interfaces,
NTT anticipated that an end user would be able to
use any display device without knowing the vendor
(via the HUI), a programmer would be able to write
a program that would run equally well on all platforms
(via the API), and a computer from one vendor could
be connected to a computer from any other vendor
using common systems interconnection protocols
(via the Sii).

Additional types of interfaces and protocols that
were outside the scope of the MIA specifications are
being addressed by the SPIRIT consortium. For exam­
ple, SPIRIT has taken on the task of standardizing the
system management interfaces and protocols. At the
start of the MIA initiative, NTT decided that the best
use of time and resources would be to standardize the
HUI, the API, and the Sii.

Major Types of Computer Processing
NTT categorized its computing activity into four types:
real-time processing, transaction processing, interac­
tive processing, and batch processing. Figure 2 illus­
trates the processing types and interfaces addressed
by the MIA specifications. Note that the specifications
did not address real-time processing issues.

NTT included the area ofTP because the company
had a huge investment in developing and running TP
systems and because its business relied on TP systems
such as billing, inventory control, and directory assis­
tance. The opportunity for return on investment was
therefore high for this critical application area. Data

Sii --
DEPARTMENTAL
COMPUTER

APPLICATION

API

SYSTEM
SOFTWARE

HOST

I APPLICATION

Sii t API --
SYSTEM
SOFTWARE

PROCESSING TYPE
INTERFACE

TRANSACTION INTERACTIVE BATCH

I COBOL I PROGRAMMING
c

LANGUAGE

I I FORTRAN

I
I

DATABASE
I SOL I ACCESS

/
SYSTEM USER STRUCTURED INTERFACE INTERACTIVE ACCESS TRANSACTION

PROCESSING DEFINITION
LANGUAGE COMMUNICATIONS

ACCESS (STDL)

Figure 2
MIA Processing Types and Interfaces

integrity, remote access, and system reliability are the
key characteristics ofTP that needed to be supported
through standards compliance to fully realize the cost
savings potential of the MIA.

In the area ofTP, no international standards existed
for the two most significant interface areas NTT had
identified as candidates for multivendorization: the API
and the SIL This deficiency created one of the biggest
problems that the MIA consortium had to resolve and
later gave rise to a large systems integration and appli­
cation delivery challenge with respect to the MIA.

NTT required the MIA TP specifications to support
remote, distributed transactions. MIA TP comprised
specifications for multiple programming languages
and network protocols and therefore became the
widest integration point that had to be achieved.

Developing the Specifications
As the first step in specifying solutions to the prob­
lems that it put forth to the MIA consortium, NTT
produced user requirements. The user requirements
evolved over the course of the project as new questions
arose that needed clarification from NTT's busi­
ness sector. Meeting user requirements was the final
verification of the specification output at the end of
the project. In addition, the consortium had to
develop specifications that could be implemented
by any vendor.

For the area of TP, NTT asked each vendor in the
MIA consortium to submit a proposal for a new multi­
vendor specification and selected Digital's Application
Control and Management System (ACMS) TP moni­
tor proposal as the base on which to build.6 ATP
monitor is a software component that provides func­
tions required for TP applications, such as transaction
coordination, display management, and performance
improvements.

ENVIRONMENT
(IPE)

NTT selected the ACMS proposal as the base of the
new multivendor standard for two reasons: the ACMS
TP monitor included a high-level TP control language
called the Task Definition Language (TDL), which
could be made portable more easily than a lower level
API, and the monitor used a remote procedure call
(RPC) communications model, which is easier to pro­
gram than a peer-to-peer communications model.
That is, the ACMS technology was determined to pro­
vide the best solution to NTT's requirements for mul­
tivendor portability and distributed processing.

The problems to be resolved by the consortium
vendors, consistent with the principles of multiven­
dorization set by NTT, were

• Portability

• Interoperability

• Common user access

Historically, portability has best been achieved
among vendor platforms by using a high-level lan­
guage such as C or COBOL. This principle was true
for the MIA, except that the MIA consortium found
it necessary to produce profiles of programming lan­
guage standards. The C and COBOL standards are
not sufficient to achieve portability because so many of
the specification rules are subject to a variety of inter­
pretations among vendors, and architectural language
limits are not defined.7,s

An MIA profile of a programming language stan­
dard references the standard specification and modifies
it to improve portability. In the case of the MIA
COBOL profile, national text support is mandatory
for portability of international language features. The
X/Open Company adopted this work as the basis for
their COBOL national language support and accord­
ingly published the X/Open COBOL specification.9

Digital Technical Journal Vol. 7 No. 2 1995 37

38

The MIA COBOL profile also deletes sections of the
ANSI COBOL specification that contain optional syn­
tax that a vendor may choose to implement. Finally,
the MIA COBOL profile sets common language limits
such as the maximum length of a text string and the
number of parameters supported on a procedure call.
The resulting profile allows programmers to create
source programs that are portable to any vendor who
conforms to the MIA specifications.

The MIA programming language profiles were
required because of the way vendor-driven standards
are typically written. The goal of vendor-driven speci­
fications work is to allow the widest possible inter­
pretation of architecturally significant issues such as
integer precision, file system naming rules, and mem­
ory manipulation, and thereby to allow the widest
possible implementation and adoption.

The MIA C profile adds rules for defining the con­
version of a signed integer into an integer of smaller or
equal size and for defining the results of dividing by a
negative integer. Neither of these semantics is defined
in the ANSI specification because they tend to vary
according to vendor architecture. The MIA C profile
also defines wide-character handling in the print and
file manipulation functions so that programs support­
ing international language character sets would be
portable.

Efforts to address these portability issues, such as
the X/Open XPG portability specifications, usually
describe or catalogue the problems so that the pro­
grammer can avoid them. 10 MIA places the burden of
ensuring application source code portability on the
vendor instead of on the programmer.

No language standard existed for the MIA processing
area ofTP, however. Although some protocols existed
for various degrees ofinteroperability, none existed for
complete distributed transaction coordination.

Solving the TP Problem
Perhaps the most significant aspect of the MIA effort is
its approach to resolving problems associated with dis­
tributed TP. Typically, TP applications are very large
and involve strict requirements for performance and
availability. TP applications implement the daily opera­
tions of a business. Some of the better-known exam­
ples include travel reservation systems and automatic
teller machines. The term "transaction" is derived
from the term "business transaction," which means an
exchange of goods or money between two individuals
or businesses, or some combination thereof.

Transactions, when automated, take on additional
properties because computer systems are subject to
failure in ways that manual systems are not. Computer
systems are electrical, and electrical failures can dam­
age data storage media. Computer systems are net­
worked, and communication failures can interrupt the

Digital Technical Journal Vol. 7 No. 2 1995

completion of a business transaction such as a travel
reservation that requires the participation of multiple
computers at multiple sites.

A computer transaction uses logging to ensure that
business data is captured reliably or not at all. Perhaps
most important, a computer transaction ensures that
business computer systems recover quickly from any
type offailure and begin processing data again without
manual intervention.

Because of the highly demanding nature of TP, ven­
dor implementations of TP system software depend
on the features of specific hardware and operating sys­
tem architectures for the purposes of performance
optimization and fast recovery. The mechanisms for
accomplishing fast recovery are complex and difficult
to implement on a multiple-user system. Although
business data is shared, operations on the data must be
isolated so that one operation does not overwrite the
effects of another operation. When two simultaneous
requests arrive to update the same bank account, for
example, the ending balance may be incorrect if the
two updates are not properly serialized. Such errors
can occur unless transactions are used to isolate and
serialize the updates. Failures of media or communica­
tions can result in inconsistent data.11

These difficulties and others have deterred stan­
dards bodies from addressing the area ofTP. Conse­
quently, the market is dominated by proprietary
solutions. Users are liable to be locked in to a particu­
lar vendor and to have difficulty achieving the benefits
of competition.

The MIA TP specifications were designed to address
these problems and to counter the shortcomings of
the traditional vendor-driven software standardization
process. MIA TP eliminates vendor-specific differences
by adding a high-level language layer on top of propri­
etary TP monitors and by adding a common protocol
at the lower layers for interoperation. 11 The only
restriction that MIA places on the underlying software
or platform is that it must be sufficient for implement­
ing the specified TP functionality. Otherwise, vendor
and user investment in existing systems is preserved.

The MIA consortium based the MIA TP protocol
standard on the International Standards Organization/
Open Systems Interconnection (ISO/OSI) TP proto­
col, and on the Open Software Foundation's (OSF's)
Distributed Computing Environment (DCE) RPC,
both of which were newly released. 12 To balance the
risk of adopting a new technology, the MIA consor­
tium chose IBM's Systems Network Architecture
(SNA) Logical Unit 6.2 (LU 6.2) as a short-term alter­
native solution.

The MIA transactional communication specification
combined DCE RPC as the data transport and OSI TP
for the two-phase commit protocol. The resulting
protocol was called the Remote Task Invocation (RTI)

protocol, which was subsequently adopted by
X/Open as the basis of their TxRPC specification. 13,14

Figure 3 shows the resulting MIA TP model.
To solve the portability problem, the consortium

began with Digital's proposal based on the ACMS TP
monitor's TDL and developed a new Structured Task
Definition Language (STDL), which is a modular,
block-structured language very similar to TDL. 15 The
consortium eliminated vendor-specific syntax, ensured
that STDL's features met NTT's user requirements,
and conducted implementation studies to verify that
the new language could be implemented on top of
each vendor's existing proprietary TP monitors. 16

Figure 4 illustrates the layering of the new MIA TP
language on the MIA TP protocol.

Because the MIA was based on standards as much as
possible, the MIA TP work also had to be largely based
on standards. Therefore, the STDL specification was
integrated with the standard languages C, COBOL,
and SQL to provide complete, portable application
functionality. 17 The consortium mapped the data types

Figure 3

DISPLAY
DEVICE

MIA Transaction Processing Model

PRESENTATION

C, COBOL

among the four languages and specified interlanguage
call semantics.

STDL procedures can call and be called by C and
COBOL procedures. STDL implements the TP­
specific functionality that standard C and COBOL
lack. Examples of this functionality are beginning and
ending a transaction, handling transaction exceptions,
automatically restarting transactions, and coordinat­
ing multiple transactional resource managers (i.e.,
databases, files, and queues) locally or across remote
TP systems in a network.

Adopting STDL as a new language represented a
practical way to add TP-specific functionality in a mul­
tivendor environment while allowing the C, COBOL,
and SQL languages to be used as specified in inter­
national standards. This approach did, however, result
in additional integration problems. It was necessary
to ensure that STDL procedures worked with C and
COBOL procedures as well as with SQL and within
the entire TP environment, which encompassed
a large part of a platform's capabilities. An additional

TRANSACTION
FLOW
CONTROL

STDL TASK
DEFINITION

PROCESSING

C, COBOL,
SQL

RESOURCES

STDL { I APPLICATION PROGRAMMING INTERFACE

RTl j

DCE RPC DATA DCE RPC DATA
TRANSFER PROTOCOLS TRANSFER PROTOCOLS
OSITP LU 6.2

PRESENTATION PRESENTATION NETWORK ADDRESSABLE
UNIT SERVICES

SESSION SESSION
DATA FLOW CONTROL

TRANSPORT TRANSPORT
TRANSMISSION CONTROL

RFC 1006

TCP . .

OSI TCP/IP SNA

Figure4
MIA Transaction Processing API and Protocol

Digital Technical Journal Vol. 7 No. 2 1995 39

benefit results from the use of a compiler to check
STDL syntax and semantics, thus reducing the
instance of execution errors.

Implementing the MIA Specifications

Because the architecture was defined at the interface
level, the implementation and system integration prob­
lem for vendors entailed identifying the components
with conforming interfaces and assembling them on
the platform that met the MIA specifications. Although
focusing on three interfaces was practical with respect
to completing the 11 volumes of the MIA specifica­
tions in approximately 18 months, such a scope left
uncovered many areas of technology that the vendors
intending to implement MIA would have to provide
for themselves. System and network management,
computer-aided software engineering (CASE) tools,
and testing and debugging tools are examples of items
that would have to be integrated with the components
that complied with the specifications.

Table l lists the primary areas of the MIA specifica­
tions and the types of standards included in each
area. 7,s,12,14,1s,17-24

The MIA specifications' practical approach to
resolving the problems of portability and interoper­
ability include carefully documenting where the ven­
dor differences continued to exist among the
implementations of the standards. "In general, the
amount of information transferable between develop­
ment and execution environments under the original

Table 1
Areas of MIA Specifications and Associated Standards

Areas of MIA
Specifications

API

Standards

MIA procurement specifications is less than that trans­
ferable when both environments are provided by the
same vendor." 1 Some vendor-specific coding, for
example, including file names in source code pro­
grams, could not be standardized by MIA because of
fundamental vendor differences. Instances of such
unresolvable problems were carefully documented.

The amount of portability gained by following the
MIA specifications was significant, however, as com­
pared to the amount that would be gained without
using the specifications. The following example of
defining the integer size illustrates the benefit derived
from having the MIA C specification.

A C program written using a vendor's compiler that
interprets a long integer data type as having 16 bits will
not work correctly when ported to another vendor's
compiler that interprets the same data type as having
32 bits (which is an acceptable interpretation accord­
ing to the ANSI/ISO C specification). Typical solu­
tions to this problem have been to document the
problem and instruct programmers to recode when
porting their programs, or to have programmers write
their original programs so as to avoid the problem.

The MIA C specification resolved this problem and
similar problems in that it represents agreement
among the MIA consortium vendors on a common
interpretation of the ANSI/ISO C specification.
Because the MIA specifications are procurement spec­
ifications, vendors must conform to the MIA C specifi­
cation when responding to MIA-compliant requests
for procurement (RFPs) from NTT.

COBOL
FORTRAN
c

ISO 1989:1985, ANSI X3.23-1985
150/IEC 1539-1991, ANSI X3.198-1992
ANSI/ISO 9899

STOL
SQL

HUI
OSF/Motif

511

IBM's Common User Access
OPEN LOOK

MIA TP protocol
OSI TP
MHS X.400
FTAM
TCP/IP, FTP, SMTP,
TELNET, SNMP, UDP, CMIP
X.25
ISDN
Ethernet

40 Digital Technical Journal

MIA specification adopted by SPIRIT and submitted to X/Open
ISO 9075-1: 1992

OSF/Motif Style Guide, Release 1.2
No standard established
No standard established

MIA RTI specification adopted by X/Open as the TxRPC specification
150/IEC 10026-1:1992
150/IEC 10021-1:1990, CCITT X.400-89
ISO 8571-1:1988
Internet protocol suite

150/IEC 8208:1990, CCITT X.25-89
CCITT I Series
150/IEC 8802-3: 1993, IEEE 802.3-93

Vol. 7 No. 2 1995

Implications for Systems Integration and
Application Delivery

NTT awarded Digital the first contract to deliver an
MIA-compliant application. NTT selected its List
Maintenance System (LMS), the application that man­
ages the telephone number database used to produce
telephone directories for all ofJapan.2 One purpose of
the LMS was to sufficiently test the specifications. The
LMS procurement involved 60 software products
from a variety of Digital engineering groups. The
components had to be modified to meet the specifica­
tions and then integrated, tested, characterized, and
delivered on the Open VMS operating system. The tar­
get configuration of three VAX 10000-630 systems in
a VAX.cluster configuration supported more than 10
client sites throughout Japan. The contract includes
software, hardware, and services. Figure 5 illustrates
the LMS application.

Of the 60 software components in the LMS plat­
form delivery, 27 were required for conformance to
the MIA specifications. Although the remaining 33
components addressed application areas outside the
scope of the MIA specifications, these products had to
be integrated with the MIA-compliant products,
tested, characterized, and verified, thus making the
integration effort more complicated.

Even though NTT realized some benefits from the
standardized products that it procured according to
the MIA specifications, it faced a dual systems integra­
tion problem. Delivery required complying with the
specifications and also complying with the detailed
terms of the specific RFP for the LMS.

CLIENT

CLIENT

CLIENT

Figure 6 illustrates the system verification and char­
acterization process carried out by Digital's Systems
Application Integration and Engineering (SAIE)
group. This was the key effort in responding to the
MIA-based procurement request.

Digital established a special-purpose production
systems program office (PSPO) to oversee the entire
process of delivering the MIA-compliant RFP. This
program office was modeled after the successful Alpha
program office.25

A production systems board of directors repre­
sented the various engineering departments whose
component products were included in the LMS. The
board's function was to resolve priority and budget
conflicts among the various departments. This group
met monthly.

A special project forum was established with repre­
sentatives of the individual products and engineers
who could resolve technical problems and fix bugs
that surfaced in the integration and testing activities.
This group met weekly.

The SAIE group provided a "sandbox" for compo­
nent product groups to install and test their products
on the specific version of the Open VMS operating sys­
tem on which the components were to be delivered.
This process was repeated for operating system
upgrades and was made more difficult because initially
a special version of the Open VMS system was required
to fully meet the terms of the RFP, in particular, to
provide Japanese language support.

After the components were installed in the
Open VMS operating system, SAIE engineers verified
that the components worked together by running test

VAX 10000
MODEL 630

CLIENT

CLIENT

VAX 10000 VAX 10000
MODEL 630 i----------t MODEL 630

Figure 5
List Maintenance System

SPECIFICATIONS:

3 VAX 10000-630 SYSTEMS IN A CLUSTER
11 CLIENT SITES
60 SOFTWARE COMPONENTS
STOL TP MONITOR
500-GB DATA REQUIREMENTS
MIA-COMPLIANT PLATFORM

Digital Technical Journal Vol. 7 No. 2 1995 41

NTT MIA/SPIRIT
SPECIFICATIONS

PRODUCT
REQUIREMENTS

PRODUCT
MANAGEMENT

ENGINEERING

Figure 6

CONFORMANCE
TESTING

PRODUCT
DELIVERY

SYSTEM
VERIFICATION
AND
CHARACTERIZATION

Digital's MIA Systems Integration Process

applications and characterized the overall performance
of the platform as configured. Any problems that arose
during this testing and characterization work were
routed back to the component product groups by
means of the special project forum. Finally, the pro­
gram office coordinated the delivery to the local
Digital office in Japan and to the customer (NTT).

The integration effort for the LMS uncovered more
than 170 bugs, of which 25 were major obstacles. If
Digital had not undertaken the integration effort, the
problems would have shown up at the customer site
and jeopardized the contract. Of the bugs, nearly 50
percent were directly related to integrating the various
components on the common platform.

For example, one bug involved a fatal clash between
versions of a threading package. Two LMS component
products had incorporated incompatible versions of
the same threading package without considering the
potential problems that might arise if the two sepa­
rately developed components were integrated and
tested on the same platform.

Another problem resulted from the upgrade from
the VAX C language compiler to the DEC C compiler,
which was to comply with the new ANSI standard for
the C language. While upgrading its C compiler to
comply with the ANSI C standard, Digital altered the
semantics of the associated run-time library. Most new
software components are coded using C, so nearly
every component on the platform was impacted.

During the 18-month period that the program
office, the board of directors, and the project forum
supported the LMS effort, 56 releases and patches
were provided for LMS integrated products. Each

42 Digital Technical Journal Vol. 7 No. 2 1995

NTT BUSINESS
REQUIREMENTS

~-------•~• PRODUCT LIST t--- -~

DIGITAL
•-------- ----+----. CONSULTING

SERVICES

PLATFORM
DELIVERY

PRODUCT
LOCALIZATION

INTEGRATED
DELIVERY CUSTOMER

time a new version of the operating system or a major
component was released, the integration, testing, and
characterization process had to be repeated.

The major lesson derived from the experience with
MIA was the type of project and program manage­
ment required to deliver a complete platform for
enterprise-level computing on a large scale. Addi­
tionally, Digital engineers learned to work with other
vendors to ensure the compatibility ofDigital's imple­
mentation of the MIA specifications with the other
vendors' implementations.

Digital remains very interested in pursuing oppor­
tunities to resolve enterprise-wide computing plat­
forms for its large customers. The most significant
problem to be solved is the systems integration prob­
lem. The MIA effort proves that products from differ­
ent engineering groups within Digital need to be
installed, tested, verified, and characterized before
being delivered to the customer for use in a large appli­
cation. Systems integrators can anticipate that the inte­
gration problems discovered during the LMS project
will be compounded in an effort that involves software
components from multiple vendors.

Large enterprise-level applications such as the LMS
cannot be mass produced. The number of these large
applications is small, and the needs of individual enter­
prises can vary significantly, even within a single indus­
try segment such as telecommunications. Digital's
experience with the SPIRIT consortium follow-on
to MIA has demonstrated this.

It is therefore important to preserve the learnings
about how the MIA platform was put together and, of
lesser importance, to be able to exactly replicate the

platform delivered to NTT for the LMS. Digital needs
to be able to work with large customers such as NTT
in the future and to complete large projects such as the
LMS, backed by an internal systems integration and
delivery organization.

Indeed, the systems integration problem grows
more complex in a world in which products from mul­
tiple vendors are routinely required to work together
in providing the solution to a large application's
requirements. Customers tend to look more and more
toward contracting for the technical expertise needed
to solve these problems.

Delivery

Delivering an MIA-compliant business solution
involves several levels ofintegration, each with its asso­
ciated problems. The first level is integrating the
required functionality in specifications developed by
independent standards bodies. The next is combining
standards-compliant component products on a single
operating system and hardware platform, while pre­
serving the required interfaces and behaviors. Third
is incorporating the additional products and features
necessary to develop a specific application on the
standards-compliant platform. Fourth is ensuring that
compliant platforms from multiple vendors can work
together. The integrated product set must then pass
conformance testing and verification. When applica -
tion development begins, additional integration issues
arise that affect the overall process.

During Digital's implementation of the MIA
specifications and the subsequent integration activity
to combine the components on one platform, sev­
eral problems were discovered in the specifications.
These problems were reported to NTT and directed
to one of the specification working groups, which
had continued under the auspices of the consortium
for this purpose. For example, after testing interoper­
ability using the RTI protocol, the mapping of com­
munication errors to STOL exception codes was found
to be incorrect.

Ultimately, not all the goals of the MIA initiative
were met. During the implementation and delivery
effort, it became apparent that specifying a stand­
ardized HUI would not be possible. The use of a win­
dowing system with a common look and feel and
common principles of operation (e.g., a mouse, icons,
and pull-down menus) was sufficient for end users,
and the industry players were too widely split to
endorse a common solution. Specifying a standard for
the size and shape of an icon or for how to entitle
entries on a pull-down menu became unnecessary as
windowing systems converged on common design
principles of operation.

STDL Maintenance and Conformance
Because STOL was a newly specified language,
it required considerable maintenance. NTT care­
fully monitored the vendor implementations of STOL
to ensure that all the MIA vendors interpreted the
specification in the same way. NTT procured several
STOL-based applications from different vendors.
Consequently, vendors were able to experience the
inevitable implementation problems in realistic situa­
tions. If NTT determined that a problem was or might
be related to the specification, it encouraged the ven -
dor to submit a problem report to the appropriate
MIA consortium working group.

NTT defined conformance testing for MIA, includ­
ing STOL. Each vendor had to submit its completed
platform for testing. Wherever possible, the MIA
conformance tests were based on existing industry
tests created by organizations such as the National
Institute of Standards and Technology (NIST) and the
X/Open Company. After passing each basic test, for
example, proving conformance to ANSI C, a vendor
had to pass an additional test for the "MIA delta," i.e.,
for the part of the specification that was different for
MIA. In general, this difference consisted of Japanese
language character support and more restrictive inter­
pretations of a specification's optional or undefined
parts. In the case of STOL, however, a wholly new
suite of tests was needed to confirm conformance to
the basic specification.

It became clear during this stage of the project that
problems existed with the way in which the solutions
had been specified. For example, the specifications
for new TP technology had used existing standards
specifications as models. In its eagerness to accomplish
the task, the MIA consortium employed traditional
methods of compromise and ambiguous wording to
obtain agreement among the participating vendors.
Not until the conformance tests began did the prob­
lem become apparent.

The conformance tests for STDL were divided
into syntax verification tests and semantic tests. Con -
formance testing for any language is a tremendous
undertaking because there are so many potential com­
binations of language syntax and semantics to take
into account. The first problem for NTT was to
reduce the number of tests to a practical amount,
while keeping the results of the tests meaningful.

Initially, NTT took the approach of translating
the specification's syntax rules into syntax tests and the
general rules into semantic tests. The syntax tests were
designed on the assumption that a vendor's STOL
compiler would produce an error message for each
violation of a syntax rule. The semantic tests assumed
that a vendor's run-time system would produce an
error message for each violation of a general rule. The

Digital Technical Journal Vol. 7 No. 2 1995 43

specification had not been written using the same
assumptions, however, and many of the syntax and
general rules for the language elements contained
a high degree of ambiguity concerning whether the
rules had to be enforced at compile time or at run time.

Although this problem was never resolved for the
STDL conformance tests, the tests were success­
ful after they were redesigned to be more flexible
in the method of catching errors. NTT was able to

carefully monitor vendor implementations for consis­
tency and compatibility.

MIA Applications
The intention of the MIA was to provide compliant
software as the base, or heart, of a new application.
MIA specifications standardize the most important
interfaces and, consequently, enable users to realize
the benefit oflower procurement costs, lower training
costs, etc.

The MIA initiative was different from usual stan­
dards activities in that the implementations of the
specifications were monitored by the same authority
that caused the creation of the specifications in the first
place. NTT bought systems based on its specifications,
and worked with the vendors to maintain the specifica­
tions to correct problems that arose during implemen­
tation and application development.

For Digital, complying with the specifications
meant implementing software to meet the terms and
conditions of a large contract based on the specifica -
tions. Of course, the specifications covered only a por­
tion of the overall platform and consequently did not
address many conditions of the contract, such as CASE
tools and system management.

Even though Digital's contract was for a single­
vendor application, the source code had to be portable
in case NTT decided to substitute another vendor's
hardware for Digital's. Also, the new MIA-compliant
LMS application had to fulfill at least the same func­
tions as the old application. This application was there­
fore a good test of the MIA specifications; it would
show how well the user requirements had actually
been represented and met.

For Digital, the effort required delivering, for the
first time, an integrated set of standards-compliant
products for a large-scale business application. Digital
had to combine components from a wide variety of
internal product groups, make them all work together,
and then upgrade or enhance the products to meet the
MIA-specific requirements. In general, this entailed
ensuring that our products were adapted to the
Japanese market, i.e., that they supported the Japanese
language character sets. In addition, the MIA required
the integration of other new open technology, such as
the RPC and other elements ofOSF's DCE, DECmcc,
and the new, ANSI-compliant version of DEC C.

44 Digital Technical Journal Vol. 7 No. 2 1995

Conclusions

Following the success of MIA, the MIA specifications
became base input documents for the SPIRIT consor­
tium, at which the user-driven standardization effort
continues. Also input to SPIRIT were documents
from AT&T, BT, Bellcore, and ETIS. The consortium
model reduces vendor disagreements and yields a
solution based on business requirements rather than
on choice of vendor.

The fundamental requirement of the MIA was for
a common computing platform for NTT's new enter­
prise applications that could be multisourced. This
fundamental requirement is shared by the SPIRIT
members, who represent the world's largest telecom­
munications corporations.

MIA and SPIRIT are seeking to lower costs in what
has traditionally been the highest margin, lowest vol­
ume area of computing. The ultimate goal of a single,
integrated platform that can be purchased off the shelf
from a significant number of vendors does not appear
to be completely attainable. Partial gains are more
likely, as in the case in which suppliers integrate more or
less dynamically the components of the required plat­
form or platforms. Ultimately, the industry will be
changed by the MIA and SPIRIT initiatives, although
probably not in the exact way it was originally envi­
sioned. For instance, since the MIA initiative began, the
vertically integrated computer manufacturer, i.e., the
manufacturer who supplies all the hardware and soft­
ware components of the platform, has nearly vanished.

In the users' ideal vision, the software components
conforming to the specifications in the MIA and
SPIRIT platforms are off-the-shelf products that fit
together easily. This goal has not proved to be the case
in Digital's experience. Special product source code
modifications were often required, and such modi­
fications created integration challenges for Digital.
For example, a special version of the DCE interface
definition language (IDL) compiler was necessary to
support the MIA. The new version mapped Kanji
character set encoding to the ISO ASN.1/BER stan­
dard, whereas DCE RPC normally uses Numeric Data
Representation (NDR) encoding.26,27

A paradox in the user-driven standardization effort
derives from the fact that the MIA and SPIRIT
platforms are intended for large projects, which are by
definition limited in number. Therefore, creating off­
the-shelf versions may be difficult due to limited plat­
form volumes based on demand. For a vendor such as
Digital, the effort appears to be best handled as a long­
term partnership with large customers, supplying base
technology and components to be integrated with
those of other vendors. Integration becomes a contin­
ual and dynamic process. The key problem becomes
systems integration, and a key question becomes who

among the multiple vendors involved in supplying
components will perform the integration.

The systems integration issue, therefore, is more
important than ever before. As more and more ven­
dors, pursuing their own core competencies, develop
standards-based components, the greater the problem
of component integration for customers who seek
large-scale application solutions becomes. Enterprise­
level platforms of the future are less likely to have com­
ponents that are supplied entirely by a single vendor,
and large applications, even standards-based applica­
tions, will continue to require platform customiza­
tions to meet the demanding requirements of these
large users.

Acknowledgments

Thanks to Roger Baust, Bob Bell, Peter Conklin, Bo
Erden, George Gajnak, Bob Howell, Bob West, and
Steve Young for their help in delivering the MIA
and for leaving a legacy oflearnings.

References

1. Multivendor Integration Architecture, Division 1,
Overview, Technical Requirements (Tokyo, Japan:
Nippon Telegraph and Telephone Corporation, NTT
Data Communications Systems Corporation, IBM
Japan, Ltd., Digital Equipment Corporation Japan,
NEC Corporation, Hitachi, Ltd ., and Fujitsu Limited,
1991).

2. Network Management Forum Proceedings, SPIRIT
Tracks, General Meeting, Marne La Valee, France
(October 1994).

3. SPIRIT Platform Blueprint, SPIRJT 2.0, vol. 1
(Reading, U.K.: X/Open Company Ltd., Network
Management Forum, 1994).

4 . P. Conklin and E. Newcomer, "The Keys to the Infor­
mation Highway," Future of Software, Chapter 3,
D. Leebaert, ed. (Cambridge, Mass.: MIT Press, 1995).

5. Multivendor Integration Architecture, Concepts and
Design Philosophy(Tokyo, Japan: Nippon Telegraph
and Telephone and NTT Data Communications
Systems Corporation, 1989).

6. R. Baafi, J. Carrie, W. Drury, and 0 . Wiesler, "ACMSxp
Open Distributed Transaction Processing," Digital
Technicaljournal, vol. 7, no. 1 (1995): 34- 42.

7. Information Systems-Programming Ltlnguage­
C, ANSI/ISO 9899 (Revision and redesignation of
ANSI X.3159-1989) (New York: American National
Standards Institute/International Organization for
Standardization, 1989).

8. Programming Ltlnguages-COBOL, ISO 1989:1985
(Endorsement of ANSI X3.23-1985) (Geneva: Inter­
national Organization for Standardization, 1985).

9 . X!Open CAE Specification, Cl92 ISBN 1-872630-
09-X (Reading, U.K.: X/Open Company Ltd., 1991).

10. X/Open Portability Guide (XPG]), ISBN 0-13-
685868-6 (superseded by X/Open C, C214, ISBN
1-872630-39-1, COBOL dropped in latest version)
(Reading, U.K.: X/Open Company Ltd., 1989).

11. J. Gray and A. Reuter, Transaction Processing
Concepts and Techniques (San Mateo, Calif.: Mor­
gan Kaufmann, 1993).

12. Information Technology-Open Systems Intercon­
nection-Distributed Transaction Processing-Part
1: OSI 1P Model, ISO/IEC 10026-1 :1992 (Geneva:
International Organization for Standardization/
International Electrotechnical Commission, 1992).

13. Multivendor Integration Architecture, Vol. 8, Div. 3,
Systems Interconnection Interface Specifications,
Part 4, Remote Task Invocation Service Definition
and Protocol Specification (Tokyo, Japan: Nippon
Telegraph and Telephone Corporation, 1991).

14. X!Gpen Preliminary Specification, Distributed
Transaction Processing: The TxRPC Specification
(Reading, U.K.: X/Open Company Ltd., 1993).

15. P. Bernstein, P. Gyllstrom, and T. Wimberg, "STDL­
A Portable Language for Transaction Processing," Pro­
ceedings of the Nineteenth International Conference
on Very wrge Databases, Dublin, Ireland (1993).

16. E. Newcomer, "Pioneering Distributed Transaction
Management," Bulletin of the Technical Committee
on Data Engineering, vol. 17, no. 1 (New York: IEEE
Computer Society, March 1994).

17. Information Technology-Database Ltlnguages­
SQL, ISO/IEC 9075:1992 (Geneva: International
Organization for Standardization/ International Elec­
trotechnical Commission, 1992).

18. Information Technology-Programming Lan­
guages-FORTRAN-lixtended, ISO/IEC 1539:
1991 (Geneva: International Organization for
Standardization/International Electrotechnical Com­
mission, 1991) and ANSI X3.198-1992 (New York:
American National Standards Institute, 1992).

19. OSF/Motif Style Guide, version l.2 (Cambridge,
Mass.: Open Software Foundation, 1992).

20. Message Handling System and Service Overview­
Data Communications Networks and Message
Handling Systems, Recommendation X.400-89
(Geneva: International Telecommunications Union,
Cornice Consultatiflnternationale de Te!egraphique et
Telephonique [CCITT], 1989).

21. Information Processing Systems-Open Systems
Interconnection-File Transfer, Access, and Man­
agement, ISO 8571-1:1988 (Geneva: International
Organization for Standardization, 1988).

22. Interface between Data Terminal Equipment and
Data Circuit-terminating Equipment for Terminals

Digital Technical Journal Vol. 7 No. 2 1995 45

46

Operating in the Packet Mode and Connected to
Public Data Networks by Dedicated Circuits­
Data Communication Networks: Seroices and
Facilities, Interfaces, Recommendation X.25-89
(Geneva: International Telecommunications Union,
Comite Consultatiflnternationale de Telegraphique et
Telephonique [CCITI], 1989).

23. ISDN, /-Series Recommendations (Geneva: Interna­
tional Telecommunications Union, Comite Consul­
tatiflnternationale de Telegraphique et Telephonique
[CCITI], 1989).

24. Information Technology-Local and Metropolitan
Area Networks-Part 3: Carrier Sense Multiple
Access with Collision Detection (CSMA!CD) Access
Method and Physical Layer Specifications, ISO /IEC
8802-3:1993 (Geneva: International Organization for
Standardization/International Electrotechnical Com­
mission, 1993) and IEEE 802.3-93 (New York: The
Institute of Electrical and Electronics Engineers,
1993).

25. P. Conklin, "Enrollment Management, Managing
the Alpha AXP Program," Digital Technical Journal,
vol. 4, no. 4 (Special Issue 1992): 193-205.

26. Information Technology-Open Systems Intercon­
nection-Specification of Basic Encoding Rules for
Abstract Syntax Notation One (ASN.1), ISO/IEC
8825:1990 (Geneva: International Organization for
Standardization/International Electrotechnical Com­
mission, 1990).

27. Information Processing-Representation of Numeri­
cal Values in Character Strings for Information
Interchange, ISO 6093:1985 (Geneva: International
Organization for Standardization, 1985).

Biography

Eric A. Newcomer
Eric Newcomer is a member of the Corporate Standards
Group at Digital Equipment Corporation. As Digital's
primary representative to the SPIRIT consortium in the
United Kingdom and former representative to the MIA
consortium in Japan, he works with representatives from
other computer companies to create specifications for
open systems software under the sponsorship oflarge
information technology users. Eric joined Digital in 1984.
He has 17 years of experience in database and transaction
processing software. He holds a B.A. in American Studies
from Antioch University.

Digital Technical Journal Vol. 7 No. 2 1995

Integrating Applications
with Digital's
Framework-based
Environment

Digital has developed the Framework-based

Environment to address the integration

and interoperability needs of manufacturing

and other business systems. FBE consists of

a method for integrating existing applications,

frameworks of industry models, and tools that

use Digital's CORBA-compliant ObjectBroker

integration software to manage the exchange

of information between cooperating servers

on the network. Using these products, Digital

Consulting and its partner systems integrators

provide FBE application integration services

to large organizations.

I
James R. Kirkley
William G. Nichols

The increasing quality and cost-effectiveness of com­
puter application software has revolutionized the way
organizations share and manage their information.
Rather than develop custom information systems with
their internal programming staffs, many businesses
now purchase software available in standard "off-the­
shelf" packages. A well-chosen standard package can
save development time and cost. Before it can be use­
ful, however, it must be integrated with other new
software and with the mature (legacy) applications
that hold current business data and processes.

Application integration can be a substantial effort.
If business changes are not anticipated during the
planning phase, an integrated system can be inflex­
ible. The existing applications, both legacy and new,
rarely meet current requirements. An ad hoc inte­
gration that starts with the existing applications'
interfaces will seldom be flexible in ways that accom -
modate future business changes without widespread
program changes.

An integration derived from a clear model of
current and expected business processes provides
a basis for growth and flexible change. Digital has
developed the Framework-based Environment (FBE),
consisting of reference models, methodologies, and
a toolkit. Together, these products provide flexiple
systems integration.

In this paper, we provide a brief overview of FBE
and characterize the projects that can benefit from
using it. We describe flexible application integration
and the benefits of model-driven integration. Finally,
we discuss our experience using FBE.

Overview of the Framework-based Environment

FBE consists of the following components.

• MethodF is an object-oriented methodology based
on two systems integration methodologies recog­
nized in the industry: Jacobson's use case analysis
and Rumbaugh's Object Modeling Technique. 1,2,3,4

These methodologies are explained in the section
Model-driven Integration with FBE.

Digital Technical Journal Vol. 7 No. 2 1995 47

• ObjectPlus is a modeling tool from Protosoft,
Inc. that has been tailored for MethodF with an
FBE-specific code generator. In addition to the
methodologies described above, the tool has exten­
sions that provide the ability to create an imple­
mentation model. The implementation model
describes how objects are distributed among the
various applications.

• ObjectBroker, Digital's object-oriented integration
software product, is compliant with the Common
Object Request Broker Architecture (CORBA)
specification from the Object Management Group
(OMG).5,6

• A suite of supporting libraries and tools includes
reference models and associated code libraries that
have been abstracted from previous projects and
made available for reuse. The reference models
and associated code libraries are organized into
frameworks of industry-oriented business objects,
as given in Table 1.

The tools include two important components:
(1) The FBE Design Center is an extensible work­
bench architecture that supports the analysis,
design, and implementation of CORBA-based
distributed object systems. (2) The FBE Adapter
Development System, which fits into the FBE
Design Center, automatically generates CORBA­
or ObjectBroker-compliant code and the necessary
files to compile and link the code into platform­
specific executables.

Integration Projects Appropriate for FBE

Any integration project automates previously manual
processes involving existing applications. FBE and its
flexible approach to systems integration allow a busi­
ness to replace or add component applications effi­
ciently as business conditions change.

FBE provides the most benefits when many differ­
ent kinds of well-defined business transactions occur
between a mixture of commercial and custom applica­
tions. Not all projects can benefit from FBE or its style
of development. For example, if the primary task is to
integrate data sources for decision support, a database
integrator or a data warehouse may solve the problem

Table 1
Frameworks of Industry-oriented Business Objects

quickly. If a company is not trying to gain an advan­
tage by automating accounting more cheaply or
completely than its competition, an off-the-shelf
accounting package may be the right choice. At the
other extreme, if the task to be automated is com­
pletely new, there may be no appropriate packages
available, even as components of an integrated solu­
tion. New development would also be preferable if
high-performance or real-time operation were more
important than the flexibility to plug in existing,
unmodified applications.

As an example of an appropriate FBE integration,
consider a manufacturing operation automating
a manual procedure that collects orders from an order
processing system, schedules production runs, and
passes the schedule to the manufacturing floor. In this
example, the company wants to obtain a competitive
advantage by dynamically rescheduling production
based on new customer orders, at once reducing
inventory costs, and improving delivery performance.
This is more than a decision support system: the
integration requires that applications interact with
each other. Although finding a turnkey package that
can operate the entire factory is unlikely, factory
scheduling applications are readily available. Buying
one would be more cost-effective than writing one
in-house. The project would then need to integrate
the legacy order processing system with the newly
purchased scheduling application. The order process­
ing system is too important to the company to risk
modifying it significantly at the same time as introduc­
ing new automation.

After the integration project has been completed,
though, the order processing system might be made
more cost-effective by moving its function from
a mainframe application developed in-house to a stan­
dard client-server product. Perhaps business condi­
tions will have changed and the order processing
system needs to be augmented so customers can sub­
mit orders directly by electronic data interchange
(EDI). The project manager might decide to purchase
an EDI processor to augment or replace the existing
order processing system.

Later, after the manual processes have been auto­
mated on the factory floor, another project could
extend the integration to send the schedule directly

Base Business Models Manufacturing Business Models Industry Business Models

Activity management

Production management

Resource management

48 Digital Technical Journal

Order management

Schedule management

Product management

Process management

Quality management

Vol. 7 No. 2 1995

Semiconductor

Oil and gas

Pharmaceutica l

Batch process

Banking and f inance

to factory cell controllers. Then, if a more efficient
scheduling package becomes available, it could be sub­
stituted for the older one. The modular design ofFBE
would minimize the programming changes required
for this substitution and give the organization the flex­
ibility to use the most cost-effective solutions.

Model-driven Integration with FBE

An integration project needs a clear process and a
means to avoid being biased by the assumptions built
into its component applications. We use object model­
ing to plan and document an integrated system in
a uniform manner. The abstraction inherent in object
modeling hides detail. This makes the model mean­
ingful and allows modeler and client alike to ensure
that the model matches the intended business
processes. The abstraction also helps to separate the
interface from the implementation. The interface
describes what is to be done; the implementation
describes bow. The what of a business process changes
comparatively little over time: a factory takes orders
and schedules production runs, a stockbroker trades
stock, a mail-order business ships packages. The how
changes dramatically from year to year.

In the following sections, we trace the steps of
a typical systems integration project as conducted by
Digital Consulting or by Digital's partner systems
integrators. We show how a modeler might use the
FBE method, tools, and frameworks to provide appli­
cation integration services.

Object Modeling
Before we start object modeling, we ensure that
a business process model, or its equivalent, is com­
pleted. Sometimes a business process model results
from a formal business process reengineering. More
often it comes from a less formal understanding of
existing processes and required changes. In both cases,
the modeler will cooperate closely with someone
who understands the process well. As always, the
better we understand our goals, the more likely we
are to achieve them.

With this knowledge, we can start FBE's object­
oriented analysis and design process, known as
MethodF. MethodF begins with Jacobson's use case
analysis method. A use case traces a chain of events ini­
tiated by a single person (or other entity), acting in
a single role, as he, she, or it works through some task.
For example, we might trace what happens when
a customer calls an order desk through the clerk's
responses, catalog checks, inventory checks, order
placement, picking list generation, and finally, package
shipment. As we do this, we note all the objects and
the uses that the actors make of them. Then we follow
another use case. Perhaps this time the customer asks

for a product that is out of stock. We follow the discus­
sions about back-ordering and price guarantees that
will make our business attractive to this customer.
After analyzing many use cases, we have a list of busi­
ness analysis objects (objects that describe require­
ments in business terms) and a list of the functions and
attributes of each object.

We then compare the analysis objects with the busi­
ness design objects in FBE's reference model library.
Here, we may well find similar objects that use differ­
ent names and detailed constructs to describe the same
functions and attributes. The next step in MethodF
is to merge these design objects into the model. By
using objects from the reference library, we take
advantage of previous modeling experience built into
the reference models and prepare to reuse code associ­
ated with the reference models as well.

We use the ObjectPlus modeling tool to capture
use cases in diagrams according to Jacobson's con­
ventions. We prefer the Rumbaugh Object Modeling
Technique (OMT) notation, however, for describ­
ing the business objects. OMT diagrams, with FBE
extensions, define objects and the interfaces between
them in enough detail that a tool can use them to gen­
erate interface definitions that can be compiled. The
ObjectPlus tool also captures OMT diagrams.

A direct connection exists from the use case models,
through the business models, to the design models,
and to the code. We use the term model-driven to
describe the FBE approach, because necessary changes
are first made to the models and new code is then gen­
erated from the models.

Generating Interface Code
Once we have completed the design objects, we
use FBE tools that work with the ObjectPlus model­
ing tool to generate COREA Interface Definition
Language (IDL) from the design object definitions.6

We chose COREA because it is an emerging industry
standard designed to build distributed object-oriented
systems that include existing non--0bject-oriented appli­
cations. A COREA implementation, such as Digital's
ObjectBroker product, generates interface stub rou­
tines that marshal data to be sent to an object, whether
the object is on the same computer or across a network.
For example, the stubs convert integers sent from big­
endian to little-endian computers. A COREA imple­
mentation also provides an object request broker:
a run-time library that routes requests to objects in a
distributed system. This allows applications running on
different systems to communicate without the need for
applications to know which systems will be involved.

We use the IDL interface definitions to guide pro­
grammers as they develop adapters between this
object interface and the existing application's inter­
face. For example, an existing program might take its

Digital Technical Journal Vol. 7 No. 2 1995 49

input as a formatted file and deliver its output in
another type of file. Since the rest of the integration
should not know about these files or their formats, we
write an adapter that translates between these files and
the methods and attributes of the objects defined
in our model. Perhaps an alternative application uses
a remote procedure call for 1/0 instead of the files our
existing application uses. When we replace the existing
application, we write new adapters using the same
object interfaces. As a result, the rest of the integration
needs no changes. Writing these adapters is not neces­
sarily easy; application integration requires substantial
effort, whether the integrator uses FBE or not. By
restricting the changes to a single module, FBE mini­
mizes the development and testing effort required to
replace component applications.

We usually write the adapters in C, rather than C + +
or a pure object-oriented language, because much of
their interaction is with the applications being
adapted. The existing applications were seldom built
with object-oriented principles. In many cases, useful
tools such as database translation programs and
"screen scrapers" are available to communicate with
applications that expect terminal 1/0. These tools also
were seldom built for object-oriented languages.

In some cases, an adapter needs to be so large that it
is a small application in itself. In these cases, we might
use an object-oriented language for the bulk of the
code. A factory scheduler might generate production
tasks based on a customer order, but the cell con­
trollers in the factory might expect only a single task
for each type of part produced. The adapter needs to
combine the tasks for a given part type from several
orders before it sends a message to the cell controller.
As the cell controller reports progress on each task, the
adapter allocates completed parts to the original cus­
tomer orders. The cell controller simply makes parts,
the factory scheduler simply fulfills orders, and the
adapter bridges the gap between them.

Reference Models
As we gain experience working with integrators, we
abstract and merge the models they build into refer­
ence models for the various application domains, such
as discrete manufacturing, process manufacturing, and
financial services. We collect and tailor the reference
models to comply with accepted industry standards
such as ISO STEP in the manufacturing domain and
ISA SP88 in the process industry domain.7,8 These
reference models allow FBE modelers to build on pre­
vious experience. Even if they cannot use the refer­
ence model in its entirety, they can use it as a guide
to save time and to check their own model for com­
pleteness. We also collect the adapters for frequently
integrated applications into a library. Later, when we
reuse a reference model, we will have corresponding

50 Digital Technical Journal Vol. 7 No. 2 1995

adapters that can also be reused, usually after modifica­
tion. It is important to note that anyone-Digital,
the systems integrators (Digital's partners), and, most
importantly, the customer-can build their own refer­
ence models.

From Applications to Objects: Experience Gained

Design always involves trade-offs between competing
requirements. The trade-offs in an integration project
are somewhat different from those in a new develop­
ment project: an integration project must take existing
applications into account while trying to implement
a business model faithfully.

In this section, we discuss trade-offs due to the
change from a functional view to an object view, then
explore three familiar design topics from the point of
view of an FBE integration project: top-down versus
bottom-up design, improving reliability, and improv­
ing performance.

Overcoming the Legacy of Functional Decomposition
The challenge of object-oriented application integra­
tion is to make application programs, which are
designed around individual business functions, sup­
port the unified business object model.

Figure 1 illustrates a sample mapping of business
objects to application functions. It shows the logical
objects of customer, product, and shipment, with their
data structures and methods mapped to the several dif­
ferent application functions of transportation, ware­
housing, and billing. As the integration project maps
business objects to application functions, it must

• Establish routings of requests for individual attrib­
utes or operations of an object to the applications
that contain them

• Provide mechanisms to maintain consistency
when multiple applications require the same data

BUSINESS
OBJECTS

APPLICATION
FUNCTIONS

TRANSPORTATION
CUSTOMER t--------- .. • LOCATION

• SHIPPER

Figure 1

WAREHOUSING
• AVAILABILITY
• MATERIAL

BILLING
• PRICE
• COST

Sample Mapping of Business Objects to Application
Functions

Split Instances When we develop the business object
model, we may discover that a single logical object may
be hosted (its underlying data structures and methods
implemented) by more than one physical application.
For example, a product object's price attribute is
hosted by a billing application, and its availability
attribute is hosted by a warehousing application. When
we integrate these applications according to a business
object model, we achieve a single logical object whose
data and methods are stored in different physical appli­
cations and often in different locations. This is called
a split instance.

When a client application requests the product's avail­
ability, the object request broker sends the request to
the warehousing application and forwards a request
for the price to the billing application. The requester
neither knows nor cares where the information is held.

The notion of the split instance is a central principle
ofFBE. It allows us to model the business logically and
independently of the way applications may implement
business functions. The split instance is not without its
problems: Many times the same information is stored
in more than one application. In the above example,
it is likely that both the manufacturing and the billing
application maintain the product name attribute.
Many other attributes are potentially duplicated as
well. When an attribute of a type exists in two or more
applications, the designer is faced with two questions:

1. When a get attribute operation is requested, to
which application should it be delivered?

2. When a set attribute operation is requested, is it
necessary to update only one or more than one
application's data?

We cannot answer these questions in a general way,
but we can highlight some points to keep in mind
when addressing them.

• Get attribute. Can one application be considered
the primary source for data about an object?
Before any integration was in place, legacy systems
provided a formal or informal process that
updated secondary information sources from a pri­
mary source. The requirements statement is a good
reference here. The designer should discuss this
with the business domain experts to understand
the way data is maintained and distributed. The
primary application is the best source for such
data. As a backup, secondary applications could
serve as sources for the information. The designer
should consider the effect of stale information on
the operation of the business.

• Set attribute. When attributes are set, should all
applications be updated simultaneously? Usually a
category ofinfrequently changed "reference data"
is accessible. The reference data is more often
added to than changed. Changes to this kind of

data essentially ripple through the company.
Sometimes it is the slow communication of these
changes throughout the organization that drives
the requirements for integration (the push-pull
phenomenon).

When we must guarantee simultaneous changes to
data on multiple heterogeneous computing platforms
or between applications that hide their data, we would
prefer a two-phase commit transaction between dis­
similar databases. Unfortunately, nothing is commer­
cially available today (June 199 5) that works on an
arbitrary combination of databases and applications.
Several products support a limited set of third-party
databases and applications. If these products cannot
address the need, and our applications require multi­
ple application transactions, we may have to write the
two-phase commit code.

As an alternative, we may be able to use a workflow
to manage the update of several applications. An oper­
ation can be defined that is implemented as a workflow
script. The workflow script can, in turn, perform the
update (through additional method invocations) on
the data stored in a number of different applications.
This is probably closer to the customer's method and
would be easily automated. A workflow capable of
doing the update must have the capability of compen­
sating for failure to update all applications. A workflow
update is different from two-phase commit, because
the data in the applications may be inconsistent for
a brief time.

To our knowledge, Digital's ObjectBroker integra­
tion software is currently the only COREA implemen­
tation that is able to route requests for a single object
to multiple servers.

Bypassing Legacy Applications Sometimes it is
tempting to bypass a legacy application and access its
database directly from an adapter. The application may
have a particularly difficult interface, or the required
function and data may be a small part of a monolith.
For simple applications, bypassing may be appropriate,
but for most we must either use the application
through its intended interface or replace it entirely.

The use of a legacy system to change data or per­
form a function can produce unwanted side effects
that are not appropriate in the context of the inte­
grated system. For example, most legacy applications
maintain the referential integrity of their data through
code. Invoking the database directly to add, update, or
delete data risks violating this integrity.

Bypassing the application is also dangerous because
changes may occur when the application is revised.
Typically, application developers feel free to change
the underlying data structures as long as the function­
ality at the user interface or formal program interface
is maintained.

Digital Technical Journal Vol. 7 No. 2 1995 51

Top-down versus Bottom-up Design

Tension always exists between the goals of top-down
and bottom-up designs. The FBE emphasizes top­
down modeling; it starts with the analysis of use cases
and then defines business objects independently of any
existing applications. This keeps the design focused on
the business problem and enhances the flexibility of
our integration. We find that the most common mod­
eling error is to accept an existing application's
"myopic world view" without considering the overall
system's needs. Usually, existing applications are a poor
source for business object models, since many no
longer represent desired business processes.

If we are not conscious of bottom-up demands on
our design, however, we can design a system that
requires needlessly large, complex, or slow adapters
between the existing applications and our ideal model.
Though we have no easy guidelines for balancing the
top-down and bottom-up demands, some issues are
encountered repeatedly.

The problem of partial implementations provides
a simple example of this balancing requirement.
Projects that use top-down modeling to derive their
object models sometimes encounter a dilemma: attrib­
utes and operations appear in the model that no appli­
cation in the network can implement. It is reasonable,
for example, for the object model of a factory floor
conveyor to define a stop operation, but the device
control software installed in the factory may not pro­
vide an equivalent function.

When implementers cannot support a model, they
have two choices:

1. Modify the model to reflect the capabilities of the
environment.

2. Implement only the part of the model that is feasible.

The first option appears to be the easier choice, but
it limits the reusability of models and diminishes the
effectiveness of the top-down approach. A top-down
model of the conveyor should capture the business
users' expectations; implementations may or may not
meet these expectations. A partial implementation
simply returns an error whenever a user accesses an
attribute or invokes an operation that is not supported.

The partial implementation of a conveyor can still
be substituted for a complete one, though the partial
one always fails when a user sends a stop request. The
system must be prepared to receive an error response
from an operation invocation at any time; other errors
could occur during the stop operation's processing,
even if the implementation were complete.

A partial implementation opens the way for subse­
quent versions of the software to support the feature. It
provides a placeholder for an attribute or an operation
and preserves the integrity of the object's specification.

52 Digital Technical Journal Vol. 7 No. 2 1995

Improving Reliability

Finding bugs in an integrated system is often difficult.
Even if we assume that the component applications
work perfectly, bugs can arise from mismatches
between the components. This commonly comes
about because of inconsistent business rules between
applications: what is allowed in one application may be
illegal in another.

An adapter in an integrated system must be a fire­
wall; that is, it must limit the spread of errors and mis­
understandings from its application. We code pre­
and post-condition checks around calls to component
applications. This is helpful if we code for the right
conditions and leave the checks in the production
code. The use case analysis and business object
descriptions sometimes suggest conditions to test,
but this process is informal. We find that we need
more run-time checks in adapter code than in individ­
ual applications.

We also need a way to isolate a suspect application
from the integrated system so we can see how the inte­
grated system behaves without it. FBE's Adapter
Development System can generate simple stubs from
an object's OMG IDL. The tool generates a client stub
that makes appropriate requests and a server stub that
echoes its input. The stubs are simple enough to be
checked at a desktop device to ensure that they work
as expected. The stubs are also useful as templates for
starting new adapters.

Improving Performance
Without planning and careful monitoring, a large sys­
tem of dissimilar applications can be slower than the
performance of the component applications would
suggest. We have used standard approaches to
improve and monitor performance. It is worth noting
here how these approaches influence FBE design and
development.

Performance Requirements in Large Systems There
is often a trade-off between performance and flexi­
bility. Our integrated system would be ideally flexible
ifit made separate calls through an adapter to a com­
ponent application for every datum in every differ­
ent circumstance. We could change storage and
behavior almost with abandon. On the other hand,
if each adapter were an entire rewrite of its underly­
ing application, we could, in principle, store and
manipulate each datum in the most efficient way for
all accesses.

Although FBE is designed for systems that require
flexibility at the cost of some performance degrada­
tion, we must be careful to deliver satisfactory perfor­
mance. In the following subsections, we discuss the
trade-offs in caching and object granularity.

Caching Applications frequently generate large quan­
tities of output in response to a command, rather than
the fine-grained results that are appropriate to object­
oriented requests. It is often appropriate for an adapter
to return only a small part of the data it receives from
an application interaction and cache the rest for future
requests. Applications that produce data in batches
typically do not modify their state for long intervals, so
the cached values remain valid long enough to be use­
ful. Of course, there must be a means to invalidate the
cache. In some cases a timer will suffice; in other cases
an event, such as a new batch run, must be extended to
invalidate the cache.

Adapter caches greatly improve performance and
can give the adapter developer the freedom to orga­
nize and present the data in a form appropriate to the
object model.

Object Granularity Designing objects that work well
in a distributed system is important to ensure flexibil­
ity. Parts of a distributed system frequently move from
one computer to another. We should not expect our
objects or their underlying component applications
to remain in one particular place.

In a pure object-oriented system, for example the
Smalltalk language, everything is an object. In distrib­
uted systems, operations on objects potentially involve
interaction across a network and incur network over­
head. Therefore, it is not practical for everything to be
an object. Some business objects will be implemented
as CO REA objects (those that have object references)
and other business objects will be implemented as
user-defined types (passed by value). This defines the
granularity of the object model. The decision to
implement a business object as a COREA object or as
a user-defined type involves balancing flexibility with
system performance.

There are no hard and fast rules that determine the
most appropriate granularity for an object model.
Decisions need to be based on users' interactions with
the system and on the way applications use the objects
they share or exchange with each other. Several mat­
ters should be taken into account when determining
the model's granularity.

As an illustration, let us consider a client application
that needs to display a collection of customer names in

a list box. The client sends a request for these names to
an object instance called Customer List; the client and
object happen to be on different computers.

In Case 1, the customer is a user-defined type repre­
sented as a C structure: it is passed by value and has
no object reference. Customer attributes are stored
in a COREA-defined structure that the client code
must access directly. In this case, the display of cus­
tomer names may be accomplished in a single request,
e.g., getCustomerNames(aCustomerList). All cus­
tomer names would be passed by value. Figure 2
depicts this scenario.

In Case 2, the customer is a true object: it has
an object reference and a set of attributes. The client
calls the server separately for each attribute; thus
the client is less dependent on the server's storage
structure or any changes to that structure as it is
modified in the future. In this case, a sequence of
customer object references would be passed, e.g.,
getCustomers(aCustomerList). The client application
then must request getName(aCustomer) for every
customer object in the sequence. (See Figure 3.)

Clearly, the first case is more efficient in terms of
network utilization; only one request is required. The
second case requires 1 + n requests, where n is the
number of customers. The first case is also more effi­
cient at the server. Case 1 requires one database query
to construct the name list, whereas Case 2 requires
a separate database query for each customer.

At first glance, Case 1 would appear to be the easy
winner in terms of efficiency and effective utilization
of the server. This outcome, however, is not always
true. Let us assume that the client application allows
the user to choose from the list of customers and then
displays attributes address and accountStatus for the
selected customer. Here, we are faced with a choice
between performance and flexibility:

1. The client could make another request that would
return all information about a customer in a struc­
ture. Then the client application could sort
through this information and display the required
data. The performance is good: one request and
database query provided all the data the client
could want. Unless the volume of data is very large,
sending the data in one message yields better

1--g_e_1c_u_s1_o_m_e_rN_a_m_es_(_aC_u_s_1o_m_e_rL_is_1)--1..il Customerlist ,_t===:1
I OBJECT L__)

Figure 2

CLIENT
APPLICATION

Case 1: User-defined Type

{
...---------{ CUSTOMER NAMES

--- PASSED BY VALUE

Digital Technical Journal Vol. 7 No. 2 1995 53

Customerlist LJ
OBJECT -

--------....

getCustomers(aCustomerlist)

APPLICATION
{§------------1 § ~~if::,s

t---g_e_tN_a_m_e_(a_c_us_to_m_e_r_) __ ----o~ CUSTOMER
OBJECT

getName(aCustomer) CUSTOMER ,__ ___________ __, OBJECT

Figure 3
Case 2: True Object

performance than sending multiple messages for a
subset of the data. On the other hand, this approach
is inflexible: if the server changes the structure it uses
to represent this data, all client software that reads
the structure must change as well.

2. The client could make separate requests for each
field. If the server returns an opaque object refer­
ence along with each customer's name, then the
client can send a request asking for the specific
fields it needs. The performance is worse than in
Case 1, of course, because of the extra network traf­
fic and message parsing. However, this approach is
flexible. Since the client never looks in the object
reference (it is opaque), we preserve the server's
flexibility to use any data needed to retrieve the
appropriate record. As long as the server continues
to support the fields the client requires, the server
finds them in its own database no matter how the
storage structures have changed.

To ensure that the system provides the maximum
flexibility, the designer should consider the following
guidelines.

• Start with a fine-grained approach for modeling.

• Implement the approach using fine-grained
methods.

• Change to a coarser grain if performance is an issue.

Summary and Future Directions

Developing integrated applications is not always a
straightforward process. The applications being inte­
grated are seldom an exact fit to their assigned roles in
an integrated system. If they were, we would probably
be able to purchase the integration from one or more
of the vendors who had engineered the fit.

Integrated systems built with FBE are clearly docu -
mented with Jacobson use case diagrams, Rumbaugh

54 Digital Technical Journal Vol. 7 No. 2 1995

OMT object diagrams, and OMG IDL. The existing
applications are used indirectly through object inter­
faces and adapters, so the rest of the system can
address them as if they were the ideal business objects
modeled in the OMT diagrams. We call them business
objects to emphasize their distinction from objects
defined or implied by the existing applications.

The adapters are constrained by the interfaces that
FBE generates automatically from the business object
representations, so they do not stray from the models
that document their behavior. Adapters are not always
easy to write; they can be quite difficult, depending
on the existing application's fit with its intended use.
By restricting this awkward code to object adapters,
we keep the overall integration modular. Thus we give
an organization the flexibility to use the most cost­
effective systems as business conditions change. We
build on our experience by collecting reference mod­
els that help us to reuse the best models and adapters.

FBE continues to evolve rapidly, with improvements
in the reference models, the tools, and the support
for adapter writers. For example, developers have
asked for better integration between the Jacobson
and Rumbaugh models, between the modeling tools
and the code generation tools, and for reliable queu­
ing and workflow as well as CORBA communication
between objects. In response to these requests, we
now provide better integration between the analysis,
design, and implementation portions of the FBE life
cycle as well as code generation for trace messages and
support for management and debugging of the run­
time system. We would like to organize the reference
libraries into pairs of object models and correspond­
ing modules (applications and adapters) that can be
assembled to build integrated applications, thus creat­
ing truly reusable business components.

We will be pursuing these and other improvements
as our experience grows with integrated, distributed
applications.

References

1. The Framework Based Environment: MethodF, Ver­
sion 3.0, FEE Engineering (Maynard, Mass.: Digital
Equipment Corporation, Order No. AA-QC50A-TH,
1994).

2. I. Jacobson et al., Object-Oriented Software Engineer­
ing: A Use Case Driven Approach, 4th ed. (Woking­
ham, England: Addison-Wesley Inc., 1992).

3. I. Jacobson et al., The Object Advantage, Business
Process Reengineering with Object Technology, 1st ed.
(Wokingham, England: Addison-Wesley Inc., 1995).

4. J. Rumbaugh et al., Object-Oriented Modeling and
Design (Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1991).

5. ObjectBroker: Overview and Glossary, Version 1.0
(Maynard, Mass.: Digital Equipment Corporation,
OrderNo.AA-Q9KJA-TK, 1994).

6. The Common Object Request Broker: Architecture
and Specification, Revision 1.2 (Framingham, Mass.:
Object Management Group, Order No. 93.12.43,
1993).

7. Industrial Automation Systems and Integration­
Product Data Representation and Exchange-Part
44: Integrated Resources: Product Structure Config­
uration, ISO 10303-44, WG3 N127 (Geneva: Inter­
national Organization for Standardization, 1992).

8. Batch Control Part 1: Models and Terminology,
Draft 12: 1994 (Research Triangle Park, N.C.: Instru­
ment Society for Measurement and Control, Order No.
ISA-dS88.0l, 1994).

Biographies

James R. Kirkley III
Jim Kirkley has been with Digital for 16 years. For the
last six years, he has been involved in the development
of object-oriented architectures for business application
integration. A software consulting engineer, Jim is the
technical director for the Applied Objects Group, which
is currently focused on the development of tools and
methodologies for the integration of business systems.
He is the principal author of the methodology used by
Digital Consulting to deliver consulting and practice
systems integration using CORRA-compliant middleware.
He received a B.S. in electrical engineering from Colorado
State University in 1971 and an M.S. in computer science
from Colorado University in 1974.

William G. Nichols
As a consultant engineer with Digital, Wick Nichols
was part of a team that reviewed the Framework-based
Environment and provided a report suggesting several
improvements. His familiarity with related networking
products, particularly DCE, enabled Wick to participate in
the delivery of several FBE projects to customers. During
his 15 years with Digital, Wick contributed to several proj­
ects, including the development of distributed file services.
He also served as project leader of a group that developed
the DECnet-10 system and as project leader and supervisor
for the DECnet-20 product. He received an A.B. from
Harvard University in 1973.

Digital Technical Journal Vol. 7 No. 2 1995 55

Project Gabriel:
Automated Software
Deployment in a Large
Commercial Network

Digital entered into an agreement with a major

French bank to develop an automated software

deployment facility, i.e., to provide centralized

control of software installations and upgrades

for a large network of computer systems. Inde­

pendently, Digital had developed a set of models

designed to guide the design of solutions to

this type of complex management problem.

The bank project team, which had considerable

experience building distributed system manage­

ment applications, was able to take advantage

of these models. The result was a versatile,

scalable application for distributed software

deployment, validation of the models, and a

clearer sense of the usefulness of such models

to complex application problems.

56 Digital Technical Journal Vol. 7 No. 2 1995

I
Owen H. Tallman

A large French bank purchased a DECnet network
from Digital and was in the process of deploying the
network to support all its banking operations. The
network topology included approximately 3,000
OpenVMS VAX systems and about 18,000 MS-DOS
PC workstations. As illustrated in Figure 1, these sys­
tems were arranged in a branch structure that roughly
followed the geographical distribution of the bank
branch offices and their roles in the branch hierarchy.
At the bank's headquarters, an Open VMS cluster and
an Ethernet local area network (LAN) linked the
mainframe data center with the rest of the banking
network. The cluster was connected to the first tier of
approximately 200 branch group servers. The second
tier consisted of approximately 1,800 branches, each
with between one and four branch servers, for a total
of about 3,000 branch servers. Each branch server, in
turn, provided Digital's PATHWORKS and applica­
tion services to the PC workstations.

For its nationwide backbone network, the customer
was using a public X.25 network, which was its only
available option.1,2 The cost for X.25 service was based
on usage, so each packet of data transmitted increased
the operation cost. Therefore, the need to minimize
this X.25 expense was a fundamental factor in specify­
ing requirements for virtually all software deployed in
the network.

The bank's business depended on the correct, reli­
able, and efficient operation of the network. Conse­
quently, network management was crucial. From the
customer's viewpoint, such an undertaking meant
management of systems and applications, as well as the
communications infrastructure. By extrapolating its
overall experience with the hardware deployment, and
its initial experience with software deployment, the
customer foresaw potentially unacceptable labor costs
for software deployment using the available methods.
The customer therefore gave high priority to improv­
ing the software deployment process.

In this paper, the term deployment (or deployment
operation) represents a process that deploys a set
of software components to a set of systems. A deploy­
ment is described by a deployment plan and requires

I ETHERNET LAN
1--..... -------------

HEADQUARTERS 1
I MAINFRAME

I _____ _

Figure 1

-200 BRANCH GROUP
SERVERS

-3,000 BRANCH
SERVERS

-18,000
PC WORKSTATIONS

DECnet Network Topology in a Banking Environment

a deployment program, deployment automation soft­
ware to execute the program, and an operations staff to
schedule and monitor deployment program execution
and, when necessary, respond to run-time problems.

The Software Deployment Problem

Ideally, the bank wanted networkwide consistency in
its software, with automated, nondisruptive upgrades
administered from a central point. Given the scale of
the network and the number and variety of software
components in use, however, this was not a realistic
goal. The challenge of building a system of automated
deployment tools that is capable of maintaining con -
sistency across 3,000 widely distributed, frequently
updated systems is significant in itself. Adding the
problems of maintaining consistency in detailed busi­
ness practices and user training in every branch greatly
increases the difficulty. Actually, the business required
software configurations tailored to and maintained
consistently within individual business units such as
branches and branch groups. Software upgrade plan­
ning and deployment activities would be essentially
continuous, with numerous planning and deployment
operations under way concurrently. The bank's busi­
ness would not tolerate network malfunctions caused
by ongoing upgrade operations or version mismatches
among systems in a business unit, nor would it provide
for on-site support at branches or branch groups.
To implement a fully automated software deployment
process would require rigorously managed, central­
ized planning and operational control.

•••

The bank had already implemented a system that
automated significant parts of the deployment
process, using a variety of existing tools and ad hoc
integration. These tools included Digital Command
Language (DCL) command procedures, the Infor­
mation Distribution Controller (IDC) product, which
distributes files in batch mode, and a system event
reporter. The process, however, was still labor inten­
sive. The customer concluded that the only way to
achieve acceptable operational costs was to increase
substantially the degree and quality of automation in
the process.

Customer Requirements

A solution to this software deployment problem
would have to support (1) sophisticated, carefully
managed planning, (2) a means of determining the
current state of target systems for use in planning,
(3) rigorous software certification, and (4) a highly
reliable means of automating software distribution
and installation. The bank's planning and certification
processes were already developed, staffed, and in oper­
ation. An inventory control database for tracking sys­
tem configurations was under development. However,
the means to distribute and install software effectively
was lacking and would have to be developed and then
integrated with the other system components. The
customer emphasized this need for distribution and
installation automation when it first presented the
problem to Digital.

Digital Technical Journal Vol. 7 No. 2 1995 57

All new software must be evaluated, acquired, pack­
aged in kits that can be installed automatically, tested,
and certified. Since software interdependencies may
exist, multiple software components may need to be
processed together to ensure proper installation and
operation as a set. (In this paper, the term component
refers to any software that might be distributed as a kit,
e.g., a commercial layered product, an in-house appli­
cation, or a patch.) Planners must determine which of
the certified components to install, the branch group
to install them in, and the scheduling constraints. The
result is a carefully documented, uniquely named
deployment plan. Deployment execution consists of
performing all the steps necessary to distribute and
install the software on the target group and to report
the results for incorporation in the planning for the
next deployment.

The operations staff, i.e., those who monitor and
control the network on a continuous basis, keep a
repository of data that reflects the current state of soft­
ware on the systems in the network. Planners use this
data to plan new states for parts of the network; they
store these plans in the repository also. As many as 10
planners may be developing plans simultaneously. For
each plan, an application analyzes the differences
between the planned state and the current state of the
network and produces a deployment program.

A deployment operation may involve multiple prod­
ucts. This set of products must include all those neces­
sary to satisfy the prerequisites of the other mem­
bers of the set (if they are not already satisfied by prod­
ucts on the target system). The members of the set
must be installed in the proper order. The planners
determine the proper membership for any product
set and create representations of those sets in the
repository. They also represent the product installa­
tion order in the repository in the form of installation
precedence relationships. The deployment software
uses this precedence information to determine the
order of installation for members of a product set.

The operations or configuration staff store the certi­
fied software kits in a library at the management cen­
ter. When the kits need to be installed on a system, the
deployment software compresses the kits and then
copies them across the X.25 backbone to staging areas
on servers. From these areas, the deployment software
copies the kits to the target system or systems or, if
necessary, to servers closer to the target systems and
then to the target systems, where the kits are decom­
pressed and used. By staging kit distribution in this
way, each kit is copied only once over each link, which
avoids wasting bandwidth. When all the target nodes
have the required kits, the kits at the staging points
are deleted. The copy operations must proceed con­
currently whenever possible. Table 1 shows possible
states and transitions for a software component kit on
a target system.

58 Digital Technical Journal Vol. 7 No. 2 1995

Table 1
States and Transit ions for a Software Component Kit
on a Target System

Initial State

(Null)

Distributed

Action

Copy

Delete

New State

Dist ributed
(Null)

Installation is a multistep process designed to allow
the synchronized change of operating software on all
related systems. Once the required kit is present on the
target system, the product can be installed, i.e., the
files put in place and any other necessary steps taken
so that the product is ready to be activated. Activa­
tion, i.e., making the new product the current operat­
ing version, is the last step. A product can also be
deactivated and deinstalled. To upgrade a product
requires installing the new version, deactivating the
old version, and then activating the new version.
If the activation is successful, the previous version
can be deinstalled. Only one version of a product can
be active at any given time. Table 2 shows the states
and transitions for a software component on the target
system.

Table 2
States and Transitions for a Software Component
on a Target System

Initial State Action New State

(Null) Install Installed

Installed Activate Active
Active Deactivat e Inst alled

Installed Deinstall (Null)

Table 3 shows the state transitions to be managed
between the new version product kit, the new version
product, and the previous version product on the tar­
get system. Note that the deployment process should
minimize the time a target system must spend in step
4 , when both versions of the product are installed but
neither is active.

Table 3
State Transitions to Be Managed on a Target System

New Version Old Version New Version
Step Product Kit Product Product

(Null) Active (Null)

2 Distributed Active (Null)

3 Dist ributed Active Installed

4 Distributed Installed Installed

5 Distributed Installed Active
6 Distributed (Null) Active
7 (Null) (Null) Active

A planner can specify to the deployment software
that an upgrade must be carried out as an atomic
transaction. That is, the activation transition must
either succeed or be rolled back. In a rollback, steps 3,
4, and 5 in Table 3 are reversed. Most commercial
software is not packaged with installation procedures
that support installation, activation, deactivation, and
deinstallation steps. Therefore, the bank must package
its own software and repackage software from manu­
facturers so that upgrades behave this way. The
deployment software invokes the individual steps
by executing DCL command procedures provided
in each such customized kit.

The activation of all products in a deployment may
be transactional, in which case all the products must
activate successfully or all activations will be rolled
back. The installation steps for all the products are
completed first, so all the products are ready for acti­
vation at the same time. The activations are then
attempted. If all succeed, the newly activated products
remain as the current operating versions. If a product
activation fails, it and all the preceding activations
are rolled back, in reverse order of activation, and
the previous versions are likewise reactivated. When
the rollback completes, the deployment stops and the
management center receives a status report. Once
the operations staff has corrected the problem that
caused the failure of the activation phase, a new
deployment program may be generated. It will exe­
cute only the activation steps, not any of the preceding
steps that had succeeded. That is, the new deployment
program picks up where the earlier one left off.

This transactional behavior applies to all activations
across all systems in a given deployment and may
involve different sets of products for different systems.
The transactional characteristic applies to the deploy­
ment operation, not to a product or set of products.
Thus, the deployment can accommodate interde­
pendencies among products on different systems.
If an activation of any product fails in a transactional
deployment, all current or completed activations will
be rolled back in reverse order of activation, regardless
oflocation. This requirement is specifically for client­
server applications whose client and server compo­
nents must be upgraded both simultaneously and
atomically.

The deployment software must maintain the state of
the deployment in stable storage so that the state can
be restored and the processing continued despite tran­
sient failures of systems or networks. The software
must report the state of processing to the manage­
ment center at some reasonable interval and also when
the deployment completes. The software then updates
the repository with the status of all the individual
operations in the deployment.

The deployment implementation must provide
management directives to start, suspend, resume,
stop, and abort the deployment, without leaving it in
an inconsistent state or disrupting business operations.
Suspension prohibits any new command procedure
executions from starting but does not interrupt ongo­
ing ones, thus allowing the deployment to quiesce.
Suspension does not affect transactions. The resume
directive restarts execution of a deployment that has
been suspended. Stopping is the same as suspension
except that once stopped, the deployment cannot
be restarted. The abort directive stops ongoing com­
mand procedure executions by terminating their
processes and thus forces the rollback of any transac­
tion that is executing at the time the directive arrives.
An aborted deployment cannot be restarted. There is
also an update directive, which forces the current
details of operation state to be rolled up to the man­
agement center. A show directive reports the overall
state of each deployment at a particular host.

The management directives allow an external entity,
e.g., a batch scheduler or an operator, to intervene in
what would otherwise be a self-contained, automated
operation. A batch scheduler can suspend all ongoing
deployments at some time before bank branches open
and resume the deployments when the branches close.
It can force a deployment to stop at a predetermined
time, whether or not it has completed. An operator
can use the update directive to roll up the state to
determine how far a remote part of a large deployment
has progressed. It can also issue suspend and resume
directives to subsets of the network affected by
a deployment to allow for emergency manual inter­
vention without suspending the entire deployment.

Digital's Response to the Requirements

Digital's decision to undertake the project of develop­
ing an automated software deployment facility for the
bank was based on two goals. First, Digital wanted to
meet the needs of an existing customer. Second, in
solving the customer's problem, Digital could validate
the set of network and system management models
it had already developed. The following sections
provide an overview of the models and details of the
automated software deployment implementation.

The EMA Configuration Management Model

When Digital began discussions with the bank about
automating software upgrades, in the Enterprise
Management Architecture (EMA) group, Paul Kelsey
was developing a comprehensive general model of
configuration management for information systems.
Like the influential EMA entity model that preceded
it, the EMA configuration management model (CMM)

Digital Technical Journal Vol. 7 No. 2 1995 59

defines a consistent set of concepts and terms for
working in its particular problem domain.3 The entity
model broke new ground by applying what would
come to be known as object-oriented concepts to the
problem of managing the many types of objects found
in a network. The CMM goes on to address the rela­
tionships among those objects that, in combination
with the objects themselves, constitute an information
system's configuration.

Configuration management concerns a broad range
of activities over the lifetime of an engineered sys­
tem. The larger or more complex the system to be
managed, the greater the need for a configuration
management discipline. The U.S. Air Force defines
configuration management as "a discipline applying
technical and administrative direction and surveillance
to (a) identify and document the functional and physi­
cal characteristics of a configuration item, (b) control
changes to those characteristics, and (c) record and
report change processing and implementation status.
It includes configuration identification, control, status
accounting, and audits. Configuration management is
thus the means through which the integrity and conti­
nuity of the design, engineering, and cost trade-off
decisions made between technical performance, pro­
ducibility, operability, and supportability are recorded,
communicated, and controlled by program and func­
tional managers. "4

The CMM provides a conceptual framework for
automating information system management, cover­
ing the entire scope defined in the preceding para­
graph. For example, consider a disk drive. The EMA
entity model provides a conceptual framework for
describing the drive as an object with certain attributes
(e.g., storage capacity) and operations (e.g., format)
such that developers can build software that allows
monitoring and control of the object by means of
a management protocol. Any object in the network
that presents a conforming management interface
is called a managed object.

The CMM proposes a framework for describing the
disk drive's role in a system configuration over the
drive's lifetime. The framework covers

1. The services that the disk drive provides and the
clients of these services, e.g., the logical storage
volume that the drive supports

2. The services that the disk drive consumes

3. The objects that compose the drive

4. The drive's current and previous attribute values

5. The attribute values that the drive should presently
have

6. Plans for future drive configurations

7. The way software should interpret and act on list
items 1 through 6

60 Digital Technical Journal Vol. 7 No. 2 1995

The following discussion emphasizes the aspects of
the CMM that influenced the design of the Project
Gabriel software.

Persistent Configuration Model
In the CMM, all users and management applications
deal with managed objects in an information system,
whether physical or abstract, in the abstract: they
manipulate their representations in a repository, and
automatic mechanisms carry out the implied opera­
tions transparently. The repository maintains a per­
sistent representation, i.e., model, of the entire
information system's state; it is called the persistent
configuration model (PCM). The PCM provides
a common level of abstraction for all users and man -
agement applications because all management actions
are taken through it. Since the model persists, the
PCM can provide this abstraction in multiple temporal
divisions.

Temporal Divisions
Managed objects indicate their state through attrib­
utes and through relationships with other objects.
Object state is relative to the temporal division of the
PCM through which the state is viewed. Each tempo­
ral division can provide a consistent view of all the
objects in the network as they were at some point in
the past, as they are now, or as they will be.

The historical temporal division records past system
states. The present is represented in the observed and
expected temporal divisions, where the observed divi­
sion provides the most recent information available on
actual object state, i.e., what is now. The observed
division is populated by automated census services
that collect current state information as directly as pos­
sible from the objects. The expected division main­
tains what is currently intended for the object state,
i.e., what should be. This division is based on the
observed division but modified as necessary to repre­
sent the state sanctioned by the system or network
administrator.

The planned and committed temporal divisions rep­
resent future object states. States that may be realized
at some time are planned, whereas those that will be
realized are committed. The distinction permits simu­
lating, analyzing, and evaluating future states in the
planned division without implying any commitment
to realize them.

Realization
Differences between object states in the expected and
the committed divisions indicate changes that need to
take place to realize the new committed configuration.
This is the task of the realization services. The job of
identifying the required changes and generating a pro­
gram to realize these changes is called configuration

generation (CGN). Other realization services execute
the program and update the repository based on the
results. A software deployment operation would be
called a realization in CMM terms. The ultimate vision
of the CMM is to allow the user to define the desired
state of an information system and, with a single com­
mand, to realize it.

Once the planned state has been realized, auto­
mated services can maintain that state by monitoring
the differences between object states in the observed
and the expected divisions. These differences repre­
sent possible faults and trigger fault-handling actions.

Implementation

Digital and the bank agreed that Digital would imple­
ment the critical deployment automation part of the
bank's requirements and integrate it with the bank's
established processes. The focus of the discussion in
this section is the engineering team's efforts to arrive
at an effective, implementable system design.

System Design
The CMM provided an effective conceptual frame­
work for thinking and talking about the system
requirements and possible design choices. As one
would expect from a general model, however, the
CMM did not address important design and imple­
mentation issues. In particular, it did not prescribe in
any detail the PCM design or how the realization ser­
vices should work. The Project Gabriel engineering
team, which included the CMM author, had to quickly
answer the following basic questions:

• How should the team implement the PCM? Is it an
object-oriented database, or will it require func­
tionality beyond what the team can implement in
such a database? What schema should the team use?
How much of the PCM as described in the CMM
is really necessary for this project?

• How will CGN convert the PCM state data to
a deployment program? Is CGN a rule-based
application or a conventional, sequential program?
What will CGN require of the objects in the PCM?
How will CGN communicate to the other, as-yet­
undesigned realization services what needs to
be done to carry out a deployment? How should
the team trade off the complexity of CGN versus
the complexity of the services that will execute the
programs?

• What services will the team need to carry out the
programs CGN generates? What form will these
services take?

• How can the team minimize the complexity of the
system to arrive at a design that the team can actu­
ally implement?

The last question was in many ways the most impor­
tant. The team had to break down the problem
into manageable pieces and at the same time devise
an integrated whole. The team did not have time for
a sequential process of analysis, design, and imple­
mentation and, therefore, had to find ways to start
development before the design was complete. CGN
presented the pivotal problem; it might ultimately be
the most difficult part of the system to design, but the
components on which it depended had not yet been
designed. In addition, these components could not
be designed effectively without some reasonable idea
of how CGN would work. To efficiently use the time
allotted, the team began to search for the key design
abstractions while it evaluated technologies and tools.

Actions and States PCM configuration data represent
multiple actual or possible states of the systems in the
network. CGN would generate a deployment program
based on the differences between the expected and
planned states represented in the repository. This idea
led to the development of a state table, which pre­
scribed the state transitions that would have to occur
to change each product on each system from its pre­
sent state (as shown in the expected temporal division)
to its planned future state. CGN could associate an
action with each transition and program those actions.
When the PCM received status from the actions taken
on the target systems, the transition identifier would
be included and would be used to update the PCM.
This became one of the key design concepts of Project
Gabriel: to model the target of a deployment opera­
tion as a collection of finite state machines.

CGN needed a way to program the actions so
the other realization services could carry them out.
The team chose to model the actions in a consistent
manner for all foreseeable variations, regardless of how
they are implemented or what state change they effect,
as follows:

1. All actions consist of invoking a command, with
some list of arguments, on some object, and within
a discrete process.

2 . Actions are associated with state transitions.
Actions themselves have state (e.g., running) and
finite duration. Actions can be started, and at some
point they complete. When they complete success­
fully, they change the state of an object; when they
fail, they do not.

3. The implementation of the command should
behave such that an action's failure has no undesir­
able side effects, e.g., disabling a system component
or causing large amounts of disk space to be occu­
pied needlessly. This behavior cannot actually be
guaranteed, however, so some failures may require
human intervention to correct side effects.

Digital Technical Journal Vol. 7 No. 2 1995 61

In most respects, this model of command proce­
dure execution is the same one used by both the
OpenVMS batch facility and the POLYCENTER
Scheduler. The principal difference is that in Project
Gabriel, a user does not simply program an arbitrary
sequence of actions. Rather, each action corresponds
to a specific meaningful state transition of an object.
When the PCM receives completion status for an
action, the PCM update program can use the transi­
tion identifier to determine what state an object has
attained and modify its representation in the reposi­
tory accordingly.

By hiding the implementation internals behind
a consistent interface in this manner, the software
designed for controlling actions does not have to
be concerned with those internals. This is a straight­
forward application of the principle of encapsulation,
which separates the external aspects of an object from
its internal implementation details. 5 Encapsulation
allows a system designer to separate the question of
how an action, such as copying a file or invoking an
installation procedure, is implemented from the ques­
tion of what interface the control system will use to
invoke the action. This is obviously a simplification of
the implementation issue, because the team had to
deal with preexisting implementations, which cannot
always be made to follow new rules. From a design
point of view, however, the simplification is essential.

Control Distribution A deployment operation consists
of multiple actions, performed in various complex
sequences. The team understood intuitively that every
host system would have to run software to execute
the deployment program and that the management
center would distribute the program to the other
host systems in the network. An advanced develop­
ment team working on a more scalable design for the
POLYCENTER Software Distribution product had
previously developed a model for this kind of distrib­
uted control. The Project Gabriel team adopted two
related design ideas from its work.

The first idea is recursive program decomposition
and delegation. Assume that the control system is
implemented by servers called control points, whose
task it is to coordinate operations. Assume also that
each target system has an agent that carries out the
action. Assign to each target agent a control point, and
assign to each control point its own control point, such
that these control relationships form a tree structure.

Assume that deployment programs are composed of
nested subprograms, which, in turn, are composed of
nested subprograms, and so on. Assume also that each
program (or subprogram) has an attribute identifying
the designated control point to which the program
must be sent for processing. Such programs can be
decomposed, distributed, and executed using a recur­
sive djstribution algorithm, as follows.

62 Digital Technical Journal Vol. 7 No. 2 1995

An operator submits a complete deployment pro­
gram to its designated control point. (Submission
consists of copying the program file to a well-known
place on the management center host system and issu­
ing a RUN command with the file name as an argu­
ment.) The control point breaks down the program
into its component subprograms and submits the indi­
vidual subprograms to their own designated control
points, thereby delegating responsibility for the sub­
programs. The delegation ends when a subprogram
has been broken down to the level of individual
actions, which are delivered to the agent on the target
system for execution. In the original model developed
for POLYCENTER Software Distribution, program
structure did not influence how operations were
decomposed and delegated. Instead, a target could
be a group of targets, allowing recursive delegation of
subprograms according to the nesting of the groups.
The Project Gabriel innovation was to use nested sub­
programs within the deployment program rather than
nested target groups. Both approaches are built on
the notion of distributing control by following a tree
whose nodes are managed objects and whose edges
are control relationships. This is how they were ulti­
mately represented in the PCM.

The second idea relates to program state. The team
modeled the deployment program and each of its
component subprograms as finite state machines.
Each subprogram goes through a defirnte series of
transitions from ready to completed, stopped, or
aborted. The state of the program as a whole reflects
the state of the processing of its component subpro­
grams, and the state of each component reflects the
state of the processing of its components, and so on.
At any time, an operator can issue a show directive for
a control point and determine the local state of all
deployment programs. Understanding the collective,
distributed state of a deployment may be difficult at
times, because a given control point may have out­
dated information about a delegated subprogram. For
example, a program may be runrnng when none of its
components are runrnng yet, when some are runrnng,
and when all have completed but notice has not yet
rolled up to the root of the control tree. This latency
is natural and avoidable in such a system.

The deployment software maintains program state
on disk. When a component subprogram is delegated,
the state is reflected at the sender by a placeholder sub­
program that stands in for the one created at the
receiver. The state is updated at the sender only after
the receiver acknowledges receiving the subprogram
and securing it in stable storage. Given this conserva­
tive approach to recording state changes, and logic
that makes redundant delegations harmless, a control
point server can be stopped or restarted without losing
program state.

Data Distribution The team borrowed the notion of
a distribution map from the IDC product mentioned
in the section The Software Deployment Problem.
The Project Gabriel concept is a distribution tree,
which is formed in the same fashion as the control
tree. Each host system is assigned a distribution point
from which it gets its copies of software kits to be
installed. A system that hosts a distribution point has
its own assigned distribution point, and so on, for as
many levels as necessary. This assignment takes the
form of relationships between system objects in
the PCM. CGN uses the distribution tree to determine
the software distribution path for each target system.

The control and distribution trees need not be
the same, and they should not be confused with
one another. The control tree uniquely defines the
path by which all other services, e.g., kit distribution,
are managed.

SYREAL Programming Language To communicate
a deployment plan to the servers that were to execute
it, the team invented a simple textual representation
called the system realization language (SYREAL). This
language was easy for the developers and users to
analyze in case problems developed and could easily
be produced by programs, by DCL command pro­
cedures, or by hand. Although SYREAL is verbose
(e.g., installing a few products on a dozen systems
requires hundreds of lines of text), it clearly reflects the
structure of the deployment operation.

PCM Implementation The development team believed
that an object-oriented repository would provide the
most natural mapping of the PCM abstractions onto
a data model. The team used an internal tool kit called
AESM, which was layered on the COD/Repository
software product. The user interface is based on
DECwindows Motif software, using facilities provided
byAESM.

AESM uses membership, i.e., containment, rela­
tionships to connect objects in a meaningful way. All
relationships are derived by inheritance from this basic
type. Thus, the PCM contains temporal divisions,
which contain groups of systems, which contain soft­
ware configurations, which contain specific software
components with certain state attributes. A software
catalog contains configurations, software compo­
nents, and materials objects that describe the kits used
to install these components. A plan in the PCM is an
object within the planned domain that contains sys­
tems and configurations.

Configuration Generation Processing Thus far, the
paper has described the following abstractions avail­
able for CGN:

• The PCM, which contains systems and a catalog
of software configurations, software components,
materials, and precedence relationships- all m
temporal divisions.

• Software component state table.

• Actions, which change the state of objects in the
network.

• Managed objects (e.g., software components and
kits) as finite state machines whose transitions result
from actions.

• A control tree to partition control responsibil­
ity. This tree consists of relationships between
control points and between control points and
target agents.

• A distribution tree to define the path for distrib­
uting software to target systems. This tree consists
of relationships between distribution points and
target agents.

• Deployment programs as finite state machines
whose nested structure is decomposed and distrib­
uted according to the control tree.

• Control point servers that execute deployment pro­
grams and target servers that execute actions.

Given these abstractions, the key problem of
designing CGN was to determine the optimal order
of traversing and analyzing an interrelated set of
trees connected with a plan in the PCM. The solution
had to address

• The PCM temporal divisions, to locate expected
and committed states of system configurations in
the plan

• The software catalog, to determine materials and
precedence relationships

• The precedence relationships, to determine the
processing order for the products in the plan

• The control tree, to determine how control must
be distributed

• The distribution tree, to determine how software
kits must be distributed

For each system, CGN must determine what prod­
ucts will undergo which state transitions based on the
state table. The same set of abstractions made it clear
what form SYREAL should take and the nature of the
processing that the control point and target servers
would perform.

Reducing the problem to a small number of abstrac­
tions, many of which shared a similar structure, was a
major step in the process of defining an implementable
system. Although the overall problem was still com­
plex and required a nontrivial effort to solve, at least
the problem was bounded and could be solved using
conventional programming techniques.

Digital Technical Journal Vol. 7 No. 2 1995 63

Overview and Example of Deployment Processing
A user, i.e., planner, begins the deployment process by
populating the repository with objects to be managed
using an application that reads from the inventory
database. The objects in the repository represent a
software catalog, expected and planned temporal divi­
sions, computer systems, software products, software
configurations, software materials (kits), and product
pick lists. By specifying the relationships between the
objects, i.e., by actually drawing the relationships, the
user develops a model of the network configuration.
For example, a model may represent a system that has
a particular software configuration and is contained in
one of the temporal divisions.

In addition to allowing the user to model the
network, the deployment software represents policy
information by means of relationships. A software
product may have precedence relationships with other
software products that prescribe the installation order.
Each system has a relationship that indicates its distrib­
ution point, i.e., the file service that provides staging
for software distribution to that system. Each system
also has a relationship that indicates its control point,
i.e., the management entity that controls deployment
operations for that system.

Using the graphical user interface, a planner derives
new configurations from approved configurations
in the repository and assigns the new configurations to
systems or groups of systems. A planner can view the
differences between the current and the proposed
configurations and see which systems will be affected.
If the observed changes are acceptable, the planner
can run CGN to produce a program to realize the
changes. Once the program has been generated,
the planner can launch it immediately, schedule it for
execution later, or just review it.

Deployment programs normally run under the con­
trol of a batch scheduler. For large-scale deployments,
which can continue for days, the scheduler automati­
cally suspends execution while branch offices are open
for business, resumes execution when the branches
close, and repeats the cycle until the operation has
completed. Operators oversee the execution of the
deployment, intervening to suspend, resume, stop, or
abort the process, or to observe the program's state.
Actions on individual systems that fail may suspend
themselves, thus allowing an operator to intervene and
correct the problem and then, if desirable, restart the
operation.

Certain events, such as a deployment action failure,
roll up to the central control point and trigger the exe­
cution of a user-written event script. Depending on
the type of event, the script may notify an operator,
make a log entry, or perform a PCM update. Normally,
the last event that occurs is the completion of the
program. If the PCM completed successfully, it is

64 Digital Technical Journal Vol. 7 No. 2 1995

automatically updated. Even if a program does not run
to successful completion, the operator can trigger a
PCM update so that whatever changes were realized
will be reflected in the PCM. A new program, gener­
ated with the same planned configuration, will include
only the changes that were not completed in the previ­
ous attempt.

The remainder of this section describes the role of
each major Project Gabriel component in the deploy­
ment process. The example presented was intention­
ally kept simple. Its assumptions are as follows:

• The repository has been populated with network
information, the product catalog, etc.

• The goal is to upgrade the software configurations
ofa set of four branch servers, Bl through B4.

• Central control points exist at headquarters, HQ,
and on two group servers, GI and G2 (see Table 4).

• Branch servers Bl and B2 have their c<:>ntrol point
on GI; B3 and B4 have theirs on G2. HQ hosts the
control points for itself and for G 1 and G2.

• The branch server systems have distribution points
(file servers), which in this example are on the same
host systems as their respective control points.
(This overlap is not required.)

• In the PCM's expected temporal division, the four
systems B 1, B2, B3, and B4 are governed by the
same software configuration. The only layered soft­
ware product is Product X version 1.1, which is in
the active state.

• The planners want to have Product Y version 2.0
installed on the four systems and in the active
state. They create a plan in which a new config­
uration, with Product Y added, governs the sys­
tems (see Table 5). They commit the plan, which
invokes CGN.

Configuration Generation CGN transforms the
desired future state represented in the PCM to a pro­
gram that can be used to realize that state. CGN deter­
mines the difference between the configurations in the

Table 4
Designated Management Control and Distribution
Points

Control Distribution
System Point Point

HQ HQ HQ
G1 HQ HQ
G2 HQ HQ
81 G1 G1

82 G1 G1

83 G2 G2
84 G2 G2

Table 5
Expected and Committed Configurations

Temporal
Division

Expected

Committed

Configuration
Name

GoodConfig

BetterConfig

Product

Product X

Product X
Product Y

expected and committed temporal divisions, which
in the example is the addition of Product Yversion 2.0
in the active state. Since the configurations differ by
only one product, the question of installation order
does not arise. If multiple products were involved,
CGN would analyze their dependencies and arrange
them in the correct installation order.

CGN uses a state table to determine the sequence of
transitions that must occur to bring the software to the
desired state. In the example, Product Yversion 2.0 is
not present on any of the target systems, so the kit
must be copied to the appropriate distribution point
and then copied to the target systems, after which it
must be installed and activated. CGN uses the distrib­
ution tree to find the appropriate distribution points
and then uses the control tree to determine which
control point to use for each set of systems, for each
staging copy, and for each transition. Finally, CGN
generates the corresponding text in SYREAL. The
program that CGN writes optimizes throughput by
performing concurrent processing whenever possible.

SYREAL Program A SYREAL program has two parts:
(1) object declaration and (2) the executable. The first
part declares the objects to be acted upon. The control
point that executes the program has no knowledge of
the software products, files, kits, copy commands, etc.
It knows only that objects exist that have identifiers
and that undergo named state transitions as a con­
sequence of executing commands. SYREAL provides
a means of declaring objects, their identifiers, the
associated transitions, and the commands that effect
the transitions. Figure 2 is an example of an object

Version

1.1

1.1
2.0

State

Active

Active
Active

declaration. The program declares the realization
object that represents Product Y version 2.0. The
object name is PY. Note that PY is an ad hoc, purely
local naming scheme. Since there can be only one
instance of any product version on a system, the name
is implicitly distinguished by its locality, in the sense
that it is the unique instance of product PY on system
X. PY inherits the default object characteristics (not
shown) and adds its own kit identifier, product name,
and a definition of the ACTNATE transition. This
transition has command CMD, which is a DCL com­
mand string.

The second part of a SYREAL program is the exe­
cutable. (Figure 3 shows the executable part for the
deployment process example.) This part consists of at
least one executable block (i.e., subprogram), which
may contain any number of additional executable
blocks. A block may be defined as concurrent or serial.
Blocks nested within a serial block are executed in
order of appearance. Blocks nested within a concur­
rent block are executed concurrently.

Any block may have an associated fault action
expressed as one of the following commands: ON
ERROR SUSPEND, ON ERROR CONTINUE,
or ON ERROR ROLLBACK. A block is executed
by "USING" a designated control point to control it.
For example, the first executable line in Figure 3, i.e .,
SERIAL BLOCK USING "HQ";, declares the execu­
tion of the outermost block to be assigned to HQ.
Nested USING blocks may be assigned to other con­
trol points, to the point at which the ultimate action is
called for. The SYREAL program expresses this assign­
ment by an AT block, in the sense that the action

OBJECT PY CHA RACTERISTICS LIKE DEFAULT;
KIT_ID "PY020";

Figure 2

PRODUCT_NAME "PY, 2.0";
TRANSITION FETCH

CMD "$@RLZ$SCRIPTS:RLZ$FETCH";
TRANSITION ACTIVATE

CMD "$@RLZ$SCRIPTS: RLZ$ACTIVATE ";
END CHARACTERISTICS PY;

SYREAL Program-Object Declaration

Digital Technical Journal Vol. 7 No. 2 1995 65

66

Figure 3

SERIAL BLOCK USING "HQ";
ON ERROR SUSPEND;
SERIAL BLOCK AT "HQ";

PERFORM FETCH
OBJECT PY;

END SERIAL BLOCK AT "HQ";
CONCURRENT BLOCK USING "HQ";

SERIAL BLOCK USING "HQ";
SERIAL BLOCK AT "G1";

PERFORM COPY
OBJECT PY
SERVER "HQ";

END SERIAL BLOCK AT "G1";
CONCURRENT BLOCK USING "G1";

SERIAL BLOCK AT "81";
PERFORM COPY

OBJECT PY
SERVER "G1";

PERFORM INSTALL
OBJECT PY;

END SERIAL BLOCK AT "81";
SERIAL BLOCK AT "B2";

PERFORM COPY
OBJECT PY
SERVER "G1";

PERFORM INSTALL
OBJECT PY;

END SERIAL BLOCK AT "B2";
END CONCURRENT BLOCK USING "G1";

END SERIAL BLOCK USING "HQ";
SERIAL BLOCK USING "HQ";

SERIAL BLOCK AT "G2";
PERFORM COPY

OBJECT PY
SERVER "HQ";

END SERIAL BLOCK AT "G2";
CONCURRENT BLOCK USING "G2";

SERIAL BLOCK AT "83";
PERFOR M COPY

OBJECT PY
SERVER "G2";

PERFORM INSTALL
OBJECT PY;

END SERIAL BLOCK AT "83";
SERIAL BLOCK AT "84";

PERFORM COPY
OBJECT PY
SERVER "G2";

PERFORM INSTALL
OBJECT PY;

END SERIAL BLOCK AT "84";
END CONCURRENT BLOCK USING "G2";

END SERIAL BLOCK USING "HQ";
END CONCURRENT BLOCK USING "HQ";
CONCURRENT TRANSACTION USI NG "HQ";

CO NCURRENT BLOCK USING "G1";
SERIAL BLOCK AT "81";

PERFORM ACTIVATE
OBJECT PY;

END SERIAL BLOCK AT " 81";
SERIAL BLOCK AT "82";

PERFORM ACTIVATE
OBJECT PY;

END SERIAL BLOCK AT "82";
END CONCURRENT BLOCK USING "G1";
CONCURRENT BLOCK USING " G2 " ;

SERIAL BLOCK AT "83";
PERFORM ACTIVATE

OBJECT PY;
END SERIAL BLOCK AT "83";
SERIAL BLOCK AT "84 " ;

PERFORM ACTIVATE
OBJECT PY;

END SERIAL BLOCK AT "84";
END CONCURRENT BLOCK USING "G2";

END CONCURRENT TRANSACTION USING "HQ";
END SERIAL BLOCK USING "HQ" ;

SYREAL Program-The Executable

Digital Technical Journal Vol. 7 No. 2 1995

is aimed at an individual system. An AT block
may contain one or more PERFORM statements,
which perform the action called for. The second exe­
cutable line in Figure 3, i.e., SERIAL BLOCK AT
"HQ";, calls for the fetch transition on the object PY.
This action results in execution of the command
@RLZ$SCRIPTS:RLZ$FETCH on HQ to fetch the
distribution kit files from the software library.

A transaction is simply a block that enforces the fault
action ON ERROR ROLLBACK Nested operations
must complete successfully or all will roll back.
A transaction may be serial or concurrent and may
contain nested blocks that are serial or concurrent.
It may not contain a nested transaction.

Deployment Processing Control point and target
servers are implemented on each Open VMS system in
the network by a single server daemon called the real­
ization server (RLZ). On receipt of the SYREAL pro­
gram, the first daemon, which is on HQ, converts the
program to a binary representation on disk. This data
file mirrors the nesting structure of the text file but
allows for storage of additional state information.

The daemon then executes the program by sending
the binary version of each block that is currently eligi­
ble for execution to the block's designated control
point. Each control point that receives a binary block
repeats this process, until an AT block arrives at its des­
ignated control point. The control point then sends
to the target system's daemon a request to perform
the action. The target daemon creates a process to exe­
cute the PERFORM command, captures completion
status when the process exits, and returns the status
to the control point. If the perform action is success­
ful, the control point sends the next perform request.
If the perform action fails, the control point decides
whether to send the next perform request, to suspend
processing until an operator can intervene, or to initi­
ate a rollback. This decision depends on the fault
action in effect.

The RLZ daemon maintains processing state on
disk to allow recovery from system failures, loss of net­
work connectivity, and other transient calamities. As
block processing completes, block status is rolled up to
its containing block, whether local or on a remote
control point. The state of the block changes to reflect
the block's interpretation of the states of its nested
blocks. At each level, the control point decides if, as
a result of status reports, one or more additional
blocks should be executed. Ultimately, the central
control point at HQ will have received the status of
all operations. If all the perform actions completed
successfully, as determined by the fault actions spe­
cified, the deployment completes successfully. Other­
wise, the deployment fails. Completion triggers
execution of a PCM update script.

PCM Update The overall status of a Project Gabriel
realization is an interpretation of the results of many
individual operations, some governed by fault actions
different from those of the others. Because CGN
dynamically generates the block structure of a realiza­
tion program, the structure has no direct counterpart
in the PCM. Therefore, only the results of individual
perform actions are of interest for updating the PCM.
The update program examines the completion status
of each perform action completed on each object on
each target system. The program updates the corre­
sponding objects in the PCM based on the results of
the last action completed on each object.

Note that since object and transition definitions are
specific to a particular SYREAL program, realization
servers are not limited to the object classes that Project
Gabriel's ·cGN and PCM update handle. Applications
can be written to perform other kinds of operations
with new object classes, transitions, etc.

Realization Block Diagram Figure 4 illustrates the
complete processing that the RLZ servers carry out
in response to the example SYREAL program in the
case where no faults occur. Events flow from left to
right. The outermost block contains all the events of
interest except PCM update, which is implicit in every
SYREAL program and carried out automatically by the
RLZ server at the root of a deployment operation.

The first action to be executed within the outermost
block is fetching PY from the library to staging storage
on HQ, under the control of HQ. Subsequently, HQ
controls concurrent operations to copy PY from HQ
to both Gl and G2. When the copy action is com­
pleted on either GI or G2, HQ transfers the next
block to the respective control point to perform the
copy and install actions on its two targets. For
instance, the concurrent block using Gl executes the
copy action to Bl and then the install action on Bl,
while the same sequence executes on B2. Processing
of these concurrent sequences synchronizes on Gl
when both complete. At that time, the status of the
entire concurrent block using Gl rolls up to HQ,
where processing will again synchronize with the con­
current block using G2.

HQ also executes the concurrent transaction. This
execution flows similarly to the preceding concurrent
block execution except that since no action needs to
be taken on Glor G2 before proceeding to act on Bl,
B2, B3, and B4, the serial blocks at Gl and G2 are
unnecessary.

Fault Handling In the deployment example, the fault
action represented by the command ON ERROR
SUSPEND governs the steps prior to the transaction.
This means that, if an action fails, no dependent action

Digital Technical Journal Vol. 7 No. 2 1995 67

S
E

R
IA

L
B

LO
C

K
 U

S
IN

G
 "

H
Q

"

C
O

N
C

U
R

R
E

N
T

 B
LO

C
K

 U
S

IN
G

 "
H

Q
"

C
O

N
C

U
R

R
E

N
T

 T
R

A
N

S
A

C
T

IO
N

 U
S

IN
G

 "
H

Q
"

S
E

R
IA

L
B

LO
C

K
 U

S
IN

G
 "

H
Q

"

C
O

N
C

U
R

R
E

N
T

 B
LO

C
K

 U
S

IN
G

 "
G

1"

C
O

N
C

U
R

R
E

N
T

 B
LO

C
K

 U
S

IN
G

 "
G

1"

S
E

R
IA

L
B

LO
C

K
 A

T
 "

81
"

S
E

R
IA

L
B

LO
C

K
 A

T
 "

81
"

A
T

B
1:

A

T
B

1
:

A
T

B
1:

S

E
R

IA
L

_,.
.

C
O

P
Y

 P
Y

~

IN
S

T
A

LL

~

A
C

T
IV

A
T

E

R

B
LO

C
K

F

R
O

M
 G

1
P

Y

P
Y

A

T
 "G

1
"

G
1

:
-~

 +
.....

(C

O
N

T
R

O
L)

A

T
G

1
:

S
E

R
IA

L
B

LO
C

K
 A

T
 "

8
2

"
S

E
R

IA
L

B
LO

C
K

 A
T

 "
8

2"

C
O

P
Y

 P
Y

)
)

F
R

O
M

 H
Q

A

T
B

2
:

A
T

B
2

:
A

T
B

2:

'--
i-

.
C

O
P

Y
 P

Y

~

IN
S

T
A

LL

A
C

T
IV

A
T

E

F
R

O
M

G
1

P

Y

I\

P
Y

S

E
R

IA
L

B
LO

C
K

A

T
"H

Q
"

~
a

H
Q

:1

H
Q

:
....

._
N

C
H

)
(S

Y
N

C
H

)
I-

+

U
P

D
A

T
E

A

T
H

Q
:

P
C

M

F
E

T
C

H

S
E

R
IA

L
B

LO
C

K
 U

S
IN

G
 "

H
Q

"
P

Y

C
O

N
C

U
R

R
E

N
T

 B
LO

C
K

 U
S

IN
G

 "
G

2"

C
O

N
C

U
R

R
E

N
T

 B
LO

C
K

 U
S

IN
G

 "
G

2"

S
E

R
IA

L
B

LO
C

K
 A

T
 "

8
3"

ll

S
E

R
IA

L
B

LO
C

K
 A

T
 "

8
3"

A
T

 8
3

:
A

T
B

3
:

A
T

B
3

:
S

E
R

IA
L

_,.
.

C
O

P
Y

 P
Y

 ~

IN
S

T
A

LL

A
C

T
IV

A
T

E

B
LO

C
K

F

R
O

M
 G

2
P

Y

P
Y

A

T
"G

2
"

G
2

:
G

2:

G
2:

.....

_ i..

.
.....

(S

Y
N

C
H

)
(C

O
N

T
R

O
L)

(S

Y
N

C
H

)
A

T
G

2
:

S
E

R
IA

L
B

LO
C

K
 A

T
 " 8

4"

S
E

R
IA

L
B

LO
C

K
 A

T
 "

8
4"

C

O
P

Y
 P

Y

F
R

O
M

 H
Q

A

T
B

4
:

A
T

B
4

:
A

T
B

4
:

'-
f+

C

O
P

Y
 P

Y

1
--

-+

IN
S

T
A

LL

A
C

T
IV

A
T

E

F
R

O
M

 G
2

P
Y

P

Y

Fi
gu

re
 4

R

ea
liz

at
io

n
B

lo
ck

 D
ia

gr
am

will be performed. Instead, an event message will be
sent up the control tree to HQ. An operator can detect
this condition (either as a result of the event message
or during a periodic status check), intervene to correct
the problem, and restart the action that failed. For
example, if the copy action of PY to Bl from Gl fails,
the first serial block at B 1 will be suspended and the
action to install PY on Bl will not be performed. (The
install action follows the copy action in a serial block
because it is dependent upon successful completion of
the copy action.) The blocks in the first part of the
deployment, i.e., the serial block at B2 and the concur­
rent block using G2, continue to execute, however.
No processing will go beyond the first HQ synchro­
nization point until the fault is corrected and the serial
block at B 1 completes. If the problem cannot be cor­
rected, the deployment can be stopped and replanned,
perhaps excluding the node that failed.

If one of the actions in the concurrent transaction
fails, no additional actions within the transaction will
be started and any that completed, including the failed
one, will be rolled back. Each transition may have an
associated ROLLBACK command. The rollback of
an action consists of executing its ROLLBACK com­
mand. (This command is not shown in the SYREAL
sample.) In this case, the ROLLBACK command deac­
tivates PY. If the transaction has more activations, any
that start before the failure is detected are rolled back
in the reverse order of execution. The RLZ server
effectively runs the transaction in reverse, from the
point at which the failure was detected, executing
the ROLLBACK command for each action that had
completed. To accomplish this, each control point
that detects a failure within a transaction or receives
a rollback request from one of its subordinate control
points initiates a rollback in all the parts of the trans­
action under its control. At the same time, the control
point sends a rollback request to its control point. This
process continues until the rollback request reaches
the control point that controls the outermost block of
the transaction.

A Note about Testing
Consider the challenge of testing a deployment sys­
tem designed to operate over hundreds or thousands
of systems. The PCM and CGN components are
centralized, so load testing and boundary testing
are relatively straightforward. Executing deployment
operations is an inherently distributed process,
however, with one RLZ server per host. The team
designed the RLZ server to isolate all its data, e.g., net­
work object name, log files, deployment program state
data, and command procedures, based on the name
given the server process. This design enabled the team
to run as many copies of the server on a single system

as the system's resources allowed-one VAXstation
4000 system was able to run more than 250 simulta­
neous servers-and to execute dummy command pro­
cedures. Such a design allowed the team to test
elaborate simulated deployments and forced it to
design the server to deal with a number of unusual
resource shortages.

Project Gabriel's performance data indicated that
the overhead of the RLZ server was relatively insignifi­
cant when compared with that of the actions per­
formed by means of command procedures. This data
supported the team's belief that the system would be
scalable: A target system that has the resources to sup­
port relatively resource-intensive actions like software
installations can support one RLZ server to automate
the installations.

Conclusions

This paper does not cover topics such as the com­
plex rules regarding the suspension/resumption and
restart of operations, lost server time-outs, and interim
status updates. Also, the PCM data is considerably
more complex than the discussion indicates, as is the
asynchronous processing implemented in the RLZ
server and the logic of CGN.

A great deal of detail has been omitted in order
to focus on the usefulness of a particular collection
of abstractions in solving a difficult problem. The
entity model and the configuration management
model helped to define, partition, and communicate
about the problem. The distribution model from
the POLYCENTER Software Distribution advanced
development work provided essential ideas that the
other models did not. These intellectual assets were
instrumental in fulfilling the customer's requirements.
In "What Good are Models, and What Models are
Good?" Fred B. Schneider asserts: "Distributed sys­
tems are hard to design because we lack intuition for
them. "6 By formulating and analyzing an abstract
model, we can develop such intuition, but it is a slow
process. It is easy to underestimate both its difficulty
and its value.

The model of distributed process control developed
for Project Gabriel has proven useful and versatile. It
could be profitably applied to the design of a process
control service for distributed object technology, such
as the Object Management Group's Common Object
Request Broker Architecture (CORBA).7 In such a
design, instead of executing a command procedure to
perform an action, a process control daemon would
invoke a COREA request on an object. Programs
become nested collections of requests with associated
state. Improving distributed object and object­
oriented database technology should make possible

Digital Technical Journal Vol. 7 No. 2 1995 69

fuller realization of the PCM and a more powerful
CGN. The work accomplished in Project Gabriel just
scratched the surface.

Summary

By applying relatively well-developed conceptual
models for network and system management, Project
Gabriel successfully implemented automated software
deployment in a large commercial network. The result
is a scalable, distributed system management applica­
tion that can be used to solve a variety of complex
distributed system management problems.

Acknowledgments

The following individuals contributed directly to the
design and implementation of the Project Gabriel soft­
ware: Cecile Beyh, Hugo Diaz, Gill Haik, Paul Kelsey,
Michel Llzarescu, John Lundgren, Pat Madden,
Mary Maling, Keith Noddle, Laura Spink, Son Voba,
David Wihl, and Michael Young.

References

1. Information Technology-Data Communications­
X.25 Packet Layer Protocol for Data Terminal
Equipment, ISO/IEC 8208:1990 (Geneva: Interna­
tional Organization for Standardization/International
Electrotechnical Commission, 1990).

2. Interface between Data Terminal Equipment and
Data Circuit-terminating Equipment for Terminals
Operating in the Packet Mode and Connected to
Public Data Networks by Dedicated Circuits-Data
Communication Networks: Services and Facilities,
Interfaces, Recommendation X.25-89 (Geneva:
International Telecommunications Union, Comite
Consultatif Internationale de Telegraphique et Tele­
phonique [CCITT], 1989).

3. M. Sylor, "Managing DECnet Phase V: The Entity
Model," IEEENetworks(March 1988): 30-36.

4. Configuration Management Practices for Systems,
Equipment, Munitions, and Computer Programs,
MIL-STD-48A (Washington, D.C.: Department of the
United States Air Force, June 4, 1985).

5. J. Rumbaugh, et al., Object-Oriented Modeling and
Design (Englewood Cliffs, N.J.: Prentice-Hall Inter­
national, 1991): 45 7.

6. F. Schneider, "What Good are Models and What
Models are Good?" Distributed Systems, 2d ed.,
S. Mullender, ed. (New York: ACM Press, 1993): 17-26.

7. Common Object Request Broker Architecture
Specification, draft 29, revision 1.2 (Framingham,
Mass.: Object Management Group, Document No.
93-12-43, December 1993).

70 Digital Technical Journal Vol. 7 No. 2 1995

Biography

Owen H. Tallman
Currently employed by NetLinks Technology, Inc.,
of Nashua, New Hampshire, Owen Tallman worked
at Digital Equipment Corporation from 1983 through
1994. As a principal sofuvare engineer in the Networked
Systems Management Engineering group, he led Project
Gabriel. He was a management information architect
in the Enterprise Management Architecture group and
helped develop the POLYCENTERSoftware Distribution
product (formerly known as the Remote System Manager
[RSM] product). Owen holds a B.A. in computer science
from Regents College in Albany, New York, and is coauthor
of two pending patents on RSM technology. He is a mem­
ber of ACM.

Referees, March 1994
to January 1995

The editors acknowledge and thank the referees
who have participated in a peer review of the papers
submitted for publication in the Digital Technical
Journal. The referees' detailed reports have helped
ensure that papers published in the Journal offer
relevant and informative discussions of computer
technologies and products. The referees are computer
science and engineering professionals from academia
and industry, including Digital's consulting engineers.

Alan Abrahams, Digital
Brian Allison, Digital
Marco Annaratone, Digital
Nader Bagherzadeh, University of California, lroine
Kenneth Bates, Digital
Edward Benson, Digital
Thomas Benson, Digital
Dileep Bhandarkar, Digital
David L. Black, open Software Foundation
Kenneth M. Brown, Digital
Wayne Cardoza, Digital
Daniel Cobb, Digital
Seth Cohen, Digital
William V. Courtright II, Carnegie Mellon University
Neil Davies, Digital
Scott H. Davis, Digital
Wolfgang Deiters, Fraunhofer Institute
Hans de Jong, Digital
Alexis Delis, Queensland University of Technology
Jeremy Dion, Digital
Leonard Fehskens, Digital
John Forecast, Digital
Tryggve Fossum, Digital
Derek Frankforth, Forte Software
Les Gasser, University of Southern California
Jim Gray
Robert Gries, Digital
James Grochmal, Digital
William Grundmann, Digital
Robert Halstead, Digital
Charles Hammond, Digital
Mark Heinrich, Stanford University
Daniel Hirschberg, University of California, lroine
Paul Huntwork, Digital
Michael Kantrowitz, Digital
Brian Keane, Digital
Lawrence Kenah, Digital

I

Jeffrey S. Kuskin, Stanford University
William Laing, Digital
Edward Lee, Digital
Michael Leis, Digital
Debra Lelewer, California State Polytechnic University
Daniel E. Lenoski, Silicon Graphics Computer Systems
Thomas Levergood, Open Market, Inc.
Saul Levy, Rutgers University
Woody Lichtenstein, Silicon Graphics, Inc.
Peter Lucas, MAYA Design Group, Inc.
Christopher Marshall, Digital
Barry A. Maskas, Digital
John McDermott, Digital
William Michalson, Worcester Polytechnic Institute
J. Eliot B. Moss, University of Massachusetts
Rishiyur S. Nikhil, Digital
M. Tamer Ozsu, University of Alberta
David Patterson, University of California, Berkeley
Andrew Payne, Open Market, Inc.
Mary Payne, Digital
Stephen Root, Digital
Robert Rowlands, Digital
Howard Rubin, Hunter College
Paul Rubinfeld, Digital
Kenneth Salem, University of Waterloo
Will Sherwood, Digital
Allen Simons, Digital
Arnn Somani, University of Washington
Thomas Speer, Digital
Lawrence C. Stewart, open Market, Inc.
Jan te Kiefte, Digital
David Thiel, Digital
Peng Tu, University of Illinois
David Wecker, Digital
Lih Weng, Digital
Robert Willard, Digital
Richard Witek, Digital
Larry D. Wittie, State University of New York,

Stony Brook
Bruce L. Worthington, University of Michigan

Digital Technical Journal Vol. 7 No. 1 1995 71

Further Readings

The Digital Technical Journal is a refereed, quarterly
publication of papers that explore the foundations of
Digital's products and technologies.Journal content
is selected by the Journal Advisory Board, and papers
are written by Digital's engineers and engineering
partners. Engineers who would like to contribute
a paper to the Journal should contact the Managing
Editor, Jane Blake, at RDVAX::Bl.AKE or
blake@rdvax.enet.dec.com.

Topics covered in previous issues of the Digital
Technical Journal are as follows:

Database Integration, Alpha Servers & Workstations/
Alpha 21164 CPU
Vol. 7, No. 1, 1995, EY-Tl35E-TJ

RAID Array Controllers/Workflow Models/PC LAN
and System Management Tools
Vol. 6, No. 4, Fall 1994, EY-Tl 18E-TJ

AlphaServer Multiprocessing Systems/DEC OSF/1
Symmetric Multiprocessing/Scientific Computing
Optimization for Alpha
Vol. 6, No. 3, Summer 1994, EY-S799E-TJ

Alpha AXP Partners-Cray, Raytheon,
Kubota/DECchip 21071/21072 PCI Chip Sets/
DLT2000 Tape Drive
Vol. 6, No. 2, Spring 1994, EY-F947E-TJ

High-performance Networking/Open VMS AXP
System Software/ Alpha AXP PC Hardware
Vol. 6, No. 1, Winter 1994, EY-QO 11 E-TJ

Software Process and Quality
Vol. 5, No. 4, Fall 1993, EY-P920E-DP

Product Internationalization
Vol. 5, No. 3, Summer 1993, EY-P986E-DP

Multimedia/ Application Control
Vol. 5, No. 2, Spring 1993, EY-P963E-DP

DECnet Open Networking
Vol. 5, No. l, Winter 1993, EY-M770E-DP

Alpha AXP Architecture and Systems
Vol. 4, No. 4, Special Issue 1992, EY-J886E-DP

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, EY-J884E-DP

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EY-L521E-DP

72 Digital Technical Journal Vol. 7 No. 1 1995

I

PATHWORKS: PC Integration Software
Vol. 4, No. 1, Winter 1992, EY-J825E-DP

Image Processing, Video Terminals, and Printer
Technologies
Vol. 3, No. 4, Fall 1991, EY-H889E-DP

Availability in VAXcluster Systems/Network
Performance and Adapters
Vol. 3, No. 3, Summer 1991, EY-H890E-DP

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY-H876E-DP

Transaction Processing, Databases, and Fault-tolerant
Systems
Vol. 3, No. 1, Winter 1991, EY-F588E-DP

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E762E-DP

DECwindows Program
Vol. 2, No. 3, Summer 1990, EY-E756E-DP

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990, EY-Cl97E-DP

Compound Document Architecture
Vol. 2, No. I, Winter 1990, EY-Cl96E-DP

Distributed Systems
Vol. 1, No. 9, June 1989, EY-Cl79E-DP

Storage Technology
Vol. 1, No. 8, February 1989, EY-Cl66E-DP

CVAX-based Systems
Vol. 1, No. 7,August 1988, EY-6742E-DP

Software Productivity Tools
Vol. 1, No. 6, February 1988, EY-8259E-DP

VAXcluster Systems
Vol. 1, No. 5, September 1987, EY-8258E-DP

VAX 8800 Family
Vol. 1, No. 4, February 1987, EY-671 lE-DP

Networking Products
Vol. 1, No. 3, September 1986, EY-6715E-DP

MicroVAX II System
Vol. 1, No. 2, March 1986, EY-3474E-DP

VAX 8600 Processor
Vol. 1, No. 1, August 1985, EY-3435E-DP

Subscriptions and Back Issues

Subscriptions to the Digital Technical Journal are avail­
able on a prepaid basis. The subscription rate is $40.00
(non-U.S. $60.00) for four issues and $75.00 (non-U.S.
$115.00) for eight issues. Orders should be sent to Cathy
Phillips, Digital Equipment Corporation, 30 Porter Road
LJ02/Dl0, Littleton, Massachusetts 01460, U.S.A.,
Telephone: (508) 486-2538, Fax: (508) 486-2444.
Inquiries can be sent electronically to dtj@digital.com.
Subscriptions must be paid in U.S. dollars, and checks
should be made payable to Digital Equipment Corporation.

Single copies and past issues of the Digital Technical
Journal are available for $16.00 each by calling DECdirect
at 1-800-DIGITAL (1-800-344-4825). Recent back
issues of the Journal are available on the Internet at
http:/ /www.digital.com/info/DTJ/home.html.

Digital Research Laboratory Reports

Reports published by Digital's research laboratories
can be accessed on the Internet through the World
Wide Web or FTP. For access information on the
electronic or hard-copy versions of the reports, see
http:/ /www.research.digital.com/home.html.

Technical Papers by Digital Authors

N. Arora, R. Rios, and C. Huang, "Modeling the Polysilicon
Depletion Effect and Its Impact on Submicron CMOS
Circuit Performance," IEEE Transactions on Electron
Devices (May 1995).

D. Bhavsar and R . Fromm, "Testability Features and
Testability Access of the Alpha 21164 Microprocessor,"
Proceedings of the IEEE 1995 Custom Integrated
Circuits Conference(May 1995).

W. Bowhill et al., "A 300MHz 64b Quad-Issue CMOS
RISC Microprocessor," 1995 IEEE International Solid­
State Circuits Conference(February 1995).

J. Chen, "Clocking PLL Solutions for High Speed
Computers," 1995 International Symposium on VLSI
Technology, Systems, andApplications(June 1995).

T. Dalton, "Plasma Diagnostics: Monitoring and Control
of Plasma Tools," American Vacuum Society New
England Chapter 1995 Annual Symposium (June 199 5).

M. Davidson and N. Sullivan, "Monte Carlo Simulation
For CD SEM Algorithm Development," Proceedings of
the Society of Photo-optical Instrumentation Engineers
(SPIE)-lntegrated Circuit Metrology, Inspection, and
Process Control IX(February 1995).

M. Elbert and R. Howe, "Stress Testing Profiles- Which
Should I Use," Thirty-third Annual Spring IEEE Relativ­
ity Symposium (April 1995).

T. Hongsmatip and B. Twombly, "Dynamic Mechanical
Analysis of Silver/Glass Die Attach Material," Forty-fifty
Electronic Components and Technology Conference
(May 1995).

C . Huang, N. Arora, N. Khalil, B. Zetterlund, and L. Bair,
"Effects of Source/Drain Implants on Short-Channel
MOSFET 1-Vand C-V Characteristics," IEEE Transactions
on Electron Devices (July 199 5).

J. Kitchin, "Statistical Electromigration Budgeting for
Reliable Design and Verification in a 300-MHz Micropro­
cessor," 1995 Symposium on VLSI Circuits Digest of
Technical Papers(June 1995).

B. Mirman, "Translation of Stress States into Reliability
Terms for Single Chip Ceramic Packages," Transac­
tions of 1be American Society of Mechanical Engi­
neers (ASME)-Journal of Electronic Packaging
(December 1994).

A. Philipossian and H. Soleimani, "Determining the
Wafer Temperature in Atmospheric Thermal Silicon
Oxidation Reactors," Journal of the Electrochemical
Society(May 1995).

P. Rubinfeld, J. Edmondson, R. Preston, and V. Rajagopalan
"Superscaler Instruction Execution in the 21164 Alpha
Microprocessor," IEEEMicro(April 1995).

N. Sullivan and S. Arsenault, "SEM Review ofUnpatterned
Particle Monitor Wafers," Proceedings of the Society
of Photo-optical Instrumentation Engineers (SPIE)­
lntegrated Circuit Metrology, Inspection, and Process
Contro/JX(February 1995).

M. Tsuk and R. Evans, "Modeling and Measurement
of a High-Performance Computer Power Distribution
System," IEEE Transactions on Components, Packaging,
and Manufacturing Technology (November 1994).

E. Valcarce and G. Hogland, "The ESSENSE oflntrusion
Detection: A Knowledge-Based Approach to Security Moni­
toring and Control," Seventh International Conference
on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems (/EA/ AIE) (June 1994).

A. Villani and W. Clark, "Ceramic Strength and Weibull
Statistics Variation as a Function of Sample Size," Pro­
ceedings of the International /ntersociety Electronic
Packaging Conference (/nterpak '95) (March 199 5).

R . Walsh and C. Ozveren, "The Gigaswitch Control
Processor," IEEENetwork(January 1995).

A. Westerheim, A. Labun, J. Dubash, J. Arnold, H. Swain,
and V. Yu-Wang, "Substrate Bias Effects in High-Aspect­
Ratio Si02 Contact Etching Using an ICP Reactor,"
Journal of Vacuum Science and Technology
A- Vacuum, Surfaces, andFilms(June 1995).

Digital Press

Digital Press, the authorized publisher for Digital
Equipment Corporation, is an imprint of Butterworth­
Heinemann, a major international publisher of profes­
sional books and a member of the Reed Elsevier group.
The following are descriptions of computing titles avail­
able from Digital Press.

Digital Technical Journal Vol. 7 No. 1 1995 73

74

THE SQL SERVER HANDBOOK-A Guide to
Microsoft Database Computing
Ken England and Nigel Stanley, October 1995, paperback,
450 pages, ISBN 1-55558-152-8 ($34.95), EY-T818E-DP.

Microsoft SQL Server for Windows NT is fast becoming
the database server of choice for the Windows NT operat­
ing system. The latest release of Microsoft SQL Server,
Version 6.0, is a sophisticated database server with a wealth
of new capabilities including powerful graphical adminis­
tration of distributed servers, data replication across the
network, and many new performance tuning, administra­
tion, and data integrity options. SQL Server 6.0 will have
a significant impact on the database industry.

The SQL Seroer Handbook-A Guide to Microsoft
Database Computing is essential for anyone involved
in the procurement, training, design, administration,
implementation, and tuning ofSQL Server 6.0 databases.
Drawing on the authors' significant practical experience
with relational database management systems, this book
covers all the major topics necessary to gain a good under­
standing of the SQL Server, including the new features
in SQL Server 6.0. The book also provides information
on many other products in the Microsoft database family,
such as the Microsoft Access Upsizing Tool, Microsoft
ODBC, and the Jet database engine.

Database designers, administrators, programmers, and
newcomers to Microsoft SQ L Server will find this book
an indispensable reference for understanding and utilizing
the product. Database professionals studying for Microsoft
Certified Professional qualifications will also find this book
essential reading.

Ken England is ChiefExecutive of Database Technologies
Limited, a company specializing in database consulting,
product evaluation, and training. Nigel Stanley, formerly
at Microsoft as European Product Manager, responsible for
the Microsoft client server products, is now technical direc­
tor for JCS Solutions Ltd., a Microsoft solution provider.

ADVANCED ETHERNET/802.3 MANAGEMENT
AND PERFORMANCE, Second Edition
Bill Hancock, October 1995, paperback, 400 pages,
ISBN 1-55558-144-7 ($34.95), EY-Tl 40E-DP.

Advanced Ethernet/8023 Management and Perfor­
mance, Second &iition was designed for users of the
Ethernet/802.3 LAN- environment hardware and soft­
ware to answer the myriad questions that come up after
a network is installed. The book addresses questions such
as, when do you use bridges and routers to isolate traffic?
what are switching bridges and why are they necessary?
what are the rules for unshielded twisted-pair networks?
how do you know when the performance of the network
is suffering, and how do you collect data to prove it? what
is "heartbeat," and how is it set? The book also contains
information on many other topics essential to the day-to­
day management and control of the LAN. This second
edition includes information on the new Fast Ethernet
(lOOBASE-T) standard, the new 802.3 fiber standards, the
use of switching bridges to improve performance through
traffic isolation, and how to clearly identify proper settings
of"heartbeat."

Digital Technical Journal Vol. 7 No. l 1995

Dr. Bill Hancock is a well-known computer and network
consultant, designer, and engineer. He has designed and
reengineered networks for many of the Fortune 1000
as well as many international companies and governments.

ALPHA AXP ARCHITECTURE REFERENCE
MANUAL, Second Edition
Richard Sites and Richard Witek, September 1995,
paperback, 864 pages, ISBN 1-55558-145-5 ($49.95),
EY-Tl32E-DP.

Written by the co-designers of the Alpha architecture, the
Alpha AXP Architecture Reference Manual, Second
&iition is a major revision of the first edition. This book
includes the original material plus significant new informa­
tion and changes necessitated by the evolution of the Alpha
architecture since the writing of the first edition. The
second edition discusses the Windows NT PALcode archi­
tecture, 128-bit IEEE floating-point support, and bi-endian
support, and contains revised PCC information and console
interface section. The significant technical changes include
the clarification ofMxx FPCT operand and trap disable flags
and of system architecture and programming implications,
and the addition ofCVTST, WMB, and EXCB instructions.

INFORMATION TECHNOLOGY STANDARDS:
The Quest for the Common Byte
Martin Libicki, August 1995, hardcover, 432 pages (est.),
ISBN I -55558-131-5 ($59.95), EY-S422E-DP.

This book examines information technology standards
and discusses what they are, what they do, how they origi­
nate, and how they evolve. Standards are important in
improving system interoperability and thereby increasing
economic productivity, but they are unlikely to achieve
their full potential due to a variety of factors. Chief among
these factors is the politics of the standard process itself.
Libicki points out that the government is probably not
the best source for designing and promoting standards.
He breaks down many complex technical issues and pre­
sents them in a fashion that technical people can enjoy
and policy makers can understand.

Martin Libicki is a Senior Research Fellow at the National
Defense University in Washington, D.C.

SOFTWARE IMPLEMENTATION TECHNIQU ES:
Open VMS, UNIX, OS/2 and Wmdows NT
Don Merusi, September 1995, ISBN 1-55558-134-8,
paperback, 608 pages ($49.95), EY-Tl31E-DP.

Software Implementation Techniques: DpenVMS, UNIX,
OS/2 and Windows NT is a comparison of four operating
system platforms. The book provides software designers
with an introduction on how to migrate comparable pro­
gram functionality between the different platforms. The
book is designed to facilitate determining what is required
to implement a specific operating system function. The
topics covered include process and thread scheduling, syn­
chronization and concurrency primitives, file management,
memory management, performance, networking facilities,
and user interfaces.

Don Merusi has been a senior computer systems support
specialist for 22 years. Currently, he is responsible for
administering large-scale PC LANs using PATHWORKS,

Windows for Workgroups, and Windows NT. Mr. Merusi
is also an associate adjunct professor at the Hartford
Graduate Center and teaches courses on operating systems.

WRITING DEVICE DRIVERS:
Tutorial and Reference
Tim Burke, Mark A. Parenti, and Al Wojtas, April 1995,
paperback, 1,140 pages, ISBN 1-55558-141-2 ($69.95),
EY-S796E-DP.

Writing Device Drivers: Tutorial and Reference discusses
how to write device drivers for computer systems running
the Digital UNIX operating system (formerly called the
DEC OSF/ 1 operating system). By following the task­
oriented approach, the reader will acquire the skills neces­
sary to write OSF-based device drivers. The book provides
information on designing drivers, OSF-based data structures,
and OSF-based kernel interfaces, and contains source code
listings for the driver examples and a glossary. Mastery of
the concepts and examples presented in the book provides
a fundamental background for writing a variety of device
drivers, including disk and tape controllers and more spe­
cialized drivers such as array processors.

Tim Burke is a principal software engineer, Mark A. Parenti
is a consulting software engineer, and Al Wojtas is a prin­
cipal software technical writer, all at Digital Equipment
Corporation.

ALPHA IMPLEMENTATION AND
ARCHITECTURE
Dileep Bhandarkar, October 1995, paperback, 400 pages,
ISBN 1-55558-130-7 ($39.95), EY-Tl41E-DP.

Alpha Implementation and Architecture provides a com­
prehensive description of all major aspects of Alpha systems.
The book includes an overview of the history of RISC
development in the computer industry and at Digital,
the Alpha architecture, all the major processor chips, and
system implementations. The book covers RISC concept
and design styles, and provides an overview of other RISC
architectures and descriptions of the new SPARC, MIPS,
PowerPC, and PA-RISC microprocessors introduced in
1995. The book also discusses operating system porting
issues, compiler techniques, and binary translation. Prac­
ticing computer engineers and graduate students in com­
puter architecture will find this reference book invaluable
because it describes the trade-offs and design philosophy
that lead to the development of the Alpha architecture
and its implementation.

Dileep Bhandarkar was a senior consulting engineer at
Digital Equipment Corporation. He led the technical
direction and product strategy of Alpha Personal Systems,
Alpha and VAX Servers, and High Performance Comput­
ing. He was the architecture manager for MicroVAX, chief
architect for VAX vector processing, and co-architect of the
PRISM RISC architecture on which Alpha is based. He cur­
rently works for Intel Corporation.

OPENVMS SYSTEM MANAGEMENT GUIDE
Lawrence Baldwin, October 1995, paperback, 416 pages
(includes diskette), ISBN 1-55558-143-9 ($44.95),
EY-Tll9E-DP.

This book provides a comprehensive description of
Open VMS system management tasks and is geared toward
showing systems managers how to manage smarter by
automating wherever possible and being proactive rather
than reactive. Basic management procedures are not only
documented but also prioritized as to what should be done
and why. Specific procedures are provided to automate or
simplify system management tasks.

Lawrence Baldwin, an independent consultant, is the
President of System Management Technologies.

DESIGNING AND DEVEWPING ELECTRONIC
PERFORMANCE SUPPORT SYSTEMS
Lesley A. Brown, October 1995, paperback, 250 pages,
ISBN 1-55558-139-0 ($29.95), EY-Tl26E-DP.

Designing and Developing Electronic Performance
Support Systems describes the EPSS concept and provides
a systematic process for creating these systems. An EPSS
is a software context that integrates the support needed
to perform a job task-information, software, and expert
advice-with the actual job task or tasks. EPSSs provide this
support at the appropriate time and in the most appropri­
ate format. As corporations cut their training budgets and
realize the relevance of on-the-job support, there is grow­
ing acceptance of the EPSS as an alternative to classroom­
based training.

ED4 (EPSS Define, Design, Develop, and Deliver), a sys­
tematic approach to creating EPSS, is based on instructional
systems methodology, and was used at Digital Equipment
Corporation to create an EPSS "workbench" for training
consultants. This book describes ED4 and the process that
the instructional designers and software engineers used to
create the Learning Services Workbench. Interviews with
Digital's EPSS designers and developers showed that EPSSs
created using a systematic approach resulted in a creative,
robust, and job-relevant software product.

Lesley Brown is an instructional design contractor for
the Information Design and Consulting group at Digital
Equipment Corporation.

ADVANCED WORDPERFECT USING MACRO
POWER, A Guide for VMS and DOS Users
Sharilyn Due, September 1995, paperback, 400
pages (includes a DOS version 6.0 diskette), ISBN
1-55558-147-1 ($36.95), EY-T817E-DP.

Advanced WordPerfect Using Macro Power concentrates
on the use of macros for users of any version of WordPerfect
in the Open VMS and DOS environments. The book helps
the WordPerfect user save time and become more pro­
ductive through the use of macros. It covers a series of
advanced topics and then provides macro examples to auto­
mate the task. Explanations, screen captures, and keystroke
captures give the reader an easy-to-follow, step-by-step
procedure. After providing an example macro for a task,
the author offers other possibilities for reader-created
macros. The book covers a diverse range of applications
and includes a thorough treatment of how to create, edit,
and debug macros.

Digital Technical Journal Vol. 7 No. I 1995 75

76

Recent Digital
U.S. Patents

The following patents were recently issued to Digital
Equipment Corporation. Titles and names supplied
to us by the U.S. Patent and Trademark Office are
reproduced exactly as they appear on the original
published patent.

D335,501
D337,760

D341,826

5,208,518
5,210,741
5,210,829
5,210,837

5,212,788

5,214,553

5,216,556

5,220,604

5,222,197

5,224,106
5,224,163

5,225,833
5,226,150

5,226,966

5,227,778

5,228,083

5,229,575

5,230,044

5,231,552
5,233,616
5,235,211

R. Faranda
G. Schneider

M. J. Falkner, R. Hanson, K. Korellis,
and C. Danemayer
H. Grapenthin and H . Haug
R. Grochmal
H. Bitner
C. Wiecek

D. I..omet, P. Bernstein, J. Johnson,
and K. Wilner
K. Kan, G. Saliba, and R . Nute

M. Steinberg and G. Saliba

M. Gasser, A. Goldstein, and
C. Kaufman
H. Teng, K. Chen, M. Wilson,
M. Verdeven, and G. Abbruzzese
L. Weng
M. Gasser, A. Goldstein, C . Kaufman,
and B. Lampson
E. Fisher and P. Gilbert
D. Sanders, M. Callander, and L. Chao

K. Ishibashi, H. Sato, and M. Mallary

G. Visser and J. Vacon

P. I..ozowick and S. Ben-Michael

D. Waller, L. Colella, and R . Pacheco

X. Cao,A. Mohammad, N . Quaynor,
and F. Colon-Osorio
G. Schneider and K. Paulat
M. Callander
W. H amburgen

Digital Techrucal Journal Vol. 7 No. 1 1995

I

Printer Enclosure
Combined Media Cartridge Loader and Associated
Magazine
Computer Enclosure

DC-DC Boost Converter for Spindle Motor Control
Low Cost ISDN Switch
Adjustable Threshold for Buffer Management
Methods and Apparatus for Transforming Machine
Language Program Control into High-level Language
Constructs by Manipulating Graphical Program
Representations
System and Method for Consistent Timestamping in
Distributed Computer Databases
Magnetic Contact Recording Head for Operation with
Tapes ofVarying Thicknesses
Method for Optimized Tape Tension Adjustment for
a Tape Drive
Method for Performing Group Exclusion in Hierarchical
Group Structures
Rule Invocation Mechanism for Inductive Learning Engine

Multi-level Error Correction System
Method for Delegating Authorization from One Entity
to Another through the Use of Session Encryption Keys
Character Encoding
Apparatus for Suppressing an Error Report from an
Address for Which an Error Has Already Been Reported
Apparatus for Providing Uniaxial Anistrophy in a Magnetic
Recording Disk (This case was combined with 90-0812.
Japan claims partial priority. Mallary added.)
Service Name to Network Address Translation in
Communications Network
Cryptographic Processing in a Communication Network,
Using a Single Cryptographic Engine
Thermode Structure Having an Elongated, Thermally
Stable Blade
Arbitration Apparatus for Shared Bus

Magazine and Receiver for Media Cartridge Loader
Write-back Cache with ECC Protection
Semiconductor Package Having Wraparound Metallization

5,235,644

5,237,662

5,237,673

5,239,423

5,239,493

5,239,630

5,240,740

5,241,621

5,243,592

5,246,294
5,247,510

5,247,522
5,247,524
5,249,090

5,251,205

5,251,310

5,253,203
5,255,381

5,261,059

5,261,066

5,261,097

5,262,344

5,263,127

5,263,144

5,263,160

5,265,104
5,265,229

5,267,349

5,272,394
5,274,783
5,276,852

5,276,863

A. Gupta, J. Tardo, C. Kaufman,
B. Lampson, W. Hawe, M. Kempf,
M. Gasser, and B. J. Herbison
K. Green, S. Jenness, and T. Carruthers

D. A. Orbits, K. D. Abramson, and
H.B. Butts
S. Sadowski

S. Sherman

X. Cao, M. Abidi, N . Quaynor, R. Lary,
and F. Colon-Osorio
K. Frey and M. Mallary

R. Smart

R. Perlman and G. Harvey

C. Pan
N. Lee, Q . Lam, and P. Van Roekens

F. Reiff
R. Callon
W. Fehse

R. Callon, E. Rosen, R. Perlman,
and J. Harper
N. Warchol, D. Smelser, and G. Lidington

H. Partovi and M. Case
T. P. Fissette, K. Chinnaswamy,
H. A. Collins, M. B. Evans, M.A. Gagliardo,
J. J. Lunch, and J. E. Tessari
W. Hedberg, M. Halvorson, D. Ellsworth,
R. Lewis, P. Brooks, and G. Mendelsohn
N. P. Juoppi and R. A. Eustace

P. D. Saxon

K. R. Mistry

W. Barabash, S. A. Kirk, W. S. Yerazunis,
and K. A. Gilbert
R . Ramanujan, J. DeRosa, J. H. Zurawski

J. A. Porter, D. E. Matthews, and
D. E.Haugh

L. Weng
B. K. Sareen

W. Barabash, S. A. Kirk, and W. S. Yerazunis

J. Kirk and J. Barrett
K. A. House, J. Kirk, and L. Narhi
D. Sanders and M. Callander

G. K. Heider

Probabilistic Cryptographic Processing Method (This case
was combined with PD90-0295.)

System and Method with a Procedure Oriented
Input/Output Mechanism
Memory Management Method for Coupled Memory
Multiprocessor Systems
Method and Apparatus for Converting Analog Signals
into Digital Signals
Method and Apparatus for Interpreting and Organizing
Timing Specification Information
Shared Bus Arbitration Apparatus Having a Deaf Node

Method of Making a Thin Film Head with Minimized
Secondary Pulses
Management Issue Recognition and Resolution
Knowledge Processor
Method and Apparatus for Distance Vector Routing
on Datagram Point-to-Point Links
Flow-regulating Hydrodynamic Bearing
Increasing Storage Density of Optical Data Media by
Detecting a Selected Portion of a Light Spot Image
Corresponding to a Single Domain
Fault Tolerant Bus
Method for Generating a Checksum
Disk Storage with Device for Fixing the Disk Pack on Its
Hub Such That It Can Be Removed
Multiple Protocol Routing

Method and Apparatus for Exchanging Blocks of
Information between a Cache Memory and a Main Memory
Subarray Architecture with Partial Address Translation
Mode Switching for a Memory System with a Diagnostic
Scan

Crossbar Interface for Data Communication Network

Data Processing System and Method with Small Fully
Associative Cache and Prefetch Buffers
Computer System and Method for Executing Command
Scripts Using Multiple Synchronized Threads
N-Channel Clamp for ESD Protection in Self-aligned
Silicided CMOS Process
Method for Fast Rule Execution of Expert Systems

Method and Apparatus for Sharing Data between
Processors in a Computer System
Augmented Doubly Linked List Search and Management
Method for a System H aving Data Stored in a List of Data
Elements in Memory
Data Storage System including Redundant Storage Devices
Single Load, Multiple Issue Queue with Error Recovery
Capability
Fast Determination of Subtype Relationship in a Single
Inheritance Type Hierarchy
Wide Bandwidth Peak Follower Circuitry
SCSI Interface Employing Bus Extender and Auxiliary Bus
Method and Apparatus for Controlling a Processor Bus
Used by Multiple Processor Components during Writeback
Cache Transactions
Computer System Console

Digital Technical Journal Vol. 7 No. 1 1995 77

78

5,276,868

5,276,877

5,277,756
5,278,727

5,278,829

5,280,610

5,283,571

5,283,875

5,285,323

5,285,347
5,289,409
5,289,567

5,291,491
5,291,497

5,301,163

5,303,265

5,303,362

5,304,845

5,305,161

5,305,305
5,305,306

5,307,468

5,307,479

5,307,504

5,307,506

5,309,437
5,313,581

5,313,623

5,314,596

5,315,657

5,317,718
5,317,719

N. T. Poole

K. S. Friedrich and A. R. Bousquet

J.B. Dion
S. M. Westbrook and G. Howell

K.J. Dunlap

R. L. Travis, A. P. Wilson, N. F. Jacobson,
M. J. Renzullo, and A. N. Ewald
H . Yang, G. P. Koning, W. R. Hawe,
and J. D. Hutchison
W. Thorsted, R . Lary, K. Gibson,
and J. Jackson
R. C. Hetherington, F. X. McKeen,
J. D. Marci, T. Fossum, and J. S. Erner
P. C. Wade and L. Fox
R. Reinschmidt
J. W. Roth

J. D. Hutchison and H. S. Yang
E. G. Ulrich, K. P. Lentz, and M. M. Gustin

S. C. Sullivan and R. M. Reinschmidt

P. T. McLean

D. A. Orbits, K. D. Abramson, and
H.B. Butts
S. E. Lindquist and D. A. Bailey

M. Giovanetti, K. Vesesk.is, B. Rub,
andF. Zayas
F. Dolan and J. A. Harper
H. S. Yang, W. R. Hawe, and B. S. Spinney

T. Schlage

E. Ulrich and K. Lentz

S. G. Robinson and R. L. Sites

R. P. Colwell, J. O'Donnell, D. B. Parworth,
and P. K. Rodman
R. J. Perlman and G. P. Koning
D. Giokas and A. Leskowitz

K. Chinnaswamy, H. A. Collins,
M. B. Evans, M.A. Gagliardo, J. J. Lynch,
J. E. Tessari, and T. P. Fissette
H. B. Shukovsky, S. Batra, and M. L. Mallary

M. Abadi, A. C . Goldstein, and
B. W. Lampson
N. Jouppi
B. A. Rozmovits

Digital Technical Journal Vol. 7 No. I 1995

Method and Apparatus for Pointer Compression in
Structured Databases
Dynamic Computer System Performance Modeling
Interface
Post Fabrication Processing of Semiconductor Chips
High Density Electrical Interconnection Device and
Method Therefor
Reduced Broadcast Algorithm for Address Resolution
Protocol
Methods and Apparatus for Implementing Data Bases
to Provide Object-oriented Invocation of Applications
Testing a Communications Network for Duplicate Station
Addresses
Methods and Apparatus for Optimizing Prefetch Caching
by Reverse Ordering of Logical Blocks
Integrated Circuit Chip Having Primary and Secondary
Random Access Memories for a Hierarchical Cache
Hybrid Cooling System for Electronic Components
Bipolar Transistor Memory Cell and Method
Computer Apparatus and Method for Finite Element
Identification in Interactive Modeling
Avoidance of False Re-initialization of a Computer Network
Method for Testing, Debugging, and Comparing
Computer Programs Using Concurrent Simulation
of Program Paths
Memory Selection/ Deselection Circuitry Having
a Wordline Discharge Circuit
Frequency Independent Encoding Technique and
Apparatus for Digital Communications
Coupled Memory Multiprocessor Computer System
including Cache Coherency Management Protocols
Apparatus for an Air Impingement Heat Sink Using
Secondary Flow Generators
Adaptive Track Seeking for Disk Drives

Message Swiching Network Monitoring
Station-to-Station Full Duplex Communication in a Token
Ring Local Area Network
Data Processing System and Process for Controlling the
Latter As Well As a CPU Board
Method for Multi-Domain and Multi-Dimensional
Concurrent Simulation Using a Digital Computer
System and Method for Preserving Instruction Granularity
When Translating Program Code from a Computer
Having a First Architecture to a Computer Having
a Second Reduced Architecture during the Occurrence
oflnterrupts Due to Asynchronous Events
High Bandwidth Multiple Computer Bus Apparatus

Bridge-like Internet Protocol Router
System and Method for Communication between
Windowing Environments
Method and Apparatus for Performing Diagnosis Scanning
of a Memory Unit Regardless of the State of the System
Clock and without Affecting the Store Data
Magnetic for Fabricating Magnetic Film Recording Head
for Use with a Magnetic Recording Media
Compound Principals in Access Control Lists

Data Processing System and Method with Prefetch Buffers
Data Format for Packets oflnformation

Call for Authors
from Digital Press

Digital Press is a n i mprint of Butterworth - H einemann, a major international pub­
l isher of professional books and a member of the Reed Elsevier group. Digital
Press is the authori zed pu bl isher for Digital Equipment Corporation: The two
companies are worki ng in partnership to identi fY and publish new books u nder the
D igital Press i mpri nt a nd create opportu nities tor authors to publish their work .

D igital Press is commi tted to publ ishing high-qual ity books on a wide variety
of s u bj ects. We wou l d l ike to hear from you if you are writing or thin ki n g about
wri ti ng a book.

Contact: Mike Cash , Digital Press Manager, or
Liz McCarthy, Assistant Editor

DIG ITAL PRESS
3 1 3 Washington Street
Newton, MA 02 1 5 8 - 1 62 6
U.S .A .
Tel : (6 1 7) 928 -2649, Fax : (6 1 7) 928-2640
E-mai l : Mike . Cash@BHein . rel .co.uk or

LizMc@world .std .com

mamaamaTM

ISSN 0898 - 9 0 1 X

Printl'll in U .S A . 1-:Y- U O O I 1-: T)/95 09 1 4 1 6.0 Copyright �) Digital Equipmenr Corpor.nion . A l l Rights RL·savcd .

	Front cover
	Contents
	Editor's Introduction
	Foreword
	DEC FUSE: Building a Graphical Software Development Environment from UNIX Tools
	Adding a Data Visualization Tool to DEC FUSE
	Multivendor lntegration Architecture: Standards, Compliance Testing, and Applications
	Integrating Applications with Digital's Framework-based Environment
	Project Gabriel: Automated Software Deployment in a Large Commercial Network
	Referees, March 1994 to January 1995
	Further Readings
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover

