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Editor's 
Introduction 

This issue's opening section fearures 
audio and video technologies that 
exploit the power ofDigital's 64-bit 
RISC Alpha systems. Papers describe 
new software and hardware designs 
that make practical such applications 
as text-to-speech conversion and full­
motion video on the desktop. A sec­
ond set of papers shifts the focus to 
the UNIX environment with discus­
sions of high-availability services and 
of Encore Computer Corporation's 
new real-time debugging tool. 

The opening paper for the audio 
and video section references an audio 
technology that physicist Stephen 
Hawking uses to convert the text 
he types to highly intelligible syn­
thetic speech. Recently, engineers 
have ported this mature 10-year-
old hardware technology, called 
DECtalk, to text-to-speech software. 
Bill Hallahan explains that the com­
putational power ofDigital's Alpha 
systems now makes it possible for a 
software speech synthesizer to simul­
taneously convert many text streams 
to speech without overloading a work­
station. After reviewing relevant speech 
terminology and popular synthesis 
techniques, he describes D ECtalk 
Software multithreaded processing 
and the new text-to-speech applica­
tion programming interface for 
UNIX and NT workstations. 

Video technologies-full-motion 
video on workstations-also capital­
ize on the high performance of Alpha 
systems. In the first of four papers 
focused on digital video, Ken Correll 
and Bob Ulichney present the J300 
video and audio adapter architecrure. 
To improve on past full-motion video 
implementations, designers sought 
to allow video data to be treated the 
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same as any other data type in a work­
station. The authors review the J300 
fearures, including a versatile color­
map rendering system, and the sub­
system design decisions made to keep 
product costs low. 

Victor Bahl then presents the J300 
software that controls the hardware. 
The challenge for software designers 
was to obtain real-time performance 
from a non-real-time operating sys­
tem. A description of the video sub­
system highlights the video library 
and an innovative use of queues in 
achieving good performance. This 
software architecrure has been imple­
mented on Open VMS, Windows NT, 
and Digital UNIX platforms. 

A third paper on video technology 
looks at delivering video without spe­
cialized hardware, that is, a software­
only architecrure for general-purpose 
computers that provides access to 
video codecs and renderers through 
a flexible application programming 
interface. Again, faster processors 
make a software-only solution possi­
ble at low cost. Authors Victor Bahl, 
Paul Gauthier, and Bob Ulichney 
preface the paper with an overview 
of industry-standard codecs and 
compression schemes. They then 
discuss the creation of the software 
video library, its architecrure, and 
its implementation of video render­
ing that parallels the J300 hardware. 

The final paper in the audio and 
video technologies section explicitly 
raises the question of what fearures 
arc best implemented in hardware 
and what in software. The context for 
the question is a graphics accelerator 
chip design that integrates traditional 
synthetic graphics features and video 
image display fearures- until now, 
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implemented separately. Larry Seiler 
and Bob Ulichney describe the video 
processing implemented differently 
in two chips, both of which offer sig­
nificantly higher performance with 
minimal additional logic. 

The common theme of our second 
section is the UNIX operating system. 
Larry Cohen and John Williams pre­
sent the DECsafe Available Server 
Environment (ASE), which provides 
high availability for applications run­
ning on Digital UNIX systems. They 
describe the ASE design for detection 
and dynamic reconfiguration around 
host, storage device, and network fail­
ures, and review key design trade-offs 
that favored software reliability and 
data integrity. 

Mike Palmer and Jeff Russo then 
contrast Encore Computer Corpora­
tion's set of debug and analysis tools 
for real-time applications, called 
Parasight, with conventional UNIX 
tools. They examine the fearures that 
are critical in an effective real-time 
debugging tool, for example, the abil­
ity to attach to a running program 
and to analyze several programs simul­
taneously. A description follows of 
the Parasight product, which includes 
the fearures necessary for real-time 
debug and analysis in a set of graphi­
cal user interface tools. 

Upcoming in our next issue arc 
papers on a variety of topics, incl ud­
ing Digital UNIX clusters, eXcursion 
for NT, and network services. 

Jane C. Blake 
Managing Editor 



Foreword 

Robert A. Ulichney 
Senior Consulting Engineer 
Research and Advanced Development, 
Cambridge Research Lab 

"Can you dig it ... New York State 
Throughway's closed, Man. Far 
out, Man," announced a young Ario 
Guthrie in the vernacular on the stage 
at Woodstock in 1969. Reading these 
words may evoke a mental picture of 
the event, but it sure is a lot more fun 
to hear and see Ario deliver this mes­
sage. Audio and video technology is 
the featured theme of this issue of the 
Digital Technical Journal. 

Four years before Ario's traffic 
report, in the year that a young Digital 
Equipment Corporation introduced 
the PDP-8, an interesting forecast 
was made. Gordon Moore, who was 
yet to co-found Intel, asserted in a lit­
tle-noticed paper that the power and 
complexity of the silicon chip would 
double every year (later revised to 
every 18 months). This prediction 
has been generally accurate for 30 
years and is today one of the most 
celebrated and remarkable "laws" 
of the computer industry. 

While we enjoyed this exponential 
hardware ride, there was always some 
question about the ability of applica­
tions and software to keep up. If any­
thing, the opposite is true. Software 
has been described as a gas that imme­
diately fills the expanding envelope 
of hardware. Ever since the hardware 
envelope became large enough to 
begin to accommodate crude forms 
of audio and video, the pressure of the 
software gas has been great indeed. 
Digitized audio and video represent 
enormous amounts of data and stress 
the capacities of real-time processing 
and transmission systems. 

Digital has participated in expand­
ing the envelope and in filling it; 

its hardware performance is record­
breaking and its audio and video tech­
nologies are state-of-the-art. Looking 
specifically at the four categories into 
which computer companies segment 
audio and video technologies, Digital 
is making contributions in each of 
these: analysis, synthesis, compression, 
and input/output. 

MIT's Nicholas Negroponte 
believes that practical analysis, or 
interpretation, of digitized audio and 
video will be the next big advance in 
the computer industry, where noth­
ing has changed in human input (key­
board and pointing device) since, well, 
the Woodstock era. Digital is actively 
investigating methods for speaker­
independent speech recognition and, 
in the area of video analysis, means 
to automatically detect, track, and 
recognize people. 

The synthesis of still and motion 
video, more commonly referred to as 
computer graphics, has traditionally 
been a much larger area of focus than 
the handling of sampled video. Syn­
thesis of audio, or text-to-speech 
conversion, is the topic of one of 
the papers in this issue; DECtalk is 
largely considered to be the best 
such synthesis mechanism available. 

When audio or video data are rep­
resented symbolically, as is the case 
after analysis, or prior to synthesis, 
a most efficient form of compression 
is implicitly employed. However, the 
task of storing or transmitting the raw 
digitized signal can be overwhelm­
ing, especially at high sampling rates. 
Compression techniques are relied 
upon to ease the volume of this data 
in two ways: ( 1) reducing statistical 
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redundancy and (2) pruning data that 
will not be noticed by exploiting what 
is known about human perceptual 
systems. In this climate of interoper­
ability and open systems, Digital 
recognizes the importance of adher­
ing to accepted standards for audio 
and video compression versus the 
promotion of some proprietary 
representation. 

The last category is that of 1/0. 
Audio and video input require a 
means for signal acquisition and 
analog-to-digital conversion. The 
focus here is on preserving the integ­
rity of the signal as opposed to inter­
preting the data. Proper rendering 
is needed for good-quality output, 
along with digital-to-analog con­
version. For both audio and video, 
trade-offs must be made to accom­
modate the highest degree of sampling 
resolution in time and amplitude. 

Digital is a leader in the area of 
video rendering with our AccuVideo 
technology, aspects of which are 
described in part in three papers in 
this issue. Video rendering incorpo­
rates all processing that is required to 
tailor video to a particular target dis­
play. This includes scaling and filter­
ing, color adjustment, dithering, and 
color-space conversion from video's 
luminance-chrominance represen­
tation to RGB. In its most general 
form, Digital's rendering technology 
will optimize display quality given 
any number of available colors. 

The earliest form of AccuVideo 
appeared in a 1989 testbed, known 
internally as Pictor. This led to the 
widely distributed research prototype 
called Jvideo in 1991. Jvideo was 
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a TURBOchannel bus option with 
JPEG compression and decompres­
sion and was the first prototype to 
combine dithering with color-space 
conversion. Jvideo was the basis for 
design of the Sound & Motion J300 
product, which included a remarkably 
improved dither method. A follow-on 
to J300 is a PCI-bus version called 
FullVideo Supreme. 

In products that render RGB data 
instead of video, Digital's rendering 
technology is referred to as AccuLook; 
except for this one difference, the rest 
of the rendering pipeline is identical 
to AccuVideo. AccuLook products 
include graphics options for work­
stations: ZLX-E (SFB+) designed for 
the TURBOchannel and ZLXp-E 
(TGA) designed as an entry-level 
product for the PCI bus. 

AccuVideo rendering is a key 
feature in the DECchip 21130 
PC graphics chip and in the TGA2 
high-end workstation graphics chip. 
While noted for its high image qual­
ity, AccuVideo is also efficiently 
implemented in software; it is avail­
able as part of a tool kit with every 
Digital UNIX, Open VMS, and 
Windows NT platform. 

With Moore's law on the loose, 
it can be argued that hardware imple­
mentations of video rendering are 
not justified as software-only versions 
grow in speed. Although today's pro­
cessors can indeed handle the play­
back of video by both decompressing 
and rendering at a quarter of full size, 
little is left for doing anything else. 
Moreover, users will want to scale 
up the display sizes, and perhaps add 
multiple video streams- and still be 
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able to use their processors to do 
other things. For the near term, hard­
ware video rendering is justified. 

The five papers that make up the 
audio and video technology theme 
of this issue are but a small sampling 
of the work under way in this area 
at Digital; look for more papers to 
follow in subsequent issues of this 
Journal. As the audio and video gas 
continues to fill the ever-expanding 
hardware envelope, we look forward 
to an enriched and more natural 
experience with computing devices. 
Ario's Woodstock pals would likely 
agree that this sounds like more fun. 



DECtalk Software: 
Text-to-Speech 
Technology and 
Implementation 

DECtalk is a mature text-to-speech synthesis 
technology that Digital has sold as a series of 
hardware products for more than ten years. 
Originally developed by Digital's Assistive 
Technology Group (ATG) as an alternative to 
a character-cell terminal and for telephony 
applications, today DECtalk also provides visu­
ally handicapped people access to information. 
DECtalk uses a digital formant synthesizer to 
simulate the human vocal tract. Before the 
advent of the Alpha processor, the computa­
tional demands of this synthesizer placed 
an extreme load on a workstation. DECtalk 
Software has an application programming 
interlace (API) that is supported on multiple 
platforms and multiple operating systems. 
This paper describes the various text-to-speech 
technologies, the DECtalk Software architecture, 
and the API. The paper also reports our experi­
ence in porting the DECtalk code base from the 
previous hardware platform. 

11 
William I. Hallahan 

During the past ten years, advances in computer power 
have created opportunities for voice input and out­
put. Many major corporations, including Digital, 
provide database access through the telephone. The 
advent of Digital's Alpha processor has changed the 
economics of speech synthesis. Instead of an expen­
sive, dedicated circuit card that supports only a single 
channel of synthesis, system developers can use an 
Alpha-based workstation to support many channels 
simultaneously. In addition, since text-to-speech con­
version is a light load for an Alpha processor, applica­
tion developers can freely integrate text to speech into 
their products. 

Digital's DECtalk Software provides natural-sound­
ing, highly intelligible text-to-speech synthesis. It is 
available for the Digital UNIX operating system on 
Digital's Alpha-based platforms and for Microsoft's 
Windows NT operating system on both Alpha and 
Intel processors. DECtalk Software provides an easy­
to-use application programming interface (API) that is 
fully integrated with the computer's audio subsystem. 
The text-to-speech code was ported from the software 
for the DECtalk PC card, a hardware product made by 
Digital's Assistive Technology Group. This software 
coqstitutes over 30 man years of development effort 
and contains approximately 160,000 lines of C pro­
gramming language code. 

This paper begins by discussing the features of 
DECtalk Software and briefly describing the various 
text-to-speech technologies. It then presents a descrip­
tion of the DECtalk Software architecture and the 
API. Finally, the paper relates our experience in port­
ing the DECtalk code base. 

Features of DECtalk Software 

The DECtalk Software development kit consists of a 
shared library ( a dynamic link library on Windows 
NT), a link library, a header file that defines the sym­
bols and functions used by DECtalk Software, sample 
applications, and sample source code that demon­
strates the APL 
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DECtalk Software supports nine preprogrammed 
voices: four male, four female, and one child's voice. 
Both the API and in-line text commands can control 
the voice, the speaking rate, and the audio volume. 
The volume command supports stereo by providing 
independent control of the left and right channels. 
Other in-line commands play wave audio files, gen­
erate single tones, or generate dual-tone multiple­
frequency (DTMF) signals for telephony applications. 

Using the text-to-speech API, applications can play 
speech through the computer's audio system, write 
the speech samples to a wave audio file, or write the 
speech samples to buffers supplied by the application. 
DECtalk Software produces speech in 3 audio formats: 
16-bit pulse code modulation (PCM) samples at an 
ll,025-hertz (Hz) sample rate, 8-bit PCM samples at 
an ll,025-Hz sample rate, and µ-law encoded 8-bit 
samples at an 8,000-Hz sample rate. The first two for­
mats are standard multimedia audio formats for per­
sonal computers (PCs). The last format is the standard 
encoding and rate used for telephony applications. 

The API can also load a user-generated dictionary 
that defines the pronunciation of application-specific 
words. The development kit provides a window-based 
tool to generate these dictionaries. The kit also con­
tains a window-based application to speak text and an 
electronic mail-notification program. Sample source 
code includes a simple window-based application that 
speaks text, a command line application to speak text, 
and a speech-to-memory sample program. 

The version ofDECtalk Software for Windows NT 
also provides a text-to-speech dynamic data exchange 
(DDE) server. This server integrates with other appli­
cations such as Microsoft Word. Users can select text 
in a Word document and then proofread the text 
merely by clicking a button. This paper was proofread 
using DECtalk Software running a native version of 
Microsoft Word on an AlphaStation workstation. 

Speech Terms and DECtalk Software 

Human speech is produced by the vocal cords in the 
larynx, the trachea, the nasal cavity, the oral cavity, the 
tongue, and the lips. Figure 1 shows the human 
speech organs. The glottis is the space between the 
vocal cords. For voiced sounds such as vowels, the 
vocal cords produce a series of pulses of air. The pulse 
repetition frequency is called the glottal pitch. The 
pulse train is referred to as the glottal waveform. The 
rest of the articulatory organs filter this waveform.' 
The trachea, in conjunction with the oral cavity, the 
tongue, and the lips, acts like a cascade of resonant 
tubes of varying widths. The pulse energy reflects 
backward and forward in these organs, which causes 
energy to propagate best at certain frequencies. These 
are called the formant frequencies. 
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Figure 1 
The Speech Organs 

The primary discrimination cues for different vowel 
sounds are the values of the first and second formant 
frequency. Vowels are either front, mid, or back vow­
els, depending on the place of articulation. They are 
either rounded or unrounded, depending on the posi­
tion of the lips. American English has 12 vowel 
sounds. Diphthongs are sounds that change smoothly 
from one vowel to another, such as in boy, bow, and 
bay. Other voiced sounds include the nasals m, n, and 
ng (as in ing). To produce nasals, a person opens the 
velar flap, which connects the throat to the nasal cavity. 
Liquids are the vowel-like sounds land r. Glides are 
the sounds y ( as in you) and w ( as in we). 

Breath passing through a constriction creates tur­
bulence and produces unvoiced sounds. f and s are 
unvoiced sounds called fricatives. A stop ( also called a 
plosive) is a momentary blocking of the breath 
stream followed by a sudden release. The consonants 
p, b, t, d, k, and g are stop consonants. Opening the 
mouth and exhaling rapidly produces the consonant 
h. The h sound is called an aspirate. Other conso­
nants such asp, t, and k frequently end in aspiration, 
especially when they start a word. An affricative is a 
stop immediately followed by a fricative. The English 
sounds ch ( as in chew and j ( as in Jar) are affricates. 

These sounds are all American English phonemes. 
Phonemes are the smallest units of speech that distin -
guish one utterance from another in a particular 
language.2 An allophone is an acoustic manifestation 
of a phoneme. A particular phoneme may have many 
allophones, but each allophone (in context) will 
sound like the same phoneme to a speaker of the lan -
guage that defines the phoneme. Another way of say­
ing this is, if two sounds have different acoustic 
manifestations, but the use of either one does not 
change the meaning of an utterance, then by defini­
tion, they are the same phoneme. 



Phones are the sets of all phonemes and allophones 
for all languages. Linguists have developed an interna­
tional phonetic alphabet (IPA) that has symbols for 
almost all phones. This alphabet uses many Greek 
letters that are difficult to represent on a computer. 
American linguists have developed the Arpabet 
phoneme alphabet to represent American English 
phonemes using normal ASCII characters. DECtalk 
Software supports both the IPA symbols for American 
English and the Arpabet alphabet. Extra symbols are 
provided that either combine certain phonemes or 
specify certain allophones to allow the control of fine 
speech features. Table 1 gives the DECtalk Software 
phonemic symbols. 

Speech researchers often use the short-term spec­
trum to represent the acoustic manifestation of a 
sound. The short-term spectrum is a measure of the 
frequency content of a windowed (time-limited) por­
tion of a signal. For speech, the time window is typi­
cally between 5 milliseconds and 25 milliseconds, and 

Table 1 
DECtalk Software Phonemic Symbols 

Consonants Vowels and Diphthongs 

b bet aa Bob 

ch chin ae bat 

d debt ah but 
dh this ao bought 

el bottle aw bout 
en button ax about 

f fin ay bite 
g guess eh be 
hx head ey bake 
jh gin ih bit 
k Ken ix kisses 

let iy beat 

m met OW boat 
n net oy boy 
nx sing rr bird 

p pet uh book 

r red uw lute 

s sit yu cute 
sh shin Allophones 
t test dx rider 

th thin Ix electric 

v vest q we eat 
w wet rx oration 
yx yet tx Latin 
z zoo Silence 
zh azure _ (underscore) 

the pitch frequency of voiced sounds varies from 80 
Hz to 280 Hz. As a result, the time window ranges 
from slightly less than one pitch period to several pitch 
periods. The glottal pitch frequency changes very little 
in this interval. The other articulatory organs move 
so little over this time that their filtering effects do 
not change appreciably. A speech signal is said to be 
stationary over this interval. 

The spectrum has two components for each fre­
quency measured, a magnitude and a phase shift. 
Empirical tests show that sounds that have identical 
spectral magnitudes sound similar. The relative phase 
of the individual frequency components plays a lesser 
role in perception. Typically, we perceive phase differ­
ences only at the start of low frequencies and only 
occasionally at the end of a sound. Matching the spec­
tral magnitude of a synthesized phoneme (allophone) 
with the spectral magnitude of the desired phoneme 
( taken from human speech recordings) always 
improves intelligibility.3 This is the synthesizer calibra­
tion technique used for DECtalk Software. 

A spectrogram is a plot of spectral magnitude slices, 
with frequency on the y axis and time on the x axis. 
The spectral magnitudes are specified either by color 
or by saturation for two-color plots. Depending on the 
time interval of the spectrum window, either the pitch 
frequency harmonics or the formant structure of 
speech may be viewed. It is even possible to ascertain 
what is said from a spectrogram. Figure 2 shows spec­
trograms of both synthetic and human speech for the 
same phrase. The formant frequencies are the dark 
regions that move up and down as the speech organs 
change position. Fricatives and aspiration are charac­
terized by the presence of high frequencies and usually 
have much less energy than the formants. 

The bandwidth of speech signals extends to over 
10 kilohertz (kHz) although most of the energy is 
confined below 1,500 Hz. The minimum intelligible 
bandwidth for speech is about 3 kHz, but using this 
bandwidth, the quality is poor. A telephone's band­
width is 3.2 kHz. The DECtalk PC product has a 
speech bandwidth just under 5 kHz, which is the same 
as the audio bandwidth of an AM broadcast station. 
The sample rate of a digital speech system must be at 
least twice the signal bandwidth (and might have to be 
higher if the signal is a bandpass signal), so the 
DECtalk PC uses a 10-kHz sample rate. This band­
width represents a trade-off between speech quality 
and the amount of calculation ( or CPU loading). The 
DECtalk Software synthesizer rate is 11,025 Hz, 
which is a standard PC sample rate. An 8-kHz rate is 
provided to support telephony applications. 

People often perceive acoustic events that have 
different short-term spectral magnitudes as the same 
phoneme. For example, the k sound in the words kill 
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Figure 2 
Two Spectrograms of the Utterance "Line up at the screen door." The upper spectrogram is the author's speech. 
The lower spectrogram is synthetic speech produced by DECtalk Software. 

and cool have very different magnitude spectra. An 
American perceives the two spectra as the same sound; 
however, the sounds are very different to someone 
from Saudi Arabia. A Japanese person does not per­
ceive any difference between the words car and call. 
To an English speaker, the rand the l sound different 
even though they have nearly identical magnitude 
spectra. The l sounds in the words call and leaf are dif­
ferent spectrally (acoustically) but have the same 
sound. Thus they are the same phoneme in English. 

Several allophones are required to represent the k 
phoneme. Most consonant phonemes require several 
different allophones because the vowel sounds next to 
them change their acoustic manifestations. This effect, 
called coarticulation, occurs because it is often unnec­
essary for the articulatory organs to reach the final 
position used to generate a phoneme; they merely 
need to gesture toward the final position. Another 
type of coarticulation is part of the grammar of a 
language. For example, the phrase don't you is often 
pronounced doan choo. 

All allophones that represent the phoneme k are 
produced by closing the velum and then suddenly 
opening it and releasing the breath stream. Speakers of 
the English language perceive all these allophones as 
the same sound, which suggests that synthesis may be 
modeled by an articulatory model of speech produc­
tion. This model would presumably handle coarticula­
tion effects that are not due to grammar. It is currently 
not known how to consistently determine speech 
organ positions ( or control strategies) directly from 
acoustic speech data, so articulatory models have had 
little success for text-to-speech synthesis.4 
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For English, the v01cmg pitch provides cues to 
clause boundaries and meaning. Changing the fre­
quency of the vibration of the vocal cords varies the 
pitch. Intonation is the shape of the pitch variation 
across a clause. The sentence "Tim is leaving." is pro­
nounced differently than "Tim is leaving?" The latter 
form requires different intonation, depending on 
whether the intent is to emphasize that it is "Tim" 
who is leaving, or that "leaving" is what Tim is to do. 
A word or phrase is stressed by increasing its pitch, 
amplitude, or duration, or some combination of these. 
Intonation includes pitch changes due to stress and 
normal pitch variation across a clause. Correct intona­
tion is not always possible because it requires speech 
understanding. DECtalk Software performs an analysis 
of clause structure that includes the form classes of 
both words and punctuation and then applies a pitch 
contour to a clause. The form class definitions include 
symbols for the parts of speech (article, adjective, 
adverb, conjunction, noun, preposition, verb, etc.) 
and symbols to indicate if the word is a number, an 
abbreviation, a homograph, or a special word (requir­
ing special proprietary processing). For the sentence, 
"Tim is leaving?" the question mark causes DECtalk 
Software to raise the final pitch, but no stress is put on 
"Tim" or "leaving." Neutral intonation sometimes 
sounds boring, but at least it does not sound foolish. 

Text-to-Speech Synthesis Techniques 

Early attempts at text-to-speech synthesis assembled 
clauses by concatenating recorded words. This tech­
nique produces extremely unnatural-sounding speech. 



In continuous speech, word durations are often short­
ened and coarticulation effects can occur between adja­
cent words. There is also no way to adjust the intonation 
of recorded words. A huge word database is required, 
and words that are not in the database cannot be pro­
nounced. The resulting speech sounds choppy. 

Another word concatenation technique uses record­
ings of the formant patterns of words. A formant 
synthesizer smoothes formant transitions at the word 
boundaries. A variation of this technique uses linear 
predictive coded (LPC) words. An advantage of the 
formant synthesizer is that the pitch and duration 
of words may be varied. Unfortunately, since the 
phoneme boundaries within a word are difficult to 
determine, the pitch and duration of the individual 
phonemes cannot be changed. This technique also 
requires a large database. Again, a word can be spoken 
only if it is in the database. In general, the quality 
is poor, although this technique has been used with 
some success to speak numbers. 

A popular technique today is to store actual speech 
segments that contain phonemes and phoneme pairs. 
These speech segments, known as diphones, are 
obtained from recordings ofhuman speech. They con­
tain all coarticulation effects that occur for a particular 
language. Diphones are concatenated to produce words 
and sentences. This solves the coarticulation problem, 
but it is impossible to accurately modify the pitch of 
any segment. The intonation across a clause is gener­
ally incorrect. Even worse, the pitch varies from seg­
ment to segment within a word. The resulting speech 
sounds unnatural, unless the system is speaking a 
phrase that the di phones came from ( this is a devious 
marketing ploy). Nevertheless, diphone synthesis pro­
duces speech that is fairly intelligible. Diphone syn­
thesis requires relatively little compute power, but it is 
memory intensive. American English requires approx­
imately 1,500 diphones; diphone synthesis would have 
to provide a large database of approximately 3 mega­
bytes for each voice included by the system. 

DECtalk Software uses a digital formant synthesizer. 
The synthesizer input is derived from phonemic sym­
bols instead of stored formant patterns as in a conven­
tional formant synthesizer. Intonation is based on 
clause structure. Phonetic rules determine coarticula­
tion effects. The synthesizer requires only two tables, 
one for each gender, to map allophonic variations of 
each phoneme to acoustic events. Modification of vocal 
tract parameters in the synthesizer allows the system to 
generate multiple voices without a significant increase 
in storage requirements. (The DECtalk code and data 
occupy less than 1.5 megabytes.) 

Poor-quality speech is difficult to understand and 
causes fatigue. Linguists use standard phoneme recog­
nition tests and comprehension tests to measure the 
intelligibility of synthetic speech. The DECtalk family 
of products achieves the highest test scores of all text­
to-speech systems on the market.5 Visually handi­
capped individuals prefer DECtalk over all other 
text-to-speech systems. 

How DECtalk Software Works 
DECtalk Software consists of eight processing threads: 
( 1 ) the text-queuing thread, ( 2 ) the command parser, 
( 3) the letter-to-sound converter, ( 4 ) the phonetic and 
prosodic processor, (5) the vocal tract model (VTM) 
thread, ( 6) the audio thread, (7) the synchronization 
thread, and ( 8) the timer thread. The text, VTM, 
audio, synchronization, and timer threads are not part 
of the DECtalk PC software (the DECtalk PC VTM 
is on a special Digital Signal Processor) and have been 
added to DECtalk Software. The audio thread creates 
the timer thread when the text-to-speech system is 
initialized. Since the audio thread does not usually 
open the audio device until a sufficient number of 
audio samples are queued, the timer thread serves to 
force the audio to play in case any samples have been in 
the queue too long. The DECtalk Software threads 
perform serial processing of data as shown in Figure 3. 
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Multithreading allows a simple and efficient means 
of throttling data in multistage, real-time systems. 
Each thread passes its output to the next thread 
through pipes. Each thread has access to two pipe han­
dles, one for input and one for output. Most threads 
consist of a main loop that has one or more calls to a 
read_pipe function followed by one or more calls to 
a write_pipe function. The write_pipe function will 
block processing and suspend the thread if the speci­
fied pipe does not have enough free space to receive 
the specified amount of data. The read_pipe function 
will block processing and suspend the thread if the 
specified pipe does not contain the requested amount 
of data. Thus an active thread will eventually become 
idle, either because there is not enough input data, or 
because there is no place to store its output. 

The pipes are implemented as ring buffers. The ring 
buffer item count is protected by mutual-exclusion 
objects on the Digital UNIX operating system and by 
critical sections on the Windows NT operating system. 
The pipes are created at text-to-speech initialization 
and destroyed during shutdown. The DECtalk Software 
team implemented these pipes because the pipe calls 
supplied with the Digital UNIX and Windows NT 
operating systems are for interprocess communication 
and are not as efficient as our pipes. 

The DECtalk Software threads all used different 
amounts of CPU time. The data bandwidth increases 
at the output of every thread between the command 
thread and the VTM thread. Since the VTM produces 
audio samples at a rate exceeding 11,025 samples per 
second, it is no surprise that the VTM uses the most 
CPU time of all threads. Table 2 gives the percentage 
of the total application time used by each thread when 
the Windows NT sample application "say" is continu­
ously speaking a large text file on an Alpha AXP 150 
PC product. The output sample rate is 11,025 Hz. 
Note that the "say" program main thread blocks and 
uses virtually no CPU time after queuing the text 
block. These percentages have been calculated from 
times obtained using the Windows NT performance 
monitor tool. 

Because the data bandwidth increases at the output 
of successive threads, it is desirable to adjust the size of 
each of the pipes ring buffers. If one imagines that all 
the pipes had an infinite length ( and the audio queue 
was infinite) and that the operating system switched 
thread context only when the active thread yielded, 
then the text thread would process all the ASCII text 
data before the letter-to-sound thread would run. 
Likewise, each successive thread would run to comple­
tion before the next thread became active. The system 
latency would be very high, but the thread switch­
ing would be minimized. The system would use 100 
percent of the CPU until all the text was converted 
to audio, and then the CPU usage would become 
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Table 2 
DECtalk Software Thread Loading 

Percentage of Total 
Thread Application CPU Time 

Application 1.0 
(say.exe) 

Text queue 0.2 
Command parser 1.4 
Letter-to-sound 2.4 
processing 

Prosodic and 18.3 
phonetic processing 
Vocal tract model 71.9 
Audio 2.9 
Synchronization 0.0 
Timer 0.0 
System 1.9 

very low as the audio played out at a fixed rate. 
Alternatively, if all the pipes are made very short, the 
system latency is low. In this case, all but one of the 
threads will become blocked in a very short time and 
the startup transient in the CPU loading will be mini­
mized. Unfortunately, the threads will constantly 
switch, resulting in poor efficiency. What is needed is 
a trade-off between these two extremes. 

For a specified latency, the optimum pipe sizes 
that minimize memory usage for a given efficiency 
are in a ratio such that each pipe contains the same 
temporal amount of data. For example, let us assume 
that 64 text characters (requiring 64 bytes) are in the 
command thread. They produce approximately 100 
phonemes ( requiring 1,600 bytes) at the output of 
the letter-to-sound thread and approximately 750 
VTM control commands (requiring 15,000 bytes) at 
the output of the prosodic and phonetics thread. In 
such a case, the size of the input pipes for the com­
mand, letter-to-sound, and prosodic and phonetic 
threads could be made 64, 1,600, and 15,000 bytes, 
respectively, to minimize pipe memory usage for the 
specified latency. (All numbers are hypothetical. ) 
The pipe sizes in DECtalk Software actually increase 
at a slightly faster rate than necessary. We chose the 
faster rate because memory usage is not critical since 
all the pipes are small relative to other data struc­
tures. The size of the VTM input pipe is the most 
critical: it is the largest pipe because it supports the 
largest data bandwidth. 

The Text Thread 

The text thread's only purpose is to buffer text so the 
application is not blocked during text processing. 
An application using text-to-speech services calls 
the TextToSpeechSpeak API function to queue a null -



terminated text string to the system. This API function 
copies the text to a buffer and passes the buffer ( using 
a special message structure) to the text thread. This 
is done using the operating system's PostMessage 
function for Windows NT and a thread-safe linked 
list for Digital UNIX. After the text thread pipes the 
entire text stream to the command thread, it frees the 
text buffer and the message structure. 

The Command Processing Thread 
The command processing thread parses in-line text 
commands. These commands control the text-to­
speech system voice selection, speaking rate, and audio 
volume, and adjust many other system state parame­
ters. For DECtalk, most of these commands are of the 
form [: command <parameters>]. The string "[:" 
specifies that a command string follows. The string"]" 
ends a command. The following string illustrates sev­
eral in-line commands. 

[ :nb ][ :ra 200] My name is Betty. 
[ :play audio. wav] 
[:dial 555-1212][:tone 700 1,000] 

This text will select the speaker voice for "Betty," 
select a speaking rate of 200 words per minute, speak 
the text "My name is Betty." and then play a wave 
audio file named "audio.wav." Finally, the DTMF 
tones for the number 555-1212 are played followed 
by a 700-Hz tone for 1,000 milliseconds. 

Because the text-to-speech system may be speaking 
while simultaneously processing text in the command 
thread, it is necessary to synchronize the command pro­
cessing with the audio. The DECtalk PC product (from 
which we ported the code) did not perform synchro­
nization unless the application placed a special string 
before the volume command. For DECtalk Software, 
asynchronous control of all functions provided by 
the in-line commands is already available through the 
text-to-speech API calls. For this reason, the DECtalk 
Software in-line commands are all synchronous. 

The DECtalk command [:volume set 70] will set 
the audio volume level to 70. Synchronization is per­
formed by inserting a synchronization symbol in the 
text stream. This symbol is passed through the system 
until it reaches the VTM thread. When the VTM 
thread receives a synchronization symbol, it pipes a 
message to the synchronization thread. This message 
causes the synchronization thread to signal an event as 
soon as all audio ( that was queued before the message) 
has been played. The volume control code in the com­
mand thread is blocked until this event is signaled. The 
synchronization thread also handles commands of the 
form [ :index mark 17). Index mark commands may 
be used to send a message value (in this case 17) back 
to an application when the text up to the index mark 
command has been spoken. 

The command thread passes control messages such 
as voice selection and speaking rate to the letter-to­
sound and the prosodic and phonetic processing 
threads, respectively. Tone commands, index mark 
commands, and synchronization symbols are format­
ted into messages and passed to the letter-to-sound 
thread. The command thread also pipes the input text 
string, with the bracketed command strings removed, 
to the letter-to-sound thread. 

The Letter-to-Sound Thread 
The letter-to-sound (LTS) thread converts ASCII text 
sequences to phoneme sequences. This is done using a 
rule-based system and a dictionary for exceptions. It is 
the single most complicated piece of code in all of 
DECtalk Software. Pronunciation of English language 
words is complex. Consider the different pronuncia­
tions of the string ough in the words rough, through, 
bough, thought, dough, cough, and hiccough.6 Even 
though the LTS thread has more than 1,500 pronun­
ciation rules, it requires an exception dictionary with 
over 15,000 words. 

Each phoneme is actually represented by a structure 
that contains a phonemic symbol and phonemic attri­
butes that include duration, stress, and other propri­
etary tags that control phoneme synthesis. This is how 
allophonic variations of a phoneme are handled. In the 
descriptions that follow, the term phoneme refers 
either to this structure or to the particular phone spec­
ified by the phonemic symbol in this structure. 

The L TS thread first separates the text stream into 
clauses. Clause separation occurs in speech both to 
encapsulate a thought and because of our limited lung 
capacity. Speech run together with no breaks causes the 
listener (and the speaker) to become fatigued. Correct 
clause separation is important to achieve natural into­
nation. Clauses are delineated by commas, periods, 
exclamation marks, question marks, and special words. 
Clause separation requires simultaneous analysis of the 
text stream. For example, an abbreviated word does 
not end a clause even though the abbreviation ends in 
a period. If the text stream is sufficiently long and no 
clause delimiter is encountered, an artificial clause 
boundary is inserted into the text stream. 

After clause separation, the LTS thread performs text 
normalization. For this, the LTS thread provides spe­
cial processing rules for numbers, monetary amounts, 
abbreviations, times, in-line phonemic sequences, and 
even proper names. Text normalization usually refers 
to text replacement, but in many cases the LTS thread 
actually inserts the desired phoneme sequence directly 
into its output phoneme stream instead of replacing 
the text. 

The LTS thread converts the remaining unprocessed 
words to phonemes by using either the exception dic­
tionary or a rule-based "morph" lexicon. (The term 
morph is derived from morpheme, the minimum unit 
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of meaning for a language. ) By combining these two 
approaches, memory utilization is minimized. A user­
definable dictionary may also be loaded to define 
application-specific terms. During this conversion, the 
LTS thread assigns one or more form classes to each 
word. As mentioned previously, form class definitions 
include symbols for abbreviations and homographs. 
A homograph is a word that has more than one pro­
nunciation, such as alternate or console. DECtalk 
Software pronounces most abbreviations and homo­
graphs correctly in context. An alternate pronuncia­
tion of a homograph may be forced by inserting the 
in-line command [:pron alt] in front of the word. 
DECtalk Software speaks the phrase "Dr. Smith lives 
on Smith Dr." correctly, as "Doctor Smith lives on 
Smith Drive." It uses the correct pronunciation of the 
homograph lives. 

Before applying rules, the LTS thread performs a 
dictionary lookup for each unprocessed word in a 
clause. If the lookup is successful, the word's form 
classes and a stored phoneme sequence are extracted 
from the dictionary. Otherwise, the word is tested for 
an English suffix, using a suffix table. If a suffix is 
found, sometimes the form class of the word can be 
inferred. Suffix rules are applied, and the dictionary 
lookup is repeated with the new suffix-stripped word. 
For example, the word testing requires the rule, locate 
the suffix ing and remove it; whereas the word analyz­
ing requires the rule, locate the suffix ing and replace 
it with e. The suffix rules and the dictionary lookup are 
recursive to handle words that end in multiple suffixes 
such as endlessly . 

If the word is not in the dictionary, the LTS thread 
performs a decomposition of the word using morphs. 
DECtalk uses a morph table to look up the phonemic 
representation of portions of words. A morph always 
maps onto one or more English words and can be 
represented by a letter string. Morphs generally consist 

CLAUSE TEXT 

of one or more roots that may contain affixes and suf­
fixes. Although new words may frequently be added to 
a language, new morphs are rarely added. They are 
essentially sound groupings that make up many of the 
words of a language. DECtalk contains a table with 
hundreds of morphs and their phonemic representa­
tions. Either a single character or a set of characters 
that results in a single phoneme is referred to as a 
grapheme. Thus this portion of the letter-to-sound 
conversion is referred to as the grapheme-to-phoneme 
translator. Figure 4 shows the architecture of the LTS 
thread. 

Morphemes are abstract grammatical units and were 
originally defined to describe words that can be seg­
mented, such as tall, taller, and tallest. The word 
tallest is made from the morphemes tall and est. The 
word went decomposes into the morphemes go and 
PAST. Thus a morpheme does not necessarily map 
directly onto a derived word. Many of the pronuncia­
tion rules are based on the morphemic representations 
of words. 

Many morphs have multiple phonemic representa­
tions that can depend on either word or phonemic con­
text. The correct phonemic symbols are determined by 
morphophonemic rules. For example, plural words that 
end in the morpheme s are spoken by appending either 
the s, the z, or the eh z plural morphemes ( expressed 
as Arpabet phonemic symbols) at the end of the word.7 

Which allomorph is used depends on the final 
phoneme of the word. Allomorphs are morphemes 
with alternate phonetic forms. For another example 
requiring a morphophonemic rule, consider the final 
phoneme of the word the when pronouncing "the 
apple," and "the boy." 

After applying many morphophonemic rules to the 
phonemes, the LTS thread performs syllabification, 
applies stress to certain syllables, and performs allo­
phonic recoding of the phoneme stream. The LTS 

>--TEXT - SEPARATION - NORMALIZATION - DICTIONARY 

- GRAPHEME-TO- -PHONEME RULES 

L SYLLABIFICATION f-+ STRESS - ALLOPHONIC r-+-SUBSTITUTION PHONEMES 

Note that the grapheme-to-phoneme rules are used only if the dictionary lookup fails. 

Figure4 
Block Diagram of the Letter-to-Sow1d Processing Thread 
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thread groups phonemes into syllables, using tables 
of legal phoneme clusters and special rules. The syllab­
ification must be accurate, because the LTS thread 
applies stress between syllable boundaries. 

The LTS thread then assigns either primary stress, 
secondary stress, or no stress to each syllable. The 
stress rules are applied in order. They assign stress 
only to syllables that have not had stress previously 
assigned. These rules take into account the number of 
syllables in a word and the positions of affixes that 
were found during morph decomposition of a word. 

Allophonic rules are the last rules the LTS thread 
applies to the phoneme stream. These are really pho­
netic rules. Most allophonic rules are described as 
follows: "if phoneme A is followed by phoneme B, 
then modify (or delete ) phoneme A (or B)." Most 
allophonic rules are not applied across morpheme 
boundaries. These rules handle many specific cases; for 
example, the p in the word spit is aspirated, whereas 
the pin the word pit is not. The s phoneme modifies 
the articulation of the p. The s phoneme is different in 
the words stop and street because the r sound is antici­
pated and modifies the s in the word street. This last 
example is called distant assimilation. 

The LTS thread passes the phonemes that include 
durations and lexical information to the prosodic and 
phonetic processing thread. Tone, dial, index mark, 
and synchronization messages are passed unmodified 
through the LTS thread. 

The Phonetic and Prosodic Processing Thread 
The phonetic and prosodic processing (PH) thread, 
shown in Figure 5, converts the phoneme stream to a 
series of vocal tract control commands. Both prosodic 
rules and additional phonetic rules are applied to the 
input phoneme stream.8 Prosody refers to clause­
based stress, intonation, and voice quality in speech. 
Words are stressed to add meaning to a clause. Stress is 
achieved by increasing one or more of either the pitch, 
the duration, or the amplitude of an utterance. The 
phonetic rules handle coarticulation effects and adjust 
phoneme durations based on the form class, the clause 
position, and the speaking rate. One example is a 
rule that increases the duration of the final stressed 
phoneme in a clause. Additional context-dependent 
phonetic coarticulation rules can adjust the durations 
of phonemes or delete them. 

PHONEMES 
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The correct application of stress, like intonation, 
requires understanding, so DECtalk Software gener­
ally applies syllabic stress only as part of an intonation 
contour across a clause. Intonation contours are gen­
erated by fixed rules. In most clauses, the pitch rises at 
the start of the clause and falls at the end of the clause. 
This basic form is changed for questions, prepositional 
phrases, exclamations, compound nouns, and num­
bers. This intonation is also changed based on the 
syllabic stress assigned by the LTS thread. The PH 
thread can also process pitch control symbols that are 
placed in-line with text. These pitch commands are 
parsed in the command thread and pass through the 
LTS thread. 

The PH thread uses each phoneme symbol and its 
context to generate any allophonic variation of the 
phoneme. The resulting allophone symbol indexes 
into one of two tables, one table for each gender. Each 
allophone symbol indexes a set of parameters that 
includes voicing source amplitude, noise source ampli­
tude, formant frequencies, and formant bandwidths. 
These, along with voicing source pitch and a number 
of fixed speaker-dependent parameters, make up the 
VTM parameters. A new set of parameters is generated 
for every 6.4 milliseconds of speech. The VTM thread 
uses these parameters, which are collectively called a 
voice packet, to generate the speech waveform. 

In addition to sending voice packets to the VTM 
thread, the PH thread can send a speaker packet to 
select a new speaking voice. The voice is selected either 
by an in-line text command or by the application call­
ing a specific API function . The PH thread has fixed 
tables of parameters for each voice. T here are many 
voice parameters, but some of the more interesting 
ones include the gender, the average pitch, the pitch 
range, the assertiveness, the breathiness, and the for­
mant scale factor. The gender is used by some of the 
PH rules and by the PH thread to select the table used 
to generate voice packets. The average pitch and the 
pitch range are used by the PH thread to set the 
pitch characteristics for the VTM's voicing source. 
The assertiveness parameter sets the rate of fall of 
the pitch at the end of a clause. A high assertiveness 
factor results in an emphatic voice. The breathiness 
parameter sets the amount of noise that is mixed with 
the voiced path signal. The formant scale factor effec­
tively scales the size of the speaker's trachea. 

Tone, dial, index mark, and synchronization mes­
sages are passed unmodified through the PH thread. 

The Vocal Tract Model Thread 
The Vocal Tract Model (VTM) thread processes 
speaker packets, voice packets, tone messages, and 
synchronization messages. Speaker packets set the 
speaker-voice-dependent parameters of the VTM. 
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One of these, the formant scale factor, is multiplied 
by the first, second, and third formant frequencies in 
each voice packet. Other parameters include the values 
for the frequencies and bandwidths of the fourth and 
fifth formants, the gains for the voiced path of the 
VTM, the frication gain for the unvoiced path of the 
VTM, the speaker breathiness gain, and the speaker 
aspiration gain. 

Each voice packet produces one speech frame of 
data. The output sample rate for DECtalk Software 
is either 8,000 Hz or 11,025 Hz. For each of these 
sample rates, a frame is 51 and 71 samples respectively. 
Each voice packet includes frequencies and band­
widths for the first, second, and third formants, the 
nasal antiresonator frequency, the voicing source gain, 
and gains for each of the parallel resonators. Figure 6 
shows the basic architecture of the VTM.9 The VTM, 
in conjunction with the PH rules, simulates the speech 
organs. 

The VTM consists of two major paths, a voiced path 
and an unvoiced path. The voiced path is excited by a 
pulse generator that simulates the vocal cords. A num­
ber of resonant filters in series simulate the trachea. 
These cascaded resonators simulate a cascade of tubes 
of varying widths.10 A nasal filter in series with the res­
onant tube model simulates the dominant resonance 
and antiresonance of the nasal cavity.11 The cascade 
resonators and the nasal filter complete the "voiced" 
path of the VTM. 

Unvoiced sounds occur as a result of chaotic turbu­
lence produced when breath passes through a con­
striction. This turbulence is difficult to model. In our 
approach, the VTM matches the spectral magnitude of 
filtered noise with the spectral magnitude of the 
desired unvoiced phoneme (allophone). The noise 
source is realized by filtering the output of a uniform­
distribution random number generator. Unvoiced 
sounds contain both resonances and antiresonances. 

Another approach to obtain an appropriate fre­
quency characteristic is to filter the noise source signal 
using a series of parallel resonators. A consequence of 
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putting resonators in parallel is to create antireso­
nances. The positions of these antiresonances are 
dependent on the parallel formant frequencies, but it 
has been empirically determined that this model pro­
vides more than enough degrees of freedom to closely 
match the spectral magnitude of any unvoiced sound. 
The noise source generates fricatives, such ass, plosives, 
such asp, and aspirates, such as b. The noise source also 
contributes to some voiced sounds, such as b, g, and z . 
The noise source output may also be added to the 
input of the voiced path to produce aspiration. To gen­
erate breathy vowels, the parallel formant frequencies 
are set equal to the cascade formant frequencies. 12 

The radiation characteristic of the lips approximates 
a differentiation (derivative) of the acoustic pressure 
wave. Since all the filters in the VTM are linear and 
time-invariant, the radiation effects can be incorpo­
rated in the signal sources instead of at the output. 
Therefore the glottal source (pulse source) produces 
differentiated pulses. The differentiated noise signal is 
the filtered first difference of a uniform-distribution 
random number generator. 

The DECtalk Software VTM (also known as the 
Klatt Synthesizer) is shown in Figure 7. The italicized 
terms are either speaker-dependent parameters or con­
stant values. All other parameters are updated every 
frame. Depending on the system mode, the audio 
samples generated for each frame are passed to the 
output routine and subsequently are either queued to 
the audio device, written to a wave audio file, or writ­
ten to a buffer provided by the application . After gen­
erating a speech frame, the VTM code increases the 
audio sample count by the frame size. This count is 
sent to the synchronization thread whenever a syn -
chronization symbol or an index mark is received by 
the VTM thread. The count is reset to zero at startup 
and whenever the text-to-speech system is reset. 

Tone messages are processed by the VTM thread. 
Tone messages are for single tones or DTMF signals. 
Each tone message includes two frequencies, two 
amplitudes ( one for each frequency), and one duration. 
For a single tone message, the amplitude for the second 
frequency is zero. Tone synthesis code generates tone 
frames and queues them to the output routine. The 
first 2 milliseconds and the last 2 milliseconds of a tone 
signal are multiplied by either a rising or a falling 
cosine-squared shaping function to limit the out-of­
band pulse energy. Each tone sample is synthesized 
using a sinusoid look-up table.13 

The Synchronization Thread 
The synchronization thread is idle unless the VTM 
thread forwards a synchronization symbol message or 
an index mark message. Both messages contain the 
current audio sample count. The index mark message 
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The D ECtalk Software Vocal Tract Model ( also known as the Klatt Synthesizer) 

also contains an index mark number from O to 99. 
After receiving one of these messages, the synchro­
nization thread periodically polls the audio thread 
until the indicated audio sample has been played . If 
the message contained a synchronization symbol, an 
event is set that unblocks the command thread. If it is 
an index mark message, the synchronization thread 
sends the index mark number back to the application. 
For the Digital UNIX operating system, this number 
is returned by calling a callback function that the appli­
cation specifies when DECtalk Software is started. For 
the Windows NT operating system, the Send.Message 
function is used to return the index mark number 
to the application. The message is sent to a window 
procedure specified by the window handle that is pro­
vided when the text-to-speech system is started. 

The Audio Thread 
The audio thread manages all activities associated with 
playing audio through the computer's sound hard­
ware. An audio API insulates DECtalk Software from 
the differences between operating systems. The audio 
API communicates with the audio thread. The VTM 
thread calls an audio API queuing function that writes 
samples to a ring buffer that is read only by the audio 
thread. The audio thread opens the audio device after 
approximately 0.8 seconds of audio samples have been 
queued and closes the audio device when there are no 
more samples to play. If the number of audio samples 
in the queue is too small to cause the audio device to 
be opened, and the flow rate ( measured over a 100-
millisecond interval) into the audio ring buffer is zero, 
the timer thread will send the audio thread a message 
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that causes the audio device to open and start playing 
audio. When audio either starts or stops playing, a 
message is sent to the application. 

For the Digital UNIX operating system, the audio 
thread is an interface to the low-level audio functions 
of the Multimedia Services for Digital UNIX (MMS) 
product. MMS provides a server to play audio and 
video. 

For the Windows NT operating system, the imple­
mentation also uses the system low-level audio func­
tions, but these functions interface directly with a 
system audio driver. The audio API provides capabili­
ties to pause the audio, resume paused audio, stop 
audio from playing and caned all queued audio, get the 
audio volume level, set the audio volume level, get the 
number of audio samples played, get the audio format, 
and set the audio format. An in-line play command can 
be used to play audio files. DECtalk Software uses the 
get format and set format audio capabilities to dynami­
cally change the audio format so it can play an audio file 
that has a format different from the format generated 
bytheVTM. 

DECtalk Software API 

In the mid-1980s, researchers at Digital's Cambridge 
Research Lab ported the DECtalk text-to-speech 
C language-based code to the ULTRIX operating 
system. The command, LTS, PH, and VTM portions 
of the system were different processes. The pipes were 
implemented using standard UNIX I/0 handles, stdin 
and stdout. These, along with an audio driver process, 
were combined into a command procedure. This 

Table 3 

system lacked many of the rules and features found 
in DECtalk Software today, but it did demonstrate 
that real-time speech synthesis was possible on a work­
station. Before this time, DECtalk required specialized 
Digital signal-processing hardware for real-time oper­
ation. 14 On a DECstation Model 5000/25 work­
station, the text-to-speech implementation used 65 
percent of the CPU. If the output sample rate of this 
system had been raised from 8,000 Hz to 11,025 Hz, 
the highest-quality rate provided by DECtalk Software, 
it would have loaded approximately 89 percent of 
the CPU. Workstation text-to-speech synthesis, while 
possible, was still very expensive. 

The power of the Alpha CPU has changed this. 
Today, many copies of DECtalk Software can run 
simultaneously on Alpha-based systems. Speech syn­
thesis is now a viable multimedia form. This change 
created the need for a text-to-speech APL Table 3 
shows the DECtalk Software CPU load for various 
computers. 

On Alpha systems, the performance of DECtalk 
Software depends primarily on the SPECmark rating 
of the computer. A lesser consideration is the sec­
ondary cache size. System bus bandwidth is not a lim­
iting factor: The combined data rates for the text, 
phonemes, and audio are extremely low relative to 
modern bus speeds, even when running the maximum 
number of real-time text-to-speech processes that the 
processor can support. 

The API we have developed is the result of collabo­
ration between several organizations within Digital: 
the Light and Sound Group, the Assistive Technology 
Group, the Cambridge Research Lab, and the Voice 

DECta lk Software CPU Loading versus Processor SPECmarks 
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Alpha AXP 150 Alpha 512 
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600 5/266 21164 
workstation 
XL 590 PC 90 Pentium 512 
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and Telecom Engineering Group. We had two basic 
requirements: We wanted the API to be easy to use 
and to work with any text-to-speech system. While 
creating the API, we defined interfaces so that future 
improvements to the text-to-speech engine would not 
require any API calls to be changed. (Customers frown 
on product updates that require rewriting code.) 
Some decisions were controversial. Some contributors 
felt that the text-to-speech system should return 
speech samples only in memory buffers, and the 
application should shoulder the burden of interfacing 
to the workstation's audio subsystem. The other 
approach was to support the standard workstation 
audio (which is platform dependent) and to provide 
an API call that switched the system into a speech-to­
memory mode. We selected the latter approach 
because it simplifies usage for most applications. 

The API Functions 
The core text-to-speech API functions are the 
TextToSpeechStartup function, the TextToSpeechSpeak 
function, and the TextToSpeechShutdown function. 
The simplest application might use only these three 
functions. 

All applications using text-to-speech must call the 
TextToSpeechStartup function. This function creates 
all the DECtalk system threads and passes back a han­
dle to the text-to-speech system. The handle is used in 
subsequent text-to-speech API calls. The startup func­
tion is the only API function that has different argu­
ments for the Digital UNIX and the Windows NT 
operating systems. This is necessary because the asyn­
chronous reporting mechanism is a callback function 
for Digital UNIX and is a system message for Windows 
NT. The TextToSpeechShutdown function frees all 
system resources and shuts down the threads. This 
would normally be called when closing the application. 

The TextToSpeechSpeak function is used to queue 
text to the system. If an entire clause is not queued, no 
output will occur until the clause is completed by 
queuing additional text. A special TTS_FORCE para­
meter may be supplied in the function call to force a 
clause boundary. The TTS_FORCE parameter is nec­
essary for applications that have no control over the 
text source and thus cannot guarantee that the final 
text forms a complete clause. 

The text-to-speech API provides three audio output 
control functions. These pause the audio output 
(TextToSpeechPause), resume output after pausing 
(TextToSpeechResume), and reset the text-to-speech 
system (TextToSpeechReset). The reset function dis­
cards all queued text and stops all audio output. 

The text-to-speech API also provides a special syn­
chronization function (TextToSpeechSync) that blocks 
until all previously queued text has been spoken. This 
API call may not return for days if a sufficient amount 
of text is queued. (Index marks provide nonblocking 
synchronization.) 

The API supplies functions to both load 
(TextToSpeechLoadUserDictionary) and unload 
(TextToSpeechUnloadUserDictionary) an application­
defined dictionary. The dictionary contains words and 
their phonemic representations. The developer creates 
a dictionary using a window-based user-dictionary 
tool. This tool can speak words and their phonemic 
representations. It can also convert text sequences to 
phonemic sequences. This last feature frees the devel­
oper from having to memorize and use the DECtalk 
Software phonemic symbols. 

Additional functions select the speaker voice, con­
trol the speaking rate, control the language, determine 
the system capabilities, and return status. The status 
API function can indicate if the system is currently 
speaking. 

Special Text-to-Speech Modes 

DECtalk Software has three special modes: the speech­
to-wave file mode, the log-file mode, and the speech­
to-memory mode. Each mode has two complemen­
tary calls, one to enter the mode and one to exit. 
When in the speech-to-wave file mode, the system 
writes all speech samples to a wave audio file. The file is 
closed when exiting this mode. This is useful on slower 
Intel systems that cannot perform real-time speech 
synthesis. The log-file mode causes the system to write 
the phonemic symbol output of the LTS thread to a 
file. The last mode is the speech-to-memory mode. 
After entering this mode, the application uses a special 
API call to supply the text-to-speech system with 
memory buffers. The text-to-speech system writes 
synthesized speech to these buffers and returns the 
buffer to the application. The buffers are returned 
using the same mechanism used for index marks, a 
callback function on the Digital UNIX operating sys­
tem and a system message on the Windows NT operat­
ing system. These buffers may also return index marks 
and phonemic symbols and their durations. If the text­
to-speech system is in speech-to-memory mode, call­
ing the reset function causes all buffers to be returned 
to the application. 

Porting DECtalk Software 

The DECtalk PC code used a simple assembly lan­
guage kernel to manage the threads. The existence of 
threads on our target platforms simplified porting the 
code. The thread functions, signals (such as condi­
tions or events), and mutual exclusion objects are dif­
ferent for the Digital UNIX and the Windows NT 
operating systems. Since these functions occur mainly 
in the pipe code and the audio code, we maintain 
different versions of code for each system. The 
message-passing mechanism for Windows NT has no 
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equivalent on Digital UNIX; therefore part of the API 
code had to be different. The command, LTS, and 
PH threads are all common code for Digital UNIX 
and Windows NT. Most of the VTM thread is also 
common code. 

Porting the code for each thread required putting 
conditional statements that define thread entry points 
into each module for each supported operating system. 
We also had to add special code to each thread to sup­
port our API call that resets the text-to-speech system. 
The reset is the most complicated API operation, 
because the data piped between threads is in the form 
of variable-length packets. During a reset, it is incorrect 
to simply discard data within a pipe because the thread 
that reads the pipe will lose data synchronization. 
Therefore a reset causes each thread to loop and dis­
card all input data until all the pipes are empty. Then 
each thread's control and state variables are set to a 
known state. In many complicated systems, resetting 
and shutting down are the most complicated parts of a 
control architecture. System designers should incorpo­
rate mechanisms to simplify these functions. 

The VTM code is much shorter and simpler than 
the code in either the LTS or the PH thread, but it is 
by far the largest CPU load in the system. The 
DECtalk PC hardware used a specialized Digital Signal 
Processor (DSP) for the VTM. The research VTM 
code (written in the C language) was rewritten to be 
sample-rate-independent. The filters were all made 
in-line macros. With this new VTM, the DECtalk 
Software system loaded an Alpha AXP 150 PC product 
31 percent. After rewriting this code using floating­
point arithmetic and then converting it to assembly 
language, DECtalk Software loaded the processor less 
than 8 percent. (Both tests were conducted at an 
11,025-Hz output sample rate.) 

There are several reasons a floating-point VTM runs 
faster than an integer VTM on an Alpha system. An 
integer VTM requires a separate gain for each filter to 
keep the output data within the filter's dynamic range. 
For a floating-point VTM, the gains of all cascaded 
filters are combined into one gain. The increased 
dynamic range allows combining parts of some filters 
to reduce computations. Also, floating-point opera­
tions do not require additional instructions to perform 
scaling. The processor achieves greater instruction 
throughput because it can dual issue floating-point 
instructions with integer instructions, which are used 
for pointers, indices, and some loop counters. Finally, 
the current generation of Alpha processors performs 
some floating-point operations with less pipeline 
latency than their equivalent integer operations (note 
the SPECfp92 and SPECint92 ratings of the current 
Alpha processors listed in Table 3). 
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The integer VTM is faster than the floating-point 
VTM on Intel processors, so we maintain two versions 
of the VTM. Both versions support multiple sample 
rates. The pitch of the glottal source and the frequen­
cies and bandwidths of the filters are adjusted for the 
output sample rate. When necessary, the filter gains are 
adjusted. These extra calculations do not add much to 
the total time used by the VTM because they are per­
formed only once per frame. 

Possible Future Improvements 
to DECtalk Software 

The Assistive Technology Group continues to improve 
the letter-to-sound rules, the prosodic rules, and the 
phonetic rules. Future implementations could use 
object-oriented techniques to represent the dictionar­
ies, words, phonemes, and parts of the VTM. A larger 
dictionary with more syntactic information can be 
added. There has even been some discussion of combin­
ing the LTS and PH threads to make more efficient use 
oflexical knowledge in PH. The glottal waveform gen­
erator can be improved. Syntactic parsers might provide 
the information required for more accurate intonation. 
Someday, semantic parsing (text understanding) may 
provide a major improvement in synthetic speech into­
nation. Researchers both within and outside of Digital 
are investigating these and many other areas. It seems 
likely that the American English version of DECtalk 
Software will continue to improve over time. 

Summary 

DECtalk Software provides natural-sounding, highly 
intelligible text-to-speech synthesis. It was developed to 
perform on the Digital UNIX operating system on 
Digital's Alpha-based platforms and with Microsoft's 
Windows NT operating system on both Alpha and Intel 
processors. It is based on the mature DECtalk PC 
hardware product. DECtalk Software also provides an 
easy-to-use API that allows applications to use the work­
station's audio subsystem, to create wave audio files, 
and to write the speech samples to application-supplied 
memory buffers. An Alpha-based workstation can run 
many copies of D ECtalk Software simultaneously. 

DECtalk Software uses a dictionary and linguistic 
rules to convert speech to phonemes. An application­
supplied dictionary can override the default pronunci­
ation of a word. Prosodic and phonetic rules modify 
the phoneme's attributes. A vocal tract model synthe­
sizes each phoneme to produce a speech waveform. 
The result is the highest-quality text to speech. The 
Assistive Technology Group continues to improve the 
DECtalk text-to-speech algorithms. 
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The J300 Family of Video 
and Audio Adapters: 
Architecture and 
Hardware Design 

The J300 family of video and audio adapters 

provides a feature-rich set of hardware options 

for Alpha-based workstations. Unlike earlier 

attempts to integrate full-motion digital video 

with general-purpose computer systems, the 

architecture and design of J300 adapters exploit 

fast system and 1/0 buses to allow video data 

to be treated like any other data type used by 

the system, independent of the graphics subsys­

tem. This paper describes the architecture used 

in J300 products, the video and audio features 

supported, and some key aspects of the hard­

ware design. In particular, the paper describes 

a simple yet versatile color-map-friendly render­

ing system that generates high-quality 8-bit 

image data. 
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I 
Kenneth W. Correll 
Robert A. Ulichney 

The overall architectural design goal for the J300 
family of video and audio adapters was to provide the 
hardware support necessary to allow the integration 
of broadcast video into workstations. The three pri­
mary objectives were as follows: ( 1) digitized video 
data should be treated the same as any other data type 
in the system; (2 ) the video and the graphics subsys­
tem designs should be completely independent of 
each other; and ( 3) any hardware designed should be 
low cost. 

Digital has implemented the J300 architecture in 
three products: Sound & Motion J300, FullVideo 
Supreme JPEG, and FullVideo Supreme.1 The Sound 
& Motion J300 (referred to in this paper simply as the 
J300) was the first product designed with this archi­
tecture and is the primary focus of this paper. The 
FullVideo Supreme JPEG and FullVideo Supreme 
products are based on the same design database as the 
J300. They differ from the J300 in the bus supported 
( they support the peripheral component interconnect 
[ PCI] bus) and the lack of audio support. Additionally, 
the FullVideo Supreme product does not include 
hardware compression/ decompression circuitry. 

The J300 brings a wide range of video and 
audio capabilities to machines based on Digital's 
TURBOchannel I/0 interconnect. Analog broadcast 
video can be digitized, demodulated, and rendered for 
display on any graphics device. The J300 provides 
hardware video compression and decompression 
to accelerate applications such as videoconferencing. 
The J300 supports analog broadcast video output 
from either compressed or uncompressed video files. 
Audio support includes a general-purpose, digital 
signal processor (DSP) to assist in the real-time man­
agement of the audio streams and for advanced pro­
cessing, such as compression, decompression, and 
echo cancellation. Audio input and output capabilities 
include stereo analog I/0, digital audio 1/0, and 
a headphone/microphone jack. Analog audio can be 
digitized to 16 bits per sample at a rate of up to 
48 kilohertz (kHz). 

This paper begins with an overview of some termi­
nology commonly used in the field of broadcast video. 
The paper then presents the evolution and design of 
the J300 architecture, including several key enab ling 



technologies and the logical video data paths available. 
Next follows a discussion of the hardware design phase 
of the project and the trade-offs made to reconcile 
expectation and implementation. Detailed descrip­
tions are devoted to specific areas of the design, 
including the video 1/0 logic, the AccuVideo render­
ing path, and the video and audio direct memory 
access (DMA) interfaces. 

Video Terminology Overview 

Three fundamental standards are in use worldwide for 
representing what is referred to in this paper as broad­
cast video: the National (U.S.) Television System 
Committee (NTSC) recommendation, Phase Alternate 
Line (PAL), and Sequentiel Couleur avec Memoire 
(SECAM). The standards differ in the number of 
horizontal lines in the display, the vertical refresh rate, 
and the method used for encoding color information. 
North America and Japan use the 525-line, 60-hertz 
(Hz) NTSC format; PAL is used in most of Europe; 
and SECAM is used primarily in France. Both the PAL 
and SECAM standards are 625-line, 50-Hz systems.2 

All three television standards split an image or a 
frame of video data into two fields, referred to as the 
even and the odd fields. Each field contains alternate 
horizontal lines of the frame. The vertical refresh rate 
cited in the previous paragraph is the field rate; the 
frame rate is one-half of that rate. 

Unlike computer display systems that use red, 
green, and blue (RGB) signals to represent color 
information, PAL and SECAM use a luminance­
chrominance system, which has the three parameters 
Y(the luminance component), and U and V(the two 
chrominance components). NTSC uses a variation of 
YUV, where the U and V components are rotated by 
33 degrees and called I and Q. YUV is related to RGB 
by the following conversion matrix: 3 

Y= 0.299R+ 0.587G + 0.114B 
U= - 0.169R- 0.331G + O.SOOB 
V= O.SOOR- 0.419G - 0.081B 

All the different standards limit the bandwidth of 
the chrominance signal to between one-quarter and 
one-third that of the luminance signal. This limit is 
taken into account in the digital representation of the 
signal and results in what is called 4:2:2 YUV, where, 
for every four horizontally adjacent samples of Y, there 
are two samples of both U and V All three compo­
nents are sampled above the Nyquist rate in this for­
mat with a significant reduction in the amount of data 
needed to reconstruct the video image. 

Various modulation techniques transform the sepa­
rate Y, U, and V components into a single signal, typi­
cally referred to as composite video. To increase the 
fidelity of video signals by reducing the luminance­
chrominance cross talk caused by modulation, the 

S-Video standard has been developed as an alternative. 
S-Video, which refers to separate video, specifies that 
the luminance signal and the modulated chrominance 
signal be carried on separate wires. 

The J300 includes hardware support for the Joint 
Photographic Experts Group (JPEG) compression/ 
decompression standard.4 JPEG is based on the discrete 
cosine transform (DCT) compression method for still­
frame color images. DCT is a widely accepted method 
for image compression because it provides an efficient 
mechanism to eliminate components of the image that 
are not easily perceived by casual inspection. 

Design History and Motivation 

Digital arrived at the J300 adapter design after consid­
ering several digital video playback architectures. The 
Jvideo advanced development project, the implemen­
tation of one of the alternatives, was instrumental in 
achieving the design goals. 

Architectural Alternatives and Objectives 
In January 1991, several Digital engineering organiza­
tions collaborated to define the architecture of a hard­
ware seed project that could be used to explore a 
workstation's capability to process video data. The par­
ticipants felt that the key technologies required to 
explore the goal of integrating computers and broadcast 
video were available. These enabling technologies were 

1. The TURBOchannel high-speed 1/0 bus, which 
was a standard on Digital workstations 

2. The anticipated acceptance of the JPEG 
compression/ decompression standard and single­
chip implementations that supported that standard 

3. The development of a rendering system (now 
called the AccuVideo system) that could map YUV 
input values into an 8-bit color index using any 
number of available colors with very good results 

We evaluated the three alternative approaches 
shown in Figure 1 for moving compressed video data 
from system memory, for decompressing and render­
ing the data, and, finally, for moving the data into the 
frame buffer. 

The chroma key approach, shown in Figure la, 
differs little from previous work done at Digital and 
was the primary architecture used by the industry. 
Several variations of the exact implementation are in 
use, but, basically, the graphics device paints a desig­
nated color into sections of the frame buffer where the 
video data is to appear on the display. A comparator 
located between the graphics frame buffer and the dis­
play device looks at the serial stream of data coming 
from the graphics frame buffer and, when the data 
matches the chroma key (stored in a register), inserts 
the video data. As shown in Figure la, this approach 
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Figure 1 
Digital Video Playback Architectures 

relies on a special connection between the video 
decompression block and the output of the graphics 
device. While this approach off-loads the system 1/0 
bus, it treats video data differently from other data 
types to be displayed. In particular, the X Window 
System graphical \vindowing environment has no 
knowledge of the actual contents of the video window 
at any given time. 

The graphics controller approach, shown in Figure 
1 b, integrates the decompression technology with the 
graphics accelerator. Although this approach has the 
potential of incurring the lowest overall system cost, it 
fails in two important aspects. First, it does not expose 
the \vindmving system to the video data. Second, since 
the graphics controller and video logic are integrated, 
the user must accept the level of graphics performance 
provided. No graphics upgrade path exists, so upgrad­
ing would require another product development 
cycle. Including the video logic across the range of 
graphics devices is not desirable, because such a design 
forces higher prices for users who are not interested in 
the manipulation of broadcast video. 

The third approach, shown in Figure le, is much 
more radical. It places the responsibility of moving each 
field of video data to and from the decompression/ 
rendering option squarely on the system. The system 
1/0 bus must absorb not only the traffic generated by 
the movement of the compressed video to the decom­
pression hardware but also the movement of the 
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decompressed video image from the accelerator back 
to system memory and back again over the same bus 
to the graphics option. 

Accepting the third alternative architecture allowed 
us to meet the three important objectives for the 
project: 

1. The workstation should be able to treat digitized 
video data the same as any other data type. 

2. The inclusion of video capabilities in a workstation 
should be completely independent of the graphics 
subsystem used. 

3. Any hardware option should be low cost. 

The original design goals included audio 1/0, even 
though the processing power and bandwidth needed 
for audio were far below those required for video. 
Since users who want video capability usually require 
audio capability as well, audio support was included 
so that users would have to buy only one option to 
get both audio and video. This design reduced the 
number of bus slots used. 

The Jvideo Advanced Development Project 
Jvideo was the name given to the advanced develop­
ment hardware seed project. Actual design work 
started in February 1991; power on occurred in 
September 1991. Jvideo has since become a widely 
used research tool. 



Table 1 
The Nine Video Flow Paths 
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Jvideo was an important advanced development 
project for several reasons. First, it was the vehicle used 
to verify the first two project objectives. Second, it was 
the first complete hardware implementation of the 
rendering circuit, thus verifying the image quality that 
was available when displaying video with fewer than 
256 colors. Finally, it was during the development of 
Jvideo that the DMA structure and interaction with 
the system was developed and verified. 

J300 Features 

This section describes the various video paths sup­
ported in the J300 and presents videoconferencing 
as an example of video data flow. The AccuVideo 
filter-and-scale and dithering system designs used in 
the J300 are presented in detail. 

Video Paths 
Table 1 summarizes the nine fundamental video paths 
that the J300 system supports. The input to the J300 
can come from an external analog source or from the 
system in compressed or uncompressed form . The 
outputs include analog video and several internal 
formats, i.e., JPEG compressed, uncompressed, or 
dithered. Dithering is a technique used to produce a 
visually pleasant image while using far less information 
than was available in the original format. 

A conceptual flow diagram of the major compo­
nents of the J300 video system is shown in Figure 2. 
Physically, the frame store and the blocks to its left 
make up the video board. All the other blocks except 
for JPEG compression/ decompression are part of the 
J300 application-specific integrated circuit (ASIC). 

I I ANALOG OUT ~ UPSCALE 

I t 
I 
I 
[ __ _ 

FRAME 
- - --< STORE 

(The J300 Hardware Implementation section pro­
vides details on this ASIC. ) 

Both the upscale prior to the analog out block and 
the downscale after the analog in block scale the image 
size independently in the horizontal and vertical direc­
tions with arbitrary real-value scale factors. The filter­
and-downscale function is handled by the Philips chip 
set, as described in the J300 Hardware Implementation 
section. The upscale block is a copy of the Bresenham­
style scale circuit used in the filter-and-scale block. 

The Bresenham-style scale circuit is extremely 
simple and is described in "Bresenham-style Scaling," 
along with an interesting closed-form solution for 
finding initial parameters.5 The filter-and-scale block is 
part of the J300 rendering system. The J300 supports 
arbitrary scaling for either enlargement or reduction in 
both dimensions. We carefully selected a few simple, 
three-element horizontal filters to be used in combi­
nation with scaling; the filters were small enough to be 
included in the J300 ASIC. The J300 supports three 
sharpening filters that are based on a digital Laplacian:0 

Low sharpness 
Medium sharpness 
High sharpness 

(-1/2 
( - 1 
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The J300 also supports two low-pass or smoothing 
filters: 

Low smoothing 
High smoothing 

(1/4 
(1/2 

1/2 
0 

1/4) 
1/2) 

Sharpening is performed before scaling for enlarge­
ment and after scaling for reduction. Smoothing 
is always performed before scaling (as a band limiter) 
for reduction and after scaling ( as an interpolator) for 
enlargement. 
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Figure2 
J300 Video Flow 
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The second part of video rendering occurs in the 
dither block. The AccuVideo Rendering section pro­
vides details on this block. 

The I/0 bypass skips over the video rendering blocks 
when undithered uncompressed output is required. 
When uncompressed digital video in used as input, the 
I/0 bypass is also used. DMA B thus passes dithered or 
uncompressed output and uncompressed input. 

Compressed input and compressed output are 
passed through DMA A. The JPEG compression/ 
decompression block handles all compression of out­
put and decompression of input. The combination of 
the two DMA channels allows high data rates because 
both channels are often used in parallel. 

Videoconferencing Application 

A good illustration of the video data flow in J300 is 
a videoconferencing application. Figure 3 shows the 
flow of analog (A), compressed ( C), and dithered (D) 
video data to and from memory in a system on a net­
work. The application software controls the flow of 
data between memory and the display and network 
devices. The J300 hardware must perform two funda­
mental operations: 

1. Capture the local analog signal, compress the data, 
and send it to memory, and in parallel, dither the 
data and send it to memory. The solid arrows 
in Figure 3 denote the compress, send, and view 
paths. 

2. Receive a remote compressed video stream from 
memory, decompress and dither the data, and send 
it back to memory. The dashed arrows in Figure 3 
denote the receive, decompress, and view paths. 

Figure 3 demonstrates the unique graphics con-
troller independence of the J300 architecture, as 
shown in Figure le. In assessing the aggregate video 
data traffic, it is important to keep in mind that the 
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Notes: Dashed arrows represent the receive, decompress, and view paths 
(C-+ D). Solid arrows represent the compress, send, and view paths 
(A-+C, A-+D). The symbols A, C, and D stand for analog, 
compressed, and dithered data. 

Figure 3 
Videoconferencing Application 

24 Digital Technical Journal Vol. 7 No. 4 1995 

dithered data is 8 bits per pixel, and the compressed 
data is approximately 1.5 bits per pixel. For example, 
consider a videoconference with 11 participants, 
where each person's workstation screen displays the 
images of the other 10 participants, each in a 320-by-
240-pixel window and with a refresh rate of 20 Hz. 
The bus traffic required for each window is twice the 
compressed image size plus twice the decompressed 
image size, i.e., (2 X 320 X 240 X 1.5)..,... 8 bytes+ 
(2 X 320 X 240) bytes= 182.4 kilobytes (kB ) per 
window. The total bandwidth would be 182.4 kB X 

11 windows X 20 Hz = 40.1 megabytes (MB ) per 
second, which is well within the achievable bandwidth 
of both TURBOchannel and PCI buses. 

These two operations through the J300 concep­
tual flow diagram of Figure 2 are shown explicitly in 
Figure 4 for the capture, compress, and dither paths, 
and in Figure 5 for the decompress and dither path. 
In Figure 4, video data is captured through the analog 
in block and buffered in the frame store block. The 
frame store then sends the data in parallel to the JPEG 
compression/ decompression path, and to the filter, 
scale, and dither path, each of which sends the data to 
its own dedicated DMA port. 

In Figure 5, compressed data enters DMA A, is 
JPEG decompressed using the frame store as a buffer, 
and is sent to the filter, scale, and dither path, where it 
is output through DMA B. 

Figures 4 and 5 illustrate three of the nine possible 
video paths shown in Table 1. It is straightforward to 
see how the other six paths flow through the block 
diagram ofFigure 2. 

AccuVideo Rendering 
Digital's AccuVideo method of video rendering is 
used in the J300 and in other products.7-8 J300 render­
ing is represented in Figure 2 by the filter-and-scale 
block and by the dither block. The following features 
are supported: 

• High-quality dithering 

• Selectable number of colors from 2 to 256 

• YUV-to-RGB conversion with controlled out-of-
bounds mapping 

• Brightness, contrast, and saturation control 

• Color or gray-scale output 

• Two-dimensional (2-D) scaling to any size 

• Sharpening and smoothing control 

The algorithm for mean-preserving multilevel 
dithering is described by Ulichney in "Video 
Rendering. "9 Mean preserving denotes that the 
macroscopic average in the output image is main­
tained across the entire range of input values. Figure 6 
depicts the version of the dithering algorithm used for 
the single component Yin the J300 prototype, Jvideo. 
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Figure 6 
Dither Components of the Jvideo Prototype 

To quantize with a simple shift register and still main­
tain mean preservation, a particular gain that happens 
to have a value between 1 and 2 must be imparted to 
the input.9 This gain is included in the adjust look-up 
table (LUT), thus adding a bit to the data width of the 
input value to the ditherer. 

In the case of the Y (luminance) component, the 
effect of brightness and contrast can be controlled by 
dynamically changing and loading the contents of this 
adjust LUT. Saturation control is a contrast-like map­
ping controlled on the U and V adjust L UTs. 

The least significant bits of the horizontal and verti­
cal address (x,y) of the pixel index the dither matrix. 
In the Jvideo prototype, we used an 8 by 8 recursive 
tessellation array.7 Because the size of the array was 
so small, all the components in Figure 6 could be 

encapsulated with a single 16K-by-4-bit random­
acccss memory (RAM). This implementation is not 
the least expensive, but it is the easiest to build and is 
quite appropriate for a prototype. 

Figure 7 illustrates the Jvideo dither system. The 
number of dither levels and associated color adjust­
ment are designed in software and loaded into each of 
the 16K-by-4-bit LUTs for Y, U, and V Each compo­
nent outputs from 2 to 15 dithered levels. The three 
4-bit dithered values are used as a collective address to 
a color convert LUT, which is a 4K-by-8-bit RAM. 

Loaded into this LUT is the conversion of each 
YUV triplet to one of N RGB index values. The gener­
ation of this LUT incorporates the state of the display 
server's color map at render time. Although this 
approach is much more efficient than a direct algebraic 
conversion known as dematrixing, an arbitrarily com­
plex mapping of out-of-range values can take place 
because the table is built off line. Another paper in this 
issue of the journal, "Software-only Compression, 
Rendering, and Playback of Digital Video," presents 
details on this approach .7 

Perhaps the central characteristic of AccuVideo ren­
dering is the pleasing nature of the dither patterns 
generated. We arc able to obtain such patterns because 
we incorporate dither matrices developed using the 
void-and-cluster method. 10 These matrices are 32 by 
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32 in extent. Although surprisingly small for the 
complexity and seamlessness of the patterns produced, 
this size requires 10 bits of display address information 
for indexing. 

While very simple to implement, the single LUT 
approach used in the Jvideo system shown in Figure 7 
becomes unattractive for a matrix of this size because 
of the large memory requirement. Eight bits of input 
plus 10 bits of array address requires a 256K-bit RAM 
for each color component; }video's 8 by 8 dither 
matrix called for a more cost-effective 16K-bit RAM. 

The dither system design used in the J300 is shown 
in Figure 8. The design is quite simple, requiring only 
RAM and three adders. We restricted the number of 
U- and V-dithered levels to always be equal. Such a 
restriction allows the sharing of a single dither matrix 
RAM. The paper "Video Rendering" provides details on 
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the relationship between the number of dithered levels 
for each component, the number of bits shifted, the nor­
malization of the dither matrix values, the gain embed­
ded in the adjust LUT, and the bit widths of the data 
paths.9 Note that the decision to use RAM instead of 
read-only memory (ROM) for the adjust LUTs, dither 
matrices, and color convert LUT permits complete flex­
ibility in selecting the number of dithered colors. 

When the video source is monochrome, or whenever 
a monochrome display is desired, a Mono Select mode 
allows the Y channel to be quantized to up to 8 bits. 

The algorithm used in the software-only version of 
AccuVideo exactly parallels Figure 8.7 "Integrating 
Video Rendering into Graphics Accelerator Chips" 
describes variations of this architecture for other 
products. 8 One design always renders the same num­
ber of colors ,vithout adjustment, in favor of very low 
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cost. Another performs YUV-to-RGB conversion first, 
to allow dithering to more than 256 colors. Note that 
with this design, for large numbers of output colors, 
the memory required for the back-end color convert 
LUT design would be prohibitive. 

J300 Hardware Implementation 

Implementing the J300 hardware design entailed 
making trade-offs to keep down the costs. This section 
presents the major trade-offs and then discusses 
the resulting video and audio subsystem designs, the 
built-in 1/0 test capabilities, and the Verilog hardware 
description language design environment used. 

Design Trade-offs 
In August 1991, the Jvideo hardware design team 
presented to engineering management several cost­
reducing design alternatives with the goal of turning 
Jvideo into a product. Alternatives ranged from retain­
ing the basic design (which would require a short 
design time and would result in the fastest time to 
market) to redesigning the board with minimal cost 
as the driving factor (which meant putting as much 
logic as possible into the J300 ASIC). Management 
accepted the latter proposal, and design started in 
January 1992. 

The major design trade-offs involved in reducing 
module cost centered around three portions of the 
design: the accelerator chip, the pixel representation, 
and the dither circuit. The design team evaluated dif­
ferent JPEG hardware compression/ decompression 
accelerators in terms of availability, performance, cost, 
and schedule risk. While various manufacturers 
claimed to have cheaper parts available within our 
design schedule constraints, the CL550 chip from 
C-Cube Microsystems, the same chip used in the 
Jvideo system, had reasonable performance and 
known idiosyncrasies. The designers decided to use 
one CL550 chip instead of two, as was done in Jvideo. 
This meant that in videoconferencing applications, the 
chip would have to be programmed to compress the 
incoming image and then reprogrammed to decom­
press the other images. The turnaround time of the 
programming required to implement the design 
change plus the compression time together accounted 
for the performance penalty that the product would 
pay for including only one CL550. 

To understand the impact on performance of using 
just one CL550 chip, consider that all 700 registers in 
the chip would have to be reloaded when changing 
the chip from compression to decompression and vice 
versa. Given a register write cycle of 250 nanoseconds, 
the penalty is 175 microseconds. We estimated the 
time to compress an image as the number of pixels in 
the uncompressed image (the CL550 does occasion-

ally stall during compression or decompression, but 
we ignored this fact for these calculations) times the 
period of the pixel rate. For an image size of 320 by 
240 pixels and a pixel clock period of 66.67 nanosec­
onds, the time used for compression is 5.12 milli­
seconds. If the desired overall frame rate of all images 
on the screen is 20 Hz, then approximately 11 percent 
of the available time is given to compression ((5.12 
milliseconds+ 0.35 milliseconds) + 50 milliseconds). 
We judged this decrease in decompression perfor­
mance reasonable, since approximately 30 percent of 
the early estimated cost of materials on the J 300 was 
the CL550 and the associated circuits. 

The second major area of savings came with the 
decision to use the 4:2:2 YUV pixel representation in 
the frame store, the CL550, and the input to the ren­
dering logic. This approach reduced the width of the 
frame store and external data paths from 24 to 16 bits 
with no loss of fidelity in the image. The trade-off 
associated with this decision was that the design pre­
cluded the ability to directly capture video in 24-bit 
RGB unless the ASIC included a full YUV-to-RGB 
conversion. The main thrust of the product was to 
accelerate image compression and decompression on 
what was assumed to be the largest market, i.e., 8-bit 
graphics systems, by using the AccuVideo rendering 
path. Since 24-bit RGB can be obtained from 4:2:2 
YUV pixel representation (which can be captured 
directly) with no loss of image fidelity, we considered 
this hardware limitation to be minor. 

The third area of trade-offs revolved around the 
implementation of the dither circuit and how much of 
that circuitry the ASIC should include. The rendering 
system on Jvideo was implemented entirely with 
LUTs, a method that is inexpensive in terms of the 
random logic needed but expensive in terms of com­
ponent cost. Early on, the design team decided that 
including the 4K-by-8-bit color convert LUT inside 
the ASIC was not practical. Placing the LUT outside 
the ASIC required using a minimal number of pins, 
28, and using a readily available 8K-by-8-bit static 
random-access memory (SRAM) allowed the unused 
portion of the RAM to store the dither matrix values. 
Such a design reduced the amount of on-chip storage 
required for dither matrix values to 32 by 8 bits. 

The impact of requiring dither matrix value fetches 
on a per-line basis added to the interline overhead 
32 accesses for the new dither matrix values or 16 pixel 
clocks. The impact of the 16 added clocks on a line 
basis depends on the resultant displayed image size. 
If the displayed images are small, the impact is as much 
as 10 percent ( for a 160-by-120-pixel image). It is 
uncommon, however, for someone to view video on 
a workstation at that resolution. At a more common 
displayed size of 640 by 480, the amount of overhead 
decreases to 3 percent. 
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Video Subsystem Design 
The major elements of the video subsystem design are 
the ASIC, which is designed in the Verilog hardware 
description language, the Philips digital video chip set, 
and the compression/decompression circuitry. This 
section discusses the ASIC design and some aspects of 
the video 1/0 circuit design. 

The BOO ASIC The J300 ASIC design included not 
only the video paths discussed earlier in the section 
J300 Features but also all the control for the video 
1/0 section of the design, all video random-access 
memory (VRAM) control, the CLSSO interface, 
access to the diagnostics ROM, arbitration with 
the audio circuit for TURBOchannel access, and the 
TURBOchannel interface. Figure 9 shows a block 
diagram of the J300 ASIC. Only the DMA section of 
the design is discussed further in this paper. 

The DMA interface built into the ASIC is designed 
to facilitate the movement oflarge blocks of data to or 
from system memory with minimal interaction from 
the system. The chip supports two channels: the first 
is used for CLSSO host port data ( compressed video 
and register write data); the second is used for pixel 
data flowing to or from the rendering circuit. Once 
started, each channel uses its map pointer register to 
access successive (address, length) pairs that describe 
the physical memory to be used in the operation. (The 
map pointer register points to the scatter/gather map 
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in system memory to be used. ) The ASIC fills or emp­
ties the first buffer and then automatically fetches the 
next (address, length) pair in the scatter/gather map 
and so on until the operation is complete. When a com­
pressed image is transferred into system memory, the 
exact length of the data set is unknown until the ASIC 
detects the end-of-image marker from the CLSSO. In 
this case, system software can read a length register to 
find out exactly how much data was transferred. 

There is no restriction on the number of (address, 
length) pairs included in each scatter/gather map. 
New pairs can be assigned to each line of incoming 
video such that deinterlacing even and odd video fields 
can be accomplished as the data is moved into system 
memory. 

Since only the map pointer register needs to be 
updated between operations, system software can set 
up multiple buffers, each with its associated scatter/ 
gather map, ahead of time. 

Video Input and Output Logic The J300 video 1/0 
circuit, shown in Figure 10, was designed using Philips 
Semiconductors' digital video chip set. Explanation of 
some aspects of the design follows. 

The J300 uses the Philips chip set to digitize and 
decode input video. The chip set consists of the 
TDA8708A and the TDA8709A, as the analog-to­
digital (A/D) converters, and the SAA7191, as the 
Digital MultiStandard Decoder (DMSD). This chip 
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set supports NTSC (M ), PAL (B, G, H, D ), and 
SECAM (B, G, H, D, K, Kl ) formats .2 It also supports 
square pixels, where the sampling rate is changed to 
12.272727 megahertz (MHz) for the NTSC format 
and to 14.75 MHz for the PAL and SECAM formats . 
In addition, the J300 uses the SAA7186, a digital 
video scaler chip that can scale the input to an arbitrary 
size and perform horizontal and vertical filtering. 

The A/ D converters digitize the incoming video 
signal to 256 levels. A video signal is composed of 
negative-going synchronization pulses, a color burst 
(to aid in decoding color information), and positive­
going video. 11 As an aid to visualizing this, Figure 11 
illustrates a simplified version of the drawing presented 
in the Color Television Studio Picture Line Amplifier 
Output Drawing.11 The level before and after the syn-

chronization pulses is referred to as blank level. Black 
level may or may not be the same as blank, depending 
on the standard. Video signals are 1 volt peak to peak. 

The first stage included in the A/D converters is 
a three-to-one analog multiplexer. We used this cir­
cuit to allow two composite signals to be attached 
at the same time to support S-Video while allowing 
the third input to be used as an internal loop-back 
connection. The TDA8708A chip is used for compos­
ite video and for the luminance portion of S-Video. 
The TDA8709A chip is used only for the chrorninance 
portion ofS-Video. 

The A/D converters contain an automatic gain con­
trol (AGC) circuit, which limits the A/D range. The 
bottom of the synchronization pulse is set at 0, and 
blank level is set at 64. Given these settings, peak white 
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Depiction ofVideo Signal Terminology 

corresponds to a value of 224. If the input video level 
tends to exceed 213, a peak white gain control loop 
is activated, which lowers the internal gain of the 
video. The SAA7191 processes the luminance, and 
the resulting range in the Y value is 16 for black 
and approximately 220 for white. As recommended 
by CCIR Report 601-2, there is room built into the 
two A/D converters and the DMSD to allow for addi­
tive noise that might be present in the distribution of 
video signals. 3 

The J300 video 1/0 design includes a video scaler 
so that the incoming video can be scaled down and fil­
tered prior to compression. There are two primary 
reasons for this scaling. First, scaling reduces the 
amount of data to be processed, which results in 
a smaller compressed version of the image. Second, 
scaling removes any high-frequency noise in the 
image, which results in higher compression ratios. 
Unfortunately, if the user wishes to compress and also 
to view the incoming video stream, the video will 
more than likely be scaled again in the rendering cir­
cuit in the ASIC. 

The J300 output video encoding circuit uses Philips' 
SAA7199B chip as the encoder. This component is fol­
lowed by a low-pass filter and an analog multiplexer 
(Philips' TDA8540 chip), which functions as a 4 by 4 
analog cross-point switch. The SAA7199B video 
encoder accepts digital data in a variety of formats, 
including 4:2:2 YlN. The SAA7199B processes the 
chrominance and luminance according to which stan­
dard is being encoded, either NTSC or PAL (B, G). 
The input range of the SAA7199B is compliant with 
CCIRReport 601-2 forYlN: Yvaries from 16 to 235; 
U and V vary from 16 to 240. The analog multiplexer 
allows either the composite or S-Video output of the 
SAA7199B to be connected to the output connector. 
The switch also allows the video signals to be routed to 
the input circuit for an internal loop-back connection. 
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The J300 video 1/0 design initially included a frame 
store because the CL550 could not guarantee that 
compression of a field of video would be completed 
before the next field started. Even if the J300 scaled 
and filtered the video data prior to compression, some 
temporary storage was needed. We included eight 
256K-by-4-bit VRAMs in the design for this storage. 

In the mode where only the even field is being cap­
tured (which could be part ofreducing the size of the 
final image from 640 by 480 pixels to 320 by 240 
pixels), the J300 does not know when the system will 
request the next field of incoming video. VRAMs 
organized as 768 by 682 by 16 bits allow room to 
store two fields of either NTSC or PAL video. The 
incoming video stream continually alternates between 
these two buffers. The system then has the option of 
requesting the field that will provide the minimum 
input latency or the last complete field stored. 
Requesting the field with the minimum input latency 
creates the possibility that the compression and ren­
dering operations will stall waiting for the finish of the 
video field being processed. 

In another mode of operation, the memory is 
configured as a 1,024-by-512-by-16-bit buffer. This 
configuration is used when compressing or decom­
pressing still images up to 1,024 pixels wide. Another 
use of the frame store organized in this way is for dein­
terlacing. In deinterlace mode, the even and odd fields 
are recombined to form one image. Deinterlacing 
allows capture of a full NTSC frame, but of only 512 
lines of a PAL or SECAM frame. This restriction is due 
to the nature of the shift register cycles implemented 
in the VRAMs. A side effect of using this deinterlace 
mode when compressing the input is that the temporal 
effects of combining the two fields generate what the 
CL550 considers to be a large amount ofhigh-spatial­
frequency components in the image, thus resulting in 
poorer compression. 



Audio Subsystem Design 
The designers believed that the J300 design should 
include audio capabilities that complemented the 
video capabilities. Consequently, the design incor­
porates an analog codec (the CS4215 from Crystal 
Semiconductors) and a digital audio codec ( the 
MC56401 from Motorola Semiconductors). These 
two chips provide all the audio I/0 specified in the 
design. They communicate to the rest of the system by 
means of a serial digital interface. 

To provide audio capabilities such as compression, 
decompression, and format conversion, the J300 
includes a general-purpose DSP (DSP56001 from 
Motorola Semiconductors) with 8K by 24 bits of 
external RAM. This DSP can communicate to the 
audio codecs through an integrated port. It also han­
dles the real-time nature of that interface by using 
a portion of the RAM to buffer the digital audio data. 

The J300 offers the same type ofDMA support for 
audio data as for video data. The audio interface con­
troller ASIC, along with the DSP, provides support for 
four independent DMA streams. These streams corre­
spond to the four possible sources or sinks of audio 
data: analog audio in, analog audio out, digital audio 
in, and digital audio out. The left channel of the ana­
log audio connection can also be routed to the head­
phone/microphone jack. Figure 12 shows a block 
diagram of the audio portion of the J300. 

Testability of VO Sections 
In the early stages of design, we were aware that built­
in test features were needed to facilitate debugging 
and to reduce the amount of special audio- and video­
specific test equipment required in manufacturing. 
Consequently, one J 300 design goal was to include 

BK-BY-24-BIT 
SAAM 

internal and external loop-back capability on all major 
I/0 circuits. This goal was achieved with the excep­
tion of the digital audio circuit. 

The video encoder can be programmed in test 
mode to output a flat field of red, green, or blue. This 
signal was used in internal and external loop-back. A 
comparison of the values obtained against known 
good values gives some level of confidence with regard 
to the video I/0 stage. The designers accomplished 
external loop-back by using a standard S-Video cable. 

The analog audio codec has internal loop-back 
capability, and a standard audio cable can be used for 
external loop-back tests. External loop-back tests of 
the headphone/microphone jack required a special 
adapter. 

Even with this degree of internal and external loop­
back capability, the goal was to be able to perform 
much more rigorous testing without the need of spe­
cial instrumentation. Tests were developed that used 
two J300 systems to feed each other data. One J300 
system output video data in NTSC or PAL formats of 
different test patterns, and the other J300 interpreted 
the signals. The designers used the same technique for 
both the digital and the analog audio codecs. This 
method provided a high degree of system coverage 
with no additional specialized test instruments. 

Hardware Design Environment 
The ASIC was designed completely in a hardware 
description language called Verilog, using no 
schematic sheets. At first, we simulated pieces of the 
design, building simple Verilog models for all the 
devices in the J300. We simulated complex chips such 
as the video scaler and the CLSSO as data sources or 
sinks, reading data from or writing data to files in 
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memory. This approach limited the video data that 
could be compressed or decompressed to samples 
where both versions already existed. In all cases, the 
I/0 ports on devices modeled included accurate 
timing information. Verilog includes the capability 
to incorporate user-defined routines written in the 
C programming language that can be compiled into 
a Verilog executable. The J300 design team took 
advantage of this capability by writing an interface that 
took TURBOchannel accesses from a portion of 
shared memory and used them to drive the Verilog 
model of the TURBOchannel bus. In that way, the 
designers could write test routines in C, compile them, 
and run them against the Verilog model of the ASIC 
and of the rest of the board design. 

The Verilog model proved to be useful in develop­
ing manufacturing diagnostics and was used to some 
extent for driver and library code development. It 
was a very effective tool for the hardware designers, 
because much of the test code written during the 
design phase was used to bring up the hardware in the 
lab and later as example code for library development. 
Use of the Verilog model for software development 
was not as extensive as was hoped, however. The 
requirement to have a Verilog license available each 
time a model was invoked limited the number of users. 
There were enough licenses for hardware develop­
ment, but few were left for software development. 
Another reason the software development team did 
not rely on using the Verilog model was that even 
though the model provided an accurate simulation of 
the hardware, the model was also very slow. 

Concluding Remarks 

With its Sound & Motion J300, FullVideo Supreme 
JPEG, and FullVideo Supreme products, Digital has 
achieved its goal of designing a hardware option that 
allows the integration of video into any workstation. 
The adapter performance on different platforms 
depends on many factors, chief among which are the 
efficiency of the bus design ( either TURBOchannel or 
PCI), the amount of other traffic on the bus, and the 
design of the graphics device. As the performance of 
systems, particularly graphics devices, increases, the 
bottleneck in the J300 design becomes the pixel fre­
quency through the J300 ASIC. For this reason, any 
future adapter designs should incorporate a higher 
pixel frequency. 

The J300 family of products was the first to offer 
Digital's proprietary AccuVideo rendering technol­
ogy, affording a high-quality yet low-cost solution for 
low-bit-depth frame buffers. Rendering video to 8 bits 
per pixel in combination with a high-speed bus 
allowed an architecture that is independent of the 
graphics subsystem. 
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The J300 Family of Video 
and Audio Adapters: 
Software Architecture 

The BOO family of video and audio products 

is a feature-rich set of multimedia hardware 

adapters developed by Digital for its Alpha 

workstations. This paper describes the design 

and implementation of the BOO software archi­

tecture, focusing on the Sound & Motion BOO 

product. The software approach taken was to 

consider the hardware as two separate devices: 

the BOO audio subsystem and the BOO video 

subsystem. Libraries corresponding to the two 

subsystems provide application programming 

interfaces that offer flexible control of the 

hardware while supporting a client-server 

model for multimedia applications. The design 

places special emphasis on performance by 

favoring an asynchronous 1/0 programming 

model implemented through an innovative 

use of queues. The kernel-mode device driver 

is portable across devices because it requires 

minimal knowledge of the hardware. The over­

all design aims at easing application program­

ming while extracting real-time performance 

from a non-real-time operating system. The 

software architecture has been successfully 

implemented over multiple platforms, includ­

ing those based on the OpenVMS, Microsoft 

Windows NT, and Digital UNIX operating sys­

tems, and is the foundation on which software 

for Digital's current video capture, compression, 

and rendering hardware adapters exists. 
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I 
Paramvir Bahl 

Background 

In January 1991, an advanced development project 
called Jvideo was jointly initiated by engineering and 
research organizations across Digital. Prior to this 
endeavor, these organizations had proposed and 
carried out several disjoint research projects pertaining 
to video compression and video rendering. The 
International Organization for Standardization (ISO) 
Joint Photographic Experts Group (JPEG) was 
approaching standardization of a continuous-tone, 
still-image compression method, and the ISO Motion 
Picture Experts Group's MPEG-1 effort was well on 
its way to defining an international standard for video 
compression.1

•
2

•
3 Silicon for performing JPEG com­

pression and decompression at real-time rates was just 
becoming available. It was a recognized and accepted 
fact that the union of audio, video, and computer 
systems was inevitable. 

The goal of the Jvideo project was to pool the vari­
ous resources within Digital to design and develop 
a hardware and software multimedia adapter for 
Digital's workstations. Jvideo would allow researchers 
to study the impact of video on the desktop. Huge 
amounts of video data, even after being compressed, 
stress every underlying component including net­
works, storage, system hardware, system software, and 
application software. The intent was that hands-on 
experience with Jvideo, while providing valuable 
insight toward effective management of video on 
the desktop, would influence and potentially improve 
the design of hardware and software for future com­
puter systems. 

Jvideo was a three-board, single-slot TURBOchannel 
adapter capable of supporting JPEG compression and 
decompression, video scaling, video rendering, and 
audio compression and decompression-all at real­
time rates. Two JPEG codec chips provided simultane­
ous compression and decompression of video streams. 
A custom application-specific integrated circuit 
(ASIC) incorporated the bus interface with a direct 
memory access (DMA) controller, filtering, scaling, 
and Digital's proprietary video rendering logic. 
Jvideo's software consisted of a device driver, an 
audio/video library, and applications. The underlying 



ULTRIX operating system (Digital's native implemen­
tation of the UNIX operating system) ran on work­
stations built around MIPS R3000 and R4000 
processors. Application flow control was synchronous. 
The library maintained minimal state information, and 
only one process could access the device at any one 
time. Hardware operations were programmed directly 
from user space. 

The Jvideo project succeeded in its objectives. 
Research institutes both internal and external to 
Digital embraced Jvideo for studying compressed 
video as "just another data type." While some research 
institutes used Jvideo for designing network protocols 
to allow the establishment ofreal-time channels over 
local area networks (LANs) and wide area networks 
(WANs ), others used it to study video as a mechanism 
to increase user productivity.4..jj Jvideo validated the 
various design decisions that were different from the 
trend in industry.9 It proved that digital video could be 
successfully managed in a distributed environment. 

The success of Jvideo, the demand for video on the 
desktop, and the nonavailability of silicon for MPEG 
compression and decompression influenced Digital's 
decision to build and market a low-cost multimedia 
adapter similar in functionality to Jvideo. The Sound & 
Motion J300 product, referred to in this paper as simply 
the J300, is a direct descendent of the Jvideo advanced 
development project. The J300 is a two-board, single­
slot TURBOchannel option that supports all the fea­
tures provided by Jvideo and more. Figure 1 presents 
the J300 hardware functional diagram, and Table 1 
contains a list of the features offered by the J 300 
product. Details and analysis of the J300 hardware 
can be found in "The J300 Family of Video and 
Audio Adapters: Architecture and Hardware Design," 
a companion paper in this issue of the Journa/.9 

The latest in this series of video/audio adapters are 
the single-board, single-slot peripheral component 
interconnect (PCI)-based FullVideo Supreme and 
Ful!Video Supreme JPEG products. These products 
are direct descendants of the J300 and are supported 
under the Digital UNIX, Microsoft Windows NT, and 
OpenVMS operating systems. FullVideo Supreme is 
a video-capture, video-render, and video-out-only 
option; whereas, FullVideo Supreme JPEG also 
includes video compression and decompression. In 
keeping with the trend in industry and to make the 
price attractive, Digital left out audio support when 
designing these two adapters. 

All the adapters discussed are collectively called the 
J 300 family of video and audio adapters. The software 
architecture for these options has evolved over years 
from being symmetric in Jvideo to having completely 
asymmetric flow control in the J300 and FullVideo 
Supreme adapters. This paper describes the design and 
implementation of the software architecture for the 
J 300 family of multimedia devices. 

Software Architecture: Goals and Design 

The software design team had two primary objectives. 
The first and most immediate objective was to write 
software suitable for controlling the ]300 hardware. 
This software had to provide applications with an 
application programming interface (API) that would 
hide device-specific programming while exposing all 
hardware capabilities in an intuitive manner. The soft­
ware had to be robust and fast with minimal overhead. 

A second, longer-term objective was to design a soft­
ware architecture that could be used for successors to 
the ]300. The goal was to define generic abstractions 
that would apply to future, similar multimedia devices. 
Furthermore, the implementation had to allow porting 
to other devices with relatively minimal effort. 

When the project began, no mainstream multi­
media devices were available on the market, and expe­
rience with video on the desktop was limited. 
Specifically, the leading multimedia APis were still in 
their infancy, focusing attention on control of video 
devices like videocassette recorders (VCRs), laser disc 
players, and cameras. Control of compressed digital 
video on a workstation had not been considered in any 
serious manner. 

The core members of the J300 design team had 
worked on the Jvideo project. Experiences gained 
from that project helped in designing an API with the 
following attributes: 

• Separate libraries for the video and audio subsystems 

• Functional-level as opposed to component-level 
control of the device 

• Flexibility in algorithmic and hardware tuning 

• Provision for both synchronous and asynchronous 
flow control 

• Support for a client-server model of multimedia 
computing 

• Support for doing audio-video synchronization at 
higher layers 

In addition, the architecture was designed to be 
independent of the underlying operating system and 
hardware platform. It included a clean separation 
between device-independent and device-dependent 
portions, and, most important, it left device program­
ming in the user space. This last feature made the 
debugging process tractable and was the key reason 
behind the design of a generic, portable kernel-mode 
multimedia device driver. 

As shown in the sections that follow, the software 
design decisions were influenced greatly by the desire 
to obtain good performance. The goal of extracting 
real-time performance from a non-real-time operating 
system was challenging. Toward this end, designers 
placed special emphasis on providing an asynchronous 
model for software flow control, on designing a fast 
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Figure 1 
The Sound & Motion J300 Hardware Functional Diagram 

Table 1 
BOO Hardware Features 

Video Subsystem 

Video in (NTSC, PAL, or 
SECAM formats)* 

Video out (NTSC or PAL 
formats) 

Composite or S-Video 1/0 

Still-image capture and 
display 

JPEG compression and 
decompression 

Image dithering 

Scal ing and filtering 
before compression 

Scal ing and filtering 
before dithering 

24-bit red, green, and 
blue (RGB) video out 

Two DMA channels 
simultaneously operable 

Video genlocking 

Graphics overlay 

150-kHz, 18-bit counter 
(time-stamping) 

Audio Subsystem 

Compact disc (CD)-quality 
analog 1/0 

Digital 1/0 (AES/EBU 
format support)** 

Headphone and 
microphone 1/0 
Multiple sampling rates 
(5 to 48 kilohertz [kHz)) 

Motorola's DSP56001 for 
audio processing 

Programmable gain and 
attenuation 

DMA into and out of 
system memory 

Sample counter 

* National (U.S.) Television System Committee, Phase Alternate Line, 
and Sequentiel Couleur avec Memo ire 

** Audio Engineering Society/European Broadcasting Union 
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kernel-mode device driver, and on providing an archi­
tecture that would require the least number of system 
calls and minimal data copying. 

The kernel-mode device driver is the lowest-level 
software module in the J300 software hierarchy. The 
driver views the J300 hardware as two distinct devices: 
the J300 audio and the J300 video. Depending on the 
requested service, the J300 kernel driver filters com­
mands to the appropriate subsystem driver. This key 
decision to separate the J300 hardware by functional­
ity influenced the design of the upper layers of the sofi:0 

ware . It allowed designers to divide the task into 
manageable components, both in terms of engineer­
ing effort and for project management. Separate teams 
worked on the two subsystems for extended periods, 
and the overall development time was reduced. Each 
subsystem had its own kernel driver, user driver, 
software library, test applications, and diagnostics 
software. The decision to separate the audio and the 
video software proved to be a good one. Digital's lat­
est multimedia offering includes PCI-based FullVideo 
Supreme adapters that build on the video subsystem 
software of the J300. Unlike the J300, the newer 
adapters do not include an audio subsystem and thus 
do not use the audio library and driver. 

Following the philosophy behind the actual design, 
the ensuing discussion of the J300 software is orga­
nized into two major sections. The first describes the 
software for the video subsystem, including the design 



and implementation of the video software library and 
the kernel-mode video subsystem driver. Performance 
data is presented at the end of this section. The second 
major section describes the software written for 
the audio subsystem. The paper then presents the 
methodology behind the development and testing 
procedures for the various software components and 
some improvements that are currently being investi­
gated. A section on related published work concludes 
the paper. 

Video Subsystem 

The top of the software hierarchy for the video sub­
system is the application layer, and the bottom is the 
kernel-mode device driver. The following simplified 
example illustrates the functions of the various mod­
ules that compose this hierarchy. 

Consider a video application that is linked to a multi­
media client library. During the course of execution, 
the application asks for a video operation through 
a call to a client library function. The client library 
packages the request and passes it though a socket to a 
multimedia server. The server, which is running in the 
background, picks up the request, determines the sub­
system for which it is intended, and invokes the user­
mode driver for that subsystem. The user-mode driver 
translates the server's request to an appropriate (non­
blocking) video library call. Based on the operation 

APPLICATION 

requested, the video library builds scripts ofhardware­
specific commands and informs the kernel-mode 
device driver that new commands are available for exe­
cution on the hardware. At the next possible opportu­
nity, the kernel driver responds by downloading these 
commands to the underlying hardware, which then 
performs the desired operation. Once the operation is 
complete, results are returned to the application. 

Figure 2 shows a graphical representation of the 
software hierarchy. The modules above the kernel­
mode device driver, excluding the operating system, 
are in user space. The remaining modules are in kernel 
space. The video library is modularized into device­
independent and device-dependent parts. Most of the 
J300-specific code resides in the device-dependent 
portion of the library, and very little is in the kernel­
mode driver. The following sections describe the vari­
ous components of the video software hierarchy, 
beginning with the device-independent part of the 
video library. The description of the multimedia client 
library and the multimedia server is beyond the scope 
of this paper. 

Video Library Overview 
The conceptual model adopted for the software con­
sists of three dedicated functional units: ( 1) capture 
or play, ( 2 ) compress or decompress, and ( 3) render or 
bypass. Figure 3 illustrates this model; Figure 1 shows 
the hardware components within each of the three 
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Figure 3 

VIDEO-- CAPTURE/PLAY 
PORT 

Conceptual Model for the J300 Video Subsystem Software 

units. The units may be combined in various configu­
rations to perform different logical operations. For 
example, capture may be combined with compression, 
or decompression may be combined with render. 
Figure 4 shows how these functional units can be 
combined to form nine different video flow paths sup­
ported by the software. Access to the units is through 
dedicated digital and analog ports. 

All functional units and ports can be configured 
by the video library through tunable parameters. 
Algorithmic tuning is possible by configuring the 
three units, and 1/0 tuning is possible by configuring 
the three ports. Examples of algorithmic tuning 
include setting the Huffinan tables or the quantization 
tables for the compress unit and setting the number of 

COMPRESS/ 
DECOMPRESS 

RENDER 

COMPRESSION 
PORT 

PIXEL 
PORT 

output colors and the sharpness for the render unit. 1
•
9 

Examples of 1/0 tuning include setting the region of 
interest for the compression port and setting the input 
video format for the analog port. Thus, ports are 
configured to indicate the encoding of the data, 
whereas units are configured to indicate parameters 
for the video processing algorithms. Figure 5 shows 
the various tunable parameters for the ports and units. 
Figure 6 shows valid picture encoding for the two 
Digital 1/0 ports. Each functional unit operates inde­
pendently on a picture. A picture is defined as a video 
frame, a video field, or a still image. Figure 7 illustrates 
the difference between a video frame and a video field. 
The parity setting indicates whether the picture is an 
even field, an odd field, or an interlaced frame. 
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Note that a shaded area represents the render unit. 
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The software broadly classifies operations as either 
nonrecurring or recurring. Nonrecurring operations 
involve setting up the software for subsequent picture 
operations. An example of a nonrecurring operation 
is the configuration of the capture unit. Recurring 
operations are picture operations that applications 
invoke either periodically or aperiodically. Examples 
of recurring operations are CaptureAndCompress, 

RenderAndPlay, and DecompressAndRender. 

All picture operations are provided in two versions: 
blocking and nonblocking. Blocking operations force 
the library to behave synchronously with the hard­
ware, whereas nonblocking operations can be used for 
asynchronous program flow. Programming is simpler 
with blocking operations but less efficient, in terms of 
overall performance, as compared to nonblocking 
operations. All picture operations rely on combina­
tions of input and output buffers for picture data. To 
avoid extra data copies, applications are required 
to register these I/0 buffers with the library. The 
buffers are locked down by the library and are used for 
subsequent DMA transfers. Results from every picture 
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operation come with a 90-kHz time stamp, which can 
be used by applications for synchronization. (The 
J300's 150-kHz timer is subsampled to match the 
timer frequency specified in the ISO MPEG-1 System 
Specification.) 

The video library supports a client-server model of 
computing through the registration of parameters. In 
this model, the video library is part of the server process 
that controls the hardware. Depending on its needs, 
each client application may configure the hardware 
device differently. To support multiple clients simul­
taneously, the server may have to efficiently switch 
between the various hardware configurations. The 
server registers with the video library the relevant set­
up parameters of the various functional units and 1/0 
ports for each requested hardware configuration. 
A token returned by the library serves to identify the 
registered parameter sets for all subsequent operations 
associated with the particular configuration. Multiple 
clients requesting the same hardware configuration get 
the same token. Wherever appropriate, default values 
for parameters not specified during registration are 
used. Registrations are classified as either heavyweight, 
e.g., setting the number of output colors for the render 
unit, or lightweight, e.g., setting the quantization 
tables for the compress unit. A heavyweight registra­
tion often requires the library to carry out complex 
calculations to determine the appropriate values for the 
hardware and consumes more time than a lightweight 
registration, which may be as simple as changing a 
value in a register. Once set, individual parameters can 
be changed at a later time with edit routines provided 
by the library. After the client has finished using the 
hardware, the server unregisters the hardware configu­
ration. The video library deletes all related internal state 
information associated with that configuration only if 
no other client is using the same configuration. 

The library provides routines for querying the con­
figurations of the ports and units at any given time. 
Extensive error checking and reporting are built into 
the software. 

Video Library Operation 
Internally, the video library relies on queues for 
supporting asynchronous (nonblocking) flow control 
and for obtaining good performance. Three types of 
queues are defined within the library: ( 1) command 
queue, (2) event (or status) queue, and (3) request 
queue. The command and event queues are allocated 
by the kernel-mode driver from the nonpaged system 
memory pool at kernel-driver load time. At device 
open time, the two queues are mapped to the user vir­
tual memory address space and subsequently shared 
by the video library and the kernel-mode driver. The 
request queue, on the other hand, is allocated by the 
library at device open time and is part of the user 
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virtual memory space. Detailed descriptions of the 
three types of queues follow. An example shows how 
the queues are used. 

Command Queue The command queue, the heart of 
the library, is employed for one-way communication 
from the library to the kernel driver. Figure 8 shows 
the composition of the command queue. Essentially, 
the command queue contains commands that set up, 
start, and stop the hardware for picture operations. 
Picture operations correspond to video library calls 
invoked by the user-mode driver. Even though the 
architecture does not impose any restrictions, a picture 
operation usually consists of two scripts: the first script 
sets up the operation, and the second script cleans up 
after the hardware completes the operation. Scripts are 
made up of packets. The header packet is called a script 
packet, and the remaining packets are called command 
packets. The library builds packets and puts them into 
the command queue. The kernel driver retrieves and 
interprets script packets and downloads the command 
packets to the hardware. Script packets provide the 
kernel driver with information about the type of script, 
the number of command packets that constitute the 
script, and the hardware interrupt to expect once all 
command packets have been downloaded. Command 
packets are register 1/0 operations. A command packet 
can contain the type of register access desired, the ker­
nel virtual address of the register, and the value to use 
if it is a write operation. The library uses identifiers 
associated with the command packets and the script 
packets to identify the associated operation. The com­
mand queue is managed as a ring buffer. Two indexes 
called PUT and GET dictate where new packets get 
added and from where old packets are to be extracted. 
A first-in, first-out (FIFO) service policy is adhered to. 
The library manages the PUT index, and the kernel 
driver manages the GET index. 

Event Queue The event queue, a companion to the 
command queue, is also used for one-way communi­
cation but in the reverse direction, i.e., from the kernel 
driver to the library. Figure 9 shows the composition 
of the event queue. The kernel driver puts information 
into the queue in the form of event packets whenever 
a hardware interrupt ( event) occurs. Event packets 
contain the type of hardware interrupt, the time at 
which the interrupt occurred, an integer to identify 
the completed request, and, when appropriate, a value 
from a relevant hardware register. The library moni­
tors the queue and examines the event packets to 
determine which requested picture operation com­
pleted. As is the case with the command queue, the 
event queue is managed as a ring buffer with a FIFO 
service policy. The library manipulates the GET index, 
and the kernel driver manipulates the PUT index. 
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Request Queue The library uses the request queue 
to coordinate user-mode driver requests with opera­
tions in the command queue and with completed 
events in the event queue. When a picture operation 
is requested, the library builds a request packet and 
places it in the request queue. The packet contains 
all information relevant to the operation, such as 
the location of the source or destination buffer, its 

size, and scatter/gather maps for DMA. Subsequently, 
the library uses the request packet to program the 
command queue. Once the operation has completed, 
the associated request packet provides the information 
that the library needs for returning the results to 
the user-mode driver. As with the other queues, the 
service policy is FIFO, and the queue is managed as 
a ring buffer. 
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Capture and Render Example Figure 10 shows an 
application displaying live video on a UNIX work­
station that contains a J300 adapter. The picture oper­
ation that makes this possible is the video library's 
CaptureAndRender operation. A description of the 
asynchronous flow of control when the user-mode 
driver invokes a CaptureAndRender picture operation 
follows. This example illustrates the typical interaction 
between the various software and hardware compo­
nents. The discussion places special emphasis on the 
use of the queues previously described. 

1. The user-mode video driver invokes a nonblock­
ing CaptureAndRender picture operation with 
appropriate arguments. 

2. The library builds a request packet, assigns an 
identifier to it, and adds the packet to the request 
queue. Subsequently, it builds the script and com­
mand packets needed for setting up and terminat­
ing the operation and adds them to the command 
queue. It then invokes the kernel driver's start 
1/0 routine, to indicate that new hardware scripts 
have been added to the command queue. 

3. Start 1/0 queues up the kernel routine (which 
downloads the command scripts to the hardware) 
in the operating system's internal call-out queue 
as a deferred procedure call (DPC) and returns 
control to the video library. 10 
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Figure 10 
Live Video on a UNIX Workstation Using the Capture 
and Render Path 
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4. The video library returns control to the user­
mode driver, which continues from where it had 
left off, performing other tasks until it invokes 
a blocking (i.e. , wait) routine. This gives the 
library an opportunity to check the event queue 
for new events. If there are no new events to ser­
vice, the library asks the kernel driver to "put it to 
sleep" until a new event arrives. 

5. In the meantime, the DPC that had previously 
been queued up starts to execute after being 
invoked by the operating system's scheduler. The 
job of the DPC is to read and interpret script pack­
ets and, based on the interpretation, to download 
the command packets that constitute the script. 
Only the first script that sets up and starts the 
operation is downloaded to the hardware. 

6. A hardware interrupt signaling the completion of 
the operation occurs, and control is passed to the 
kernel driver's hardware interrupt service routine 
(ISR). The hardware ISR clears the interrupt line, 
logs the time, and queues up a software ISR in the 
system's call-out queue, passing it relevant infor­
mation such as the interrupt type and an associ­
ated time stamp. 

7. The operating system's scheduler invokes the 
queued software ISR. The ISR then reads and 
interprets the current (end ) script packet in the 
command queue, which provides the type of 
interrupt to expect as a result of downloading the 
previous (start) script. The software ISR checks 
to see if the interrupt that was passed to it is the 
same as one that was predicted by the (end) script. 
For example, a script that starts a render operation 
may expect to see a REND_DONE event. When 
the actual event matches the predicted event, the 
command packets associated with the current 
(end) script are downloaded to the hardware. 

8. After all command packets from the (end) script 
have been downloaded, the software ISR logs the 
type of event, the associated time stamp, and an 
identifier for the completed operation into the 
event queue. It then issues a wake-up call to any 
"sleeping" or blocked operations that might have 
been waiting for hardware events. 

9. The system wakes the sleeping library routine, 
which checks the event queue for new events. If a 
REND_DONE event is present, the library uses the 
request identifier from the event packet to get the 
associated request packet from the request queue. 
It then places the results of the operation in the 
memory locations that are pointed to by addresses 
in the request packet and that belong to the user­
mode driver. (The buffer containing the rendered 
data is not copied because it already belongs to the 
user-mode driver.) The library updates the GET 



indexes of the event and request queues and 
returns control to the user-mode driver. 

10. The user-mode driver may then continue to 
queue up more operations. 

Figure 11 shows a graphical representation of 
the capture and render example. If desired, multiple 
picture operations can be programmed through the 
library before a single one is downloaded by the driver 
and executed by the hardware. Additionally, perfor­
mance is enhanced by improving the asynchronous 
flow through the use of multiple buffers for the dif­
ferent functional units shown in Figure 3. 

Sometimes it is necessary to bypass the queuing 
mechanism and program the hardware directly. This is 
especially true for hardware diagnostics and operations 
such as hardware resetting, which require immediate 
action. In addition, for slow operations, such as setting 
the analog port (video-in circuitry), programming the 
hardware in the kernel using queues is undesirable. 
The kernel driver supports an immediate mode of 
operation that is accomplished by mapping the hard­
ware to the library's memory space, disabling the com­
mand queue, and allowing the library to program the 
hardware directly. 

The Kernel-mode Video Driver 
To keep the complexity of the kernel-mode video driver 
manageable, we made a clear distinction between device 
programming and device register loading. Device­
specific programming is done in user space by the video 
library; device register 1/0 (without contextual under­
standing) is performed by the kernel driver. Separating 
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the tasks in this manner resulted in a kernel driver that 
incorporates little device-specific knowledge and thus is 
easily portable across multiple devices. 

The kernel driver allows only one process to access 
the device at any particular time. (Support for multiple­
process access is provided by the multimedia server.) 
Components of the video kernel-mode driver include 

• An Initialization Routine-The driver's initializa­
tion routine is executed by the operating system at 
driver load time. The primary function of this rou­
tine is to reserve system resources such as nonpaged 
kernel memory for the command queue, the event 
queue, and the other internal data structures 
needed by the driver. 

• A Set of Dispatch Routines-Dispatch routines 
constitute the main set of static functionality pro­
vided by the driver. The driver provides dispatch 
routines for opening and closing the video subsys­
tem, for mapping and unmapping hardware regis­
ters to the kernel and to user virtual memory address 
spaces, for locking and unlocking noncontiguous 
memory for scatter/gather DMA, and for mapping 
and unmapping the various queues to the library. 

• An Asynchronous 1/0 Routine-The video library 
invokes this routine to check for pending events 
that have to be processed. If an unserviced event 
exists, the kernel driver immediately returns control 
to the library; if no event exists, the system puts the 
library process to sleep. 

• A Start 1/0 Routine and a Stop 1/0 Routine­
The driver uses the start 1/0 routine to initiate data 
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transfers to and from the J300 by downloading reg­
ister 1/0 commands from the command queue to 
the J300. The stop 1/0 routine is used to terminate 
the downloading of future scripts. For performance 
reasons, scripts in the process of being downloaded 
cannot be stopped. 

• A Hardware Interrupt Service Routine-Since the 
hardware ISR runs at a higher priority than both 
system and user space routines, it has purposely 
been kept small, performing only simple tasks 
that are absolutely necessary and time critical. 
Specifically, the hardware ISR records the interrupt 
and the time at which it occurred. It then clears the 
interrupt and queues up a software ISR. 

• A Software Interrupt Service Routine-The soft­
ware ISR is the heart of the kernel driver. It runs at 
a lower interrupt request level (IRQL) than the 
hardware ISR but has a higher priority than user­
space routines. The software ISR is invoked as a 
DPC either by the hardware ISR or by the library 
through a start 1/0 request. Its main function is 
to process script packets and download command 
packets programmed by the video library. 

Debugging the Video Subsystem 
Because of the real-time nature of operations, debug­
ging the software was a challenge. The size of the code, 
the complex interaction between the various functional 
pieces, and the asynchronous nature of operations sug­
gested that, for debugging purposes, it would be help­
ful if hardware commands could be scrutinized just 
before the final downloading took place. Fortunately, 
the video library's extensive use of queues made it pos­
sible for us to design a custom tool with knowledge of 
the hardware and software architectures that would 
allow us to examine the command scripts. 

In addition to presenting a debugging challenge, 
the real-time nature of operations limited the scope of 
UNIX tools like dbx, kdbx, and ctrace. Timing was 
important, and the debugger had the tendency to slow 
down the overall program to the point where a previ­
ous failure on a free system would not occur with the 
debugger enabled. To catch some of these elusive 
bugs while preserving the timing integrity of the oper­
ations, the scratch random-access memory (RAM) on 
the J300 audio subsystem (see Figure 1) was used to 
store traces. A brief description of the two approaches 
follows. 

Queue Interpreter The queue interpreter was specifi­
cally developed as an aid for debugging the video 
library. As the name suggests, its primary function was 
to interpret the commands in the command queue 
and the events in the event queue. At random 
locations in the library, a list of hardware commands 
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currently in the command queue could be viewed 
before the kernel driver downloaded them for execu­
tion. For each command, the information displayed 
included a sequence number, the type of operation, 
the ASCII name of the register to be accessed, the reg­
ister's physical address, the value to be written, and, 
when possible, a bit-wise interpretation of the value. 
This information was used to check if the upper layer 
software had programmed the device registers in the 
correct sequence and with the proper values. 

Another important capability of the queue inter­
preter was that it could step through the command 
packets and download each command separately. On 
many occasions, this function helped locate and isolate 
the specific register access that was causing the hard­
ware to stall or to crash the system. By using the 
sequence number, the offending hardware command 
could be traced to the precise location in the library 
where it had been programmed. 

In addition, the queue interpreter was able to search 
the command queue for any access to a specific 
hardware register, could display the contents of 
the event queue, and had a "quiet mode," in which 
the interpreter would log the commands on a disk 
for later analysis. 

Audio RAM Printer Although it was a useful tool for 
debugging, the queue interpreter was not a good real­
time tool because it slowed down the overall program 
execution and thus affected the actual timing. 
Similarly, kernel driver operations could not be traced 
using the system's printf() command because it too 
affected the timing. Furthermore, because of the asyn­
chronous nature of printf( ) and the possibility of los­
ing it, printf( ) was ineffective in pinpointing the 
precise command that had caused the system to fail. 
Thus, we had to find an alternate mechanism for 
debugging failures related to timing. 

The J300 audio subsystem has an 8K-by-24-bit 
RAM that is never used for any video operations. This 
observation led to the implementation of a print func­
tion that wrote directly to the J300's audio RAM. This 
modified print function was intermixed in the suspect 
code fragment in the kernel driver to facilitate trace 
analysis. When a system failure occurred or after the 
application had stopped, a companion "sniffer" rou­
tine would read and dump the contents of the RAM to 
the screen or to a file for analysis. The modified print 
function was used primarily for debugging dynamic 
operations such as the ones in the hardware and soft­
ware interrupt handlers. Many bugs were found and 
fixed using this technique. The one caveat was that this 
technique was useful only in cases where the video 
subsystem was causing a system failure independent of 
the operation of the audio subsystem. 



Video Subsystem Performance 
Measuring the true performance of any software is 
generally a difficult task. The complex interaction 
between different modules and the number of vari­
ables that must be fixed makes the task arduous. For 
video, the problem is aggravated by the fact that the 
speed with which the underlying video compression 
algorithm works is nonlinearly dependent on the con­
tent of the video frames and the desired compression 
ratio. A user working with a compressed sequence that 
contains images that are smooth (i.e., have high spatial 
redundancy) will get a faster decompression rate than 
a user who has a sequence that contains images that 
have regions of high frequencies (i.e., have low spatial 
redundancy). A similar discrepancy will exist when 
sequences with different compression ratios are used. 
Since there are no standard video sequences available, 
the analyst has to make a best guess at choosing a set of 
representative sequences for experiments. Because the 
final results are dependent on the input data, they are 
influenced by this decision. Other possible reasons for 
the variability of results are the differing loads on the 
operating systems, the different configurations of 
the underlying software, and the overhead imposed by 
the different test applications. 

Our motivation for checking the performance of 
the J300 and FullVideo Supreme JPEG adapters was 
to determine whether we had succeeded in our goal 
of developing software that would extract real-time 
performance while adding minimal overhead. The 
platforms we used in our experiments were the 
AlphaStation 600 5/266 and the DEC 3000 Model 
900. The AlphaStation 600 5/266 was chosen 
because it is a PCI-based system 2nd could be used to 
test the FullVideo Supreme JPEG adapter. The DEC 
3000 Model 900 is a TURBOchannel system and 
could be used to test the J 300 adapter. Both systems 
are built around the 64-bit Alpha 21064A processor 
running at clock rates of 266 megahertz (MHz) and 
275 MHz, respectively. Each system was configured 
with 256 megabytes of physical memory, and each was 
running the Digital UNIX Version 3.2 operating sys­
tem and Digital's Multimedia Services Version 2.0 
for Digital UNIX software. No compute-intensive or 
J/0 processes were running in the background, and, 
hence, the systems were lightly loaded. 

Our experiments were designed to reflect real appli­
cations, and special emphasis was placed on obtaining 
reproducible performance data. The aim was to 

understand how the performance of individual ses­
sions was affected as the number of video sessions was 
increased. We wrote an application that captured, 
dithered, and displayed a live video stream obtained 
from a camera while simultaneously decompressing, 
dithering, and displaying multiple video streams read 
from a local disk. This is a common function in 
teleconferencing applications where the multiple 

compressed video streams come over the network. 
We measured the display rate for the video sequence 
that was being captured and dithered and the average 
display rate for sequences that were being decom -
pressed and dithered. The compressed sequences had 
an average peak signal-to-noise ratio (PSNR) of 27.8 
decibels (dB ) and an average compression ratio of 
approximately 0.6 bits per pixel. The sequences had 
been compressed and stored on the local disk prior to 
the experiment. Image frame size was source input 
format (SIF) 352 pixels by 240 lines. Figure 12 and 
Figure 13 illustrate the performance data obtained as 
a result of the experiments. 

In general, we were satisfied with the performance 
results. As seen in Figures 12 and 13, a total of five ses­
sions can be accommodated at 30 frames per second 
with the J300 on a DEC 3000 Model 900 system and 
three sessions at 30 frames per second with the 
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FullVideo Supreme JPEG on an AlphaStation 600 
5/266 system. The discrepancy in performance of the 
two systems may be attributed to the differences in 
CPU, system bus, and maximum burst length. The 
DEC 3000 Model 900 has a 32-bit TURBOchannel 
bus whose speed is 40 nanoseconds with a peak trans­
fer rate of 100 megabytes per second, whereas the 
AlphaStation 600 5/266 has a PCI bus whose speed 
is 30 nanoseconds. The OMA controller on the J300 
adapter has a maximum burst length of 2K pages, 
whereas the FullVideo Supreme JPEG adapter has 
a maximum burst length of 96 bytes. Since in our 
experiments data was dithered and sent over the bus 
(at 83 Kbytes per frame) to the frame buffer, burst 
length becomes the dominant factor, and it is not 
unreasonable to expect the J 300 to perform better 
than the FullVideo Supreme JPEG. 

The difference between capture and decompression 
rate (as shown in Figures 12 and 13) may be explained 
as follows: Decompression operations are inter­
mixed between capture operations, which occur at 
a frequency of one every 33 milliseconds. Overall per­
formance improves when a larger number of decom­
pression operations are accommodated between 
successive capture operations. Since the amount of 
time the hardware takes to decompress a single frame 
is unknown (the time depends on the picture con­
tent), the software is unable to determine the precise 
number of decompression operations that can be pro­
grammed. Also, in the present architecture, since all 
operations have equal priority, if a scheduled decom­
pression operation takes longer than expected, it is 
liable to not relinquish the hardware when a new 
frame arrives, thus reducing the capture rate. When we 
ran the decompression, dither, and display operation 
only (with the capture operation turned off), the peak 
rate achieved by the FullVideo Supreme JPEG adapter 
was approximately 165 frames per second, and the rate 
for the Sound & Motion J300 was about ll8 frames 
per second. Bus speed and hardware enhancements in 
the FullVideo Supreme JPEG can be attributed to the 
difference in the two rates. 

The next section describes the architecture for the 
J300 audio subsystem. Relative to the video subsys­
tem, the audio software architecture is simpler and 
took less time to develop. 

Audio Subsystem 

The J300 audio subsystem complements the J300 
video subsystem by providing a rich set of functional 
routines by way of an audio library. The software hier­
archy for the audio subsystem is similar to the one for 
the video subsystem. Figure 2 shows the various com -
ponents of this hierarchy as implemented under the 
Digital UNIX operating system. Briefly, an application 
makes a request to a multimedia server for processing 
audio. The request is made through invocation of 
routines provided by a multimedia client library. The 
multimedia server parses the request and dispatches 
the appropriate user-mode driver, which is built on top 
of the audio library. Depending on the request, the 
audio library may perform the operation either on the 
native CPU or alternatively on the J300 digital signal 
processor (DSP). Completed results are returned to 
the application using the described path in the reverse 
direction. 

To provide a comprehensive list of audio processing 
routines, the software relies on both host-based and 
J300-based processing. The workhorse of the J300 
audio subsystem is the general-purpose Motorola 
Semiconductor DSP56001 (see Figure 14), which 
provides hardware control for the various audio com­
ponents while performing complex signal processing 
tasks at real-time rates. Most notable, software running 
on the DSP initiates OMA to and from system memory, 
controls digital (AES/EBU) audio 1/0, manages ana­
log stereo and mono 1/0, and supports multiple sam­
pling rates, including Telephony (8 kHz) and fractions 
of digital audio tape (DAT) ( 48 kHz) and compact disc 
(CD) ( 44.1 kHz) rates. The single-instruction multi­
ply, add, and multiply-accumulate operations, the two 
data moves per instruction operations, and the low 
overhead for specialized data addressing make the DSP 
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especially suitable for compute-intensive audio process­
ing tasks. Real-time functions such as adaptive differen­
tial pulse code modulation (ADPCM) encoding and 
decoding, energy calculation, gain control for analog­
to-digital (A/D) and digital-to-analog (D/A) convert­
ers, and time-stamping are performed by software 
running on the DSP .11 Other tasks such as converting 
between different audio formats (µ-law, A-law, and lin­
ear), mixing and unmixing of multiple audio streams, 
and correlating the system time with the J300 90-kHz 
timer and with the sample counter are done on the 
native CPU by the library software. 12 

Early in the project, we had to decide whether or 
not to expose the DSP to the client applications. 
Exposing the DSP would have provided additional 
flexibility for application writers. Although this was an 
important reason, the opposing arguments, which 
were based on the negative consequences of exposing 
the raw hardware, were more compelling. System 
security and reliability would have been compromised; 
an incorrectly programmed DSP could cause the 
system to fail and could corrupt the kernel data struc­
tures. Additionally, maintaining, debugging, and sup­
porting the software would be difficult. To succeed, 
the product had to be reliable. Therefore, we decided 
to retain control of the software but to provide 
enough flexibility to satisfy as many application writers 
as possible. As customer demand and feedback grew, 
more DSP programs would be added to the list of 
existing programs in a controlled manner to ensure 
the integrity and robustness of the system. 

The following subsections describe the basic con­
cepts behind the device-independent portion of the 
audio library and provide an operational overview of 
the library internals. 

Audio Library Overview 
The audio library defines a single audio sample as the 
fundamental unit for audio processing. Depending on 
the type of encoding and whether it is mono or stereo, 
an audio sample may be any of the following: a 4-bit 
ADPCM code word, a pair of left/ right 4 -bit ADPCM 
code words, a 16-bit linear pulse code modulation 
(PCM) audio level, a pair of left/right 16-bit linear 
PCM audio levels, an 8-bit µ -law level, or an 8-bit 
A-law level. The library defines continually flowing 
audio samples as an audio stream whose attributes can 
be set by applications. Attributes provide information 
on the sampling rate, the type of encoding, and how 
to interpret each sample. 

Audio streams flow through distinct directional vir­
tual channels. Specifically, an audio stream flows into 
the subsystem for processing through a record (input) 
channel, and a processed stream flows out of the 
subsystem through a playback ( output) channel. 

A configurable bypass mode in which the channels are 
used for a direct path to the hardware I/0 ports is also 
provided. As is the case for audio streams, each chan­
nel has attributes such as a buffer for storing captured 
data, a buffer for storing data to be played out, permis­
sions for channel access, and a sample counter. Sample 
counters are used by the library to determine the last 
audio sample processed by the hardware. Channel per­
missions determine the actions allowed on the chan­
nel. Possible actions include read, write, mix, unmix, 
and gain control or combinations of these actions. 

The buffers associated with the I/0 channels are 
for queuing unserviced audio data and are called 
smoothing buffers. A smoothing buffer ensures a con­
tinuous flow of data by preventing samples from being 
lost due to the non-real-time scheduling by the under­
lying operating system. The library provides non­
blocking routines that can read, write, mix, and unmix 
audio samples contained in the channel buffers. A slid­
ing access window determines which samples can be 
accessed within the buffer. The access window is char­
acterized in sample-time units, and its size is pro­
portional to that of the channel buffer that holds the 
audio data. 

Like the video library, the audio library supports 
multiple device configurations through a set of regis­
tration routines. Clients may register channel and 
audio stream parameters with the library (through the 
server) at set-up time. Once registered, the parameters 
can be changed only by unregistering and then rereg­
istering. The library provides query routines that 
return status/ progress information, including the 
samples processed, the times (both system and J300 
specific) at which they were processed, and the chan -
nel and stream configurations. Overall, the library 
supports four operational (execution) modes: tele­
conferencing, compression, decompression, and rate 
conversion. Extensive error checking and reporting 
are incorporated into the software. 

Audio Library Operation 
The execution mode and the associated DSP program 
dictate the operation of the audio library. Execution 
modes are user selectable. All programs support mul­
tiple sampling rates, I/0 gain control, and start and 
pause features, and provide location information for 
the sample being processed within the channel buffer. 
Buffers associated with the record and playback chan­
nels are treated as ring buffers with a FIFO service pol­
icy. Management of data in the buffers is through 
integer indexes ( GET and PUT) using an approach 
similar to the one adopted for the management of the 
command and event queues in the video subsystem. 
Specifically, the DMA controller moves the audio data 
from the DSP's external memory to the area in the 
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channel buffer (host memory) starting at the PUT 
index. Audio data in this same channel buffer is pulled 
by the host (library) from the location pointed to by 
the GET index. Managers of the GET and PUT 
indexes are reversed when DMA is being performed 
from a channel buffer to the DSP external memory. In 
all cases, the FIFO service policy ensures that the audio 
data is processed in the sequence in which it arrives. 

The internal operation of the audio library is best 
explained with the help of a simple example that cap­
tures analog audio from the J300 line-in connector 
and plays out the data through the J300's line-out 
connector. This most basic I/0 operation is incorpo­
rated in more elaborate audio processing programs. 
The example follows. 

1. The server opens the audio subsystem, allocates 
memory for the I/0 buffers, and invokes a library 
routine to lock down the buffers. Two buffers are 
associated with the record and playback channels. 

2. The library sets up the DSP external memory for 
communications between software running on the 
two processors, i.e., the CPU and the DSP. The 
set-up procedure involves writing information at 
locations known and accessible to both processors. 
The information pertains to the physical addresses 
needed by the DMA scheduler portion of the DSP 
program and for storing progress information. 

3. A kernel driver routine maps a section of system 
memory to user space. This shared memory is used 
for communication between the driver and the 
library. The type of information passed back and 
forth includes the sample number being processed, 
the associated time stamps, and the location of the 
GET and PUT indexes within the I/0 buffers. 

4. Other set-up tasks performed by the library include 
choosing the I/0 connectors, setting the gain for 
the I/0 channels, and loading the appropriate DSP 
program. A start routine enables the DSP. 

5. Once the DSP is enabled, all components in the 
audio hardware are under its control. The DSP pro­
grams the DMA controller to take sampled audio 
data from the line-in connector and move it into the 
record channel buffer. It then programs the same 
controller to grab data from the playback channel 
buffer and move it to the external memory from 
where it is played out on the line-out connector. 

6. The library monitors the indexes associated with 
the 1/0 buffers to determine the progress, and, 
based on the index values, the application copies 
data from the input channel to the output channel 
buffer. The access window ensures that data copy­
ing stays behind the DSP, in the case of input, and 
in front of the DSP, in the case of output. 
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Support for Multiple Adapters 

The primary reason for using multiple J300 adapters 
is to overcome the inherent limitations of using a single 
J300. First, a single J300 limits the application 
to a single video port and a single audio input port. 
Some applications process multiple video input streams 
simultaneously. For example, a television station receiv­
ing multiple video feeds may want to compress and 
store these for later usage utilizing a single workstation. 
Another example is the monitoring of multiple video 
feeds from strategically placed video cameras for the 
purpose of security. Since AlphaStation systems have 
the necessary horsepower to process several streams 
simultaneously, supporting multiple J300s on the same 
system is desirable. 

Second, if a single J300 is used, the video-in and 
video-out ports cannot be used simultaneously. This 
limitation exists because the two ports share a common 
frame store, as shown in Figure 1, and programming 
the video-in and video-out chip sets is a heavyweight 
operation. Multiple J300s can alleviate this problem. 
One example of an application that requires the simul­
taneous use of the video-in and video-out ports is 
a teleconferencing application in which the video-in 
circuitry is used for capturing the camera output, and 
the video-out circuitry is used for sending regular 
snapshots of the workstation screen to an overhead 
projection screen. A second example is an application 
that converts video streams from one format to 
another (e.g., PAL, SECAM, NTSC) in real time. 

As a result of the limitations just cited, support for 
multiple J 300s on the same workstation was one of 
the project's design goals. In terms of coding, achiev­
ing this goal required not relying on global variables 
and using indexed structures to maintain state infor­
mation. Also, because of the multithreaded nature 
of the server, care had to be taken to ensure that data 
and operation integrity was maintained. 

For most Alpha systems, the overall performance 
remains good even with two J300s on the same sys­
tem. For high-end systems, up to three J300s may be 
used. The dominant limitation in the number ofJ300s 
that can be handled by a system is the bus bandwidth. 
As the number of J300s in the system increases, the 
data traffic on the system bus increases proportionally. 

Having described the software architecture, we now 
shift our attention to the development environment, 
testing strategy, and diagnostics software. 

Software Development Environment 

During the early phases of the development process, 
we depended almost exclusively on Jvideo. Since the 
J300 is primarily a cost-reduced version ofJvideo, we 
were able to develop, test, and validate the design of 



the device-independent portion of the software and 
most of the kernel device driver well before the actual 
J300 hardware arrived. Our platform consisted of 
a Jvideo attached to a DECstation workstation, which 
was based on a MIPS R3000 processor and was run­
ning the UL TRIX operating system. When the new 
Alpha workstations became available, we switched our 
development to these newer and faster machines. We 
ported the 32-bit software to Alpha's 64-bit architec­
ture. Sections of the kernel device driver were rewrit­
ten, but the basic design remained intact. The overall 
porting effort took a little more than a month to com­
plete. At the end of that time, we had the software 
running on a Jvideo attached to an Alpha workstation, 
which was running the DEC OSF/1 operating system 
(now called the Digital UNIX operating system). We 
promptly corrected software timing bugs exposed as 
a result of using the fast Alpha-based workstations. 

For the development of the device-dependent por­
tion, we relied on hardware simulation of the J300. 
The different components and circuits of the J300 
were modeled with Verilog behavioral constructs. 
Accesses to the TURBOchannel bus were simulated 
through interprocess communication calls (IPCs) and 
shared memory (see Figure 15). Because a 64-bit ver­
sion ofVerilog was unavailable, simulations were run 
on a machine based on the MIPS R3000 processor 
running the ULTRIX operating system. The process, 
though accurate, was generally slow. 

Testing and Diagnostics 

We wrote several applications to test the software 
architecture. The purpose of these applications was to 
test the software features in real-world situations and 
to demonstrate through working sample code how 
the libraries could be used. Applications were classified 
as video only, audio only, and ones that contained 
both video and audio. 

Figure 15 

TEST 
APPLICATION 

SOFTWARE 
LIBRARY 

J300 DEVICE 
DRIVER 

SOFTWARE PROCESS 

WRITE 

READ 

Hardware Simulation Environment for Software Development 

In addition, we wrote two types of diagnostic soft­
ware to test the underlying hardware components: 
( 1) read-only memory (ROM) based and ( 2) operating 
system based. ROM-based diagnostics have the advan­
tage that they can be executed from the console level 
without first booting the system. The coverage pro­
vided is limited, however, because of the complexity 
of the hardware and the limited size of the ROM. 
Operating system diagnostics rely on the kernel device 
driver and on some of the library software. This suite of 
tests provides comprehensive coverage with verifica­
tions of all the functional blocks on the J300. For the 
new PCI-based FullVideo Supreme video adapters, 
only operating-system-based diagnostics exist. 

Related Work 

When the Jvideo was conceived in early 1991, little 
had been published on hardware and software solu­
tions for putting video on the desktop. This may have 
been partly due to the newness of the compression 
standards and to the difficulty in obtaining specialized 
video compression silicon. Since then, audio and video 
compression have become mainstream, and several 
computer vendors now have products that add multi­
media capability to the base workstations. 

Lee and Sudharsanan describe a hardware and soft­
ware design for a JPEG microchannel adapter card 
built for platforms based on IBM's PS/ 2 operating 
system.13 The adapter is controlled by an interrupt­
driven software running under DOS. In addition, the 
software is also responsible for color-space conversion 
and algorithmic tuning of the JPEG parameters. Audio 
support is not included in the hardware. The paper 
presents details on how the software programs the var­
ious components of the board (e.g., the CLSSO chip 
from C-Cube Microsystems and the DMA logic) to 
achieve compression and decompression. Portability 
of the software is compromised since the bulk of the 
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code, which resides inside the interrupt service rou­
tine, is written in assembly language. 

Boliek and Allen describe the implementation of 
hardware that, in addition to providing baseline JPEG 
compression, uses a dynamic quantization circuit to 
achieve fixed-rate compression.14 The board is based 
on the RIOH JPEG chip set that includes separate 
chips for performing the DCT, Huffman coding, and 
color-space conversion. The paper's main focus is 
on describing the Allen Parameterized (orthogonal) 
Transform that approximates the DCT while reducing 
the cost of the hardware. The paper contains little 
information about software control, architecture, and 
control flow. 

Traditionally, operating systems have relied on data 
copying between user space and kernel space to pro­
tect the integrity of the kernel. Although this method 
works for most applications, for multimedia appli­
cations, which usually involve massive amounts of 
data, the overhead of data copying can seriously 
compromise the system's real-time performance.15 Fall 
and Pasquale describe a mechanism of in-kernel data 
paths that directly connect the source and sink 
devices.16 Peer-to-peer 1/0 avoids unnecessary data 
copying and improves system and application perfor­
mance. Kitamura et al. describe an operating system 
architecture, which they refer to as the zero-copy 
architecture, that is also aimed at reducing the over­
head due to data copying. 17 The architecture uses 
memory mapping to expose the same physical 
addresses to both the kernel and the user-space 
processes and is especially suitable for multimedia 
operations. The J300 software is also a zero-copy 
architecture. No data is copied between system and 
user space. 

The Windows NT 1/0 subsystem provides flexible 
support for queue management. 18 What the J300 
achieved on the UNIX and Open VMS platforms 
through the command and event queues can be 
accomplished on the Windows NT platform using 
built-in support from the 1/0 manager. A queue of 
pending requests (in the form ofl/0 request packets) 
may be associated with each device. The use of 
1/0 packets is similar to the use of command and 
event packets in the J300 video software. 

Summary 

This paper describes the design and implementation of 
the software architecture for the Sound & Motion 
J300 product, Digital's first commercially available 
multimedia hardware adapter that incorporates audio 
and video compression. The presentation focused on 
those aspects of the design that place special emphasis 
on performance, on providing an intuitive API, and 
on supporting a client-server model of computing. 
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The software architecture has been successfully imple­
mented on the OpenVMS, Microsoft Windows NT, 
and Digital UNIX platforms. It is the basis for Digital's 
recent PCI-based video adapter cards: FullVideo 
Supreme and FullVideo Supreme JPEG. 

The goals that influenced the J300 design have 
largely been realized, and the software is mature. 
Digital is expanding upon ideas incorporated in the 
design. For example, one potential area for improve­
ment is to replace the FIFO service policy in the vari­
ous queues with a priority-based mechanism. A second 
possible improvement is to increase the usage of the 
hardware between periodic operations like video cap­
ture. In terms of portability, the idea ofleaving device­
specific programming outside the kernel driver can be 
expanded upon to design device-independent kernel­
mode drivers, thus lowering overall development 
costs. Digital is actively investigating these and other 
such enhancements made possible by the success of 
the J300 project. 
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Software-only 
Compression, 
Rendering, and 
Playback of Digital Video 

Software-only digital video involves the com­

pression, decompression, rendering, and display 

of digital video on general-purpose computers 

without specialized hardware. Today's faster 

processors are making software-only video an 

attractive, low-cost alternative to hardware 

solutions that rely on specialized compression 

boards and graphics accelerators. This paper 

describes the building blocks behind popular 

ISO, ITU-T, and industry-standard compression 

schemes, along with some novel algorithms 

for fast video rendering and presentation. A 

platform-independent software architecture 

that organizes the functionality of compressors 

and renderers into a unifying software inter­

face is presented. This architecture has been 

successfully implemented on the Digital UNIX, 

the OpenVMS, and Microsoft's Windows NT 

operating systems. To maximize the perfor­

mance of codecs and renderers, issues pertain­

ing to flow control, optimal use of available 

resources, and optimizations at the algorithmic, 

operating-system, and processor levels are con­

sidered. The performance of these codecs on 

Alpha systems is evaluated, and the ensuing 

results validate the potential of software-only 

solutions. Finally, this paper provides a brief 

description of some sample applications built 

on top of the software architecture, including 

an innovative video screen saver and a software 

VCR capable of playing multiple, compressed 

bit streams. 
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Full-motion video is fast becoming commonplace to 
users of desktop computers. The rising expectations for 
low-cost, television-quality video with synchronized 
sound have been pushing manufacturers to create new, 
inexpensive, high-quality offerings. The bottlenecks 
that have been preventing the delivery of video without 
specialized hardware are being cast aside rapidly as 
faster processors, higher-bandwidth computer buses 
and networks, and larger and faster disk drives are 
being developed. As a consequence, considerable 
attention is currently being focused on efficient imple­
mentations of flexible and extensible software solutions 
to the problems of video management and delivery. 
This paper surveys the methods and architectures used 
in software-only digital video systems. 

Due to the enormous amounts of data involved, 
compression is almost always used in the storage and 
transmission of video. The high level of information 
redundancy in video lends itself well to compression, 
and many methods have been developed to take 
advantage of this fact . While the literature is replete 
with compression methods, we focus on those that are 
recognized as standards, a requirement for open and 
interoperable systems. This paper describes the build­
ing blocks behind popular compression schemes of 
the International Organization for Standardization 
(ISO), the International Telecommunication Union­
Telecommunication Standardization Sector (ITU-T), 
and within the industry. 

Rendering is another enabling technology for video 
on the desktop. It is the process of scaling, color 
adjusting, quantization, and color space conversion of 
the video for final presentation on the display. As an 
example, Figure 1 shows a simple sequence of video 
decoding. In the section Video Presentation, we dis­
cuss rendering methods, along with some novel algo­
rithms for fast video rendering and presentation, and 
describe an implementation that parallels the tech­
niques used in Digital's hardware video offerings. 

We follow that discussion with the section The 
Software Video Library, in which we present a com­
mon architecture for video compression, decom -
pression, and playback that allows integration into 
Digital's multimedia products. We then describe two 
sample applications, the Video Odyssey screen saver 



PRESENTATION ~ ---- ---------, 
COMPRESSED-, 
BIT STREAM 

I 
DECOMPRESS ~ RENDER H DISPLAY I: 

,_ ____ __ _______ J 

Figure 1 
Components in a Video Decoder Pipeline 

and a software-only video player. We conclude our 
paper by surveying related work in this rapidly evolv­
ing area of software digital video. 

Video Compression Methods 

A system that compresses and decompresses video, 
whether implemented in hardware or software, is 
called a video codec (for compressor/decompressor). 
Most video codecs consist of a sequence of compo­
nents usually connected in pipeline fashion. The codec 
designer chooses specific components based on the 
design goals. By choosing the appropriate set of build­
ing blocks, a codec can be optimized for speed of 
decompression, reliability of transmission, better color 
reproduction, better edge retention, or to perform at 
a specific target bit rate. For example, a codec could 
be designed to trade off color quality for transmission 
bit rate by removing most of the color information 
in the data ( color subsampling). Similarly a codec may 
include a simple decompression model (less process­
ing per pixel) and a complex compression process to 
boost the playback rate at the expense of longer com -
pression times. ( Compression algorithms that take 
longer to compress than to decompress are said to be 
asymmetric.) Once the components and trade-offs 
have been chosen, the designer then fine tunes the 
codec to perform well in a specific application space 
such as teleconferencing or video browsing. 

Video Codec Building Blocks 
In this section, we present the various building blocks 
behind some popular and industry-standard video 
codecs. Knowledge of the following video codec 
components is essential for understanding the com -
pression process and to appreciate the complexity of 
the algorithms. 

Chrominance Subsampling Video is usually described 
as being composed of a sequence of images. Each 
image is a matrix of pixels, and each pixel is repre­
sented by three 8-bit values: a single luminance value 
(Y) that signifies brightness, and two chrominance val­
ues (U and V, or sometimes Cb and Cr) which, taken 
together, specify a unique color. By reducing the 
amount of color information in relation to luminance 
(subsampling the chrominance), we can reduce the 
size of an image with little or no perceptual effect. The 

most common chrominance subsampling technique 
decimates the color signal by 2:1 in the horizontal 
direction. This is done either by simply throwing out 
the color information of alternate pixels or by averag­
ing the colors of two adjacent pixels and using the 
average for the color of the pixel pair. This technique is 
commonly referred to as 4:2:2 subsampling. When 
compared to a raw 24-bit image, this results in a com­
pression of two-thirds. Decimating the color signal by 
2:1 in both the horizontal and the vertical direction 
(by ignoring color information for alternate lines in 
the image) starts to result in some perceptible loss of 
color, but the compression increases to one-half. This 
is referred to as 4:2:0 subsampling: for every 4 lumi­
nance samples, there is a single color specified by a pair 
of chrominance values. The ultimate chrominance 
subsampling is to throw away all color information 
and keep only the luminance data (monochrome 
video). This not only reduces the size of the input data 
but also greatly simplifies processing for both the com­
pressor and the decompressor, resulting in faster codec 
performance. Some teleconferencing systems allow 
the user to switch to monochrome mode to increase 
frame rate. 

Transform Coding Converting a signal, video or 
otherwise, from one representation to another is the 
task of a transform coder. Transforms can be useful for 
video compression if they can convert the pixel data 
into a form in which redundant and insignificant infor­
mation in the video's image can be isolated and 
removed. Many transforms convert the spatial (pixel) 
data into frequency coefficients that can then be selec­
tively eliminated or quantized. Transform coders 
address three central issues in image coding: ( 1) decor­
relation ( converting statistically dependent image 
elements into independent spectral coefficients), 
( 2) energy compaction ( redistribution and localization 
of energy into a small number of coefficients), and 
( 3) computational complexity. It is well documented 
that human vision is biased toward low frequencies. 
By transforming an image to the frequency domain, 
a codec can capitalize on this knowledge and remove 
or reduce the high-frequency components in the 
quantization step, effectively compressing the image. 
In addition, isolating and eliminating high-frequency 
components in an image results in noise reduc­
tion since most noise in video, introduced during 
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the digitization step or from transmission interfer­
ence, appears as high-frequency coefficients. Thus 
transforming helps compression by decorrelating ( or 
whitening) signal samples and then discarding 
nonessential information from the image. 

Unitary ( or orthonormal) transforms fall into either 
of two classes: fixed or adaptive. Fixed transforms are 
independent of the input signal; adaptive transforms 
adapt to the input signal. 1 Examples of fixed trans­
forms include the discrete Fourier transform (DFT), 
the discrete cosine transform (DCT), the discrete sine 
transform (DST), the Harr transform, and the Walsh­
Hadamard transform (WHT). An example of an 
adaptive transform is the Karhunen-Loeve transform 
(KLT). Thus far, no transform has been found for 
pictorial information that completely removes statisti­
cal dependence between the transform coordinates. 
The KLT is optimum in the mean square error sense, 
and it achieves the best energy compaction; however, 
it is computationally very expensive. The WHT is the 
best in terms of computation cost since it requires only 
additions and subtractions; however, it performs 
poorly in decorrelation and energy compaction. 
A good compromise is the DCT, which is by far 
the most widely used transform in image coding. The 
DCT is closest to the KLT in the energy-packing sense, 
and, like the DFT, it has fast computation algorithms 
available for its implementation.2 The DCT is usually 
applied in a sliding window on the image with a com­
mon window size of 8 pixels by 8 lines ( or simply, 8 by 
8 ). The window size ( or block size) is important: if 
it is too small, the correlation between neighboring 
pixels is not exploited; if it is too large, block bound­
aries tend to become very visible. Transform coding 
is usually the most time-consuming step in the 
compression/ decompression process. 

Scalar Quantization A companion to transform cod­
ing in most video compression schemes is a scalar 
quantizer that maps a large number of input levels into 
a smaller number of output levels. Video is com­
pressed by reducing the number of symbols that need 
to be encoded at the expense of reconstruction error. 
A quantizer acts as a control knob that trades off 
image quality for bit rate. A carefully designed quan­
tizer provides high compression for a given quality. 
The simplest form of a scalar quantizer is a uniform 
quantizer in which the quantizer decision levels are of 
equal length or step size. Other important quantizers 
include Lloyd-Max's minimum mean square error 
(MMSE) quantizer and an entropy constraint quan­
tizer.3·4 Pulse code modulation (PCM) and adaptive 
differential pulse code modulation (ADPCM) are 
examples of two compression schemes that rely on 
pure quantization without regard to spatial and tem­
poral redundancies and without exploiting the non­
linearity in the human visual system. 
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Predictive Coding Unless the image is changing 
rapidly, a video sequence will normally contain 
sequences of frames that are very similar. Predictive 
coding uses this fact to reduce the data volume by 
comparing pixels in the current frame with pixels in 
the same location in the previous frame and encoding 
the difference. A simple form of predictive coding uses 
the value of a pixel in one frame to predict the value of 
the pixel in the same location in the next frame. The 
prediction error, which is the difference between 
the predicted value and the actual value of the pixel, is 
usually small. Smaller numbers can be encoded using 
fewer quantization levels and fewer coding bits. Often 
the difference is zero, which can be encoded very 
compactly. Predictive coding can also be used within 
an image frame where the predicted value of a pixel 
may be the value ofits neighbor or a weighted average 
of the pixels in the region. Predictive coding works 
best if the correlation between adjacent pixels that are 
spatially as well as temporally close to each other is 
strong. Differential PCM and delta modulation (DM) 
are examples of two compression schemes in which 
the predicted error is quantized and coded. The 
decompressor recovers the signal by applying this 
error to its predicted value for the sample. Lossless 
image compression is possible if the prediction error 
is coded without being quantized. 

Vector Quantization An alternative to transform­
based coding, vector quantization attempts to repre­
sent clusters of pixel data (vectors) in the spatial 
domain by predetermined codes.5 At the encoder, 
each data vector is matched or approximated with a 
code word in the codebook, and the address or index 
of that code word is transmitted instead of the data 
vector itself At the decoder, the index is mapped back 
to the code word, which is then used to represent the 
original data vector. Identical codebooks are needed at 
the compressor (transmitter) and the decompressor 
(receiver). The main complexity lies in the design of 
good representative codebooks and algorithms for 
finding best matches efficiently when exact matches 
are not available. Typically, vector quantization is 
applied to data that has already undergone predictive 
coding. The prediction error is mapped to · a subset 
of values that are expected to occur most frequently. 
The process is called vector quantization because the 
values to be matched in the tables are usually vectors of 
two or more values. More elaborate vector quantiza­
tion schemes are possible in which the difference data 
is searched for larger groups of commonly occurring 
values, and these groups are also mapped to single 
index values. 

The amount of compression that results from vec­
tor quantization depends on how the values in the 
codebooks are calculated. Compression may be 
adjusted smoothly by designing a set of codebooks 
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and picking the appropriate one for a given desired 
compression ratio. 

Motion Estimation and Compensation Most codecs 
that use interframe compression use a more elaborate 
form of predictive coding than described above. Most 
videos contain scenes in which one or more objects 
move across the image against a fixed background or 
in which an object is stationary against a moving back­
ground. In both cases, many regions in a frame appear 
in the next frame but at different positions. Motion 
estimation tries to find similar regions in two frames 
and encodes the region in the second frame with a dis­
placement vector (motion vector) that shows how 
the region has moved. The technique relies on the 
hypothesis that a change in pixel intensity from one 
frame to another is due only to translation. 

For each region (or block) in the current frame, 
a displacement vector is evaluated by matching the 
information content of the measurement window with 
a corresponding measurement window W within 
a search area S, placed in the previous frame, and by 
searching for the spatial location that minimizes the 
matching criterion d. Let L;(x,y) represent the pixel 
intensity at location (x,y) in frame i; and if(dx,dy) rep­
resents the region displacement vector for the interval 
n(=(i+ n)-i), then the matching criterion is defined as 

d = min { ~ II L;(x,y) 
(~ ,dy)•S (x.y)•W 

(1) 

The most widely used distance measures are the 
absolute value llxll=lxl and the quadratic norm 
llxll=x2

• Since finding the absolute minimum is guar­
anteed only by performing an exhaustive search of a 
series of discrete candidate displacements within 
a maximum displacement range, this process is com­
putationally very expensive. A single displacement 
vector is assigned to all pixels within the region. 

Motion compensation is the inverse process of using 
a motion vector to determine a region of the image to 
be used as a predictor. 

Although the amount of compression resulting 
from motion estimation is large, the coding process is 
time-consuming. Fortunately, this time is needed only 
in the compression step. Decompression using motion 
estimation is relatively fast since no searching has to be 
done. For data replenishment, the decompressor sim­
ply uses the transmitted vector and accesses a region in 
the previous frame pointed to by the vector for data 
replenishment. Region size can vary among the codecs 
using motion estimation but is typically 16 by 16. 

Frame/Block Skipping One technique for reducing 
data is to eliminate it entirely. In a teleconferencing sit­
uation, for example, if the scene does not change 
(above some threshold criteria), it may be acceptable 
to not send the new frame ( drop or skip the frame). 
Alternatively, if bandwidth is limited and image quality 
is important, it may be necessary to drop frames to stay 
within a bit-rate budget. Most codecs used in telecon­
ferencing applications have the ability of temporal sub­
sampling and are able to gracefully degrade under 
limited bandwidth situations by dropping frames. 

A second form of data elimination is spatial subsam­
pling. The idea is similar to chrominance subsampling 
discussed previously. In most transform -based codecs, 
a block (8 by 8 or 16 by 16) is usually skipped if the 
difference between it and the previous block is below 
a predetermined threshold. The decompressor may 
reconstruct the missing pixels by using the previous 
block to predict the current block. 

Entropy Encoding Entropy encoding is a form of sta­
tistical coding that provides lossless compression by 
coding input samples according to their frequency of 
occurrence. The two methods used most frequently 
include Huffman coding and run-length encoding.6 

Huffman coding assigns fewer bits to most frequently 
occurring symbols and more bits to the symbols that 
appear less often. Optimal Huffman tables can be gen­
erated if the source statistics are known. Calculating 
these statistics, however, slows down the compression 
process. Consequently, predeveloped tables that have 
been tested over a wide range of source images are 
used. A second and simpler method of entropy encod­
ing is run-length encoding in which sequences of 
identical digits are replaced with the digit and the 
number in the sequence. Like motion estimation, 
entropy encoding puts a heavier burden on the com­
pressor than the decompressor. 

Before ending this section, we would like to mention 
that a number of other techniques, including object­
based coding, model-based coding, segmentation­
based coding, contour-texture oriented coding, fractal 
coding, and wavelet coding are also available to the 
codec designer. Thus far, our coverage has concen­
trated on explaining only those techniques that have 
been used in the video compression schemes currently 
supported by Digital. In the next section, we describe 
some hybrid schemes that employ a number of the 
techniques described above; these schemes are the basis 
of several international video coding standards. 

Overview of Popular Video Compression Schemes 
The compression schemes presented in this section 
can be collectively classified as first-generation video 
coding schemes.7 The common assumption in all these 
methods is that there is statistical correlation between 
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pixels. Each of these methods attempts to exploit this 
correlation by employing redundancy reduction tech­
niques to achieve compression. 

Motion-JPEG Algorithm Motion-JPEG (or M-JPEG ) 
compresses each frame of a video sequence using the 
ISO's Joint Photographic Experts Group (JPEG ) 
continuous-tone, still-image compression standard.8 

As such, it is an intraframe compression scheme. It is 
not wed to any particular subsampling format, image 
color space, or image dimensions, but most typically 
4:2:2 subsampled YCbCr, source input format (SIF, 
352 by 240) data is used. The JPEG standard specifies 
both lossy and lossless compression schemes. For 
video, only the lossy baseline DCT coding scheme has 
gained acceptance. The scheme relies on selective 
quantization of the frequency coefficients followed by 
Huffman and run-length encoding for its compres­
sion. The standard defines a bit-stream format that 
contains both the compressed data stream and coding 
parameters such as the number of components, quan­
tization tables, Huffman tables, and sampling factors. 
Popular M-JPEG file formats usually build on top of 
the JPEG-specified formats with little or no modifica­
tion. For example, Microsoft's audio-video interleaved 
(AVI) format encapsulates each JPEG frame with its 
associated audio and adds an index to the start of each 
frame at the end of the file. Video editing on a frame­
by-frame basis is possible with this format. Another 
advantage is frame-limited error propagation in net­
worked, distributed applications. Many video digitizer 
boards incorporate JPEG compression in hardware to 
compress and decompress video in real time. Digital's 
Sound & Motion J 300 and FullVideo Supreme JPEG 
are two such boards.9

•
10 The baseline JPEG codec is a 

symmetric algorithm as may be seen in Figure 2a and 
Figure 3. 

ITU-T's Recommendation H.261 The ITU-T's Recom­
mendation H.261 is a motion-compensated, DCT­
based video coding standard. 11 Designed for the 
teleconferencing market and developed primarily for 
low-bit-rate Integrated Services Digital Network 
(ISDN) services, H.261 shares similarities with ISO's 
JPEG still-image compression standard. The target bit 
rate is p X 64 kilobits per second with p ranging 
between 1 and 30 (H.261 is also known asp X 64). 
Only two frame resolutions, common intermediate 
format (CIF, 352 by 288 ) and quarter-CIF (QCIF, 
176 by 144), are allowed. All standard-compliant 
codecs must be able to operate with QCIF; CIF is 
optional. The input color space is fixed by the 
International Radio Consultative Committee ( CCIR) 
601 YCbCr standard's with 4:2:0 subsampling (sub­
sampling of chrominance components by 2:1 in both 
the horizontal and the vertical direction ). Two types 
of frames are defined: key frames that are coded 
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independently and non-key frames that are coded 
with respect to a previous frame. Key frames are 
coded in a manner similar to JPEG. For non-key 
frames, block-based motion compensation is per­
formed to compute interframe differences, which are 
then DCT coded and quantized. The block size is 
16 by 16, and each block can have a different quanti­
zation table. Finally, a variable word-length encoder 
( usually employing Huffinan and run-length methods) 
is used for coding the quantized coefficients. Rate 
control is done by dropping frames, skipping blocks, 
and increasing quantization. Error correction codes 
are embedded in the bit stream to help detect and 
possibly correct transmission errors. Figure 2b shows 
a block diagram of an H .261 decompressor. 

ISO's MPEG-1 Video Standard The MPEG-1 video 
standard was developed by ISO's Motion Picture 
Experts Group (MPEG ). Like the H.261 algorithm, 
MPEG-1 is also an interframe video codec that 
removes spatial redundancy by compressing key 
frames using techniques similar to JPEG and removes 
temporal redundancy through motion estimation and 
compensation.11

•
12 The standard defines three different 

types of frames or pictures: intra or I-frames that are 
compressed independently; predictive or P-frames 
that use motion compensation from the previous I­
or P-frame; and bidirectional or B-frames that contain 
blocks predicted from either a preceding or following 
P- or I-frame ( or interpolated from both). Compres­
sion is greatest for B-frames and least for I-frames. 
(A fourth type of frame, called the D-frame or the 
DC-intracoded frame, is also defined for improving 
fast-forward-type access, but it is hardly ever used. ) 
There is no restriction on the input frame dimensions, 
though the target bit rate of 1.5 megabits per second is 
for video containing SIF frames. Subsampling is fixed 
at 4:2:0. MPEG-1 employs adaptive quantization of 
DCT coefficients for compressing I-frames and for 
compressing the difference between actual and pre­
dicted blocks in P- and B-frames. A 16-by-16 sliding 
window, called a macroblock, is used in motion esti­
mation; and a variable word-length encoder is used in 
the final step to further lower the output bit rate. The 
full MPEG-1 standard specifies a system stream that 
includes a video and an audio substream, along with 
timing information needed for synchronization 
between the two. The video substream contains the 
compressed video data and coding parameters such 
as picture rate, bit rate, and image size. MPEG-1 has 
become increasingly popular primarily because it 
offers better compression than JPEG without compro­
mising on quality. Several vendors and chip manu­
facturers offer specialized hardware for MPEG 
compression and decompression. Figure 2c shows 
a block diagram of an MPEG-1 video decompressor. 
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Intel's INDEO Video Compression Algorithm Intel's 
proprietary INDEO video compression algorithm is 
used primarily for video presentations on personal 
computer (PC) desktops. It employs color subsam­
pling, pixel differencing, run-length encoding, vector 
quantization, and variable word-length encoding. The 
chrominance components are heavily subsampled. For 
every block of 4-by-4 luminance samples, there is 
a single sample of Cb and Cr. Furthermore, samples 
are shifted one bit to convert them to 7-bit values. The 
resulting precompression format is called YVU9, 
because on average there are 9 bits per pixel. This 
subsampling alone yields a reduction of 9 /24. Run­
length encoding is employed to encode any run of 
zero pixel differences. 

PCWG's INDEO-C Video Compression Algorithm 
INDEO-C is the video compression component of a 
teleconferencing system derived from the Personal 
Conferencing Specification developed by the Personal 
Conferencing Work Group (PCWG), an industry 
group led by Intel Corporation. Like the MPEG stan­
dard, the PCWG specification defines the compressed 
bit stream and the decoder but not the encoder. 
INDEO-C is optimized for low-bit-rate, ISDN-based 
connections and, unlike its desktop compression 
cousin, is transform-based. It is an interframe algo­
rithm that uses motion estimation and a 4:1 chromi­
nance subsampling in both directions. Spatial and 
temporal loop filters are used to remove high­
frequency artifacts. The transform used for converting 
spatial data to frequency coefficients is the slant trans­
form, which has the advantage of requiring only shifts 
and adds with no multiplies. Like the DCT, the fast 
slant transform (FST) is applied on image subblocks 
for coding both intraframes and difference frames. As 
was the case in other codecs, run-length coding and 
Huffman coding are employed in the final step. 
Compression and decompression of video in software 
is faster than other interframe schemes like MPEG-1 
and H.261. 

Compression Schemes under Development In addi­
tion to the five compression schemes described in this 
section, four other video compression standards, 
which are currently in various stages of development 
within ISO and ITU-T, are worth mentioning: ISO's 
MPEG-2, ITU-T's Recommendation H.262, ITU-T's 
Recommendation H.263, and ISO's MPEG-4 .1 3

•
14 

Although the techniques employed in MPEG-2, 
H.262, and H.263 compression schemes are similar to 
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the ones discussed above, the target applications are 
different. H.263 focuses on providing low-bit-rate 
video (below 64 kilobits per second) that can be trans­
mitted over narrowband channels and used for real­
time conversational services. The codec would be 
employed over the plain old telephone system (POTS) 
with modems that have the V.32 and the V.34 modem 
technologies. MPEG-2, on the other hand, is aimed at 
bit rates above 2 megabits per second, which support 
a wide variety of formats for multimedia applications 
that require better quality than MPEG-1 can achieve. 
One of the more popular target applications for 
MPEG-2 is coding for high-definition television 
(HD1V). It is expected that ITU-Twill adapt MPEG-2 
so that Recommendation H.262 will be very similar, 
if not identical, to it. Finally, like Recommendation 
H.263, ISO's MPEG-4's charter is to develop a generic 
video coding algorithm for low-bit-rate multimedia 
applications over a public switched telephone network 
(PSTN). A wide variety of applications, including 
those operating over error-prone radio channels, are 
being targeted. The standard is expected to embrace 
coding methods that are very different from its precur­
sors and will include the so-called second-generation 
coding techniques.7 MPEG-4 is expected to reach 
draft stage by November 1997. 

This ends our discussion on video compression tech­
niques and standards. In the next section, we turn our 
attention to the other component of the video play­
back solution, namely video rendering. We describe the 
general process of video rendering and present a novel 
algorithm for efficient mapping of out-of-range colors 
to feasible red, green, and blue (RGB) values that can 
be represented on the target display device. Out-of­
range colors can occur when the display quality is 
adjusted during video playback. 

Video Presentation 

Video presentation or rendering is the second impor­
tant component in the video playback pipeline (see 
Figure 1 ). The job of this subsystem is to accept 
decompressed video data and present it in a window of 
specified size on the display device using_ a specified 
number of colors. The basic components are sketched 
in Figure 4 and described in more detail in a previous 
issue ofthisjournal.15 Today, most desktop systems do 
not include hardware options to perform these steps, 
but some interesting cases are available as described in 
this issue.9

•
16 When such accelerators are not available, 

software-only implementation is necessary. Software 
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rendering algorithms, although very efficient, can still 
consume as many computation cycles as are used to 
decompress the data. 

All major video standards represent image data in a 
luminance-chrominance color space. In this scheme, 
each pixel is composed of a single luminance compo­
nent, denoted as Y, and two chrominance components 
that are sometimes referred to as color difference sig­
nals Cb and Cr, or signals U and V. The relationship 
between the familiar RGB color space and YUV can be 
described by a 3-by-3 linear transformation: 

r y 
g = M u 
b v 

where the transformation matrix, 

1

1 o a I M = 1 b c. 
1 d O 

(2) 

(3) 

The matrix is somewhat simple with only four values 
that are not O or 1. These constants are a = 1.402, 
b= -.344, c= -.714,and d = 1.722. 

The RGB color space cube becomes a parallelepiped 
in YUV space. This is pictured in Figure 5, where the 
black corner is at the bottom, and the white corner is 
at the top; the red, green, and blue corners are as 
labeled. The chrominance signals U and V are usually 
subsampled, so the rendering subsystem must first 
restore these components and then transform the 
YUV triplets to RGB values. 

Typical frame buffers are configured with 8 bits of 
color depth. This hardware colormap must, in general, 
be shared by multiple applications, which puts a pre­
mium on each of the 256 color slots in the map. Each 
application, therefore, must be able to request render­
ing to a limited number of colors. This can be accom­
plished most effectively with a multilevel dithering 
scheme, as represented by the dither block in Figure 4. 

y 

B 

Figure 5 
The RGB "Cube" in YUV Space 

The color adjustment block controls brightness, con­
trast and saturation by means of simple look-up tables. 

Along with up-sampling the chrominance, the scale 
block in Figure 4 can also change the size of the 
image. Although arbitrary scaling is best performed in 
combination with filtering, it is found to be too expen­
sive to do in a software-only implementation. For the 
case of enlargement, a trade-off can be made between 
image quality and speed; contrary to what is shown in 
Figure 4, image enlargement can occur after dithering 
and color space converting. Of course, this would 
result in scaled dithered pixels, which are certainly less 
desirable, but it would also result in faster processing. 

To optimize computational efficiency, color space 
conversion from YUV to RGB takes place after YUV 
dithering. Dithering greatly reduces the number of 
YUV triplets, thus allowing a single look-up table 
to perform the color space conversion to RGB as well 
as map to the final 8-bit color index required by the 
graphics display system. Digital pioneered this idea 
and has used it in a number of hardware and software­
only products.17 

Mapping Out-of-Range Colors 
Besides the obvious advantages of speed and simplic­
ity, using a look-up table to convert dithered YUV val­
ues to RGB values has the added feature of allowing 
careful mapping of out-of-range YUV values. Refer­
ring again to Figure 5, the RGB solid describes those 
,; g, and b values that are feasible, that is, have the nor­
malized range O $ ,; g, b $ 1. The range of possible val­
ues in YUV space are those for O $ y $ 1 and - .5 $ u, 
v $ .5. It turns out that the RGB solid occupies only 
23 .3 percent of this possible YUV space; thus there 
is ample possibility for so-called infeasible or out-of­
range colors to occur. Truncating the ,; g, and bvalues 
of these colors has the effect of mapping back to the 
RGB parallelepiped along lines perpendicular to its 
nearest surface; this is undesirable since it will result 
in changing both the hue angle or polar orientation in 
the chrominance plane and the luminance value. By 
storing the mapping in a look-up table, decisions can 
be made a priori as to exactly what values the out-of­
range values should map to. 

There is a mapping where both the luminance or y 
value and the hue angle are held constant at the 
expense of a change in saturation. This section details 
how a closed-form solution can be found for such a 
mapping. Figure 6 is a cross section of the volume in 
Figure 5 through a plane at y = y0 • The object is to find 
the point on the surface of the RGB parallelepiped that 
maps the out-of-range point (Yo, u0 , Vo) in the plane of 
constant y0 ( constant luminance ) and along a straight 
line to the u-v origin (constant hue angle ). The solu­
tion is the intersection of the closest RGB surface and 
the line between (y0, u0 , v0 ) and (y0, 0, 0). This line can 
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be parametrically represented as the locus (y0 , CXUo, cxv0) 
for a single parameter ex. The RGB values for these 
points are 

r Yo 
g = M CXU 0 

b CXV 0 

a(av0 )+y0 

a(b U 0 +cv0 )+y0 

a(du 0 )+y0 

(4) 

where the matrix M is as given in equation (2). To find 
where this parametric line will intersect the RGB paral­
lelepiped, we can first solve for the ex at the intercept val­
ues at each of the six bounding surface planes as follows: 

Surface 
Plane 
r=l 
g= l 
b= l 
r= O 
g= O 
b= O 

Intercept 
Value 
CX1 =(1-yo)/avo 
CX2 =(l-y0)/(bu0 +cv0) 

CX3 =(l-y0)/du0 

CX4 =(cx1- l) 
CXs = ( CX2 - 1 ) 
CXo =(cx3-l) 

Exactly three ex; will be negative, with each describing 
the intercept with extended RGB surface planes oppo­
site the u-v origin. Of the remaining three ex;, the two 
largest values will describe intercepts with extended 
RGB surface planes in infeasible RGB space. This is 
because the RGB volume, a parallelepiped, is a convex 
polyhedron. Thus the solution must simply be the 
smallest positive ex;. Plugging this value of ex into equa­
tion ( 4) produces the desired RGB value. 
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The Software Video Library 

When we started this project, we had two objectives in 
mind: to showcase the processing power of Digital's 
newly developed Alpha processor and to use this 
power to make digital video easily available to devel­
opers and end users by providing extremely low-cost 
solutions. We knew that because of the compute­
intensive nature of video processing, Digital's Alpha 
processor would outperform any competitive proces­
sor in a head-to-head match. By providing the ability 
to manipulate good-quality desktop video without the 
need for additional hardware, we wanted to make 
Alpha-based systems the computers of choice for end 
users who wanted to incorporate multimedia into 
their applications. 

Our objectives translated to the creation of a soft­
ware video library that became a reality because of 
three key observations. The first one is embedded in 
our motivation: processors had become powerful 
enough to perform complex signal-processing opera­
tions at real-time rates. With the potential of even 
greater speeds in the near future, low-cost multimedia 
solutions would be possible since audio and video 
decompression could be done on the native processor 
without any additional hardware. 

A second observation was that multiple emerging 
audio/video compression standards, both formal and 
industry de facto, were gaining popularity with appli­
cation vendors and hence needed to be supported 
on Digital's platforms. On careful examination of the 
compression algorithms, we observed that most of 
the prominent schemes used common building 
blocks (see Figure 2). For example, all five interna­
tional standards-JPEG, MPEG-1, MPEG-2, H.261, 
and H.263-have DCT-based transform coders fol­
lowed by a quantizer. Similarly, all five use Huffman 
coding in their final step. This meant that work done 
on one codec could be reused for others. 

A third observation was that the most common 
component of video-based applications was video 
playback (for example, videoconferencing, video-on­
demand, video player, and desktop television). The 
output decompressed streams from the various 
decoders have to be software-rendered for display on 
systems that do not have support for color space con­
version and dithering in their graphics adapters. An 
efficient software rendering scheme could thus be 
shared by all video players. 

With these observations in mind, we developed 
a software video library containing quality implemen­
tations of ISO, ITU-T, and industry de facto video 
coding standards. In the sections to follow, we present 
the architecture, implementation, optimization, and 
performance of the software video library. We com­
plete our presentation by describing examples of 
video-based applications written on top of this li brary, 



including a novel video screen saver we call Video 
Odyssey and a software-only video player. 

Architecture 
Keeping in mind the observations outlined above, we 
designed a software video library (SLIB ) that would 

• Provide a common architecture under which mul­
tiple audio and video codecs and renderers could 
be accessed 

• Be the lowest, functionally complete layer in the 
software video codec hierarchy 

• Be fast, extensible, and thread-safe, providing reen­
trant code with minimal overhead 

• Provide an intuitive, simple, flexible, and extens­
ible application programming interface (API) 
that supports a client-server model of multimedia 
computing 

• Provide an API that would accommodate multiple 
upper layers, allowing for easy and seamless integra­
tion into Digital's multimedia products 

Our intention was not to create a library that would 
be exposed to end-user applications but to create one 
that would provide a common architecture for video 
codecs for easy integration into Digital's multimedia 
products. SLIB's API was purposely designed to be 
a superset of Digital's Multimedia Services' API for 
greater flexibility in terms of algorithmic tuning and 
control. The library would fit well under the actual 

APPLICATION 1 ••• APPLICATION N 

! 
DIGITAL'8 MULTIMEDIA 
CLIENT LIBRARY 

DIGITAL'$ MULTIMEDIA 
SERVER (DIGITAL UNIX, 
OPENVMS) 

programming interface provided to end users by 
Digital's Multimedia Services. Digital's Multimedia 
API is the same as Microsoft's Video For Windows 
API, which facilitates the porting of multimedia appli­
cations from Windows and Windows NT to Digital 
UNIX and Open VMS platforms. Figure 7 shows SLIB 
in relation to Digital's multimedia software hierarchy. 
The shaded regions indicate the topics discussed in 
this paper. 

As mentioned, the library contains routines for 
audio and video codecs and Digital's propriety video­
rendering algorithms. The routines are optimized 
both algorithmically and for the particular platform on 
which they are offered. The software has been success­
fully implemented on multiple platforms, including 
the Digital UNIX, the OpenVMS, and Microsoft's 
Windows NT operating systems. 

Three classes of routines are provided for the three 
subsystems: ( 1) video compression and decompres­
sion, (2 ) video rendering, and (3) audio processing. 
For each subsystem, routines can be further classified 
as (a) setup routines, (b) action routines, ( c) query rou­
tines, and (d) teardown routines. Setup routines create 
and initialize all relevant internal data structures. They 
also compute values for the various look-up tables such 
as the ones used by the rendering subsystem. Action 
routines perform the actual coding, decoding, and ren­
dering operations. Query routines may be used before 
setup or between action routines. These provide the 
programmer with information about the capability 
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of the codec such as whether or not it can handle a 
particular input format and provide information about 
the bit stream being processed. These routines can also 
be used for gathering statistics. Teardown routines, as 
the name suggests, are used for closing the codec and 
destroying all internal memory ( state information) 
associated with it. For all video codecs, SLIB provides 
convenience functions to construct a table of contents 
containing the offsets to the start of frames in the input 
bit stream. These convenience functions are useful for 
short clips: once a table of contents is built, random 
access and other VCR functions can be implemented 
easily. (These routines are discussed further in the sec­
tion on sample applications.) 

Implementation of Video Codecs 
In this section, we present the program flow for multi­
media applications that incorporate the various video 
codecs. These applications are built on top of SLIB. 
We also discuss specific calls from the library's API to 
explain concepts. 

Motion JPEG Motion JPEG is the de facto name of 
the compression scheme that uses the JPEG compres­
sion algorithm developed for still images to code video 
sequences. The motion JPEG ( or M-JPEG) player was 
the first decompressor we developed. We had recently 
completed the Sound & Motion J300 adapter that 
could perform JPEG compression, decompression, 
and dithering in hardware.9•

10 We now wanted to 
develop a software decoder that would be able to 
decode video sequences produced by the J300 and its 
successor, the FullVideo Supreme JPEG adapter, 
which uses the peripheral component interconnect 
(PCI). 10 Only baseline JPEG compression and decom­
pression have been implemented in SLIB. This is suffi­
cient for greater than 90 percent of today's existing 
applications. Figure 2a and Figure 3 show the block 
diagrams for the baseline JPEG codec, and Figure 8 
shows the flow control for compressing raw video 
using the video library routines. Due to the symmetric 
structure of the algorithm, the flow diagram for the 
JPEG decompressor looks very similar to the one for 
the JPEG compressor. 

The amount of compression is controlled by the 
amount of quantization in the individual image frames 
constituting the video sequence. The coefficients for 
every 8-by-8 block within the image F(x,y) are quan­
tized and dequantized as 

Fq (x,y) = l Q.;:~:;~,y) J F(x,y) (5) 

= Fq (x,y) X QTable (x,y). 

In equation ( 5 ), QTable represents the quantization 
matrices, also called visibility matrices, associated 
with the frame F(x,y). (Each component constituting 
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the frame can have its own QTablc.) SLIB provides 
routines to download QTables to the encoder explic­
itly; tables provided in the ISO specification can be 
used as defaults. The library provides a quality factor 
that can scale the base quantization tables, thus pro­
viding a control knob mechanism for varying the 
amount of compression from frame to frame. The 
quality factor may be dynamically varied between 
O and 10,000, with a value ofl0,000 causing no quan­
tization (all quantization table elements are equal 
to 1 ), and a value ofO resulting in maximum quantiza­
tion (all quantization table elements are equal to 255). 
For intermediate values: 

QTable(x,y) = (6) 

Clip ( Visibi/ity Tab/e(x,y)X( l0
4
-Qua/Factor)X255 ) . 

104 Xmin (Visibi/ityTab/e(x,y)) 

The Clip() function forces the out-of-bounds values to 
be either 255 or 1. At the low end of the quality set­
ting (small values of the quality factor), the above 
formula produces quantization tables that cause 
noticeable artifacts. 

Although Huffman tables do not affect the quality 
of the video, they do influence the achievable bit rate 
for a given video quality. As with quantization tables, 
SLIB provides routines for loading and using custom 
Huffman tables for compression. Huffman coding 
works best when the source statistics are known; in 



practice, statistically optimized Huffman tables are 
rarely used due to the computational overhead involved 
in their generation. In the case where these tables are 
not explicitly provided, the library uses as default the 
baseline tables suggested in the ISO specification. In the 
case of decompression, the tables may be present in the 
compressed bit stream and can be examined by invok­
ing appropriate query calls. In the AVI format, Huffinan 
tables are not present in the compressed bit stream, and 
the default ISO tables are always used. 

Query routines for determining the supported 
input and output formats for a particular compressor 
are also provided. For M-JPEG compression, some of 
the supported input formats include interleaved 4:2:2 
YUV, noninterleaved 4:2:2 YUV, interleaved and non­
interleaved RGB, 32-bit RGB, and single component 
(monochrome). The supported output formats 
include JPEG-compressed YUV and JPEG-compressed 
single component. 

ISO's MPEG-1 Video Once we had implemented the 
M-JPEG codec, we turned our attention to the MPEG-1 
decoder. MPEG-1 is a highly asymmetric algorithm. 
The committee developing this standard purposely 
kept the decompressor simple: it was expected that 
there would be many cases of compress once and 
decompress multiple times. In general, the task of com­
pression is much more complex than that of decom­
pression. As of this writing, achieving real-time 
performance for MPEG-1 compression in software 
is not possible. Thus we concentrated our energies 
on implementing and optimizing an MPEG-1 decom­
pressor while leaving MPEG-1 compression for batch 
mode. Someday we hope to achieve real-time com­
pression all in software with the Alpha processor. 
Figure 9 illustrates the high-level scheme of how SUB 
fits into an MPEG player. The MPEG-1 system stream 
is split into its audio and video substreams, and each 
is handled separately by the different components of 

ISO 11172-2 
VIDEO 

' SUB VIDEO 
ISO 11172-1 DECODER 
STREAM 

DISK / t 
SUB SYSTEM TIMING 

the video library. Synchronization between audio and 
video is achieved at the application layer by using the 
presentation time-stamp information embedded in 
the system stream. A timing controller module within 
the application can adjust the rate at which video 
packets are presented to the SUB video decoder and 
renderer. It can indicate to the decoder whether to 
skip the decoding ofB- and P-frames. 

Figure 10 illustrates the flow control for an MPEG-1 
video player written on top of SUB. The scheme relies 
on a callback function that is registered with the codec 
during initial setup, and a SvAddBuffers function, writ­
ten by the client, which provides the codec with the bit­
stream data to be processed. The codec is primed by 
adding multiple buffers, each typically containing 
a single video packet from the demultiplexed system 
stream. These buffers are added to the codec's internal 
buffer queue. After enough data has been provided, the 
decoder is told to parse the bit stream in its buffer queue 
until it finds the next (first) picture. The client applica­
tion can specify which type of picture to locate (I, P, or 
B) by setting a mask bit. After the picture is found and 
its information returned to the client, the client may 
choose to either decompress this picture or to skip it by 
invoking the routine to find the next picture. This pro­
vides an effective mechanism for rate control and for 
VCR controls such as step forward, fast forward, step 
back, and fast reverse. If the client requests that a 
non-key picture (P or B) be decompressed and the 
codec does not have the required reference (I or P) pic­
tures needed to perform this operation, an error is 
returned. The client can then choose to abort or pro­
ceed until the codec finds a picture it can decompress. 

During steady state, the codec may periodically 
invoke the callback function to exchange messages with 
the client application as it compresses or decompresses 
the bit stream. Most messages sent by the codec expect 
some action from the client. For example, one of 
the messages sent by the codec to the application is 
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SLIB as Part of a Full MPEG Player 
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a CB_END_BUFFERS message, which indicates the 
codec has run out of data and the client needs to either 
add more data buffers or abort the operation. Another 
message, CB_RELEASE_BUFFERS, indicates the 
codec is done processing the bit-stream data in a data 
buffer, and the buffer is available for client reuse. One 
possible action for the client is to fill this newly available 
buffer with more data and pass it back to the codec. In 
the other direction, the client may send messages to the 
codec through a ClientAction field. Table 1 gives some 
of the messages that can be sent to the codec by the 
application. 

Another use for the callback mechanism is to accom­
modate client operations that need to be intermixed 
between video encoding/ decoding operations. For 
example, the application may want to process audio 
samples while it is decompressing video.· The codec can 
then be configured such that the callback function is 
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Table 1 
List of Client Messages 

M essage 

CLIENT_ABORT 

CLIENT _CONTINUE 

CLIENT_DROP 

CLIENT _PROCESS 

Interpretation 

Abort processing of the frame 

Continue processing the frame 

Do not decompress 

Start processing 

invoked at a (near) periodic rate. A CB_PROCESSING 
message is sent to the application by the codec at reg­
ular intervals to give it an opportunity for rate control 
of video and/ or to perform other operations. 

Typically the order in which coded pictures are pre­
sented to the decoder does not correspond to the 
order in which they are to be displayed. Consider the 
following example: 



Display Order Il 
Decoder Input Il 

B2 B3 P4 BS B6 P7 B8 
P4 B2 B3 P7 BS B6 no 

The order mismatch is an artifact of the compression 
algorithm-a B-picture cannot be decoded until both 
its past and future reference frames have been decoded. 
Similarly a P-picture cannot be decoded until its past 
reference frame has been decoded. To get around this 
problem, SUB defines an output multibuffer. The size 
of this multibuffer is approximately equal to three 
times the size of a single uncompressed frame. For 
example, for a 4:2:0 subsampled CIF image, the size of 
the multi buffer would be 352 by 288 by 1.5 by 3 bytes 
(the exact size is returned by the library during initial 
codec setup). After steady state has been reached each . . , 
mvocatlon to the decompress call yields the correct 
next frame to be displayed as shown in Figure 11. To 
avoid expensive copy operations, the multibuffer is 
allocated and owned by the software above SUB. 

ITU-T's Recommendation H.261 (a.k.a. p x 64) At the 
li_br:iry level, decompressing an H.261 stream is very 
~1m1lar to MPEG-1 decoding with one exception: 
mstead of three types of pictures, the H.261 recom­
mendation defines only two, key frames and non-key 
frames (no bidirectional prediction). The implication 
for implementation is that the size of the multi buffer is 
approximately twice the size of a single decompressed 
frame. Furthermore, the order in which compressed 
frames are presented to the decompressor is the same 
as the order in which they are to be displayed. 

To satisfy the H.261 recommendation, SLIB imple­
ments a streaming interface for compression and 
decompression. In this model, the application feeds 
input buffers to the codec, which processes the data in 
the_ buffers and returns the processed data to the appli­
cation through a callback routine. During decom­
pression, the application layer passes input buffers 
containing sections of an H.261 bit stream. The bit 
stream can be divided arbitrarily, or, in the case oflive 
teleconferencing, each buffer can contain data from a 
transmission packet. Empty output buffers are also 
passed to the codec to fill with reconstructed images. 
Picture frames do not have to be aligned on buffer 
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Figure 11 
Multibuffering in SLIB 

boundaries. The codec parses the bit stream and, 
when enough data is available, reconstructs an image. 
Input buffers are freed by calling the callback routine. 
When an image is reconstructed, it is placed in an out­
~ut buffer and the buffer is returned to the applica­
tion through the callback routine. The compression 
process is similar, but input buffers contain images and 
output buffers contain bit-stream data. One advantage 
to this streaming interface is that the application layer 
does not need to know the syntax of the H.261 bit 
stream. The codec is responsible for all bit-stream 
parsing. Another advantage is that the callback mecha­
nism for returning completed images or bit-stream 
buffers allows the application to do other tasks with­
out implementing multithreading. 

SLIB's architecture and API can easily accommo­
date ISO's MPEG-2 and ITU-T's H.263 video com­
pression algorithms because of their similarity to the 
MPEG-1 and H.261 algorithms. 

Implementation of Video Rendering 
Our ~oftware implementation of video rendering 
essentially parallels the hardware realization detailed 
elsewh~re in this issue.9 As with the hardware imple­
mentation, the software renderer is fast and simple 
because the complicated computations are performed 
offline in building the various look-up tables. In both 
h~rdw_are ~nd software cases, a shortcut is achieved by 
d1thenng m YUV space and then converting to some 
small number ofRGB index values in a look-up table. 16 

Although in most cases the mapping values in the 
look-up tables remain fixed for the duration of the 
run, the video library provides routines to dynamically 
adjust image brightness, contrast, saturation, and the 
number of colors. Image scaling is possible but affects 
performance. When quality is important, the software 
perfo~ms scaling before dithering and when speed is 
the pnmary concern, it is done after dithering. 

Optimizations 
We approached the problem of optimization from two 
directions: Platform-independent optimizations or 
algorithmic enhancements, were done by exploiting 
knowledge of the compression algorithm and the 
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input data stream. Platform-dependent optimizations 
were done by examining the services available from 
the underlying operating system and by evaluating the 
attributes of the system's processor. 

AB can be seen from Table 2, the DCT is one of the 
most computationally intensive components in the 
compression pipeline. It is also common to all five 
international standards. Therefore, a special effort was 
made in choosing and optimizing the DCT. Since all 
five standards call for the inverse DCT (IDCT) to be 
postprocessed with inverse quantization, significant 
algorithmic savings were obtained by computing a 
scalar multiple of the DCT and merging the appropri­
ate scaling into the quantizer. The DCT implemented 
in the library is a modified version of the one­
dimensional scaled DCT proposed by Arari et al. 18 The 
two-dimensional DCT is obtained by performing a 
one-dimensional DCT on the columns followed by 
a one-dimensional DCT on the rows. A total of 80 
multiplies and 464 adds are needed for a fully popu­
lated 8-by-8 block. In highly compressed video, the 
coefficient matrix to be transformed is generally sparse 
because a large number of elements are "zeroed" out 
due to heavy quantization. We exploit this fact to 
speed up the DCT computations. In the decoding 
process, the Huffi11an decoder computes and passes to 
the IDCT a list of rows and columns that are all zeros. 
The IDCT then simply skips these columns.19 Another 
optimization uses a different IDCT, depending on the 
number of nonzero coefficients. The overall speedup 
due to these techniques is dependent on the amount 
of compression. For lightly compressed video, we 
observed that the overhead due to these techniques 
slowed down the decompressor. We overcame this dif­
ficulty by building into SLIB the adaptive selection of 
the appropriate optimization based on continuous sta­
tistics gathering. Run-time statistics of the number of 
blocks per frame that are all zeros are maintained, and 
the number of frames over which these statistics are 
evaluated is provided as a parameter for the client 
applications. Statistic gathering is minimal: a counter 
update and an occasional compare. 

Table 2 

The second component of the video decoders we 
looked at was the Huffman decoder. Analysis of the 
compressed data indicated that short-code-length 
symbols were a large part of the compressed bit 
stream. The decoder was written to handle frequently 
occurring very short codes ( < 4 bits) as special cases, 
thus avoiding loads from memory. For short codes 
( < 8 bits), look-up tables were used to avoid bit-by-bit 
decoding. Togetl1er, these two classes of codes 
account for well over 90 percent of the total collection 
of the variable-length codes. 

A third compute-intensive operation is raster-to­
block conversion in preparation for compression. This 
operation had the potential of slowing down the com­
pressor on Alpha-based systems on which byte and 
short accesses are done indirectly. We implemented an 
assembly language routine that would read the 
uncompressed input color image and convert it to 
three one-dimensional arrays containing 8-by-8 
blocks in sequence. Special care was taken to keep 
memory references aligned. Relevant bytes were 
obtained through shifting and masking operations. 
Level shifting was also incorporated within the routine 
to avoid touching the same data again. 

Other enhancements included replacing multiplies 
and divides with shifts and adds, avoiding integer to 
floating-point conversions, and using floating-point 
operations wherever possible. This optimization is 
particularly suited to the Alpha architecture, where 
floating-point operations are significantly faster than 
integer operations. We also worked to reduce memory 
bandwidtl1. Ill-placed memory accesses can stall the 
processor and slow down the computations. Instruc­
tions generated by the compiler were analyzed and 
sometimes rescheduled to void data hazards, to keep 
the on-chip pipeline full, and to avoid unnecessary 
loads and stores. Critical and small loops were unrolled 
to make better use of floating-point pipelines. 
Reordering the computations to reuse data already in 
registers and caches helped minimize thrashing in the 
cache and the translation lookaside buffer. Memory 
was accessed through offsets rather than pointer 

Typical Contributions of the Major Components in the Playback of Compressed Video (SIF) 

Coding Bit-stream 
Scheme Parser 

M-JPEG 0.8% 
decode 

MPEG-1 0.9% 
decode 

INDEO 1.0% 
decode 
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Huffman 
and 
Run-length 
Decoder 

12.4% 

13.0% 

Inverse IDCT 
Quantizer 

10.5% 35.2% 

Motion 
Compression, 
Block to 
Raster 

9.7% 19.7% 20.2% 
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Vector 
Quantization 
(INDEO 
only) 

57.5% 

Tone Adjust, Display 
Dither, Quantize 
and Color Space 
Convert 

33.7% 7.4% 

31.4% 5.1% 

36.0% 5.5% 



increments. More local variables than global variables 
were used. Wherever possible, fixed values were hard 
coded instead of using variables that would need to 
be computed. References were made to be 32-bit or 
64-bit aligned accesses instead of byte or short. 

Consistent with one of the design goals, SLIB was 
made thread-safe and fully reentrant. The Digital 
UNIX, the Open VMS, and Microsoft's Windows NT 
operating systems all offer support for multithreaded 
applications. Applications such as video playback can 
improve their performance by having separate threads 
for reading, decompressing, rendering, and display­
ing. Also, a multithreaded application scales up well on 
a multiprocessor system. Global multithreading is 
possible if the library code is reentrant or thread-safe. 
When we were trying to multithread the library inter­
nals, we found that the overhead caused by the birth 
and death of threads, the increase in memory accesses, 
and the fragmentation of the codec pipeline caused 
operations to slow down. For these reasons, rou­
tines within SLIB were kept single-threaded. Other 
operating-system optimizations such as memory lock­
ing, priority scheduling, nonpreemption, and faster 
timers that are generally good for real-time applica­
tions were experimented with but not included in our 
present implementation. 

Performance on Digital's Alpha Machines 

Measuring the performance of video codecs is gener­
ally a difficult problem. In addition to the usual depen­
dencies such as system load, efficiency of the 
underlying operating system, and application over­
head, the speed of the video codecs is dependent on 
the content of the video sequence being processed. 
Rapid movement and action scenes can delay both 
compression and decompression, while slow motion 
and high-frequency content in a video sequence can 
generally result in faster decompression. When com­
paring the performance of one codec against another, 
the analyst must make certain that all codecs process 
the same set of video sequences under similar oper­
ating conditions. Since no sequences have been 
accepted as standard, the analyst must decide which 
sequences are most typical. Choosing a sequence that 
favors the decompression process and presenting 
those results is not uncommon, but it can lead to false 
expectations. Sequences with similar peak signal-to­
noise ratio (PSNR) may not be good enough, because 
more often than not PSNR ( or equivalently the mean 
square error) does not accurately measure signal qual­
ity. With these thoughts in mind, we chose some 
sequences that we thought were typical and used these 
to measure the performance of our software codecs. 
We do not present comparative results to codecs 

implemented elsewhere since we did not have access 
to these codecs and hence could not test these with the 
same sequences. 

Table 3 presents the characteristics of the three 
video sequences used in our experiments. Let L;(x,y) 

I\ 

and L ;(x,y) represent the luminance component of 
the original and the reconstructed frame i; let n and m 
represent the horizontal and vertical dimensions of 
a frame; and let N be the number of frames in the 
video sequence. Then the Compression Ratio, the 
average output BitsPerPixel, and the average PSNRare 
calculated as 

,\ 
Compression Ratio = 

~ bits in frame[i] of original video (
7

) 
s 

~ bits in frame[i] of compressed video 
1-1 

Avg. BitsPerPixel = 
N 

1 ~ bits in frame[i] of 
NXnXm ;.1 compressedvideo 

Avg.PSNR = 

(8) 

255 20log10 - - - ---- - = --=------ -----

l t ( n~~ t [L, (x ,y)-L ;(x,y}i1 )· 

(9) 

Figure 12 shows the PSNR for individual frames in 
the video sequences along with the distribution of 
frame size for each of three test sequences. Frame 
dimensions within a sequence always remain constant. 

Table 4 provides specifications of the workstations 
and PCs used in our experiments for generating 
the various performance numbers. The 21064 chip 
is Digital's first commercially available Alpha proces­
sor. It has a load-store architecture, is based on a 
0.75-micrometer complementary metal-oxide semi­
conductor (CMOS) technology, contains 1.68 million 
transistors, has a 7- and 10-stage integer and floating­
point pipeline, has separate 8-kilobyte instruction and 
data caches, and is designed for dual issue. The 
21064A microprocessor has the same architecture as 
the 21064 but is based on a 0.5-micrometer CMOS 
technology and supports faster clock rates. 

We provide performance numbers for the video 
sequences characterized in Table 3. Figure 13 provides 
me·asured data on CPU usage when compressed video 
(from Table 3) is played back at 30 frames per second 
on the various test platforms shown in Table 4. We 
chose "percentage of CPU used" as a measure of per­
formance because we wanted to know whether the 
CPU could handle any other tasks when it was doing 
video processing. Fortunately, it turned out the 

Digital Technical Journal Vol. 7 No. 4 1995 67 



68 

Table 3 
Characteristics of the Video Sequences Used to Generate the Performance Numbers Shown in Figure 12 

Spatial Temporal 
Compression Resolution Resolution Avg. Compression Avg. PSNR 

Name Algorithm (width X height) (No. of Frames) BitsPerPixel Ratio (dB) 

Sequence 1 M-JPEG 352 x 240 200 0.32 50:1 31.56 

Sequence 2 MPEG-1 352 x 288 200 0.17 69:1 32.28 
Video 

M-JPEG 352 x 240 200 0.56 28:1 31.56 

Sequence 3 INDEO 352 x 240 200 0.16 47:1 28.73 

SEQUENCE 1 (MOTION JPEG) 
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Figure 12 
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Table4 
Specifications of Systems Used in Experimentation 

Operating Disk 
System Name CPU Bus Clock Rate Cache Memory System 

AlphaStation Alpha PCI 266 MHz 2MB 64MB Digital UNIX RZ28B 
600 5/266 21164A (3.7 ns) V3.2 
workstation 

AlphaStation Alpha PCI 266 MHz 2MB 32MB Digital UNIX RZ58 
200 4/266 21064A (3.7 ns) V3.0 
workstation 

DEC 3000/M900 Alpha TURBOchannel 275 MHz 2MB 64MB Digital UNIX RZ58 
workstation 21064A (3.6 ns) V3.2 

DEC 3000/M500 Alpha TURBOchannel 133 MHz 512 KB 32 MB Digital UNIX RZ57 
workstation 21064 (7.5 ns) V3.0 

answer was a resounding "Yes" in the case of Alpha 
processors. The video playback rate was measured 
with software video rendering enabled. When hard­
ware rendering is available, estimated values for video 
playback are provided. 

From Figure 13, it is clear that today's workstations 
are capable of playing SIF video at full frame rates with 

no hardware acceleration. High-quality M-JPEG and 
MPEG-1 compressed video clips can be played at full 
speed with 20 percent to 60 percent of the CPU avail­
able for other tasks. INDEO decompression is faster 
than M-JPEG and MPEG due to the absence ofDCT 
processing. (INDEO uses a vector quantization 
method based on pixel differencing. ) On three out of 

Figure 13 
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Percentage of CPU Required for Real-time Playback at 30 fps on Four Different Alpha-based Systems 
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the four machines tested, two SIF INDEO clips could 
be played back at full speed with CPU capacity left 
over for other tasks. 

The data also shows the advantage of placing the 
color conversion and rendering of the video in the 
graphics hardware (see Table 2 and Figure 13). 
Software rendering accounts for one-third of the total 
playback time. Since rendering is essentially a table 
look-up function, it is a good candidate for moving 
into hardware. If hardware video rendering is available, 
multiple M-JPEG and MPEG-1 clips can be played 
back on three of the four machines on which the soft­
ware was tested. 

Software video compression is more time-consum­
ing than decompression. All algorithms discussed in 
this paper are asymmetric in the amount of processing 
needed for compression and decompression. Even 
though the JPEG algorithm is theoretically symmetric, 
the performance of the JPEG decoder is better than 
that of the encoder. The difference in performance is 
due to the sparse nature of the quantized coefficient 
matrices, which is exploited by the appropriate IDCT 
optimizations. 

For video encoders, we measured the rate of com­
pression for both SIF and quarter SIF (QSIF) formats. 
Since the overhead due to I/0 affects the rate at which 
the compressor works, we present measured rates col­
lected when the raw video sequence is read from disk 
and when it is captured in real time. The capture cards 
used in our experiments were the Sound & Motion 
J300 (for systems with the TURBOchannel bus) and 
the FullVideo Supreme (for PCI-based systems). The 
compressed bit streams were stored as AVI files on local 
disks. The sequences used in this experiment were 
the same ones used for obtaining measurement for the 
various decompressors; their output characteristics are 

Table 5 
Typical Number of Frames Compressed per Second 

given in Table 3. Table 5 provides performance num­
bers for the M-JPEG and an unoptimized INDEO 
compressor. For M-JPEG, rates for both monochrome 
and color video sequences are provided. 

The data in Table 5 indicates that the M-JPEG com­
pression outperforms INDEO (although one has to 
keep in mind that INDEO was not optimized). This 
difference occurs because M-JPEG compression, 
unlike INDEO, does not rely on interframe prediction 
or motion estimation for compression. Furthermore, 
when raw video is compressed from disk, the encoder 
performs better than when it is captured and com­
pressed in real time. This can be explained on the basis 
of the overhead resulting from context switching in 
the operating system and the scheduling of sequential 
capture operation by the applications. Real-time cap­
ture and compression of image sizes larger than QSIF 
still require hardware assistance. It should be noted 
that in Table 5, the maximum compression rate for 
real-time capture and compression does not exceed 30 
frames per second, which is the limit of the capture 
hardware. Since there are no such limitations for disk 
reads, compression rates of greater than 30 frames per 
second for QSIF sequences are recorded. 

With the newer Alpha chip we expect to see 
improved performance. A factor we neglected in our 
calculations was prefi ltering. Some capture boards are 
capable of capturing only in CCIR 601 format and do 
not include decimation filters as part of their hard­
ware. In such cases, the software has to filter each 
frame down to CIF or QCIF, which adds substantially 
to the overall compression time. For applications that 
do not require real-time compression, software 
digital-video compression may be a viable solution 
since video can be captured on fast disk arrays and 
compressed later. 

M-JPEG (Color) M-JPEG (Monochrome) INDEO (Color) 

System Compress Capture and Compress Capture and Compress Capture and 
(fps) Compress (fps) (fps) Compress (fps) (fps) Compress (fps) 
SIF QSIF SIF QSIF SIF QSIF SIF QSIF SIF QSIF SIF QSIF 

AlphaStation 
600 5/266 
workstation 21.0 79.4 20.0 30.0 32 .8 130 29.0 30.0 8.7 35.4 5.8 23.0 

A lphaStation 
2004/266 
workstation 10.8 45.1 12.0 30.0 15.8 72.9 20.0 30.0 5.6 22.0 4.2 13.0 

DEC 3000/M900 
workstation 13.2 56.6 7.9 28.0 21 .9 87 .8 14.0 29.0 6.0 25.4 4.5 7.6 

DEC 3000/M500 
workstation 6.7 26.6 7.3 8.1 10.4 40.4 7.4 8.2 2.8 11.8 2.2 8. 7 
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Sample Applications 

We implemented several applications to test our archi­
tecture (codecs and renderer) and to create a test bed 
for performance measurements. These programs also 
served as sample code for software developers incorpo­
rating SLIB into other multimedia software layers. 

The Video Odyssey Screen Saver 
The Video Odyssey screen saver uses software video 
decompression and 24-bit YCbCr to 8-bit pseudo­
color rendering to deliver video images to the screen 
in a variety of modes. The program is controlled by 
a control panel, shown in Figure 14. 

The user can select from several methods of display­
ing the decompressed video or let the computer cycle 
through all methods. The floaters mode, shown in 
Figure 15, floats one to four copies of the video 
around the screen with the number of floating win­
dows controlled by a slider in the control panel. The 
snapshot mode floats one window of the video around 
the screen, but every second takes a snapshot of a 
frame and pastes it to the background behind the 
floating window. 

All settings in the control panel are saved in a con­
figuration file in the user's home directory. The user 
selects a video file with the file button. In the current 
implementation, any AVI file containing Motion JPEG 
or raw YlN video is acceptable. The user can set the ' 
time interval for the screen saver to take over. Controls 
for setting brightness, contrast, and saturation are also 
provided. Video can be played back at normal resolu­
tion or with X2 scaling. Scaling is integrated with 

-
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Sleep in j10 ! . min. 

Screen saver: 
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Figure 14 
Video Odyssey Control Panel 
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Figure 15 
Video Odyssey Screen Saver in Floaters Mode 

the color conversion and dithering for optimization. A 
pause feature allows the user to leave his or her screen 
in a locked state with an active screen saver. The screen 
is unlocked only if the correct password is provided. 

The Software Video Player 
The software video player is an application for viewing 
video that is similar to a VCR. Like Video Odyssey, the 
software video player exercises the decompression and 
rendering portions of SLIB. Unlike Video Odyssey, 
the software video player allows random access to any 
portion of the video and permits single-step, reverse, 
and fast-forward functions. Figure 16 shows the dis­
play window of the software video player. 

;:;.-.., .. , . ~--~~ ---------·-· .. ~~ ;-;:. ·1 
I __ !;,.-.,. • d 

Fiie Options 

Figure 16 
The Software Video Player Display Window 
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The user moves through the file with a scroll bar 
and a set ofVCR-like buttons. The button on the far 
left of the display window allows the video to be dis­
played at normal size or at a magnification of X2. The 
far-right button allows adjustment of brightness, con­
trast, saturation, and number of displayed colors. The 
quality of the dithering algorithm used in rendering is 
such that values as low as 25 colors lead to acceptable 
image quality. Allowable file formats for the software 
video player are M-JPEG (AVI format and the JPEG 
file interchange format or JFIF), MPEG-1 (both video 
and system streams), and raw YUV. 

Random access into the file is done in one of two 
ways, depending on the file format. For formats that 
contain an index of the frame positions in the file (like 
AVI files), the index is simply used to seek the desired 
frame. For formats that do not contain an index, such 
as MPEG-1 and JFIF, the software video player esti­
mates the location of a frame based on the total length 
of the video clip and a running average of frame size. 
This technique is adequate for most video clips and has 
the advantage of avoiding the time needed to first 
build an index by scanning through the file. 

Interframe compression schemes like MPEG-1 and 
INDEO pose special problems when trying to access 
a random frame in a video clip. MPEG-1 's B- and 
P-frames are dependent on preceding frames and can­
not be decompressed alone. One technique for han­
dling random access into files with non-key frames 
and no frame index is to use the file position specified 
by the user (with a scroll bar or by other means) as a 
starting point and then to search the bit stream for the 
next key frame ( an I-frame in MPEG-1 ). At that point, 
display can proceed normally. Reverse play is also a 
problem with these formats. The software video player 
deals with reverse by displaying only the key frames. 
It could display all frames in reverse by predecom­
pressing all frames in a group and then displaying them 
in reverse order, but this would require large amounts 
of memory and would pose problems with processing 
delays. Rate control functions, including fast-forward 
and fast-reverse functions, can be done by selectively 
throwing out non- key frames and processing key or 
I-frames only. 

Other Applications 
Several other applications using different components 
of SUB were also written. Some of these are 
( 1) Encode-a video encoding application that uses 
SLIB's compression component to compress raw 
video to M-JPEG format, (2 ) Rendit- a viewer for 
true color images that uses SLIB's rendering compo­
nent to scale, tone-adjust, dither, quantize, color space 
convert, and display 24-bit RGB or 16-bit YUV 
images on frame buffers with limited planes, and 
(3) routines for viewing compressed on-line video 
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documentation that was incorporated into Digital's 
videoconferencing product. 

Related Work 

While considerable effort has been devoted to opti­
mizing video decoders, little has been done for video 
encoders. Encoding is generally computationally more 
complex and time-consuming than decoding. As a 
result, obtaining real-time performance from encoders 
has not been feasible. Another rationalization for 
interest in decoders has been that many applications 
require video playback and only a few are based on 
video encoding. As a result, "code once, play many 
times" has been the dominant philosophy. In most 
papers, researchers have focused on techniques for 
optimizing the various codecs; very little has been 
published on providing a uniform architecture and an 
intuitive API for the video codecs. 

In this section, we present results from other papers 
published on software video codecs. Of the three 
international standards, MPEG-1 has attracted the 
most attention, and our presentation is biased slightly 
toward this standard. We concentrate on work that 
implements at least one of the three recognized inter­
national standards. 

The JPEG software was made popular by the 
Independent Software JPEG Group formed by Tom 
Lane. 20 He and his colleagues implemented and made 
available free software that could perform baseline JPEG 
compression and decompression. Considerable atten­
tion was given to software modularity and portability. 
The main objective of this codec was still-image com­
pression although its modified version has been used for 
decompression of motion JPEG sequences as well. 

The MPEG software video decoder was made popu­
lar by the multimedia research group at the University 
of California, Berkeley. The availability of this free soft­
ware sparked the interest of many who now had the 
opportunity to play with and experiment with com­
pressed video. Patel et al. describe the implementation 
of this software MPEG decoder. 21 The focus in their 
paper is on an MPEG-1 video player that would 
be portable and fast. The authors describe various 
optimizations, including in-line procedures, custom 
coding frequent bit-twiddling operations, and render­
ing in the YUV space with color conversion through 
look-up tables. They observed that the key bottleneck 
toward real-time performance was not the compu­
tation involved but the memory bandwidth. They 
also concluded that data structure organization and 
bit-level manipulations were critical for good perfor­
mance. The authors propose a novel metric for com­
paring the performance of the decoder on systems 
marketed by different systems vendors. Their metric, 
the percentage of required bit rate per second per 



thousand dollars (PBSD ), takes into account the price 
of the system on which the decoder is being evaluated. 

Bheda and Srinivasan describe the implementa­
tion of an MPEG-1 decoder that is portable across 
platforms because the software is written entirely in 
a high-level language.22 The paper describes the vari­
ous optimizations done to improve the decoder's 
speed and provides performance numbers in terms of 
number of frames displayed per second. The authors 
compare the speed of their decoder on various 
platforms, including Digital's first Alpha-based PC run­
ning Microsoft's Windows NT system. They conclude 
that their decoder performed best on the Alpha system. 
It was able to decompress, dither, and display a 320-
pixel by 240-line video sequence at a rate ofl2.5 frames 
per second. A very brief description of the API sup­
ported by the decoder is also provided. The API is able 
to support operations such as random access, fast for­
ward, and fast reverse. Optional skipping ofB-frames is 
possible for rate control. The authors conclude that the 
size of the cache and the performance of the display sub­
system are critical for real-time performance. 

Bhaskaran and Konstantinides describe a real­
time MPEG-1 software decoder that can play both 
audio and video data on a Hewlett-Packard PA-RISC 
processor-based workstation.23 The paper provides 
step-by-step details on how optimization was carried 
out at both the algorithmic and the architectural 
levels. The basic processor was enhanced by including 
in the instruction set several multimedia instructions 
capable of performing parallel arithmetic operations 
that are critical in video codecs. The display subsystem 
is able to handle color conversion ofYCbCr data and 
up-sampling of image data. The performance of the 
decoder is compared to software decoders running on 
different platforms from different manufacturers. The 
comparison is not truly fair because the authors com­
pare their decoder, which has hardware assistance 
available to it (i.e., an enhanced graphic subsystem and 
new processor instructions), to other decoders that are 
truly software based. Furthermore, since all the codecs 
were not running on the same machine under similar 
operating conditions and since the sequence tested on 
their decoder is not the same as the one used by the 
others, the comparison is not truly accurate. The paper 
does not provide any information on the program -
ming interface, the control flow, and the overall soft­
ware architecture. 

There are numerous other descriptions of the 
MPEG-1 software codecs. Eckart describes a software 
MPEG video player that is capable of decoding both 
audio and video in real time on a PC with a 90-mega­
hertz Pentium processor.24 Software for this decoder is 
available freely over the Internet. Gong and Rowe 
describe a parallel implementation of the MPEG-1 

encoder that runs on a network of workstations. 25 The 
performance improvements of greater than 650 
percent are reported when the encoding process is 
performed on 9 networked HP 9000/720 systems 
as compared to a single system. 

Wu et al. describe the implementation and per­
formance of a software-only H.261 video codec on 
the PowerPC 601 reduced instruction set computer 
(RISC) processor.26 This paper is interesting in that it 
deals with optimizing both the encoder and the 
decoder to facilitate real-time, full-duplex network 
connections. The codec plugs under the QuickTime 
architecture developed by Apple Computer, Inc. and 
can be invoked by applications that have programmed 
to the QuickTime interface. The highest display rate is 
slightly under 18 frames per second for a QSIF video 
sequence coded at 64 kilobits per second with disk 
access. With real-time video capture included, the 
frame rate reduces to between 5 and 10 frames per 
second. The paper provides an interesting insight by 
giving a breakdown of the amount of time spent in 
each stage of coding and decoding on a complex 
instruction set computer ( CISC) versus a RISC system. 
Although the paper does a good job of describing the 
optimizations, very little is mentioned about the soft­
ware architecture, the programming interface, and the 
control flow. 

We end this section by recommending some sources 
for obtaining additional information on the state 
of the art in software-only video in particular and in 
multimedia in general. First, the Society of Photo­
Optical Instrumentation Engineers (SPIE) and the 
Association of Computing Machinery (ACM) sponsor 
annual multimedia conferences. The proceedings from 
these conferences provide a comprehensive record of 
the advances made on a year-to-year basis. In addition, 
both the Institute of Electrical and Electronics 
Engineers (IEEE) and ACM regularly publish issues 
devoted to multimedia. These special issues contain 
review papers with sufficient technical details.1•.27 

Finally, an excellent book on the subject of video com­
pression is the recently published Digital Pictures ( sec­
ond edition) by Arun Netravali and Barry Haskel from 
Plenum Press. 

Conclusions 

We have shown how popular video compression 
schemes are composed of an interconnection of dis­
tinct functional blocks put together to meet specified 
design objectives. The objectives are almost always set 
by the target applications. We have demonstrated that 
the video rendering subsystem is an important compo­
nent of a complete playback solution and presented 
a novel algorithm for mapping out-of-range colors. 
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We described the design of our software architecture 
for video compression, decompression, and playback. 
This architecture has been successfully implemented 
over multiple platforms, including the Digital UNIX, 
the Open VMS, and Microsoft's Windows NT operat­
ing systems. Performance results corroborate our 
claim that current processors can adequately handle 
playback of compressed video in real time with little or 
no hardware assistance. Video compression, on the 
other hand, still requires some hardware assistance for 
real-time performance. We believe the widespread use 
of video on the desktop is possible if high-quality 
video can be delivered economically. By providing 
software-only video playback, we have taken a step in 
this direction. 
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Integrating Video 
Rendering into Graphics 
Accelerator Chips 

The fusion of multimedia and traditional com­
puter graphics has long been predicted but has 
been slow to happen. The delay is due to many 
factors, including their dramatically different 

data type and bandwidth requirements. Digital 
has designed a pair of related graphics accel­
erator chips that integrate video rendering 
primitives with two-dimensional and three­
dimensional synthetic graphics primitives. The 
chips perform one-dimensional filtering and 
scaling on either YUV or RGB source data. One 
implementation dithers YUV source data down 
to 256 colors. The other converts YUV to 24-bit 
RGB, which is then optionally dithered. Both 
chips leave image decompression to the CPU. 
The result is significantly faster frame rates 
at higher video quality, especially for display­
ing enlarged images. The paper compares the 
implementation cost of various design alter­
natives and presents performance comparisons 
with software image rendering. 
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Larry D. Seiler 
Robert A. Ulichney 

For years, the computer industry confidently predicted 
that ubiquitous, integrated multimedia computing was 
just around the corner. After a number of delays, this 
computing environment is finally a reality. It is now 
possible to buy personal computers (PCs) and work­
stations that combine audio processing with real-time 
display and manipulation of video or other sampled 
data, though usually with significant limitations. 

For the most part, the industry has followed one of 
two paths to achieve real-time video processing. On one 
path, video features are implemented almost entirely in 
software. When applied to the display of moving 
images, this approach typically results in a combination 
oflow resolution, slow update times, and small images. 

The alternative has been to achieve good video 
image display performance by adding a separate video 
hardware option to a PC. Image display is integrated 
in the box and on the screen but is distinct from the 
hardware that implements traditional synthetic graph­
ics. Frequently, this design forces performance com­
promises, for example, by limiting the number of video 
images that can appear at the same time or by limiting 
the interaction ofimages with the window system. 

Recently, two key enabling technologies have com­
bined to make a better solution possible. Advances in 
silicon technology enable low-cost graphics controller 
chips to be designed with a significant number of gates 
dedicated to supporting multimedia features. In addi­
tion, the peripheral component interconnect (PCI) bus 
provides high-bandwidth, peer-to-peer communica­
tion between the CPU, the main memory, and option 
cards. Peak bandwidth on the standard 32-bit PCI bus 
is 133 megabytes per second (MB/s), and higher­
performance versions are also available. Good PCI 
implementations can transfer sequential data at 80 to 
100 MB/s. Equally important, the PCI bus allows mul­
timedia solutions to be incrementally built up from a 
software-only implementation through various levels 
of hardware support. The PC! Multimedia Design 
Guide describes this incremental approach and also 
provides standards for latency and video data formats. 1 

This paper describes a Digital engineering project 
whose goal was to combine video rendering features 
and traditional synthetic graphics into a unified graph­
ics chip, yielding high-quality, real-time image display 



as part of the base graphics option at minimal extra 
cost. This project resulted in two chip implementa­
tions, each with its own variation of the same basic 
design. The TGA2 chip was designed in the Work­
systems Group for use in Digital's PowerStorm 3030 
and PowerStorm 4020 graphics options. The Dagger 
chip (DECchip 21130 ) was designed in the Silicon 
Engineering Group to match the needs of the PC mar­
ket. The TGA2 and Dagger chips are PCI bus masters 
and can accept video data from either the host CPU or 
other video hardware on the PCI bus. 

The basic block diagram of the two chips is illus­
trated in Figure 1. PCI commands are interpreted as 
either direct memory access (DMA) requests or draw­
ing commands, which the pixel engine block converts 
to frame buffer read and write operations. Alternately, 
PCI commands can directly access the frame buffer or 
the video graphics array (VGA) and RAMDAC logic . 
In the Dagger chip, the VGA and RAMDAC logic is 
on-chip; in the TGA2 chip, this logic is implemented 
off-chip. Most of the video rendering logic is contained 
in the pixel engine block; the command interpreter and 
DMA engine blocks require some additional logic to 
support video rendering. 

The following sections describe the capabilities, costs, 
and trade-offs of the video rendering feature set as 
implemented in the Dagger and TGA2 graphics chips. 

Defining a Low-level Video Rendering Feature Set 

The key question when integrating multimedia into 
a traditional synthetic graphics chip is which features 
should be implemented in hardware and which should 
be left in software. A cost-effective design cannot 

PCIBUS 

include enough gates to implement every feature of 
interest. In addition, time-to-market concerns do not 
allow all features to be designed into the hardware. 
Therefore, it is essential for designers to define the pri­
mary trade-off between features that can be easily and 
effectively implemented in hardware and those that 
can be more easily implemented in software without 
compromising performance. 

For the Dagger and TGA2 graphics chips, our basic 
decision was to leave image compression and decom­
pression in software and put all pixel processing opera­
tions into hardware. This approach lets software do 
what it does best, which is perform complex control of 
relatively small amounts of data. It also lets hardware 
do what it does best, which is process large amounts of 
data where the control is relatively simple and is inde­
pendent of the data. Specifically, in these two graphics 
chips, image scaling, filtering, and pixel format conver­
sions are all performed in hardware. 

Performing the scaling in hardware greatly reduces 
the amount of data that the software must process and 
that must be transmitted over the PCI bus. For exam­
ple, a 320-by-240-pixel image represented with 16-bit 
pixels requires just 150K bytes. Even at 30 frames per 
second (fps ), transmitting an image of this size con -
sumes about 5 percent of the available bandwidth of 
a good PCI bus implementation. This data could be 
displayed as a 1,280 by 960 array of 32-bit pixels for 
display, which would use more than 80 percent of the 
PCI bus bandwidth, if the scaling and pixel format 
conversion occurs in software. 

One data-intensive operation that we chose not to 
implement in hardware is video input. Designers will 
need to revisit this decision with each new generation 
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of graphics chips. For the current generation, we 
decided to require the use of a separate video input 
card for the subset of systems that require video cap­
mre. We decided not to include video capture support 
in the Dagger and TGA2 chips for two basic reasons. 
First, current application-specific integrated circuit 
(ASIC) technology would have allowed only a partial 
solution. We could have put a video input port in 
hardware but could not have supported the complex 
operations needed for image compression. 

The second reason stems from a market issue. Video 
display is rapidly becoming ubiquitous, just as mice 
and multiwindow displays have become commonplace 
for interacting with PCs and workstations. It is now 
practical to support high-quality, real-time video dis­
play in the base graphics chip. However, the market 
for video input stations is still much smaller than the 
market for video display stations. When the size of 
the video input station market is large enough, and the 
cost of integrating video input is small enough, sup­
port for video input should be added to the base 
graphics chip. 

Video Rendering Pipeline 

This section describes the stages of video render­
ing that are implemented in the Dagger and TGA2 
graphics chips. These stages are pixel preprocessing, 
scaling and filtering, dithering, and color conversion. 
In some cases, such as scaling and filtering, the two 
implementations are practically identical. In others, 
such as color conversion, dramatically different imple­
mentations are used to address the differences in 
requirements for the two chips. 

Pixel Preprocessing 
The first stage in the pipeline inputs pixel data and 
converts it into a standard form to be used by the rest 
of the pipeline. This involves both converting input 
pixels to a standard format and pretranslating pixel 
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Figure 2 
YUV and RGB Pixel Formats in the Dagger and TGA2 Chips 
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values or color component values. The Dagger and 
TGA2 chips use DMA over the PCI bus to read packed 
arrays of pixels from memory. 

Pixel Format Conversion Multimedia images are typi­
cally represented in YUV format, where the Y channel 
specifies luminance and the U and V channels repre­
sent chrominance. After the CPU has decompressed 
the source image into arrays of Y, U, and Vpixel values, 
this data is transmitted to the graphics chip in one of 
a number of standard formats. Alternately, images may 
be specified as red/green/blue (RGB) triples instead 
ofYUV triples, or as a single index value that specifies 
a color from a color map random-access memory 
(RAM) in the video logic. The PC! Multimedia Design 
Guide specifies many standard pixel formats. 1 

Figure 2 shows some of the input pixel formats that 
are supported in the Dagger and TGA2 graphics chips. 
The YUV formats on the left allocate 8 bits for each 
channel. The upper format of the four uses 32 bits per 
YUV pixel and is called YUV-4:4:4+a.1 The alpha field 
is optional and is not used in the Dagger and TGA2 
chips. Alpha values are used for blending operations 
with partially transparent pixels. An alpha value of zero 
represents a fully transparent pixel, and the maximum 
value represents a fully opaque pixel. 

The remaining three YUV formats specify a separate 
Yvalue per pixel but subsample the U and V values so 
that a pair of pixels shares the same U and V values. Most 
YUV compression schemes subsample the chrominance 
channels, so this approach does not represent any loss of 
data from the decompressed image. Since the human 
visual system is more sensitive to changes in luminance 
than to changes in chrominance, for namral images, U 
and V can be subsan1pled with little loss of image quality. 

The three 16-bit YUV formats represent the most 
common orderings for chrominance-su bsampled YUV 
values. The little-endian and gib-endian orderings are 
called YUV-4:2 :2. 1 The little-endian ordering is 
the order that is typically produced on the PCI bus 
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by a little-endian machine. The gib-endian ordering is 
produced on the PCI bus by a big-endian machine 
that converts its data to little-endian order, as required 
for transfer across the PCI bus. That operation pre­
serves byte order for 8-bit and 32-bit data types but 
not for 16-bit data types like this one. Finally, the big­
endian byte ordering is used by some video rendering 
software and hardware options. 

The RGB formats on the right side of Figure 2 allo­
cate varying numbers of bits to the red, green, and 
blue color channels to produce 8-bit to 32-bit pixels. 
To achieve acceptable appearance, 8-bit RGB requires 
high-quality dithering, such as that provided by 
the Accu Video dithering technology contained in the 
Dagger and TGA2 chips and described later in this sec­
tion.Thirty-two-bit RGB has an optional alpha chan­
nel that is not used in the Dagger and TGA2 chips. 
Some hardware uses the field for control bits or over­
lay planes instead of for the alpha value. Two different 
16-bit RGB formats are common. One format pro­
vides 5 bits per color channel and a single alpha bit that 
indicates transparent or opaque. The other format 
provides an extra bit for the green channel, since the 
eye is more sensitive to green than to red or blue. 

Finally, 8-bit indexed format is shown at the bottom 
of Figure 2. This format is simply an 8-bit value that 
represents an index into a color map. Dagger has an 
integral color map and digital-to-analog converter, 
whereas TGA2 requires an external RAMDAC chip to 
provide its color map. The 8-bit indexed format can 
represent an indexed range of values or simply a collec­
tion of independent values, depending on the needs 
of the application. In the Dagger and TGA2 chips, the 
8-bit indexed format is processed by being passed 
through the Y channel. 

Once in the pipeline, the pixels are converted to 
a standard format consisting of three 8-bit values per 
pixel. The three values represent RGB or YlN compo­
nents, depending on the original pixel format. If 
the original field contains fewer than 8 bits, for exam­
ple, in the 8-bit RGB format, then the available bits are 
replicated. Figure 3 shows the expansion of RGB 
pixels to 8 /8 /8 RGB format. Replicating the available 

bits to fill low-order bit positions is preferable to fill­
ing the low-order bits with zeros, since replication 
stretches out the original range of values to include 
both the lowest and highest values in the 8-bit range, 
with roughly equal steps ?etween them. 

Adjust Look-up Table In the TGA2 chip, a 256-entry 
look-up table (LUT) may be used during pixel prepro­
cessing. Figure 7 ( discussed in the section Color 
Conversion Algorithms) shows this table, called the 
adjust LUT, in the TGA2 pipeline. This table supports 
two different data conversions: luminance adjustment 
and color index conversion. The adjust LUT is not 
available in the Dagger chip because it requires too 
many gates to meet the chip cost goal for Dagger. 

Luminance adjustment is used with YlN pixel for­
mats. When this feature is selected, the 8-bit Yvalue 
from the input pixel is used as an index into the adjust 
LUT. The 8-bit value read from the table is used as Y 
in the next pipeline stage. Proper programming of the 
table allows arbitrary luminance adjustment functions 
to be performed on the input Yvalue; brightness and 
contrast control are typically provided through this 
mechanism. Standards for digitally encoding video 
specify limited ranges for the Y, U, and V values, largely 
to prevent analog noise from creating out-of-range 
values.2 A particularly important use of this luminance­
adjust feature is correcting the poor contrast that 
would otherwise result from this range limitation. In 
this case, the adjust LUT may be used to remap the Y 
values to cover the full range of values from Oto 255. 

Another desirable feature is chrominance adjust­
ment, under which the U and V values are also arbitrar­
ily remapped. The J300 provides this feature; however, 
TGA2 does not, for two reasons.3 First, chrominance 
adjustment is required less often than luminance 
adjustment and can be emulated in software when the 
feature is required. Second, chrominance adjustment 
consumes a significant amount of chip area-either 2K 
or 4K bits of memory, depending on whether U and V 
use the same table or different tables. In this genera­
tion of graphics chips, the feature could not be justi­
fied in the TGA2 chip. The Dagger chip, which was 
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Figure 3 
Expanding RGB Pixels to 8/8/8 RGB Format 
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intended for lower-cost systems, includes neither 
chrominance nor luminance adjust LUTs. 

The other use for the adjust LUT in the TGA2 chip 
is for color index conversion. This operation can be 
performed when the input pixel format is 8 bits wide. 
In this case, the 8-bit input pixel is used as an index 
into the table. The resulting value is used as the 
Y..channel value in the rest of the pipeline, and the U 
and V channels are ignored. Later in the pipeline, the 
color conversion stage is skipped, and the Y..channel 
value is used directly as the resulting 8-bit pixel value. 

Color index conversion is an operation that is 
particularly desirable when using the Windows NT 
operating system. Typically, 8-bit screen pixels are 
converted to displayed colors by means of a color LUT 
in the back-end video logic. Under the X Window 
System graphical windowing environment, the map­
ping between an index and its color can be changed 
only by the application. Under the Windows NT oper­
ating system, however, the mappings may change 
dynamically. Therefore, an application that has stored 
an image as 8-bit index values will need to remap those 
index values before copying it to the screen. This con­
version can be done in software, but it is faster and 
simpler to use the adjust LUT in the TGA2 chip to per­
form the remapping. 

Scaling and Filtering 
In the next stage in the rendering pipeline, the chip 
performs scaling and filtering. The Dagger and TGA2 
chips support one-dimensional ( 1-D) scaling and filter­
ing in hardware. Limiting the chips to 1-D filtering sig­
nificantly simplifies the chip logic, since no line buffers 
are needed. Somewhat higher-quality images can be 
achieved using two-dimensional (2-D) filtering, but 
the difference is not significant. This difference is fur­
ther reduced by the AccuVideo dithering algorithm 
that is implemented by the Dagger and TGA2 chips. 
Two-dimensional smoothing filters can be supported 
with added software processing, if required. 

Bresenham-style Scaling Image scaling in the Dagger 
and TGA2 chips uses pixel replication but is not lim­
ited to integer multiples. Instead, images can be scaled 
from any integral source width to any integral desti­
nation width. Scaling is implemented through an 
apaptation of the Bresenham line-drawing algorithm. 
A complete description of this Bresenham-style scaling 
algorithm appears in "Bresenham-style Scaling"; the 
following paragraphs provide an outline of the algo­
rithm, which is the same scaling algorithm used in the 
J300 family of adapters. 3•

4 

The Bresenham scaling algorithm works like the 
Bresenham line-drawing algorithm. Suppose we are 
drawing a line from (0, 0) to (10, 6), so that d:x = 10 
and dy = 6. This is an X-major line; that is, the line is 
longer in the X dimension than in the Y dimension. 
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The Bresenham algorithm draws this vector by initial­
izing an error term and then incrementing it d:xtimes, 
in this example, 10 times. Each time the algorithm 
increments the term, a pixel is drawn. The sign of 
the error term determines whether to find the next 
pixel position by stepping to the right (incrementing 
the Xposition) or by stepping diagonally (increment­
ing both X and Y). The error term is incremented in 
such a way that as the X position is incremented 10 
times, the Y position is incremented 6 times, thus 
drawing the desired vector. 

For Bresenham scaling, d:x represents the width of 
the source image, and dy represents the width of the 
destination image on the screen. When reducing 
the size of the source image, d:x is greater than dy and 
the error terms and increments are set up in the same 
way as the X-major Bresenham line drawing, as 
described in the previous paragraph. One source pixel 
is processed each time the error term is incremented. 
When Bresenham's line algorithm indicates a step in 
the X dimension only, the source pixel is skipped. When 
the algorithm indicates a step in both the X and the Y 
dimensions, the source pixel is written to the destina­
tion. As a result, exactly dx source pixels are processed, 
and exactly dy of them are drawn to the screen. 

Enlarging an image works in a similar fashion. For 
example, consider a source image that is narrower than 
the destination image, that is, d:x is less than dy. This 
is equivalent to drawing a Y..major Bresenham line in 
which the error term is incremented dy times and the 
X dimension is incremented d:x times. The scaling algo­
rithm draws a source pixel to the destination at each 
step. If the line-drawing algorithm increments only in 
the Ydimension, it repeats the current pixel. If the line­
drawing algorithm increments in both the X and the Y 
dimensions, it steps to and displays the next source 
pixel. Consequently, the dx source pixels are replicated 
to yield dydestination pixels, thus enlarging the image. 

The Bresenham line-drawing algorithm has two 
nice properties that are shared by the Bresenham scal­
ing algorithm. First, it requires no divisions to com­
pute the error increments. Second, it produces lines 
that are as smooth as possible, given the pixel grid. 
That is, for an X-major line, each of the d:x pixels has 
a Y position that is the closest pixel to the intersection 
of its X position with the real vector. Similarly, the 
Bresenham scaling algorithm selects pixels that have 
the most even spacing possible, given the pixel grid. 

Just as lines can be drawn from left to right or from 
right to left, images can be drawn in either direction. 
An image drawn in one direction is the mirror image 
of the image drawn in the other direction. Mirror 
imaging is sometimes used in teleconferencing, so that 
users can look at themselves the way they normally see 
themselves. Similarly, images can be turned upside 
down by simply drawing to the display from bottom 
to top instead of from top to bottom. 



Scaling in the Y dimension is performed similarly 
to X-dimension scaling. On the TGA2 chip, scaling 
is performed in software instead of in hardware: the 
software increments an error term to decide whether 
to skip lines (for reducing) or repeat lines (for enlarg­
ing). This is acceptable because the CPU has plenty of 
spare cycles to perform the scaling computations while 
the algorithm draws the preceding line. The Dagger 
chip supports Y-dimension scaling in hardware to 
reduce the number of commands that are needed 
to scale an image. 

Smoothing and Sharpening Filters Like the J300, the 
Dagger and TGA2 chips provide both smoothing and 
sharpening filters. Table 1 shows the available filters. 
All are three-tap filters that are inexpensive to imple­
ment in hardware. The smoothing filters are used to 
improve the quality of scaled images. The sharpening 
filters provide edge enhancement. The two filters 
marked with asterisks ( * ) are available only on the 
TGA2 chip. The others are available on both the 
Dagger and the TGA2 chips. 

The three rows of Table 1 show three levels of 
smoothing and sharpening filters that can be applied. 
The degree of smoothing and sharpening may be 
selected separately. The first row shows the identify 
filter. This is selected to disable smoothing or sharpen­
ing. The second and third rows show three-tap filters 
that perform a moderate and an aggressive degree of 
smoothing or sharpening. 

Note that when using the aggressive smoothing 
filter, the center element does not contribute to the 
result. This filter is intended for postenlarge­
ment smoothing when the scale factor is large. Since 
enlargement is performed by replicating some of the 
pixels, the center of any span of three pixels will be 
identical to one of its neighbors when scaling up by 
a factor of two or more. As a result, the center pixel 
affects the resulting image, since it is replicated either 
to the left or to the right. The (1/2, 0, 1/2) filter 
affords the greatest degree of smoothing that can 
be achieved with a three-tap filter. 

These filter functions are simple to implement in 
hardware. The implementation requires storing only 
the two preceding pixels and performing from one to 
three addition or subtraction operations. The sharpen­
ing filters require an additional clamping step to 

Table 1 
Smoothing and Sharpening Filters 

Degree of 
Smoothing Filter Filtering 

(0, 1, 0) Unfiltered 

('I•, '/,, '/•)* Moderate 
('/,, 0, '/,) Aggressive 

* Available only on the TGA2 chip 

Sharpening Filter 

(O, 1, O) 

( -'/,, 2, - '/,) 

(-1, 3, -1)* 

ensure that the result is in the range Oto 1. Better fil­
tering functions could be obtained by using five taps 
instead of three taps but only by significantly increas­
ing the logic required for filtering. 

Pre- and Postfiltering The order in which filters are 
applied depends on whether the image is being 
enlarged or reduced. When reducing an image, the 
Bresenham scaling algorithm eliminates pixels from 
the source image. This can result in severe aliasing arti­
facts unless a smoothing filter is applied before scaling. 
The smoothing filter spreads out the contribution of 
each source pixel to adjacent source pixels. 

When enlarging an image, the smoothing filter is 
applied after scaling. This smoothes out the edges 
between replicated blocks of pixels. The smoothing fil­
ters eliminate the block effect entirely when enlarging 
up to two times the source image size. The Accu Video 
dithering algorithm also contributes to smoothing out 
the edges between blocks. Another way to smooth out 
the edges is to use higher-order interpolation to find 
destination pixel values. Such methods require more 
logic and do not necessarily produce a better-looking 
result, particularly for modest scale factors. 

If sharpening or edge enhancement is desired, a 
sharpening filter is used in addition to whatever 
smoothing filter is selected. For reducing an image, 
the sharpening filter is applied after scaling-sharpen­
ing an image before reducing its size would only exag­
gerate aliasing effects. For enlarging an image, the 
sharpening filter is applied before scaling-sharpening 
an image after enlarging its size would only amplify the 
edges between blocks. As a result, when both sharpen­
ing and smoothing filters are used, one is applied 
before scaling and the other is applied after scaling. 

AccuVideo Dithering Algorithm 
AccuVideo dithering technology is Digital's propri­
etary high-quality, highly efficient method of render­
ing video with an arbitrary number of available colors. 
Included is YUV-to-RGB conversion, if necessary, 
with careful out-of-bounds color mapping. The gen­
eral algorithm is described in two other papers in this 
issue of the journal, which discuss the implementation 
of the J300 video adapter and software-only video 
players.3

•
5 In the chips described in this paper, we sim­

plified the general implementation of the AccuVideo 
technology by setting constraints on the number of 
available colors. 

Review of the Basic Algorithm The development of 
the general mean-preserving multilevel dithering 
algorithm is presented in "Video Rendering," which 
appears in an earlier issue of the Journal.6 Figure 4 
illustrates the theoretical development of the fun -
damental algorithm for dithering a simple compon­
ent of a color image. As stated in the earlier paper, 
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Multilevel Dithering Algorithm Used in the J300, with the Gain Function Separated from the Adjust LUT 

a mean-preserving dithered output level L0 can be pro­
duced by quantizing the sum of an element from a 
normalized dither array and an input level L; by simply 
shifting the sum to the right by R bits. This simplified 
quantizer, that is, a quantizer with step size .lQ = 2R, 
is possible only if the range of input to the adder L,, 
or the number of input levels N;, is properly scaled by 
a gain G. In the J300 and software-only implementa­
tions, G is included in an adjust LUT. In Figure 4, we 
explicitly separate G from the adjust LUT. The adjust 
LUT is optionally used to control characteristics such 
as contrast, brightness, and saturation. 

The components of this dithering system can be 
designed by specifying three parameters: 

1. N" the number of raw input levels of the given 
color component 

2. N,,, the number of desired output levels 

3. b, the width of the adder in bits, and the number of 
bits used to represent the input levels 

Using the results from the multilevel dithering algo­
rithm, the number of bits to be right-shifted is 

and the gain is 

where 

N-1 
G=-'­

Nr-1' 

The effect of the gain is multiplicative. That is, L; = Lr 

X G, where Lr is the raw input level. In the absence of 
an adjust LUT, this multiplication must be explicitly 
performed. 

Simplified Implementation of Gain In the above sum­
mary of the basic dithering algorithm, the values of Nr 

and N 0 can be any integer, where N,, > N0 • Consider 
the important special case of restricting these values to 
be powers of two. Introducing the three integers p, q, 
and z, we specify that Nr = 2P, No = 2q, and b = p + z, 
where zis the number of additional bits used to repre­
sent L; over Lr. z > 0 guarantees that N; > Nr, thus 
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ensuring that all the raw input levels will be distin -
guished by the dithering system. z = Ocauses N; < N,. 
This situation results in some loss of resolution of raw 
input levels, because, in all cases, the number of per­
ceived output levels from the dithering system will be 
atmostN;. 

Using this information and the expressions of Rand 
G, it is straightforward to show that R = p - q + z, 
and 

Further, 

G=((2q -1)2 R+l )-l = (2q-1)2P 
2P- I (2p-1)2(q-z) 

A key approximation made at this point is 

Note that this approximation becomes better as the 
number ofbits,p, in the raw input increases. 

An approximate gain thus simplifies to 

/\ 

With this value of G, the resulting modified input levels 
will be proportionally less than ideal by a factor of 

The fact that this error is negative guarantees that 
overflow will never occur in the multilevel dithering 
system. Therefore, a truncation step is not needed in 
the implement:Jtion. Figure 5 illustrates the imple­
mentation of G, which consists of the subtraction of 
a (q - z)-bit right shift of Lr from a z-bit left shift 
of L,. This simple "multiplier" is what is implemented 
in Dagger, TGA2, and the ZLX family of graphics 
accelerators, where the power-of-two constraint on 
the output levels is made. 

Consider, for example, the case where p = 8 (N, = 
256), q = 3 (N0 = 8), and z = 1. From the equations 
just presented, R = 6, b = 9, and N; = 449 . Although 

/\ 

ourapproximationforthe gain,G= (2 -1/4) = 1.75, 
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Parallel-shifter Implementation of the Gain Function 

is not equ~ to the ideal gain, G = 448/255 = 1.757, 
the ratio GIG= 0.996 is so close to unity that any 
resulting differences in output are indistinguishable. 

Shared Dither Matrix Another simplification can be 
made by having all the color components in the render­
ing system share the same dither matrix. As defined in 
"Video Rendering," a dither template is an array of N, 
unique elements, with values TE {O, 1, ... , (N, - l)}.6 

These elements are normalized to establish the dither 
matrix element d for each location [ x, y] as follows: 

d[x,y] =int{~( T[x,y]+!)} 

For any real number A and any positive integer K, 
the following is always true: 

int {f} = int {inlA} . 

If, for each color component, N0 is a power of two, 
we can exploit this fact by storing only a single dither 
matrix designed for the smallest value of N0 • 

Specifically, this would be N0 = 2(b -Rm), where bis the 
width in bits of the adder and Rm is the largest value of 
R in the system. For the other larger number of output 
levels N0

1 = 2rh - R') with smaller values of R; normalized 
dither matrix values d'[x, y] can easily be derived by a 
simple right shift by (Rm - R' ) bits of the stored dither 
matrix, as shown in the following equation: 

d'[ ] . {d [x,yj} X,Y =mt 2 Rm-R' . 

Since our dither matrices are typically 32 by 32 in 
size, the hardware savings in storing only one matrix is 
significant. Also, the stored values can be read-only 
memory (ROM) instead of the more costly RAM. 
Typically, RAM requires up to eight times the area of 
ROM in either gate array or custom implementations. 

Color Conversion Algorithms 
The result of the preceding pipeline stages is three 8-bit 
values that represent either RGB or YUV color chan­
nels. If this format is to be written to the frame buffer, 
then no further processing is necessary. If a different 
destination format is specified, then Dagger and TGA2 
must perform a color format conversion. Both chips 
use the same algorithm to dither RGB values down to 
a smaller number of bits per color channel. Both chips 
allow writing YUV pixels to the frame buffer, although 
TGA2 allows the writing of only the 32-bit YUV for­
mat. Finally, both chips can convert YUV pixels into 
the RGB color space, but they use markedly different 
algorithms to perform this conversion. 

Although YlN pixels can be written to the frame 
buffer in both Dagger and (to a more limited extent) 
TGA2, neither chip supports displaying YlN pixels to 
the screen. YlN pixels may be stored only in the off­
screen portion of the frame buffer as intermediate val­
ues for further processing. This is because it is far more 
efficient to convert YlN to RGB in the rendering 
stage than to perform the conversion in the back-end 
video logic. At the rendering stage, it need only be 
done at the image update rate of up to 30 fps. If 
performed in the back-end video logic, the YlN-to­
RGB conversion must also be performed at the screen 
update rate of up to 76 fps. This extra, higher-speed 
logic may be justified if preconverting YlN to RGB 
noticeably reduces the image quality. Given the 
AccuVideo dithering algorithm, however, postconver­
sion is not necessary. 

RGB-to-RGB Color Conversion Even if both the source 
and the destination pixel formats represent RGB color 
channels, it may still be necessary to perform a bit­
depth conversion. Input pixels are expanded out to 
8 bits per color channel for processing through the 
video rendering pipeline. Destination pixels may have 
8, 15, 16, or 24 bits for RGB and so may need to be 
dithered down to a smaller number of bits per pixel. 
TGA2 also supports 12-bit RGB, as described later in 
this section. 

Dagger and TGA2 differ somewhat in the specific 
formats that they support. Dagger allows writes to the 
frame buffer of 3/3/2, 5/5/5, 5/6/5, and 8/8/8 
RGB pixel formats. TGA2 supports all these as source 
pixels but does not allow writes of5/5/5 and 5/6/5 
RGB, because TGA2 does not support 16-bit pixels in 
the frame buffer. Dagger supports 16-bit pixels 
because they are very common in the PC industry. In 
the workstation industry, however, which is TGA2's 
market, 16-bit pixels are almost unknown. As the 
Windows NT operating system gains in popularity, this 
situation is likely to change. 

Instead of supporting 16-bit pixels, TGA2 allows 
writes to the frame buffer of 4/4/4 RGB pixels, with 
16 possible shades for each of the red, green, and blue 
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color channels. This is a standard pixel format for 
workstation graphics, since it allows two RGB buffers 
to be stored in the space of a 24-bit, 8 / 8 /8 RGB pixel. 
This in turn allows double buffering, in which one 
image is drawn while the other image is displayed. 
Double buffering is essential for animation applica -
tions on large screens, since the rendering logic gener­
ally cannot repaint the screen fast enough to avoid 
flicker effects. 

YUV-to-RGB Color Conversion on the Dagger Chip 
The key design focus for the Dagger chip was to sup­
port low-cost graphics options with the highest possi­
ble performance and display quality. As a result, 
although Dagger supports up to 32 bits per pixel, its 
design center is for 8-bit-per-pixel displays. Therefore, 
the algorithm that Dagger uses for converting YlN to 
RGB produces the best possible results given a limit of 
just 256 resultant colors. 

The resulting dithering system design is shown in 
Figure 6. Note that the same system is used to dither 
both RGB data and YlN data. Because the number of 
output levels for each component is always a power 
of two, we can use the simple gain circuit ofFigure 5 
and share the same dither matrix by right-shifting its 
contents, as derived in the last section. In hardware, 
this shifting simply requires a multiplexer to select 
the most significant bits of the data. The dither matrix 
is 7 bits wide to support dithering down to 2-bit blue 

DISPLAY ADDRESS 
LEAD SIGNIFICANT BITS 

x y 

5 5 

DITHER 
MATRIX 

1,024 BY 7 BITS 

7 

7 

G/Y -.c,8.........,~ GAIN2 1--~9.,__ _ __,~ t---+--
9
.,,.._""i SHIFT 2 

values in 3/3/2 RGB, but only 6 dither matrix bits 
are used for 3-bit output, and only 5 bits are used for 
4-bit output. 

YlN data is always dithered to 4 bits of Y and 3 bits 
each of U and V An additional bit is provided for the Y 
channel because the eye is more sensitive to changes of 
intensity than to changes of color. These 10 bits are 
input to a color convert LUT, which is implemented as 
a ROM. Its contents are generated by an algorithm 
with some out-of-bounds mapping.5-7 Approximately 
three-fourths of the possible combinations of YlN 
values are outside the range of colors that can be spec­
ified in the RGB color space. In these cases, the color 
convert LUT ROM produces an RGB value that has 
the same luminance but a less saturated color. 

The color convert LUT ROM represents these 256 
colors as an 8-bit index that is stored in the frame 
buffer. One additional bit per pixel in off-screen mem­
ory specifies which pixels result from YlN conversion 
and which are used by other applications. When pixels 
are read from the frame buffer for display to the 
screen, Dagger's internal RAMDAC reads that addi­
tional bit per pixel to decide whether to map each byte 
through a standard 256-entry color map or through a 
ROM that is loaded with the 256 colors selected in the 
color convert LUT ROM. As a result, Dagger allows 
selection of the best 256 colors forYlN-to-RGB con­
version, in addition to allowing color-mapped applica­
tions to store 8-bit index values in the frame buffer. 
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Figure 6 
Dithering and YUV-to-RGB Conversion in the Dagger Chip 
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It is possible to extend this approach to use more bits 
of dithered YUV to produce more finely quantized 
RGB colors. The size of the required look-up ROM 
quickly gets out of hand, however. Dagger uses a lK­
by-8-bit ROM to convert 4/3/3 YUV into 256 RGB 
colors. Using 4/4/4 YUV would make the ROM five 
times larger ( 4K by 10 bits). To produce 4K RGB col­
ors would require a ROM with 16K 12-bit entries. 

YUV-to-RGB Color Conversion on TGA2 The TGA2 
graphics chip performs dithering and color conversion 
in the reverse order, as compared to the Dagger chip. 
In TGA2, a YUV pixel is first converted into an RGB 
pixel at 8 bits per channel. This 24-bit RGB pixel is 
then either written to the frame buffer or dithered 
down to 8- or 12-bit RGB before being written to the 
frame buffer. Figure 7 shows the dithering system that 
is used in the TGA2 chip. 

The key advantage of the TGA2 approach over the 
Dagger approach is that it allows deeper frame buffers 
to use higher-quality color conversion. If a 24-bit 
frame buffer is being used, TGA2 allows YUV to be 
converted to full 8/8/8 RGB. On the Dagger chip, 
YUV-to-RGB conversion produces only 256 different 
colors, regardless of the frame buffer depth. This is 
acceptable on Dagger, where 24-bit frame buffers are 
far from the design center. Also, the Dagger method 
uses fewer gates, which is an important consideration 
for the cost-constrained Dagger implementation. 

Another advantage of this algorithm for TGA2 is 
that the set of colors used for video image display is the 
same one used by full-color synthetic graphics applica­
tions, such as a solid modeling package or a scientific 
visualization application. This allows a common color 
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map to be used by both image applications and shaded 
graphics applications. Unlike the Dagger chip, TGA2 
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color map with other applications. 

Figure 8 illustrates how the TGA2 chip performs 
YUV-to-RGB color conversion. By the standard defin­
ition of the YUV format, the conversion to RGB 
consists of a 3-by-3 matrix multiplication operation 
in which three terms equal 1 and two terms equal 0.2 

The TGA2 chip performs this matrix multiplication 
using four LUTs to perform the remaining four multi­
plications, together with some adders. A final multi­
plexer is required to clamp the resulting values to the 
range Oto 255. 

The TGA2 color conversion algorithm has one dis­
advantage: the algorithm does not handle out-of­
range YUV values as well as the technique used in the 
Dagger chip. In Dagger, each YUV triple that is out of 
range has an optimal or near-optimal RGB triple com­
puted for it and placed in the table. With the TGA2 
technique, the red, green, and blue components are 
computed separately. The individual color compo­
nents are clamped to the range boundaries, but if 
a YUV triple results in an out-of-range value for green, 
this cannot affect the red or blue values. The result 
is some color distortion for oversaturated images. If 
such a result would be unsatisfactory, it is necessary to 
adjust the colors in software, e.g., by reducing the sat­
uration or the intensity of the source image so that 
most YUV triples map to valid RGB colors. 
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Dithering System in the TGA2 Chip 
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Figure 8 
YlN-to-RGB Conversion in the TGA2 Chip 

Implementation Cost and Performance 

Both the Dagger and the TGA2 chips have the 
design goal of integrating as many as possible of 
the J300 design features into a single-chip graphics 
and video solution. Dagger and TGA2 include dif­
ferent features and implement some common fea­
tures in different ways because each chip focuses on 
a different market. As mentioned earlier, Dagger is a 
PC graphics accelerator chip, and TGA2 is a work­
station graphics accelerator chip. 

Gate Cost 
Table 2 shows the number of gates required to add the 
various imaging operations to the TGA2 chip. TGA2 
is implemented in IBM's SL standard cell technology. 
The video rendering logic represents less than 10 per­
cent of the total TGA2 logic. The chip contains no addi­
tional gates for video scaling or dithering logic, since 
nearly all the gates needed to implement those functions 
are already required in TGA2 to implement Bresenham 
line drawing and dithering of 3-D shaded objects. 

Table 2 clearly shows why the luminance adjust 
LUT was omitted from Dagger. On the TGA2 chip, 
the LUT requires more than half the total gates used 
for multimedia support. 

Display Performance 
The peak hardware performance for image operations 
on the TGA2 chip depends primarily on the internal 
clock rate, which is 60 megahertz (MHz). The TGA2 
chip is fully pipelined, so that one pixel is processed on 
each clock cycle, regardless of the filtering, conversion, 
or dithering that is required. Reducing the image 
requires one clock cycle per source pixel. Enlarg­
ing the image requires one clock cycle per desti­
nation pixel. Actual hardware performance is never 
quite equal to peak rates, but TGA2 performance 
approaches peak rates. For example, TGA2's hardware 
performance limits support rendering a common 
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Table 2 
Gates Used by the TGA2 Video Rendering Logic 

Gates per 
Number Number Total Gates 

Logic Block of Cells of Gates (Percent) 

Pixel 
Formatting 778 584 4.2 

Look-up 
Table 9,590 7, 192 52.3 

Filtering 2,265 1,699 12.4 

Color 
Convert 3,486 2,614 19.0 

M iscellaneous 2,21 0 1,658 12.1 

Total 18,329 13,747 100.0 

intermediate format ( CIF) image that is scaled up by 
a factor of three in both dimensions at over 30 fps. 

Actual system performance depends on many 
factors besides hardware performance. Typically, mul­
timedia images are stored and transmitted in com­
pressed form, so that display performance depends 
on the speed of the decompression hardware or soft­
ware. "Software-only Compression, Rendering, and 
Playback of Digital Video" contains tables that show 
the performance of a variety of AlphaGeneration sys­
tems with software-only rendering and with J300 ren­
dering hardware that implements hardware algorithms 
similar to those in the TGA2 and Dagger chips.5 

Table 3 shows the results of preliminary tests of 
TGA2 video display rates on AlphaStation 250 4/166 
and AlphaStation 250 4/266 workstations, which use 
DECchip 21064 CPUs. The table shows performance 
in frames per second for displaying the standard 
Motion Picture Experts Group (MPEG) flower gar­
den video clip, comparing performance to software 
algorithms that use the TGA graphics accelerator. Like 
TGA2, the TGA chip supports fast image transfers to 
the frame buffer; however, TGA does not provide any 
specific logic to accelerate video display. 

The first two lines of Table 3 show performance 
for displaying images at their original size. Allowing 
TGA2 to convert decompressed YlN pixels to RGB 
improves performance by 34 to 45 percent, depend­
ing on CPU performance. This performance improve­
ment drops to 18 to 25 when data transfer times are 
included. Possibly, this gap can be reduced by further 
coding to better overlap data transfer with MPEG 
decompression. Note that the TGA2 performance can 
include image filtering and a luminance adjust table 
lookup at no loss in performance. 

The third line of Table 3 shows performance when 
the video clip is displayed at two times the size in both 
dimensions. The flower garden movie covers an area 
of 320 by 240 pixels, which is very small on a l ,280-
by-1,024-pixel monitor. Therefore, it is highly desir­
able to display an enlarged image. In this case, TGA2 



Table3 . 
Frames per Second for Displaying MPEG Flower Garden Video Clip 

AlphaStation 250 4/166 AlphaStation 250 4/266 

TGA TGA2 Increase TGA TGA2 Increase 
(fps) (fps) (Percent) (fps) (fps) (Percent) 

24.7 35.8 45 Software decode rate 47.9 64.2 34 
23 .1 28.9 25 lx video playback rate 44.0 52.1 18 
12.7 26.4 108 2x video playback rate 23.1 44.9 95 

source: Tom Morris, Technical Director, Light and Sound Engineering, Digital Equipment Corporation 

displays the video clip at twice the speed of the soft­
ware algorithm that uses the TGA graphics chip. The 
subjective difference is even greater, since TGA2 
applies a smoothing filter to improve the quality of the 
resulting images. The software algorithm on the TGA 
chip performs no filtering because this would dramati­
cally reduce chip performance. 

The performance data in Table 3 are for displaying 
8-bit images to the frame buffer. TGA2 is able to display 
24-bit images at the same performance, up to the 
limit of its frame buffer bandwidth. For the examples 
in Table 3, TGA2 is able to produce either 8-bit, 12-bit, 
or 24-bit images at essentially the same performance. 
Software algorithms would experience a dramatic drop 
in performance, simply because they would have to 
process and transfer three times as much data. Therefore, 
the TGA2 chip allows significantly higher-quality images 
to be displayed without sacrificing performance. 

Conclusions 

This paper describes two graphics accelerator chips that 
integrate a set of image processing operations with tra­
ditional synthetic graphics operations. The image oper­
ations are carefully chosen to allow significantly higher 
performance with minimal extra logic; the operations 
that can be performed in software are left out. Both 
chips take advantage of the PCI bus to provide the 
bandwidth necessary for image data transfers. 

The Dagger and TGA2 video rendering logic is 
based on the AccuVideo rendering pipeline as imple­
mented in the J300 family of video and audio 
adapters. 3 The following restrictions were made to 
integrate this logic into these graphics chips: 

1. Color preprocessing-Eliminate RAM for dynamic 
chrominance control. For the Dagger chip, also 
eliminate RAM for dynamic brightness/contrast 
control. 

2. Filtering-Support just one sharpening and one 
smoothing filter ( other than the identity filters) in 
the Dagger chip. For the TGA2 chip, support just 
two sharpening and two smoothing filters. 

3. Color output-For the Dagger chip, allow only 
256 output colors for YlN input [3/3/2 for RGB 
input]. For the TGA2 chip, support only RGB col­
ors with a power-of-two number of values in each 
channel. 

The quality of the resulting images is excellent. The 
AccuVideo 32-by-32 void-and-cluster dithering algo­
rithm provides quality similar to error diffusion dither­
ing algorithms.8 Error diffusion is a technique in 
which the difference between the desired color and 
the displayed color at each pixel is used to control 
dithering decisions at adjacent pixels. Error-diffusion 
dithering requires considerably more logic than 
AccuVideo dithering and cannot be used when ren­
dering synthetic graphics. 

The high quality of the AccuVideo algorithm is 
especially important when dithering down to 8-bit 
pixels (3/3/2 RGB) . Even in this extreme case, apply­
ing the AccuVideo dithering algorithm results m 
a slight graininess but few visible dithering artifacts. 
Applying AccuVideo dithering to 12-bit (4/4/4 
RGB) pixels results in screen images that are almost 
indistinguishable from 24-bit (8/8/8 RGB) pixels. 

We plan to continue evaluating new multimedia 
features for inclusion in our synthetic graphics chips. 
Areas we are investigating include more elaborate fil­
tering and scaling operations, additional types of color 
conversion, and inexpensive ways to accelerate the 
compression/ decompression process. 
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Technical Description of 
the DECsafe Available 
Server Environment 

The DECsafe Available Server Environment (ASE) 

was designed to satisfy the high-availability 

requirements of mission-critical applications 

running on the Digital UNIX operating system. 

By supplying failure detection and failover 

procedures for redundant hardware and soft­

ware subsystems, ASE provides services that 

can tolerate a single point of failure. In addition, 

ASE supports standard SCSI hardware in shared 

storage configurations. ASE uses several mecha­

nisms to maintain continuous operation and to 

prevent data corruption resulting from network 

partitions. 

,I 
Lawrence S. Cohen 
John H. Williams 

The advent of shared storage interconnect support 
such as the small computer system interface (SCSI) in 
the Digital UNIX operating system provided the 
opportunity to make existing disk-based services more 
available. Since high availability is an important feature 
to mission-critical applications such as database and file 
system servers, we started to explore high-availability 
solutions for the UNIX operating system environ­
ment. The outcome of this effort is the DECsafe 
Available Server Environment (ASE), an integrated 
organization of computer systems and external disks 
connected to one or more shared SCSI buses. 

In the first section of this paper, we review the many 
product requirements that needed to be explored. We 
then define the ASE concepts. In the next section, we 
discuss the design of the ASE components. In subse­
quent sections, we describe some of the issues that 
needed to be overcome during the product's design 
and development: relocating client-server applications, 
event monitoring and notification, network partition­
ing, and management of available services. Further, we 
explain how ASE deals with problems concerning mul­
tihost SCSI; the cross-organizational logistical issues of 
developing specialized SCSI hardware and firmware 
features on high-volume, low-priced standard com­
modity hardware; and modifications to the Network 
File System (NFS) to be both highly available and back­
ward compatible.1 

Requirements of High-availability Software 

The availability concept is simple. If two hosts can 
access the same data and one host fails, the other host 
should be able to access the data, thus making the 
applications that use the data more available. This 
notion ofloosely connecting hosts on a shared storage 
interconnect is called high availability. High availability 
lies in the middle of the spectrum of availability solu­
tions, somewhere between expensive fault-tolerant sys­
tems and a well-managed, relatively inexpensive, single 
computer system.2 

By eliminating hardware single points of failure, the 
environment becomes more available. The goal of the 
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ASE project was to achieve a product that could be 
configured for no single point offailure with respect to 
the availability of services. Thus we designed ASE 
to detect and dynamically reconfigure around host, 
storage device, and network failures. 

Many requirements influenced the ASE design. The 
most overriding requirement was to eliminate the pos­
sibility for data corruption. Existing single-system 
applications implicitly assumed that no other instance 
was running on another node that could also access 
the same data. If concurrent access did happen, the 
data would likely be corrupted. Therefore the preemi­
nent challenge for ASE was to ensure that the applica­
tion was run only once on only one node. 

Another requirement of ASE was to use industry­
standard storage and interconnects to perform its 
function. This essentially meant the use of SCSI 
storage components, and this did pose some chal­
lenges for the project. In a later section, we discuss the 
challenge of ensuring data integrity in a multihosted 
SCSI environment. Also, the limitation of eight SCSI 
devices per SCSI storage bus confined the scaling 
potential of ASE to relatively small environments of 
two to four nodes. 

Less obvious requirements affected the design. ASE 
would be a layered product with minimal impact on 
the base operating system. This decision was made for 
maintainability reasons. This is not to say we did not 
make changes to the base operating system to support 
ASE; however, we made changes only when necessary. 

ASE was required to support multiple service types 
(applications). Originally, it was proposed that ASE sup­
port only the Network File System (NFS), as does the 
HANFS product from International Business Machines 
Corporation.3 Customers, however, required support 
for other, primarily database applications as well. As a 
result, the ASE design had to evolve to be more general 
with respect to application availability support. 

ASE was also required to allow multiple service 
types to run concurrently on all nodes. Other high­
availability products, e.g., Digital's DECsafe Failover 
and Hewlett-Packard's SwitchOver UX, are "hot­
standby" solutions. They require customers to pur­
chase additional systems that could be idle during 
normal operation. We felt it was important to allow all 
members of the ASE to run highly available applications 
as well as the traditional, hot-standby configuration. 

The remaining requirement was time to mar­
ket. IBM's HA/6000 and Sun Microsystems' 
SPARCcluster 1 products were in the market, offering 
cluster-like high availability. We wanted to bring out 
ASE quickly and to follow with a true UNIX cluster 
product. 

One last note for readers who might try to compare 
ASE with the VMScluster, a fully functional cluster 
product. ASE addresses the availability of single-
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threaded applications that require access to storage. 
For example, it does not address parallel applica­
tions that might need a distributed lock manager 
and concurrent access to data. Another effort was 
started to address the requirements of clusters in the 
UNIX environment.4 

ASE Concepts 

To understand the description of the ASE design, the 
reader needs to be familiar with certain availability 
concepts and terms. In this section, we define the ASE 
concepts. 

Storage Availability Domain 
A storage availability domain (SAD) is the collection of 
nodes that can access common or shared storage 
devices in an ASE. Figure 1 shows an example of a 
SAD. The SAD also includes the hardware that con­
nects the nodes such as network devices and the stor­
age interconnects. The network device can be any 
standard network interface that supports broadcast. 
This usually implies either Ethernet or a fiber distrib­
uted data interface (FDDI). Although the SAD may 
include many networks, only one is used for commu­
nicating the ASE protocols in the version 1.0 product. 
To remove this single point of failure, future versions 
of ASE will allow for communication over multiple 
networks. Other networks can be used by clients to 
access ASE services. The storage interconnect is either 
a single-ended or a fast, wide-differential SCSI. The 
shared devices are SCSI disks or SCSI storage products 
like HSZ40 controllers. 

Symmetric versus Asymmetric SADs 
There are many ways a SAD may be configured 
with respect to nodes and storage. In a symmetric 
configuration ( see Figure 1 ), all nodes are connected 

CLIENT CLIENT 

NETWORK 

SERVER 1 SERVER 2 

SHARED SCSI BUS 

STORAGE STORAGE 

Figure 1 
Simple Available Server Environment 



to all storage. An asymmetric configuration exists 
when all nodes are not connected to all the storage 
devices. Figure 2 shows an asymmetric configuration. 

The use of asymmetric configurations improves 
performance and increases scalability. Performance is 
better because fewer nodes share the same bus and 
have less opportunity to saturate a bus with 1/0. Scal­
ability is greater because an asymmetric configuration 
allows for more storage capacity. On the other hand, 
asymmetric configurations add significant implemen­
tation issues that are not present with symmetric 
configurations. Symmetric configurations allow for 
simplifying assumptions in device naming, detecting 
network partitions, and preventing data corruption. 
By assuming fully connected configurations, we were 
able to simplify the ASE design and increase the 
software's reliability. For these reasons, we chose to 
support only symmetric configurations in version 1.0 
of ASE. 

Service 
We use the term seroice to describe the program 
(or programs) that is made highly available. The 
service model provides network access to shared 
storage through its own client-server protocols. 
Examples of ASE services are NFS and the ORACLE? 
database. Usually, a set of programs or processing 
steps needs to be executed sequentially to start up 
or stop the service. If any of the steps cannot be exe­
cuted successfully, the service either cannot be pro­
vided or cannot be stopped. Obviously, if the shared 
storage is not accessible, the service cannot begin. 
ASE provides a general infrastructure for specifying 
the processing steps and the storage dependencies of 
each service. 

SERVER 1 SERVER 2 SERVER 3 SERVER 4 

STORAGE 1 STORAGE2 

Figure 2 
Asymmetric Configuration of ASE 

Events and Failure Modes 
ASE monitors its hardware and software to determine 
the status of the environment. A change in status is 
reported as an event notification to the ASE software. 
Examples of events include a host failure and recovery, 
a failed network or disk device, or a command from 
the ASE management utility. 

Service Failover 
The ASE software responds to events by relocating 
services from one node to another. A relocation due to 
a hardware failure is referred to as seroice failover. 
There are reasons other than failures to relocate a ser­
vice. For example, a system manager may relocate a 
service for load-balancing reasons or may bring down 
a node to perform maintenance. 

Service Relocation Policy 
Whenever a service must be relocated, ASE uses con­
figurable policies to determine which node is best 
suited to run the service. The policy is a function of the 
event and the installed system-management prefer­
ences for each service. For example, a service must be 
relocated if the node on which it is running goes down 
or if a SCSI cable is disconnected. The system manager 
may specify the node to which the service should be 
relocated. Preferences can also be provided for node 
recovery behavior. For example, the system manager 
can specify that a service always returns to a specified 
node if that node is up. For services that take a long 
time to start up, the system manager may specify that a 
service relocate only if its node should fail. Additional 
service policy choices are built into ASE. 

Centralized versus Distributed Control 
The ASE software is a collection of daemons ( user-level 
independent processes run in the background) and 
kernel code that run on all nodes in a SAD. When we 
were designing the service relocation policy, we could 
have chosen a distributed design in which the software 
on each node participated in determining where a ser­
vice was located. Instead, we chose a centralized design 
in which only one of the members was responsible for 
implementing the policy. We preferred a simple design 
since there was little benefit and much risk to develop­
ing a set of complex distributed algorithms. 

Detectable Network Partition versus 
Undetectable Full Partition 
A detectable network partition occurs when two or 
more nodes cannot communicate over their networks 
but can still access the shared storage. This condition 
could lead to data corruption if every node reported 
that all other nodes were down. Each node could 
try to acquire the service. The service could run 
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concurrently on multiple nodes and possibly corrupt 
the shared storage. ASE uses several mechanisms to 
prevent data corruption resulting from network parti­
tions. First, it relies on the ability to communicate sta­
tus over the SCSI bus. In this way, it can detect 
network partitions and prevent multiple instances of 
the service. When communication cannot occur over 
the SCSI bus, ASE relies on the disjoint electrical con­
nectivity property of the SCSI bus. That is, if Server 1 
and Server 2 cannot contact each other on the SCSI 
bus, it is impossible for both servers to access the same 
storage on that bus. 

As a safeguard to this assumption, ASE also applies 
device reservations (hard locks) on the disks. The hard 
lock is an extreme failsafe mechanism that should 
rarely (if ever) be needed. As a result, ASE is able to 
adopt a nonquorum approach to network partition 
handling. In essence, if an application can access the 
storage it needs to run, it is allowed to run. Quorum 
approaches require a percentage (usually more than 
half) of the nodes to be available for proper operation. 
For two-node configurations, a tiebreaker would be 
required: if one node failed, the other could continue 
to operate. In the OpenVMS system, for example, a 
disk is used as a tiebreaker. We chose the nonquorum 
approach for ASE because it provides a higher degree 
of availability. 

Although extremely unlikely to occur, there is one 
situation in which data could become corrupted: a full 
partition could occur during shadowed storage. 
Shadowing transparently replicates data on one or 
more disk storage devices. In a full partition, two nodes 
cannot communicate via a network, and the SCSI buses 
are disconnected in a way that the first node sees one 
set of disks and the second node sees another set. 
Figure 3 shows an undetectable full partition. 

Even though this scenario does not allow for com­
mon access to disks, it is possible that storage that is 
replicated or shadowed across two disks and buses 
could be corrupted. Each node believes the other is 
down because there is no communication path. If one 
node has access to half of the shadowed disk set and 
the other node has access to the other half, the service 
may be run on both nodes. The shadowed set would 
become out of sync, causing data corruption when its 
halves were merged back together. Because the poss­
ibility of getting three faults of this nature is infinite­
simal, we provide an optional policy for running a 
service when less than a full shadowed set is available. 

Service Management 
ASE service management provides three functions: 
service setup, SAD monitoring, and service relocation. 
The management program assists in the creation of 
services by prompting for information such as the type 
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of service, the disks and file systems that are required, 
and shadmving requirements. ASE gathers the require­
ments and creates the command sequences that will 
start the service. It thus integrates complex subsystems 
such as the local file systems, logical storage manage­
ment (LSM), and NFS into a single service. 

ASE version 1.0 supports three service types: user, 
disk, and NFS. A user seroice requires no disks and 
simply allows a user-supplied script to be executed 
whenever a node goes up or down. The disk seroice is 
a user service that also requires disk access, that is, disk 
and file system information. The disk service, for 
example, would be used for the creation of a highly 
available database. The NFS seroiceis a specialized ver­
sion of the disk service; it prompts for the additional 
information that is germane to NFS, for example, 
export information. 

The monitoring feature provides the status of a ser­
vice, indicating whether the service is running or not 
and where. It also provides the status of each node. 

The service location feature allows system managers 
to move services manually by simply specifying the 
new location. 

Software Mirroring 
Software mirroring ( shadowing) is a mechanism to 
replicate data across two or more disks. If one disk 
fails the data is available on another disk. ASE relies on 
Digital's LSM product to provide this feature. 



ASE Component Design 

The ASE product components perform distinct 
operations that correspond to one of the following 
categories: 

1. Configuring the availability environment and 
services 

2. Monitoring the status of the availability 
environment 

3. Controlling and synchronizing service relocation 

4. Controlling and performing single-system ASE 
management operations 

5. Logging events for the availability environment 

The configuration of ASE is divided into the instal­
lation and ongoing configuration tasks. The ASE 
installation process ensures that all the members are 
running ASE-compliant kernels and the required dae­
mons ( independent processes) for monitoring the 
environment and performing single-system ASE oper­
ations. Figure 4 illustrates these components. The 
shared networks and distributed time services must 
also be configured on each member to guarantee con­
nectivity and synchronized time. The most current 
ASE configuration information is determined from 
time stamps. Configuration information that uses time 
stamps does not change often or frequently and is pro­
tected by a distributed lock. 

The ASE configuration begins by running the ASE 
administrative command (ASEMGR) to establish the 
membership list. All the participating hosts and 

daemons must be available and operational to complete 
this task successfully. ASE remains in the install state 
until the membership list has been successfully pro­
cessed. As part of the ASE membership processing, an 
ASE configuration database (ASECDB) is created, and 
the ASE member with the highest Internet Protocol 
(IP) address on the primary network is designated to 

run the ASE director daemon (ASEDIRECTOR). The 
ASE director provides distributed control across the 
ASE members. Once an ASE director is running, the 
ASEMGR command is used to configure and control 
individual services on the ASE members. The ASE agent 
daemon (ASEAGENT) is respons1ble for performing all 
the single-system ASE operations required to manage 
the ASE and related services. This local system manage­
ment is usually accomplished by executing scripts in a 
specific order to control the start, stop, add, delete, or 
check of a service or set of services. 

The ASE director is responsible for controlling and 
synchronizing the ASE and the available services 
dependent on the ASE. All distributed decisions are 
made by the ASE director. It is necessary that only one 
ASE director be running and controlling an ASE to 
provide a centralized point of control across the ASE. 
The ASE director provides the distributed orchestra­
tion of service operations to effect the desired recov­
ery or load-balancing scenarios. The ASE director 
controls the availability services by issuing sets of ser­
vice actions to the ASE agents running on each mem­
ber. The ASE director implements all failover strategy 
and control. 
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The ASE agent and the ASE director work as a team, 
reacting to component faults and performing failure 
recovery for services. The ASE events are generated by 
the ASE host status monitor and the availability man­
ager (AM), a kernel subsystem. The ASE agents use 
the AM to detect device failures that pertain to ASE 
services. When a device failure is detected, the AM 
informs the ASE agent of the problem. The ASE agent 
then reports the problem to the ASE director if the 
failure results in service stoppage. For example, if the 
failed disk is part of an LSM mirrored set, the service is 
not affected by a single disk failure. 

The ASE host status monitor sends host- or member­
state change events to the ASE director. The ASE host 
status monitor uses both the networks and shared 
storage buses, SCSI buses, configured between the 
ASE members to determine the state of each member. 
This monitor uses the AM to provide periodic SCSI 
bus messaging through SCSI target-mode technology 
to hosts on the shared SCSI bus. 

The ASE agent also uses the AM to provide device 
reservation control and device events. The ASE host 
status monitor repeatedly sends short messages, pings, 
to all other members and awaits a reply. If no reply is 
received within a prescribed time-out, the monitor 
moves to another interconnect until all paths have 
been exhausted without receiving a reply. If no reply 
on the shared network or any shared SCSI is received, 
the monitor presumes that the member is down and 
reports this to the ASE director. If any of the pings is 
successful and the member was previously down, the 
monitor reports that the member replying is up. If the 
only successful pings are SCSI-based, the ASE host sta­
tus monitor reports that the members are experienc­
ing a network partition. During a network partition, 
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the ASE configuration and current service locations 
are frozen until the partition is resolved. 

All ASE operations performed across the members 
use a common distributed logging facility. The logger 
daemon has the ability to generate multiple logs on 
each ASE member. The administrator uses the log to 
determine more detail about a particular service 
failover or configuration problem. 

ASE Static and Dynamic States 

As with most distributed applications, the ASE prod­
uct must control and distribute state across a set of 
processes that can span several systems. This state takes 
two forms: static and dynamic. The static state is dis­
tributed in the ASE configuration database. This state 
is used to provide service availability configuration 
information and the ASE system membership list. 
Although most changes to the ASE configuration data­
base are gathered through the ASE administrative com­
mand, all changes to the database are passed through a 
single point of control and distribution, the ASE direc­
tor. The dynamic state includes changes in status of the 
base availability environment components and services. 
The state of a particular service, where and whether it is 
running, is also dynamic state that is held and con­
trolled by the ASE director. Figure 5 depicts the flow of 
control through the ASE components. 

ASE Director Creation 

The ASE agents are responsible for controlling the 
placement and execution of the ASE director. 
Whenever an ASE member boots, it starts up the ASE 
agent to determine whether an ASE director needs 
to be started. This determination is based on whether 
an ASE director is already running on some member. 

exec r--- ACTION exec SYSTEM 
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If no ASE director is running and the ASE host status 
monitor is reporting that no other members are up, 
the ASE agent forks and executes the ASE director. 
Due to intermittent failures and the parallel initiali­
zation of members, an ASE configuration could find 
two ASE directors running on two different systems. 
As soon as the second director is discovered, the 
younger director is killed by the ASE agent on that sys­
tem. The IP address of the primary network is used to 
determine which member should start a director when 
none is running. 

ASE Director Design 
The ASE director consists of four major components: 
the event manager, the strategist, the environment data 
manager, and the event controller. Figure 6 shows the 
relationship of the components of the ASE director. 

The event manager component handles all incom­
ing events and determines which subcomponent 
should service the event. The strategist component 
processes the event if it results in service relocation. 
The strategist creates an action plan to relocate the ser­
vice. An action plan is a set of command lists designed 
to try all possible choices for processing the event. For 
example, if the event is to start a particular service, the 
generated plan orders the start attempts from the most 
desired member to the least desired member accord­
ing to the service policy. 

The environment data manager component is 
responsible for maintaining the current state of the 
ASE. The strategist will view the current state before 
creating an action plan. The event controller compo­
nent oversees the execution of the action plan. Each of 
the command lists within the action plan is processed 
in parallel, whereas each command within a command 
list is processed serially. Functionally, this means that 
services can be started in parallel, and each service 
start-up can consist of a set of serially executed steps. 
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ASE Agent Design 
The ASE agent is composed of the environment man­
ager, the service manager, a second availability 
manager (AVMAN), and the configuration database 
manager. Figure 7 shows the ASE agent components. 

All the ASE agent components use the message 
library as a common socket communications layer that 
allows the mixture of many outstanding requests and 
replies across several sockets. The environment man­
ager component is responsible for the maintenance 
and initialization of the communications channels 
used by the ASE agent and the start-up of the ASE host 
status monitor and the ASE director. The environment 
manager is also responsible for handling all host-status 
events. For example, if the ASE host status monitor 
reports that the local node has lost connection to 
the network, the environment manager issues stop ser­
vice actions on all services currently being served by 
the local node. This forced stop policy is based on the 
assumption that the services are being provided to 
clients on the network. A network that is down implies 
that no services are being provided; therefore, the 
service will be relocated to a member with healthy 
network connections. 

If the ASE agent cannot make a connection to the 
ASE host status monitor during its initialization, 
the ASE host status monitor is started. The start-up 
of the ASE director is more complex because the ASE 
agent must ensure that only one ASE director is run­
ning in the ASE. This is accomplished by first obtain­
ing the status of all the running ASE members. After 
the member status is commonly known across all ASE 
agents, the member with the highest IP address on the 
primary network is chosen to start up the ASE direc­
tor. If two ASE directors are started, they must both 
make connections to all ASE agents in the ASE. In 
those rare cases when an ASE agent discovers two 
directors attempting to make connections, it will send 
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an exit request to the younger director, the one with 
the newer start time. 

The service manager component is responsible for 
performing operations on ASE services. The_ service 
manager performs operations that use specific ser­
vice action progran1s or that determine and report sta­
tus on services and their respective devices. The service 
actions are forked and executed as separate processes, 
children of the agent. This allows the ASE agent to 
continue handling other parallel actions or requests. 
The ASE agent is aware of only the general stop, start, 
add, delete, query, or check nature of the action. It is 
not aware of the specific application details required to 
implement these base availability functions. A more 
detailed description of the ASE service interfaces can 
be found in the section ASE Service Definition. When 
the service manager executes a stop or start service 
action that has device dependencies, the ASE agent 
provides the associated device reser~es or un_reserves 
to gain or release access to the device. Serv1~es and 
devices must be configured such that one deVIce may 
be associated with only one service. A device may not 
belong to more than one service. 

The agents' availability manager (AVMAN) compo­
nent is called by the service manager to process 
a reserve or unreserve of a particular device for a ser­
vice stop or start action. The AVMAN uses ioctl() c~lls 
to the AM to reserve the device, to invoke SCSI device 
pinging, and to register or unregister for the following 
AM events: 

1. Device path failure-an 1/0 attempt failed on 
a reserved device due to a connectivity failure or 
bad device. 

2. Device reservation failure-an 1/0 attempt failed 
on a reserve device because another node had 
reserved it. 
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3. Reservation reset-the SCSI reservation was lost 
on a particular device due to a bus reset. 

A reservation reset occurs periodically as members 
reboot and join the ASE. The ASE agent reacts by 
rereserving the device and thereby continuing to pro­
vide the service. If the reservation reset persists, the 
ASE agent informs the ASE director. If a device path 
failure occurs, the ASE agent informs the ASE director 
of the device path failure so that another member can 
access the device and resume the service. The device 
reservation failure can occur only if another member 
has taken the reservation. This signifies to the ASE 
agent that an ASE director has decided to r~n ~is ser­
vice on another member without first stoppmg 1t here. 

The configuration database manager component 
handles requests that access the ASE configuration 
database. Working through the configuration database 
manager component, the ASE agent provides all access 
to the ASE configuration database for all other com -
ponents of the ASE. 

ASE Availability M anager Design 
The availability manager (AM) is a kernel component 
of ASE that is responsible for providing SCSI device 
control and SCSI host pinging with target mode. The 
AM provides SCSI host pinging to the ASE host status 
monitor daemon through a set of ioctl() calls to the 
"/ dev/am_host*" devices. As has been me!1tioned, 
the AM provides SCSI device control for pmgs and 
event notification to the ASE agent through ioctl() 
calls to the "/ dev /ase" device. All ASE SCSI device 
controls for services and SCSI host pinging assume 
that all members are symmetrically configured with 
respect to SCSI storage bus addressing. 



ASE Host Status Monitor Design 
The ASE host status monitor (ASEHSM) component 
is responsible for sensing the status of members and 
interconnects used to communicate between members. 
As previously mentioned, this monitor is designed to 
provide periodic pinging of all network and SCSI 
interconnects that are symmetrically configured 
between ASE members. The ping rate is highest, 1 to 3 
seconds per ping, on the first configured ASE network 
and SCSI bus. All other shared interconnects are 
pinged at a progressively slower rate to decrease the 
overhead while still providing some interconnectivity 
state. The ASE host status monitor provides member­
state change events to both the ASE agent and the ASE 
director. The ASE agent initializes and updates the 
monitor when members are added or deleted from the 
ASE configuration database. The ASE host status 
monitor is designed to be flexible to new types of net­
works and storage buses as well as extensible to 
increased numbers of shared interconnects. 

ASE Service Definition 
ASE has provided an interface framework for available 
applications. This framework defines the availability 
configuration and failover processing stages to which 
an application must conform. The application inter­
faces consist of scripts that are used to start, stop, add, 
delete, query, check, and modify the particular service. 
Each script has the ability to order or stack a set of 
dependent scripts to suit a multilayered application. 
The NFS Service Failover section in this paper pro­
vides an example of a multilayered service that ASE 
supports "out of the box." ASE assumes that a service 
can be in one of the following states: 

1. Nonexistent-not configured to run 

2. Off-line-not to be run but configured to run 

3. Unassigned-stopped and configured to run 

4. Running- running on a member 

At initialization, the ASE director presumes all con­
figured services should be started except those in the 
off-line state. Whenever a new member joins the ASE, 
the add service action script is used to ensure that the 
new member has been configured to have the ability 
to run the service. The delete service script is used to 
remove the ability to run the service. The delete scripts 
are run whenever a service or member is deleted. The 
start service script is used to start the service on a par­
ticular member. The stop service is used to stop a ser­
vice on a particular member. The check script is used 
to determine if a service is running on a particular 
member. The query script is used to determine if a par­
ticular device failure is sufficient to warrant failover. 

ASE strives to keep a service in a known state. Con­
sequently, if a start action script fails, ASE presumes 

that executing the stop action will return the service to 
an unassigned state. Likewise, if an add action fails, a 
delete action will return the service to a nonexistent 
state. If any action fails in the processing of an action 
list, the entire request has failed and is reported as such 
to the ASE director and in the log. For more details 
on ASE service action scripts, see the Guide to the 
DECsafe Available Seroer.5 

NFS Service Failover 

In this section, we present a walk-through of an NFS 
service failover. We presume that the reader is familiar 
with the workings ofNFS.1 The NFS service exports a 
file system that is remotely mounted by clients and 
locally mounted by the member that is providing the 
service. Other ASE members may also remotely 
mount the NFS file system to provide common access 
across all ASE members. 

For this example, assume that we have set up an NFS 
service that is exporting a UNIX file system (UFS) 
named /foo_nfs. The UFS resides on an LSM disk 
group that is mirroring across two volumes that span 
four disks on two different SCSI buses. The NFS ser­
vice is called foo_nfs and has been given its own IP 
address, 16.140.128.122. All remote clients who want 
to mount /foo_nfs will access the server using the 
service name foo_nfs and associated IP address 
16.140.128.122. This network address information 
was distributed to the clients through the Berkeley 
Internet Name Domain (BIND) service or the net­
work information service ( NIS). If several NFS mount 
points are commonly used by all clients, they can be 
grouped into one service to reduce the number of IP 
addresses required. Although grouping directories 
exported from NFS into a single service reduces the 
management overhead, it also reduces flexibility for 
load balancing. 

Further, assume that the NFS service foo_nfs has 
four clients. Two of the clients are the members of the 
ASE. The other two clients are non-Digital systems. 
For simplicity, the Sun and HP clients reside on the 
same network as the servers (but they need not). The 
ASE NFS service foo_nfs is currently running on the 
ASE member named MUNCH. The other ASE mem­
ber is up and named ROLAIDS. 

Enter our system administrator with his afternoon 
Big Gulp Soda. He places the Big Gulp Soda on top of 
MUNCH to free his hands for some serious console 
typing. Oh! We forgot one small aspect of the sce­
nario. This ASE site is located in California. A small 
tremor later, and MUNCH gets a good taste of the Big 
Gulp Soda. Seconds later, MUNCH is very upset and 
fails. The ASE host status monitor on ROLAIDS stops 
receiving pings from MUNCH and declares MUNCH 
to be down. If the ASE director had been running on 
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MUNCH, then a new director is started on ROLAIDS 
to provide the much-needed relief. The ASE director 
now running on ROLAIDS determines that the 
foo_nfs service is not currently being served and issues 
a start plan for the service. The start action is passed to 
the local ASE agent since no other member is available. 
The ASE agent first reserves the disks associated with 
the foo_nfs service and runs the start action scripts. 
The start action scripts must begin by setting up LSM 
to address the mirrored disk group. The next action is 
to have UFS check and mount the / foo_nfs file system 
on the ASE hidden mount point /var/ase/mnt/ 
foo_nfs. The hidden mount point helps to ensure that 
applications rarely access the mount point directly. 
This safeguard prevents an unmounting, which would 
stop the service. The next action scripts to be run are 
related to NFS. The NFS exports files must be adjusted 
to include the foo_nfs file system entry. This addition 
to the exports files is accomplished by adding and 
switching exports include files. 

The action scripts then configure the service address 
(ifconfig alias command), which results in a broadcast 
of an Address Resolution Protocol (ARP) redirection 
packet to all listening clients to redirect their IP 
address mapping for 16.140.128.122 from MUNCH 
to ROLAIDS.6 After all the ARP and router tables have 
been updated, the clients can resume communications 
with ROLAIDS for service foo_nfs. This entire process 
usually completes within ten seconds. The storage 
recovery process often contributes the longest dura-

tion. Figure 8 summarizes the time-sequenced events 
for an NFS service failover. 

This scenario works because NFS is a stateless ser­
vice. The server keeps no state on the clients, and the 
clients are willing to retry forever to regain access to 

their NFS service. Through proper mounting opera­
tions, all writes are done synchronously to disk such 
that a client will retry a write ifit never receives a suc­
cessful response. 

If ASE is used to fail over a service that requires 
state, a mechanism has to be used to relocate the 
required state in order to start the service. The ASE 
product recommends that this state be written to file 
systems synchronously in periodic checkpoints. In this 
manner, the failover process could begin operation at 
the last successful checkpoint at the time the state disk 
area was mounted on the new system. If a more 
dynamic failover is required, the services must syn -
chronize their state between members through some 
type of network transactions. This type of synchro­
nization usually requires major changes to the design 
of the application. 

Implementation and Development 

We solved many interesting and logistically difficult 
issues during the development of the ASE product. 
Some of them have been discussed, such as the asym­
metric versus symmetric SAD and distributed versus 
centralized policy. Others are mentioned in this section. 
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The SCSI Standard and High-availability Requirements 
The SCSI standard provides two levels of require­
ments: mandatory and optional. The ASE require­
ments fall into the optional domain and are not 
normally implemented in SCSI controllers. In particu­
lar, ASE requires that two or more initiators (host SCSI 
controllers) coexist on the same SCSI bus. This feature 
allows for common access to shared storage. Normally, 
there is only one host per SCSI, so very little testing is 
done to ensure the electrical integrity of the bus when 
more than one host resides. Furthermore, to make the 
hosts uniquely addressable, we needed to assign SCSI 
IDs and not hardwire them. Lastly, to support its host­
sensing needs, ASE requires that SCSI controllers 
respond to commands from another controller. This 
SCSI feature is called target-mode operation. 

In addition to meeting the basic functional SCSI 
requirements, we had to deal with testing and qualifi­
cation issues. When new or revised components were 
used in ways for which they were not originally tested, 
they could break; and invariably when a controller was 
first inserted into an ASE environment, we found 
problems. Additional qualifications were required for 
the SCSI cables, disks, and optional SCSI equipment. 
ASE required very specific hardware ( and revisions of 
that hardware); it would be difficult to support off­
the-shelf components. 

Note, however, when all was said and done, only 
one piece of hardware, the Y cable, was invented for 
ASE. The Y cable allows the SCSI termination to be 
placed on the bus and not in the system. As a result, a 
system can be removed without corrupting the bus. 

The challenge for the project was to convince the 
hardware groups within Digital that it was worth the 
expense of all the above requirements and yet provide 
cost-competitive controllers. Fortunately, we did; but 
these issues are ongoing in the development of new 
controllers and disks. Our investigation continues on 
alternatives to the target mode design. We also need to 
develop ways to reduce the qualification time and 
expense, while improving the overall quality and avail­
ability of the hardware. 

NFS Modifications to Support High Availability 

The issues and design of NFS fail over could consume 
this entire paper. We discuss only the prominent points 
in this section. 

NFS Client Notification 
The first challenge we faced was to determine how to 
tell NFS clients which host was serving their files both 
during the initial mount and after a service relocation. 
The ideal solution would have been to provide an IP 
address that all nodes in the SAD could respond to. If 

clients knew only one address, all NFS packets would 
be sent to that address and we would never have to tell 
the client the location had changed. The main prob­
lem with this solution is performance. Each node in 
the SAD would receive all NFS traffic destined for all 
nodes. The system overhead for deciding whether to 
drop or keep the packet is very high. Also the more 
nodes and NFS services, the more likely it would be to 
saturate individual nodes. Unfortunately, this solution 
had to be rejected. 

The next best solution, in our minds, is per service 
IP addresses. Each NFS service is assigned an IP 
address (not the real host address). Now each node in 
the SAD could respond to its own address and to the 
addresses assigned to the NFS services that it is run -
ning. The main issues with this approach are the fol­
lowing: ( 1) It could use many IP addresses and (2) It is 
more difficult to manage because of its many 
addresses. However, there were no performance 
trade-offs, and we could move services to locations in 
a way that was transparent to the NFS clients. 
Notifying the clients after a relocation turned out to 
be easy because of a standard feature in the ARP that 
we could access through the ifconfig alias command of 
the Digital UNIX operating system.6 Essentially, all 
clients have a cache of translations for IP addresses 
to physical addresses. The ARP feature, which we 
referred to as ARP redirection, allows us to invalidate a 
client-cached entry and replace it with a new one. The 
ifconfig command indirectly generates an ARP redi­
rection message. As a result, the client NFS software 
believes it is sending to the same address, but the net­
work layer is sending it to a different node. 

Similar functionality could have been achieved by 
requiring multiple network controllers connected to a 
single network wire on the SAD nodes. This solution, 
however, requires more expense in hardware and is 
less flexible since there is only one address per board. 
Essentially, the latter means the granularity of NFS ser­
vices would be much larger and could not be distrib­
uted among many SAD nodes without a great deal of 
hardware. 

NFS Duplicate Request Cache 
The NFS duplicate request cache improves the perfor­
mance and correctness of an NFS server.7 Although 
the duplicate request cache is not preserved across 
relocations, we did not view this as a significant prob­
lem because this cache is not preserved across reboots. 

Other Modifications: Lock Daemons and mountd 
We modified only two pieces of software related to 
NFS failover: the lock daemon and the mountd. We 
wanted the lock daemon to distinguish the locks asso­
ciated with a specific service address so that only those 
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locks would be removed during a relocation. After the 
service is relocated, we rely on the existing lock 
reestablishment protocol. We modified the mountd 
to support NFS loopback mounting on the SAD, so 
that a file system could be accessed directly on the 
SAD (as opposed to a remote client) and yet be relo­
cated transparently. 

Future of ASE 

Digital's ASE product was designed to address a small, 
symmetrically configured availability domain. The 
implementation of the ASE product was constrained 
by time, resources, and impact or change in the base 
system. Consequently, the ASE product lacks extensi­
bility to larger asymmetric configurations and to more 
complex application availability requirements, e.g., 
support of concurrent distributed applications. The 
next-generation availability product must be designed 
to be extensible to varying hardware configurations 
and to be flexible to various application availability 
requirements. 
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Parasight: Debugging 
and Analyzing Real-time 
Applications under 
Digital UNIX 

Conventional UNIX debug and analysis tools, 

with their static debugging model and low­

resolution-sampling profiling techniques, are 

not effective in dealing with real-time applica­

tions. Encore Computer Corporation has devel­

oped Parasight, a set of debug and analysis 

tools for real-time applications. The Parasight 

tool set can debug running programs, debug 

multiple programs, constantly monitor local 

and global variables, and perform on-the-fly 

execution analysis. Thus, Parasight provides 

much improved debug and analysis capabilities, 

which application developers can use on both 

static and dynamic applications. Parasight can 

be used on any of Digital's Alpha platforms run­

ning under the Digital UNIX operating system. 

I 
Michael Pahner 
Jeffrey M. Russo 

Because of their time-critical nature, real-time applica­
tions do not respond well to the perturbations that 
conventional UNIX debug and analysis tools cause. 
For instance, the static debugging model of the dbx 
debugger requires that a program be stopped before it 
can be debugged. Also, execution analysis using the 
profiling techniques of the prof profiler often provide 
erroneous results for real-time applications because of 
the low-resolution sampling employed. 

This paper describes the critical aspects of debugging 
real-time applications, the deficiencies found in con­
ventional UNIX tools, and the methodology Encore 
Computer Corporation used to develop Parasight, 
a set of easy-to-use graphical user interface tools that 
debug and perform execution analysis on real-time 
programs while they are running. Parasight can be 
used on any ofDigital's Alpha platforms that operate 
under the Digital UNIX operating system. 

Real-time Applications 

Real-time applications perform a wide variety of 
functions, from flying state-of-the-art military aircraft 
to controlling nuclear power plants. All real-time appli­
cations have one common denominator: They must 
complete their calculations before a deadline expires. 
Taking too long to calculate the correct answer can 
have just as detrimental an effect as arriving at an incor­
rect answer; either result could cause an aircraft to crash 
or a nuclear power plant to experience a meltdown. 

Most real-time applications consist of one or more 
programs that are scheduled to run in response to an 
event. The triggering event is usually transmitted in the 
form of an interrupt and can be generated randomly by 
an external event or regularly by a interval timer run­
ning at a fixed rate, such as 60 times per second. Once 
the interrupt is received, the application must perform 
the allotted task before the next interrupt occurs. 

The elements of a real-time application communi­
cate with each other dynamically; that is, the results of 
the calculations of one element are used immediately 
for the calculations of another element. Real-time 
applications are often referred to as dynamic applica­
tions, since they react dynamically to changes in their 
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environment and often refer to elapsed time in their 
calculations. In contrast, static applications have 
results that rarely depend on changes in their environ­
ment or on elapsed time. 

The Problems Associated with Debugging and 
Analyzing Real-time Applications Using 
Conventional UNIX Tools 

Debugging a real-time application during execution, 
debugging and analyzing multiple programs, con­
stantly monitoring variables, and analyzing program 
execution are all activities that debug and analysis tools 
have to deal with. This section discusses the capabili­
ties and limitations of conventional UNIX tools and 
describes the features required of effective real-time 
debug and analysis tools. 

Running Programs 
Debugging a static program typically involves control­
ling the execution flow and examining the values of 
variables within the program. Stopping a real-time 
program or even delaying it by single stepping, how­
ever, is usually not possible without adversely affecting 
the application. Debugging real-time applications is 
therefore limited to examining the values of program 
variables while the program is still running. 

Conventional UNIX debuggers are not able to 
examine variables during program execution and 
therefore cannot be employed on running real-time 
applications. Consequently, these debuggers are useful 
only in the early stages ofreal-time program develop­
ment, essentially while the program is still static. 

The traditional methods of debugging real-time 
applications involve placing all the critical data into 
one or more global, shared memory regions. A data­
monitoring tool, usually written by the user, runs as 
a normal UNIX process and attaches to the global 
region. The tool can then be used to inspect and/or 
change the values of the global variables. This tech­
nique is nonintrusive in that it does not affect the real­
time application programs in any way. Unfortunately, 
the debugging is restricted to global data, and, unless 
the programs are designed with this in mind, this 
restriction can be a severe limitation. Modifying exist­
ing programs to change local data into global data for 
debugging purposes can result in a whole new set of 
problems in managing the separation of data. 

An effective real-time debugging tool must be able 
to attach to a running program without stopping it 
and then be able to nonintrusively inspect and/or 
change the global data. 

Debugging and Analyzing Multiple Programs 
Real-time applications typically consist of several pro­
grams working together. Invoking multiple copies of 
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the dbx debugger to debug each program individually 
is cumbersome and precludes studying the interaction 
between programs. 

A real-time debugger must be able to work with 
one or more programs at the same time, providing 
the user with an integrated and cohesive debugging 
environment. 

Monitoring Variables 

The one-shot variable evaluation capability of conven­
tional UNIX debuggers is oflimited use for programs 
that are running. These debugging tools provide the 
user with only one previous value of a variable, not 
necessarily the current value. 

A real-time debugger must be able to constantly 
monitor the values of global variables. Tbe minimum 
and maximum values that each variable attained 
should optionally be available as a record of transient 
conditions. 

Execution Analysis (Profiling) 

Since performance is important in real-time applica­
tions, program execution analysis is often needed to 
locate areas of a program where the performance 
could be improved. A real-time application may have 
a strict execution order requirement, whereby one 
routine must run prior to the execution of another 
routine. This requirement may be accomplished easily 
if the routines are in the same program; however, often 
the routines are in different programs or are executing 
on different CPUs in a symmetric multiprocessing 
(SMP) environment. 

The Digital UNIX profiling tools provide two kinds 
of execution analysis: 

1. PC sampling, which involves interrupting the 
program periodically to record the value of the 
program counter. 

2. Block counting, which inserts profiling code at key 
points in the program to count the number of times 
each basic block of code executes. (A basic block 
is a region of the program that can be entered only 
at the beginning and exited only at the end. ) 

Both techniques involve the following basic steps: 

l. Preprocess the program to produce the desired 
profiling information. 

2. Execute the program to produce a profiling data 
file. 

3. Postprocess the program with the profiling tools 
to view the data collected. 

The normal sampling period employed by the 
PC-sampling method is based on the hard clock 
( CLOCK_REALTIME) of the Digital UNIX operating 
system. This method results in 1,024 samples being 
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taken per second, which provides a timing resolution 
of976 microseconds, or approximately 1 millisecond. 

The routines that make up a real-time application 
typically take from a few microseconds to several 
milliseconds to execute. Attempting to measure the 
execution time of routines that take less than 1 mil­
lisecond to execute with a clock resolution of 1 milli­
second can lead to erroneous results. A test on a 
150-megahertz (MHz) Alpha 21064 CPU showed 
that the prof tool, using the normal PC-sampling rate, 
reported the execution time of a routine to be 4 milli­
seconds when the true execution time was 20 micro­
seconds. (The true execution time was measured using 
the Parasight tool set. ) 

It is possible to increase the sampling rate using the 
uprofile utility, but doing so also proportionally 
increases the number of interrupts per second that the 
system must handle. For instance, to obtain even 
10-microsecond resolution would require the system to 
handle 100,000 interrupts per second. This amount of 
interrupt activity would rapidly swamp the system, leav­
ing little or no CPU time to execute the program being 
instrumented. The PC-sampling method of execution 
analysis is therefore not suitable for the short execution 
times typical in real-time application routines. 

The block-counting method, although capable of 
high-resolution measurement, suffers from the inabil­
ity of the pixie utility to work with programs that 
receive signals. Most real-time applications use signals 
for program scheduling and are therefore disqualified 
from using the block-counting method. 

In addition to the problems just discussed, the tradi­
tional UNIX profiling tools are unsuitable for real­
time program execution analysis for the following 
reasons: 

• A program must be preprocessed for profiling 
prior to execution. Adding or removing profil­
ing requires stopping, processing, and restarting 
the program. This assumes that the problem area is 
known before the application starts to run. If 
a problem suddenly develops after an uninstru­
mented program has been running for 24 hours, 
the user will have lost the opportunity to determine 
which routine is causing the problem. 

• A program must be profiled as a whole, unless 
source code modifications are made to the program 
to control the profiling. This can cause excessive 
overhead, which real-time programs usually cannot 
tolerate. 

• The profiling results cannot be seen until the pro­
gram terminates, unless source code modifications 
are made to the program to permit the results to 
be dumped on command. The user needs to see 
the results while the program is running and often 
needs to repeat a test several times to get the 

desired results. Stopping and restarting the applica­
tion once for each test could be laborious. 

• Only the average and cumulative times for each 
routine are available. That is, the individual execu- . 
tion times for each call to a routine are not avail­
able. This also precludes the examination of the 
calling sequence. 

• The results cannot be cross-correlated between 
programs to provide information about the rela­
tive calling sequences between programs or across 
processors. 

A real-time execution analysis tool must operate 
with sufficient resolution to measure the execution 
time of a routine that may take 10 microseconds to 
execute. Tbe instrumentation should be dynamically 
insertable into the current areas of interest and 
should be able to move to new areas of interest as 
required-all without stopping and restarting the 
real-time application. 

Parasight: A Solution for Real-time Debugging 
and Program Analysis 

Parasight is an integrated set of real-time debugging 
and analysis tools with a graphical user interface. The 
tool set consists of a debugger (Debug), a data monitor 
(DataMon), and a program analysis tool (Paragraph ). 
The Parasight tool set solves the real-time deficiencies 
found in dbx, prof, and the other conventional UNIX 
debug and analysis tools used under the Digital UNIX 
operating system. Parasight is able to debug applica­
tions in either a dynamic (running) or a static (stopped) 
state; it can perform debugging and program execu­
tion analysis on several programs simultaneously, with­
out adversely affecting the dynamics of time-critical 
applications. 

Parasight's Foundation 
The Parasight tool set features the use of a symbol table, 
the /prof file system, global memory, and scanpoints. 

The Symbol Table, .pg File, and /proc File System 
Parasight's source of knowledge about the target 
application is derived from the symbol table and the 
.pg file. Both are generated at compile time as a result 
of the -para special compiler option. 

Parasight manipulates target applications by using 
the /proc file system services available under the Digital 
UNIX operating system. The /proc file system enables 
Parasight to control the program flow and to read and 
write any memory address in the target application. 

Global Data Just as the traditional means of debug­
ging real-time applications depends on global memory 
regions, Parasight uses the global memory access 
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concept as the basis for accomplishing most of its 
advanced capabilities. Parasight either accesses the 
target program data directly, through the use of /proc, 

or uses global memory to access data gathered for 
Parasight by one ofits scanpoints. 

Scanpoints The Parasight tool set uses global mem­
ory access whenever possible to provide nonintrusive 
access to the target application. Certain functions, 
however, require access to data that is local to a pro­
gram. Parasight accesses this data through small seg­
ments of code called scanpoints. 

A scanpoint is a function that is dynamically inserted 
into the target program by Parasight. The scanpoint 
function then runs in the same context as the target 
program and thus has access to all the local data of the 
program. The scanpoint function works as an agent 
for Parasight, gathering data that Parasight does not 
have direct access to. The Parasight tool set uses two 
principal types of scanpoints: datamon-scanpoints, 
which are used by Dat aMon to perform local data 
monitoring, and sensor-scanpoints, which are used by 
Paragraph to perform program execution analysis. 

Inserting the scanpoints does not require modifying 
the application's source code or preprocessing the 
application's object code. The only requirement is to 
link each program with the special -para option. This 
adds a memory buffer to the target program for use by 
Parasight. The buffer is benign until used by Parasight. 

Parasight dynamically inserts scanpoints by using 
the /proc service to build a scanpoint template in the 
special buffer of the target program. This can occur 
even while the program is running. The template code 
contains the functionality to 

• Save the register state that existed when the pro­
gram counter was at the scanpoint insertion location 

• Set up the arguments to the scanpoint function, 
including the register state 

• Call the scanpoint function 

• Restore the register state 

• Execute the instruction that was originally at the 
insertion location 

• Branch back to the instruction following the inser­
tion location 

Parasight then dynamically alters the template code 
according to the insertion location and the instruction 
contained therein. If the instruction was a branch con­
trol instruction, Parasight alters the instruction's dis­
placement so that the location corresponds to the 
instruction's new displaced location within the tem­
plate. All other instructions, including jump control 
instructions, do not require altering and are simply 
copied to the new displaced location. 

Once this code is constructed in the buffer, 
Parasight completes the scanpoint insertion process by 
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overwriting the instruction at the insertion location 
with a branch to the newly generated scanpoint 
template. The fixed instruction length of Digital's 
Alpha microprocessors simplifies this step enormously. 

It is important to note that the scanpoint is built by 
Parasight, not the target program. The target program 
is affected only by the final step of the scanpoint inser­
tion, when Parasight overwrites the instruction at the 
insertion location. This design prevents excessive inter­
ference of the target program. Scanpoints are written in 
highly optimized code to minimize the impact on the 
target application when they are executed. 

Parasight dynamically deletes scanpoints by writing 
back the original instruction at the insertion location. 
This design allows Parasight to disable a scanpoint 
even if the scanpoint function has not completed. 

Meeting Requirements 
Parasight has the capabilities required of effective real­
time debugging and analysis tools. 

Debugging Running Programs Conventional UNIX 
debuggers deliberately stop a program when attaching 
to it, because these tools do not operate on running 
programs. When Parasight's debugger, Debug, attaches 
to a program, there is no impact on the program. 

Conventional UNIX debuggers refuse to access any 
data while a program is running, even though global 
data resides at fixed memory locations that are accessi­
ble at all times through the /proc service. The reason 
for this limitation of the conventional UNIX tools is 
unclear. Parasight's debugger is able to examine and to 
change the value of any global data while the program 
is running or stopped. 

Conventional UNIX tools also refuse to set any 
breakpoints in a program while the program is run­
ning. Again, the reason for this constraint is unknown. 
Parasight's debugger is able to insert breakpoints into 
running programs, a feature that is valuable in debug­
ging error conditions in real-time applications. 

Debugging Multiple Programs Parasight's Debug, 

DataMon, and Paragraph components constitute an 
integrated set of tools capable of working on one or 
more applications simultaneously, as shown in Figure 
1. The Parasight main window displays the programs 
( and any children they create) attached to Parasight. 
The window also provides an easy mechanism to 
access the Parasight tool for each specific program. 

Monitoring Variables Constantly Parasight's DataMon 

tool allows the user to simultaneously monitor the 
values of any local or global variables in one or more 
stopped or running programs. Parasight constantly 
monitors the values and shows any change on the 
DataMon display screen. DataMon is also capable 
of displaying the minimum, maximum, and average 
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Parasight 's Debugger Working with Five Tasks Simultaneously 

values attained for any variable. A scrolling history 
display along with a time stamp is also available for 
solving transient problems. 

The variables to be monitored can be selected using 
the mouse on the Debug browser or entered into a dia­
log box using the keyboard. The DataMon graphical 
user interface has a point-and-edit capability, which 
allows the user to edit the mnemonic data (i.e., name, 
display format , value, location, or comment) directly 
on the screen. The user can store mnemonic lists on 
disk for fast retrieval when required . Figure 2 shows 
a DataMon display screen. 

DataMon is able to monitor global data completely 
and nonintrusively using the /proc service and uses 
a datamon-scanpoint to implement local data moni­
toring. The datamon-scanpoint is attached to the 

DataMon database, which is a shared memory region 
connecting all the scanpoints and the DataMon display 
program. The datamon-scanpoints deposit the values 
of local data into the database for the display program 
to show on the screen. Datamon-scanpoints are also 
used to change the values oflocal data, depositing the 
value from the database into the specified variable. 

DataMon uses the Debug tool's expression evaluator 
to parse the required mnemonic to derive the location 
of the value to be displayed . This may include register 
access for local variables saved on the stack. Multiple 
mnemonics can be monitored locally at the same 
location since a datamon-scanpoint function can tra­
verse a list of mnemonics to be monitored. 

Note that Data Mon monitors data asynchronously; 
therefore, DataMon cannot guarantee to display every 
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The Data Mon Display Screen with History Window 

value that the variables reach. For global data, 
Parasight records only the minimum and maximum 
values that DataMon sees. For local data, however, the 
scanpoint keeps track of the minimum, maximum, 
and average values, so these can be guaranteed. 
Parasight can also monitor global data by using a 
datamon-scanpoint to monitor the value at a particu­
lar line of code. 

On-the-Fly Execut ion Analysis Paragraph displays 
static source-code call graphs of the application's 
programs, illustrating the hierarchy of function calls, 
system calls, and statement-level control flow. Point­
and-click operations allow the user to quickly view the 
source code for any program or function, thus simpli­
fying the task of analyzing source code. Figure 3 shows 
a Paragraph call graph and browser. 
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Call graphs are also used to define where to insert 
instrumentation in an application. The instrumenta­
tion is used to perform execution timing analysis on 
a part or the whole of one or more of an application's 
programs. The instrumentation is inserted dynami­
cally into a running program, without the need for 
source-level changes or object code preprocessing and 
without significantly affecting the dynamics of a run­
ning application. The inserted instrumentation may be 
deleted or added to at any time. 

Paragraph uses sensor-scanpoints to measure 
how long a function takes to execute. The sensor­
scanpoint function is placed at a branch-to-subroutine 
instruction. The function takes a time stamp from a 
nanosecond-resolution timer before and after the 
instruction to note the exact time the function started 
and ended. The sensor-scanpoints are attached to 
the Pa ragraph database, a shared region accessible 
to the sensor-scanpoints and Paragraph. Data is written 
into the database each time an instrumented function 
is executed. The results of the instrumentation may 
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be viewed immediately, even while the program is 
running. The graphical view shows each function call 
as it occurred in time. Each program has a different 
bar, so the user can determine the relative time 
between functions called in different programs or even 
across multiple processors in an SMP environment. 
The zoom capability may be used to measure time peri­
ods down to a single microsecond. Figure 4 shows 
the Paragraph graphical display, called Bargraph, and 
the zoom capability. 

Data gathering is continuous until the instrumen­
tation is removed, so new data can be added onto 
the previous snapshot's view at any time. Multiple 
Bargraph ,vindows can be used to recall previously 
saved timing data to easily compare current results 
with past results. 

The nanosecond-resolution timer used by Paragraph 
is derived from the process control counter (PCC) 
register available on all Alpha microprocessors. This 
32-bit, free-running timer operates at the same 
rate as the microprocessor and therefore provides a 
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3.6-nanosecond-resolution timer on a 275-MHz 
Alpha CPU. Unfortunately, since it is only a 32-bit 
timer, it wraps every 15.6 seconds. Parasight keeps 
track of the wrap count to create a 64-bit timer that 
allows problem-free timing for more than 2,000 years! 

Adverse Effects 
Although, ideally, the Parasight tool set should 
be completely nonintrusive and thus not affect the 
application in any way, such operation is not com­
pletely achievable for all functions. Capabilities such as 
inspecting (Debug ) and monitoring (DataMon ) global 
variables require no intrusion to implement; however, 
monitoring local variables and analyzing program exe­
cution do require a small amount ofintrusion. 

While most real-time applications cannot tolerate 
exceeding the time available for the completion of 
the task, they do have some spare time available after 
completing the task. Without this spare time, the risk 
of exceeding the deadline before program completion 
would be too great. This spare time can be used judi­
ciously for the mildly intrusive functions of Parasight. 

Summary 

This paper discusses several capabilities required to 
effectively debug and analyze real-time applications. 
These capabilities include debugging of running pro­
grams, constant monitoring of variables, and on-the-fly 
execution analysis. The paper also details some of the 
problems associated with conventional UNIX tools, 
such as the inability to debug running programs, the 
adverse effects on target programs, the erroneous pro­
filing results, and the cumbersome operation. Encore 
Computer Corporation's Parasight tool set offers a 
solution to these difficult problems. The paper 
describes the methodology behind the product and the 
capabilities that make Parasight an invaluable tool for 
debugging and analyzing real-time applications. 
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