
Digital
Technical
Journal

I
AU D IO AND VIDEO T E CHNOLOG IES

UNIX AVAILABLE SERVERS,
R EAL- T I M E DEBUGG ING TOOLS

Volume 7 Number 4
I <)<)5

Editorial
jane C. BLlkc, JVLl1L1ging Editor
Kathleen M. Stetson, Editm
Helen L. Patterson, Editor

Circulation
Cnherine M. Phillips, Administrator
Dorothea B. C1ssady, Secretary

Production
Terri Autieri, Pmduction Editor
AnneS. Kat1.dl, ·ryrogpphcr
Peter R. \Voodbury, Illustrator

Advisory Board
Samuel H. fuller, Chairman
Richard W. Beane
Donald Z Harbert
William R. Hawc
Richard J. 1-!ollingswmth
Willic1m A. L1ing
Richa1·d F l .ary
Alan G. Ncmerh
!'au line A. Nist
Robert M. Supnik

Cover Design
The concept t(Jr the cmn graphic is dcri 1 eel
fmm the Video Odvsse\· screen Scl\"cr arpli­
cation, which allows uscr.s to displav fu\1-
rnorion ,·ideo images on their screens in a
varietv of modes. The screen saver applica­
tion wcJS built to test a soft11·crrc cJrchitecturc
rhat ur�.mi1.es the h111ction:Jiitv ofs·ideo com­
presso;s and renderers into �1 �mit�·ing soft­
ll'cJrc imcrLKe. 'This soltwarc-onlv approach
to digit.1l 1ideo is one of the topics in the
teature section Audio :1nd Video Technol­
ogies in this issue.

The cover wc1s designed by l.ucinda 0'01cill
ofDigiral's Design Group. Our rhanks go
to cluthms Vict<H· Bc1hl c111d l'cllll <_;.Juthicr
f(H· providinp; the screen saver, and to author
Bill Hallahan t(Jr the DEC:t;J\k Sotrw:rrc
synthetic speech SIKCtmgrcJnl used in the
cover gr.1phic.

Correction fo1· Vol. 7 No. 3 Cover Design
Description In describing rhc cover of the
prc\'ious issue, vol. 7 no. 3, we neglected
to properly credit the sources of the cover
imap;es. The visualiutions 011 the ti·ont and
b:1ck covers were cre:Jtcd lw jon:1th:1n Shade
using the comput.Hional resources of the
Sc111 Diego Supercomputer C:cmcr. \Vc
thank)onat!J.rn cmd the C:elltcr ti>r the
usc of these im;Jges.

The f)(qital Tl'chuical {oumai is a retereed
journal published quarterly by Digital
Equipment Catvoration, 30 Porter Road
L)02/D lO, Litderon, Massachusetts 0 l 460.

Subscriptions to the.fouma/ are $40.00

(non-U.S . $60) tor tour issues and $75.00

(non-U.S. $115) for eight issues and must
be prepaid in U.S. funds. University and
college professors and Ph.D. students in
the electrical engineering and computer
science tielcls receive complimentary sub­
scriptions upon request. Orders, inquiries,
and address changes should be sent to the
/Jigito/ [echnical[ourna/at the published­
by address. Inquiries can also be sent elec­
tronically ro dtj@digital .com. Single copies
and back issues arc available for $16.00 each
by calling DECclirect at 1-800-DIGITAL

(1-800-344-4825) . Recenr back issues of
thejou rnal are also available on the lmernet
at http:/ jwww.digital.com/info/DTJ/home.
html. Complete Digital Internet listings can
be obtained by sending an electronic mail
message ro into@digital.com.

Digital employees may order subscriptions
through Readers Choice bv entering vrx
P ROFILE at the system prompt.

Comments on the content of anv paper arc
11·elcomed and mav be sent to the managing

editor at the published-lw or network
:1ddress.

Copvright © 1996 Digital Equipment
Corporation. Copving 11ithout fee is per­
mitted pro,·ided that such copies arc made
t(Jr usc in educational institutions bv burltl'
membas and are nor distributed tor com­
mercial advanragc. Abstracting with credit
of Digit,JI Equipment Corporation's author­
ship is permitted.

The int(mnation in the journal is subJeCt
to dJ <Jngc without notice and should nor
be consnued as a commitmem bv Digitcll
Equipment Corporation or by the compa­
nies herein reptTsented . Digital Equipmem
Corporation assumes no responsibility t(Jr
any errors that may appear in thcjourl/al.

ISSN 0898-901X

Documentation Number EY-U002E-Tj

Book production was done by Quantic
Communications, Inc.

·rhc tclllo 11·ing arc tradem.1rks of Digitcll
Equipmem Corporation: AccuLook,
AccuVideo, Alphcl(;cneration,
AlphaStation, DEC:, DEC: OSI'/1,
DECchip, DEC:sak, DEC:st:Jtion,
DECtalk, Digital, the Dil;II't\1.\ogo,
Digital C:\IX, FuiiVicko, OpcnV,viS,
PDP, RZ, TURBOchanncl, UI TRI X,
;111d VMSclustcr.

C-Cube and CI.550 :1re tr:1dem:1rks of
C-Cube Micmsysrems.

I-IA/6000, IBM, Powerl'C, c111d PS/2 arc
registered trJdcmarks of Inrnnational
Business Machines Corporation.

1-lewlctt-Packard and HI' c11·e registered
trademarks and Switch Over UX is a trade­
mark of f-lewlcrr-!';1ckard Comp.111y.

INDEO is a registered trackm;Jrk and
Pentium is a trademark of !nrc\ Corporation.

Micmsoft is a registered n·ademark and Video
tcJr Windows, Windows, and Windows NT

:1re trademarks of Microsoft Corporation.

MIPS, R3000, and R4000 arc registered
trademarks ,,f Ml l'S Technologies, Inc.

MotoroLJ is a 1-cgistcrcd trademark of
Motorola, Inc.

:sJI'S is a registered tradcm,Jrk ;llld
SI'ARC:clusterl is a trademark of Sun
lvlicros�'srcms, Inc.

ORAC:I.J-:7 is a trademark ofOr;Jcle
Corporation.

Parasight is .1 trademark of Encore
Compute!· Corporation.

QuickTime is a trcJdemark of Apple
Comrutcr, Inc.

Sl'EC:�J, Sl'EC:int, ;Jnd Sl'FC:mark .1re
trcJdcmarks of the Stamhrd Pcrt(>rnlance

EvalucHion Council.

l'NIX is .1 rcp;istcred trademc1rk in the
l 'nitcd States and other counn·ies, licensed
exclusivck through X/Open Comp;lny Ltd .

X Window System is a trademark of the
MasscKhusetts Institute ,,t .. lcchnology.

Contents

Foreword

AUDIO AND VIDEO TECHNOLOGIES

DECtalk Software: Text-to-Speech
Technology and Implementation

The J300 Family of Video and Audio Adapters:
Architecture and Hardware Design

The J300 Family of Video and Audio Adapters:
Software Architecture

Software-only Compression, Rendering, and
Playback of Digital Video

Integrating Video Rendering into Graphics
Accelerator Chips

Robert A. Ulichney

William I. Hallahan

Kenneth W. Correll and Robert A. Ulichney

Paramvir Bahl

Paramvir Bahl, Paul S. Gauthier, and
Robert A. Ulichney

Larry D . Seiler and Robert A. Ulichney

3

5

20

34

52

76

UNIX AVAILABLE SERVERS, REAL-TIME DEBUGGING TOOLS

Technical Description of the DECsafe
Available Server Environment

Parasight: Debugging and Analyzing Real-time
Applications under Digital UNIX

Lawrence S. Cohen and John H . Williams 89

Michael Palmer and Jeffrey M. Russo 101

Digital Technical Journal Vol. 7 No. 4 1995

2

Editor's
Introduction

This issue's opening section fearures
audio and video technologies that
exploit the power ofDigital's 64-bit
RISC Alpha systems. Papers describe
new software and hardware designs
that make practical such applications
as text-to-speech conversion and full­
motion video on the desktop. A sec­
ond set of papers shifts the focus to
the UNIX environment with discus­
sions of high-availability services and
of Encore Computer Corporation's
new real-time debugging tool.

The opening paper for the audio
and video section references an audio
technology that physicist Stephen
Hawking uses to convert the text
he types to highly intelligible syn­
thetic speech. Recently, engineers
have ported this mature 10-year-
old hardware technology, called
DECtalk, to text-to-speech software.
Bill Hallahan explains that the com­
putational power ofDigital's Alpha
systems now makes it possible for a
software speech synthesizer to simul­
taneously convert many text streams
to speech without overloading a work­
station. After reviewing relevant speech
terminology and popular synthesis
techniques, he describes D ECtalk
Software multithreaded processing
and the new text-to-speech applica­
tion programming interface for
UNIX and NT workstations.

Video technologies-full-motion
video on workstations-also capital­
ize on the high performance of Alpha
systems. In the first of four papers
focused on digital video, Ken Correll
and Bob Ulichney present the J300
video and audio adapter architecrure.
To improve on past full-motion video
implementations, designers sought
to allow video data to be treated the

Digital Technical Journal

same as any other data type in a work­
station. The authors review the J300
fearures, including a versatile color­
map rendering system, and the sub­
system design decisions made to keep
product costs low.

Victor Bahl then presents the J300
software that controls the hardware.
The challenge for software designers
was to obtain real-time performance
from a non-real-time operating sys­
tem. A description of the video sub­
system highlights the video library
and an innovative use of queues in
achieving good performance. This
software architecrure has been imple­
mented on Open VMS, Windows NT,
and Digital UNIX platforms.

A third paper on video technology
looks at delivering video without spe­
cialized hardware, that is, a software­
only architecrure for general-purpose
computers that provides access to
video codecs and renderers through
a flexible application programming
interface. Again, faster processors
make a software-only solution possi­
ble at low cost. Authors Victor Bahl,
Paul Gauthier, and Bob Ulichney
preface the paper with an overview
of industry-standard codecs and
compression schemes. They then
discuss the creation of the software
video library, its architecrure, and
its implementation of video render­
ing that parallels the J300 hardware.

The final paper in the audio and
video technologies section explicitly
raises the question of what fearures
arc best implemented in hardware
and what in software. The context for
the question is a graphics accelerator
chip design that integrates traditional
synthetic graphics features and video
image display fearures- until now,

Vol. 7 No. 4 1995

implemented separately. Larry Seiler
and Bob Ulichney describe the video
processing implemented differently
in two chips, both of which offer sig­
nificantly higher performance with
minimal additional logic.

The common theme of our second
section is the UNIX operating system.
Larry Cohen and John Williams pre­
sent the DECsafe Available Server
Environment (ASE), which provides
high availability for applications run­
ning on Digital UNIX systems. They
describe the ASE design for detection
and dynamic reconfiguration around
host, storage device, and network fail­
ures, and review key design trade-offs
that favored software reliability and
data integrity.

Mike Palmer and Jeff Russo then
contrast Encore Computer Corpora­
tion's set of debug and analysis tools
for real-time applications, called
Parasight, with conventional UNIX
tools. They examine the fearures that
are critical in an effective real-time
debugging tool, for example, the abil­
ity to attach to a running program
and to analyze several programs simul­
taneously. A description follows of
the Parasight product, which includes
the fearures necessary for real-time
debug and analysis in a set of graphi­
cal user interface tools.

Upcoming in our next issue arc
papers on a variety of topics, incl ud­
ing Digital UNIX clusters, eXcursion
for NT, and network services.

Jane C. Blake
Managing Editor

Foreword

Robert A. Ulichney
Senior Consulting Engineer
Research and Advanced Development,
Cambridge Research Lab

"Can you dig it ... New York State
Throughway's closed, Man. Far
out, Man," announced a young Ario
Guthrie in the vernacular on the stage
at Woodstock in 1969. Reading these
words may evoke a mental picture of
the event, but it sure is a lot more fun
to hear and see Ario deliver this mes­
sage. Audio and video technology is
the featured theme of this issue of the
Digital Technical Journal.

Four years before Ario's traffic
report, in the year that a young Digital
Equipment Corporation introduced
the PDP-8, an interesting forecast
was made. Gordon Moore, who was
yet to co-found Intel, asserted in a lit­
tle-noticed paper that the power and
complexity of the silicon chip would
double every year (later revised to
every 18 months). This prediction
has been generally accurate for 30
years and is today one of the most
celebrated and remarkable "laws"
of the computer industry.

While we enjoyed this exponential
hardware ride, there was always some
question about the ability of applica­
tions and software to keep up. If any­
thing, the opposite is true. Software
has been described as a gas that imme­
diately fills the expanding envelope
of hardware. Ever since the hardware
envelope became large enough to
begin to accommodate crude forms
of audio and video, the pressure of the
software gas has been great indeed.
Digitized audio and video represent
enormous amounts of data and stress
the capacities of real-time processing
and transmission systems.

Digital has participated in expand­
ing the envelope and in filling it;

its hardware performance is record­
breaking and its audio and video tech­
nologies are state-of-the-art. Looking
specifically at the four categories into
which computer companies segment
audio and video technologies, Digital
is making contributions in each of
these: analysis, synthesis, compression,
and input/output.

MIT's Nicholas Negroponte
believes that practical analysis, or
interpretation, of digitized audio and
video will be the next big advance in
the computer industry, where noth­
ing has changed in human input (key­
board and pointing device) since, well,
the Woodstock era. Digital is actively
investigating methods for speaker­
independent speech recognition and,
in the area of video analysis, means
to automatically detect, track, and
recognize people.

The synthesis of still and motion
video, more commonly referred to as
computer graphics, has traditionally
been a much larger area of focus than
the handling of sampled video. Syn­
thesis of audio, or text-to-speech
conversion, is the topic of one of
the papers in this issue; DECtalk is
largely considered to be the best
such synthesis mechanism available.

When audio or video data are rep­
resented symbolically, as is the case
after analysis, or prior to synthesis,
a most efficient form of compression
is implicitly employed. However, the
task of storing or transmitting the raw
digitized signal can be overwhelm­
ing, especially at high sampling rates.
Compression techniques are relied
upon to ease the volume of this data
in two ways: (1) reducing statistical

Digital Technical Journal Vol. 7 No. 4 1995 3

4

redundancy and (2) pruning data that
will not be noticed by exploiting what
is known about human perceptual
systems. In this climate of interoper­
ability and open systems, Digital
recognizes the importance of adher­
ing to accepted standards for audio
and video compression versus the
promotion of some proprietary
representation.

The last category is that of 1/0.
Audio and video input require a
means for signal acquisition and
analog-to-digital conversion. The
focus here is on preserving the integ­
rity of the signal as opposed to inter­
preting the data. Proper rendering
is needed for good-quality output,
along with digital-to-analog con­
version. For both audio and video,
trade-offs must be made to accom­
modate the highest degree of sampling
resolution in time and amplitude.

Digital is a leader in the area of
video rendering with our AccuVideo
technology, aspects of which are
described in part in three papers in
this issue. Video rendering incorpo­
rates all processing that is required to
tailor video to a particular target dis­
play. This includes scaling and filter­
ing, color adjustment, dithering, and
color-space conversion from video's
luminance-chrominance represen­
tation to RGB. In its most general
form, Digital's rendering technology
will optimize display quality given
any number of available colors.

The earliest form of AccuVideo
appeared in a 1989 testbed, known
internally as Pictor. This led to the
widely distributed research prototype
called Jvideo in 1991. Jvideo was

Digital Technical Journal

a TURBOchannel bus option with
JPEG compression and decompres­
sion and was the first prototype to
combine dithering with color-space
conversion. Jvideo was the basis for
design of the Sound & Motion J300
product, which included a remarkably
improved dither method. A follow-on
to J300 is a PCI-bus version called
FullVideo Supreme.

In products that render RGB data
instead of video, Digital's rendering
technology is referred to as AccuLook;
except for this one difference, the rest
of the rendering pipeline is identical
to AccuVideo. AccuLook products
include graphics options for work­
stations: ZLX-E (SFB+) designed for
the TURBOchannel and ZLXp-E
(TGA) designed as an entry-level
product for the PCI bus.

AccuVideo rendering is a key
feature in the DECchip 21130
PC graphics chip and in the TGA2
high-end workstation graphics chip.
While noted for its high image qual­
ity, AccuVideo is also efficiently
implemented in software; it is avail­
able as part of a tool kit with every
Digital UNIX, Open VMS, and
Windows NT platform.

With Moore's law on the loose,
it can be argued that hardware imple­
mentations of video rendering are
not justified as software-only versions
grow in speed. Although today's pro­
cessors can indeed handle the play­
back of video by both decompressing
and rendering at a quarter of full size,
little is left for doing anything else.
Moreover, users will want to scale
up the display sizes, and perhaps add
multiple video streams- and still be

Vol. 7 No. 4 1995

able to use their processors to do
other things. For the near term, hard­
ware video rendering is justified.

The five papers that make up the
audio and video technology theme
of this issue are but a small sampling
of the work under way in this area
at Digital; look for more papers to
follow in subsequent issues of this
Journal. As the audio and video gas
continues to fill the ever-expanding
hardware envelope, we look forward
to an enriched and more natural
experience with computing devices.
Ario's Woodstock pals would likely
agree that this sounds like more fun.

DECtalk Software:
Text-to-Speech
Technology and
Implementation

DECtalk is a mature text-to-speech synthesis
technology that Digital has sold as a series of
hardware products for more than ten years.
Originally developed by Digital's Assistive
Technology Group (ATG) as an alternative to
a character-cell terminal and for telephony
applications, today DECtalk also provides visu­
ally handicapped people access to information.
DECtalk uses a digital formant synthesizer to
simulate the human vocal tract. Before the
advent of the Alpha processor, the computa­
tional demands of this synthesizer placed
an extreme load on a workstation. DECtalk
Software has an application programming
interlace (API) that is supported on multiple
platforms and multiple operating systems.
This paper describes the various text-to-speech
technologies, the DECtalk Software architecture,
and the API. The paper also reports our experi­
ence in porting the DECtalk code base from the
previous hardware platform.

11
William I. Hallahan

During the past ten years, advances in computer power
have created opportunities for voice input and out­
put. Many major corporations, including Digital,
provide database access through the telephone. The
advent of Digital's Alpha processor has changed the
economics of speech synthesis. Instead of an expen­
sive, dedicated circuit card that supports only a single
channel of synthesis, system developers can use an
Alpha-based workstation to support many channels
simultaneously. In addition, since text-to-speech con­
version is a light load for an Alpha processor, applica­
tion developers can freely integrate text to speech into
their products.

Digital's DECtalk Software provides natural-sound­
ing, highly intelligible text-to-speech synthesis. It is
available for the Digital UNIX operating system on
Digital's Alpha-based platforms and for Microsoft's
Windows NT operating system on both Alpha and
Intel processors. DECtalk Software provides an easy­
to-use application programming interface (API) that is
fully integrated with the computer's audio subsystem.
The text-to-speech code was ported from the software
for the DECtalk PC card, a hardware product made by
Digital's Assistive Technology Group. This software
coqstitutes over 30 man years of development effort
and contains approximately 160,000 lines of C pro­
gramming language code.

This paper begins by discussing the features of
DECtalk Software and briefly describing the various
text-to-speech technologies. It then presents a descrip­
tion of the DECtalk Software architecture and the
API. Finally, the paper relates our experience in port­
ing the DECtalk code base.

Features of DECtalk Software

The DECtalk Software development kit consists of a
shared library (a dynamic link library on Windows
NT), a link library, a header file that defines the sym­
bols and functions used by DECtalk Software, sample
applications, and sample source code that demon­
strates the APL

Digital Technical Journal Vol. 7 No. 4 1995 5

6

DECtalk Software supports nine preprogrammed
voices: four male, four female, and one child's voice.
Both the API and in-line text commands can control
the voice, the speaking rate, and the audio volume.
The volume command supports stereo by providing
independent control of the left and right channels.
Other in-line commands play wave audio files, gen­
erate single tones, or generate dual-tone multiple­
frequency (DTMF) signals for telephony applications.

Using the text-to-speech API, applications can play
speech through the computer's audio system, write
the speech samples to a wave audio file, or write the
speech samples to buffers supplied by the application.
DECtalk Software produces speech in 3 audio formats:
16-bit pulse code modulation (PCM) samples at an
ll,025-hertz (Hz) sample rate, 8-bit PCM samples at
an ll,025-Hz sample rate, and µ-law encoded 8-bit
samples at an 8,000-Hz sample rate. The first two for­
mats are standard multimedia audio formats for per­
sonal computers (PCs). The last format is the standard
encoding and rate used for telephony applications.

The API can also load a user-generated dictionary
that defines the pronunciation of application-specific
words. The development kit provides a window-based
tool to generate these dictionaries. The kit also con­
tains a window-based application to speak text and an
electronic mail-notification program. Sample source
code includes a simple window-based application that
speaks text, a command line application to speak text,
and a speech-to-memory sample program.

The version ofDECtalk Software for Windows NT
also provides a text-to-speech dynamic data exchange
(DDE) server. This server integrates with other appli­
cations such as Microsoft Word. Users can select text
in a Word document and then proofread the text
merely by clicking a button. This paper was proofread
using DECtalk Software running a native version of
Microsoft Word on an AlphaStation workstation.

Speech Terms and DECtalk Software

Human speech is produced by the vocal cords in the
larynx, the trachea, the nasal cavity, the oral cavity, the
tongue, and the lips. Figure 1 shows the human
speech organs. The glottis is the space between the
vocal cords. For voiced sounds such as vowels, the
vocal cords produce a series of pulses of air. The pulse
repetition frequency is called the glottal pitch. The
pulse train is referred to as the glottal waveform. The
rest of the articulatory organs filter this waveform.'
The trachea, in conjunction with the oral cavity, the
tongue, and the lips, acts like a cascade of resonant
tubes of varying widths. The pulse energy reflects
backward and forward in these organs, which causes
energy to propagate best at certain frequencies. These
are called the formant frequencies.

Digital Technical Journal Vol. 7 No. 4 1995

Figure 1
The Speech Organs

The primary discrimination cues for different vowel
sounds are the values of the first and second formant
frequency. Vowels are either front, mid, or back vow­
els, depending on the place of articulation. They are
either rounded or unrounded, depending on the posi­
tion of the lips. American English has 12 vowel
sounds. Diphthongs are sounds that change smoothly
from one vowel to another, such as in boy, bow, and
bay. Other voiced sounds include the nasals m, n, and
ng (as in ing). To produce nasals, a person opens the
velar flap, which connects the throat to the nasal cavity.
Liquids are the vowel-like sounds land r. Glides are
the sounds y (as in you) and w (as in we).

Breath passing through a constriction creates tur­
bulence and produces unvoiced sounds. f and s are
unvoiced sounds called fricatives. A stop (also called a
plosive) is a momentary blocking of the breath
stream followed by a sudden release. The consonants
p, b, t, d, k, and g are stop consonants. Opening the
mouth and exhaling rapidly produces the consonant
h. The h sound is called an aspirate. Other conso­
nants such asp, t, and k frequently end in aspiration,
especially when they start a word. An affricative is a
stop immediately followed by a fricative. The English
sounds ch (as in chew and j (as in Jar) are affricates.

These sounds are all American English phonemes.
Phonemes are the smallest units of speech that distin -
guish one utterance from another in a particular
language.2 An allophone is an acoustic manifestation
of a phoneme. A particular phoneme may have many
allophones, but each allophone (in context) will
sound like the same phoneme to a speaker of the lan -
guage that defines the phoneme. Another way of say­
ing this is, if two sounds have different acoustic
manifestations, but the use of either one does not
change the meaning of an utterance, then by defini­
tion, they are the same phoneme.

Phones are the sets of all phonemes and allophones
for all languages. Linguists have developed an interna­
tional phonetic alphabet (IPA) that has symbols for
almost all phones. This alphabet uses many Greek
letters that are difficult to represent on a computer.
American linguists have developed the Arpabet
phoneme alphabet to represent American English
phonemes using normal ASCII characters. DECtalk
Software supports both the IPA symbols for American
English and the Arpabet alphabet. Extra symbols are
provided that either combine certain phonemes or
specify certain allophones to allow the control of fine
speech features. Table 1 gives the DECtalk Software
phonemic symbols.

Speech researchers often use the short-term spec­
trum to represent the acoustic manifestation of a
sound. The short-term spectrum is a measure of the
frequency content of a windowed (time-limited) por­
tion of a signal. For speech, the time window is typi­
cally between 5 milliseconds and 25 milliseconds, and

Table 1
DECtalk Software Phonemic Symbols

Consonants Vowels and Diphthongs

b bet aa Bob

ch chin ae bat

d debt ah but
dh this ao bought

el bottle aw bout
en button ax about

f fin ay bite
g guess eh be
hx head ey bake
jh gin ih bit
k Ken ix kisses

let iy beat

m met OW boat
n net oy boy
nx sing rr bird

p pet uh book

r red uw lute

s sit yu cute
sh shin Allophones
t test dx rider

th thin Ix electric

v vest q we eat
w wet rx oration
yx yet tx Latin
z zoo Silence
zh azure _ (underscore)

the pitch frequency of voiced sounds varies from 80
Hz to 280 Hz. As a result, the time window ranges
from slightly less than one pitch period to several pitch
periods. The glottal pitch frequency changes very little
in this interval. The other articulatory organs move
so little over this time that their filtering effects do
not change appreciably. A speech signal is said to be
stationary over this interval.

The spectrum has two components for each fre­
quency measured, a magnitude and a phase shift.
Empirical tests show that sounds that have identical
spectral magnitudes sound similar. The relative phase
of the individual frequency components plays a lesser
role in perception. Typically, we perceive phase differ­
ences only at the start of low frequencies and only
occasionally at the end of a sound. Matching the spec­
tral magnitude of a synthesized phoneme (allophone)
with the spectral magnitude of the desired phoneme
(taken from human speech recordings) always
improves intelligibility.3 This is the synthesizer calibra­
tion technique used for DECtalk Software.

A spectrogram is a plot of spectral magnitude slices,
with frequency on the y axis and time on the x axis.
The spectral magnitudes are specified either by color
or by saturation for two-color plots. Depending on the
time interval of the spectrum window, either the pitch
frequency harmonics or the formant structure of
speech may be viewed. It is even possible to ascertain
what is said from a spectrogram. Figure 2 shows spec­
trograms of both synthetic and human speech for the
same phrase. The formant frequencies are the dark
regions that move up and down as the speech organs
change position. Fricatives and aspiration are charac­
terized by the presence of high frequencies and usually
have much less energy than the formants.

The bandwidth of speech signals extends to over
10 kilohertz (kHz) although most of the energy is
confined below 1,500 Hz. The minimum intelligible
bandwidth for speech is about 3 kHz, but using this
bandwidth, the quality is poor. A telephone's band­
width is 3.2 kHz. The DECtalk PC product has a
speech bandwidth just under 5 kHz, which is the same
as the audio bandwidth of an AM broadcast station.
The sample rate of a digital speech system must be at
least twice the signal bandwidth (and might have to be
higher if the signal is a bandpass signal), so the
DECtalk PC uses a 10-kHz sample rate. This band­
width represents a trade-off between speech quality
and the amount of calculation (or CPU loading). The
DECtalk Software synthesizer rate is 11,025 Hz,
which is a standard PC sample rate. An 8-kHz rate is
provided to support telephony applications.

People often perceive acoustic events that have
different short-term spectral magnitudes as the same
phoneme. For example, the k sound in the words kill

Digital Technical Journal Vol. 7 No. 4 1995 7

8

Figure 2
Two Spectrograms of the Utterance "Line up at the screen door." The upper spectrogram is the author's speech.
The lower spectrogram is synthetic speech produced by DECtalk Software.

and cool have very different magnitude spectra. An
American perceives the two spectra as the same sound;
however, the sounds are very different to someone
from Saudi Arabia. A Japanese person does not per­
ceive any difference between the words car and call.
To an English speaker, the rand the l sound different
even though they have nearly identical magnitude
spectra. The l sounds in the words call and leaf are dif­
ferent spectrally (acoustically) but have the same
sound. Thus they are the same phoneme in English.

Several allophones are required to represent the k
phoneme. Most consonant phonemes require several
different allophones because the vowel sounds next to
them change their acoustic manifestations. This effect,
called coarticulation, occurs because it is often unnec­
essary for the articulatory organs to reach the final
position used to generate a phoneme; they merely
need to gesture toward the final position. Another
type of coarticulation is part of the grammar of a
language. For example, the phrase don't you is often
pronounced doan choo.

All allophones that represent the phoneme k are
produced by closing the velum and then suddenly
opening it and releasing the breath stream. Speakers of
the English language perceive all these allophones as
the same sound, which suggests that synthesis may be
modeled by an articulatory model of speech produc­
tion. This model would presumably handle coarticula­
tion effects that are not due to grammar. It is currently
not known how to consistently determine speech
organ positions (or control strategies) directly from
acoustic speech data, so articulatory models have had
little success for text-to-speech synthesis.4

Digital Technical Journal Vol. 7 No. 4 1995

For English, the v01cmg pitch provides cues to
clause boundaries and meaning. Changing the fre­
quency of the vibration of the vocal cords varies the
pitch. Intonation is the shape of the pitch variation
across a clause. The sentence "Tim is leaving." is pro­
nounced differently than "Tim is leaving?" The latter
form requires different intonation, depending on
whether the intent is to emphasize that it is "Tim"
who is leaving, or that "leaving" is what Tim is to do.
A word or phrase is stressed by increasing its pitch,
amplitude, or duration, or some combination of these.
Intonation includes pitch changes due to stress and
normal pitch variation across a clause. Correct intona­
tion is not always possible because it requires speech
understanding. DECtalk Software performs an analysis
of clause structure that includes the form classes of
both words and punctuation and then applies a pitch
contour to a clause. The form class definitions include
symbols for the parts of speech (article, adjective,
adverb, conjunction, noun, preposition, verb, etc.)
and symbols to indicate if the word is a number, an
abbreviation, a homograph, or a special word (requir­
ing special proprietary processing). For the sentence,
"Tim is leaving?" the question mark causes DECtalk
Software to raise the final pitch, but no stress is put on
"Tim" or "leaving." Neutral intonation sometimes
sounds boring, but at least it does not sound foolish.

Text-to-Speech Synthesis Techniques

Early attempts at text-to-speech synthesis assembled
clauses by concatenating recorded words. This tech­
nique produces extremely unnatural-sounding speech.

In continuous speech, word durations are often short­
ened and coarticulation effects can occur between adja­
cent words. There is also no way to adjust the intonation
of recorded words. A huge word database is required,
and words that are not in the database cannot be pro­
nounced. The resulting speech sounds choppy.

Another word concatenation technique uses record­
ings of the formant patterns of words. A formant
synthesizer smoothes formant transitions at the word
boundaries. A variation of this technique uses linear
predictive coded (LPC) words. An advantage of the
formant synthesizer is that the pitch and duration
of words may be varied. Unfortunately, since the
phoneme boundaries within a word are difficult to
determine, the pitch and duration of the individual
phonemes cannot be changed. This technique also
requires a large database. Again, a word can be spoken
only if it is in the database. In general, the quality
is poor, although this technique has been used with
some success to speak numbers.

A popular technique today is to store actual speech
segments that contain phonemes and phoneme pairs.
These speech segments, known as diphones, are
obtained from recordings ofhuman speech. They con­
tain all coarticulation effects that occur for a particular
language. Diphones are concatenated to produce words
and sentences. This solves the coarticulation problem,
but it is impossible to accurately modify the pitch of
any segment. The intonation across a clause is gener­
ally incorrect. Even worse, the pitch varies from seg­
ment to segment within a word. The resulting speech
sounds unnatural, unless the system is speaking a
phrase that the di phones came from (this is a devious
marketing ploy). Nevertheless, diphone synthesis pro­
duces speech that is fairly intelligible. Diphone syn­
thesis requires relatively little compute power, but it is
memory intensive. American English requires approx­
imately 1,500 diphones; diphone synthesis would have
to provide a large database of approximately 3 mega­
bytes for each voice included by the system.

DECtalk Software uses a digital formant synthesizer.
The synthesizer input is derived from phonemic sym­
bols instead of stored formant patterns as in a conven­
tional formant synthesizer. Intonation is based on
clause structure. Phonetic rules determine coarticula­
tion effects. The synthesizer requires only two tables,
one for each gender, to map allophonic variations of
each phoneme to acoustic events. Modification of vocal
tract parameters in the synthesizer allows the system to
generate multiple voices without a significant increase
in storage requirements. (The DECtalk code and data
occupy less than 1.5 megabytes.)

Poor-quality speech is difficult to understand and
causes fatigue. Linguists use standard phoneme recog­
nition tests and comprehension tests to measure the
intelligibility of synthetic speech. The DECtalk family
of products achieves the highest test scores of all text­
to-speech systems on the market.5 Visually handi­
capped individuals prefer DECtalk over all other
text-to-speech systems.

How DECtalk Software Works
DECtalk Software consists of eight processing threads:
(1) the text-queuing thread, (2) the command parser,
(3) the letter-to-sound converter, (4) the phonetic and
prosodic processor, (5) the vocal tract model (VTM)
thread, (6) the audio thread, (7) the synchronization
thread, and (8) the timer thread. The text, VTM,
audio, synchronization, and timer threads are not part
of the DECtalk PC software (the DECtalk PC VTM
is on a special Digital Signal Processor) and have been
added to DECtalk Software. The audio thread creates
the timer thread when the text-to-speech system is
initialized. Since the audio thread does not usually
open the audio device until a sufficient number of
audio samples are queued, the timer thread serves to
force the audio to play in case any samples have been in
the queue too long. The DECtalk Software threads
perform serial processing of data as shown in Figure 3.

CALLBACK FUNCTION FOR UNIX, MESSAGE FOR WINDOWS NT
POLL AUDIO
POSITION

CALLBACK FUNCTION FOR UNIX, MESSAGE FOR WINDOWS NT

~"';"'"" SYNCHRONIZATION EVENT ~~~~~~ONIZATION .._

1
COMMAND

APPLICATION ...,... TEXT QUEUING ~· PARSER -· THREAD
THREAD

ASCII TEXT ASCII TEXT ASCII TEXT

KEY:

--• INDICATES PIPES

Figure 3
The DECtalk Software Architecture for Windows NT

SYNCHRONIZATION •
MESSAGES -------------- ,

LETIER·TO- PHONETIC AND
PROSODIC -· VOCAL TRACT SOUND -· - AUDIO THREAD
PROCESSING MODEL THREAD THREAD
THREAD

PHONEMES VTM
COMMANDS

Digital Technical Journal

SPEECH
SAMPLES

Vol. 7 No. 4 1995 9

Multithreading allows a simple and efficient means
of throttling data in multistage, real-time systems.
Each thread passes its output to the next thread
through pipes. Each thread has access to two pipe han­
dles, one for input and one for output. Most threads
consist of a main loop that has one or more calls to a
read_pipe function followed by one or more calls to
a write_pipe function. The write_pipe function will
block processing and suspend the thread if the speci­
fied pipe does not have enough free space to receive
the specified amount of data. The read_pipe function
will block processing and suspend the thread if the
specified pipe does not contain the requested amount
of data. Thus an active thread will eventually become
idle, either because there is not enough input data, or
because there is no place to store its output.

The pipes are implemented as ring buffers. The ring
buffer item count is protected by mutual-exclusion
objects on the Digital UNIX operating system and by
critical sections on the Windows NT operating system.
The pipes are created at text-to-speech initialization
and destroyed during shutdown. The DECtalk Software
team implemented these pipes because the pipe calls
supplied with the Digital UNIX and Windows NT
operating systems are for interprocess communication
and are not as efficient as our pipes.

The DECtalk Software threads all used different
amounts of CPU time. The data bandwidth increases
at the output of every thread between the command
thread and the VTM thread. Since the VTM produces
audio samples at a rate exceeding 11,025 samples per
second, it is no surprise that the VTM uses the most
CPU time of all threads. Table 2 gives the percentage
of the total application time used by each thread when
the Windows NT sample application "say" is continu­
ously speaking a large text file on an Alpha AXP 150
PC product. The output sample rate is 11,025 Hz.
Note that the "say" program main thread blocks and
uses virtually no CPU time after queuing the text
block. These percentages have been calculated from
times obtained using the Windows NT performance
monitor tool.

Because the data bandwidth increases at the output
of successive threads, it is desirable to adjust the size of
each of the pipes ring buffers. If one imagines that all
the pipes had an infinite length (and the audio queue
was infinite) and that the operating system switched
thread context only when the active thread yielded,
then the text thread would process all the ASCII text
data before the letter-to-sound thread would run.
Likewise, each successive thread would run to comple­
tion before the next thread became active. The system
latency would be very high, but the thread switch­
ing would be minimized. The system would use 100
percent of the CPU until all the text was converted
to audio, and then the CPU usage would become

IO Digital Technical Journal Vol. 7 No. 4 1995

Table 2
DECtalk Software Thread Loading

Percentage of Total
Thread Application CPU Time

Application 1.0
(say.exe)

Text queue 0.2
Command parser 1.4
Letter-to-sound 2.4
processing

Prosodic and 18.3
phonetic processing
Vocal tract model 71.9
Audio 2.9
Synchronization 0.0
Timer 0.0
System 1.9

very low as the audio played out at a fixed rate.
Alternatively, if all the pipes are made very short, the
system latency is low. In this case, all but one of the
threads will become blocked in a very short time and
the startup transient in the CPU loading will be mini­
mized. Unfortunately, the threads will constantly
switch, resulting in poor efficiency. What is needed is
a trade-off between these two extremes.

For a specified latency, the optimum pipe sizes
that minimize memory usage for a given efficiency
are in a ratio such that each pipe contains the same
temporal amount of data. For example, let us assume
that 64 text characters (requiring 64 bytes) are in the
command thread. They produce approximately 100
phonemes (requiring 1,600 bytes) at the output of
the letter-to-sound thread and approximately 750
VTM control commands (requiring 15,000 bytes) at
the output of the prosodic and phonetics thread. In
such a case, the size of the input pipes for the com­
mand, letter-to-sound, and prosodic and phonetic
threads could be made 64, 1,600, and 15,000 bytes,
respectively, to minimize pipe memory usage for the
specified latency. (All numbers are hypothetical.)
The pipe sizes in DECtalk Software actually increase
at a slightly faster rate than necessary. We chose the
faster rate because memory usage is not critical since
all the pipes are small relative to other data struc­
tures. The size of the VTM input pipe is the most
critical: it is the largest pipe because it supports the
largest data bandwidth.

The Text Thread

The text thread's only purpose is to buffer text so the
application is not blocked during text processing.
An application using text-to-speech services calls
the TextToSpeechSpeak API function to queue a null -

terminated text string to the system. This API function
copies the text to a buffer and passes the buffer (using
a special message structure) to the text thread. This
is done using the operating system's PostMessage
function for Windows NT and a thread-safe linked
list for Digital UNIX. After the text thread pipes the
entire text stream to the command thread, it frees the
text buffer and the message structure.

The Command Processing Thread
The command processing thread parses in-line text
commands. These commands control the text-to­
speech system voice selection, speaking rate, and audio
volume, and adjust many other system state parame­
ters. For DECtalk, most of these commands are of the
form [: command <parameters>]. The string "[:"
specifies that a command string follows. The string"]"
ends a command. The following string illustrates sev­
eral in-line commands.

[:nb][:ra 200] My name is Betty.
[:play audio. wav]
[:dial 555-1212][:tone 700 1,000]

This text will select the speaker voice for "Betty,"
select a speaking rate of 200 words per minute, speak
the text "My name is Betty." and then play a wave
audio file named "audio.wav." Finally, the DTMF
tones for the number 555-1212 are played followed
by a 700-Hz tone for 1,000 milliseconds.

Because the text-to-speech system may be speaking
while simultaneously processing text in the command
thread, it is necessary to synchronize the command pro­
cessing with the audio. The DECtalk PC product (from
which we ported the code) did not perform synchro­
nization unless the application placed a special string
before the volume command. For DECtalk Software,
asynchronous control of all functions provided by
the in-line commands is already available through the
text-to-speech API calls. For this reason, the DECtalk
Software in-line commands are all synchronous.

The DECtalk command [:volume set 70] will set
the audio volume level to 70. Synchronization is per­
formed by inserting a synchronization symbol in the
text stream. This symbol is passed through the system
until it reaches the VTM thread. When the VTM
thread receives a synchronization symbol, it pipes a
message to the synchronization thread. This message
causes the synchronization thread to signal an event as
soon as all audio (that was queued before the message)
has been played. The volume control code in the com­
mand thread is blocked until this event is signaled. The
synchronization thread also handles commands of the
form [:index mark 17). Index mark commands may
be used to send a message value (in this case 17) back
to an application when the text up to the index mark
command has been spoken.

The command thread passes control messages such
as voice selection and speaking rate to the letter-to­
sound and the prosodic and phonetic processing
threads, respectively. Tone commands, index mark
commands, and synchronization symbols are format­
ted into messages and passed to the letter-to-sound
thread. The command thread also pipes the input text
string, with the bracketed command strings removed,
to the letter-to-sound thread.

The Letter-to-Sound Thread
The letter-to-sound (LTS) thread converts ASCII text
sequences to phoneme sequences. This is done using a
rule-based system and a dictionary for exceptions. It is
the single most complicated piece of code in all of
DECtalk Software. Pronunciation of English language
words is complex. Consider the different pronuncia­
tions of the string ough in the words rough, through,
bough, thought, dough, cough, and hiccough.6 Even
though the LTS thread has more than 1,500 pronun­
ciation rules, it requires an exception dictionary with
over 15,000 words.

Each phoneme is actually represented by a structure
that contains a phonemic symbol and phonemic attri­
butes that include duration, stress, and other propri­
etary tags that control phoneme synthesis. This is how
allophonic variations of a phoneme are handled. In the
descriptions that follow, the term phoneme refers
either to this structure or to the particular phone spec­
ified by the phonemic symbol in this structure.

The L TS thread first separates the text stream into
clauses. Clause separation occurs in speech both to
encapsulate a thought and because of our limited lung
capacity. Speech run together with no breaks causes the
listener (and the speaker) to become fatigued. Correct
clause separation is important to achieve natural into­
nation. Clauses are delineated by commas, periods,
exclamation marks, question marks, and special words.
Clause separation requires simultaneous analysis of the
text stream. For example, an abbreviated word does
not end a clause even though the abbreviation ends in
a period. If the text stream is sufficiently long and no
clause delimiter is encountered, an artificial clause
boundary is inserted into the text stream.

After clause separation, the LTS thread performs text
normalization. For this, the LTS thread provides spe­
cial processing rules for numbers, monetary amounts,
abbreviations, times, in-line phonemic sequences, and
even proper names. Text normalization usually refers
to text replacement, but in many cases the LTS thread
actually inserts the desired phoneme sequence directly
into its output phoneme stream instead of replacing
the text.

The LTS thread converts the remaining unprocessed
words to phonemes by using either the exception dic­
tionary or a rule-based "morph" lexicon. (The term
morph is derived from morpheme, the minimum unit

Digital Technical Journal Vol. 7 No. 4 1995 11

of meaning for a language.) By combining these two
approaches, memory utilization is minimized. A user­
definable dictionary may also be loaded to define
application-specific terms. During this conversion, the
LTS thread assigns one or more form classes to each
word. As mentioned previously, form class definitions
include symbols for abbreviations and homographs.
A homograph is a word that has more than one pro­
nunciation, such as alternate or console. DECtalk
Software pronounces most abbreviations and homo­
graphs correctly in context. An alternate pronuncia­
tion of a homograph may be forced by inserting the
in-line command [:pron alt] in front of the word.
DECtalk Software speaks the phrase "Dr. Smith lives
on Smith Dr." correctly, as "Doctor Smith lives on
Smith Drive." It uses the correct pronunciation of the
homograph lives.

Before applying rules, the LTS thread performs a
dictionary lookup for each unprocessed word in a
clause. If the lookup is successful, the word's form
classes and a stored phoneme sequence are extracted
from the dictionary. Otherwise, the word is tested for
an English suffix, using a suffix table. If a suffix is
found, sometimes the form class of the word can be
inferred. Suffix rules are applied, and the dictionary
lookup is repeated with the new suffix-stripped word.
For example, the word testing requires the rule, locate
the suffix ing and remove it; whereas the word analyz­
ing requires the rule, locate the suffix ing and replace
it with e. The suffix rules and the dictionary lookup are
recursive to handle words that end in multiple suffixes
such as endlessly .

If the word is not in the dictionary, the LTS thread
performs a decomposition of the word using morphs.
DECtalk uses a morph table to look up the phonemic
representation of portions of words. A morph always
maps onto one or more English words and can be
represented by a letter string. Morphs generally consist

CLAUSE TEXT

of one or more roots that may contain affixes and suf­
fixes. Although new words may frequently be added to
a language, new morphs are rarely added. They are
essentially sound groupings that make up many of the
words of a language. DECtalk contains a table with
hundreds of morphs and their phonemic representa­
tions. Either a single character or a set of characters
that results in a single phoneme is referred to as a
grapheme. Thus this portion of the letter-to-sound
conversion is referred to as the grapheme-to-phoneme
translator. Figure 4 shows the architecture of the LTS
thread.

Morphemes are abstract grammatical units and were
originally defined to describe words that can be seg­
mented, such as tall, taller, and tallest. The word
tallest is made from the morphemes tall and est. The
word went decomposes into the morphemes go and
PAST. Thus a morpheme does not necessarily map
directly onto a derived word. Many of the pronuncia­
tion rules are based on the morphemic representations
of words.

Many morphs have multiple phonemic representa­
tions that can depend on either word or phonemic con­
text. The correct phonemic symbols are determined by
morphophonemic rules. For example, plural words that
end in the morpheme s are spoken by appending either
the s, the z, or the eh z plural morphemes (expressed
as Arpabet phonemic symbols) at the end of the word.7

Which allomorph is used depends on the final
phoneme of the word. Allomorphs are morphemes
with alternate phonetic forms. For another example
requiring a morphophonemic rule, consider the final
phoneme of the word the when pronouncing "the
apple," and "the boy."

After applying many morphophonemic rules to the
phonemes, the LTS thread performs syllabification,
applies stress to certain syllables, and performs allo­
phonic recoding of the phoneme stream. The LTS

>--TEXT - SEPARATION - NORMALIZATION - DICTIONARY

- GRAPHEME-TO- -PHONEME RULES

L SYLLABIFICATION f-+ STRESS - ALLOPHONIC r-+-SUBSTITUTION PHONEMES

Note that the grapheme-to-phoneme rules are used only if the dictionary lookup fails.

Figure4
Block Diagram of the Letter-to-Sow1d Processing Thread

12 Digital Technical Journal Vol. 7 No. 4 1995

thread groups phonemes into syllables, using tables
of legal phoneme clusters and special rules. The syllab­
ification must be accurate, because the LTS thread
applies stress between syllable boundaries.

The LTS thread then assigns either primary stress,
secondary stress, or no stress to each syllable. The
stress rules are applied in order. They assign stress
only to syllables that have not had stress previously
assigned. These rules take into account the number of
syllables in a word and the positions of affixes that
were found during morph decomposition of a word.

Allophonic rules are the last rules the LTS thread
applies to the phoneme stream. These are really pho­
netic rules. Most allophonic rules are described as
follows: "if phoneme A is followed by phoneme B,
then modify (or delete) phoneme A (or B)." Most
allophonic rules are not applied across morpheme
boundaries. These rules handle many specific cases; for
example, the p in the word spit is aspirated, whereas
the pin the word pit is not. The s phoneme modifies
the articulation of the p. The s phoneme is different in
the words stop and street because the r sound is antici­
pated and modifies the s in the word street. This last
example is called distant assimilation.

The LTS thread passes the phonemes that include
durations and lexical information to the prosodic and
phonetic processing thread. Tone, dial, index mark,
and synchronization messages are passed unmodified
through the LTS thread.

The Phonetic and Prosodic Processing Thread
The phonetic and prosodic processing (PH) thread,
shown in Figure 5, converts the phoneme stream to a
series of vocal tract control commands. Both prosodic
rules and additional phonetic rules are applied to the
input phoneme stream.8 Prosody refers to clause­
based stress, intonation, and voice quality in speech.
Words are stressed to add meaning to a clause. Stress is
achieved by increasing one or more of either the pitch,
the duration, or the amplitude of an utterance. The
phonetic rules handle coarticulation effects and adjust
phoneme durations based on the form class, the clause
position, and the speaking rate. One example is a
rule that increases the duration of the final stressed
phoneme in a clause. Additional context-dependent
phonetic coarticulation rules can adjust the durations
of phonemes or delete them.

PHONEMES

Figure 5

PHONETIC
RULES

PROSODIC
RULES

PHONEMES

The Phonetic and Prosodic Processing Thread

VTM
CONTROL
COMMANDS

The correct application of stress, like intonation,
requires understanding, so DECtalk Software gener­
ally applies syllabic stress only as part of an intonation
contour across a clause. Intonation contours are gen­
erated by fixed rules. In most clauses, the pitch rises at
the start of the clause and falls at the end of the clause.
This basic form is changed for questions, prepositional
phrases, exclamations, compound nouns, and num­
bers. This intonation is also changed based on the
syllabic stress assigned by the LTS thread. The PH
thread can also process pitch control symbols that are
placed in-line with text. These pitch commands are
parsed in the command thread and pass through the
LTS thread.

The PH thread uses each phoneme symbol and its
context to generate any allophonic variation of the
phoneme. The resulting allophone symbol indexes
into one of two tables, one table for each gender. Each
allophone symbol indexes a set of parameters that
includes voicing source amplitude, noise source ampli­
tude, formant frequencies, and formant bandwidths.
These, along with voicing source pitch and a number
of fixed speaker-dependent parameters, make up the
VTM parameters. A new set of parameters is generated
for every 6.4 milliseconds of speech. The VTM thread
uses these parameters, which are collectively called a
voice packet, to generate the speech waveform.

In addition to sending voice packets to the VTM
thread, the PH thread can send a speaker packet to
select a new speaking voice. The voice is selected either
by an in-line text command or by the application call­
ing a specific API function . The PH thread has fixed
tables of parameters for each voice. T here are many
voice parameters, but some of the more interesting
ones include the gender, the average pitch, the pitch
range, the assertiveness, the breathiness, and the for­
mant scale factor. The gender is used by some of the
PH rules and by the PH thread to select the table used
to generate voice packets. The average pitch and the
pitch range are used by the PH thread to set the
pitch characteristics for the VTM's voicing source.
The assertiveness parameter sets the rate of fall of
the pitch at the end of a clause. A high assertiveness
factor results in an emphatic voice. The breathiness
parameter sets the amount of noise that is mixed with
the voiced path signal. The formant scale factor effec­
tively scales the size of the speaker's trachea.

Tone, dial, index mark, and synchronization mes­
sages are passed unmodified through the PH thread.

The Vocal Tract Model Thread
The Vocal Tract Model (VTM) thread processes
speaker packets, voice packets, tone messages, and
synchronization messages. Speaker packets set the
speaker-voice-dependent parameters of the VTM.

Digital Technical Journal Vol. 7 No. 4 1995 13

One of these, the formant scale factor, is multiplied
by the first, second, and third formant frequencies in
each voice packet. Other parameters include the values
for the frequencies and bandwidths of the fourth and
fifth formants, the gains for the voiced path of the
VTM, the frication gain for the unvoiced path of the
VTM, the speaker breathiness gain, and the speaker
aspiration gain.

Each voice packet produces one speech frame of
data. The output sample rate for DECtalk Software
is either 8,000 Hz or 11,025 Hz. For each of these
sample rates, a frame is 51 and 71 samples respectively.
Each voice packet includes frequencies and band­
widths for the first, second, and third formants, the
nasal antiresonator frequency, the voicing source gain,
and gains for each of the parallel resonators. Figure 6
shows the basic architecture of the VTM.9 The VTM,
in conjunction with the PH rules, simulates the speech
organs.

The VTM consists of two major paths, a voiced path
and an unvoiced path. The voiced path is excited by a
pulse generator that simulates the vocal cords. A num­
ber of resonant filters in series simulate the trachea.
These cascaded resonators simulate a cascade of tubes
of varying widths.10 A nasal filter in series with the res­
onant tube model simulates the dominant resonance
and antiresonance of the nasal cavity.11 The cascade
resonators and the nasal filter complete the "voiced"
path of the VTM.

Unvoiced sounds occur as a result of chaotic turbu­
lence produced when breath passes through a con­
striction. This turbulence is difficult to model. In our
approach, the VTM matches the spectral magnitude of
filtered noise with the spectral magnitude of the
desired unvoiced phoneme (allophone). The noise
source is realized by filtering the output of a uniform­
distribution random number generator. Unvoiced
sounds contain both resonances and antiresonances.

Another approach to obtain an appropriate fre­
quency characteristic is to filter the noise source signal
using a series of parallel resonators. A consequence of

DIFFERENTIATED
PULSE
GENERATOR

PITCH AND GAIN

GAIN

•
NOISE SOURCE

Figure 6

VOICED PATH
FILTERS

FORMANTS,
BANDWIDTH,
AND GAINS

UNVOICED
PATH FILTERS

SPEECH

Basic Architecture of the Vocal Tract Model

14 Digital Technical Journal Vol. 7 No. 4 1995

putting resonators in parallel is to create antireso­
nances. The positions of these antiresonances are
dependent on the parallel formant frequencies, but it
has been empirically determined that this model pro­
vides more than enough degrees of freedom to closely
match the spectral magnitude of any unvoiced sound.
The noise source generates fricatives, such ass, plosives,
such asp, and aspirates, such as b. The noise source also
contributes to some voiced sounds, such as b, g, and z .
The noise source output may also be added to the
input of the voiced path to produce aspiration. To gen­
erate breathy vowels, the parallel formant frequencies
are set equal to the cascade formant frequencies. 12

The radiation characteristic of the lips approximates
a differentiation (derivative) of the acoustic pressure
wave. Since all the filters in the VTM are linear and
time-invariant, the radiation effects can be incorpo­
rated in the signal sources instead of at the output.
Therefore the glottal source (pulse source) produces
differentiated pulses. The differentiated noise signal is
the filtered first difference of a uniform-distribution
random number generator.

The DECtalk Software VTM (also known as the
Klatt Synthesizer) is shown in Figure 7. The italicized
terms are either speaker-dependent parameters or con­
stant values. All other parameters are updated every
frame. Depending on the system mode, the audio
samples generated for each frame are passed to the
output routine and subsequently are either queued to
the audio device, written to a wave audio file, or writ­
ten to a buffer provided by the application . After gen­
erating a speech frame, the VTM code increases the
audio sample count by the frame size. This count is
sent to the synchronization thread whenever a syn -
chronization symbol or an index mark is received by
the VTM thread. The count is reset to zero at startup
and whenever the text-to-speech system is reset.

Tone messages are processed by the VTM thread.
Tone messages are for single tones or DTMF signals.
Each tone message includes two frequencies, two
amplitudes (one for each frequency), and one duration.
For a single tone message, the amplitude for the second
frequency is zero. Tone synthesis code generates tone
frames and queues them to the output routine. The
first 2 milliseconds and the last 2 milliseconds of a tone
signal are multiplied by either a rising or a falling
cosine-squared shaping function to limit the out-of­
band pulse energy. Each tone sample is synthesized
using a sinusoid look-up table.13

The Synchronization Thread
The synchronization thread is idle unless the VTM
thread forwards a synchronization symbol message or
an index mark message. Both messages contain the
current audio sample count. The index mark message

PITCH

DIFFERENTIATED
PULSES

DIFFERENTIATED
NOISE

KEY:

F FREQUENCY
B BANDWIDTH

SPEAKER
VOICING VOICING
GAIN TILT

TILT FILTER

NOISE TILT
FILTER

A AMPLITUDE
G GAIN

VOICING
GAIN

NOISE
SHAPING

NOISE

x

MODULATION
0.5 OR 1.0

NASAL
ANTIRESONATOR

F5, 85, A5 F4, 84, A4 F3, 83, A3 F2, 82, A2 Fl, B 1, A 1

RESONATOR RESONATOR RESONATOR RESONATOR RESONATOR
~ R ~ ~ Fl

SPEAKER ASPIRATION
x ASPIRATION

82. G2

RESONATOR
F2

83,G3

t
RESONATOR
F3

84, G4

RESONATOR
F4

F5, 85, GS

t
RESONATOR
F5

F6, 86, G6

RESONATOR
F6

SPEAKER
FRICATION

SPEAKER
FRICATION

SPEAKER
FRICATION

SPEAKER
FRICATION

SPEAKER
FRICATION

SPEAKER FRICATION
x FRICATION

Note: Italicized terms are either speaker-dependent parameters or constant values.
All other parameters are updated every frame.

Figure 7
The D ECtalk Software Vocal Tract Model (also known as the Klatt Synthesizer)

also contains an index mark number from O to 99.
After receiving one of these messages, the synchro­
nization thread periodically polls the audio thread
until the indicated audio sample has been played . If
the message contained a synchronization symbol, an
event is set that unblocks the command thread. If it is
an index mark message, the synchronization thread
sends the index mark number back to the application.
For the Digital UNIX operating system, this number
is returned by calling a callback function that the appli­
cation specifies when DECtalk Software is started. For
the Windows NT operating system, the Send.Message
function is used to return the index mark number
to the application. The message is sent to a window
procedure specified by the window handle that is pro­
vided when the text-to-speech system is started.

The Audio Thread
The audio thread manages all activities associated with
playing audio through the computer's sound hard­
ware. An audio API insulates DECtalk Software from
the differences between operating systems. The audio
API communicates with the audio thread. The VTM
thread calls an audio API queuing function that writes
samples to a ring buffer that is read only by the audio
thread. The audio thread opens the audio device after
approximately 0.8 seconds of audio samples have been
queued and closes the audio device when there are no
more samples to play. If the number of audio samples
in the queue is too small to cause the audio device to
be opened, and the flow rate (measured over a 100-
millisecond interval) into the audio ring buffer is zero,
the timer thread will send the audio thread a message

Digital Technical Journal Vol. 7 No. 4 1995 15

16

that causes the audio device to open and start playing
audio. When audio either starts or stops playing, a
message is sent to the application.

For the Digital UNIX operating system, the audio
thread is an interface to the low-level audio functions
of the Multimedia Services for Digital UNIX (MMS)
product. MMS provides a server to play audio and
video.

For the Windows NT operating system, the imple­
mentation also uses the system low-level audio func­
tions, but these functions interface directly with a
system audio driver. The audio API provides capabili­
ties to pause the audio, resume paused audio, stop
audio from playing and caned all queued audio, get the
audio volume level, set the audio volume level, get the
number of audio samples played, get the audio format,
and set the audio format. An in-line play command can
be used to play audio files. DECtalk Software uses the
get format and set format audio capabilities to dynami­
cally change the audio format so it can play an audio file
that has a format different from the format generated
bytheVTM.

DECtalk Software API

In the mid-1980s, researchers at Digital's Cambridge
Research Lab ported the DECtalk text-to-speech
C language-based code to the ULTRIX operating
system. The command, LTS, PH, and VTM portions
of the system were different processes. The pipes were
implemented using standard UNIX I/0 handles, stdin
and stdout. These, along with an audio driver process,
were combined into a command procedure. This

Table 3

system lacked many of the rules and features found
in DECtalk Software today, but it did demonstrate
that real-time speech synthesis was possible on a work­
station. Before this time, DECtalk required specialized
Digital signal-processing hardware for real-time oper­
ation. 14 On a DECstation Model 5000/25 work­
station, the text-to-speech implementation used 65
percent of the CPU. If the output sample rate of this
system had been raised from 8,000 Hz to 11,025 Hz,
the highest-quality rate provided by DECtalk Software,
it would have loaded approximately 89 percent of
the CPU. Workstation text-to-speech synthesis, while
possible, was still very expensive.

The power of the Alpha CPU has changed this.
Today, many copies of DECtalk Software can run
simultaneously on Alpha-based systems. Speech syn­
thesis is now a viable multimedia form. This change
created the need for a text-to-speech APL Table 3
shows the DECtalk Software CPU load for various
computers.

On Alpha systems, the performance of DECtalk
Software depends primarily on the SPECmark rating
of the computer. A lesser consideration is the sec­
ondary cache size. System bus bandwidth is not a lim­
iting factor: The combined data rates for the text,
phonemes, and audio are extremely low relative to
modern bus speeds, even when running the maximum
number of real-time text-to-speech processes that the
processor can support.

The API we have developed is the result of collabo­
ration between several organizations within Digital:
the Light and Sound Group, the Assistive Technology
Group, the Cambridge Research Lab, and the Voice

DECta lk Software CPU Loading versus Processor SPECmarks

Secondary
Clock Cache

System (MHz) Processor (MB)

Alpha AXP 150 Alpha 512
150 PC 21064
AlphaStat ion 266 Alpha 2,048
250 4/266 21064
workstation
DEC 3000 200 Alpha 2,048
Model 800 21064
workstation
DEC 3000 275 Alpha 2,048
Model 900 21064A
workstation
AlphaStation 233 Alpha 512
400 4/233 21064A
workstat ion
AlphaStation 266 Alpha 2,048
600 5/266 21164
workstation
XL 590 PC 90 Pentium 512

Digital Technical Journal Vol. 7 No . 4 1995

SPECint92 SPECfp92

80.9 110.2

198.6 262.5

138.4 188.6

230.6 264.1

157.7 183.9

288.6 428.6

Unknown N/A

Audio
Rate
(kHz)

11,025

11,025

11,025

11,025

11,025

8,000

11,025

Tota l CPU
Load(%)

8

2.4

5

3

3

24

and Telecom Engineering Group. We had two basic
requirements: We wanted the API to be easy to use
and to work with any text-to-speech system. While
creating the API, we defined interfaces so that future
improvements to the text-to-speech engine would not
require any API calls to be changed. (Customers frown
on product updates that require rewriting code.)
Some decisions were controversial. Some contributors
felt that the text-to-speech system should return
speech samples only in memory buffers, and the
application should shoulder the burden of interfacing
to the workstation's audio subsystem. The other
approach was to support the standard workstation
audio (which is platform dependent) and to provide
an API call that switched the system into a speech-to­
memory mode. We selected the latter approach
because it simplifies usage for most applications.

The API Functions
The core text-to-speech API functions are the
TextToSpeechStartup function, the TextToSpeechSpeak
function, and the TextToSpeechShutdown function.
The simplest application might use only these three
functions.

All applications using text-to-speech must call the
TextToSpeechStartup function. This function creates
all the DECtalk system threads and passes back a han­
dle to the text-to-speech system. The handle is used in
subsequent text-to-speech API calls. The startup func­
tion is the only API function that has different argu­
ments for the Digital UNIX and the Windows NT
operating systems. This is necessary because the asyn­
chronous reporting mechanism is a callback function
for Digital UNIX and is a system message for Windows
NT. The TextToSpeechShutdown function frees all
system resources and shuts down the threads. This
would normally be called when closing the application.

The TextToSpeechSpeak function is used to queue
text to the system. If an entire clause is not queued, no
output will occur until the clause is completed by
queuing additional text. A special TTS_FORCE para­
meter may be supplied in the function call to force a
clause boundary. The TTS_FORCE parameter is nec­
essary for applications that have no control over the
text source and thus cannot guarantee that the final
text forms a complete clause.

The text-to-speech API provides three audio output
control functions. These pause the audio output
(TextToSpeechPause), resume output after pausing
(TextToSpeechResume), and reset the text-to-speech
system (TextToSpeechReset). The reset function dis­
cards all queued text and stops all audio output.

The text-to-speech API also provides a special syn­
chronization function (TextToSpeechSync) that blocks
until all previously queued text has been spoken. This
API call may not return for days if a sufficient amount
of text is queued. (Index marks provide nonblocking
synchronization.)

The API supplies functions to both load
(TextToSpeechLoadUserDictionary) and unload
(TextToSpeechUnloadUserDictionary) an application­
defined dictionary. The dictionary contains words and
their phonemic representations. The developer creates
a dictionary using a window-based user-dictionary
tool. This tool can speak words and their phonemic
representations. It can also convert text sequences to
phonemic sequences. This last feature frees the devel­
oper from having to memorize and use the DECtalk
Software phonemic symbols.

Additional functions select the speaker voice, con­
trol the speaking rate, control the language, determine
the system capabilities, and return status. The status
API function can indicate if the system is currently
speaking.

Special Text-to-Speech Modes

DECtalk Software has three special modes: the speech­
to-wave file mode, the log-file mode, and the speech­
to-memory mode. Each mode has two complemen­
tary calls, one to enter the mode and one to exit.
When in the speech-to-wave file mode, the system
writes all speech samples to a wave audio file. The file is
closed when exiting this mode. This is useful on slower
Intel systems that cannot perform real-time speech
synthesis. The log-file mode causes the system to write
the phonemic symbol output of the LTS thread to a
file. The last mode is the speech-to-memory mode.
After entering this mode, the application uses a special
API call to supply the text-to-speech system with
memory buffers. The text-to-speech system writes
synthesized speech to these buffers and returns the
buffer to the application. The buffers are returned
using the same mechanism used for index marks, a
callback function on the Digital UNIX operating sys­
tem and a system message on the Windows NT operat­
ing system. These buffers may also return index marks
and phonemic symbols and their durations. If the text­
to-speech system is in speech-to-memory mode, call­
ing the reset function causes all buffers to be returned
to the application.

Porting DECtalk Software

The DECtalk PC code used a simple assembly lan­
guage kernel to manage the threads. The existence of
threads on our target platforms simplified porting the
code. The thread functions, signals (such as condi­
tions or events), and mutual exclusion objects are dif­
ferent for the Digital UNIX and the Windows NT
operating systems. Since these functions occur mainly
in the pipe code and the audio code, we maintain
different versions of code for each system. The
message-passing mechanism for Windows NT has no

Digital Technical Journal Vol. 7 No. 4 1995 17

equivalent on Digital UNIX; therefore part of the API
code had to be different. The command, LTS, and
PH threads are all common code for Digital UNIX
and Windows NT. Most of the VTM thread is also
common code.

Porting the code for each thread required putting
conditional statements that define thread entry points
into each module for each supported operating system.
We also had to add special code to each thread to sup­
port our API call that resets the text-to-speech system.
The reset is the most complicated API operation,
because the data piped between threads is in the form
of variable-length packets. During a reset, it is incorrect
to simply discard data within a pipe because the thread
that reads the pipe will lose data synchronization.
Therefore a reset causes each thread to loop and dis­
card all input data until all the pipes are empty. Then
each thread's control and state variables are set to a
known state. In many complicated systems, resetting
and shutting down are the most complicated parts of a
control architecture. System designers should incorpo­
rate mechanisms to simplify these functions.

The VTM code is much shorter and simpler than
the code in either the LTS or the PH thread, but it is
by far the largest CPU load in the system. The
DECtalk PC hardware used a specialized Digital Signal
Processor (DSP) for the VTM. The research VTM
code (written in the C language) was rewritten to be
sample-rate-independent. The filters were all made
in-line macros. With this new VTM, the DECtalk
Software system loaded an Alpha AXP 150 PC product
31 percent. After rewriting this code using floating­
point arithmetic and then converting it to assembly
language, DECtalk Software loaded the processor less
than 8 percent. (Both tests were conducted at an
11,025-Hz output sample rate.)

There are several reasons a floating-point VTM runs
faster than an integer VTM on an Alpha system. An
integer VTM requires a separate gain for each filter to
keep the output data within the filter's dynamic range.
For a floating-point VTM, the gains of all cascaded
filters are combined into one gain. The increased
dynamic range allows combining parts of some filters
to reduce computations. Also, floating-point opera­
tions do not require additional instructions to perform
scaling. The processor achieves greater instruction
throughput because it can dual issue floating-point
instructions with integer instructions, which are used
for pointers, indices, and some loop counters. Finally,
the current generation of Alpha processors performs
some floating-point operations with less pipeline
latency than their equivalent integer operations (note
the SPECfp92 and SPECint92 ratings of the current
Alpha processors listed in Table 3).

18 Digital Technical Journal Vol. 7 No. 4 1995

The integer VTM is faster than the floating-point
VTM on Intel processors, so we maintain two versions
of the VTM. Both versions support multiple sample
rates. The pitch of the glottal source and the frequen­
cies and bandwidths of the filters are adjusted for the
output sample rate. When necessary, the filter gains are
adjusted. These extra calculations do not add much to
the total time used by the VTM because they are per­
formed only once per frame.

Possible Future Improvements
to DECtalk Software

The Assistive Technology Group continues to improve
the letter-to-sound rules, the prosodic rules, and the
phonetic rules. Future implementations could use
object-oriented techniques to represent the dictionar­
ies, words, phonemes, and parts of the VTM. A larger
dictionary with more syntactic information can be
added. There has even been some discussion of combin­
ing the LTS and PH threads to make more efficient use
oflexical knowledge in PH. The glottal waveform gen­
erator can be improved. Syntactic parsers might provide
the information required for more accurate intonation.
Someday, semantic parsing (text understanding) may
provide a major improvement in synthetic speech into­
nation. Researchers both within and outside of Digital
are investigating these and many other areas. It seems
likely that the American English version of DECtalk
Software will continue to improve over time.

Summary

DECtalk Software provides natural-sounding, highly
intelligible text-to-speech synthesis. It was developed to
perform on the Digital UNIX operating system on
Digital's Alpha-based platforms and with Microsoft's
Windows NT operating system on both Alpha and Intel
processors. It is based on the mature DECtalk PC
hardware product. DECtalk Software also provides an
easy-to-use API that allows applications to use the work­
station's audio subsystem, to create wave audio files,
and to write the speech samples to application-supplied
memory buffers. An Alpha-based workstation can run
many copies of D ECtalk Software simultaneously.

DECtalk Software uses a dictionary and linguistic
rules to convert speech to phonemes. An application­
supplied dictionary can override the default pronunci­
ation of a word. Prosodic and phonetic rules modify
the phoneme's attributes. A vocal tract model synthe­
sizes each phoneme to produce a speech waveform.
The result is the highest-quality text to speech. The
Assistive Technology Group continues to improve the
DECtalk text-to-speech algorithms.

Acknowledgments

I wish to acknowledge and thank all the members of
the DECtalk Software project and additional support
staff. Bernie Rozmovits, our engineering project
leader, was the visionary for this entire effort. He con­
tributed most of our sample applications on Windows
NT, and he also wrote the text-to-speech DDE server.
Krishna Mangipudi, Darrell Stam, and Hugh Enxing
implemented DECtalk Software on the Digital UNIX
operating system. Thanks to Bill Scarborough who did
a great job on all of our documentation, particularly
the on-line help. Special thanks to Dr. Tony Vitale and
Ed Bruckert, from Digital's Assistive Technology
Group. They both were instrumental in developing
the DECtalk family of products and are continuing to
improve them. Without their efforts and support,
DECtalk Software could not exist. Tom Levergood
and T. V. Raman at Digital's Cambridge Research Lab
helped test DECtalk Software and provided many sug­
gestions and improvements. Thanks also to the engi­
neering manager for Graphics and Multimedia, Steve
Seufert, who continues to support our efforts. Finally,
we are all indebted to Dennis Klatt who was the cre­
ator of the DECtalk speech synthesizer and to all the
other developers of the original DECtalk hardware
products.

References

1. G. Fant, Acoustic Theory of Speech Production
(The Netherlands: Mouton and Co. N.V., 1960).

2. C. Schmandt, Voice Communication with Computers
(New York: Van Nostrand Reinhold, 1994).

3.]. Allen, M. Hunnicutt, and D. Klatt, From Text
to Speech: The M!Talk System (Cambridge, Mass.:
Cambridge University Press, 1987).

4 . J. Flanagan, Speech Analysis, Synthesis, and Percep­
tion, 2d ed. (New York: Springer-Verlag, 1972).

5. D. Pisani, H. Nusbaum, and B. Greene, "Perception
of Synthetic Speech Generated by Rule," Proceedings
of the IEEE, vol. 73, no. 11 (1985): 1665-1676.

6. A. Vitale and M. Divay, "Algorithms for Grapheme­
Phoneme Translation in French and English" (in
preparation).

7. V. Fromkin and R. Rodman, An Introduction to
Language, 2d ed. (New York: Holt, Rinehart, and
Winston, 1978).

8. D. Klatt, "Review of Text-to-Speech Conversion for
English," Journal of the Acoustical Society of America,
vol. 82, no. 3 (1987): 737-793.

9. D. Klatt, "Software for a Cascade/Parallel Formant
Synthesizer," Journal of the Acoustical Society of
America, vol. 67 (1980): 971-975.

10. L. Rabiner and B. Gold, Theory and Application of
Digital Signal Processing (London: Prentice Hall,
1975).

11. L. Rabiner and R. Schafer, Digital Processing of
Speech Signals(London: Prentice Hall, 1978).

12. D. Klatt and L. Klatt, "Analysis, Synthesis, and Percep­
tion of Voice Quality Variations among Female and
Male Talkers," Journal of the Acoustical Society of
America, vol. 87, no. 2 (1990): 820-857.

13. J. Tierney, "Digital Frequency Synthesizers," Chapter
V of Frequency Synthesis: Techniques and Applica­
tions,]. Gorski-Pope!, ed. (New York: IEEE Press,
1975).

14. E. Bruckert, M. Minow, and W. Tetschner, "Three­
Tiered Software and VLSI Aid Development System to
Read Text Aloud," Electronic (April 21, 1983).

Biography

William I. Hallahan
Bill Hallahan is a member of the Light and Sound Group,
part of Software Engineering for the Workstation Business
Segment. Previously he worked in the Image, Voice, and
Video Group on signal-processing algorithms and the
rewriting of the DECtalk vocal tract model. Before joining
Digital in 1992., he was employed at Sanders Associates for
12 years, where he developed and implemented algorithms
that performed signal analysis, signal demodulation, and
numerical methods. Bill received a B.S.E.E. from the
University of New Hampshire in 1980. He is co-author of
a patent application for a specific color-space conversion
algorithm used in video multimedia applications.

Digital Technical Journal Vol. 7 No. 4 1995 19

The J300 Family of Video
and Audio Adapters:
Architecture and
Hardware Design

The J300 family of video and audio adapters

provides a feature-rich set of hardware options

for Alpha-based workstations. Unlike earlier

attempts to integrate full-motion digital video

with general-purpose computer systems, the

architecture and design of J300 adapters exploit

fast system and 1/0 buses to allow video data

to be treated like any other data type used by

the system, independent of the graphics subsys­

tem. This paper describes the architecture used

in J300 products, the video and audio features

supported, and some key aspects of the hard­

ware design. In particular, the paper describes

a simple yet versatile color-map-friendly render­

ing system that generates high-quality 8-bit

image data.

20 Digital Technical Journal Vol. 7 No. 4 1995

I
Kenneth W. Correll
Robert A. Ulichney

The overall architectural design goal for the J300
family of video and audio adapters was to provide the
hardware support necessary to allow the integration
of broadcast video into workstations. The three pri­
mary objectives were as follows: (1) digitized video
data should be treated the same as any other data type
in the system; (2) the video and the graphics subsys­
tem designs should be completely independent of
each other; and (3) any hardware designed should be
low cost.

Digital has implemented the J300 architecture in
three products: Sound & Motion J300, FullVideo
Supreme JPEG, and FullVideo Supreme.1 The Sound
& Motion J300 (referred to in this paper simply as the
J300) was the first product designed with this archi­
tecture and is the primary focus of this paper. The
FullVideo Supreme JPEG and FullVideo Supreme
products are based on the same design database as the
J300. They differ from the J300 in the bus supported
(they support the peripheral component interconnect
[PCI] bus) and the lack of audio support. Additionally,
the FullVideo Supreme product does not include
hardware compression/ decompression circuitry.

The J300 brings a wide range of video and
audio capabilities to machines based on Digital's
TURBOchannel I/0 interconnect. Analog broadcast
video can be digitized, demodulated, and rendered for
display on any graphics device. The J300 provides
hardware video compression and decompression
to accelerate applications such as videoconferencing.
The J300 supports analog broadcast video output
from either compressed or uncompressed video files.
Audio support includes a general-purpose, digital
signal processor (DSP) to assist in the real-time man­
agement of the audio streams and for advanced pro­
cessing, such as compression, decompression, and
echo cancellation. Audio input and output capabilities
include stereo analog I/0, digital audio 1/0, and
a headphone/microphone jack. Analog audio can be
digitized to 16 bits per sample at a rate of up to
48 kilohertz (kHz).

This paper begins with an overview of some termi­
nology commonly used in the field of broadcast video.
The paper then presents the evolution and design of
the J300 architecture, including several key enab ling

technologies and the logical video data paths available.
Next follows a discussion of the hardware design phase
of the project and the trade-offs made to reconcile
expectation and implementation. Detailed descrip­
tions are devoted to specific areas of the design,
including the video 1/0 logic, the AccuVideo render­
ing path, and the video and audio direct memory
access (DMA) interfaces.

Video Terminology Overview

Three fundamental standards are in use worldwide for
representing what is referred to in this paper as broad­
cast video: the National (U.S.) Television System
Committee (NTSC) recommendation, Phase Alternate
Line (PAL), and Sequentiel Couleur avec Memoire
(SECAM). The standards differ in the number of
horizontal lines in the display, the vertical refresh rate,
and the method used for encoding color information.
North America and Japan use the 525-line, 60-hertz
(Hz) NTSC format; PAL is used in most of Europe;
and SECAM is used primarily in France. Both the PAL
and SECAM standards are 625-line, 50-Hz systems.2

All three television standards split an image or a
frame of video data into two fields, referred to as the
even and the odd fields. Each field contains alternate
horizontal lines of the frame. The vertical refresh rate
cited in the previous paragraph is the field rate; the
frame rate is one-half of that rate.

Unlike computer display systems that use red,
green, and blue (RGB) signals to represent color
information, PAL and SECAM use a luminance­
chrominance system, which has the three parameters
Y(the luminance component), and U and V(the two
chrominance components). NTSC uses a variation of
YUV, where the U and V components are rotated by
33 degrees and called I and Q. YUV is related to RGB
by the following conversion matrix: 3

Y= 0.299R+ 0.587G + 0.114B
U= - 0.169R- 0.331G + O.SOOB
V= O.SOOR- 0.419G - 0.081B

All the different standards limit the bandwidth of
the chrominance signal to between one-quarter and
one-third that of the luminance signal. This limit is
taken into account in the digital representation of the
signal and results in what is called 4:2:2 YUV, where,
for every four horizontally adjacent samples of Y, there
are two samples of both U and V All three compo­
nents are sampled above the Nyquist rate in this for­
mat with a significant reduction in the amount of data
needed to reconstruct the video image.

Various modulation techniques transform the sepa­
rate Y, U, and V components into a single signal, typi­
cally referred to as composite video. To increase the
fidelity of video signals by reducing the luminance­
chrominance cross talk caused by modulation, the

S-Video standard has been developed as an alternative.
S-Video, which refers to separate video, specifies that
the luminance signal and the modulated chrominance
signal be carried on separate wires.

The J300 includes hardware support for the Joint
Photographic Experts Group (JPEG) compression/
decompression standard.4 JPEG is based on the discrete
cosine transform (DCT) compression method for still­
frame color images. DCT is a widely accepted method
for image compression because it provides an efficient
mechanism to eliminate components of the image that
are not easily perceived by casual inspection.

Design History and Motivation

Digital arrived at the J300 adapter design after consid­
ering several digital video playback architectures. The
Jvideo advanced development project, the implemen­
tation of one of the alternatives, was instrumental in
achieving the design goals.

Architectural Alternatives and Objectives
In January 1991, several Digital engineering organiza­
tions collaborated to define the architecture of a hard­
ware seed project that could be used to explore a
workstation's capability to process video data. The par­
ticipants felt that the key technologies required to
explore the goal of integrating computers and broadcast
video were available. These enabling technologies were

1. The TURBOchannel high-speed 1/0 bus, which
was a standard on Digital workstations

2. The anticipated acceptance of the JPEG
compression/ decompression standard and single­
chip implementations that supported that standard

3. The development of a rendering system (now
called the AccuVideo system) that could map YUV
input values into an 8-bit color index using any
number of available colors with very good results

We evaluated the three alternative approaches
shown in Figure 1 for moving compressed video data
from system memory, for decompressing and render­
ing the data, and, finally, for moving the data into the
frame buffer.

The chroma key approach, shown in Figure la,
differs little from previous work done at Digital and
was the primary architecture used by the industry.
Several variations of the exact implementation are in
use, but, basically, the graphics device paints a desig­
nated color into sections of the frame buffer where the
video data is to appear on the display. A comparator
located between the graphics frame buffer and the dis­
play device looks at the serial stream of data coming
from the graphics frame buffer and, when the data
matches the chroma key (stored in a register), inserts
the video data. As shown in Figure la, this approach

Digital Technical Journal Vol. 7 No. 4 1995 21

22

SYSTEM
1/0 BUS

FRAME
BUFFER

CHROMA KEY MONITOR

t g~~~~i~LER

I DECOMPRESS H ... _ R_E_N_D_E_R_ ~ FRAME STORE

(a) Chroma Key Approach

n -~RAPHICS CONTROLLER - - - - - I

~~~s" fT~o~c~=~s ~ _ ::E~ _ ~ --:- ~_:_~_: _R_ ..... H MONITOR 

( b) Graphics Controller Approach 

FRAME 
BUFFER MONITOR 

( c) Graphics Controller-independent Approach 

Figure 1 
Digital Video Playback Architectures 

relies on a special connection between the video 
decompression block and the output of the graphics 
device. While this approach off-loads the system 1/0 
bus, it treats video data differently from other data 
types to be displayed. In particular, the X Window 
System graphical \vindowing environment has no 
knowledge of the actual contents of the video window 
at any given time. 

The graphics controller approach, shown in Figure 
1 b, integrates the decompression technology with the 
graphics accelerator. Although this approach has the 
potential of incurring the lowest overall system cost, it 
fails in two important aspects. First, it does not expose 
the \vindmving system to the video data. Second, since 
the graphics controller and video logic are integrated, 
the user must accept the level of graphics performance 
provided. No graphics upgrade path exists, so upgrad­
ing would require another product development 
cycle. Including the video logic across the range of 
graphics devices is not desirable, because such a design 
forces higher prices for users who are not interested in 
the manipulation of broadcast video. 

The third approach, shown in Figure le, is much 
more radical. It places the responsibility of moving each 
field of video data to and from the decompression/ 
rendering option squarely on the system. The system 
1/0 bus must absorb not only the traffic generated by 
the movement of the compressed video to the decom­
pression hardware but also the movement of the 

Digital Technical Journal Vol. 7 No. 4 1995 

decompressed video image from the accelerator back 
to system memory and back again over the same bus 
to the graphics option. 

Accepting the third alternative architecture allowed 
us to meet the three important objectives for the 
project: 

1. The workstation should be able to treat digitized 
video data the same as any other data type. 

2. The inclusion of video capabilities in a workstation 
should be completely independent of the graphics 
subsystem used. 

3. Any hardware option should be low cost. 

The original design goals included audio 1/0, even 
though the processing power and bandwidth needed 
for audio were far below those required for video. 
Since users who want video capability usually require 
audio capability as well, audio support was included 
so that users would have to buy only one option to 
get both audio and video. This design reduced the 
number of bus slots used. 

The Jvideo Advanced Development Project 
Jvideo was the name given to the advanced develop­
ment hardware seed project. Actual design work 
started in February 1991; power on occurred in 
September 1991. Jvideo has since become a widely 
used research tool. 



Table 1 
The Nine Video Flow Paths 

Input Analog ,om pressed Uncompressed Qithered 

A nalog 

,om pressed 

.U.ncompressed 

Jvideo was an important advanced development 
project for several reasons. First, it was the vehicle used 
to verify the first two project objectives. Second, it was 
the first complete hardware implementation of the 
rendering circuit, thus verifying the image quality that 
was available when displaying video with fewer than 
256 colors. Finally, it was during the development of 
Jvideo that the DMA structure and interaction with 
the system was developed and verified. 

J300 Features 

This section describes the various video paths sup­
ported in the J300 and presents videoconferencing 
as an example of video data flow. The AccuVideo 
filter-and-scale and dithering system designs used in 
the J300 are presented in detail. 

Video Paths 
Table 1 summarizes the nine fundamental video paths 
that the J300 system supports. The input to the J300 
can come from an external analog source or from the 
system in compressed or uncompressed form . The 
outputs include analog video and several internal 
formats, i.e., JPEG compressed, uncompressed, or 
dithered. Dithering is a technique used to produce a 
visually pleasant image while using far less information 
than was available in the original format. 

A conceptual flow diagram of the major compo­
nents of the J300 video system is shown in Figure 2. 
Physically, the frame store and the blocks to its left 
make up the video board. All the other blocks except 
for JPEG compression/ decompression are part of the 
J300 application-specific integrated circuit (ASIC). 

I I ANALOG OUT ~ UPSCALE 

I t 
I 
I 
[ __ _ 

FRAME 
- - --< STORE 

(The J300 Hardware Implementation section pro­
vides details on this ASIC. ) 

Both the upscale prior to the analog out block and 
the downscale after the analog in block scale the image 
size independently in the horizontal and vertical direc­
tions with arbitrary real-value scale factors. The filter­
and-downscale function is handled by the Philips chip 
set, as described in the J300 Hardware Implementation 
section. The upscale block is a copy of the Bresenham­
style scale circuit used in the filter-and-scale block. 

The Bresenham-style scale circuit is extremely 
simple and is described in "Bresenham-style Scaling," 
along with an interesting closed-form solution for 
finding initial parameters.5 The filter-and-scale block is 
part of the J300 rendering system. The J300 supports 
arbitrary scaling for either enlargement or reduction in 
both dimensions. We carefully selected a few simple, 
three-element horizontal filters to be used in combi­
nation with scaling; the filters were small enough to be 
included in the J300 ASIC. The J300 supports three 
sharpening filters that are based on a digital Laplacian:0 

Low sharpness 
Medium sharpness 
High sharpness 

(-1/2 
( - 1 
( - 2 

2 
3 
5 

- 1/2) 
-1 ) 
-2 ) 

The J300 also supports two low-pass or smoothing 
filters: 

Low smoothing 
High smoothing 

(1/4 
(1/2 

1/2 
0 

1/4) 
1/2) 

Sharpening is performed before scaling for enlarge­
ment and after scaling for reduction. Smoothing 
is always performed before scaling (as a band limiter) 
for reduction and after scaling ( as an interpolator) for 
enlargement. 

r- --- ---~ 
JPEG I I 
COMPRESSION/ ___.. DMA A I 
DECOMPRESSION I I 

I 
_______ I 

1/0 BYPASS DMAB 

I 
I 
I 
I 

SYSTEM 
1/0 BUS 

FILTER AND DITHER J300 I 
I SCALE VIDEO I 
[ ________________ ASIC ..., 

Figure2 
J300 Video Flow 

Digital Technical Journal Vol. 7 No. 4 1995 23 



The second part of video rendering occurs in the 
dither block. The AccuVideo Rendering section pro­
vides details on this block. 

The I/0 bypass skips over the video rendering blocks 
when undithered uncompressed output is required. 
When uncompressed digital video in used as input, the 
I/0 bypass is also used. DMA B thus passes dithered or 
uncompressed output and uncompressed input. 

Compressed input and compressed output are 
passed through DMA A. The JPEG compression/ 
decompression block handles all compression of out­
put and decompression of input. The combination of 
the two DMA channels allows high data rates because 
both channels are often used in parallel. 

Videoconferencing Application 

A good illustration of the video data flow in J300 is 
a videoconferencing application. Figure 3 shows the 
flow of analog (A), compressed ( C), and dithered (D) 
video data to and from memory in a system on a net­
work. The application software controls the flow of 
data between memory and the display and network 
devices. The J300 hardware must perform two funda­
mental operations: 

1. Capture the local analog signal, compress the data, 
and send it to memory, and in parallel, dither the 
data and send it to memory. The solid arrows 
in Figure 3 denote the compress, send, and view 
paths. 

2. Receive a remote compressed video stream from 
memory, decompress and dither the data, and send 
it back to memory. The dashed arrows in Figure 3 
denote the receive, decompress, and view paths. 

Figure 3 demonstrates the unique graphics con-
troller independence of the J300 architecture, as 
shown in Figure le. In assessing the aggregate video 
data traffic, it is important to keep in mind that the 

.. t 
c c c 

1LL1 

MEMORY 

t .. 
D c D 

I 

' J300 

A 

,,JEi p 

D D 
I 

FRAME 
BUFFER 

MONITOR 

Notes: Dashed arrows represent the receive, decompress, and view paths 
(C-+ D). Solid arrows represent the compress, send, and view paths 
(A-+C, A-+D). The symbols A, C, and D stand for analog, 
compressed, and dithered data. 

Figure 3 
Videoconferencing Application 

24 Digital Technical Journal Vol. 7 No. 4 1995 

dithered data is 8 bits per pixel, and the compressed 
data is approximately 1.5 bits per pixel. For example, 
consider a videoconference with 11 participants, 
where each person's workstation screen displays the 
images of the other 10 participants, each in a 320-by-
240-pixel window and with a refresh rate of 20 Hz. 
The bus traffic required for each window is twice the 
compressed image size plus twice the decompressed 
image size, i.e., (2 X 320 X 240 X 1.5)..,... 8 bytes+ 
(2 X 320 X 240) bytes= 182.4 kilobytes (kB ) per 
window. The total bandwidth would be 182.4 kB X 

11 windows X 20 Hz = 40.1 megabytes (MB ) per 
second, which is well within the achievable bandwidth 
of both TURBOchannel and PCI buses. 

These two operations through the J300 concep­
tual flow diagram of Figure 2 are shown explicitly in 
Figure 4 for the capture, compress, and dither paths, 
and in Figure 5 for the decompress and dither path. 
In Figure 4, video data is captured through the analog 
in block and buffered in the frame store block. The 
frame store then sends the data in parallel to the JPEG 
compression/ decompression path, and to the filter, 
scale, and dither path, each of which sends the data to 
its own dedicated DMA port. 

In Figure 5, compressed data enters DMA A, is 
JPEG decompressed using the frame store as a buffer, 
and is sent to the filter, scale, and dither path, where it 
is output through DMA B. 

Figures 4 and 5 illustrate three of the nine possible 
video paths shown in Table 1. It is straightforward to 
see how the other six paths flow through the block 
diagram ofFigure 2. 

AccuVideo Rendering 
Digital's AccuVideo method of video rendering is 
used in the J300 and in other products.7-8 J300 render­
ing is represented in Figure 2 by the filter-and-scale 
block and by the dither block. The following features 
are supported: 

• High-quality dithering 

• Selectable number of colors from 2 to 256 

• YUV-to-RGB conversion with controlled out-of-
bounds mapping 

• Brightness, contrast, and saturation control 

• Color or gray-scale output 

• Two-dimensional (2-D) scaling to any size 

• Sharpening and smoothing control 

The algorithm for mean-preserving multilevel 
dithering is described by Ulichney in "Video 
Rendering. "9 Mean preserving denotes that the 
macroscopic average in the output image is main­
tained across the entire range of input values. Figure 6 
depicts the version of the dithering algorithm used for 
the single component Yin the J300 prototype, Jvideo. 



r------
1 -- I 

I !....J 
I I 

,---------, 
JPEG I 
COMPRESSION/ ...+-- DMA A 
DECOMPRESSION I 

I I I 
1 1 FRAME r - - - - - - - - - ..... 
I I STORE I 

I 
I 
I 
I 

SYSTEM 
1/0 BUS 

I 1--- --, I 
DMAB 

I ~ FILTERAND I --- I 
I ANALOG IN DOWNSCALE I I FILTER AND t--------i~ DITHER J3oo I 

VIDEO I 
ASIC 

I SCALE 
~ ___ !:_H~P.§_ C!:!!P _§E.!_ ___ ~ L------------------~ 

Figure4 
Capture, Compress, and Dither Paths 

[ JPEG 
COMPRESSION/ 
DECOMPRESSION 

,---------, 

DMAA 

FRAME 
STORE 

r-- _______ ..... 
I 
I 
I 
I 

SYSTEM 
1/0 BUS 

I 
I 

DMAB 

I ...-------, .... 
I FILTER AND t----"'1 DITHER J3oo I 

VIDEO I 
ASIC 

I SCALE 

L------------------~ 
Figure 5 
Decompress and Dither Path 

y _$_ Y ADJUST 

~ LUT 
256 BY 9 BITS 

8 

x 3 
Y DITHER 

3 MATRIX 
y 64 BY 8 BITS 

Figure 6 
Dither Components of the Jvideo Prototype 

To quantize with a simple shift register and still main­
tain mean preservation, a particular gain that happens 
to have a value between 1 and 2 must be imparted to 
the input.9 This gain is included in the adjust look-up 
table (LUT), thus adding a bit to the data width of the 
input value to the ditherer. 

In the case of the Y (luminance) component, the 
effect of brightness and contrast can be controlled by 
dynamically changing and loading the contents of this 
adjust LUT. Saturation control is a contrast-like map­
ping controlled on the U and V adjust L UTs. 

The least significant bits of the horizontal and verti­
cal address (x,y) of the pixel index the dither matrix. 
In the Jvideo prototype, we used an 8 by 8 recursive 
tessellation array.7 Because the size of the array was 
so small, all the components in Figure 6 could be 

encapsulated with a single 16K-by-4-bit random­
acccss memory (RAM). This implementation is not 
the least expensive, but it is the easiest to build and is 
quite appropriate for a prototype. 

Figure 7 illustrates the Jvideo dither system. The 
number of dither levels and associated color adjust­
ment are designed in software and loaded into each of 
the 16K-by-4-bit LUTs for Y, U, and V Each compo­
nent outputs from 2 to 15 dithered levels. The three 
4-bit dithered values are used as a collective address to 
a color convert LUT, which is a 4K-by-8-bit RAM. 

Loaded into this LUT is the conversion of each 
YUV triplet to one of N RGB index values. The gener­
ation of this LUT incorporates the state of the display 
server's color map at render time. Although this 
approach is much more efficient than a direct algebraic 
conversion known as dematrixing, an arbitrarily com­
plex mapping of out-of-range values can take place 
because the table is built off line. Another paper in this 
issue of the journal, "Software-only Compression, 
Rendering, and Playback of Digital Video," presents 
details on this approach .7 

Perhaps the central characteristic of AccuVideo ren­
dering is the pleasing nature of the dither patterns 
generated. We arc able to obtain such patterns because 
we incorporate dither matrices developed using the 
void-and-cluster method. 10 These matrices are 32 by 

Digital Technical Journal Vol. 7 No. 4 1995 25 



26 

8 

3 Y DITHER AND 
x ADJUST LUT 

y 

3 16K BY 4 BITS 
y 

8 
U DITHER AND 

u - ADJUST LUT 
16K BY 4 BITS 

~ -
8 

V DITHER AND 
v - ADJUST LUT 

~ 
16K BY 4 BITS 

Figure 7 
Jvideo Dither System 

32 in extent. Although surprisingly small for the 
complexity and seamlessness of the patterns produced, 
this size requires 10 bits of display address information 
for indexing. 

While very simple to implement, the single LUT 
approach used in the Jvideo system shown in Figure 7 
becomes unattractive for a matrix of this size because 
of the large memory requirement. Eight bits of input 
plus 10 bits of array address requires a 256K-bit RAM 
for each color component; }video's 8 by 8 dither 
matrix called for a more cost-effective 16K-bit RAM. 

The dither system design used in the J300 is shown 
in Figure 8. The design is quite simple, requiring only 
RAM and three adders. We restricted the number of 
U- and V-dithered levels to always be equal. Such a 
restriction allows the sharing of a single dither matrix 
RAM. The paper "Video Rendering" provides details on 

Y 4-
Y ADJUST 9 9 
LUT 
256 BY 9 BITS 

x 5 Y DITHER 

5 MATRIX 
y 1,024 BY 8 BITS 

UADJUST 
u 4- LUT 

9 9 

256 BY 9 BITS 

x4-- UV DITHER 

5 MATRIX 
y 1,024 BY 8 BITS 

8 

v-4-1 VADJUST 9, ·0 ~. LUT ' 256BY9BITS 

Figure 8 
J300 Dither System 

Digital Technical Journal Vol. 7 No. 4 1995 

~ 

~ 
COLOR 
CONVERT 
LUT 

~ 
4,096 BY 8 BITS 

...;3..... COLOR 
INDEX 

the relationship between the number of dithered levels 
for each component, the number of bits shifted, the nor­
malization of the dither matrix values, the gain embed­
ded in the adjust LUT, and the bit widths of the data 
paths.9 Note that the decision to use RAM instead of 
read-only memory (ROM) for the adjust LUTs, dither 
matrices, and color convert LUT permits complete flex­
ibility in selecting the number of dithered colors. 

When the video source is monochrome, or whenever 
a monochrome display is desired, a Mono Select mode 
allows the Y channel to be quantized to up to 8 bits. 

The algorithm used in the software-only version of 
AccuVideo exactly parallels Figure 8.7 "Integrating 
Video Rendering into Graphics Accelerator Chips" 
describes variations of this architecture for other 
products. 8 One design always renders the same num­
ber of colors ,vithout adjustment, in favor of very low 

Y SHIFT 
8 4 

4 

COLOR 
4~ 8 COLOR 

U SHIFT CONVERT 
INDEX 

MONO LUT 

SELECT 

· I v SHIFT I 4, 
' • 4,096 BY 8 BITS 



cost. Another performs YUV-to-RGB conversion first, 
to allow dithering to more than 256 colors. Note that 
with this design, for large numbers of output colors, 
the memory required for the back-end color convert 
LUT design would be prohibitive. 

J300 Hardware Implementation 

Implementing the J300 hardware design entailed 
making trade-offs to keep down the costs. This section 
presents the major trade-offs and then discusses 
the resulting video and audio subsystem designs, the 
built-in 1/0 test capabilities, and the Verilog hardware 
description language design environment used. 

Design Trade-offs 
In August 1991, the Jvideo hardware design team 
presented to engineering management several cost­
reducing design alternatives with the goal of turning 
Jvideo into a product. Alternatives ranged from retain­
ing the basic design (which would require a short 
design time and would result in the fastest time to 
market) to redesigning the board with minimal cost 
as the driving factor (which meant putting as much 
logic as possible into the J300 ASIC). Management 
accepted the latter proposal, and design started in 
January 1992. 

The major design trade-offs involved in reducing 
module cost centered around three portions of the 
design: the accelerator chip, the pixel representation, 
and the dither circuit. The design team evaluated dif­
ferent JPEG hardware compression/ decompression 
accelerators in terms of availability, performance, cost, 
and schedule risk. While various manufacturers 
claimed to have cheaper parts available within our 
design schedule constraints, the CL550 chip from 
C-Cube Microsystems, the same chip used in the 
Jvideo system, had reasonable performance and 
known idiosyncrasies. The designers decided to use 
one CL550 chip instead of two, as was done in Jvideo. 
This meant that in videoconferencing applications, the 
chip would have to be programmed to compress the 
incoming image and then reprogrammed to decom­
press the other images. The turnaround time of the 
programming required to implement the design 
change plus the compression time together accounted 
for the performance penalty that the product would 
pay for including only one CL550. 

To understand the impact on performance of using 
just one CL550 chip, consider that all 700 registers in 
the chip would have to be reloaded when changing 
the chip from compression to decompression and vice 
versa. Given a register write cycle of 250 nanoseconds, 
the penalty is 175 microseconds. We estimated the 
time to compress an image as the number of pixels in 
the uncompressed image (the CL550 does occasion-

ally stall during compression or decompression, but 
we ignored this fact for these calculations) times the 
period of the pixel rate. For an image size of 320 by 
240 pixels and a pixel clock period of 66.67 nanosec­
onds, the time used for compression is 5.12 milli­
seconds. If the desired overall frame rate of all images 
on the screen is 20 Hz, then approximately 11 percent 
of the available time is given to compression ((5.12 
milliseconds+ 0.35 milliseconds) + 50 milliseconds). 
We judged this decrease in decompression perfor­
mance reasonable, since approximately 30 percent of 
the early estimated cost of materials on the J 300 was 
the CL550 and the associated circuits. 

The second major area of savings came with the 
decision to use the 4:2:2 YUV pixel representation in 
the frame store, the CL550, and the input to the ren­
dering logic. This approach reduced the width of the 
frame store and external data paths from 24 to 16 bits 
with no loss of fidelity in the image. The trade-off 
associated with this decision was that the design pre­
cluded the ability to directly capture video in 24-bit 
RGB unless the ASIC included a full YUV-to-RGB 
conversion. The main thrust of the product was to 
accelerate image compression and decompression on 
what was assumed to be the largest market, i.e., 8-bit 
graphics systems, by using the AccuVideo rendering 
path. Since 24-bit RGB can be obtained from 4:2:2 
YUV pixel representation (which can be captured 
directly) with no loss of image fidelity, we considered 
this hardware limitation to be minor. 

The third area of trade-offs revolved around the 
implementation of the dither circuit and how much of 
that circuitry the ASIC should include. The rendering 
system on Jvideo was implemented entirely with 
LUTs, a method that is inexpensive in terms of the 
random logic needed but expensive in terms of com­
ponent cost. Early on, the design team decided that 
including the 4K-by-8-bit color convert LUT inside 
the ASIC was not practical. Placing the LUT outside 
the ASIC required using a minimal number of pins, 
28, and using a readily available 8K-by-8-bit static 
random-access memory (SRAM) allowed the unused 
portion of the RAM to store the dither matrix values. 
Such a design reduced the amount of on-chip storage 
required for dither matrix values to 32 by 8 bits. 

The impact of requiring dither matrix value fetches 
on a per-line basis added to the interline overhead 
32 accesses for the new dither matrix values or 16 pixel 
clocks. The impact of the 16 added clocks on a line 
basis depends on the resultant displayed image size. 
If the displayed images are small, the impact is as much 
as 10 percent ( for a 160-by-120-pixel image). It is 
uncommon, however, for someone to view video on 
a workstation at that resolution. At a more common 
displayed size of 640 by 480, the amount of overhead 
decreases to 3 percent. 

Digital Technical Journal Vol. 7 No . 4 1995 27 



Video Subsystem Design 
The major elements of the video subsystem design are 
the ASIC, which is designed in the Verilog hardware 
description language, the Philips digital video chip set, 
and the compression/decompression circuitry. This 
section discusses the ASIC design and some aspects of 
the video 1/0 circuit design. 

The BOO ASIC The J300 ASIC design included not 
only the video paths discussed earlier in the section 
J300 Features but also all the control for the video 
1/0 section of the design, all video random-access 
memory (VRAM) control, the CLSSO interface, 
access to the diagnostics ROM, arbitration with 
the audio circuit for TURBOchannel access, and the 
TURBOchannel interface. Figure 9 shows a block 
diagram of the J300 ASIC. Only the DMA section of 
the design is discussed further in this paper. 

The DMA interface built into the ASIC is designed 
to facilitate the movement oflarge blocks of data to or 
from system memory with minimal interaction from 
the system. The chip supports two channels: the first 
is used for CLSSO host port data ( compressed video 
and register write data); the second is used for pixel 
data flowing to or from the rendering circuit. Once 
started, each channel uses its map pointer register to 
access successive (address, length) pairs that describe 
the physical memory to be used in the operation. (The 
map pointer register points to the scatter/gather map 

CL550 HOST 
PORT DATA 

t 
COMPRESSED 

........ DATAFIFO 
BUFFER 

in system memory to be used. ) The ASIC fills or emp­
ties the first buffer and then automatically fetches the 
next (address, length) pair in the scatter/gather map 
and so on until the operation is complete. When a com­
pressed image is transferred into system memory, the 
exact length of the data set is unknown until the ASIC 
detects the end-of-image marker from the CLSSO. In 
this case, system software can read a length register to 
find out exactly how much data was transferred. 

There is no restriction on the number of (address, 
length) pairs included in each scatter/gather map. 
New pairs can be assigned to each line of incoming 
video such that deinterlacing even and odd video fields 
can be accomplished as the data is moved into system 
memory. 

Since only the map pointer register needs to be 
updated between operations, system software can set 
up multiple buffers, each with its associated scatter/ 
gather map, ahead of time. 

Video Input and Output Logic The J300 video 1/0 
circuit, shown in Figure 10, was designed using Philips 
Semiconductors' digital video chip set. Explanation of 
some aspects of the design follows. 

The J300 uses the Philips chip set to digitize and 
decode input video. The chip set consists of the 
TDA8708A and the TDA8709A, as the analog-to­
digital (A/D) converters, and the SAA7191, as the 
Digital MultiStandard Decoder (DMSD). This chip 

CL550 
CONTROL 

t 
JPEG 
CONTROL 

AUXILIARY 
BUS INTERFACE 

t 
AUXILIARY 
INTERFACE 

VIDEO 
VIDEO 
TIMING AND 

CONTROL CONTROL 

t 
INTERNAL CONTROL BUS VRAM 

FRAME 

TURBOCHANNEL TURBOCHANNEL 
1/0 BUS <===> INTERFACE AND 

DMACONTROL 

Figure 9 

t 
AUDIO TU RBOCHANNEL 
ARBITRATION 

J300 ASIC Block Diagram 

28 Digital Technical Journal 

INTERRUPT 
CONTROL 

PIXEL FIFO 
BUFFER 

TIMER 

DITHERING 

t 

CONTROL 
REGISTERS 

1/0 BYPASS 

FORMAT 
AND FILTER 

COLOR CONVERT LUT 

Vol. 7 No. 4 1995 

BUFFER 
CONTROL CONTROL 

t 
PIXEL 

PIXEL 
TIMING AND 

CONTROL CONTROL 

i-~- ---+- PIXEL BUS 



CLOCK 

VIDEO IN 
CONNECTOR 

2 3 
AID CONVERTER 
TDA8709A 

DIGITAL 

2 3 
AID CONVERTER 
TDA8708A 

GENERATOR 
MULTISTANDARD 

INTERNAL 
LOOP BACK 

VIDEO 
OVERLAY 
DATA 

VIDEO OUT 
CONNECTOR 

ANALOG 
MULTIPLEXER 
TDA8540 

12C SERIAL 
+ ••+CONTROL 

LINE 

Y C COMPOSITE 

VIDEO CLOCK 
ENCODER GENERATOR DECODER 

SAA7197 12C SERIAL SAA7197 
••+CONTROL •· SAA7191 LINE SAA7199B 

VIDEO 
SCALER 

SAA7186 

12C SERIAL 
••+ CONTROL 

LINE 

VIDEO UPSCALE 
LOGIC 

12C SERIAL 
CONTROL 
LINE + 

VIDEO BUS 
I 
I 

+ 

FRAME STORE 

12C SERIAL 
CONTROL 
LINE UART 

PCD8584 
EIGHT 256K-BY-4-BIT VRAMS 

I VRAM 

AUXILIARY 

.. ~-l!~ ........ . 
: CONTROL . ... 

JPEG BOARD CONNECTOR 

KEY: 

+---+ VIDEO BUS 

+ • • + CONTROL LINE 

~·····~ REGISTER READ/WRITE BUS 

Figure 10 
J300 Video I/0 

set supports NTSC (M ), PAL (B, G, H, D ), and 
SECAM (B, G, H, D, K, Kl ) formats .2 It also supports 
square pixels, where the sampling rate is changed to 
12.272727 megahertz (MHz) for the NTSC format 
and to 14.75 MHz for the PAL and SECAM formats . 
In addition, the J300 uses the SAA7186, a digital 
video scaler chip that can scale the input to an arbitrary 
size and perform horizontal and vertical filtering. 

The A/ D converters digitize the incoming video 
signal to 256 levels. A video signal is composed of 
negative-going synchronization pulses, a color burst 
(to aid in decoding color information), and positive­
going video. 11 As an aid to visualizing this, Figure 11 
illustrates a simplified version of the drawing presented 
in the Color Television Studio Picture Line Amplifier 
Output Drawing.11 The level before and after the syn-

chronization pulses is referred to as blank level. Black 
level may or may not be the same as blank, depending 
on the standard. Video signals are 1 volt peak to peak. 

The first stage included in the A/D converters is 
a three-to-one analog multiplexer. We used this cir­
cuit to allow two composite signals to be attached 
at the same time to support S-Video while allowing 
the third input to be used as an internal loop-back 
connection. The TDA8708A chip is used for compos­
ite video and for the luminance portion of S-Video. 
The TDA8709A chip is used only for the chrorninance 
portion ofS-Video. 

The A/D converters contain an automatic gain con­
trol (AGC) circuit, which limits the A/D range. The 
bottom of the synchronization pulse is set at 0, and 
blank level is set at 64. Given these settings, peak white 

Digital Technical Journal Vol. 7 No. 4 1995 29 



~":_A~ ~~l~E- _________________ - - - - - - - - - - - - - - - - - - - - - - - 1 VOLT 

VIDEO 

COLOR BURST 

- - - - BLACK LEVEL 
- - - - - - - - - - - - - 286 MILLIVOLTS 

~ ---~·- - - - - - - - - - - - - - - - - - - - - - - - - - 0 VOL TS 

Figure 11 
Depiction ofVideo Signal Terminology 

corresponds to a value of 224. If the input video level 
tends to exceed 213, a peak white gain control loop 
is activated, which lowers the internal gain of the 
video. The SAA7191 processes the luminance, and 
the resulting range in the Y value is 16 for black 
and approximately 220 for white. As recommended 
by CCIR Report 601-2, there is room built into the 
two A/D converters and the DMSD to allow for addi­
tive noise that might be present in the distribution of 
video signals. 3 

The J300 video 1/0 design includes a video scaler 
so that the incoming video can be scaled down and fil­
tered prior to compression. There are two primary 
reasons for this scaling. First, scaling reduces the 
amount of data to be processed, which results in 
a smaller compressed version of the image. Second, 
scaling removes any high-frequency noise in the 
image, which results in higher compression ratios. 
Unfortunately, if the user wishes to compress and also 
to view the incoming video stream, the video will 
more than likely be scaled again in the rendering cir­
cuit in the ASIC. 

The J300 output video encoding circuit uses Philips' 
SAA7199B chip as the encoder. This component is fol­
lowed by a low-pass filter and an analog multiplexer 
(Philips' TDA8540 chip), which functions as a 4 by 4 
analog cross-point switch. The SAA7199B video 
encoder accepts digital data in a variety of formats, 
including 4:2:2 YlN. The SAA7199B processes the 
chrominance and luminance according to which stan­
dard is being encoded, either NTSC or PAL (B, G). 
The input range of the SAA7199B is compliant with 
CCIRReport 601-2 forYlN: Yvaries from 16 to 235; 
U and V vary from 16 to 240. The analog multiplexer 
allows either the composite or S-Video output of the 
SAA7199B to be connected to the output connector. 
The switch also allows the video signals to be routed to 
the input circuit for an internal loop-back connection. 

30 Digital Technical Journal Vol. 7 No. 4 1995 

The J300 video 1/0 design initially included a frame 
store because the CL550 could not guarantee that 
compression of a field of video would be completed 
before the next field started. Even if the J300 scaled 
and filtered the video data prior to compression, some 
temporary storage was needed. We included eight 
256K-by-4-bit VRAMs in the design for this storage. 

In the mode where only the even field is being cap­
tured (which could be part ofreducing the size of the 
final image from 640 by 480 pixels to 320 by 240 
pixels), the J300 does not know when the system will 
request the next field of incoming video. VRAMs 
organized as 768 by 682 by 16 bits allow room to 
store two fields of either NTSC or PAL video. The 
incoming video stream continually alternates between 
these two buffers. The system then has the option of 
requesting the field that will provide the minimum 
input latency or the last complete field stored. 
Requesting the field with the minimum input latency 
creates the possibility that the compression and ren­
dering operations will stall waiting for the finish of the 
video field being processed. 

In another mode of operation, the memory is 
configured as a 1,024-by-512-by-16-bit buffer. This 
configuration is used when compressing or decom­
pressing still images up to 1,024 pixels wide. Another 
use of the frame store organized in this way is for dein­
terlacing. In deinterlace mode, the even and odd fields 
are recombined to form one image. Deinterlacing 
allows capture of a full NTSC frame, but of only 512 
lines of a PAL or SECAM frame. This restriction is due 
to the nature of the shift register cycles implemented 
in the VRAMs. A side effect of using this deinterlace 
mode when compressing the input is that the temporal 
effects of combining the two fields generate what the 
CL550 considers to be a large amount ofhigh-spatial­
frequency components in the image, thus resulting in 
poorer compression. 



Audio Subsystem Design 
The designers believed that the J300 design should 
include audio capabilities that complemented the 
video capabilities. Consequently, the design incor­
porates an analog codec (the CS4215 from Crystal 
Semiconductors) and a digital audio codec ( the 
MC56401 from Motorola Semiconductors). These 
two chips provide all the audio I/0 specified in the 
design. They communicate to the rest of the system by 
means of a serial digital interface. 

To provide audio capabilities such as compression, 
decompression, and format conversion, the J300 
includes a general-purpose DSP (DSP56001 from 
Motorola Semiconductors) with 8K by 24 bits of 
external RAM. This DSP can communicate to the 
audio codecs through an integrated port. It also han­
dles the real-time nature of that interface by using 
a portion of the RAM to buffer the digital audio data. 

The J300 offers the same type ofDMA support for 
audio data as for video data. The audio interface con­
troller ASIC, along with the DSP, provides support for 
four independent DMA streams. These streams corre­
spond to the four possible sources or sinks of audio 
data: analog audio in, analog audio out, digital audio 
in, and digital audio out. The left channel of the ana­
log audio connection can also be routed to the head­
phone/microphone jack. Figure 12 shows a block 
diagram of the audio portion of the J300. 

Testability of VO Sections 
In the early stages of design, we were aware that built­
in test features were needed to facilitate debugging 
and to reduce the amount of special audio- and video­
specific test equipment required in manufacturing. 
Consequently, one J 300 design goal was to include 

BK-BY-24-BIT 
SAAM 

internal and external loop-back capability on all major 
I/0 circuits. This goal was achieved with the excep­
tion of the digital audio circuit. 

The video encoder can be programmed in test 
mode to output a flat field of red, green, or blue. This 
signal was used in internal and external loop-back. A 
comparison of the values obtained against known 
good values gives some level of confidence with regard 
to the video I/0 stage. The designers accomplished 
external loop-back by using a standard S-Video cable. 

The analog audio codec has internal loop-back 
capability, and a standard audio cable can be used for 
external loop-back tests. External loop-back tests of 
the headphone/microphone jack required a special 
adapter. 

Even with this degree of internal and external loop­
back capability, the goal was to be able to perform 
much more rigorous testing without the need of spe­
cial instrumentation. Tests were developed that used 
two J300 systems to feed each other data. One J300 
system output video data in NTSC or PAL formats of 
different test patterns, and the other J300 interpreted 
the signals. The designers used the same technique for 
both the digital and the analog audio codecs. This 
method provided a high degree of system coverage 
with no additional specialized test instruments. 

Hardware Design Environment 
The ASIC was designed completely in a hardware 
description language called Verilog, using no 
schematic sheets. At first, we simulated pieces of the 
design, building simple Verilog models for all the 
devices in the J300. We simulated complex chips such 
as the video scaler and the CLSSO as data sources or 
sinks, reading data from or writing data to files in 

OMA ARBITRATION 
WITH J300 VIDEO 
ASIC 

DATA BUS 

TURBOCHANNEL 
1/0BUS 

~ 
DIGITAL 
AUDIO 1/0 

...-------, SERIAL 
DIGITAL BUS ADDRESS BUS 

AUDIO 
INTERFACE 
CONTROLLER 

Figure 12 

LINE IN 

LINE OUT 

HEADSET 

]300 Audio Block Diagram 

AUDIO 
TRANSCEIVER 

ANALOG 
AUDIO 
CODEC 

33-MHZ DSPS600t 1---A_R_BI_TR_A_T_IO_N_ ~ 

Digital Technical Journal Vol. 7 No. 4 1995 31 



memory. This approach limited the video data that 
could be compressed or decompressed to samples 
where both versions already existed. In all cases, the 
I/0 ports on devices modeled included accurate 
timing information. Verilog includes the capability 
to incorporate user-defined routines written in the 
C programming language that can be compiled into 
a Verilog executable. The J300 design team took 
advantage of this capability by writing an interface that 
took TURBOchannel accesses from a portion of 
shared memory and used them to drive the Verilog 
model of the TURBOchannel bus. In that way, the 
designers could write test routines in C, compile them, 
and run them against the Verilog model of the ASIC 
and of the rest of the board design. 

The Verilog model proved to be useful in develop­
ing manufacturing diagnostics and was used to some 
extent for driver and library code development. It 
was a very effective tool for the hardware designers, 
because much of the test code written during the 
design phase was used to bring up the hardware in the 
lab and later as example code for library development. 
Use of the Verilog model for software development 
was not as extensive as was hoped, however. The 
requirement to have a Verilog license available each 
time a model was invoked limited the number of users. 
There were enough licenses for hardware develop­
ment, but few were left for software development. 
Another reason the software development team did 
not rely on using the Verilog model was that even 
though the model provided an accurate simulation of 
the hardware, the model was also very slow. 

Concluding Remarks 

With its Sound & Motion J300, FullVideo Supreme 
JPEG, and FullVideo Supreme products, Digital has 
achieved its goal of designing a hardware option that 
allows the integration of video into any workstation. 
The adapter performance on different platforms 
depends on many factors, chief among which are the 
efficiency of the bus design ( either TURBOchannel or 
PCI), the amount of other traffic on the bus, and the 
design of the graphics device. As the performance of 
systems, particularly graphics devices, increases, the 
bottleneck in the J300 design becomes the pixel fre­
quency through the J300 ASIC. For this reason, any 
future adapter designs should incorporate a higher 
pixel frequency. 

The J300 family of products was the first to offer 
Digital's proprietary AccuVideo rendering technol­
ogy, affording a high-quality yet low-cost solution for 
low-bit-depth frame buffers. Rendering video to 8 bits 
per pixel in combination with a high-speed bus 
allowed an architecture that is independent of the 
graphics subsystem. 

32 Digital Technical Journal Vol. 7 No. 4 1995 

Acknowledgments 

The hardware engineering team included Rudy 
Stalzer, Petar Antonios, Tim Hellman, and Tom 
Fitzpatrick. Victor Bahl wrote the audio and video dri­
vers, and Davis Pan wrote the code used by the DSP. 
Paul Gauthier contributed to the test routines avail­
able at power-up. Nagi Sivananjaiah wrote the diag­
nostics, and Lance Berc and Jim Gettys made major 
architectural contributions. 

References 

1. P. Bahl, "The J300 Family of Video and Audio 
Adapters: Software Architecture," Digital Techni­
calJournal, vol. 7, no. 4 ( 1995, this issue): 34-51. 

2. Characteristics of Television Systems, CCIR Report 
624-2 (Geneva: International Radio Consultative 
Committee [CCIR], 1990). 

3. Encoding Parameters of Digital Television for Stu­
dios, CCIR Report 601-2 ( Geneva: International 
Radio Consultative Committee [CCIR], 1990). 

4. Information Technology-Digital Compression 
and Coding of Continuous-tone Still Images: 
Requirements and Guidelines, ISO/IEC 10918-
1: 1994 ( E) ( Geneva: International Organization 
for Standardization/International Electrotechnical 
Commission, 1994 ). 

5. R. Ulichney, "Bresenham-style Scaling," Proceed­
ings of the IS&T Annual Conference (Cambridge, 
Mass., 1993): 101-103. 

6. R. Ulichney, Digital Haiftoning (Cambridge, 
Mass.: The MIT Press, 1987). 

7. P. Bahl, P. Gauthier, and R. Ulichney, "Software­
only Compression, Rendering, and Playback of 
Digital Video," Digital Technical Journal, 
vol. 7, no. 4 (1995, this issue): 52-75. 

8. L. Seiler and R. Ulichney, "Integrating Video Ren­
dering into Graphics Accelerator Chips," Digital 
TechnicalJournal, vol. 7, no. 4 (1995, this issue): 
76-88. 

9. R. Ulichney, "Video Rendering," Digital Technical 
Journal, vol. 5, no. 2 (Spring 1993): 9-18. 

10. R. Ulichney, "The Void-and-Cluster Method for 
Generating Dither Arrays," IS&T!SPIE Symposium 
on Electronic Imaging Science and Technology, San 
Jose, Calif., vol. 1913 (February 1993): 332-343. 

11 . Industrial Electronics Tentative Standard No. 1, 
Color Television Studio Picture Line Amplifier Out­
put Drawing (Arlington, Va.: Industrial Electronics 
Association, November 1977). This publication is 
intended as a companion document to Electrical 
Performance Standards-Monochrome Television 
Studio Facilities, EIA-170 (Arlington, Va.: Indus­
trial Electronics Association, November 1957). 



Biographies 

Kenneth W. Correll 
After receiving a B.S.E.E. from the University ofWashington 
in 1978, Ken Correll worked at Sperry Flight Systems for 
eight years, designing cockpit display systems. He joined 
Digital in 1986, focusing on the specification and design 
of advanced development projects concerned with the inte· 
gration oflive video and computer systems; he received 
a patent for some of this work. In 1990, Ken moved to 
Massachusetts and began work on the Jvideo and J300 
projects. Since then he has been involved in the design of 
graphics ASICs in the Graphics and Multimedia Hardware 
Engineering Group within the Workstations Business 
Segment. 

Robert A. Ulichney 
Robert Ulichney received a Ph.D. from the Massachusetts 
Institute ofTechnology in electrical engineering and com· 
puter science and a B.S. in physics and computer science 
from the University of Dayton, Ohio. He joined Digital 
in 1978. He is currently a senior consulting engineer with 
Digital's Cambridge Research Laboratory, where he leads 
the Video and Image Processing project. He has filed sev· 
era! patents for contributions to Digital products in the 
areas of hardware and software·only motion video, graphics 
controllers, and hard copy. Bob is the author of Digital 
Haiftoning and serves as a referee for a number of technical 
societies, including IEEE, of which he is a senior member. 

Digital Technical Journal Vol. 7 No. 4 1995 33 



The J300 Family of Video 
and Audio Adapters: 
Software Architecture 

The BOO family of video and audio products 

is a feature-rich set of multimedia hardware 

adapters developed by Digital for its Alpha 

workstations. This paper describes the design 

and implementation of the BOO software archi­

tecture, focusing on the Sound & Motion BOO 

product. The software approach taken was to 

consider the hardware as two separate devices: 

the BOO audio subsystem and the BOO video 

subsystem. Libraries corresponding to the two 

subsystems provide application programming 

interfaces that offer flexible control of the 

hardware while supporting a client-server 

model for multimedia applications. The design 

places special emphasis on performance by 

favoring an asynchronous 1/0 programming 

model implemented through an innovative 

use of queues. The kernel-mode device driver 

is portable across devices because it requires 

minimal knowledge of the hardware. The over­

all design aims at easing application program­

ming while extracting real-time performance 

from a non-real-time operating system. The 

software architecture has been successfully 

implemented over multiple platforms, includ­

ing those based on the OpenVMS, Microsoft 

Windows NT, and Digital UNIX operating sys­

tems, and is the foundation on which software 

for Digital's current video capture, compression, 

and rendering hardware adapters exists. 

34 Digital Technical Journal Vol. 7 No. 4 1995 

I 
Paramvir Bahl 

Background 

In January 1991, an advanced development project 
called Jvideo was jointly initiated by engineering and 
research organizations across Digital. Prior to this 
endeavor, these organizations had proposed and 
carried out several disjoint research projects pertaining 
to video compression and video rendering. The 
International Organization for Standardization (ISO) 
Joint Photographic Experts Group (JPEG) was 
approaching standardization of a continuous-tone, 
still-image compression method, and the ISO Motion 
Picture Experts Group's MPEG-1 effort was well on 
its way to defining an international standard for video 
compression.1

•
2

•
3 Silicon for performing JPEG com­

pression and decompression at real-time rates was just 
becoming available. It was a recognized and accepted 
fact that the union of audio, video, and computer 
systems was inevitable. 

The goal of the Jvideo project was to pool the vari­
ous resources within Digital to design and develop 
a hardware and software multimedia adapter for 
Digital's workstations. Jvideo would allow researchers 
to study the impact of video on the desktop. Huge 
amounts of video data, even after being compressed, 
stress every underlying component including net­
works, storage, system hardware, system software, and 
application software. The intent was that hands-on 
experience with Jvideo, while providing valuable 
insight toward effective management of video on 
the desktop, would influence and potentially improve 
the design of hardware and software for future com­
puter systems. 

Jvideo was a three-board, single-slot TURBOchannel 
adapter capable of supporting JPEG compression and 
decompression, video scaling, video rendering, and 
audio compression and decompression-all at real­
time rates. Two JPEG codec chips provided simultane­
ous compression and decompression of video streams. 
A custom application-specific integrated circuit 
(ASIC) incorporated the bus interface with a direct 
memory access (DMA) controller, filtering, scaling, 
and Digital's proprietary video rendering logic. 
Jvideo's software consisted of a device driver, an 
audio/video library, and applications. The underlying 



ULTRIX operating system (Digital's native implemen­
tation of the UNIX operating system) ran on work­
stations built around MIPS R3000 and R4000 
processors. Application flow control was synchronous. 
The library maintained minimal state information, and 
only one process could access the device at any one 
time. Hardware operations were programmed directly 
from user space. 

The Jvideo project succeeded in its objectives. 
Research institutes both internal and external to 
Digital embraced Jvideo for studying compressed 
video as "just another data type." While some research 
institutes used Jvideo for designing network protocols 
to allow the establishment ofreal-time channels over 
local area networks (LANs) and wide area networks 
(WANs ), others used it to study video as a mechanism 
to increase user productivity.4..jj Jvideo validated the 
various design decisions that were different from the 
trend in industry.9 It proved that digital video could be 
successfully managed in a distributed environment. 

The success of Jvideo, the demand for video on the 
desktop, and the nonavailability of silicon for MPEG 
compression and decompression influenced Digital's 
decision to build and market a low-cost multimedia 
adapter similar in functionality to Jvideo. The Sound & 
Motion J300 product, referred to in this paper as simply 
the J300, is a direct descendent of the Jvideo advanced 
development project. The J300 is a two-board, single­
slot TURBOchannel option that supports all the fea­
tures provided by Jvideo and more. Figure 1 presents 
the J300 hardware functional diagram, and Table 1 
contains a list of the features offered by the J 300 
product. Details and analysis of the J300 hardware 
can be found in "The J300 Family of Video and 
Audio Adapters: Architecture and Hardware Design," 
a companion paper in this issue of the Journa/.9 

The latest in this series of video/audio adapters are 
the single-board, single-slot peripheral component 
interconnect (PCI)-based FullVideo Supreme and 
Ful!Video Supreme JPEG products. These products 
are direct descendants of the J300 and are supported 
under the Digital UNIX, Microsoft Windows NT, and 
OpenVMS operating systems. FullVideo Supreme is 
a video-capture, video-render, and video-out-only 
option; whereas, FullVideo Supreme JPEG also 
includes video compression and decompression. In 
keeping with the trend in industry and to make the 
price attractive, Digital left out audio support when 
designing these two adapters. 

All the adapters discussed are collectively called the 
J 300 family of video and audio adapters. The software 
architecture for these options has evolved over years 
from being symmetric in Jvideo to having completely 
asymmetric flow control in the J300 and FullVideo 
Supreme adapters. This paper describes the design and 
implementation of the software architecture for the 
J 300 family of multimedia devices. 

Software Architecture: Goals and Design 

The software design team had two primary objectives. 
The first and most immediate objective was to write 
software suitable for controlling the ]300 hardware. 
This software had to provide applications with an 
application programming interface (API) that would 
hide device-specific programming while exposing all 
hardware capabilities in an intuitive manner. The soft­
ware had to be robust and fast with minimal overhead. 

A second, longer-term objective was to design a soft­
ware architecture that could be used for successors to 
the ]300. The goal was to define generic abstractions 
that would apply to future, similar multimedia devices. 
Furthermore, the implementation had to allow porting 
to other devices with relatively minimal effort. 

When the project began, no mainstream multi­
media devices were available on the market, and expe­
rience with video on the desktop was limited. 
Specifically, the leading multimedia APis were still in 
their infancy, focusing attention on control of video 
devices like videocassette recorders (VCRs), laser disc 
players, and cameras. Control of compressed digital 
video on a workstation had not been considered in any 
serious manner. 

The core members of the J300 design team had 
worked on the Jvideo project. Experiences gained 
from that project helped in designing an API with the 
following attributes: 

• Separate libraries for the video and audio subsystems 

• Functional-level as opposed to component-level 
control of the device 

• Flexibility in algorithmic and hardware tuning 

• Provision for both synchronous and asynchronous 
flow control 

• Support for a client-server model of multimedia 
computing 

• Support for doing audio-video synchronization at 
higher layers 

In addition, the architecture was designed to be 
independent of the underlying operating system and 
hardware platform. It included a clean separation 
between device-independent and device-dependent 
portions, and, most important, it left device program­
ming in the user space. This last feature made the 
debugging process tractable and was the key reason 
behind the design of a generic, portable kernel-mode 
multimedia device driver. 

As shown in the sections that follow, the software 
design decisions were influenced greatly by the desire 
to obtain good performance. The goal of extracting 
real-time performance from a non-real-time operating 
system was challenging. Toward this end, designers 
placed special emphasis on providing an asynchronous 
model for software flow control, on designing a fast 

Digital Technical Journal Vol. 7 No. 4 1995 35 



NTSC 
PAL 
S-VIDEO 

r-----------------, 
I I 

VIDEO OUT UPSCALE I 
I 

NTSC I 

;:~AM l VIDEO IN 6~~:S~~~E I 
S-VIDEO I CAPTURE/PLAY I L _________________ J 

VIDEO 
PORT 

foEiPRESS/ ,__ __ _, OMA 1---C...;,.O_M_PR_E_S_SI_O_N_PO_R_T~ 

DECOMPRESS 

r------------, 
I 
I 
I 
I 
I FILTER 

AND SCALE 

COLOR-SPACE 
CONVERT 

BYPASS 

TIMER AND 
INTERRUPT 

PIXEL 
PORT 

SYSTEM 
1/0BUS 

r--------------------------1 
I CONTROLLER ~ I 
I ~ I 

DIGITALl/0 

STEREO LINE 

DSP56001 

SCRATCH RAM 
16 BY 32 BITS 

MICROPHONE/ ANALOG l/0 

HEADPHONE - A o SU I L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J300 UDI BSYSTEM_J 

Figure 1 
The Sound & Motion J300 Hardware Functional Diagram 

Table 1 
BOO Hardware Features 

Video Subsystem 

Video in (NTSC, PAL, or 
SECAM formats)* 

Video out (NTSC or PAL 
formats) 

Composite or S-Video 1/0 

Still-image capture and 
display 

JPEG compression and 
decompression 

Image dithering 

Scal ing and filtering 
before compression 

Scal ing and filtering 
before dithering 

24-bit red, green, and 
blue (RGB) video out 

Two DMA channels 
simultaneously operable 

Video genlocking 

Graphics overlay 

150-kHz, 18-bit counter 
(time-stamping) 

Audio Subsystem 

Compact disc (CD)-quality 
analog 1/0 

Digital 1/0 (AES/EBU 
format support)** 

Headphone and 
microphone 1/0 
Multiple sampling rates 
(5 to 48 kilohertz [kHz)) 

Motorola's DSP56001 for 
audio processing 

Programmable gain and 
attenuation 

DMA into and out of 
system memory 

Sample counter 

* National (U.S.) Television System Committee, Phase Alternate Line, 
and Sequentiel Couleur avec Memo ire 

** Audio Engineering Society/European Broadcasting Union 

36 Digital Technical Journal Vol. 7 No. 4 1995 

kernel-mode device driver, and on providing an archi­
tecture that would require the least number of system 
calls and minimal data copying. 

The kernel-mode device driver is the lowest-level 
software module in the J300 software hierarchy. The 
driver views the J300 hardware as two distinct devices: 
the J300 audio and the J300 video. Depending on the 
requested service, the J300 kernel driver filters com­
mands to the appropriate subsystem driver. This key 
decision to separate the J300 hardware by functional­
ity influenced the design of the upper layers of the sofi:0 

ware . It allowed designers to divide the task into 
manageable components, both in terms of engineer­
ing effort and for project management. Separate teams 
worked on the two subsystems for extended periods, 
and the overall development time was reduced. Each 
subsystem had its own kernel driver, user driver, 
software library, test applications, and diagnostics 
software. The decision to separate the audio and the 
video software proved to be a good one. Digital's lat­
est multimedia offering includes PCI-based FullVideo 
Supreme adapters that build on the video subsystem 
software of the J300. Unlike the J300, the newer 
adapters do not include an audio subsystem and thus 
do not use the audio library and driver. 

Following the philosophy behind the actual design, 
the ensuing discussion of the J300 software is orga­
nized into two major sections. The first describes the 
software for the video subsystem, including the design 



and implementation of the video software library and 
the kernel-mode video subsystem driver. Performance 
data is presented at the end of this section. The second 
major section describes the software written for 
the audio subsystem. The paper then presents the 
methodology behind the development and testing 
procedures for the various software components and 
some improvements that are currently being investi­
gated. A section on related published work concludes 
the paper. 

Video Subsystem 

The top of the software hierarchy for the video sub­
system is the application layer, and the bottom is the 
kernel-mode device driver. The following simplified 
example illustrates the functions of the various mod­
ules that compose this hierarchy. 

Consider a video application that is linked to a multi­
media client library. During the course of execution, 
the application asks for a video operation through 
a call to a client library function. The client library 
packages the request and passes it though a socket to a 
multimedia server. The server, which is running in the 
background, picks up the request, determines the sub­
system for which it is intended, and invokes the user­
mode driver for that subsystem. The user-mode driver 
translates the server's request to an appropriate (non­
blocking) video library call. Based on the operation 

APPLICATION 

requested, the video library builds scripts ofhardware­
specific commands and informs the kernel-mode 
device driver that new commands are available for exe­
cution on the hardware. At the next possible opportu­
nity, the kernel driver responds by downloading these 
commands to the underlying hardware, which then 
performs the desired operation. Once the operation is 
complete, results are returned to the application. 

Figure 2 shows a graphical representation of the 
software hierarchy. The modules above the kernel­
mode device driver, excluding the operating system, 
are in user space. The remaining modules are in kernel 
space. The video library is modularized into device­
independent and device-dependent parts. Most of the 
J300-specific code resides in the device-dependent 
portion of the library, and very little is in the kernel­
mode driver. The following sections describe the vari­
ous components of the video software hierarchy, 
beginning with the device-independent part of the 
video library. The description of the multimedia client 
library and the multimedia server is beyond the scope 
of this paper. 

Video Library Overview 
The conceptual model adopted for the software con­
sists of three dedicated functional units: ( 1) capture 
or play, ( 2 ) compress or decompress, and ( 3) render or 
bypass. Figure 3 illustrates this model; Figure 1 shows 
the hardware components within each of the three 

I MULTIMEDIA CLIENT LIBRARY 

MULTIMEDIA SERVER 

J300/FULLVIDEO SUPREME 
USER-MODE VIDEO DRIVER J300 USER-MODE AUDIO DRIVER 

I I I 
I I I 

VIDEO LIBRARY AUDIO LIBRARY 
OPERATING 

I SYSTEM I DEVICE INDEPENDENT 

I I 
SERVICES DEVICE INDEPENDENT 

J300 FULL VIDEO 

I I SPECIFIC SUPREME J300 SPECIFIC 
SPECIFIC 

I I ,------------------....J I I 

I L-~---------------------, 
J300 KERNEL-MODE DEVICE DRIVER 

I VIDEO SUBSYSTEM 11 AUDIO SUBSYSTEM I 
FULLVIDEO SUPREME 
KERNEL-MODE DEVICE DRIVER 

' ' ' 

SOUND & MOTION J300 HARDWARE 11 FULLVIDEO SUPREME HARDWARE 

Figure 2 
The J300 Video and Audio Library as Components ofDigital's Multimedia Server 

Digital Technical Journal 

... 

... 

USER SPACE 

KERNEL SPACE 

Vol. 7 No. 4 1995 37 



Figure 3 

VIDEO-- CAPTURE/PLAY 
PORT 

Conceptual Model for the J300 Video Subsystem Software 

units. The units may be combined in various configu­
rations to perform different logical operations. For 
example, capture may be combined with compression, 
or decompression may be combined with render. 
Figure 4 shows how these functional units can be 
combined to form nine different video flow paths sup­
ported by the software. Access to the units is through 
dedicated digital and analog ports. 

All functional units and ports can be configured 
by the video library through tunable parameters. 
Algorithmic tuning is possible by configuring the 
three units, and 1/0 tuning is possible by configuring 
the three ports. Examples of algorithmic tuning 
include setting the Huffinan tables or the quantization 
tables for the compress unit and setting the number of 

COMPRESS/ 
DECOMPRESS 

RENDER 

COMPRESSION 
PORT 

PIXEL 
PORT 

output colors and the sharpness for the render unit. 1
•
9 

Examples of 1/0 tuning include setting the region of 
interest for the compression port and setting the input 
video format for the analog port. Thus, ports are 
configured to indicate the encoding of the data, 
whereas units are configured to indicate parameters 
for the video processing algorithms. Figure 5 shows 
the various tunable parameters for the ports and units. 
Figure 6 shows valid picture encoding for the two 
Digital 1/0 ports. Each functional unit operates inde­
pendently on a picture. A picture is defined as a video 
frame, a video field, or a still image. Figure 7 illustrates 
the difference between a video frame and a video field. 
The parity setting indicates whether the picture is an 
even field, an odd field, or an interlaced frame. 

-f 
COMPRESS -

~~~L~G - CAPTURE • BYPASS 

PROCESSL

RENDER

CAPTURE AND RENDER
CAPTURE AND COMPRESS
CAPTURE, RENDER, AND COMPRESS

Figure 4

(a) Analog Input Mode

- PLAY ~D:~~~;:ESLS ~i~~RESSE:ECOMPRESS AND PLAY

DECOMPRESS AND RENDER
DECOMPRESS, PLAY, AND RENDER

PROCESS

RENDER

(b) Compressed Input Mode

COMPRESS -

RENDER
RENDER AND PLAY
RENDER AND COMPRESS

PROCESS - RAW/DITHERED
BYPASS INPUT

RENDER

(c) Pixel Input Mode

Note that a shaded area represents the render unit.

The Nine Different J300 Video Flow Paths

38 Digital Technical Journal Vol. 7 No. 4 1995

CONFIGURABLE
PARAMETERS

PORT

ANALOG COMPRESSION

REGION OF ENCODING
INTEREST

SKIP FACTOR
TV STANDARD

REGION OF
PARITY INTEREST

GENLOCKING BUFFER

MEDIUM
LOCATION

PARITY

Figure 5

PIXEL

BUFFER
LOCATION

ENCODING

MIRROR
EFFECT

REGION OF
INTEREST

Tunable Parameters Provided by the }300 Video Library

PICTURE ENCODING

CAPTURE/
PLAY

I
(SAME AS
ANALOG PORT)

UNIT

COMPRESS/
DECOMPRESS

t HUFFMAN
TABLES

QUANTIZATION
TABLES

RENDER/
BYPASS

BRIGHTNESS

SATURATION

CONTRAST

SHARPNESS

NUMBER OF
OUTPUT COLORS

GAMMA

REVERSE VIDEO

PIXEL PORT COMPRESSION PORT

Figure 6

!
8-BIT PSEUDOCOLOR

8-BIT MONOCHROME

16-BIT RAW (4:2:2)

24-BIT RGB PACKED

16-BIT OVERLAY

Valid Picture Encoding for the Two Digital I/0 Ports

VIDEO FRAME ODD FIELD
(33 MILLISECONDS) (16 MILLISECONDS)

1 ·· · ·····------- 1- ----

2
3 ------ - --------

EVEN FIELD

Figure 7
A Picture, Which May Be a Frame Or a Field

~
PROGRESSIVE JPEG, COLOR

INTERLACED JPEG, COLOR

PROGRESSIVE JPEG,
MONOCHROME

INTERLACED JPEG,
MONOCHROME

The software broadly classifies operations as either
nonrecurring or recurring. Nonrecurring operations
involve setting up the software for subsequent picture
operations. An example of a nonrecurring operation
is the configuration of the capture unit. Recurring
operations are picture operations that applications
invoke either periodically or aperiodically. Examples
of recurring operations are CaptureAndCompress,

RenderAndPlay, and DecompressAndRender.

All picture operations are provided in two versions:
blocking and nonblocking. Blocking operations force
the library to behave synchronously with the hard­
ware, whereas nonblocking operations can be used for
asynchronous program flow. Programming is simpler
with blocking operations but less efficient, in terms of
overall performance, as compared to nonblocking
operations. All picture operations rely on combina­
tions of input and output buffers for picture data. To
avoid extra data copies, applications are required
to register these I/0 buffers with the library. The
buffers are locked down by the library and are used for
subsequent DMA transfers. Results from every picture

Digital Technical Journal Vol. 7 No. 4 1995 39

40

operation come with a 90-kHz time stamp, which can
be used by applications for synchronization. (The
J300's 150-kHz timer is subsampled to match the
timer frequency specified in the ISO MPEG-1 System
Specification.)

The video library supports a client-server model of
computing through the registration of parameters. In
this model, the video library is part of the server process
that controls the hardware. Depending on its needs,
each client application may configure the hardware
device differently. To support multiple clients simul­
taneously, the server may have to efficiently switch
between the various hardware configurations. The
server registers with the video library the relevant set­
up parameters of the various functional units and 1/0
ports for each requested hardware configuration.
A token returned by the library serves to identify the
registered parameter sets for all subsequent operations
associated with the particular configuration. Multiple
clients requesting the same hardware configuration get
the same token. Wherever appropriate, default values
for parameters not specified during registration are
used. Registrations are classified as either heavyweight,
e.g., setting the number of output colors for the render
unit, or lightweight, e.g., setting the quantization
tables for the compress unit. A heavyweight registra­
tion often requires the library to carry out complex
calculations to determine the appropriate values for the
hardware and consumes more time than a lightweight
registration, which may be as simple as changing a
value in a register. Once set, individual parameters can
be changed at a later time with edit routines provided
by the library. After the client has finished using the
hardware, the server unregisters the hardware configu­
ration. The video library deletes all related internal state
information associated with that configuration only if
no other client is using the same configuration.

The library provides routines for querying the con­
figurations of the ports and units at any given time.
Extensive error checking and reporting are built into
the software.

Video Library Operation
Internally, the video library relies on queues for
supporting asynchronous (nonblocking) flow control
and for obtaining good performance. Three types of
queues are defined within the library: (1) command
queue, (2) event (or status) queue, and (3) request
queue. The command and event queues are allocated
by the kernel-mode driver from the nonpaged system
memory pool at kernel-driver load time. At device
open time, the two queues are mapped to the user vir­
tual memory address space and subsequently shared
by the video library and the kernel-mode driver. The
request queue, on the other hand, is allocated by the
library at device open time and is part of the user

Digital Technical Journal Vol. 7 No. 4 1995

virtual memory space. Detailed descriptions of the
three types of queues follow. An example shows how
the queues are used.

Command Queue The command queue, the heart of
the library, is employed for one-way communication
from the library to the kernel driver. Figure 8 shows
the composition of the command queue. Essentially,
the command queue contains commands that set up,
start, and stop the hardware for picture operations.
Picture operations correspond to video library calls
invoked by the user-mode driver. Even though the
architecture does not impose any restrictions, a picture
operation usually consists of two scripts: the first script
sets up the operation, and the second script cleans up
after the hardware completes the operation. Scripts are
made up of packets. The header packet is called a script
packet, and the remaining packets are called command
packets. The library builds packets and puts them into
the command queue. The kernel driver retrieves and
interprets script packets and downloads the command
packets to the hardware. Script packets provide the
kernel driver with information about the type of script,
the number of command packets that constitute the
script, and the hardware interrupt to expect once all
command packets have been downloaded. Command
packets are register 1/0 operations. A command packet
can contain the type of register access desired, the ker­
nel virtual address of the register, and the value to use
if it is a write operation. The library uses identifiers
associated with the command packets and the script
packets to identify the associated operation. The com­
mand queue is managed as a ring buffer. Two indexes
called PUT and GET dictate where new packets get
added and from where old packets are to be extracted.
A first-in, first-out (FIFO) service policy is adhered to.
The library manages the PUT index, and the kernel
driver manages the GET index.

Event Queue The event queue, a companion to the
command queue, is also used for one-way communi­
cation but in the reverse direction, i.e., from the kernel
driver to the library. Figure 9 shows the composition
of the event queue. The kernel driver puts information
into the queue in the form of event packets whenever
a hardware interrupt (event) occurs. Event packets
contain the type of hardware interrupt, the time at
which the interrupt occurred, an integer to identify
the completed request, and, when appropriate, a value
from a relevant hardware register. The library moni­
tors the queue and examines the event packets to
determine which requested picture operation com­
pleted. As is the case with the command queue, the
event queue is managed as a ring buffer with a FIFO
service policy. The library manipulates the GET index,
and the kernel driver manipulates the PUT index.

SCRIPT PACKET

TYPE --

REQUEST IDENTIFIER

NUMBER OF
COMMAND PACKETS

EXPECTED INTERRUPT

UNUSED

CONTINUE
- • IGNORE

END

COMMAND PACKET

COMMAND --

DEVICE ADDRESS

MASK

VALUE

TAG

Read
- • Write

ReadModifyWrite
SetAlarm
Flush
StopOperation

~ ',',,, _ , ,' ,' "' ~ ' , ,,,,,'"'

.------...... ~...,..~~~~,--~~~"T""~~~~~~--,,---' --,

STOPPED,
RUNNING - -

GET

PUT

DEBUG

STATE

~
\

SCRIPT COMMAND COMMAND
PACKET PACKET PACKET

SCRIPT COMMAND COMMAND
PACKET PACKET PACKET

\
\

\
\

/ , ,
\ ,

\
/

\ , ,
\ , ,

\ , ,
\ , ,

\ , , ,
I I I

END SCRIPT

, ,
/ ,

/
/

/

I I

COMMAND
PACKET

START SCRIPT

OP. 61 I OP. 62 1 OP. 64 1 I I i I OP. 59 1 OP. 60 I I I ... I I
I I I I I r -~ I

I I I I I I I L ___ _____ __________________ ______ ________ OP.58 _ _ ______]

Figure 8
The Command Queue

EVENT PACKET

TYPE

TIME STAMP

REQUEST
IDENTIFIER

RETURN VALUE

- -

COMMAND QUEUE

COMP_DONE
- • REND_DONE

VSYNC

ALARM

PUT

• EVENT EVENT EVENT EVENT EVENT
[- - PACKET PACKET PACKET PACKET PACKET i
I t I
: EVENT QUEUE :
I GET I

L---------------------- -- -------------------------- ---~
Figure 9
The Event Queue

Request Queue The library uses the request queue
to coordinate user-mode driver requests with opera­
tions in the command queue and with completed
events in the event queue. When a picture operation
is requested, the library builds a request packet and
places it in the request queue. The packet contains
all information relevant to the operation, such as
the location of the source or destination buffer, its

size, and scatter/gather maps for DMA. Subsequently,
the library uses the request packet to program the
command queue. Once the operation has completed,
the associated request packet provides the information
that the library needs for returning the results to
the user-mode driver. As with the other queues, the
service policy is FIFO, and the queue is managed as
a ring buffer.

Digital Technical Journal Vol. 7 No. 4 1995 41

Capture and Render Example Figure 10 shows an
application displaying live video on a UNIX work­
station that contains a J300 adapter. The picture oper­
ation that makes this possible is the video library's
CaptureAndRender operation. A description of the
asynchronous flow of control when the user-mode
driver invokes a CaptureAndRender picture operation
follows. This example illustrates the typical interaction
between the various software and hardware compo­
nents. The discussion places special emphasis on the
use of the queues previously described.

1. The user-mode video driver invokes a nonblock­
ing CaptureAndRender picture operation with
appropriate arguments.

2. The library builds a request packet, assigns an
identifier to it, and adds the packet to the request
queue. Subsequently, it builds the script and com­
mand packets needed for setting up and terminat­
ing the operation and adds them to the command
queue. It then invokes the kernel driver's start
1/0 routine, to indicate that new hardware scripts
have been added to the command queue.

3. Start 1/0 queues up the kernel routine (which
downloads the command scripts to the hardware)
in the operating system's internal call-out queue
as a deferred procedure call (DPC) and returns
control to the video library. 10

AlphaVCR

J 1lc Options
- -

- ~ - -

I
C1ptu1E-' 1atP (franws/sE-•c). 29 'l I

I . .

Figure 10
Live Video on a UNIX Workstation Using the Capture
and Render Path

42 Digital Technical Journal Vol. 7 No. 4 1995

4. The video library returns control to the user­
mode driver, which continues from where it had
left off, performing other tasks until it invokes
a blocking (i.e. , wait) routine. This gives the
library an opportunity to check the event queue
for new events. If there are no new events to ser­
vice, the library asks the kernel driver to "put it to
sleep" until a new event arrives.

5. In the meantime, the DPC that had previously
been queued up starts to execute after being
invoked by the operating system's scheduler. The
job of the DPC is to read and interpret script pack­
ets and, based on the interpretation, to download
the command packets that constitute the script.
Only the first script that sets up and starts the
operation is downloaded to the hardware.

6. A hardware interrupt signaling the completion of
the operation occurs, and control is passed to the
kernel driver's hardware interrupt service routine
(ISR). The hardware ISR clears the interrupt line,
logs the time, and queues up a software ISR in the
system's call-out queue, passing it relevant infor­
mation such as the interrupt type and an associ­
ated time stamp.

7. The operating system's scheduler invokes the
queued software ISR. The ISR then reads and
interprets the current (end) script packet in the
command queue, which provides the type of
interrupt to expect as a result of downloading the
previous (start) script. The software ISR checks
to see if the interrupt that was passed to it is the
same as one that was predicted by the (end) script.
For example, a script that starts a render operation
may expect to see a REND_DONE event. When
the actual event matches the predicted event, the
command packets associated with the current
(end) script are downloaded to the hardware.

8. After all command packets from the (end) script
have been downloaded, the software ISR logs the
type of event, the associated time stamp, and an
identifier for the completed operation into the
event queue. It then issues a wake-up call to any
"sleeping" or blocked operations that might have
been waiting for hardware events.

9. The system wakes the sleeping library routine,
which checks the event queue for new events. If a
REND_DONE event is present, the library uses the
request identifier from the event packet to get the
associated request packet from the request queue.
It then places the results of the operation in the
memory locations that are pointed to by addresses
in the request packet and that belong to the user­
mode driver. (The buffer containing the rendered
data is not copied because it already belongs to the
user-mode driver.) The library updates the GET

indexes of the event and request queues and
returns control to the user-mode driver.

10. The user-mode driver may then continue to
queue up more operations.

Figure 11 shows a graphical representation of
the capture and render example. If desired, multiple
picture operations can be programmed through the
library before a single one is downloaded by the driver
and executed by the hardware. Additionally, perfor­
mance is enhanced by improving the asynchronous
flow through the use of multiple buffers for the dif­
ferent functional units shown in Figure 3.

Sometimes it is necessary to bypass the queuing
mechanism and program the hardware directly. This is
especially true for hardware diagnostics and operations
such as hardware resetting, which require immediate
action. In addition, for slow operations, such as setting
the analog port (video-in circuitry), programming the
hardware in the kernel using queues is undesirable.
The kernel driver supports an immediate mode of
operation that is accomplished by mapping the hard­
ware to the library's memory space, disabling the com­
mand queue, and allowing the library to program the
hardware directly.

The Kernel-mode Video Driver
To keep the complexity of the kernel-mode video driver
manageable, we made a clear distinction between device
programming and device register loading. Device­
specific programming is done in user space by the video
library; device register 1/0 (without contextual under­
standing) is performed by the kernel driver. Separating

USER SPACE

DRIVER

!
REQUEST
OPERATION

LIBRARY

__.:__. BUILD AND QUEUE
' SCRIPT AND

COMMAND

the tasks in this manner resulted in a kernel driver that
incorporates little device-specific knowledge and thus is
easily portable across multiple devices.

The kernel driver allows only one process to access
the device at any particular time. (Support for multiple­
process access is provided by the multimedia server.)
Components of the video kernel-mode driver include

• An Initialization Routine-The driver's initializa­
tion routine is executed by the operating system at
driver load time. The primary function of this rou­
tine is to reserve system resources such as nonpaged
kernel memory for the command queue, the event
queue, and the other internal data structures
needed by the driver.

• A Set of Dispatch Routines-Dispatch routines
constitute the main set of static functionality pro­
vided by the driver. The driver provides dispatch
routines for opening and closing the video subsys­
tem, for mapping and unmapping hardware regis­
ters to the kernel and to user virtual memory address
spaces, for locking and unlocking noncontiguous
memory for scatter/gather DMA, and for mapping
and unmapping the various queues to the library.

• An Asynchronous 1/0 Routine-The video library
invokes this routine to check for pending events
that have to be processed. If an unserviced event
exists, the kernel driver immediately returns control
to the library; if no event exists, the system puts the
library process to sleep.

• A Start 1/0 Routine and a Stop 1/0 Routine­
The driver uses the start 1/0 routine to initiate data

KERNEL SPACE

DRIVER/
OPERATING SYSTEM HARDWARE

PACKETS ----+-- QUEUE UP DPC,
PERFORM -~---------,--- RETURN CONTROL

TIME

Figure 11

OTHER
ACTIVITY

l
I
I
I

INVOKE I

DPC RUNS, DOWNLOADS :
START SCRIPT TO
HARDWARE ------ EXECUTE

! BLOCKING
CALL ----• IF NO EVENTS, GO I HARDWARE ISR RUNS, ----- INTERRUPT

TO SLEEP I QUEUES UP SOFTWARE
I ISR

I SOFTWARE ISR RUNS, --.-- EXECUTE
I DOWNLOADS END
I SCRIPT, LOGS EVENTS,

CONTINUE --- CHECK EVENT, _____... WAKES UP LIBRARY l RETURN RESULT :

One Case of Simplified Flow Control When Using the Video Subsystem

Digital Technical Journal Vol. 7 No. 4 1995 43

transfers to and from the J300 by downloading reg­
ister 1/0 commands from the command queue to
the J300. The stop 1/0 routine is used to terminate
the downloading of future scripts. For performance
reasons, scripts in the process of being downloaded
cannot be stopped.

• A Hardware Interrupt Service Routine-Since the
hardware ISR runs at a higher priority than both
system and user space routines, it has purposely
been kept small, performing only simple tasks
that are absolutely necessary and time critical.
Specifically, the hardware ISR records the interrupt
and the time at which it occurred. It then clears the
interrupt and queues up a software ISR.

• A Software Interrupt Service Routine-The soft­
ware ISR is the heart of the kernel driver. It runs at
a lower interrupt request level (IRQL) than the
hardware ISR but has a higher priority than user­
space routines. The software ISR is invoked as a
DPC either by the hardware ISR or by the library
through a start 1/0 request. Its main function is
to process script packets and download command
packets programmed by the video library.

Debugging the Video Subsystem
Because of the real-time nature of operations, debug­
ging the software was a challenge. The size of the code,
the complex interaction between the various functional
pieces, and the asynchronous nature of operations sug­
gested that, for debugging purposes, it would be help­
ful if hardware commands could be scrutinized just
before the final downloading took place. Fortunately,
the video library's extensive use of queues made it pos­
sible for us to design a custom tool with knowledge of
the hardware and software architectures that would
allow us to examine the command scripts.

In addition to presenting a debugging challenge,
the real-time nature of operations limited the scope of
UNIX tools like dbx, kdbx, and ctrace. Timing was
important, and the debugger had the tendency to slow
down the overall program to the point where a previ­
ous failure on a free system would not occur with the
debugger enabled. To catch some of these elusive
bugs while preserving the timing integrity of the oper­
ations, the scratch random-access memory (RAM) on
the J300 audio subsystem (see Figure 1) was used to
store traces. A brief description of the two approaches
follows.

Queue Interpreter The queue interpreter was specifi­
cally developed as an aid for debugging the video
library. As the name suggests, its primary function was
to interpret the commands in the command queue
and the events in the event queue. At random
locations in the library, a list of hardware commands

44 Digital Technical Journal Vol. 7 No. 4 1995

currently in the command queue could be viewed
before the kernel driver downloaded them for execu­
tion. For each command, the information displayed
included a sequence number, the type of operation,
the ASCII name of the register to be accessed, the reg­
ister's physical address, the value to be written, and,
when possible, a bit-wise interpretation of the value.
This information was used to check if the upper layer
software had programmed the device registers in the
correct sequence and with the proper values.

Another important capability of the queue inter­
preter was that it could step through the command
packets and download each command separately. On
many occasions, this function helped locate and isolate
the specific register access that was causing the hard­
ware to stall or to crash the system. By using the
sequence number, the offending hardware command
could be traced to the precise location in the library
where it had been programmed.

In addition, the queue interpreter was able to search
the command queue for any access to a specific
hardware register, could display the contents of
the event queue, and had a "quiet mode," in which
the interpreter would log the commands on a disk
for later analysis.

Audio RAM Printer Although it was a useful tool for
debugging, the queue interpreter was not a good real­
time tool because it slowed down the overall program
execution and thus affected the actual timing.
Similarly, kernel driver operations could not be traced
using the system's printf() command because it too
affected the timing. Furthermore, because of the asyn­
chronous nature of printf() and the possibility of los­
ing it, printf() was ineffective in pinpointing the
precise command that had caused the system to fail.
Thus, we had to find an alternate mechanism for
debugging failures related to timing.

The J300 audio subsystem has an 8K-by-24-bit
RAM that is never used for any video operations. This
observation led to the implementation of a print func­
tion that wrote directly to the J300's audio RAM. This
modified print function was intermixed in the suspect
code fragment in the kernel driver to facilitate trace
analysis. When a system failure occurred or after the
application had stopped, a companion "sniffer" rou­
tine would read and dump the contents of the RAM to
the screen or to a file for analysis. The modified print
function was used primarily for debugging dynamic
operations such as the ones in the hardware and soft­
ware interrupt handlers. Many bugs were found and
fixed using this technique. The one caveat was that this
technique was useful only in cases where the video
subsystem was causing a system failure independent of
the operation of the audio subsystem.

Video Subsystem Performance
Measuring the true performance of any software is
generally a difficult task. The complex interaction
between different modules and the number of vari­
ables that must be fixed makes the task arduous. For
video, the problem is aggravated by the fact that the
speed with which the underlying video compression
algorithm works is nonlinearly dependent on the con­
tent of the video frames and the desired compression
ratio. A user working with a compressed sequence that
contains images that are smooth (i.e., have high spatial
redundancy) will get a faster decompression rate than
a user who has a sequence that contains images that
have regions of high frequencies (i.e., have low spatial
redundancy). A similar discrepancy will exist when
sequences with different compression ratios are used.
Since there are no standard video sequences available,
the analyst has to make a best guess at choosing a set of
representative sequences for experiments. Because the
final results are dependent on the input data, they are
influenced by this decision. Other possible reasons for
the variability of results are the differing loads on the
operating systems, the different configurations of
the underlying software, and the overhead imposed by
the different test applications.

Our motivation for checking the performance of
the J300 and FullVideo Supreme JPEG adapters was
to determine whether we had succeeded in our goal
of developing software that would extract real-time
performance while adding minimal overhead. The
platforms we used in our experiments were the
AlphaStation 600 5/266 and the DEC 3000 Model
900. The AlphaStation 600 5/266 was chosen
because it is a PCI-based system 2nd could be used to
test the FullVideo Supreme JPEG adapter. The DEC
3000 Model 900 is a TURBOchannel system and
could be used to test the J 300 adapter. Both systems
are built around the 64-bit Alpha 21064A processor
running at clock rates of 266 megahertz (MHz) and
275 MHz, respectively. Each system was configured
with 256 megabytes of physical memory, and each was
running the Digital UNIX Version 3.2 operating sys­
tem and Digital's Multimedia Services Version 2.0
for Digital UNIX software. No compute-intensive or
J/0 processes were running in the background, and,
hence, the systems were lightly loaded.

Our experiments were designed to reflect real appli­
cations, and special emphasis was placed on obtaining
reproducible performance data. The aim was to

understand how the performance of individual ses­
sions was affected as the number of video sessions was
increased. We wrote an application that captured,
dithered, and displayed a live video stream obtained
from a camera while simultaneously decompressing,
dithering, and displaying multiple video streams read
from a local disk. This is a common function in
teleconferencing applications where the multiple

compressed video streams come over the network.
We measured the display rate for the video sequence
that was being captured and dithered and the average
display rate for sequences that were being decom -
pressed and dithered. The compressed sequences had
an average peak signal-to-noise ratio (PSNR) of 27.8
decibels (dB) and an average compression ratio of
approximately 0.6 bits per pixel. The sequences had
been compressed and stored on the local disk prior to
the experiment. Image frame size was source input
format (SIF) 352 pixels by 240 lines. Figure 12 and
Figure 13 illustrate the performance data obtained as
a result of the experiments.

In general, we were satisfied with the performance
results. As seen in Figures 12 and 13, a total of five ses­
sions can be accommodated at 30 frames per second
with the J300 on a DEC 3000 Model 900 system and
three sessions at 30 frames per second with the

SOUND & MOTION J300

~ 8
0

gj 7~~

UJ 6

; 5

a: 4
UJ

~ 3 -

~ 2
0 5 10 15 20 25

DISPLAY RATE (FRAMES/SECOND)

KEY:

O DECOMPRESS, DITHER, AND DISPLAY

• CAPTURE, DITHER, AND DISPLAY

Note: The number of sessions n is equal to one capture plus (n - 1)
decompressions.

Figure 12

30

Performance Data Generated by a DEC 3000 Model 900
System with a Sound & Motion J300 Adapter

FULLVIDEO SUPREME JPEG

~8~~ iii 7
en
~ 6

~ 51--~~~~~~~~~~~~
a: 4 L_~

~3~~~~~~~ ~ 2 ~
5 10 15 20 25 30 0
DISPLAY RATE (FRAMES/SECOND)

KEY:

O DECOMPRESS, DITHER, AND DISPLAY

• CAPTURE, DITHER, AND DISPLAY

Note: The number of sessions n is equal to one capture plus (n - 1)
decompressions.

Figure 13
Performance Data Generated by an AlphaStation 600
5 /266 with a FullVideo Supreme JPEG Adapter

Digital Technical Journal Vol. 7 No. 4 1995 45

FullVideo Supreme JPEG on an AlphaStation 600
5/266 system. The discrepancy in performance of the
two systems may be attributed to the differences in
CPU, system bus, and maximum burst length. The
DEC 3000 Model 900 has a 32-bit TURBOchannel
bus whose speed is 40 nanoseconds with a peak trans­
fer rate of 100 megabytes per second, whereas the
AlphaStation 600 5/266 has a PCI bus whose speed
is 30 nanoseconds. The OMA controller on the J300
adapter has a maximum burst length of 2K pages,
whereas the FullVideo Supreme JPEG adapter has
a maximum burst length of 96 bytes. Since in our
experiments data was dithered and sent over the bus
(at 83 Kbytes per frame) to the frame buffer, burst
length becomes the dominant factor, and it is not
unreasonable to expect the J 300 to perform better
than the FullVideo Supreme JPEG.

The difference between capture and decompression
rate (as shown in Figures 12 and 13) may be explained
as follows: Decompression operations are inter­
mixed between capture operations, which occur at
a frequency of one every 33 milliseconds. Overall per­
formance improves when a larger number of decom­
pression operations are accommodated between
successive capture operations. Since the amount of
time the hardware takes to decompress a single frame
is unknown (the time depends on the picture con­
tent), the software is unable to determine the precise
number of decompression operations that can be pro­
grammed. Also, in the present architecture, since all
operations have equal priority, if a scheduled decom­
pression operation takes longer than expected, it is
liable to not relinquish the hardware when a new
frame arrives, thus reducing the capture rate. When we
ran the decompression, dither, and display operation
only (with the capture operation turned off), the peak
rate achieved by the FullVideo Supreme JPEG adapter
was approximately 165 frames per second, and the rate
for the Sound & Motion J300 was about ll8 frames
per second. Bus speed and hardware enhancements in
the FullVideo Supreme JPEG can be attributed to the
difference in the two rates.

The next section describes the architecture for the
J300 audio subsystem. Relative to the video subsys­
tem, the audio software architecture is simpler and
took less time to develop.

Audio Subsystem

The J300 audio subsystem complements the J300
video subsystem by providing a rich set of functional
routines by way of an audio library. The software hier­
archy for the audio subsystem is similar to the one for
the video subsystem. Figure 2 shows the various com -
ponents of this hierarchy as implemented under the
Digital UNIX operating system. Briefly, an application
makes a request to a multimedia server for processing
audio. The request is made through invocation of
routines provided by a multimedia client library. The
multimedia server parses the request and dispatches
the appropriate user-mode driver, which is built on top
of the audio library. Depending on the request, the
audio library may perform the operation either on the
native CPU or alternatively on the J300 digital signal
processor (DSP). Completed results are returned to
the application using the described path in the reverse
direction.

To provide a comprehensive list of audio processing
routines, the software relies on both host-based and
J300-based processing. The workhorse of the J300
audio subsystem is the general-purpose Motorola
Semiconductor DSP56001 (see Figure 14), which
provides hardware control for the various audio com­
ponents while performing complex signal processing
tasks at real-time rates. Most notable, software running
on the DSP initiates OMA to and from system memory,
controls digital (AES/EBU) audio 1/0, manages ana­
log stereo and mono 1/0, and supports multiple sam­
pling rates, including Telephony (8 kHz) and fractions
of digital audio tape (DAT) (48 kHz) and compact disc
(CD) (44.1 kHz) rates. The single-instruction multi­
ply, add, and multiply-accumulate operations, the two
data moves per instruction operations, and the low
overhead for specialized data addressing make the DSP

MOTOROLA'S DSP56001 PROCESSOR

RECORD CHANNEL ..._

Figure 14

AD PCM
COMPRESSION TIME-STAMPING

I I ENERGY
...__ ____ _, DMA CONTRO~ .__c_AL_c_u_LA_T_IO_N____.

SAMPLE RATE
CONVERSION I GAIN CONTROL I

Some Audio Functions Supported by Motorola's DSP56001 Processor

46 Digital Technical Journal Vol. 7 No. 4 1995

..._ PLAYBACK CHANNEL

especially suitable for compute-intensive audio process­
ing tasks. Real-time functions such as adaptive differen­
tial pulse code modulation (ADPCM) encoding and
decoding, energy calculation, gain control for analog­
to-digital (A/D) and digital-to-analog (D/A) convert­
ers, and time-stamping are performed by software
running on the DSP .11 Other tasks such as converting
between different audio formats (µ-law, A-law, and lin­
ear), mixing and unmixing of multiple audio streams,
and correlating the system time with the J300 90-kHz
timer and with the sample counter are done on the
native CPU by the library software. 12

Early in the project, we had to decide whether or
not to expose the DSP to the client applications.
Exposing the DSP would have provided additional
flexibility for application writers. Although this was an
important reason, the opposing arguments, which
were based on the negative consequences of exposing
the raw hardware, were more compelling. System
security and reliability would have been compromised;
an incorrectly programmed DSP could cause the
system to fail and could corrupt the kernel data struc­
tures. Additionally, maintaining, debugging, and sup­
porting the software would be difficult. To succeed,
the product had to be reliable. Therefore, we decided
to retain control of the software but to provide
enough flexibility to satisfy as many application writers
as possible. As customer demand and feedback grew,
more DSP programs would be added to the list of
existing programs in a controlled manner to ensure
the integrity and robustness of the system.

The following subsections describe the basic con­
cepts behind the device-independent portion of the
audio library and provide an operational overview of
the library internals.

Audio Library Overview
The audio library defines a single audio sample as the
fundamental unit for audio processing. Depending on
the type of encoding and whether it is mono or stereo,
an audio sample may be any of the following: a 4-bit
ADPCM code word, a pair of left/ right 4 -bit ADPCM
code words, a 16-bit linear pulse code modulation
(PCM) audio level, a pair of left/right 16-bit linear
PCM audio levels, an 8-bit µ -law level, or an 8-bit
A-law level. The library defines continually flowing
audio samples as an audio stream whose attributes can
be set by applications. Attributes provide information
on the sampling rate, the type of encoding, and how
to interpret each sample.

Audio streams flow through distinct directional vir­
tual channels. Specifically, an audio stream flows into
the subsystem for processing through a record (input)
channel, and a processed stream flows out of the
subsystem through a playback (output) channel.

A configurable bypass mode in which the channels are
used for a direct path to the hardware I/0 ports is also
provided. As is the case for audio streams, each chan­
nel has attributes such as a buffer for storing captured
data, a buffer for storing data to be played out, permis­
sions for channel access, and a sample counter. Sample
counters are used by the library to determine the last
audio sample processed by the hardware. Channel per­
missions determine the actions allowed on the chan­
nel. Possible actions include read, write, mix, unmix,
and gain control or combinations of these actions.

The buffers associated with the I/0 channels are
for queuing unserviced audio data and are called
smoothing buffers. A smoothing buffer ensures a con­
tinuous flow of data by preventing samples from being
lost due to the non-real-time scheduling by the under­
lying operating system. The library provides non­
blocking routines that can read, write, mix, and unmix
audio samples contained in the channel buffers. A slid­
ing access window determines which samples can be
accessed within the buffer. The access window is char­
acterized in sample-time units, and its size is pro­
portional to that of the channel buffer that holds the
audio data.

Like the video library, the audio library supports
multiple device configurations through a set of regis­
tration routines. Clients may register channel and
audio stream parameters with the library (through the
server) at set-up time. Once registered, the parameters
can be changed only by unregistering and then rereg­
istering. The library provides query routines that
return status/ progress information, including the
samples processed, the times (both system and J300
specific) at which they were processed, and the chan -
nel and stream configurations. Overall, the library
supports four operational (execution) modes: tele­
conferencing, compression, decompression, and rate
conversion. Extensive error checking and reporting
are incorporated into the software.

Audio Library Operation
The execution mode and the associated DSP program
dictate the operation of the audio library. Execution
modes are user selectable. All programs support mul­
tiple sampling rates, I/0 gain control, and start and
pause features, and provide location information for
the sample being processed within the channel buffer.
Buffers associated with the record and playback chan­
nels are treated as ring buffers with a FIFO service pol­
icy. Management of data in the buffers is through
integer indexes (GET and PUT) using an approach
similar to the one adopted for the management of the
command and event queues in the video subsystem.
Specifically, the DMA controller moves the audio data
from the DSP's external memory to the area in the

Digital Technical Journal Vol. 7 No. 4 1995 47

48

channel buffer (host memory) starting at the PUT
index. Audio data in this same channel buffer is pulled
by the host (library) from the location pointed to by
the GET index. Managers of the GET and PUT
indexes are reversed when DMA is being performed
from a channel buffer to the DSP external memory. In
all cases, the FIFO service policy ensures that the audio
data is processed in the sequence in which it arrives.

The internal operation of the audio library is best
explained with the help of a simple example that cap­
tures analog audio from the J300 line-in connector
and plays out the data through the J300's line-out
connector. This most basic I/0 operation is incorpo­
rated in more elaborate audio processing programs.
The example follows.

1. The server opens the audio subsystem, allocates
memory for the I/0 buffers, and invokes a library
routine to lock down the buffers. Two buffers are
associated with the record and playback channels.

2. The library sets up the DSP external memory for
communications between software running on the
two processors, i.e., the CPU and the DSP. The
set-up procedure involves writing information at
locations known and accessible to both processors.
The information pertains to the physical addresses
needed by the DMA scheduler portion of the DSP
program and for storing progress information.

3. A kernel driver routine maps a section of system
memory to user space. This shared memory is used
for communication between the driver and the
library. The type of information passed back and
forth includes the sample number being processed,
the associated time stamps, and the location of the
GET and PUT indexes within the I/0 buffers.

4. Other set-up tasks performed by the library include
choosing the I/0 connectors, setting the gain for
the I/0 channels, and loading the appropriate DSP
program. A start routine enables the DSP.

5. Once the DSP is enabled, all components in the
audio hardware are under its control. The DSP pro­
grams the DMA controller to take sampled audio
data from the line-in connector and move it into the
record channel buffer. It then programs the same
controller to grab data from the playback channel
buffer and move it to the external memory from
where it is played out on the line-out connector.

6. The library monitors the indexes associated with
the 1/0 buffers to determine the progress, and,
based on the index values, the application copies
data from the input channel to the output channel
buffer. The access window ensures that data copy­
ing stays behind the DSP, in the case of input, and
in front of the DSP, in the case of output.

Digital Teclmical Journal Vol. 7 No. 4 1995

Support for Multiple Adapters

The primary reason for using multiple J300 adapters
is to overcome the inherent limitations of using a single
J300. First, a single J300 limits the application
to a single video port and a single audio input port.
Some applications process multiple video input streams
simultaneously. For example, a television station receiv­
ing multiple video feeds may want to compress and
store these for later usage utilizing a single workstation.
Another example is the monitoring of multiple video
feeds from strategically placed video cameras for the
purpose of security. Since AlphaStation systems have
the necessary horsepower to process several streams
simultaneously, supporting multiple J300s on the same
system is desirable.

Second, if a single J300 is used, the video-in and
video-out ports cannot be used simultaneously. This
limitation exists because the two ports share a common
frame store, as shown in Figure 1, and programming
the video-in and video-out chip sets is a heavyweight
operation. Multiple J300s can alleviate this problem.
One example of an application that requires the simul­
taneous use of the video-in and video-out ports is
a teleconferencing application in which the video-in
circuitry is used for capturing the camera output, and
the video-out circuitry is used for sending regular
snapshots of the workstation screen to an overhead
projection screen. A second example is an application
that converts video streams from one format to
another (e.g., PAL, SECAM, NTSC) in real time.

As a result of the limitations just cited, support for
multiple J 300s on the same workstation was one of
the project's design goals. In terms of coding, achiev­
ing this goal required not relying on global variables
and using indexed structures to maintain state infor­
mation. Also, because of the multithreaded nature
of the server, care had to be taken to ensure that data
and operation integrity was maintained.

For most Alpha systems, the overall performance
remains good even with two J300s on the same sys­
tem. For high-end systems, up to three J300s may be
used. The dominant limitation in the number ofJ300s
that can be handled by a system is the bus bandwidth.
As the number of J300s in the system increases, the
data traffic on the system bus increases proportionally.

Having described the software architecture, we now
shift our attention to the development environment,
testing strategy, and diagnostics software.

Software Development Environment

During the early phases of the development process,
we depended almost exclusively on Jvideo. Since the
J300 is primarily a cost-reduced version ofJvideo, we
were able to develop, test, and validate the design of

the device-independent portion of the software and
most of the kernel device driver well before the actual
J300 hardware arrived. Our platform consisted of
a Jvideo attached to a DECstation workstation, which
was based on a MIPS R3000 processor and was run­
ning the UL TRIX operating system. When the new
Alpha workstations became available, we switched our
development to these newer and faster machines. We
ported the 32-bit software to Alpha's 64-bit architec­
ture. Sections of the kernel device driver were rewrit­
ten, but the basic design remained intact. The overall
porting effort took a little more than a month to com­
plete. At the end of that time, we had the software
running on a Jvideo attached to an Alpha workstation,
which was running the DEC OSF/1 operating system
(now called the Digital UNIX operating system). We
promptly corrected software timing bugs exposed as
a result of using the fast Alpha-based workstations.

For the development of the device-dependent por­
tion, we relied on hardware simulation of the J300.
The different components and circuits of the J300
were modeled with Verilog behavioral constructs.
Accesses to the TURBOchannel bus were simulated
through interprocess communication calls (IPCs) and
shared memory (see Figure 15). Because a 64-bit ver­
sion ofVerilog was unavailable, simulations were run
on a machine based on the MIPS R3000 processor
running the ULTRIX operating system. The process,
though accurate, was generally slow.

Testing and Diagnostics

We wrote several applications to test the software
architecture. The purpose of these applications was to
test the software features in real-world situations and
to demonstrate through working sample code how
the libraries could be used. Applications were classified
as video only, audio only, and ones that contained
both video and audio.

Figure 15

TEST
APPLICATION

SOFTWARE
LIBRARY

J300 DEVICE
DRIVER

SOFTWARE PROCESS

WRITE

READ

Hardware Simulation Environment for Software Development

In addition, we wrote two types of diagnostic soft­
ware to test the underlying hardware components:
(1) read-only memory (ROM) based and (2) operating
system based. ROM-based diagnostics have the advan­
tage that they can be executed from the console level
without first booting the system. The coverage pro­
vided is limited, however, because of the complexity
of the hardware and the limited size of the ROM.
Operating system diagnostics rely on the kernel device
driver and on some of the library software. This suite of
tests provides comprehensive coverage with verifica­
tions of all the functional blocks on the J300. For the
new PCI-based FullVideo Supreme video adapters,
only operating-system-based diagnostics exist.

Related Work

When the Jvideo was conceived in early 1991, little
had been published on hardware and software solu­
tions for putting video on the desktop. This may have
been partly due to the newness of the compression
standards and to the difficulty in obtaining specialized
video compression silicon. Since then, audio and video
compression have become mainstream, and several
computer vendors now have products that add multi­
media capability to the base workstations.

Lee and Sudharsanan describe a hardware and soft­
ware design for a JPEG microchannel adapter card
built for platforms based on IBM's PS/ 2 operating
system.13 The adapter is controlled by an interrupt­
driven software running under DOS. In addition, the
software is also responsible for color-space conversion
and algorithmic tuning of the JPEG parameters. Audio
support is not included in the hardware. The paper
presents details on how the software programs the var­
ious components of the board (e.g., the CLSSO chip
from C-Cube Microsystems and the DMA logic) to
achieve compression and decompression. Portability
of the software is compromised since the bulk of the

J300 BOARD
SIMULATION

t BUS
t SIGNALS

>----..-, TURBOCHANNEL
l•----t MODEL

SIMULATION PROCESS

Digital Technical Journal Vol. 7 No. 4 1995 49

code, which resides inside the interrupt service rou­
tine, is written in assembly language.

Boliek and Allen describe the implementation of
hardware that, in addition to providing baseline JPEG
compression, uses a dynamic quantization circuit to
achieve fixed-rate compression.14 The board is based
on the RIOH JPEG chip set that includes separate
chips for performing the DCT, Huffman coding, and
color-space conversion. The paper's main focus is
on describing the Allen Parameterized (orthogonal)
Transform that approximates the DCT while reducing
the cost of the hardware. The paper contains little
information about software control, architecture, and
control flow.

Traditionally, operating systems have relied on data
copying between user space and kernel space to pro­
tect the integrity of the kernel. Although this method
works for most applications, for multimedia appli­
cations, which usually involve massive amounts of
data, the overhead of data copying can seriously
compromise the system's real-time performance.15 Fall
and Pasquale describe a mechanism of in-kernel data
paths that directly connect the source and sink
devices.16 Peer-to-peer 1/0 avoids unnecessary data
copying and improves system and application perfor­
mance. Kitamura et al. describe an operating system
architecture, which they refer to as the zero-copy
architecture, that is also aimed at reducing the over­
head due to data copying. 17 The architecture uses
memory mapping to expose the same physical
addresses to both the kernel and the user-space
processes and is especially suitable for multimedia
operations. The J300 software is also a zero-copy
architecture. No data is copied between system and
user space.

The Windows NT 1/0 subsystem provides flexible
support for queue management. 18 What the J300
achieved on the UNIX and Open VMS platforms
through the command and event queues can be
accomplished on the Windows NT platform using
built-in support from the 1/0 manager. A queue of
pending requests (in the form ofl/0 request packets)
may be associated with each device. The use of
1/0 packets is similar to the use of command and
event packets in the J300 video software.

Summary

This paper describes the design and implementation of
the software architecture for the Sound & Motion
J300 product, Digital's first commercially available
multimedia hardware adapter that incorporates audio
and video compression. The presentation focused on
those aspects of the design that place special emphasis
on performance, on providing an intuitive API, and
on supporting a client-server model of computing.

50 Digital Technical Journal Vol. 7 No. 4 1995

The software architecture has been successfully imple­
mented on the OpenVMS, Microsoft Windows NT,
and Digital UNIX platforms. It is the basis for Digital's
recent PCI-based video adapter cards: FullVideo
Supreme and FullVideo Supreme JPEG.

The goals that influenced the J300 design have
largely been realized, and the software is mature.
Digital is expanding upon ideas incorporated in the
design. For example, one potential area for improve­
ment is to replace the FIFO service policy in the vari­
ous queues with a priority-based mechanism. A second
possible improvement is to increase the usage of the
hardware between periodic operations like video cap­
ture. In terms of portability, the idea ofleaving device­
specific programming outside the kernel driver can be
expanded upon to design device-independent kernel­
mode drivers, thus lowering overall development
costs. Digital is actively investigating these and other
such enhancements made possible by the success of
the J300 project.

Acknowledgments

A number of people are responsible for the success of
the J300 family of products. The author gratefully
acknowledges the contributions of members of the
J300 software and hardware development teams. In
particular, special thanks to Bernard Szabo, the project
leader for the J300 software; Paul Gauthier, for his
invaluable assistance in getting the video library com­
pleted and debugged; John Hainsworth, for imple­
menting the device-independent portion of the audio
library; Davis Pan, for writing the DSP programs; and
Robert Ulichney, for his guidance with the design and
implementation of the video rendering subsystem.
The J300 hardware design team was lead by Ken
Correll and included Tim Hellman, Peter Antonios,
Rudy Stalzer, and Tom Fitzpatrick. Nagi Sivananjaiah
wrote the diagnostics that served us well in isolating
hardware problems. Thanks also to members of the
Multimedia Services Group, including Jim Ludwig,
Ken Chiquoine, Leela Oblichetti, and Chip Dancy,
for being instrumental in incorporating the J300,
FullVideo Supreme, and FullVideo Supreme JPEG
into Digital's multimedia server, and to Susan Yost,
our tireless product manager, for diligently ensuring
that the development teams remained on track.

References

1. Information Technology-Digital Compression
and Coding of Continuous-tone Still Images, Part 1:
Requirements and Guidelines, ISO /IEC 10918-1:
1994 (March 1994).

2. Coding of Moving Pictures and Associated Audio for
Digital Storage Media at up to about 1.5 Mbit/s­
Part 2: Video, ISO/IEC 11172-2: 1993 (1993).

3. P. Bahl, P. Gauthier, and R. Ulichney, "Software-only
Compression, Rendering, and Playback of Digital
Video," Digital Technical Journal, vol. 7, no. 4
(1995, this issue): 52-75.

4. A. Banerjea et al., "The Tenet Real-Time Protocol
Suite: Design, Implementation, and Experiences,"
TR-94-059 (Berkeley, Calif.: International Computer
Science Institute, November 1994), also in IEEE/ACM
Transactions on Networking (1995).

5. A. Banerjea, E. Knightly, F. Templin, and H. Zhang,
"Experiments with the Tenet Real-Time Protocol
Suite on the Sequoia 2000 Wide Area Network," Pro­
ceedings of the ACM Multimedia '94, San Francisco,
Calif. (1994).

6. W. Fenner, L. Berc, R. Frederick, and S. McCanne,
"RTP Encapsulation of JPEG Compressed Video,"
Internet Engineering Task Force, Audio-Video Trans­
port Working Group (March 1995). (Internet draft)

7. S. McCanne and V. Jacobson, "vie: A Flexible Frame­
work for Packet Video," Proceedings of the ACM
Multimedia '95, San Francisco, Calif. (1995).

8. M. Altenhofen et al., "The BERKOM Multimedia Col­
laboration Service," Proceedings of the ACM Multi­
media '93, Anaheim, Calif. (August 1993): 457-463.

9. K. Correll and R. Ulichney, "The J300 Family of
Video and Audio Adapters: Architecture and Hard­
ware Design," Digital Technical Journal, vol. 7,
no. 4 (1995, this issue): 20-33.

10. S. Leffler, M. McKusick, M. Karels, and J. Quarterman,
The Design and Implementation of the 43 BSD
UNIX Operating System (Reading, Mass.: Addison­
Wesley, 1989): 51-53.

11. Pulse Code Modulation (PCM) of Voice Frequen­
cies, CCITT Recommendation G.711 (Geneva: Inter­
national Telecommunications Union, 1972).

12. L. Rabiner and R. Schafer, Digital Processing of
Speech Signals (Englewood Cliffs, N.J.: Prentice­
Hall, 1978).

13. D. Lee andS. Sudharsanan, "Design of a Motion JPEG
(M/JPEG) Adapter Card," in Digital Video Compres­
sion on Personal Computers: Algorithms and Tech­
nology, Proceedings of SPIE, vol. 2187, San Jose,
Calif. (February 1994): 2-12.

14. M. Boliek and J. Allen, "JPEG Image Compression
Hardware Implementation with Extensions for
Fixed-rate and Compressed-image Editing Applica­
tions," in Digital Video Compression on Personal
Computers: Algorithms and Technology, Proceed­
ings of SPIE, vol. 2187, San Jose, Calif. (February
1994): 13-22.

15. J. Pasquale, "I/0 System Design for Intensive Multi­
media 1/0," Proceedings of the Third IEEE Work­
shop on Workstation Operation Systems, Asilomar,
Calif. (October 1991): 56-67.

16. K. Fall and J. Pasquale, "Improving Continuous­
media Playback Performance with In-kernel Data
Paths," Proceedings of the IEEE Conference on Mul­
timedia Computing and Systems, Boston, Mass.
(June 1994): 100- 109.

17. H. Kitamura, K. Taniguchi, H. Sakamoto, and
T. Nishida, "A New OS Architecture for High Perfor­
mance Communication over ATM Networks,"
Proceedings of the Workshop on Network and Oper­
ating System Support for Digital Audio and Video
(April 1995): 87-91.

18. Microsoft Windows NT Device Driver Kit (Redmond,
Wash.: Microsoft Corporation, January 1994).

Biography

Paramvir Bahl
Paramvir Bahl received B.S.E.E. and M.S.E.E. degrees in
1987 and 1988 from the State University of New York at
Buffalo. Since joining Digital in 1988, he has contributed
to several seminal multimedia products involving both
hardware and software for digital video. Recently, he led
the development of software-only video compression and
video rendering algorithms. A principal engineer in the
Systems Business Unit, Paramvir received Digital's
Doctoral Engineering Fellowship Award and is completing
his Ph.D. at the University of Massachusetts. There, his
research has focused on techniques for robust video com­
munications over mobile radio networks. He is the author
and coauthor of several scientific publications and a pend­
ing patent. He is an active member of the IEEE and ACM,
serving on program committees of technical conferences
and as a referee for their journals. Paramvir is a member of
Tau Beta Pi and a past president of Eta Kappa Nu.

Digital Technical Journal Vol. 7 No. 4 1995 51

Software-only
Compression,
Rendering, and
Playback of Digital Video

Software-only digital video involves the com­

pression, decompression, rendering, and display

of digital video on general-purpose computers

without specialized hardware. Today's faster

processors are making software-only video an

attractive, low-cost alternative to hardware

solutions that rely on specialized compression

boards and graphics accelerators. This paper

describes the building blocks behind popular

ISO, ITU-T, and industry-standard compression

schemes, along with some novel algorithms

for fast video rendering and presentation. A

platform-independent software architecture

that organizes the functionality of compressors

and renderers into a unifying software inter­

face is presented. This architecture has been

successfully implemented on the Digital UNIX,

the OpenVMS, and Microsoft's Windows NT

operating systems. To maximize the perfor­

mance of codecs and renderers, issues pertain­

ing to flow control, optimal use of available

resources, and optimizations at the algorithmic,

operating-system, and processor levels are con­

sidered. The performance of these codecs on

Alpha systems is evaluated, and the ensuing

results validate the potential of software-only

solutions. Finally, this paper provides a brief

description of some sample applications built

on top of the software architecture, including

an innovative video screen saver and a software

VCR capable of playing multiple, compressed

bit streams.

52 Digital Technical Journal Vol. 7 No. 4 1995

I
Paramvir Bahl
Paul S. Gauthier
Robert A. Ulichney

Full-motion video is fast becoming commonplace to
users of desktop computers. The rising expectations for
low-cost, television-quality video with synchronized
sound have been pushing manufacturers to create new,
inexpensive, high-quality offerings. The bottlenecks
that have been preventing the delivery of video without
specialized hardware are being cast aside rapidly as
faster processors, higher-bandwidth computer buses
and networks, and larger and faster disk drives are
being developed. As a consequence, considerable
attention is currently being focused on efficient imple­
mentations of flexible and extensible software solutions
to the problems of video management and delivery.
This paper surveys the methods and architectures used
in software-only digital video systems.

Due to the enormous amounts of data involved,
compression is almost always used in the storage and
transmission of video. The high level of information
redundancy in video lends itself well to compression,
and many methods have been developed to take
advantage of this fact . While the literature is replete
with compression methods, we focus on those that are
recognized as standards, a requirement for open and
interoperable systems. This paper describes the build­
ing blocks behind popular compression schemes of
the International Organization for Standardization
(ISO), the International Telecommunication Union­
Telecommunication Standardization Sector (ITU-T),
and within the industry.

Rendering is another enabling technology for video
on the desktop. It is the process of scaling, color
adjusting, quantization, and color space conversion of
the video for final presentation on the display. As an
example, Figure 1 shows a simple sequence of video
decoding. In the section Video Presentation, we dis­
cuss rendering methods, along with some novel algo­
rithms for fast video rendering and presentation, and
describe an implementation that parallels the tech­
niques used in Digital's hardware video offerings.

We follow that discussion with the section The
Software Video Library, in which we present a com­
mon architecture for video compression, decom -
pression, and playback that allows integration into
Digital's multimedia products. We then describe two
sample applications, the Video Odyssey screen saver

PRESENTATION ~ ---- ---------,
COMPRESSED-,
BIT STREAM

I
DECOMPRESS ~ RENDER H DISPLAY I:

,_ ____ __ _______ J

Figure 1
Components in a Video Decoder Pipeline

and a software-only video player. We conclude our
paper by surveying related work in this rapidly evolv­
ing area of software digital video.

Video Compression Methods

A system that compresses and decompresses video,
whether implemented in hardware or software, is
called a video codec (for compressor/decompressor).
Most video codecs consist of a sequence of compo­
nents usually connected in pipeline fashion. The codec
designer chooses specific components based on the
design goals. By choosing the appropriate set of build­
ing blocks, a codec can be optimized for speed of
decompression, reliability of transmission, better color
reproduction, better edge retention, or to perform at
a specific target bit rate. For example, a codec could
be designed to trade off color quality for transmission
bit rate by removing most of the color information
in the data (color subsampling). Similarly a codec may
include a simple decompression model (less process­
ing per pixel) and a complex compression process to
boost the playback rate at the expense of longer com -
pression times. (Compression algorithms that take
longer to compress than to decompress are said to be
asymmetric.) Once the components and trade-offs
have been chosen, the designer then fine tunes the
codec to perform well in a specific application space
such as teleconferencing or video browsing.

Video Codec Building Blocks
In this section, we present the various building blocks
behind some popular and industry-standard video
codecs. Knowledge of the following video codec
components is essential for understanding the com -
pression process and to appreciate the complexity of
the algorithms.

Chrominance Subsampling Video is usually described
as being composed of a sequence of images. Each
image is a matrix of pixels, and each pixel is repre­
sented by three 8-bit values: a single luminance value
(Y) that signifies brightness, and two chrominance val­
ues (U and V, or sometimes Cb and Cr) which, taken
together, specify a unique color. By reducing the
amount of color information in relation to luminance
(subsampling the chrominance), we can reduce the
size of an image with little or no perceptual effect. The

most common chrominance subsampling technique
decimates the color signal by 2:1 in the horizontal
direction. This is done either by simply throwing out
the color information of alternate pixels or by averag­
ing the colors of two adjacent pixels and using the
average for the color of the pixel pair. This technique is
commonly referred to as 4:2:2 subsampling. When
compared to a raw 24-bit image, this results in a com­
pression of two-thirds. Decimating the color signal by
2:1 in both the horizontal and the vertical direction
(by ignoring color information for alternate lines in
the image) starts to result in some perceptible loss of
color, but the compression increases to one-half. This
is referred to as 4:2:0 subsampling: for every 4 lumi­
nance samples, there is a single color specified by a pair
of chrominance values. The ultimate chrominance
subsampling is to throw away all color information
and keep only the luminance data (monochrome
video). This not only reduces the size of the input data
but also greatly simplifies processing for both the com­
pressor and the decompressor, resulting in faster codec
performance. Some teleconferencing systems allow
the user to switch to monochrome mode to increase
frame rate.

Transform Coding Converting a signal, video or
otherwise, from one representation to another is the
task of a transform coder. Transforms can be useful for
video compression if they can convert the pixel data
into a form in which redundant and insignificant infor­
mation in the video's image can be isolated and
removed. Many transforms convert the spatial (pixel)
data into frequency coefficients that can then be selec­
tively eliminated or quantized. Transform coders
address three central issues in image coding: (1) decor­
relation (converting statistically dependent image
elements into independent spectral coefficients),
(2) energy compaction (redistribution and localization
of energy into a small number of coefficients), and
(3) computational complexity. It is well documented
that human vision is biased toward low frequencies.
By transforming an image to the frequency domain,
a codec can capitalize on this knowledge and remove
or reduce the high-frequency components in the
quantization step, effectively compressing the image.
In addition, isolating and eliminating high-frequency
components in an image results in noise reduc­
tion since most noise in video, introduced during

Digital Technical Journal Vol. 7 No. 4 1995 53

the digitization step or from transmission interfer­
ence, appears as high-frequency coefficients. Thus
transforming helps compression by decorrelating (or
whitening) signal samples and then discarding
nonessential information from the image.

Unitary (or orthonormal) transforms fall into either
of two classes: fixed or adaptive. Fixed transforms are
independent of the input signal; adaptive transforms
adapt to the input signal. 1 Examples of fixed trans­
forms include the discrete Fourier transform (DFT),
the discrete cosine transform (DCT), the discrete sine
transform (DST), the Harr transform, and the Walsh­
Hadamard transform (WHT). An example of an
adaptive transform is the Karhunen-Loeve transform
(KLT). Thus far, no transform has been found for
pictorial information that completely removes statisti­
cal dependence between the transform coordinates.
The KLT is optimum in the mean square error sense,
and it achieves the best energy compaction; however,
it is computationally very expensive. The WHT is the
best in terms of computation cost since it requires only
additions and subtractions; however, it performs
poorly in decorrelation and energy compaction.
A good compromise is the DCT, which is by far
the most widely used transform in image coding. The
DCT is closest to the KLT in the energy-packing sense,
and, like the DFT, it has fast computation algorithms
available for its implementation.2 The DCT is usually
applied in a sliding window on the image with a com­
mon window size of 8 pixels by 8 lines (or simply, 8 by
8). The window size (or block size) is important: if
it is too small, the correlation between neighboring
pixels is not exploited; if it is too large, block bound­
aries tend to become very visible. Transform coding
is usually the most time-consuming step in the
compression/ decompression process.

Scalar Quantization A companion to transform cod­
ing in most video compression schemes is a scalar
quantizer that maps a large number of input levels into
a smaller number of output levels. Video is com­
pressed by reducing the number of symbols that need
to be encoded at the expense of reconstruction error.
A quantizer acts as a control knob that trades off
image quality for bit rate. A carefully designed quan­
tizer provides high compression for a given quality.
The simplest form of a scalar quantizer is a uniform
quantizer in which the quantizer decision levels are of
equal length or step size. Other important quantizers
include Lloyd-Max's minimum mean square error
(MMSE) quantizer and an entropy constraint quan­
tizer.3·4 Pulse code modulation (PCM) and adaptive
differential pulse code modulation (ADPCM) are
examples of two compression schemes that rely on
pure quantization without regard to spatial and tem­
poral redundancies and without exploiting the non­
linearity in the human visual system.

54 Digital Technical Journal Vol. 7 No. 4 1995

Predictive Coding Unless the image is changing
rapidly, a video sequence will normally contain
sequences of frames that are very similar. Predictive
coding uses this fact to reduce the data volume by
comparing pixels in the current frame with pixels in
the same location in the previous frame and encoding
the difference. A simple form of predictive coding uses
the value of a pixel in one frame to predict the value of
the pixel in the same location in the next frame. The
prediction error, which is the difference between
the predicted value and the actual value of the pixel, is
usually small. Smaller numbers can be encoded using
fewer quantization levels and fewer coding bits. Often
the difference is zero, which can be encoded very
compactly. Predictive coding can also be used within
an image frame where the predicted value of a pixel
may be the value ofits neighbor or a weighted average
of the pixels in the region. Predictive coding works
best if the correlation between adjacent pixels that are
spatially as well as temporally close to each other is
strong. Differential PCM and delta modulation (DM)
are examples of two compression schemes in which
the predicted error is quantized and coded. The
decompressor recovers the signal by applying this
error to its predicted value for the sample. Lossless
image compression is possible if the prediction error
is coded without being quantized.

Vector Quantization An alternative to transform­
based coding, vector quantization attempts to repre­
sent clusters of pixel data (vectors) in the spatial
domain by predetermined codes.5 At the encoder,
each data vector is matched or approximated with a
code word in the codebook, and the address or index
of that code word is transmitted instead of the data
vector itself At the decoder, the index is mapped back
to the code word, which is then used to represent the
original data vector. Identical codebooks are needed at
the compressor (transmitter) and the decompressor
(receiver). The main complexity lies in the design of
good representative codebooks and algorithms for
finding best matches efficiently when exact matches
are not available. Typically, vector quantization is
applied to data that has already undergone predictive
coding. The prediction error is mapped to · a subset
of values that are expected to occur most frequently.
The process is called vector quantization because the
values to be matched in the tables are usually vectors of
two or more values. More elaborate vector quantiza­
tion schemes are possible in which the difference data
is searched for larger groups of commonly occurring
values, and these groups are also mapped to single
index values.

The amount of compression that results from vec­
tor quantization depends on how the values in the
codebooks are calculated. Compression may be
adjusted smoothly by designing a set of codebooks

l

and picking the appropriate one for a given desired
compression ratio.

Motion Estimation and Compensation Most codecs
that use interframe compression use a more elaborate
form of predictive coding than described above. Most
videos contain scenes in which one or more objects
move across the image against a fixed background or
in which an object is stationary against a moving back­
ground. In both cases, many regions in a frame appear
in the next frame but at different positions. Motion
estimation tries to find similar regions in two frames
and encodes the region in the second frame with a dis­
placement vector (motion vector) that shows how
the region has moved. The technique relies on the
hypothesis that a change in pixel intensity from one
frame to another is due only to translation.

For each region (or block) in the current frame,
a displacement vector is evaluated by matching the
information content of the measurement window with
a corresponding measurement window W within
a search area S, placed in the previous frame, and by
searching for the spatial location that minimizes the
matching criterion d. Let L;(x,y) represent the pixel
intensity at location (x,y) in frame i; and if(dx,dy) rep­
resents the region displacement vector for the interval
n(=(i+ n)-i), then the matching criterion is defined as

d = min { ~ II L;(x,y)
(~ ,dy)•S (x.y)•W

(1)

The most widely used distance measures are the
absolute value llxll=lxl and the quadratic norm
llxll=x2

• Since finding the absolute minimum is guar­
anteed only by performing an exhaustive search of a
series of discrete candidate displacements within
a maximum displacement range, this process is com­
putationally very expensive. A single displacement
vector is assigned to all pixels within the region.

Motion compensation is the inverse process of using
a motion vector to determine a region of the image to
be used as a predictor.

Although the amount of compression resulting
from motion estimation is large, the coding process is
time-consuming. Fortunately, this time is needed only
in the compression step. Decompression using motion
estimation is relatively fast since no searching has to be
done. For data replenishment, the decompressor sim­
ply uses the transmitted vector and accesses a region in
the previous frame pointed to by the vector for data
replenishment. Region size can vary among the codecs
using motion estimation but is typically 16 by 16.

Frame/Block Skipping One technique for reducing
data is to eliminate it entirely. In a teleconferencing sit­
uation, for example, if the scene does not change
(above some threshold criteria), it may be acceptable
to not send the new frame (drop or skip the frame).
Alternatively, if bandwidth is limited and image quality
is important, it may be necessary to drop frames to stay
within a bit-rate budget. Most codecs used in telecon­
ferencing applications have the ability of temporal sub­
sampling and are able to gracefully degrade under
limited bandwidth situations by dropping frames.

A second form of data elimination is spatial subsam­
pling. The idea is similar to chrominance subsampling
discussed previously. In most transform -based codecs,
a block (8 by 8 or 16 by 16) is usually skipped if the
difference between it and the previous block is below
a predetermined threshold. The decompressor may
reconstruct the missing pixels by using the previous
block to predict the current block.

Entropy Encoding Entropy encoding is a form of sta­
tistical coding that provides lossless compression by
coding input samples according to their frequency of
occurrence. The two methods used most frequently
include Huffman coding and run-length encoding.6

Huffman coding assigns fewer bits to most frequently
occurring symbols and more bits to the symbols that
appear less often. Optimal Huffman tables can be gen­
erated if the source statistics are known. Calculating
these statistics, however, slows down the compression
process. Consequently, predeveloped tables that have
been tested over a wide range of source images are
used. A second and simpler method of entropy encod­
ing is run-length encoding in which sequences of
identical digits are replaced with the digit and the
number in the sequence. Like motion estimation,
entropy encoding puts a heavier burden on the com­
pressor than the decompressor.

Before ending this section, we would like to mention
that a number of other techniques, including object­
based coding, model-based coding, segmentation­
based coding, contour-texture oriented coding, fractal
coding, and wavelet coding are also available to the
codec designer. Thus far, our coverage has concen­
trated on explaining only those techniques that have
been used in the video compression schemes currently
supported by Digital. In the next section, we describe
some hybrid schemes that employ a number of the
techniques described above; these schemes are the basis
of several international video coding standards.

Overview of Popular Video Compression Schemes
The compression schemes presented in this section
can be collectively classified as first-generation video
coding schemes.7 The common assumption in all these
methods is that there is statistical correlation between

Digital Technical Journal Vol. 7 No. 4 1995 55

pixels. Each of these methods attempts to exploit this
correlation by employing redundancy reduction tech­
niques to achieve compression.

Motion-JPEG Algorithm Motion-JPEG (or M-JPEG)
compresses each frame of a video sequence using the
ISO's Joint Photographic Experts Group (JPEG)
continuous-tone, still-image compression standard.8

As such, it is an intraframe compression scheme. It is
not wed to any particular subsampling format, image
color space, or image dimensions, but most typically
4:2:2 subsampled YCbCr, source input format (SIF,
352 by 240) data is used. The JPEG standard specifies
both lossy and lossless compression schemes. For
video, only the lossy baseline DCT coding scheme has
gained acceptance. The scheme relies on selective
quantization of the frequency coefficients followed by
Huffman and run-length encoding for its compres­
sion. The standard defines a bit-stream format that
contains both the compressed data stream and coding
parameters such as the number of components, quan­
tization tables, Huffman tables, and sampling factors.
Popular M-JPEG file formats usually build on top of
the JPEG-specified formats with little or no modifica­
tion. For example, Microsoft's audio-video interleaved
(AVI) format encapsulates each JPEG frame with its
associated audio and adds an index to the start of each
frame at the end of the file. Video editing on a frame­
by-frame basis is possible with this format. Another
advantage is frame-limited error propagation in net­
worked, distributed applications. Many video digitizer
boards incorporate JPEG compression in hardware to
compress and decompress video in real time. Digital's
Sound & Motion J 300 and FullVideo Supreme JPEG
are two such boards.9

•
10 The baseline JPEG codec is a

symmetric algorithm as may be seen in Figure 2a and
Figure 3.

ITU-T's Recommendation H.261 The ITU-T's Recom­
mendation H.261 is a motion-compensated, DCT­
based video coding standard. 11 Designed for the
teleconferencing market and developed primarily for
low-bit-rate Integrated Services Digital Network
(ISDN) services, H.261 shares similarities with ISO's
JPEG still-image compression standard. The target bit
rate is p X 64 kilobits per second with p ranging
between 1 and 30 (H.261 is also known asp X 64).
Only two frame resolutions, common intermediate
format (CIF, 352 by 288) and quarter-CIF (QCIF,
176 by 144), are allowed. All standard-compliant
codecs must be able to operate with QCIF; CIF is
optional. The input color space is fixed by the
International Radio Consultative Committee (CCIR)
601 YCbCr standard's with 4:2:0 subsampling (sub­
sampling of chrominance components by 2:1 in both
the horizontal and the vertical direction). Two types
of frames are defined: key frames that are coded

56 Digital Technical Journal Vol. 7 No. 4 1995

independently and non-key frames that are coded
with respect to a previous frame. Key frames are
coded in a manner similar to JPEG. For non-key
frames, block-based motion compensation is per­
formed to compute interframe differences, which are
then DCT coded and quantized. The block size is
16 by 16, and each block can have a different quanti­
zation table. Finally, a variable word-length encoder
(usually employing Huffinan and run-length methods)
is used for coding the quantized coefficients. Rate
control is done by dropping frames, skipping blocks,
and increasing quantization. Error correction codes
are embedded in the bit stream to help detect and
possibly correct transmission errors. Figure 2b shows
a block diagram of an H .261 decompressor.

ISO's MPEG-1 Video Standard The MPEG-1 video
standard was developed by ISO's Motion Picture
Experts Group (MPEG). Like the H.261 algorithm,
MPEG-1 is also an interframe video codec that
removes spatial redundancy by compressing key
frames using techniques similar to JPEG and removes
temporal redundancy through motion estimation and
compensation.11

•
12 The standard defines three different

types of frames or pictures: intra or I-frames that are
compressed independently; predictive or P-frames
that use motion compensation from the previous I­
or P-frame; and bidirectional or B-frames that contain
blocks predicted from either a preceding or following
P- or I-frame (or interpolated from both). Compres­
sion is greatest for B-frames and least for I-frames.
(A fourth type of frame, called the D-frame or the
DC-intracoded frame, is also defined for improving
fast-forward-type access, but it is hardly ever used.)
There is no restriction on the input frame dimensions,
though the target bit rate of 1.5 megabits per second is
for video containing SIF frames. Subsampling is fixed
at 4:2:0. MPEG-1 employs adaptive quantization of
DCT coefficients for compressing I-frames and for
compressing the difference between actual and pre­
dicted blocks in P- and B-frames. A 16-by-16 sliding
window, called a macroblock, is used in motion esti­
mation; and a variable word-length encoder is used in
the final step to further lower the output bit rate. The
full MPEG-1 standard specifies a system stream that
includes a video and an audio substream, along with
timing information needed for synchronization
between the two. The video substream contains the
compressed video data and coding parameters such
as picture rate, bit rate, and image size. MPEG-1 has
become increasingly popular primarily because it
offers better compression than JPEG without compro­
mising on quality. Several vendors and chip manu­
facturers offer specialized hardware for MPEG
compression and decompression. Figure 2c shows
a block diagram of an MPEG-1 video decompressor.

l

COMPRESSED
BIT STREAM

PARSER

COMPRESSED
BIT STREAM

L RECEIVER
BUFFER

COMPRESSED
BIT STREAM

L RECEIVER
BUFFER

HUFFMAN
DECODER

QTABLES

DC

BLOCK TO
RASTER

(a) Baseline JPEG Decompressor (ISO Standard, 1992)

CODE TABLES

VARIABLE-LENGTH
CODE DECODER

QTABLES

ON/OFF CONTROL

MOTION VECTORS

PREVIOUS
PICTURE STORE

(b) Recommendation H.261 Decompressor (ITU-T Standard, 1990)

CODE TABLES STEP SIZE QTABLES

.- -- - -- ---,
VARIABLE-LENGTH I
CODE DECODER AND QUANTIZER-1

DEMULTIPLEXER

ON/OFF CONTROL

I FUTURE
,· - ·-l- ·-· PICTURE STORE ---,
- PICTURE~ I
I t ·- · - · - · - · -·-·-·- · - · - · - · -
jTYPE -

BLOCK TO
RASTER

RENDERER

DISPLAY

RENDERER

DISPLAY

RENDERER

DISPLAY

MOTION
VECTORS

. - ·r. - ·r, I PREVIOUS
1 , • - • PICTURE STORE

MOTION
COMPENSATION
PREDICTION

I

. ·- ·- ·- ·- · - ·- ·- ·- ·-·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- -~

(c) MPEG-1 Video Decompressor (ISO Standard, 1994)

Figure 2 .
Playback Configurations for Compressed Video Streams

SOURCE

L RASTER
TO BLOCK

Figure 3

L - -----

ISO's Baseline JPEG Compressor

DC

r- - - - - - - - - - ,
DELAY

I

HUFFMAN FORMATTER II
ENCODER t--~~

L-- r --- }- - _J
I COMPRESSED

AC COEFFICIENTS

QTABLES CODE TABLES BIT STREAM

Digital Technical Journal Vol. 7 No. 4 1995 57

Intel's INDEO Video Compression Algorithm Intel's
proprietary INDEO video compression algorithm is
used primarily for video presentations on personal
computer (PC) desktops. It employs color subsam­
pling, pixel differencing, run-length encoding, vector
quantization, and variable word-length encoding. The
chrominance components are heavily subsampled. For
every block of 4-by-4 luminance samples, there is
a single sample of Cb and Cr. Furthermore, samples
are shifted one bit to convert them to 7-bit values. The
resulting precompression format is called YVU9,
because on average there are 9 bits per pixel. This
subsampling alone yields a reduction of 9 /24. Run­
length encoding is employed to encode any run of
zero pixel differences.

PCWG's INDEO-C Video Compression Algorithm
INDEO-C is the video compression component of a
teleconferencing system derived from the Personal
Conferencing Specification developed by the Personal
Conferencing Work Group (PCWG), an industry
group led by Intel Corporation. Like the MPEG stan­
dard, the PCWG specification defines the compressed
bit stream and the decoder but not the encoder.
INDEO-C is optimized for low-bit-rate, ISDN-based
connections and, unlike its desktop compression
cousin, is transform-based. It is an interframe algo­
rithm that uses motion estimation and a 4:1 chromi­
nance subsampling in both directions. Spatial and
temporal loop filters are used to remove high­
frequency artifacts. The transform used for converting
spatial data to frequency coefficients is the slant trans­
form, which has the advantage of requiring only shifts
and adds with no multiplies. Like the DCT, the fast
slant transform (FST) is applied on image subblocks
for coding both intraframes and difference frames. As
was the case in other codecs, run-length coding and
Huffman coding are employed in the final step.
Compression and decompression of video in software
is faster than other interframe schemes like MPEG-1
and H.261.

Compression Schemes under Development In addi­
tion to the five compression schemes described in this
section, four other video compression standards,
which are currently in various stages of development
within ISO and ITU-T, are worth mentioning: ISO's
MPEG-2, ITU-T's Recommendation H.262, ITU-T's
Recommendation H.263, and ISO's MPEG-4 .1 3

•
14

Although the techniques employed in MPEG-2,
H.262, and H.263 compression schemes are similar to

DECOMPRESSED
YUV

Figure4

COLOR ADJUST

Components ofVideo Rendering

58 Digital Technical Journal

SCALE

Vol. 7 No. 4 1995

the ones discussed above, the target applications are
different. H.263 focuses on providing low-bit-rate
video (below 64 kilobits per second) that can be trans­
mitted over narrowband channels and used for real­
time conversational services. The codec would be
employed over the plain old telephone system (POTS)
with modems that have the V.32 and the V.34 modem
technologies. MPEG-2, on the other hand, is aimed at
bit rates above 2 megabits per second, which support
a wide variety of formats for multimedia applications
that require better quality than MPEG-1 can achieve.
One of the more popular target applications for
MPEG-2 is coding for high-definition television
(HD1V). It is expected that ITU-Twill adapt MPEG-2
so that Recommendation H.262 will be very similar,
if not identical, to it. Finally, like Recommendation
H.263, ISO's MPEG-4's charter is to develop a generic
video coding algorithm for low-bit-rate multimedia
applications over a public switched telephone network
(PSTN). A wide variety of applications, including
those operating over error-prone radio channels, are
being targeted. The standard is expected to embrace
coding methods that are very different from its precur­
sors and will include the so-called second-generation
coding techniques.7 MPEG-4 is expected to reach
draft stage by November 1997.

This ends our discussion on video compression tech­
niques and standards. In the next section, we turn our
attention to the other component of the video play­
back solution, namely video rendering. We describe the
general process of video rendering and present a novel
algorithm for efficient mapping of out-of-range colors
to feasible red, green, and blue (RGB) values that can
be represented on the target display device. Out-of­
range colors can occur when the display quality is
adjusted during video playback.

Video Presentation

Video presentation or rendering is the second impor­
tant component in the video playback pipeline (see
Figure 1). The job of this subsystem is to accept
decompressed video data and present it in a window of
specified size on the display device using_ a specified
number of colors. The basic components are sketched
in Figure 4 and described in more detail in a previous
issue ofthisjournal.15 Today, most desktop systems do
not include hardware options to perform these steps,
but some interesting cases are available as described in
this issue.9

•
16 When such accelerators are not available,

software-only implementation is necessary. Software

DITHER COLOR SPACE
CONVERT

RGBCOLOR
INDEX

rendering algorithms, although very efficient, can still
consume as many computation cycles as are used to
decompress the data.

All major video standards represent image data in a
luminance-chrominance color space. In this scheme,
each pixel is composed of a single luminance compo­
nent, denoted as Y, and two chrominance components
that are sometimes referred to as color difference sig­
nals Cb and Cr, or signals U and V. The relationship
between the familiar RGB color space and YUV can be
described by a 3-by-3 linear transformation:

r y
g = M u
b v

where the transformation matrix,

1

1 o a I M = 1 b c.
1 d O

(2)

(3)

The matrix is somewhat simple with only four values
that are not O or 1. These constants are a = 1.402,
b= -.344, c= -.714,and d = 1.722.

The RGB color space cube becomes a parallelepiped
in YUV space. This is pictured in Figure 5, where the
black corner is at the bottom, and the white corner is
at the top; the red, green, and blue corners are as
labeled. The chrominance signals U and V are usually
subsampled, so the rendering subsystem must first
restore these components and then transform the
YUV triplets to RGB values.

Typical frame buffers are configured with 8 bits of
color depth. This hardware colormap must, in general,
be shared by multiple applications, which puts a pre­
mium on each of the 256 color slots in the map. Each
application, therefore, must be able to request render­
ing to a limited number of colors. This can be accom­
plished most effectively with a multilevel dithering
scheme, as represented by the dither block in Figure 4.

y

B

Figure 5
The RGB "Cube" in YUV Space

The color adjustment block controls brightness, con­
trast and saturation by means of simple look-up tables.

Along with up-sampling the chrominance, the scale
block in Figure 4 can also change the size of the
image. Although arbitrary scaling is best performed in
combination with filtering, it is found to be too expen­
sive to do in a software-only implementation. For the
case of enlargement, a trade-off can be made between
image quality and speed; contrary to what is shown in
Figure 4, image enlargement can occur after dithering
and color space converting. Of course, this would
result in scaled dithered pixels, which are certainly less
desirable, but it would also result in faster processing.

To optimize computational efficiency, color space
conversion from YUV to RGB takes place after YUV
dithering. Dithering greatly reduces the number of
YUV triplets, thus allowing a single look-up table
to perform the color space conversion to RGB as well
as map to the final 8-bit color index required by the
graphics display system. Digital pioneered this idea
and has used it in a number of hardware and software­
only products.17

Mapping Out-of-Range Colors
Besides the obvious advantages of speed and simplic­
ity, using a look-up table to convert dithered YUV val­
ues to RGB values has the added feature of allowing
careful mapping of out-of-range YUV values. Refer­
ring again to Figure 5, the RGB solid describes those
,; g, and b values that are feasible, that is, have the nor­
malized range O $,; g, b $ 1. The range of possible val­
ues in YUV space are those for O $ y $ 1 and - .5 $ u,
v $.5. It turns out that the RGB solid occupies only
23 .3 percent of this possible YUV space; thus there
is ample possibility for so-called infeasible or out-of­
range colors to occur. Truncating the ,; g, and bvalues
of these colors has the effect of mapping back to the
RGB parallelepiped along lines perpendicular to its
nearest surface; this is undesirable since it will result
in changing both the hue angle or polar orientation in
the chrominance plane and the luminance value. By
storing the mapping in a look-up table, decisions can
be made a priori as to exactly what values the out-of­
range values should map to.

There is a mapping where both the luminance or y
value and the hue angle are held constant at the
expense of a change in saturation. This section details
how a closed-form solution can be found for such a
mapping. Figure 6 is a cross section of the volume in
Figure 5 through a plane at y = y0 • The object is to find
the point on the surface of the RGB parallelepiped that
maps the out-of-range point (Yo, u0 , Vo) in the plane of
constant y0 (constant luminance) and along a straight
line to the u-v origin (constant hue angle). The solu­
tion is the intersection of the closest RGB surface and
the line between (y0, u0 , v0) and (y0, 0, 0). This line can

Digital Technical Journal Vol. 7 No. 4 1995 59

FEASIBLE RGB REGION DESIRED SURFACE POINT

u

-.5 '---------+---+-----'
-.5

Figure 6

.5

RANGE OF POSSIBLE
UV VALUES

Mapping Out-of-Range YUV Points to the Surface of the
RGB Parallelepiped in a Plane ofConstanty0

be parametrically represented as the locus (y0 , CXUo, cxv0)
for a single parameter ex. The RGB values for these
points are

r Yo
g = M CXU 0

b CXV 0

a(av0)+y0

a(b U 0 +cv0)+y0

a(du 0)+y0

(4)

where the matrix M is as given in equation (2). To find
where this parametric line will intersect the RGB paral­
lelepiped, we can first solve for the ex at the intercept val­
ues at each of the six bounding surface planes as follows:

Surface
Plane
r=l
g= l
b= l
r= O
g= O
b= O

Intercept
Value
CX1 =(1-yo)/avo
CX2 =(l-y0)/(bu0 +cv0)

CX3 =(l-y0)/du0

CX4 =(cx1- l)
CXs = (CX2 - 1)
CXo =(cx3-l)

Exactly three ex; will be negative, with each describing
the intercept with extended RGB surface planes oppo­
site the u-v origin. Of the remaining three ex;, the two
largest values will describe intercepts with extended
RGB surface planes in infeasible RGB space. This is
because the RGB volume, a parallelepiped, is a convex
polyhedron. Thus the solution must simply be the
smallest positive ex;. Plugging this value of ex into equa­
tion (4) produces the desired RGB value.

60 Digital Technical Journal Vol. 7 No. 4 1995

The Software Video Library

When we started this project, we had two objectives in
mind: to showcase the processing power of Digital's
newly developed Alpha processor and to use this
power to make digital video easily available to devel­
opers and end users by providing extremely low-cost
solutions. We knew that because of the compute­
intensive nature of video processing, Digital's Alpha
processor would outperform any competitive proces­
sor in a head-to-head match. By providing the ability
to manipulate good-quality desktop video without the
need for additional hardware, we wanted to make
Alpha-based systems the computers of choice for end
users who wanted to incorporate multimedia into
their applications.

Our objectives translated to the creation of a soft­
ware video library that became a reality because of
three key observations. The first one is embedded in
our motivation: processors had become powerful
enough to perform complex signal-processing opera­
tions at real-time rates. With the potential of even
greater speeds in the near future, low-cost multimedia
solutions would be possible since audio and video
decompression could be done on the native processor
without any additional hardware.

A second observation was that multiple emerging
audio/video compression standards, both formal and
industry de facto, were gaining popularity with appli­
cation vendors and hence needed to be supported
on Digital's platforms. On careful examination of the
compression algorithms, we observed that most of
the prominent schemes used common building
blocks (see Figure 2). For example, all five interna­
tional standards-JPEG, MPEG-1, MPEG-2, H.261,
and H.263-have DCT-based transform coders fol­
lowed by a quantizer. Similarly, all five use Huffman
coding in their final step. This meant that work done
on one codec could be reused for others.

A third observation was that the most common
component of video-based applications was video
playback (for example, videoconferencing, video-on­
demand, video player, and desktop television). The
output decompressed streams from the various
decoders have to be software-rendered for display on
systems that do not have support for color space con­
version and dithering in their graphics adapters. An
efficient software rendering scheme could thus be
shared by all video players.

With these observations in mind, we developed
a software video library containing quality implemen­
tations of ISO, ITU-T, and industry de facto video
coding standards. In the sections to follow, we present
the architecture, implementation, optimization, and
performance of the software video library. We com­
plete our presentation by describing examples of
video-based applications written on top of this li brary,

including a novel video screen saver we call Video
Odyssey and a software-only video player.

Architecture
Keeping in mind the observations outlined above, we
designed a software video library (SLIB) that would

• Provide a common architecture under which mul­
tiple audio and video codecs and renderers could
be accessed

• Be the lowest, functionally complete layer in the
software video codec hierarchy

• Be fast, extensible, and thread-safe, providing reen­
trant code with minimal overhead

• Provide an intuitive, simple, flexible, and extens­
ible application programming interface (API)
that supports a client-server model of multimedia
computing

• Provide an API that would accommodate multiple
upper layers, allowing for easy and seamless integra­
tion into Digital's multimedia products

Our intention was not to create a library that would
be exposed to end-user applications but to create one
that would provide a common architecture for video
codecs for easy integration into Digital's multimedia
products. SLIB's API was purposely designed to be
a superset of Digital's Multimedia Services' API for
greater flexibility in terms of algorithmic tuning and
control. The library would fit well under the actual

APPLICATION 1 ••• APPLICATION N

!
DIGITAL'8 MULTIMEDIA
CLIENT LIBRARY

DIGITAL'$ MULTIMEDIA
SERVER (DIGITAL UNIX,
OPENVMS)

programming interface provided to end users by
Digital's Multimedia Services. Digital's Multimedia
API is the same as Microsoft's Video For Windows
API, which facilitates the porting of multimedia appli­
cations from Windows and Windows NT to Digital
UNIX and Open VMS platforms. Figure 7 shows SLIB
in relation to Digital's multimedia software hierarchy.
The shaded regions indicate the topics discussed in
this paper.

As mentioned, the library contains routines for
audio and video codecs and Digital's propriety video­
rendering algorithms. The routines are optimized
both algorithmically and for the particular platform on
which they are offered. The software has been success­
fully implemented on multiple platforms, including
the Digital UNIX, the OpenVMS, and Microsoft's
Windows NT operating systems.

Three classes of routines are provided for the three
subsystems: (1) video compression and decompres­
sion, (2) video rendering, and (3) audio processing.
For each subsystem, routines can be further classified
as (a) setup routines, (b) action routines, (c) query rou­
tines, and (d) teardown routines. Setup routines create
and initialize all relevant internal data structures. They
also compute values for the various look-up tables such
as the ones used by the rendering subsystem. Action
routines perform the actual coding, decoding, and ren­
dering operations. Query routines may be used before
setup or between action routines. These provide the
programmer with information about the capability

APPLICATION 1 ••• APPLICATION M

MICROSOFT'S VIDEO
FOR WINDOWS
(WINDOWS NT)

INSTALLABLE
COMPRESSION
MANAGER DRIVER

MEDIA CONTROL
INTERFACE DRIVER

VIDEO CODECS

JPEG MPEG H.261 .. •

Figure 7
Software Video Library Hierarchy

SOFTWARE VIDEO
CODING LIBRARY
(SLIB)

VIDEO RENDERERS

DITHER SCALE COLOR COLOR
SPACE ADJUST
CONVERT

AUDIO PROCESSORS

SAMPLE AD PCM MPEG-1
RATE
CONVERSION

Digital Technical Journal Vol. 7 No. 4 1995 61

of the codec such as whether or not it can handle a
particular input format and provide information about
the bit stream being processed. These routines can also
be used for gathering statistics. Teardown routines, as
the name suggests, are used for closing the codec and
destroying all internal memory (state information)
associated with it. For all video codecs, SLIB provides
convenience functions to construct a table of contents
containing the offsets to the start of frames in the input
bit stream. These convenience functions are useful for
short clips: once a table of contents is built, random
access and other VCR functions can be implemented
easily. (These routines are discussed further in the sec­
tion on sample applications.)

Implementation of Video Codecs
In this section, we present the program flow for multi­
media applications that incorporate the various video
codecs. These applications are built on top of SLIB.
We also discuss specific calls from the library's API to
explain concepts.

Motion JPEG Motion JPEG is the de facto name of
the compression scheme that uses the JPEG compres­
sion algorithm developed for still images to code video
sequences. The motion JPEG (or M-JPEG) player was
the first decompressor we developed. We had recently
completed the Sound & Motion J300 adapter that
could perform JPEG compression, decompression,
and dithering in hardware.9•

10 We now wanted to
develop a software decoder that would be able to
decode video sequences produced by the J300 and its
successor, the FullVideo Supreme JPEG adapter,
which uses the peripheral component interconnect
(PCI). 10 Only baseline JPEG compression and decom­
pression have been implemented in SLIB. This is suffi­
cient for greater than 90 percent of today's existing
applications. Figure 2a and Figure 3 show the block
diagrams for the baseline JPEG codec, and Figure 8
shows the flow control for compressing raw video
using the video library routines. Due to the symmetric
structure of the algorithm, the flow diagram for the
JPEG decompressor looks very similar to the one for
the JPEG compressor.

The amount of compression is controlled by the
amount of quantization in the individual image frames
constituting the video sequence. The coefficients for
every 8-by-8 block within the image F(x,y) are quan­
tized and dequantized as

Fq (x,y) = l Q.;:~:;~,y) J F(x,y) (5)

= Fq (x,y) X QTable (x,y).

In equation (5), QTable represents the quantization
matrices, also called visibility matrices, associated
with the frame F(x,y). (Each component constituting

62 Digital Technical Journal Vol. 7 No. 4 1995

SvOpenCodec

QUERY COMPRESSOR

REGISTER CALLBACK

SET UP COMPRESSOR

READ FROM DISK OR
CAPTURE LIVE VIDEO

COMPRESS FRAME

WRITE TO FILE

Figure s

SvQueryCompressor

SvRegisterCallback

SvCompressBegin

SvCloseCodec

SvCompress

Flow Control for M-JPEG Compression

the frame can have its own QTablc.) SLIB provides
routines to download QTables to the encoder explic­
itly; tables provided in the ISO specification can be
used as defaults. The library provides a quality factor
that can scale the base quantization tables, thus pro­
viding a control knob mechanism for varying the
amount of compression from frame to frame. The
quality factor may be dynamically varied between
O and 10,000, with a value ofl0,000 causing no quan­
tization (all quantization table elements are equal
to 1), and a value ofO resulting in maximum quantiza­
tion (all quantization table elements are equal to 255).
For intermediate values:

QTable(x,y) = (6)

Clip (Visibi/ity Tab/e(x,y)X(l0
4
-Qua/Factor)X255) .

104 Xmin (Visibi/ityTab/e(x,y))

The Clip() function forces the out-of-bounds values to
be either 255 or 1. At the low end of the quality set­
ting (small values of the quality factor), the above
formula produces quantization tables that cause
noticeable artifacts.

Although Huffman tables do not affect the quality
of the video, they do influence the achievable bit rate
for a given video quality. As with quantization tables,
SLIB provides routines for loading and using custom
Huffman tables for compression. Huffman coding
works best when the source statistics are known; in

practice, statistically optimized Huffman tables are
rarely used due to the computational overhead involved
in their generation. In the case where these tables are
not explicitly provided, the library uses as default the
baseline tables suggested in the ISO specification. In the
case of decompression, the tables may be present in the
compressed bit stream and can be examined by invok­
ing appropriate query calls. In the AVI format, Huffinan
tables are not present in the compressed bit stream, and
the default ISO tables are always used.

Query routines for determining the supported
input and output formats for a particular compressor
are also provided. For M-JPEG compression, some of
the supported input formats include interleaved 4:2:2
YUV, noninterleaved 4:2:2 YUV, interleaved and non­
interleaved RGB, 32-bit RGB, and single component
(monochrome). The supported output formats
include JPEG-compressed YUV and JPEG-compressed
single component.

ISO's MPEG-1 Video Once we had implemented the
M-JPEG codec, we turned our attention to the MPEG-1
decoder. MPEG-1 is a highly asymmetric algorithm.
The committee developing this standard purposely
kept the decompressor simple: it was expected that
there would be many cases of compress once and
decompress multiple times. In general, the task of com­
pression is much more complex than that of decom­
pression. As of this writing, achieving real-time
performance for MPEG-1 compression in software
is not possible. Thus we concentrated our energies
on implementing and optimizing an MPEG-1 decom­
pressor while leaving MPEG-1 compression for batch
mode. Someday we hope to achieve real-time com­
pression all in software with the Alpha processor.
Figure 9 illustrates the high-level scheme of how SUB
fits into an MPEG player. The MPEG-1 system stream
is split into its audio and video substreams, and each
is handled separately by the different components of

ISO 11172-2
VIDEO

' SUB VIDEO
ISO 11172-1 DECODER
STREAM

DISK / t
SUB SYSTEM TIMING

the video library. Synchronization between audio and
video is achieved at the application layer by using the
presentation time-stamp information embedded in
the system stream. A timing controller module within
the application can adjust the rate at which video
packets are presented to the SUB video decoder and
renderer. It can indicate to the decoder whether to
skip the decoding ofB- and P-frames.

Figure 10 illustrates the flow control for an MPEG-1
video player written on top of SUB. The scheme relies
on a callback function that is registered with the codec
during initial setup, and a SvAddBuffers function, writ­
ten by the client, which provides the codec with the bit­
stream data to be processed. The codec is primed by
adding multiple buffers, each typically containing
a single video packet from the demultiplexed system
stream. These buffers are added to the codec's internal
buffer queue. After enough data has been provided, the
decoder is told to parse the bit stream in its buffer queue
until it finds the next (first) picture. The client applica­
tion can specify which type of picture to locate (I, P, or
B) by setting a mask bit. After the picture is found and
its information returned to the client, the client may
choose to either decompress this picture or to skip it by
invoking the routine to find the next picture. This pro­
vides an effective mechanism for rate control and for
VCR controls such as step forward, fast forward, step
back, and fast reverse. If the client requests that a
non-key picture (P or B) be decompressed and the
codec does not have the required reference (I or P) pic­
tures needed to perform this operation, an error is
returned. The client can then choose to abort or pro­
ceed until the codec finds a picture it can decompress.

During steady state, the codec may periodically
invoke the callback function to exchange messages with
the client application as it compresses or decompresses
the bit stream. Most messages sent by the codec expect
some action from the client. For example, one of
the messages sent by the codec to the application is

SUB
RENDERER

HARDWARE
RENDERER

~-----J

FRAME
BUFFER

STREAM

~
PARSER CONTROLLER

NETWORK LEFT
SUB AUDIO

/
DECODER

RIGHT

ISO 11172-3
AUDIO

Figure 9
SLIB as Part of a Full MPEG Player

Digital Technical Journal Vol. 7 No. 4 1995 63

SvOpenCodec/
SvOpenRender

QUERY DECOMPRESSOR

REGISTER THE CALLBACK

SET UP DECOMPRESSOR

DETERMINE AND ALLOCATE
OUTPUT OF IMAGE SIZE

PRIME THE DECODER

SvDecompressQuery

SvRegisterCallback

SvDecompressBegin/
SvRenderBegin

SvGetDecompressSize

SvSetBrightness
SvSetSaturation
SvSetContrast

SvAddBuffer

Callback -----------, NO MORE
DATA ADD ADDITIONAL DATA

BUFFERS

SvAddBuffers
SvCloseCodec/
SvCloseRender

Callback ---------- NO MORE

DECOMPRESS PICTURE
ADD ADDITIONAL DATA
BUFFERS

DATA

NO >---Y_E_S_.i RENDER PICTURE 1---------,~ DISPLAY PICTURE 1----

SvRenderFrame

Figure 10
Flow Control for MPEG-1 Video Playback

a CB_END_BUFFERS message, which indicates the
codec has run out of data and the client needs to either
add more data buffers or abort the operation. Another
message, CB_RELEASE_BUFFERS, indicates the
codec is done processing the bit-stream data in a data
buffer, and the buffer is available for client reuse. One
possible action for the client is to fill this newly available
buffer with more data and pass it back to the codec. In
the other direction, the client may send messages to the
codec through a ClientAction field. Table 1 gives some
of the messages that can be sent to the codec by the
application.

Another use for the callback mechanism is to accom­
modate client operations that need to be intermixed
between video encoding/ decoding operations. For
example, the application may want to process audio
samples while it is decompressing video.· The codec can
then be configured such that the callback function is

64 Digital Technical Journal Vol. 7 No. 4 1995

Table 1
List of Client Messages

M essage

CLIENT_ABORT

CLIENT _CONTINUE

CLIENT_DROP

CLIENT _PROCESS

Interpretation

Abort processing of the frame

Continue processing the frame

Do not decompress

Start processing

invoked at a (near) periodic rate. A CB_PROCESSING
message is sent to the application by the codec at reg­
ular intervals to give it an opportunity for rate control
of video and/ or to perform other operations.

Typically the order in which coded pictures are pre­
sented to the decoder does not correspond to the
order in which they are to be displayed. Consider the
following example:

Display Order Il
Decoder Input Il

B2 B3 P4 BS B6 P7 B8
P4 B2 B3 P7 BS B6 no

The order mismatch is an artifact of the compression
algorithm-a B-picture cannot be decoded until both
its past and future reference frames have been decoded.
Similarly a P-picture cannot be decoded until its past
reference frame has been decoded. To get around this
problem, SUB defines an output multibuffer. The size
of this multibuffer is approximately equal to three
times the size of a single uncompressed frame. For
example, for a 4:2:0 subsampled CIF image, the size of
the multi buffer would be 352 by 288 by 1.5 by 3 bytes
(the exact size is returned by the library during initial
codec setup). After steady state has been reached each . . ,
mvocatlon to the decompress call yields the correct
next frame to be displayed as shown in Figure 11. To
avoid expensive copy operations, the multibuffer is
allocated and owned by the software above SUB.

ITU-T's Recommendation H.261 (a.k.a. p x 64) At the
li_br:iry level, decompressing an H.261 stream is very
~1m1lar to MPEG-1 decoding with one exception:
mstead of three types of pictures, the H.261 recom­
mendation defines only two, key frames and non-key
frames (no bidirectional prediction). The implication
for implementation is that the size of the multi buffer is
approximately twice the size of a single decompressed
frame. Furthermore, the order in which compressed
frames are presented to the decompressor is the same
as the order in which they are to be displayed.

To satisfy the H.261 recommendation, SLIB imple­
ments a streaming interface for compression and
decompression. In this model, the application feeds
input buffers to the codec, which processes the data in
the_ buffers and returns the processed data to the appli­
cation through a callback routine. During decom­
pression, the application layer passes input buffers
containing sections of an H.261 bit stream. The bit
stream can be divided arbitrarily, or, in the case oflive
teleconferencing, each buffer can contain data from a
transmission packet. Empty output buffers are also
passed to the codec to fill with reconstructed images.
Picture frames do not have to be aligned on buffer

- 11 11 11 11

P4 P4 P4 - -82 83

Figure 11
Multibuffering in SLIB

boundaries. The codec parses the bit stream and,
when enough data is available, reconstructs an image.
Input buffers are freed by calling the callback routine.
When an image is reconstructed, it is placed in an out­
~ut buffer and the buffer is returned to the applica­
tion through the callback routine. The compression
process is similar, but input buffers contain images and
output buffers contain bit-stream data. One advantage
to this streaming interface is that the application layer
does not need to know the syntax of the H.261 bit
stream. The codec is responsible for all bit-stream
parsing. Another advantage is that the callback mecha­
nism for returning completed images or bit-stream
buffers allows the application to do other tasks with­
out implementing multithreading.

SLIB's architecture and API can easily accommo­
date ISO's MPEG-2 and ITU-T's H.263 video com­
pression algorithms because of their similarity to the
MPEG-1 and H.261 algorithms.

Implementation of Video Rendering
Our ~oftware implementation of video rendering
essentially parallels the hardware realization detailed
elsewh~re in this issue.9 As with the hardware imple­
mentation, the software renderer is fast and simple
because the complicated computations are performed
offline in building the various look-up tables. In both
h~rdw_are ~nd software cases, a shortcut is achieved by
d1thenng m YUV space and then converting to some
small number ofRGB index values in a look-up table. 16

Although in most cases the mapping values in the
look-up tables remain fixed for the duration of the
run, the video library provides routines to dynamically
adjust image brightness, contrast, saturation, and the
number of colors. Image scaling is possible but affects
performance. When quality is important, the software
perfo~ms scaling before dithering and when speed is
the pnmary concern, it is done after dithering.

Optimizations
We approached the problem of optimization from two
directions: Platform-independent optimizations or
algorithmic enhancements, were done by exploiting
knowledge of the compression algorithm and the

-P7 P7 P7 P7 - P4 P4 P4 110 - -83 BS 86 86

TIME

Digital Technical Journal Vol. 7 No. 4 1995 65

input data stream. Platform-dependent optimizations
were done by examining the services available from
the underlying operating system and by evaluating the
attributes of the system's processor.

AB can be seen from Table 2, the DCT is one of the
most computationally intensive components in the
compression pipeline. It is also common to all five
international standards. Therefore, a special effort was
made in choosing and optimizing the DCT. Since all
five standards call for the inverse DCT (IDCT) to be
postprocessed with inverse quantization, significant
algorithmic savings were obtained by computing a
scalar multiple of the DCT and merging the appropri­
ate scaling into the quantizer. The DCT implemented
in the library is a modified version of the one­
dimensional scaled DCT proposed by Arari et al. 18 The
two-dimensional DCT is obtained by performing a
one-dimensional DCT on the columns followed by
a one-dimensional DCT on the rows. A total of 80
multiplies and 464 adds are needed for a fully popu­
lated 8-by-8 block. In highly compressed video, the
coefficient matrix to be transformed is generally sparse
because a large number of elements are "zeroed" out
due to heavy quantization. We exploit this fact to
speed up the DCT computations. In the decoding
process, the Huffi11an decoder computes and passes to
the IDCT a list of rows and columns that are all zeros.
The IDCT then simply skips these columns.19 Another
optimization uses a different IDCT, depending on the
number of nonzero coefficients. The overall speedup
due to these techniques is dependent on the amount
of compression. For lightly compressed video, we
observed that the overhead due to these techniques
slowed down the decompressor. We overcame this dif­
ficulty by building into SLIB the adaptive selection of
the appropriate optimization based on continuous sta­
tistics gathering. Run-time statistics of the number of
blocks per frame that are all zeros are maintained, and
the number of frames over which these statistics are
evaluated is provided as a parameter for the client
applications. Statistic gathering is minimal: a counter
update and an occasional compare.

Table 2

The second component of the video decoders we
looked at was the Huffman decoder. Analysis of the
compressed data indicated that short-code-length
symbols were a large part of the compressed bit
stream. The decoder was written to handle frequently
occurring very short codes (< 4 bits) as special cases,
thus avoiding loads from memory. For short codes
(< 8 bits), look-up tables were used to avoid bit-by-bit
decoding. Togetl1er, these two classes of codes
account for well over 90 percent of the total collection
of the variable-length codes.

A third compute-intensive operation is raster-to­
block conversion in preparation for compression. This
operation had the potential of slowing down the com­
pressor on Alpha-based systems on which byte and
short accesses are done indirectly. We implemented an
assembly language routine that would read the
uncompressed input color image and convert it to
three one-dimensional arrays containing 8-by-8
blocks in sequence. Special care was taken to keep
memory references aligned. Relevant bytes were
obtained through shifting and masking operations.
Level shifting was also incorporated within the routine
to avoid touching the same data again.

Other enhancements included replacing multiplies
and divides with shifts and adds, avoiding integer to
floating-point conversions, and using floating-point
operations wherever possible. This optimization is
particularly suited to the Alpha architecture, where
floating-point operations are significantly faster than
integer operations. We also worked to reduce memory
bandwidtl1. Ill-placed memory accesses can stall the
processor and slow down the computations. Instruc­
tions generated by the compiler were analyzed and
sometimes rescheduled to void data hazards, to keep
the on-chip pipeline full, and to avoid unnecessary
loads and stores. Critical and small loops were unrolled
to make better use of floating-point pipelines.
Reordering the computations to reuse data already in
registers and caches helped minimize thrashing in the
cache and the translation lookaside buffer. Memory
was accessed through offsets rather than pointer

Typical Contributions of the Major Components in the Playback of Compressed Video (SIF)

Coding Bit-stream
Scheme Parser

M-JPEG 0.8%
decode

MPEG-1 0.9%
decode

INDEO 1.0%
decode

66 Digital Technical Journal

Huffman
and
Run-length
Decoder

12.4%

13.0%

Inverse IDCT
Quantizer

10.5% 35.2%

Motion
Compression,
Block to
Raster

9.7% 19.7% 20.2%

Vol. 7 No. 4 1995

Vector
Quantization
(INDEO
only)

57.5%

Tone Adjust, Display
Dither, Quantize
and Color Space
Convert

33.7% 7.4%

31.4% 5.1%

36.0% 5.5%

increments. More local variables than global variables
were used. Wherever possible, fixed values were hard
coded instead of using variables that would need to
be computed. References were made to be 32-bit or
64-bit aligned accesses instead of byte or short.

Consistent with one of the design goals, SLIB was
made thread-safe and fully reentrant. The Digital
UNIX, the Open VMS, and Microsoft's Windows NT
operating systems all offer support for multithreaded
applications. Applications such as video playback can
improve their performance by having separate threads
for reading, decompressing, rendering, and display­
ing. Also, a multithreaded application scales up well on
a multiprocessor system. Global multithreading is
possible if the library code is reentrant or thread-safe.
When we were trying to multithread the library inter­
nals, we found that the overhead caused by the birth
and death of threads, the increase in memory accesses,
and the fragmentation of the codec pipeline caused
operations to slow down. For these reasons, rou­
tines within SLIB were kept single-threaded. Other
operating-system optimizations such as memory lock­
ing, priority scheduling, nonpreemption, and faster
timers that are generally good for real-time applica­
tions were experimented with but not included in our
present implementation.

Performance on Digital's Alpha Machines

Measuring the performance of video codecs is gener­
ally a difficult problem. In addition to the usual depen­
dencies such as system load, efficiency of the
underlying operating system, and application over­
head, the speed of the video codecs is dependent on
the content of the video sequence being processed.
Rapid movement and action scenes can delay both
compression and decompression, while slow motion
and high-frequency content in a video sequence can
generally result in faster decompression. When com­
paring the performance of one codec against another,
the analyst must make certain that all codecs process
the same set of video sequences under similar oper­
ating conditions. Since no sequences have been
accepted as standard, the analyst must decide which
sequences are most typical. Choosing a sequence that
favors the decompression process and presenting
those results is not uncommon, but it can lead to false
expectations. Sequences with similar peak signal-to­
noise ratio (PSNR) may not be good enough, because
more often than not PSNR (or equivalently the mean
square error) does not accurately measure signal qual­
ity. With these thoughts in mind, we chose some
sequences that we thought were typical and used these
to measure the performance of our software codecs.
We do not present comparative results to codecs

implemented elsewhere since we did not have access
to these codecs and hence could not test these with the
same sequences.

Table 3 presents the characteristics of the three
video sequences used in our experiments. Let L;(x,y)

I\

and L ;(x,y) represent the luminance component of
the original and the reconstructed frame i; let n and m
represent the horizontal and vertical dimensions of
a frame; and let N be the number of frames in the
video sequence. Then the Compression Ratio, the
average output BitsPerPixel, and the average PSNRare
calculated as

,\
Compression Ratio =

~ bits in frame[i] of original video (
7

)
s

~ bits in frame[i] of compressed video
1-1

Avg. BitsPerPixel =
N

1 ~ bits in frame[i] of
NXnXm ;.1 compressedvideo

Avg.PSNR =

(8)

255 20log10 - - - ---- - = --=------ -----

l t (n~~ t [L, (x ,y)-L ;(x,y}i1)·

(9)

Figure 12 shows the PSNR for individual frames in
the video sequences along with the distribution of
frame size for each of three test sequences. Frame
dimensions within a sequence always remain constant.

Table 4 provides specifications of the workstations
and PCs used in our experiments for generating
the various performance numbers. The 21064 chip
is Digital's first commercially available Alpha proces­
sor. It has a load-store architecture, is based on a
0.75-micrometer complementary metal-oxide semi­
conductor (CMOS) technology, contains 1.68 million
transistors, has a 7- and 10-stage integer and floating­
point pipeline, has separate 8-kilobyte instruction and
data caches, and is designed for dual issue. The
21064A microprocessor has the same architecture as
the 21064 but is based on a 0.5-micrometer CMOS
technology and supports faster clock rates.

We provide performance numbers for the video
sequences characterized in Table 3. Figure 13 provides
me·asured data on CPU usage when compressed video
(from Table 3) is played back at 30 frames per second
on the various test platforms shown in Table 4. We
chose "percentage of CPU used" as a measure of per­
formance because we wanted to know whether the
CPU could handle any other tasks when it was doing
video processing. Fortunately, it turned out the

Digital Technical Journal Vol. 7 No. 4 1995 67

68

Table 3
Characteristics of the Video Sequences Used to Generate the Performance Numbers Shown in Figure 12

Spatial Temporal
Compression Resolution Resolution Avg. Compression Avg. PSNR

Name Algorithm (width X height) (No. of Frames) BitsPerPixel Ratio (dB)

Sequence 1 M-JPEG 352 x 240 200 0.32 50:1 31.56

Sequence 2 MPEG-1 352 x 288 200 0.17 69:1 32.28
Video

M-JPEG 352 x 240 200 0.56 28:1 31.56

Sequence 3 INDEO 352 x 240 200 0.16 47:1 28.73

SEQUENCE 1 (MOTION JPEG)

34

§' 33
w
Q;! 32
u
e_ 31

~ 30

~ 29

28
0 25 50 75 100 125 150 175 200

FRAME NUMBER

0.08

0.07

0.06

/'.: 0.05

~ 0.04
w
O 0.03

0.02

O.Q1

MEAN= 26.65
STD. DEVIATION = 4.97
RANGE = 41 .03
PEAK-TO-AVG. RATIO= 2.07

oi....1..:,.,c:~__.~_._....:.r.;.._ __c.==_--
1 6 11 16 21 26 31 36 41 46 51 56 61

FRAME SIZE (KBITS)

SEQUENCE 2 (MPEG-1 VIDEO)

40

u,35
ill 30

~ 25

~ 20
;15

~ 10
a.. 5

0 25 50 75 100 125 150 175 200

FRAME NUMBER

0.06

0.05

/'.: 0.04

~ 0.03
w
o 0.02

0.01

MEAN= 17.11
STD. DEVIATION = 14.47
RANGE= 97.62
PEAK-TO-AVG. RATIO = 5.72

o!,!__.____.,__::..c...:......~~====-------~~
1 11 21 31 41 51 61 71 81 91 101

FRAME SIZE (KBITS)

SEQUENCE 3 (INDEO)

40
-35
(/)

uJ 30
Q;! 25
u
~ 20
;15
~ 10
a.. 5

0

Figure 12

25 50 75 100 125 150 175 200

FRAME NUMBER

Characteristics of the Three Test Sequences

Digital Technical Journal Vol. 7 No. 4 1995

0.25

0.20

/'.: 0.15
iii z
~ 0.10

0.05

MEAN= 16.06
STD. DEVIATION = 6.96
RANGE = 59.01
PEAK-TO-AVG. RATIO= 9.80

OL....,:::::;:::__:_;.___.__:~::=,==-....,__,~-..~---......... ~~
1 8 15 22 29 36 43 50 57 64 71 78

FRAME SIZE (KBITS)

Table4
Specifications of Systems Used in Experimentation

Operating Disk
System Name CPU Bus Clock Rate Cache Memory System

AlphaStation Alpha PCI 266 MHz 2MB 64MB Digital UNIX RZ28B
600 5/266 21164A (3.7 ns) V3.2
workstation

AlphaStation Alpha PCI 266 MHz 2MB 32MB Digital UNIX RZ58
200 4/266 21064A (3.7 ns) V3.0
workstation

DEC 3000/M900 Alpha TURBOchannel 275 MHz 2MB 64MB Digital UNIX RZ58
workstation 21064A (3.6 ns) V3.2

DEC 3000/M500 Alpha TURBOchannel 133 MHz 512 KB 32 MB Digital UNIX RZ57
workstation 21064 (7.5 ns) V3.0

answer was a resounding "Yes" in the case of Alpha
processors. The video playback rate was measured
with software video rendering enabled. When hard­
ware rendering is available, estimated values for video
playback are provided.

From Figure 13, it is clear that today's workstations
are capable of playing SIF video at full frame rates with

no hardware acceleration. High-quality M-JPEG and
MPEG-1 compressed video clips can be played at full
speed with 20 percent to 60 percent of the CPU avail­
able for other tasks. INDEO decompression is faster
than M-JPEG and MPEG due to the absence ofDCT
processing. (INDEO uses a vector quantization
method based on pixel differencing.) On three out of

Figure 13

M-JPEG

~ 250-4/266 •• ·····-===:] :;

~ 3000/M500 I

~ 3000/M900 •••••c:===:J:=J
(/)

in 600-5/266 ~~~~!'. !'!'!If.~~~~-~·-~·~-~· -~·
O W @ W 00 100 1~ 1@

% 0FCPU USED

MPEG-1 VIDEO

~ 3000/M500 I

~ 250-41266 •· •••••c==i
al 3000/M900 •••••c=::::J
I-

~ 600-5/266 ••••==i
(/) ~-~-~·-~·-~·-~·~-~~· O W @ W 00 100 1W 1@

% 0FCPU USED

INDEO

z 250-4/266 •• ••-==i
:;
~ 3000/M900 ••-=:=i
(/)

~ 3000/MSOO I

in 600-5/266 ====::=J
'---~'--'-'----Ll---'1----'1'---~' ----'--'
O W @ W 00 100 1W 1@

% 0FCPU USED

KEY:

• WITH HARDWARE VIDEO RENDERING

O WITH SOFTWARE VIDEO RENDERING

Percentage of CPU Required for Real-time Playback at 30 fps on Four Different Alpha-based Systems

Digital Technical Journal Vol. 7 No. 4 1995 69

the four machines tested, two SIF INDEO clips could
be played back at full speed with CPU capacity left
over for other tasks.

The data also shows the advantage of placing the
color conversion and rendering of the video in the
graphics hardware (see Table 2 and Figure 13).
Software rendering accounts for one-third of the total
playback time. Since rendering is essentially a table
look-up function, it is a good candidate for moving
into hardware. If hardware video rendering is available,
multiple M-JPEG and MPEG-1 clips can be played
back on three of the four machines on which the soft­
ware was tested.

Software video compression is more time-consum­
ing than decompression. All algorithms discussed in
this paper are asymmetric in the amount of processing
needed for compression and decompression. Even
though the JPEG algorithm is theoretically symmetric,
the performance of the JPEG decoder is better than
that of the encoder. The difference in performance is
due to the sparse nature of the quantized coefficient
matrices, which is exploited by the appropriate IDCT
optimizations.

For video encoders, we measured the rate of com­
pression for both SIF and quarter SIF (QSIF) formats.
Since the overhead due to I/0 affects the rate at which
the compressor works, we present measured rates col­
lected when the raw video sequence is read from disk
and when it is captured in real time. The capture cards
used in our experiments were the Sound & Motion
J300 (for systems with the TURBOchannel bus) and
the FullVideo Supreme (for PCI-based systems). The
compressed bit streams were stored as AVI files on local
disks. The sequences used in this experiment were
the same ones used for obtaining measurement for the
various decompressors; their output characteristics are

Table 5
Typical Number of Frames Compressed per Second

given in Table 3. Table 5 provides performance num­
bers for the M-JPEG and an unoptimized INDEO
compressor. For M-JPEG, rates for both monochrome
and color video sequences are provided.

The data in Table 5 indicates that the M-JPEG com­
pression outperforms INDEO (although one has to
keep in mind that INDEO was not optimized). This
difference occurs because M-JPEG compression,
unlike INDEO, does not rely on interframe prediction
or motion estimation for compression. Furthermore,
when raw video is compressed from disk, the encoder
performs better than when it is captured and com­
pressed in real time. This can be explained on the basis
of the overhead resulting from context switching in
the operating system and the scheduling of sequential
capture operation by the applications. Real-time cap­
ture and compression of image sizes larger than QSIF
still require hardware assistance. It should be noted
that in Table 5, the maximum compression rate for
real-time capture and compression does not exceed 30
frames per second, which is the limit of the capture
hardware. Since there are no such limitations for disk
reads, compression rates of greater than 30 frames per
second for QSIF sequences are recorded.

With the newer Alpha chip we expect to see
improved performance. A factor we neglected in our
calculations was prefi ltering. Some capture boards are
capable of capturing only in CCIR 601 format and do
not include decimation filters as part of their hard­
ware. In such cases, the software has to filter each
frame down to CIF or QCIF, which adds substantially
to the overall compression time. For applications that
do not require real-time compression, software
digital-video compression may be a viable solution
since video can be captured on fast disk arrays and
compressed later.

M-JPEG (Color) M-JPEG (Monochrome) INDEO (Color)

System Compress Capture and Compress Capture and Compress Capture and
(fps) Compress (fps) (fps) Compress (fps) (fps) Compress (fps)
SIF QSIF SIF QSIF SIF QSIF SIF QSIF SIF QSIF SIF QSIF

AlphaStation
600 5/266
workstation 21.0 79.4 20.0 30.0 32 .8 130 29.0 30.0 8.7 35.4 5.8 23.0

A lphaStation
2004/266
workstation 10.8 45.1 12.0 30.0 15.8 72.9 20.0 30.0 5.6 22.0 4.2 13.0

DEC 3000/M900
workstation 13.2 56.6 7.9 28.0 21 .9 87 .8 14.0 29.0 6.0 25.4 4.5 7.6

DEC 3000/M500
workstation 6.7 26.6 7.3 8.1 10.4 40.4 7.4 8.2 2.8 11.8 2.2 8. 7

70 Digital Technical Journal Vol. 7 No. 4 1995

Sample Applications

We implemented several applications to test our archi­
tecture (codecs and renderer) and to create a test bed
for performance measurements. These programs also
served as sample code for software developers incorpo­
rating SLIB into other multimedia software layers.

The Video Odyssey Screen Saver
The Video Odyssey screen saver uses software video
decompression and 24-bit YCbCr to 8-bit pseudo­
color rendering to deliver video images to the screen
in a variety of modes. The program is controlled by
a control panel, shown in Figure 14.

The user can select from several methods of display­
ing the decompressed video or let the computer cycle
through all methods. The floaters mode, shown in
Figure 15, floats one to four copies of the video
around the screen with the number of floating win­
dows controlled by a slider in the control panel. The
snapshot mode floats one window of the video around
the screen, but every second takes a snapshot of a
frame and pastes it to the background behind the
floating window.

All settings in the control panel are saved in a con­
figuration file in the user's home directory. The user
selects a video file with the file button. In the current
implementation, any AVI file containing Motion JPEG
or raw YlN video is acceptable. The user can set the '
time interval for the screen saver to take over. Controls
for setting brightness, contrast, and saturation are also
provided. Video can be played back at normal resolu­
tion or with X2 scaling. Scaling is integrated with

-

I yzdeo
()dyssey

•0n
Sleep in j10 ! . min.

Screen saver:

Combo -Snap Shot
Striper
Pileup

!Video Filel
clock.avi

_J Large Window

! • Password protect!

Figure 14
Video Odyssey Control Panel

3

1 Floaters 4

3

1 Float Speed 10

1

1 Video Rate 10

6.0

0 Brightness 10
6.0

0 Contrast 10

4.0

0 Saturation 10

!Start! !Preview! ~

Figure 15
Video Odyssey Screen Saver in Floaters Mode

the color conversion and dithering for optimization. A
pause feature allows the user to leave his or her screen
in a locked state with an active screen saver. The screen
is unlocked only if the correct password is provided.

The Software Video Player
The software video player is an application for viewing
video that is similar to a VCR. Like Video Odyssey, the
software video player exercises the decompression and
rendering portions of SLIB. Unlike Video Odyssey,
the software video player allows random access to any
portion of the video and permits single-step, reverse,
and fast-forward functions. Figure 16 shows the dis­
play window of the software video player.

;:;.-.., .. , . ~--~~ ---------·-· .. ~~ ;-;:. ·1
I __ !;,.-.,. • d

Fiie Options

Figure 16
The Software Video Player Display Window

Digital Technical Journal Vol. 7 No. 4 1995 71

The user moves through the file with a scroll bar
and a set ofVCR-like buttons. The button on the far
left of the display window allows the video to be dis­
played at normal size or at a magnification of X2. The
far-right button allows adjustment of brightness, con­
trast, saturation, and number of displayed colors. The
quality of the dithering algorithm used in rendering is
such that values as low as 25 colors lead to acceptable
image quality. Allowable file formats for the software
video player are M-JPEG (AVI format and the JPEG
file interchange format or JFIF), MPEG-1 (both video
and system streams), and raw YUV.

Random access into the file is done in one of two
ways, depending on the file format. For formats that
contain an index of the frame positions in the file (like
AVI files), the index is simply used to seek the desired
frame. For formats that do not contain an index, such
as MPEG-1 and JFIF, the software video player esti­
mates the location of a frame based on the total length
of the video clip and a running average of frame size.
This technique is adequate for most video clips and has
the advantage of avoiding the time needed to first
build an index by scanning through the file.

Interframe compression schemes like MPEG-1 and
INDEO pose special problems when trying to access
a random frame in a video clip. MPEG-1 's B- and
P-frames are dependent on preceding frames and can­
not be decompressed alone. One technique for han­
dling random access into files with non-key frames
and no frame index is to use the file position specified
by the user (with a scroll bar or by other means) as a
starting point and then to search the bit stream for the
next key frame (an I-frame in MPEG-1). At that point,
display can proceed normally. Reverse play is also a
problem with these formats. The software video player
deals with reverse by displaying only the key frames.
It could display all frames in reverse by predecom­
pressing all frames in a group and then displaying them
in reverse order, but this would require large amounts
of memory and would pose problems with processing
delays. Rate control functions, including fast-forward
and fast-reverse functions, can be done by selectively
throwing out non- key frames and processing key or
I-frames only.

Other Applications
Several other applications using different components
of SUB were also written. Some of these are
(1) Encode-a video encoding application that uses
SLIB's compression component to compress raw
video to M-JPEG format, (2) Rendit- a viewer for
true color images that uses SLIB's rendering compo­
nent to scale, tone-adjust, dither, quantize, color space
convert, and display 24-bit RGB or 16-bit YUV
images on frame buffers with limited planes, and
(3) routines for viewing compressed on-line video

72 Digital Technical Journal Vol. 7 No. 4 1995

documentation that was incorporated into Digital's
videoconferencing product.

Related Work

While considerable effort has been devoted to opti­
mizing video decoders, little has been done for video
encoders. Encoding is generally computationally more
complex and time-consuming than decoding. As a
result, obtaining real-time performance from encoders
has not been feasible. Another rationalization for
interest in decoders has been that many applications
require video playback and only a few are based on
video encoding. As a result, "code once, play many
times" has been the dominant philosophy. In most
papers, researchers have focused on techniques for
optimizing the various codecs; very little has been
published on providing a uniform architecture and an
intuitive API for the video codecs.

In this section, we present results from other papers
published on software video codecs. Of the three
international standards, MPEG-1 has attracted the
most attention, and our presentation is biased slightly
toward this standard. We concentrate on work that
implements at least one of the three recognized inter­
national standards.

The JPEG software was made popular by the
Independent Software JPEG Group formed by Tom
Lane. 20 He and his colleagues implemented and made
available free software that could perform baseline JPEG
compression and decompression. Considerable atten­
tion was given to software modularity and portability.
The main objective of this codec was still-image com­
pression although its modified version has been used for
decompression of motion JPEG sequences as well.

The MPEG software video decoder was made popu­
lar by the multimedia research group at the University
of California, Berkeley. The availability of this free soft­
ware sparked the interest of many who now had the
opportunity to play with and experiment with com­
pressed video. Patel et al. describe the implementation
of this software MPEG decoder. 21 The focus in their
paper is on an MPEG-1 video player that would
be portable and fast. The authors describe various
optimizations, including in-line procedures, custom
coding frequent bit-twiddling operations, and render­
ing in the YUV space with color conversion through
look-up tables. They observed that the key bottleneck
toward real-time performance was not the compu­
tation involved but the memory bandwidth. They
also concluded that data structure organization and
bit-level manipulations were critical for good perfor­
mance. The authors propose a novel metric for com­
paring the performance of the decoder on systems
marketed by different systems vendors. Their metric,
the percentage of required bit rate per second per

thousand dollars (PBSD), takes into account the price
of the system on which the decoder is being evaluated.

Bheda and Srinivasan describe the implementa­
tion of an MPEG-1 decoder that is portable across
platforms because the software is written entirely in
a high-level language.22 The paper describes the vari­
ous optimizations done to improve the decoder's
speed and provides performance numbers in terms of
number of frames displayed per second. The authors
compare the speed of their decoder on various
platforms, including Digital's first Alpha-based PC run­
ning Microsoft's Windows NT system. They conclude
that their decoder performed best on the Alpha system.
It was able to decompress, dither, and display a 320-
pixel by 240-line video sequence at a rate ofl2.5 frames
per second. A very brief description of the API sup­
ported by the decoder is also provided. The API is able
to support operations such as random access, fast for­
ward, and fast reverse. Optional skipping ofB-frames is
possible for rate control. The authors conclude that the
size of the cache and the performance of the display sub­
system are critical for real-time performance.

Bhaskaran and Konstantinides describe a real­
time MPEG-1 software decoder that can play both
audio and video data on a Hewlett-Packard PA-RISC
processor-based workstation.23 The paper provides
step-by-step details on how optimization was carried
out at both the algorithmic and the architectural
levels. The basic processor was enhanced by including
in the instruction set several multimedia instructions
capable of performing parallel arithmetic operations
that are critical in video codecs. The display subsystem
is able to handle color conversion ofYCbCr data and
up-sampling of image data. The performance of the
decoder is compared to software decoders running on
different platforms from different manufacturers. The
comparison is not truly fair because the authors com­
pare their decoder, which has hardware assistance
available to it (i.e., an enhanced graphic subsystem and
new processor instructions), to other decoders that are
truly software based. Furthermore, since all the codecs
were not running on the same machine under similar
operating conditions and since the sequence tested on
their decoder is not the same as the one used by the
others, the comparison is not truly accurate. The paper
does not provide any information on the program -
ming interface, the control flow, and the overall soft­
ware architecture.

There are numerous other descriptions of the
MPEG-1 software codecs. Eckart describes a software
MPEG video player that is capable of decoding both
audio and video in real time on a PC with a 90-mega­
hertz Pentium processor.24 Software for this decoder is
available freely over the Internet. Gong and Rowe
describe a parallel implementation of the MPEG-1

encoder that runs on a network of workstations. 25 The
performance improvements of greater than 650
percent are reported when the encoding process is
performed on 9 networked HP 9000/720 systems
as compared to a single system.

Wu et al. describe the implementation and per­
formance of a software-only H.261 video codec on
the PowerPC 601 reduced instruction set computer
(RISC) processor.26 This paper is interesting in that it
deals with optimizing both the encoder and the
decoder to facilitate real-time, full-duplex network
connections. The codec plugs under the QuickTime
architecture developed by Apple Computer, Inc. and
can be invoked by applications that have programmed
to the QuickTime interface. The highest display rate is
slightly under 18 frames per second for a QSIF video
sequence coded at 64 kilobits per second with disk
access. With real-time video capture included, the
frame rate reduces to between 5 and 10 frames per
second. The paper provides an interesting insight by
giving a breakdown of the amount of time spent in
each stage of coding and decoding on a complex
instruction set computer (CISC) versus a RISC system.
Although the paper does a good job of describing the
optimizations, very little is mentioned about the soft­
ware architecture, the programming interface, and the
control flow.

We end this section by recommending some sources
for obtaining additional information on the state
of the art in software-only video in particular and in
multimedia in general. First, the Society of Photo­
Optical Instrumentation Engineers (SPIE) and the
Association of Computing Machinery (ACM) sponsor
annual multimedia conferences. The proceedings from
these conferences provide a comprehensive record of
the advances made on a year-to-year basis. In addition,
both the Institute of Electrical and Electronics
Engineers (IEEE) and ACM regularly publish issues
devoted to multimedia. These special issues contain
review papers with sufficient technical details.1•.27

Finally, an excellent book on the subject of video com­
pression is the recently published Digital Pictures (sec­
ond edition) by Arun Netravali and Barry Haskel from
Plenum Press.

Conclusions

We have shown how popular video compression
schemes are composed of an interconnection of dis­
tinct functional blocks put together to meet specified
design objectives. The objectives are almost always set
by the target applications. We have demonstrated that
the video rendering subsystem is an important compo­
nent of a complete playback solution and presented
a novel algorithm for mapping out-of-range colors.

Digital Technical Journal Vol. 7 No. 4 1995 73

We described the design of our software architecture
for video compression, decompression, and playback.
This architecture has been successfully implemented
over multiple platforms, including the Digital UNIX,
the Open VMS, and Microsoft's Windows NT operat­
ing systems. Performance results corroborate our
claim that current processors can adequately handle
playback of compressed video in real time with little or
no hardware assistance. Video compression, on the
other hand, still requires some hardware assistance for
real-time performance. We believe the widespread use
of video on the desktop is possible if high-quality
video can be delivered economically. By providing
software-only video playback, we have taken a step in
this direction.

References

1. A. Akansu and R. Haddad, "Signal Decomposition
Techniques: Transforms, Subbands, and Wavelets,"
Dptcon '92, Short Course 28 (November 1992).

2. E. Feig and S. Winograd, "Fast Algorithms for Discrete
Cosine Transform," IEEE Transactions on Signal
Processing, vol. 40, no. 9 (1992): 2174-2193.

3. S. Lloyd, "Least Squares Quantization in PCM," IEEE
Transactions on Information 7beory, vol. 28 (1982):
129-137.

4. J. Max, "Quantizing for Minimum Distortion," IRE
Transactions on Information 7beory, vol. 6, no. 1
(1960): 7- 12.

5. N. Nasrabadi and R . King, "Image Coding using
Vector Quantization: A Review," IEEE Transactions
Communications, vol. 36, no. 8 (1988): 957-971.

6. D. Huffman, "A Method for the Construction of Min­
imum Redundancy Codes," Proceedings of the IRE,
vol. 40 (1952): 1098-1101.

7. H. Harashima, K. Aizawa, and T. Saito, "Model­
based Analysis-Synthesis Coding of Video Telephone
Images-Conception and Basic Study of Intelligent
Image Coding," Transactions of IEICE, vol. E72,
no. 5 (1981): 452-458.

8. Information Technology-Digital Compression
and Coding of Continuous-tone Still Images,
Part 1: Requirements and Guidelines, ISO/ IEC IS
10918-1:1994 (Geneva: International Organization
for Standardization/International Electrotechnical
Commission, 1994).

9 . K. Correll and R. Ulichney, "The J300 Family
ofVideo and Audio Adapters: Architecture and Hard­
ware Design," Digital Technical Journal, vol. 7,
no. 4 (1995, this issue): 20- 33.

10. P. Bahl, "The J300 Family of Video and Audio
Adapters: Software Architecture," Digital Technical
Journal, vol. 7, no. 4 (1995, this issue): 34- 51.

74 Digital Technical Journal Vol. 7 No. 4 1995

11 . Video Codec for Audiovisual Services at p X 64
kbits!s, ITU-T Recommendation H.261 , CDM XV-R
37-E (Geneva: International Telegraph and Telephone
Consultative Committee, 1990).

12. Coding of Moving Pictures and Associated Audio
for Digital Storage Media at Up to about 1.5 Mbits/s,
ISO/IEC Standard 11172-2:1993 (Geneva: Interna­
tional Organization for Standardization/International
Electrotechnical Commission, 1993).

13. Generic Coding of Moving Pictures and Associated
Audio, Recommendation H.262, ISO/ IEC CD
13818-2:1994 (Geneva: International Organization
for Standardization/International Electrotechnical
Commission, 1994).

14. Special Issue on Advances in Image and Video Com­
pression, Proceedings of the IEEE (February 1995).

15. R. Ulichney, "Video Rendering," Digital Technical
Journal, vol. 5, no. 2 (Spring 1993): 9- 18.

16. L. Seiler and R. Ulichney, "Integrating Video Render­
ing into Graphics Accelerator Chips," Digital Techni­
cal Journal, vol. 7, no. 4 (1995, this issue): 76-88.

17. R. Ulichney, "Method and Apparatus for Mapping
a Digital Color Image from a First Color Space to a
Second Color Space," U.S. Patent 5,233,684 (1993).

18. Y. Arari, T. Agui, and M. Nakajima, "A Fast DCT-SQ
Scheme for Images," IEEE Transactions IEICE, E-71
(1988): 1095- 1097.

19. K. Froitzheim and K. Wolf, "Knowledge-based
Approach to JPEG Acceleration," Digital Video Com­
pression: Algorithms and Technologies 1995, Pro­
ceedings oftheSPIE, vol. 2419 (1995): 2-13.

20. T. Lane, "JPEG Software," Independent JPEG Group,
unpublished paper available on the Internet.

21. K. Patel, B. Smith, and L. Rowe, "Performance of a
Software MPEG Video Decoder," Proceedings of
ACM Multimedia '93, Anaheim, Calif. (1993): 75- 82.

22. H. Bheda and P. Srinivasan, "A High-performance
Cross-platform MPEG Decoder," Digital Video Com­
pression: Algorithms and Technologies 1995, Pro­
ceedings of the SPIE, vol. 2187 (1994): 241- 248.

23. K. Bhaskaran and K. Konstantinides, "Real-Time
MPEG-1 Software Decoding on HP Workstations,"
Digital Video Compression: Algorithms and Tech­
nologies 1995, Proceedings of the SPIE, vol. 2419
(1995): 466-473.

24. S. Eckart, "High Performance Software MPEG Video
Playback for PCs," Digital Video Compression: Algo­
rithms and Technologies 1995, Proceedings of the
SPIE, vol. 2419 (1995): 446-454.

25. K. Gong and L. Rowe, "Parallel MPEG-1 Video
Encoding," Proceedings of the 1994 Picture Coding
Symposium, Sacramento, Calif. (1994).

26. H . Wu, K. Wang, J. Normile, D. Ponceleon, K. Chu,
and K. Sung, "Performance of Real-time Software­
only H.261 Codec on the Power Macintosh," Digital
Video Compression: Algorithms and Technologies
1995, Proceedings of the SPIE, vol. 2419 (1995):
492-498.

27. Special Issue on Digital Multimedia Systems, Com­
munications of the ACM, vol. 34, no. 1 (April 199 1).

Biographies

Paramvir Bahl
Paramvir Bahl received B.S.E.E. and M.S.E.E. degrees in
198 7 and 1988 from the State University of New York at
Buffalo. Since joining Digital in 1988, he has contributed
to several seminal multimedia products involving both
hardware and software for digital video. Recently, he led
the development of software-only video compression and
video rendering algorithms. A principal engineer in the
Systems Business Unit, Paramvir received Digital's Doctoral
Engineering Fellowship Award and is completing his Ph .D .
at the University of Massachusetts. There, his research has
focused on techniques for robust video communications
over mobile radio networks. He is the author and coauthor
of several scientific publications and a pending patent. He
is an active member of the IEEE and ACM, serving on pro­
gram committees of technical conferences and as a referee
for their journals. Paramvir is a member of Tau Beta Pi and
a past president of Eta Kappa Nu.

Paul S. Gauthier
Paul Gauthier is the president and founder of Image
Softworks, a software development company in Westford,
Massachusetts, specializing in image and video processing.
He received a Ph.D. in physics from Syracuse University
in 1975 and has worked with a variety of companies on
medical imaging, machine vision, prepress, and digital
video. In 1991 Paul collaborated with the Associated Press
on developing an electronic darkroom. During the Gulf
War, newspapers used his software to process photographs
taken of the nighttime attack on Baghdad by the United
States. Working with Digital, he has contributed to adding
video to the Alpha desktop.

Robert A. Ulichney
Robert Ulichney received a Ph.D. from the Massachusetts
Institute ofTechnology in electrical engineering and com­
puter science and a B.S. in physics and computer science
from the University of Dayton, Ohio. He joined Digital
in 1978. He is currently a senior consulting engineer with
Digital's Cambridge Research Laboratory, where he leads
the Video and Image Processing project. He has filed sev­
eral patents for contributions to Digital products in the
areas of hardware and software-only motion video, graphics
controllers, and hard copy. Bob is the author of Digital
Halftoning and serves as a referee for a number of technical
societies, including IEEE, of which he is a senior member.

Digital Technical Journal Vol. 7 No. 4 1995 75

Integrating Video
Rendering into Graphics
Accelerator Chips

The fusion of multimedia and traditional com­
puter graphics has long been predicted but has
been slow to happen. The delay is due to many
factors, including their dramatically different

data type and bandwidth requirements. Digital
has designed a pair of related graphics accel­
erator chips that integrate video rendering
primitives with two-dimensional and three­
dimensional synthetic graphics primitives. The
chips perform one-dimensional filtering and
scaling on either YUV or RGB source data. One
implementation dithers YUV source data down
to 256 colors. The other converts YUV to 24-bit
RGB, which is then optionally dithered. Both
chips leave image decompression to the CPU.
The result is significantly faster frame rates
at higher video quality, especially for display­
ing enlarged images. The paper compares the
implementation cost of various design alter­
natives and presents performance comparisons
with software image rendering.

76 Digital Technical Journal Vol. 7 No. 4 1995

I
Larry D. Seiler
Robert A. Ulichney

For years, the computer industry confidently predicted
that ubiquitous, integrated multimedia computing was
just around the corner. After a number of delays, this
computing environment is finally a reality. It is now
possible to buy personal computers (PCs) and work­
stations that combine audio processing with real-time
display and manipulation of video or other sampled
data, though usually with significant limitations.

For the most part, the industry has followed one of
two paths to achieve real-time video processing. On one
path, video features are implemented almost entirely in
software. When applied to the display of moving
images, this approach typically results in a combination
oflow resolution, slow update times, and small images.

The alternative has been to achieve good video
image display performance by adding a separate video
hardware option to a PC. Image display is integrated
in the box and on the screen but is distinct from the
hardware that implements traditional synthetic graph­
ics. Frequently, this design forces performance com­
promises, for example, by limiting the number of video
images that can appear at the same time or by limiting
the interaction ofimages with the window system.

Recently, two key enabling technologies have com­
bined to make a better solution possible. Advances in
silicon technology enable low-cost graphics controller
chips to be designed with a significant number of gates
dedicated to supporting multimedia features. In addi­
tion, the peripheral component interconnect (PCI) bus
provides high-bandwidth, peer-to-peer communica­
tion between the CPU, the main memory, and option
cards. Peak bandwidth on the standard 32-bit PCI bus
is 133 megabytes per second (MB/s), and higher­
performance versions are also available. Good PCI
implementations can transfer sequential data at 80 to
100 MB/s. Equally important, the PCI bus allows mul­
timedia solutions to be incrementally built up from a
software-only implementation through various levels
of hardware support. The PC! Multimedia Design
Guide describes this incremental approach and also
provides standards for latency and video data formats. 1

This paper describes a Digital engineering project
whose goal was to combine video rendering features
and traditional synthetic graphics into a unified graph­
ics chip, yielding high-quality, real-time image display

as part of the base graphics option at minimal extra
cost. This project resulted in two chip implementa­
tions, each with its own variation of the same basic
design. The TGA2 chip was designed in the Work­
systems Group for use in Digital's PowerStorm 3030
and PowerStorm 4020 graphics options. The Dagger
chip (DECchip 21130) was designed in the Silicon
Engineering Group to match the needs of the PC mar­
ket. The TGA2 and Dagger chips are PCI bus masters
and can accept video data from either the host CPU or
other video hardware on the PCI bus.

The basic block diagram of the two chips is illus­
trated in Figure 1. PCI commands are interpreted as
either direct memory access (DMA) requests or draw­
ing commands, which the pixel engine block converts
to frame buffer read and write operations. Alternately,
PCI commands can directly access the frame buffer or
the video graphics array (VGA) and RAMDAC logic .
In the Dagger chip, the VGA and RAMDAC logic is
on-chip; in the TGA2 chip, this logic is implemented
off-chip. Most of the video rendering logic is contained
in the pixel engine block; the command interpreter and
DMA engine blocks require some additional logic to
support video rendering.

The following sections describe the capabilities, costs,
and trade-offs of the video rendering feature set as
implemented in the Dagger and TGA2 graphics chips.

Defining a Low-level Video Rendering Feature Set

The key question when integrating multimedia into
a traditional synthetic graphics chip is which features
should be implemented in hardware and which should
be left in software. A cost-effective design cannot

PCIBUS

include enough gates to implement every feature of
interest. In addition, time-to-market concerns do not
allow all features to be designed into the hardware.
Therefore, it is essential for designers to define the pri­
mary trade-off between features that can be easily and
effectively implemented in hardware and those that
can be more easily implemented in software without
compromising performance.

For the Dagger and TGA2 graphics chips, our basic
decision was to leave image compression and decom­
pression in software and put all pixel processing opera­
tions into hardware. This approach lets software do
what it does best, which is perform complex control of
relatively small amounts of data. It also lets hardware
do what it does best, which is process large amounts of
data where the control is relatively simple and is inde­
pendent of the data. Specifically, in these two graphics
chips, image scaling, filtering, and pixel format conver­
sions are all performed in hardware.

Performing the scaling in hardware greatly reduces
the amount of data that the software must process and
that must be transmitted over the PCI bus. For exam­
ple, a 320-by-240-pixel image represented with 16-bit
pixels requires just 150K bytes. Even at 30 frames per
second (fps), transmitting an image of this size con -
sumes about 5 percent of the available bandwidth of
a good PCI bus implementation. This data could be
displayed as a 1,280 by 960 array of 32-bit pixels for
display, which would use more than 80 percent of the
PCI bus bandwidth, if the scaling and pixel format
conversion occurs in software.

One data-intensive operation that we chose not to
implement in hardware is video input. Designers will
need to revisit this decision with each new generation

PCI INTERFACE

Figure 1

DMA
CONTROLLER

GRAPHICS CONTROLLER

FRAME BUFFER CONTROLLER

FRAME
BUFFER
MEMORY

Dagger and TGA2 Chip Structure

r ;;R:L:-~
I PURPOSE

PORT AND I RAMDAC
VIDEO 1-- CONTROL

I LOGIC
I (TGA2) I
._ ____ J

r - - - -,
I VGA, I

VIDEO LOGIC, I VIDEO
AND ,- OUTPUT

I RAMDAC
1----I (DAGGER) I

._ ____ J

Digital Technical Journal Vol. 7 No. 4 1995 77

of graphics chips. For the current generation, we
decided to require the use of a separate video input
card for the subset of systems that require video cap­
mre. We decided not to include video capture support
in the Dagger and TGA2 chips for two basic reasons.
First, current application-specific integrated circuit
(ASIC) technology would have allowed only a partial
solution. We could have put a video input port in
hardware but could not have supported the complex
operations needed for image compression.

The second reason stems from a market issue. Video
display is rapidly becoming ubiquitous, just as mice
and multiwindow displays have become commonplace
for interacting with PCs and workstations. It is now
practical to support high-quality, real-time video dis­
play in the base graphics chip. However, the market
for video input stations is still much smaller than the
market for video display stations. When the size of
the video input station market is large enough, and the
cost of integrating video input is small enough, sup­
port for video input should be added to the base
graphics chip.

Video Rendering Pipeline

This section describes the stages of video render­
ing that are implemented in the Dagger and TGA2
graphics chips. These stages are pixel preprocessing,
scaling and filtering, dithering, and color conversion.
In some cases, such as scaling and filtering, the two
implementations are practically identical. In others,
such as color conversion, dramatically different imple­
mentations are used to address the differences in
requirements for the two chips.

Pixel Preprocessing
The first stage in the pipeline inputs pixel data and
converts it into a standard form to be used by the rest
of the pipeline. This involves both converting input
pixels to a standard format and pretranslating pixel

31 24 23 1615 87 0

I ALPHA I v I y I u I
32-BIT YUV, LITTLE-ENDIAN ORDER

31 24 23 1615 87 0

I Y1 I V01 I YO I U01 I
16-BIT YUV, LITTLE-ENDIAN ORDER

31 24 23 1615 87 0

I V01 I Y1 I U01 I YO I
16-BIT YUV, GIB-ENDIAN ORDER

31 24 23 1615 8 7 0

I U01 I YO I V01 I Y1 I
16-BIT YUV, BIG·ENDIAN ORDER

Figure 2
YUV and RGB Pixel Formats in the Dagger and TGA2 Chips

78 Digital Technical Journal Vol. 7 No. 4 1995

values or color component values. The Dagger and
TGA2 chips use DMA over the PCI bus to read packed
arrays of pixels from memory.

Pixel Format Conversion Multimedia images are typi­
cally represented in YUV format, where the Y channel
specifies luminance and the U and V channels repre­
sent chrominance. After the CPU has decompressed
the source image into arrays of Y, U, and Vpixel values,
this data is transmitted to the graphics chip in one of
a number of standard formats. Alternately, images may
be specified as red/green/blue (RGB) triples instead
ofYUV triples, or as a single index value that specifies
a color from a color map random-access memory
(RAM) in the video logic. The PC! Multimedia Design
Guide specifies many standard pixel formats. 1

Figure 2 shows some of the input pixel formats that
are supported in the Dagger and TGA2 graphics chips.
The YUV formats on the left allocate 8 bits for each
channel. The upper format of the four uses 32 bits per
YUV pixel and is called YUV-4:4:4+a.1 The alpha field
is optional and is not used in the Dagger and TGA2
chips. Alpha values are used for blending operations
with partially transparent pixels. An alpha value of zero
represents a fully transparent pixel, and the maximum
value represents a fully opaque pixel.

The remaining three YUV formats specify a separate
Yvalue per pixel but subsample the U and V values so
that a pair of pixels shares the same U and V values. Most
YUV compression schemes subsample the chrominance
channels, so this approach does not represent any loss of
data from the decompressed image. Since the human
visual system is more sensitive to changes in luminance
than to changes in chrominance, for namral images, U
and V can be subsan1pled with little loss of image quality.

The three 16-bit YUV formats represent the most
common orderings for chrominance-su bsampled YUV
values. The little-endian and gib-endian orderings are
called YUV-4:2 :2. 1 The little-endian ordering is
the order that is typically produced on the PCI bus

31 24 23 1615 87

I ALPHA I R I G I
32-BIT RGB (8/8/8)

15 1110 5 4 0

I R I G I B I
1514

El
7 5 4 21 0

I R I G Is I
8-BIT RGB (3/3/2)

16-BIT RGB (5/6/5)

10 9 5 4 0

R I G I B I
16-BIT RGB (5/5/5)

7 0

18-BIT INDEX '

8-BIT INDEXED

0

B I

by a little-endian machine. The gib-endian ordering is
produced on the PCI bus by a big-endian machine
that converts its data to little-endian order, as required
for transfer across the PCI bus. That operation pre­
serves byte order for 8-bit and 32-bit data types but
not for 16-bit data types like this one. Finally, the big­
endian byte ordering is used by some video rendering
software and hardware options.

The RGB formats on the right side of Figure 2 allo­
cate varying numbers of bits to the red, green, and
blue color channels to produce 8-bit to 32-bit pixels.
To achieve acceptable appearance, 8-bit RGB requires
high-quality dithering, such as that provided by
the Accu Video dithering technology contained in the
Dagger and TGA2 chips and described later in this sec­
tion.Thirty-two-bit RGB has an optional alpha chan­
nel that is not used in the Dagger and TGA2 chips.
Some hardware uses the field for control bits or over­
lay planes instead of for the alpha value. Two different
16-bit RGB formats are common. One format pro­
vides 5 bits per color channel and a single alpha bit that
indicates transparent or opaque. The other format
provides an extra bit for the green channel, since the
eye is more sensitive to green than to red or blue.

Finally, 8-bit indexed format is shown at the bottom
of Figure 2. This format is simply an 8-bit value that
represents an index into a color map. Dagger has an
integral color map and digital-to-analog converter,
whereas TGA2 requires an external RAMDAC chip to
provide its color map. The 8-bit indexed format can
represent an indexed range of values or simply a collec­
tion of independent values, depending on the needs
of the application. In the Dagger and TGA2 chips, the
8-bit indexed format is processed by being passed
through the Y channel.

Once in the pipeline, the pixels are converted to
a standard format consisting of three 8-bit values per
pixel. The three values represent RGB or YlN compo­
nents, depending on the original pixel format. If
the original field contains fewer than 8 bits, for exam­
ple, in the 8-bit RGB format, then the available bits are
replicated. Figure 3 shows the expansion of RGB
pixels to 8 /8 /8 RGB format. Replicating the available

bits to fill low-order bit positions is preferable to fill­
ing the low-order bits with zeros, since replication
stretches out the original range of values to include
both the lowest and highest values in the 8-bit range,
with roughly equal steps ?etween them.

Adjust Look-up Table In the TGA2 chip, a 256-entry
look-up table (LUT) may be used during pixel prepro­
cessing. Figure 7 (discussed in the section Color
Conversion Algorithms) shows this table, called the
adjust LUT, in the TGA2 pipeline. This table supports
two different data conversions: luminance adjustment
and color index conversion. The adjust LUT is not
available in the Dagger chip because it requires too
many gates to meet the chip cost goal for Dagger.

Luminance adjustment is used with YlN pixel for­
mats. When this feature is selected, the 8-bit Yvalue
from the input pixel is used as an index into the adjust
LUT. The 8-bit value read from the table is used as Y
in the next pipeline stage. Proper programming of the
table allows arbitrary luminance adjustment functions
to be performed on the input Yvalue; brightness and
contrast control are typically provided through this
mechanism. Standards for digitally encoding video
specify limited ranges for the Y, U, and V values, largely
to prevent analog noise from creating out-of-range
values.2 A particularly important use of this luminance­
adjust feature is correcting the poor contrast that
would otherwise result from this range limitation. In
this case, the adjust LUT may be used to remap the Y
values to cover the full range of values from Oto 255.

Another desirable feature is chrominance adjust­
ment, under which the U and V values are also arbitrar­
ily remapped. The J300 provides this feature; however,
TGA2 does not, for two reasons.3 First, chrominance
adjustment is required less often than luminance
adjustment and can be emulated in software when the
feature is required. Second, chrominance adjustment
consumes a significant amount of chip area-either 2K
or 4K bits of memory, depending on whether U and V
use the same table or different tables. In this genera­
tion of graphics chips, the feature could not be justi­
fied in the TGA2 chip. The Dagger chip, which was

!R4 !R3!R2!R1 !RoiR4iR3iR2! !G5iG4!G3!G2!G1 !Go!G5!G4! !s4 !s3!s2 !s1 !sois4 is3 is2!
EXPANSION OF 16-BIT 5/6/5 RGB PIXELS TO 8/8/8 RGB

!R4 !R3!R2!R1 !Ro!R4!R3!R2! !G4!G3!G2!G1!Go!G4!G3!G2! !B4 !s3!s2 !s1 !sojs4 !s3 !s2!
EXPANSION OF 16-BIT 5/5/5 RGB PIXELS TO 8/8/8 RGB

!R2!R1 !Ro!R2!R1 !Ro!R2!R1 I !G2!G*o!G2iG*o!G2!G1! !s1 !so!s1 !so!s1 !so!s1 !so!
EXPANSION OF 8-BIT 3/3/2 RGB PIXELS TO 8/8/8 RGB

Figure 3
Expanding RGB Pixels to 8/8/8 RGB Format

Digital Technical Journal Vol. 7 No. 4 1995 79

intended for lower-cost systems, includes neither
chrominance nor luminance adjust LUTs.

The other use for the adjust LUT in the TGA2 chip
is for color index conversion. This operation can be
performed when the input pixel format is 8 bits wide.
In this case, the 8-bit input pixel is used as an index
into the table. The resulting value is used as the
Y..channel value in the rest of the pipeline, and the U
and V channels are ignored. Later in the pipeline, the
color conversion stage is skipped, and the Y..channel
value is used directly as the resulting 8-bit pixel value.

Color index conversion is an operation that is
particularly desirable when using the Windows NT
operating system. Typically, 8-bit screen pixels are
converted to displayed colors by means of a color LUT
in the back-end video logic. Under the X Window
System graphical windowing environment, the map­
ping between an index and its color can be changed
only by the application. Under the Windows NT oper­
ating system, however, the mappings may change
dynamically. Therefore, an application that has stored
an image as 8-bit index values will need to remap those
index values before copying it to the screen. This con­
version can be done in software, but it is faster and
simpler to use the adjust LUT in the TGA2 chip to per­
form the remapping.

Scaling and Filtering
In the next stage in the rendering pipeline, the chip
performs scaling and filtering. The Dagger and TGA2
chips support one-dimensional (1-D) scaling and filter­
ing in hardware. Limiting the chips to 1-D filtering sig­
nificantly simplifies the chip logic, since no line buffers
are needed. Somewhat higher-quality images can be
achieved using two-dimensional (2-D) filtering, but
the difference is not significant. This difference is fur­
ther reduced by the AccuVideo dithering algorithm
that is implemented by the Dagger and TGA2 chips.
Two-dimensional smoothing filters can be supported
with added software processing, if required.

Bresenham-style Scaling Image scaling in the Dagger
and TGA2 chips uses pixel replication but is not lim­
ited to integer multiples. Instead, images can be scaled
from any integral source width to any integral desti­
nation width. Scaling is implemented through an
apaptation of the Bresenham line-drawing algorithm.
A complete description of this Bresenham-style scaling
algorithm appears in "Bresenham-style Scaling"; the
following paragraphs provide an outline of the algo­
rithm, which is the same scaling algorithm used in the
J300 family of adapters. 3•

4

The Bresenham scaling algorithm works like the
Bresenham line-drawing algorithm. Suppose we are
drawing a line from (0, 0) to (10, 6), so that d:x = 10
and dy = 6. This is an X-major line; that is, the line is
longer in the X dimension than in the Y dimension.

80 Digital Technical Journal Vol. 7 No. 4 1995

The Bresenham algorithm draws this vector by initial­
izing an error term and then incrementing it d:xtimes,
in this example, 10 times. Each time the algorithm
increments the term, a pixel is drawn. The sign of
the error term determines whether to find the next
pixel position by stepping to the right (incrementing
the Xposition) or by stepping diagonally (increment­
ing both X and Y). The error term is incremented in
such a way that as the X position is incremented 10
times, the Y position is incremented 6 times, thus
drawing the desired vector.

For Bresenham scaling, d:x represents the width of
the source image, and dy represents the width of the
destination image on the screen. When reducing
the size of the source image, d:x is greater than dy and
the error terms and increments are set up in the same
way as the X-major Bresenham line drawing, as
described in the previous paragraph. One source pixel
is processed each time the error term is incremented.
When Bresenham's line algorithm indicates a step in
the X dimension only, the source pixel is skipped. When
the algorithm indicates a step in both the X and the Y
dimensions, the source pixel is written to the destina­
tion. As a result, exactly dx source pixels are processed,
and exactly dy of them are drawn to the screen.

Enlarging an image works in a similar fashion. For
example, consider a source image that is narrower than
the destination image, that is, d:x is less than dy. This
is equivalent to drawing a Y..major Bresenham line in
which the error term is incremented dy times and the
X dimension is incremented d:x times. The scaling algo­
rithm draws a source pixel to the destination at each
step. If the line-drawing algorithm increments only in
the Ydimension, it repeats the current pixel. If the line­
drawing algorithm increments in both the X and the Y
dimensions, it steps to and displays the next source
pixel. Consequently, the dx source pixels are replicated
to yield dydestination pixels, thus enlarging the image.

The Bresenham line-drawing algorithm has two
nice properties that are shared by the Bresenham scal­
ing algorithm. First, it requires no divisions to com­
pute the error increments. Second, it produces lines
that are as smooth as possible, given the pixel grid.
That is, for an X-major line, each of the d:x pixels has
a Y position that is the closest pixel to the intersection
of its X position with the real vector. Similarly, the
Bresenham scaling algorithm selects pixels that have
the most even spacing possible, given the pixel grid.

Just as lines can be drawn from left to right or from
right to left, images can be drawn in either direction.
An image drawn in one direction is the mirror image
of the image drawn in the other direction. Mirror
imaging is sometimes used in teleconferencing, so that
users can look at themselves the way they normally see
themselves. Similarly, images can be turned upside
down by simply drawing to the display from bottom
to top instead of from top to bottom.

Scaling in the Y dimension is performed similarly
to X-dimension scaling. On the TGA2 chip, scaling
is performed in software instead of in hardware: the
software increments an error term to decide whether
to skip lines (for reducing) or repeat lines (for enlarg­
ing). This is acceptable because the CPU has plenty of
spare cycles to perform the scaling computations while
the algorithm draws the preceding line. The Dagger
chip supports Y-dimension scaling in hardware to
reduce the number of commands that are needed
to scale an image.

Smoothing and Sharpening Filters Like the J300, the
Dagger and TGA2 chips provide both smoothing and
sharpening filters. Table 1 shows the available filters.
All are three-tap filters that are inexpensive to imple­
ment in hardware. The smoothing filters are used to
improve the quality of scaled images. The sharpening
filters provide edge enhancement. The two filters
marked with asterisks (*) are available only on the
TGA2 chip. The others are available on both the
Dagger and the TGA2 chips.

The three rows of Table 1 show three levels of
smoothing and sharpening filters that can be applied.
The degree of smoothing and sharpening may be
selected separately. The first row shows the identify
filter. This is selected to disable smoothing or sharpen­
ing. The second and third rows show three-tap filters
that perform a moderate and an aggressive degree of
smoothing or sharpening.

Note that when using the aggressive smoothing
filter, the center element does not contribute to the
result. This filter is intended for postenlarge­
ment smoothing when the scale factor is large. Since
enlargement is performed by replicating some of the
pixels, the center of any span of three pixels will be
identical to one of its neighbors when scaling up by
a factor of two or more. As a result, the center pixel
affects the resulting image, since it is replicated either
to the left or to the right. The (1/2, 0, 1/2) filter
affords the greatest degree of smoothing that can
be achieved with a three-tap filter.

These filter functions are simple to implement in
hardware. The implementation requires storing only
the two preceding pixels and performing from one to
three addition or subtraction operations. The sharpen­
ing filters require an additional clamping step to

Table 1
Smoothing and Sharpening Filters

Degree of
Smoothing Filter Filtering

(0, 1, 0) Unfiltered

('I•, '/,, '/•)* Moderate
('/,, 0, '/,) Aggressive

* Available only on the TGA2 chip

Sharpening Filter

(O, 1, O)

(-'/,, 2, - '/,)

(-1, 3, -1)*

ensure that the result is in the range Oto 1. Better fil­
tering functions could be obtained by using five taps
instead of three taps but only by significantly increas­
ing the logic required for filtering.

Pre- and Postfiltering The order in which filters are
applied depends on whether the image is being
enlarged or reduced. When reducing an image, the
Bresenham scaling algorithm eliminates pixels from
the source image. This can result in severe aliasing arti­
facts unless a smoothing filter is applied before scaling.
The smoothing filter spreads out the contribution of
each source pixel to adjacent source pixels.

When enlarging an image, the smoothing filter is
applied after scaling. This smoothes out the edges
between replicated blocks of pixels. The smoothing fil­
ters eliminate the block effect entirely when enlarging
up to two times the source image size. The Accu Video
dithering algorithm also contributes to smoothing out
the edges between blocks. Another way to smooth out
the edges is to use higher-order interpolation to find
destination pixel values. Such methods require more
logic and do not necessarily produce a better-looking
result, particularly for modest scale factors.

If sharpening or edge enhancement is desired, a
sharpening filter is used in addition to whatever
smoothing filter is selected. For reducing an image,
the sharpening filter is applied after scaling-sharpen­
ing an image before reducing its size would only exag­
gerate aliasing effects. For enlarging an image, the
sharpening filter is applied before scaling-sharpening
an image after enlarging its size would only amplify the
edges between blocks. As a result, when both sharpen­
ing and smoothing filters are used, one is applied
before scaling and the other is applied after scaling.

AccuVideo Dithering Algorithm
AccuVideo dithering technology is Digital's propri­
etary high-quality, highly efficient method of render­
ing video with an arbitrary number of available colors.
Included is YUV-to-RGB conversion, if necessary,
with careful out-of-bounds color mapping. The gen­
eral algorithm is described in two other papers in this
issue of the journal, which discuss the implementation
of the J300 video adapter and software-only video
players.3

•
5 In the chips described in this paper, we sim­

plified the general implementation of the AccuVideo
technology by setting constraints on the number of
available colors.

Review of the Basic Algorithm The development of
the general mean-preserving multilevel dithering
algorithm is presented in "Video Rendering," which
appears in an earlier issue of the Journal.6 Figure 4
illustrates the theoretical development of the fun -
damental algorithm for dithering a simple compon­
ent of a color image. As stated in the earlier paper,

Digital Technical Journal Vol. 7 No. 4 1995 81

Figure4

DITHER
MATRIX

R-BIT
SHIFTER

Multilevel Dithering Algorithm Used in the J300, with the Gain Function Separated from the Adjust LUT

a mean-preserving dithered output level L0 can be pro­
duced by quantizing the sum of an element from a
normalized dither array and an input level L; by simply
shifting the sum to the right by R bits. This simplified
quantizer, that is, a quantizer with step size .lQ = 2R,
is possible only if the range of input to the adder L,,
or the number of input levels N;, is properly scaled by
a gain G. In the J300 and software-only implementa­
tions, G is included in an adjust LUT. In Figure 4, we
explicitly separate G from the adjust LUT. The adjust
LUT is optionally used to control characteristics such
as contrast, brightness, and saturation.

The components of this dithering system can be
designed by specifying three parameters:

1. N" the number of raw input levels of the given
color component

2. N,,, the number of desired output levels

3. b, the width of the adder in bits, and the number of
bits used to represent the input levels

Using the results from the multilevel dithering algo­
rithm, the number of bits to be right-shifted is

and the gain is

where

N-1
G=-'­

Nr-1'

The effect of the gain is multiplicative. That is, L; = Lr

X G, where Lr is the raw input level. In the absence of
an adjust LUT, this multiplication must be explicitly
performed.

Simplified Implementation of Gain In the above sum­
mary of the basic dithering algorithm, the values of Nr

and N 0 can be any integer, where N,, > N0 • Consider
the important special case of restricting these values to
be powers of two. Introducing the three integers p, q,
and z, we specify that Nr = 2P, No = 2q, and b = p + z,
where zis the number of additional bits used to repre­
sent L; over Lr. z > 0 guarantees that N; > Nr, thus

82 Digital Technical Journal Vol. 7 No. 4 1995

ensuring that all the raw input levels will be distin -
guished by the dithering system. z = Ocauses N; < N,.
This situation results in some loss of resolution of raw
input levels, because, in all cases, the number of per­
ceived output levels from the dithering system will be
atmostN;.

Using this information and the expressions of Rand
G, it is straightforward to show that R = p - q + z,
and

Further,

G=((2q -1)2 R+l)-l = (2q-1)2P
2P- I (2p-1)2(q-z)

A key approximation made at this point is

Note that this approximation becomes better as the
number ofbits,p, in the raw input increases.

An approximate gain thus simplifies to

/\

With this value of G, the resulting modified input levels
will be proportionally less than ideal by a factor of

The fact that this error is negative guarantees that
overflow will never occur in the multilevel dithering
system. Therefore, a truncation step is not needed in
the implement:Jtion. Figure 5 illustrates the imple­
mentation of G, which consists of the subtraction of
a (q - z)-bit right shift of Lr from a z-bit left shift
of L,. This simple "multiplier" is what is implemented
in Dagger, TGA2, and the ZLX family of graphics
accelerators, where the power-of-two constraint on
the output levels is made.

Consider, for example, the case where p = 8 (N, =
256), q = 3 (N0 = 8), and z = 1. From the equations
just presented, R = 6, b = 9, and N; = 449 . Although

/\

ourapproximationforthe gain,G= (2 -1/4) = 1.75,

l

L,
p

Figure 5

(q-;-z)

' '

RIGHT SHIFT

LEFT SHIFT

z

L;

Parallel-shifter Implementation of the Gain Function

is not equ~ to the ideal gain, G = 448/255 = 1.757,
the ratio GIG= 0.996 is so close to unity that any
resulting differences in output are indistinguishable.

Shared Dither Matrix Another simplification can be
made by having all the color components in the render­
ing system share the same dither matrix. As defined in
"Video Rendering," a dither template is an array of N,
unique elements, with values TE {O, 1, ... , (N, - l)}.6

These elements are normalized to establish the dither
matrix element d for each location [x, y] as follows:

d[x,y] =int{~(T[x,y]+!)}

For any real number A and any positive integer K,
the following is always true:

int {f} = int {inlA} .

If, for each color component, N0 is a power of two,
we can exploit this fact by storing only a single dither
matrix designed for the smallest value of N0 •

Specifically, this would be N0 = 2(b -Rm), where bis the
width in bits of the adder and Rm is the largest value of
R in the system. For the other larger number of output
levels N0

1 = 2rh - R') with smaller values of R; normalized
dither matrix values d'[x, y] can easily be derived by a
simple right shift by (Rm - R') bits of the stored dither
matrix, as shown in the following equation:

d'[] . {d [x,yj} X,Y =mt 2 Rm-R' .

Since our dither matrices are typically 32 by 32 in
size, the hardware savings in storing only one matrix is
significant. Also, the stored values can be read-only
memory (ROM) instead of the more costly RAM.
Typically, RAM requires up to eight times the area of
ROM in either gate array or custom implementations.

Color Conversion Algorithms
The result of the preceding pipeline stages is three 8-bit
values that represent either RGB or YUV color chan­
nels. If this format is to be written to the frame buffer,
then no further processing is necessary. If a different
destination format is specified, then Dagger and TGA2
must perform a color format conversion. Both chips
use the same algorithm to dither RGB values down to
a smaller number of bits per color channel. Both chips
allow writing YUV pixels to the frame buffer, although
TGA2 allows the writing of only the 32-bit YUV for­
mat. Finally, both chips can convert YUV pixels into
the RGB color space, but they use markedly different
algorithms to perform this conversion.

Although YlN pixels can be written to the frame
buffer in both Dagger and (to a more limited extent)
TGA2, neither chip supports displaying YlN pixels to
the screen. YlN pixels may be stored only in the off­
screen portion of the frame buffer as intermediate val­
ues for further processing. This is because it is far more
efficient to convert YlN to RGB in the rendering
stage than to perform the conversion in the back-end
video logic. At the rendering stage, it need only be
done at the image update rate of up to 30 fps. If
performed in the back-end video logic, the YlN-to­
RGB conversion must also be performed at the screen
update rate of up to 76 fps. This extra, higher-speed
logic may be justified if preconverting YlN to RGB
noticeably reduces the image quality. Given the
AccuVideo dithering algorithm, however, postconver­
sion is not necessary.

RGB-to-RGB Color Conversion Even if both the source
and the destination pixel formats represent RGB color
channels, it may still be necessary to perform a bit­
depth conversion. Input pixels are expanded out to
8 bits per color channel for processing through the
video rendering pipeline. Destination pixels may have
8, 15, 16, or 24 bits for RGB and so may need to be
dithered down to a smaller number of bits per pixel.
TGA2 also supports 12-bit RGB, as described later in
this section.

Dagger and TGA2 differ somewhat in the specific
formats that they support. Dagger allows writes to the
frame buffer of 3/3/2, 5/5/5, 5/6/5, and 8/8/8
RGB pixel formats. TGA2 supports all these as source
pixels but does not allow writes of5/5/5 and 5/6/5
RGB, because TGA2 does not support 16-bit pixels in
the frame buffer. Dagger supports 16-bit pixels
because they are very common in the PC industry. In
the workstation industry, however, which is TGA2's
market, 16-bit pixels are almost unknown. As the
Windows NT operating system gains in popularity, this
situation is likely to change.

Instead of supporting 16-bit pixels, TGA2 allows
writes to the frame buffer of 4/4/4 RGB pixels, with
16 possible shades for each of the red, green, and blue

Digital Technical Journal Vol. 7 No. 4 1995 83

color channels. This is a standard pixel format for
workstation graphics, since it allows two RGB buffers
to be stored in the space of a 24-bit, 8 / 8 /8 RGB pixel.
This in turn allows double buffering, in which one
image is drawn while the other image is displayed.
Double buffering is essential for animation applica -
tions on large screens, since the rendering logic gener­
ally cannot repaint the screen fast enough to avoid
flicker effects.

YUV-to-RGB Color Conversion on the Dagger Chip
The key design focus for the Dagger chip was to sup­
port low-cost graphics options with the highest possi­
ble performance and display quality. As a result,
although Dagger supports up to 32 bits per pixel, its
design center is for 8-bit-per-pixel displays. Therefore,
the algorithm that Dagger uses for converting YlN to
RGB produces the best possible results given a limit of
just 256 resultant colors.

The resulting dithering system design is shown in
Figure 6. Note that the same system is used to dither
both RGB data and YlN data. Because the number of
output levels for each component is always a power
of two, we can use the simple gain circuit ofFigure 5
and share the same dither matrix by right-shifting its
contents, as derived in the last section. In hardware,
this shifting simply requires a multiplexer to select
the most significant bits of the data. The dither matrix
is 7 bits wide to support dithering down to 2-bit blue

DISPLAY ADDRESS
LEAD SIGNIFICANT BITS

x y

5 5

DITHER
MATRIX

1,024 BY 7 BITS

7

7

G/Y -.c,8.........,~ GAIN2 1--~9.,__ _ __,~ t---+--
9
.,,.._""i SHIFT 2

values in 3/3/2 RGB, but only 6 dither matrix bits
are used for 3-bit output, and only 5 bits are used for
4-bit output.

YlN data is always dithered to 4 bits of Y and 3 bits
each of U and V An additional bit is provided for the Y
channel because the eye is more sensitive to changes of
intensity than to changes of color. These 10 bits are
input to a color convert LUT, which is implemented as
a ROM. Its contents are generated by an algorithm
with some out-of-bounds mapping.5-7 Approximately
three-fourths of the possible combinations of YlN
values are outside the range of colors that can be spec­
ified in the RGB color space. In these cases, the color
convert LUT ROM produces an RGB value that has
the same luminance but a less saturated color.

The color convert LUT ROM represents these 256
colors as an 8-bit index that is stored in the frame
buffer. One additional bit per pixel in off-screen mem­
ory specifies which pixels result from YlN conversion
and which are used by other applications. When pixels
are read from the frame buffer for display to the
screen, Dagger's internal RAMDAC reads that addi­
tional bit per pixel to decide whether to map each byte
through a standard 256-entry color map or through a
ROM that is loaded with the 256 colors selected in the
color convert LUT ROM. As a result, Dagger allows
selection of the best 256 colors forYlN-to-RGB con­
version, in addition to allowing color-mapped applica­
tions to store 8-bit index values in the frame buffer.

COLOR
CONVERT 8
LUT

1,024 BY 8 BITS

RGB
COLOR
INDEX
(YUV INPUT)

B/U _....,.B,.., GAIN3 t--~9.,__-----o-t
S 3/3/2

SHIFT3 t----+--->-----r---- RGB
(RGB INPUT)

Figure 6
Dithering and YUV-to-RGB Conversion in the Dagger Chip

84 Digital Technical Journal Vol. 7 No. 4 1995

It is possible to extend this approach to use more bits
of dithered YUV to produce more finely quantized
RGB colors. The size of the required look-up ROM
quickly gets out of hand, however. Dagger uses a lK­
by-8-bit ROM to convert 4/3/3 YUV into 256 RGB
colors. Using 4/4/4 YUV would make the ROM five
times larger (4K by 10 bits). To produce 4K RGB col­
ors would require a ROM with 16K 12-bit entries.

YUV-to-RGB Color Conversion on TGA2 The TGA2
graphics chip performs dithering and color conversion
in the reverse order, as compared to the Dagger chip.
In TGA2, a YUV pixel is first converted into an RGB
pixel at 8 bits per channel. This 24-bit RGB pixel is
then either written to the frame buffer or dithered
down to 8- or 12-bit RGB before being written to the
frame buffer. Figure 7 shows the dithering system that
is used in the TGA2 chip.

The key advantage of the TGA2 approach over the
Dagger approach is that it allows deeper frame buffers
to use higher-quality color conversion. If a 24-bit
frame buffer is being used, TGA2 allows YUV to be
converted to full 8/8/8 RGB. On the Dagger chip,
YUV-to-RGB conversion produces only 256 different
colors, regardless of the frame buffer depth. This is
acceptable on Dagger, where 24-bit frame buffers are
far from the design center. Also, the Dagger method
uses fewer gates, which is an important consideration
for the cost-constrained Dagger implementation.

Another advantage of this algorithm for TGA2 is
that the set of colors used for video image display is the
same one used by full-color synthetic graphics applica­
tions, such as a solid modeling package or a scientific
visualization application. This allows a common color

DISPLAY ADDRESS
LEAD SIGNIFICANT BITS

x

y

5

5

DITHER
MATRIX

map to be used by both image applications and shaded
graphics applications. Unlike the Dagger chip, TGA2
does not have an integrated RAMDAC and uses an
external RAMDAC. Typical low-cost RAMDAC chips
provide only one 256-entry color map, so it is impor­
tant for TGA2 to allow image applications to share this
color map with other applications.

Figure 8 illustrates how the TGA2 chip performs
YUV-to-RGB color conversion. By the standard defin­
ition of the YUV format, the conversion to RGB
consists of a 3-by-3 matrix multiplication operation
in which three terms equal 1 and two terms equal 0.2

The TGA2 chip performs this matrix multiplication
using four LUTs to perform the remaining four multi­
plications, together with some adders. A final multi­
plexer is required to clamp the resulting values to the
range Oto 255.

The TGA2 color conversion algorithm has one dis­
advantage: the algorithm does not handle out-of­
range YUV values as well as the technique used in the
Dagger chip. In Dagger, each YUV triple that is out of
range has an optimal or near-optimal RGB triple com­
puted for it and placed in the table. With the TGA2
technique, the red, green, and blue components are
computed separately. The individual color compo­
nents are clamped to the range boundaries, but if
a YUV triple results in an out-of-range value for green,
this cannot affect the red or blue values. The result
is some color distortion for oversaturated images. If
such a result would be unsatisfactory, it is necessary to
adjust the colors in software, e.g., by reducing the sat­
uration or the intensity of the source image so that
most YUV triples map to valid RGB colors.

7

7

1,024 BY 7 BITS
DA
SHIFT

y ~ ADJUST 8
R

8
RGAIN

9 9
R

LUT

256 BYS BITS

YUV-TO-RGB
CONVERT

u 8
G

8
GGAIN

9 9
G

Da
SHIFT

v 8
B

8
BGAIN

9
B

Figure 7
Dithering System in the TGA2 Chip

Digital Technical Journal Vol. 7 No.4 1995 85

y 8

V--+ R
ROM

R

8 V --+G 7 v ROM

G

u 8 U--+ G 7
ROM

U--+ B 8
ROM

B

Figure 8
YlN-to-RGB Conversion in the TGA2 Chip

Implementation Cost and Performance

Both the Dagger and the TGA2 chips have the
design goal of integrating as many as possible of
the J300 design features into a single-chip graphics
and video solution. Dagger and TGA2 include dif­
ferent features and implement some common fea­
tures in different ways because each chip focuses on
a different market. As mentioned earlier, Dagger is a
PC graphics accelerator chip, and TGA2 is a work­
station graphics accelerator chip.

Gate Cost
Table 2 shows the number of gates required to add the
various imaging operations to the TGA2 chip. TGA2
is implemented in IBM's SL standard cell technology.
The video rendering logic represents less than 10 per­
cent of the total TGA2 logic. The chip contains no addi­
tional gates for video scaling or dithering logic, since
nearly all the gates needed to implement those functions
are already required in TGA2 to implement Bresenham
line drawing and dithering of 3-D shaded objects.

Table 2 clearly shows why the luminance adjust
LUT was omitted from Dagger. On the TGA2 chip,
the LUT requires more than half the total gates used
for multimedia support.

Display Performance
The peak hardware performance for image operations
on the TGA2 chip depends primarily on the internal
clock rate, which is 60 megahertz (MHz). The TGA2
chip is fully pipelined, so that one pixel is processed on
each clock cycle, regardless of the filtering, conversion,
or dithering that is required. Reducing the image
requires one clock cycle per source pixel. Enlarg­
ing the image requires one clock cycle per desti­
nation pixel. Actual hardware performance is never
quite equal to peak rates, but TGA2 performance
approaches peak rates. For example, TGA2's hardware
performance limits support rendering a common

86 Digital Technical Journal Vol. 7 No. 4 1995

Table 2
Gates Used by the TGA2 Video Rendering Logic

Gates per
Number Number Total Gates

Logic Block of Cells of Gates (Percent)

Pixel
Formatting 778 584 4.2

Look-up
Table 9,590 7, 192 52.3

Filtering 2,265 1,699 12.4

Color
Convert 3,486 2,614 19.0

M iscellaneous 2,21 0 1,658 12.1

Total 18,329 13,747 100.0

intermediate format (CIF) image that is scaled up by
a factor of three in both dimensions at over 30 fps.

Actual system performance depends on many
factors besides hardware performance. Typically, mul­
timedia images are stored and transmitted in com­
pressed form, so that display performance depends
on the speed of the decompression hardware or soft­
ware. "Software-only Compression, Rendering, and
Playback of Digital Video" contains tables that show
the performance of a variety of AlphaGeneration sys­
tems with software-only rendering and with J300 ren­
dering hardware that implements hardware algorithms
similar to those in the TGA2 and Dagger chips.5

Table 3 shows the results of preliminary tests of
TGA2 video display rates on AlphaStation 250 4/166
and AlphaStation 250 4/266 workstations, which use
DECchip 21064 CPUs. The table shows performance
in frames per second for displaying the standard
Motion Picture Experts Group (MPEG) flower gar­
den video clip, comparing performance to software
algorithms that use the TGA graphics accelerator. Like
TGA2, the TGA chip supports fast image transfers to
the frame buffer; however, TGA does not provide any
specific logic to accelerate video display.

The first two lines of Table 3 show performance
for displaying images at their original size. Allowing
TGA2 to convert decompressed YlN pixels to RGB
improves performance by 34 to 45 percent, depend­
ing on CPU performance. This performance improve­
ment drops to 18 to 25 when data transfer times are
included. Possibly, this gap can be reduced by further
coding to better overlap data transfer with MPEG
decompression. Note that the TGA2 performance can
include image filtering and a luminance adjust table
lookup at no loss in performance.

The third line of Table 3 shows performance when
the video clip is displayed at two times the size in both
dimensions. The flower garden movie covers an area
of 320 by 240 pixels, which is very small on a l ,280-
by-1,024-pixel monitor. Therefore, it is highly desir­
able to display an enlarged image. In this case, TGA2

Table3 .
Frames per Second for Displaying MPEG Flower Garden Video Clip

AlphaStation 250 4/166 AlphaStation 250 4/266

TGA TGA2 Increase TGA TGA2 Increase
(fps) (fps) (Percent) (fps) (fps) (Percent)

24.7 35.8 45 Software decode rate 47.9 64.2 34
23 .1 28.9 25 lx video playback rate 44.0 52.1 18
12.7 26.4 108 2x video playback rate 23.1 44.9 95

source: Tom Morris, Technical Director, Light and Sound Engineering, Digital Equipment Corporation

displays the video clip at twice the speed of the soft­
ware algorithm that uses the TGA graphics chip. The
subjective difference is even greater, since TGA2
applies a smoothing filter to improve the quality of the
resulting images. The software algorithm on the TGA
chip performs no filtering because this would dramati­
cally reduce chip performance.

The performance data in Table 3 are for displaying
8-bit images to the frame buffer. TGA2 is able to display
24-bit images at the same performance, up to the
limit of its frame buffer bandwidth. For the examples
in Table 3, TGA2 is able to produce either 8-bit, 12-bit,
or 24-bit images at essentially the same performance.
Software algorithms would experience a dramatic drop
in performance, simply because they would have to
process and transfer three times as much data. Therefore,
the TGA2 chip allows significantly higher-quality images
to be displayed without sacrificing performance.

Conclusions

This paper describes two graphics accelerator chips that
integrate a set of image processing operations with tra­
ditional synthetic graphics operations. The image oper­
ations are carefully chosen to allow significantly higher
performance with minimal extra logic; the operations
that can be performed in software are left out. Both
chips take advantage of the PCI bus to provide the
bandwidth necessary for image data transfers.

The Dagger and TGA2 video rendering logic is
based on the AccuVideo rendering pipeline as imple­
mented in the J300 family of video and audio
adapters. 3 The following restrictions were made to
integrate this logic into these graphics chips:

1. Color preprocessing-Eliminate RAM for dynamic
chrominance control. For the Dagger chip, also
eliminate RAM for dynamic brightness/contrast
control.

2. Filtering-Support just one sharpening and one
smoothing filter (other than the identity filters) in
the Dagger chip. For the TGA2 chip, support just
two sharpening and two smoothing filters.

3. Color output-For the Dagger chip, allow only
256 output colors for YlN input [3/3/2 for RGB
input]. For the TGA2 chip, support only RGB col­
ors with a power-of-two number of values in each
channel.

The quality of the resulting images is excellent. The
AccuVideo 32-by-32 void-and-cluster dithering algo­
rithm provides quality similar to error diffusion dither­
ing algorithms.8 Error diffusion is a technique in
which the difference between the desired color and
the displayed color at each pixel is used to control
dithering decisions at adjacent pixels. Error-diffusion
dithering requires considerably more logic than
AccuVideo dithering and cannot be used when ren­
dering synthetic graphics.

The high quality of the AccuVideo algorithm is
especially important when dithering down to 8-bit
pixels (3/3/2 RGB) . Even in this extreme case, apply­
ing the AccuVideo dithering algorithm results m
a slight graininess but few visible dithering artifacts.
Applying AccuVideo dithering to 12-bit (4/4/4
RGB) pixels results in screen images that are almost
indistinguishable from 24-bit (8/8/8 RGB) pixels.

We plan to continue evaluating new multimedia
features for inclusion in our synthetic graphics chips.
Areas we are investigating include more elaborate fil­
tering and scaling operations, additional types of color
conversion, and inexpensive ways to accelerate the
compression/ decompression process.

References

1. PC! Multimedia Design Guide, rev 1.0 (Portland,
Oreg.: PCI Special Interest Group, March 29, 1994).

2. Encoding Parameters of Digital Television for Stu­
dios, CCIR Report 601-2 (Geneva: International Radio
Consultative Committee [CCIR], 1990).

3. K. Correll and R. Ulichney, "The J300 Family of Video
and Audio Adapters: Architecture and Hardware
Design," Digital Technical Journal, vol. 7, no. 4
(1995, this issue): 20-33 .

4. R . Ulichney, "Bresenham-style Scaling," Proceedings
of the IS&T Annual Conference (Cambridge, Mass.,
1993): 101-103.

Digital Technical Journal Vol. 7 No. 4 1995 87

88

5. P. Bahl, P. Gauthier, and R. Ulichney, "Software-only
Compression, Rendering, and Playback of Digital
Video," Digital Technical journal, vol. 7, no. 4 (1995,
this issue): 52-75.

6. R. Ulichney, "Video Rendering," Digital Technical
Journal, vol. 5, no. 2 (Spring 1993): 9-18.

7. R. Ulichney, "Method and Apparatus for Mapping a
Digital Color Image from a First Color Space to a Sec­
ond Color Space," U.S. Patent 5,233,684 (1993).

8. R. Ulichney, "The Void-and-Cluster Method for Gen­
erating Dither Arrays," IS&T!SPIE Symposium on Elec­
tronic Imaging Science and Technology, San Jose,
Calif., vol. 1913 (February 1993): 332-343.

Biographies

Larry D. Seiler
Larry Seiler is a consultant engineer working in Digital's
Graphics and Multimedia Group within the Worksystems
Business Unit. During his 15 years at Digital, Larry has
helped design a variety of graphics products. Most recently,
he was the architect for the TGA2 graphics chip that is
used in Digital's PowerStorm 3D30 and PowerStorm
4D20 graphics options. Prior to that he architected the
SPX series of graphics options for VAX workstations. Larry
holds a Ph.D. in computer science from the Massachusetts
Institute ofTechnology, as well as B.S. and M.S. degrees
from the California Institute of Technology.

Robert A . Ulichney
Robert Ulichney received a Ph.D. from the Massachusetts
Institute ofTechnology in electrical engineering and com­
puter science and a B.S. in physics and computer science
from the University of Dayton, Ohio. He joined Digital
in 1978. Bob is currently a senior consulting engineer with
Digital's Cambridge Research Laboratory, where he leads
the Video and Image Processing project. He has filed sev­
eral patents for contributions to Digital products in the
areas of hardware and software-only motion video, graphics
controllers, and hard copy. Bob is the author of Digital
Halftoning and serves as a referee for a number of technical
societi es, including IEEE, of which he is a senior member.

Digital Technical Journal Vol. 7 No. 4 1995

Technical Description of
the DECsafe Available
Server Environment

The DECsafe Available Server Environment (ASE)

was designed to satisfy the high-availability

requirements of mission-critical applications

running on the Digital UNIX operating system.

By supplying failure detection and failover

procedures for redundant hardware and soft­

ware subsystems, ASE provides services that

can tolerate a single point of failure. In addition,

ASE supports standard SCSI hardware in shared

storage configurations. ASE uses several mecha­

nisms to maintain continuous operation and to

prevent data corruption resulting from network

partitions.

,I
Lawrence S. Cohen
John H. Williams

The advent of shared storage interconnect support
such as the small computer system interface (SCSI) in
the Digital UNIX operating system provided the
opportunity to make existing disk-based services more
available. Since high availability is an important feature
to mission-critical applications such as database and file
system servers, we started to explore high-availability
solutions for the UNIX operating system environ­
ment. The outcome of this effort is the DECsafe
Available Server Environment (ASE), an integrated
organization of computer systems and external disks
connected to one or more shared SCSI buses.

In the first section of this paper, we review the many
product requirements that needed to be explored. We
then define the ASE concepts. In the next section, we
discuss the design of the ASE components. In subse­
quent sections, we describe some of the issues that
needed to be overcome during the product's design
and development: relocating client-server applications,
event monitoring and notification, network partition­
ing, and management of available services. Further, we
explain how ASE deals with problems concerning mul­
tihost SCSI; the cross-organizational logistical issues of
developing specialized SCSI hardware and firmware
features on high-volume, low-priced standard com­
modity hardware; and modifications to the Network
File System (NFS) to be both highly available and back­
ward compatible.1

Requirements of High-availability Software

The availability concept is simple. If two hosts can
access the same data and one host fails, the other host
should be able to access the data, thus making the
applications that use the data more available. This
notion ofloosely connecting hosts on a shared storage
interconnect is called high availability. High availability
lies in the middle of the spectrum of availability solu­
tions, somewhere between expensive fault-tolerant sys­
tems and a well-managed, relatively inexpensive, single
computer system.2

By eliminating hardware single points of failure, the
environment becomes more available. The goal of the

Digital Technical Journal Vol. 7 No. 4 1995 89

ASE project was to achieve a product that could be
configured for no single point offailure with respect to
the availability of services. Thus we designed ASE
to detect and dynamically reconfigure around host,
storage device, and network failures.

Many requirements influenced the ASE design. The
most overriding requirement was to eliminate the pos­
sibility for data corruption. Existing single-system
applications implicitly assumed that no other instance
was running on another node that could also access
the same data. If concurrent access did happen, the
data would likely be corrupted. Therefore the preemi­
nent challenge for ASE was to ensure that the applica­
tion was run only once on only one node.

Another requirement of ASE was to use industry­
standard storage and interconnects to perform its
function. This essentially meant the use of SCSI
storage components, and this did pose some chal­
lenges for the project. In a later section, we discuss the
challenge of ensuring data integrity in a multihosted
SCSI environment. Also, the limitation of eight SCSI
devices per SCSI storage bus confined the scaling
potential of ASE to relatively small environments of
two to four nodes.

Less obvious requirements affected the design. ASE
would be a layered product with minimal impact on
the base operating system. This decision was made for
maintainability reasons. This is not to say we did not
make changes to the base operating system to support
ASE; however, we made changes only when necessary.

ASE was required to support multiple service types
(applications). Originally, it was proposed that ASE sup­
port only the Network File System (NFS), as does the
HANFS product from International Business Machines
Corporation.3 Customers, however, required support
for other, primarily database applications as well. As a
result, the ASE design had to evolve to be more general
with respect to application availability support.

ASE was also required to allow multiple service
types to run concurrently on all nodes. Other high­
availability products, e.g., Digital's DECsafe Failover
and Hewlett-Packard's SwitchOver UX, are "hot­
standby" solutions. They require customers to pur­
chase additional systems that could be idle during
normal operation. We felt it was important to allow all
members of the ASE to run highly available applications
as well as the traditional, hot-standby configuration.

The remaining requirement was time to mar­
ket. IBM's HA/6000 and Sun Microsystems'
SPARCcluster 1 products were in the market, offering
cluster-like high availability. We wanted to bring out
ASE quickly and to follow with a true UNIX cluster
product.

One last note for readers who might try to compare
ASE with the VMScluster, a fully functional cluster
product. ASE addresses the availability of single-

90 Digital Technical Journal Vol. 7 No. 4 1995

threaded applications that require access to storage.
For example, it does not address parallel applica­
tions that might need a distributed lock manager
and concurrent access to data. Another effort was
started to address the requirements of clusters in the
UNIX environment.4

ASE Concepts

To understand the description of the ASE design, the
reader needs to be familiar with certain availability
concepts and terms. In this section, we define the ASE
concepts.

Storage Availability Domain
A storage availability domain (SAD) is the collection of
nodes that can access common or shared storage
devices in an ASE. Figure 1 shows an example of a
SAD. The SAD also includes the hardware that con­
nects the nodes such as network devices and the stor­
age interconnects. The network device can be any
standard network interface that supports broadcast.
This usually implies either Ethernet or a fiber distrib­
uted data interface (FDDI). Although the SAD may
include many networks, only one is used for commu­
nicating the ASE protocols in the version 1.0 product.
To remove this single point of failure, future versions
of ASE will allow for communication over multiple
networks. Other networks can be used by clients to
access ASE services. The storage interconnect is either
a single-ended or a fast, wide-differential SCSI. The
shared devices are SCSI disks or SCSI storage products
like HSZ40 controllers.

Symmetric versus Asymmetric SADs
There are many ways a SAD may be configured
with respect to nodes and storage. In a symmetric
configuration (see Figure 1), all nodes are connected

CLIENT CLIENT

NETWORK

SERVER 1 SERVER 2

SHARED SCSI BUS

STORAGE STORAGE

Figure 1
Simple Available Server Environment

to all storage. An asymmetric configuration exists
when all nodes are not connected to all the storage
devices. Figure 2 shows an asymmetric configuration.

The use of asymmetric configurations improves
performance and increases scalability. Performance is
better because fewer nodes share the same bus and
have less opportunity to saturate a bus with 1/0. Scal­
ability is greater because an asymmetric configuration
allows for more storage capacity. On the other hand,
asymmetric configurations add significant implemen­
tation issues that are not present with symmetric
configurations. Symmetric configurations allow for
simplifying assumptions in device naming, detecting
network partitions, and preventing data corruption.
By assuming fully connected configurations, we were
able to simplify the ASE design and increase the
software's reliability. For these reasons, we chose to
support only symmetric configurations in version 1.0
of ASE.

Service
We use the term seroice to describe the program
(or programs) that is made highly available. The
service model provides network access to shared
storage through its own client-server protocols.
Examples of ASE services are NFS and the ORACLE?
database. Usually, a set of programs or processing
steps needs to be executed sequentially to start up
or stop the service. If any of the steps cannot be exe­
cuted successfully, the service either cannot be pro­
vided or cannot be stopped. Obviously, if the shared
storage is not accessible, the service cannot begin.
ASE provides a general infrastructure for specifying
the processing steps and the storage dependencies of
each service.

SERVER 1 SERVER 2 SERVER 3 SERVER 4

STORAGE 1 STORAGE2

Figure 2
Asymmetric Configuration of ASE

Events and Failure Modes
ASE monitors its hardware and software to determine
the status of the environment. A change in status is
reported as an event notification to the ASE software.
Examples of events include a host failure and recovery,
a failed network or disk device, or a command from
the ASE management utility.

Service Failover
The ASE software responds to events by relocating
services from one node to another. A relocation due to
a hardware failure is referred to as seroice failover.
There are reasons other than failures to relocate a ser­
vice. For example, a system manager may relocate a
service for load-balancing reasons or may bring down
a node to perform maintenance.

Service Relocation Policy
Whenever a service must be relocated, ASE uses con­
figurable policies to determine which node is best
suited to run the service. The policy is a function of the
event and the installed system-management prefer­
ences for each service. For example, a service must be
relocated if the node on which it is running goes down
or if a SCSI cable is disconnected. The system manager
may specify the node to which the service should be
relocated. Preferences can also be provided for node
recovery behavior. For example, the system manager
can specify that a service always returns to a specified
node if that node is up. For services that take a long
time to start up, the system manager may specify that a
service relocate only if its node should fail. Additional
service policy choices are built into ASE.

Centralized versus Distributed Control
The ASE software is a collection of daemons (user-level
independent processes run in the background) and
kernel code that run on all nodes in a SAD. When we
were designing the service relocation policy, we could
have chosen a distributed design in which the software
on each node participated in determining where a ser­
vice was located. Instead, we chose a centralized design
in which only one of the members was responsible for
implementing the policy. We preferred a simple design
since there was little benefit and much risk to develop­
ing a set of complex distributed algorithms.

Detectable Network Partition versus
Undetectable Full Partition
A detectable network partition occurs when two or
more nodes cannot communicate over their networks
but can still access the shared storage. This condition
could lead to data corruption if every node reported
that all other nodes were down. Each node could
try to acquire the service. The service could run

Digital Technical Journal Vol. 7 No. 4 1995 91

concurrently on multiple nodes and possibly corrupt
the shared storage. ASE uses several mechanisms to
prevent data corruption resulting from network parti­
tions. First, it relies on the ability to communicate sta­
tus over the SCSI bus. In this way, it can detect
network partitions and prevent multiple instances of
the service. When communication cannot occur over
the SCSI bus, ASE relies on the disjoint electrical con­
nectivity property of the SCSI bus. That is, if Server 1
and Server 2 cannot contact each other on the SCSI
bus, it is impossible for both servers to access the same
storage on that bus.

As a safeguard to this assumption, ASE also applies
device reservations (hard locks) on the disks. The hard
lock is an extreme failsafe mechanism that should
rarely (if ever) be needed. As a result, ASE is able to
adopt a nonquorum approach to network partition
handling. In essence, if an application can access the
storage it needs to run, it is allowed to run. Quorum
approaches require a percentage (usually more than
half) of the nodes to be available for proper operation.
For two-node configurations, a tiebreaker would be
required: if one node failed, the other could continue
to operate. In the OpenVMS system, for example, a
disk is used as a tiebreaker. We chose the nonquorum
approach for ASE because it provides a higher degree
of availability.

Although extremely unlikely to occur, there is one
situation in which data could become corrupted: a full
partition could occur during shadowed storage.
Shadowing transparently replicates data on one or
more disk storage devices. In a full partition, two nodes
cannot communicate via a network, and the SCSI buses
are disconnected in a way that the first node sees one
set of disks and the second node sees another set.
Figure 3 shows an undetectable full partition.

Even though this scenario does not allow for com­
mon access to disks, it is possible that storage that is
replicated or shadowed across two disks and buses
could be corrupted. Each node believes the other is
down because there is no communication path. If one
node has access to half of the shadowed disk set and
the other node has access to the other half, the service
may be run on both nodes. The shadowed set would
become out of sync, causing data corruption when its
halves were merged back together. Because the poss­
ibility of getting three faults of this nature is infinite­
simal, we provide an optional policy for running a
service when less than a full shadowed set is available.

Service Management
ASE service management provides three functions:
service setup, SAD monitoring, and service relocation.
The management program assists in the creation of
services by prompting for information such as the type

92 Digital Technical Journal Vol. 7 No. 4 1995

CLIENT

NETWORK

SERVER 1

)(SHARED SCSI
BUS 1 - - - - - - - - - - - - - - 1

I
I
I
I

SHARED SCSI: STORAGE
BUS2 1

Figure 3
Full Partition

I
I
I
I

STORAGE :
I I

: SHADOWED DISK SET~

CLIENT

)(

SERVER 2

of service, the disks and file systems that are required,
and shadmving requirements. ASE gathers the require­
ments and creates the command sequences that will
start the service. It thus integrates complex subsystems
such as the local file systems, logical storage manage­
ment (LSM), and NFS into a single service.

ASE version 1.0 supports three service types: user,
disk, and NFS. A user seroice requires no disks and
simply allows a user-supplied script to be executed
whenever a node goes up or down. The disk seroice is
a user service that also requires disk access, that is, disk
and file system information. The disk service, for
example, would be used for the creation of a highly
available database. The NFS seroiceis a specialized ver­
sion of the disk service; it prompts for the additional
information that is germane to NFS, for example,
export information.

The monitoring feature provides the status of a ser­
vice, indicating whether the service is running or not
and where. It also provides the status of each node.

The service location feature allows system managers
to move services manually by simply specifying the
new location.

Software Mirroring
Software mirroring (shadowing) is a mechanism to
replicate data across two or more disks. If one disk
fails the data is available on another disk. ASE relies on
Digital's LSM product to provide this feature.

ASE Component Design

The ASE product components perform distinct
operations that correspond to one of the following
categories:

1. Configuring the availability environment and
services

2. Monitoring the status of the availability
environment

3. Controlling and synchronizing service relocation

4. Controlling and performing single-system ASE
management operations

5. Logging events for the availability environment

The configuration of ASE is divided into the instal­
lation and ongoing configuration tasks. The ASE
installation process ensures that all the members are
running ASE-compliant kernels and the required dae­
mons (independent processes) for monitoring the
environment and performing single-system ASE oper­
ations. Figure 4 illustrates these components. The
shared networks and distributed time services must
also be configured on each member to guarantee con­
nectivity and synchronized time. The most current
ASE configuration information is determined from
time stamps. Configuration information that uses time
stamps does not change often or frequently and is pro­
tected by a distributed lock.

The ASE configuration begins by running the ASE
administrative command (ASEMGR) to establish the
membership list. All the participating hosts and

daemons must be available and operational to complete
this task successfully. ASE remains in the install state
until the membership list has been successfully pro­
cessed. As part of the ASE membership processing, an
ASE configuration database (ASECDB) is created, and
the ASE member with the highest Internet Protocol
(IP) address on the primary network is designated to

run the ASE director daemon (ASEDIRECTOR). The
ASE director provides distributed control across the
ASE members. Once an ASE director is running, the
ASEMGR command is used to configure and control
individual services on the ASE members. The ASE agent
daemon (ASEAGENT) is respons1ble for performing all
the single-system ASE operations required to manage
the ASE and related services. This local system manage­
ment is usually accomplished by executing scripts in a
specific order to control the start, stop, add, delete, or
check of a service or set of services.

The ASE director is responsible for controlling and
synchronizing the ASE and the available services
dependent on the ASE. All distributed decisions are
made by the ASE director. It is necessary that only one
ASE director be running and controlling an ASE to
provide a centralized point of control across the ASE.
The ASE director provides the distributed orchestra­
tion of service operations to effect the desired recov­
ery or load-balancing scenarios. The ASE director
controls the availability services by issuing sets of ser­
vice actions to the ASE agents running on each mem­
ber. The ASE director implements all failover strategy
and control.

ETHERN ET

__ ______ [________ __ ______ [___ ______________ I-------- ______ __ L ___ ___ _ _

ACTION
PROGRAMS

E
ENT

r:;---i
~

ASE HOST
STATUS
MONITOR

I

ASE
MANAGEMENT
UTILITY

ACTION
PROGRAMS

E
ENT

r:;---i
~

ASE HOST
STATUS
MONITOR

I

ASE
DIRECTOR

ACTION
PROGRAMS

E
ENT

r:;---i
~

ASE HOST
STATUS
MONITOR

LOGGER
DAEMON

ACTION
PROGRAMS

E
ENT

r:;---i
~

ASE HOST
STATUS
MONITOR

r- - - - - - - - - - - -- - -- - _, r- - - - - - - - - - - - - - - - - _, r- - - - - - - - - - - - - -- - - _, r- - - - - - - - - - - - - - - - - _,
I I I I I I I I

I AVAILABILITY I I AVAILABILITY I I AVAILABILITY I I AVAILABILITY I

: MANAGER : : MANAGER : : MANAGER : : MANAGER :

~------- ~ -J ~------- ft _______ J ~-------ft _______ J ~ ~ -------:

LJ B SCSI B LJ
Figure 4
ASE Component Configuration

Digital Technical Journal Vol. 7 No. 4 1995 93

The ASE agent and the ASE director work as a team,
reacting to component faults and performing failure
recovery for services. The ASE events are generated by
the ASE host status monitor and the availability man­
ager (AM), a kernel subsystem. The ASE agents use
the AM to detect device failures that pertain to ASE
services. When a device failure is detected, the AM
informs the ASE agent of the problem. The ASE agent
then reports the problem to the ASE director if the
failure results in service stoppage. For example, if the
failed disk is part of an LSM mirrored set, the service is
not affected by a single disk failure.

The ASE host status monitor sends host- or member­
state change events to the ASE director. The ASE host
status monitor uses both the networks and shared
storage buses, SCSI buses, configured between the
ASE members to determine the state of each member.
This monitor uses the AM to provide periodic SCSI
bus messaging through SCSI target-mode technology
to hosts on the shared SCSI bus.

The ASE agent also uses the AM to provide device
reservation control and device events. The ASE host
status monitor repeatedly sends short messages, pings,
to all other members and awaits a reply. If no reply is
received within a prescribed time-out, the monitor
moves to another interconnect until all paths have
been exhausted without receiving a reply. If no reply
on the shared network or any shared SCSI is received,
the monitor presumes that the member is down and
reports this to the ASE director. If any of the pings is
successful and the member was previously down, the
monitor reports that the member replying is up. If the
only successful pings are SCSI-based, the ASE host sta­
tus monitor reports that the members are experienc­
ing a network partition. During a network partition,

Jol-z--
I \

USER
REQUEST

- rn SCSI 1/0

D r--z--

-HARDWARE
FAILURE

Figure 5
ASE Control Flow

94 Digital Technical Journal

ASE
MANAGEMENT
UTILITY

msgs I
ASE msgs

ASE AGENT
DIRECTOR

msgs l

ASE HOST
STATUS - ASE AGENT
MONITOR

select I
AVAILABILITY
MANAGER - ASE AGENT
(AM)

Vol. 7 No. 4 1995

the ASE configuration and current service locations
are frozen until the partition is resolved.

All ASE operations performed across the members
use a common distributed logging facility. The logger
daemon has the ability to generate multiple logs on
each ASE member. The administrator uses the log to
determine more detail about a particular service
failover or configuration problem.

ASE Static and Dynamic States

As with most distributed applications, the ASE prod­
uct must control and distribute state across a set of
processes that can span several systems. This state takes
two forms: static and dynamic. The static state is dis­
tributed in the ASE configuration database. This state
is used to provide service availability configuration
information and the ASE system membership list.
Although most changes to the ASE configuration data­
base are gathered through the ASE administrative com­
mand, all changes to the database are passed through a
single point of control and distribution, the ASE direc­
tor. The dynamic state includes changes in status of the
base availability environment components and services.
The state of a particular service, where and whether it is
running, is also dynamic state that is held and con­
trolled by the ASE director. Figure 5 depicts the flow of
control through the ASE components.

ASE Director Creation

The ASE agents are responsible for controlling the
placement and execution of the ASE director.
Whenever an ASE member boots, it starts up the ASE
agent to determine whether an ASE director needs
to be started. This determination is based on whether
an ASE director is already running on some member.

exec r--- ACTION exec SYSTEM
L_ PROGRAMS PROGRAMS

I
exec r--- ACTION exec SYSTEM I

L_ PROGRAMS PROGRAMS 1,.1

I

exec r--- ACTION exec SYSTEM l L_ PROGRAMS PROGRAMS

j

If no ASE director is running and the ASE host status
monitor is reporting that no other members are up,
the ASE agent forks and executes the ASE director.
Due to intermittent failures and the parallel initiali­
zation of members, an ASE configuration could find
two ASE directors running on two different systems.
As soon as the second director is discovered, the
younger director is killed by the ASE agent on that sys­
tem. The IP address of the primary network is used to
determine which member should start a director when
none is running.

ASE Director Design
The ASE director consists of four major components:
the event manager, the strategist, the environment data
manager, and the event controller. Figure 6 shows the
relationship of the components of the ASE director.

The event manager component handles all incom­
ing events and determines which subcomponent
should service the event. The strategist component
processes the event if it results in service relocation.
The strategist creates an action plan to relocate the ser­
vice. An action plan is a set of command lists designed
to try all possible choices for processing the event. For
example, if the event is to start a particular service, the
generated plan orders the start attempts from the most
desired member to the least desired member accord­
ing to the service policy.

The environment data manager component is
responsible for maintaining the current state of the
ASE. The strategist will view the current state before
creating an action plan. The event controller compo­
nent oversees the execution of the action plan. Each of
the command lists within the action plan is processed
in parallel, whereas each command within a command
list is processed serially. Functionally, this means that
services can be started in parallel, and each service
start-up can consist of a set of serially executed steps.

REQUESTS

• I
I
I ------- - 1- --· MESSAGE

REPLIES LIBRARY 1- --,
I
I
I

t

ASE Agent Design
The ASE agent is composed of the environment man­
ager, the service manager, a second availability
manager (AVMAN), and the configuration database
manager. Figure 7 shows the ASE agent components.

All the ASE agent components use the message
library as a common socket communications layer that
allows the mixture of many outstanding requests and
replies across several sockets. The environment man­
ager component is responsible for the maintenance
and initialization of the communications channels
used by the ASE agent and the start-up of the ASE host
status monitor and the ASE director. The environment
manager is also responsible for handling all host-status
events. For example, if the ASE host status monitor
reports that the local node has lost connection to
the network, the environment manager issues stop ser­
vice actions on all services currently being served by
the local node. This forced stop policy is based on the
assumption that the services are being provided to
clients on the network. A network that is down implies
that no services are being provided; therefore, the
service will be relocated to a member with healthy
network connections.

If the ASE agent cannot make a connection to the
ASE host status monitor during its initialization,
the ASE host status monitor is started. The start-up
of the ASE director is more complex because the ASE
agent must ensure that only one ASE director is run­
ning in the ASE. This is accomplished by first obtain­
ing the status of all the running ASE members. After
the member status is commonly known across all ASE
agents, the member with the highest IP address on the
primary network is chosen to start up the ASE direc­
tor. If two ASE directors are started, they must both
make connections to all ASE agents in the ASE. In
those rare cases when an ASE agent discovers two
directors attempting to make connections, it will send

EVENT i- STRATEGIST MANAGER

t l
ENVIRONMENT
DATA MANAGER

t
EVENT

Figure 6
ASE Director

CONTROLLER

Digital Technical Journal Vol. 7 No. 4 1995 95

Figure 7
ASE Agent

MEMBER
MAINTENANCE INITIALIZATION

_R_ES)~§~Is ..
MESSAGE

REPLIES LIBRARY

an exit request to the younger director, the one with
the newer start time.

The service manager component is responsible for
performing operations on ASE services. The_ service
manager performs operations that use specific ser­
vice action progran1s or that determine and report sta­
tus on services and their respective devices. The service
actions are forked and executed as separate processes,
children of the agent. This allows the ASE agent to
continue handling other parallel actions or requests.
The ASE agent is aware of only the general stop, start,
add, delete, query, or check nature of the action. It is
not aware of the specific application details required to
implement these base availability functions. A more
detailed description of the ASE service interfaces can
be found in the section ASE Service Definition. When
the service manager executes a stop or start service
action that has device dependencies, the ASE agent
provides the associated device reser~es or un_reserves
to gain or release access to the device. Serv1~es and
devices must be configured such that one deVIce may
be associated with only one service. A device may not
belong to more than one service.

The agents' availability manager (AVMAN) compo­
nent is called by the service manager to process
a reserve or unreserve of a particular device for a ser­
vice stop or start action. The AVMAN uses ioctl() c~lls
to the AM to reserve the device, to invoke SCSI device
pinging, and to register or unregister for the following
AM events:

1. Device path failure-an 1/0 attempt failed on
a reserved device due to a connectivity failure or
bad device.

2. Device reservation failure-an 1/0 attempt failed
on a reserve device because another node had
reserved it.

96 Digital Technical Journal Vol. 7 No. 4 1995

ENVIRONMENT REPLIES

MANAGER

+ AVAILABILITY I
I 1---- • MANAGER >----

~------J I (AVMAN) ~--------
REQUESTS --------, ~------, I CONFIGURATION

I I _____
DATABASE ~

I
MANAGER +

SERVICE
MANAGER

I REPLIES

3. Reservation reset-the SCSI reservation was lost
on a particular device due to a bus reset.

A reservation reset occurs periodically as members
reboot and join the ASE. The ASE agent reacts by
rereserving the device and thereby continuing to pro­
vide the service. If the reservation reset persists, the
ASE agent informs the ASE director. If a device path
failure occurs, the ASE agent informs the ASE director
of the device path failure so that another member can
access the device and resume the service. The device
reservation failure can occur only if another member
has taken the reservation. This signifies to the ASE
agent that an ASE director has decided to r~n ~is ser­
vice on another member without first stoppmg 1t here.

The configuration database manager component
handles requests that access the ASE configuration
database. Working through the configuration database
manager component, the ASE agent provides all access
to the ASE configuration database for all other com -
ponents of the ASE.

ASE Availability M anager Design
The availability manager (AM) is a kernel component
of ASE that is responsible for providing SCSI device
control and SCSI host pinging with target mode. The
AM provides SCSI host pinging to the ASE host status
monitor daemon through a set of ioctl() calls to the
"/ dev/am_host*" devices. As has been me!1tioned,
the AM provides SCSI device control for pmgs and
event notification to the ASE agent through ioctl()
calls to the "/ dev /ase" device. All ASE SCSI device
controls for services and SCSI host pinging assume
that all members are symmetrically configured with
respect to SCSI storage bus addressing.

ASE Host Status Monitor Design
The ASE host status monitor (ASEHSM) component
is responsible for sensing the status of members and
interconnects used to communicate between members.
As previously mentioned, this monitor is designed to
provide periodic pinging of all network and SCSI
interconnects that are symmetrically configured
between ASE members. The ping rate is highest, 1 to 3
seconds per ping, on the first configured ASE network
and SCSI bus. All other shared interconnects are
pinged at a progressively slower rate to decrease the
overhead while still providing some interconnectivity
state. The ASE host status monitor provides member­
state change events to both the ASE agent and the ASE
director. The ASE agent initializes and updates the
monitor when members are added or deleted from the
ASE configuration database. The ASE host status
monitor is designed to be flexible to new types of net­
works and storage buses as well as extensible to
increased numbers of shared interconnects.

ASE Service Definition
ASE has provided an interface framework for available
applications. This framework defines the availability
configuration and failover processing stages to which
an application must conform. The application inter­
faces consist of scripts that are used to start, stop, add,
delete, query, check, and modify the particular service.
Each script has the ability to order or stack a set of
dependent scripts to suit a multilayered application.
The NFS Service Failover section in this paper pro­
vides an example of a multilayered service that ASE
supports "out of the box." ASE assumes that a service
can be in one of the following states:

1. Nonexistent-not configured to run

2. Off-line-not to be run but configured to run

3. Unassigned-stopped and configured to run

4. Running- running on a member

At initialization, the ASE director presumes all con­
figured services should be started except those in the
off-line state. Whenever a new member joins the ASE,
the add service action script is used to ensure that the
new member has been configured to have the ability
to run the service. The delete service script is used to
remove the ability to run the service. The delete scripts
are run whenever a service or member is deleted. The
start service script is used to start the service on a par­
ticular member. The stop service is used to stop a ser­
vice on a particular member. The check script is used
to determine if a service is running on a particular
member. The query script is used to determine if a par­
ticular device failure is sufficient to warrant failover.

ASE strives to keep a service in a known state. Con­
sequently, if a start action script fails, ASE presumes

that executing the stop action will return the service to
an unassigned state. Likewise, if an add action fails, a
delete action will return the service to a nonexistent
state. If any action fails in the processing of an action
list, the entire request has failed and is reported as such
to the ASE director and in the log. For more details
on ASE service action scripts, see the Guide to the
DECsafe Available Seroer.5

NFS Service Failover

In this section, we present a walk-through of an NFS
service failover. We presume that the reader is familiar
with the workings ofNFS.1 The NFS service exports a
file system that is remotely mounted by clients and
locally mounted by the member that is providing the
service. Other ASE members may also remotely
mount the NFS file system to provide common access
across all ASE members.

For this example, assume that we have set up an NFS
service that is exporting a UNIX file system (UFS)
named /foo_nfs. The UFS resides on an LSM disk
group that is mirroring across two volumes that span
four disks on two different SCSI buses. The NFS ser­
vice is called foo_nfs and has been given its own IP
address, 16.140.128.122. All remote clients who want
to mount /foo_nfs will access the server using the
service name foo_nfs and associated IP address
16.140.128.122. This network address information
was distributed to the clients through the Berkeley
Internet Name Domain (BIND) service or the net­
work information service (NIS). If several NFS mount
points are commonly used by all clients, they can be
grouped into one service to reduce the number of IP
addresses required. Although grouping directories
exported from NFS into a single service reduces the
management overhead, it also reduces flexibility for
load balancing.

Further, assume that the NFS service foo_nfs has
four clients. Two of the clients are the members of the
ASE. The other two clients are non-Digital systems.
For simplicity, the Sun and HP clients reside on the
same network as the servers (but they need not). The
ASE NFS service foo_nfs is currently running on the
ASE member named MUNCH. The other ASE mem­
ber is up and named ROLAIDS.

Enter our system administrator with his afternoon
Big Gulp Soda. He places the Big Gulp Soda on top of
MUNCH to free his hands for some serious console
typing. Oh! We forgot one small aspect of the sce­
nario. This ASE site is located in California. A small
tremor later, and MUNCH gets a good taste of the Big
Gulp Soda. Seconds later, MUNCH is very upset and
fails. The ASE host status monitor on ROLAIDS stops
receiving pings from MUNCH and declares MUNCH
to be down. If the ASE director had been running on

Digital Technical Journal Vol. 7 No. 4 1995 97

MUNCH, then a new director is started on ROLAIDS
to provide the much-needed relief. The ASE director
now running on ROLAIDS determines that the
foo_nfs service is not currently being served and issues
a start plan for the service. The start action is passed to
the local ASE agent since no other member is available.
The ASE agent first reserves the disks associated with
the foo_nfs service and runs the start action scripts.
The start action scripts must begin by setting up LSM
to address the mirrored disk group. The next action is
to have UFS check and mount the / foo_nfs file system
on the ASE hidden mount point /var/ase/mnt/
foo_nfs. The hidden mount point helps to ensure that
applications rarely access the mount point directly.
This safeguard prevents an unmounting, which would
stop the service. The next action scripts to be run are
related to NFS. The NFS exports files must be adjusted
to include the foo_nfs file system entry. This addition
to the exports files is accomplished by adding and
switching exports include files.

The action scripts then configure the service address
(ifconfig alias command), which results in a broadcast
of an Address Resolution Protocol (ARP) redirection
packet to all listening clients to redirect their IP
address mapping for 16.140.128.122 from MUNCH
to ROLAIDS.6 After all the ARP and router tables have
been updated, the clients can resume communications
with ROLAIDS for service foo_nfs. This entire process
usually completes within ten seconds. The storage
recovery process often contributes the longest dura-

tion. Figure 8 summarizes the time-sequenced events
for an NFS service failover.

This scenario works because NFS is a stateless ser­
vice. The server keeps no state on the clients, and the
clients are willing to retry forever to regain access to

their NFS service. Through proper mounting opera­
tions, all writes are done synchronously to disk such
that a client will retry a write ifit never receives a suc­
cessful response.

If ASE is used to fail over a service that requires
state, a mechanism has to be used to relocate the
required state in order to start the service. The ASE
product recommends that this state be written to file
systems synchronously in periodic checkpoints. In this
manner, the failover process could begin operation at
the last successful checkpoint at the time the state disk
area was mounted on the new system. If a more
dynamic failover is required, the services must syn -
chronize their state between members through some
type of network transactions. This type of synchro­
nization usually requires major changes to the design
of the application.

Implementation and Development

We solved many interesting and logistically difficult
issues during the development of the ASE product.
Some of them have been discussed, such as the asym­
metric versus symmetric SAD and distributed versus
centralized policy. Others are mentioned in this section.

------------ ---
l suNCLIENT I ,,.//____ ----- ! HP CLIENT !

/,,. To- Initially, MUNCH serves NFS service foo_nfs. ',,
/ T1 - NFS clients mount foo_nfs from MUNCH. ',

I T 2 - MUNCH goes down. \
,' T 3 - ROLAIDS senses that MUNCH is down and begins ,
, failover by acquiring the disk reservations for the \

: foo_nfs service. 1

I T 4 - ROLA IDS broadcasts an ARP redirection for the IP I

I address associated with foo_nfs. :
\ T 5 - HP and SUN clients update their route tables to I
I reference ROLAIDS for foo_nfs. f
\ T 6 - Clients resume access to foo_nfs from ROLAIDS. 1

COMMON NETWORKS COMMON NETWORKS

ASE SERVER MUNCH ASE SERVER ROLAIDS

SHARED SCSI BUSES SHARED SCSI BUSES

l ElEl 1

Figure 8
Time-sequenced Events for NFS Failover

98 Digital Technical Journal Vol. 7 No. 4 1995

j

The SCSI Standard and High-availability Requirements
The SCSI standard provides two levels of require­
ments: mandatory and optional. The ASE require­
ments fall into the optional domain and are not
normally implemented in SCSI controllers. In particu­
lar, ASE requires that two or more initiators (host SCSI
controllers) coexist on the same SCSI bus. This feature
allows for common access to shared storage. Normally,
there is only one host per SCSI, so very little testing is
done to ensure the electrical integrity of the bus when
more than one host resides. Furthermore, to make the
hosts uniquely addressable, we needed to assign SCSI
IDs and not hardwire them. Lastly, to support its host­
sensing needs, ASE requires that SCSI controllers
respond to commands from another controller. This
SCSI feature is called target-mode operation.

In addition to meeting the basic functional SCSI
requirements, we had to deal with testing and qualifi­
cation issues. When new or revised components were
used in ways for which they were not originally tested,
they could break; and invariably when a controller was
first inserted into an ASE environment, we found
problems. Additional qualifications were required for
the SCSI cables, disks, and optional SCSI equipment.
ASE required very specific hardware (and revisions of
that hardware); it would be difficult to support off­
the-shelf components.

Note, however, when all was said and done, only
one piece of hardware, the Y cable, was invented for
ASE. The Y cable allows the SCSI termination to be
placed on the bus and not in the system. As a result, a
system can be removed without corrupting the bus.

The challenge for the project was to convince the
hardware groups within Digital that it was worth the
expense of all the above requirements and yet provide
cost-competitive controllers. Fortunately, we did; but
these issues are ongoing in the development of new
controllers and disks. Our investigation continues on
alternatives to the target mode design. We also need to
develop ways to reduce the qualification time and
expense, while improving the overall quality and avail­
ability of the hardware.

NFS Modifications to Support High Availability

The issues and design of NFS fail over could consume
this entire paper. We discuss only the prominent points
in this section.

NFS Client Notification
The first challenge we faced was to determine how to
tell NFS clients which host was serving their files both
during the initial mount and after a service relocation.
The ideal solution would have been to provide an IP
address that all nodes in the SAD could respond to. If

clients knew only one address, all NFS packets would
be sent to that address and we would never have to tell
the client the location had changed. The main prob­
lem with this solution is performance. Each node in
the SAD would receive all NFS traffic destined for all
nodes. The system overhead for deciding whether to
drop or keep the packet is very high. Also the more
nodes and NFS services, the more likely it would be to
saturate individual nodes. Unfortunately, this solution
had to be rejected.

The next best solution, in our minds, is per service
IP addresses. Each NFS service is assigned an IP
address (not the real host address). Now each node in
the SAD could respond to its own address and to the
addresses assigned to the NFS services that it is run -
ning. The main issues with this approach are the fol­
lowing: (1) It could use many IP addresses and (2) It is
more difficult to manage because of its many
addresses. However, there were no performance
trade-offs, and we could move services to locations in
a way that was transparent to the NFS clients.
Notifying the clients after a relocation turned out to
be easy because of a standard feature in the ARP that
we could access through the ifconfig alias command of
the Digital UNIX operating system.6 Essentially, all
clients have a cache of translations for IP addresses
to physical addresses. The ARP feature, which we
referred to as ARP redirection, allows us to invalidate a
client-cached entry and replace it with a new one. The
ifconfig command indirectly generates an ARP redi­
rection message. As a result, the client NFS software
believes it is sending to the same address, but the net­
work layer is sending it to a different node.

Similar functionality could have been achieved by
requiring multiple network controllers connected to a
single network wire on the SAD nodes. This solution,
however, requires more expense in hardware and is
less flexible since there is only one address per board.
Essentially, the latter means the granularity of NFS ser­
vices would be much larger and could not be distrib­
uted among many SAD nodes without a great deal of
hardware.

NFS Duplicate Request Cache
The NFS duplicate request cache improves the perfor­
mance and correctness of an NFS server.7 Although
the duplicate request cache is not preserved across
relocations, we did not view this as a significant prob­
lem because this cache is not preserved across reboots.

Other Modifications: Lock Daemons and mountd
We modified only two pieces of software related to
NFS failover: the lock daemon and the mountd. We
wanted the lock daemon to distinguish the locks asso­
ciated with a specific service address so that only those

Digital Technical Journal Vol. 7 No. 4 1995 99

locks would be removed during a relocation. After the
service is relocated, we rely on the existing lock
reestablishment protocol. We modified the mountd
to support NFS loopback mounting on the SAD, so
that a file system could be accessed directly on the
SAD (as opposed to a remote client) and yet be relo­
cated transparently.

Future of ASE

Digital's ASE product was designed to address a small,
symmetrically configured availability domain. The
implementation of the ASE product was constrained
by time, resources, and impact or change in the base
system. Consequently, the ASE product lacks extensi­
bility to larger asymmetric configurations and to more
complex application availability requirements, e.g.,
support of concurrent distributed applications. The
next-generation availability product must be designed
to be extensible to varying hardware configurations
and to be flexible to various application availability
requirements.

Acknowledgments

We thank the following people for contributing to this
document through their consultation and artwork:
Terry Linsey, Mark Longo, Sue Ries, Hai Huang, and
Wayne Cardoza.

References

1. Sun Microsystems, Inc., NFS Network File System
Protocol Specification, RFC 1094 (Network Informa­
tion Center, SRI International, 1989).

2. J. Gray, "High Availability Computer Systems," IEEE
Computer (September 1991).

3. A. Bhide, S. Morgan, and E. Elnozahy, "A Highly
Available Network File Server," Conference Proceed­
ings from the Usenix Conference, Dallas, Tex.
(Winter 1991).

4. W. Cardoza, F. Glover, and W. Snaman, "Design of
the Digital UNIX Cluster System," Digital Technical
Journal, forthcoming 1996.

5. Guide to the DECsafe Available Server (Maynard,
Mass.: Digital Equipment Corporation, 1995).

6. D. Plummer, Ethernet Address Resolution Protocol:
Or Converting Network Protocol Addresses to 48-bit
Ethernet Address for Transmission on Ethernet
Hardware, RFC 0826 (Network Information Center,
SRI International, 1982).

7. C. Juszczak, "Improving the Performance and Cor­
rectness of an NFS Server," Conference Proceedings
from the Usenix Conference, San Diego, Calif.
(Winte r 1989).

100 Digital Technical Journal Vol. 7 No. 4 1995

Biographies

Lawrence S. Cohen
Larry Cohen led the Available Server Environment
project. He is a principal software engineer in Digital's
UNIX Engineering Group, where he is currently working
on Digital's UNIX cluster products. Since joining Digital
in 1983, he has written network and terminal device drivers
and worked on the original ULTRIX port of BSD sockets
and the TCP /IP implementation from BSD UNIX. Larry
also participated in the implementation ofDigital's l/0
port architecture on ULTRIX and in the port of NFS ver­
sion 2.0 to the DEC OSF /1 version of UNIX. Larry was
previously employed at Bell Labs, where he worked on the
UNIX to UNIX Copy Program (UUCP). He has a B.S. in
math (1976) and an M.S. in computer science (1981),
both from the University of Connecticut.

John H. Williams
John Williams is a principal software engineer in Digital's
UNIX Engineering Group. John led the advanced devel­
opment efforts for the UNIX cluster product and was the
project leader for the DECsafe Available Server Environ­
ment version 1.1 and version 1.2. Before that, John designed
and implemented the security interface architecture for the
DEC OSF /1 operating system. Currently, John is respon­
sible for the UNIX cluster management features. John
received a B.S. in computer science from the Michigan
Technological University in 1978.

Parasight: Debugging
and Analyzing Real-time
Applications under
Digital UNIX

Conventional UNIX debug and analysis tools,

with their static debugging model and low­

resolution-sampling profiling techniques, are

not effective in dealing with real-time applica­

tions. Encore Computer Corporation has devel­

oped Parasight, a set of debug and analysis

tools for real-time applications. The Parasight

tool set can debug running programs, debug

multiple programs, constantly monitor local

and global variables, and perform on-the-fly

execution analysis. Thus, Parasight provides

much improved debug and analysis capabilities,

which application developers can use on both

static and dynamic applications. Parasight can

be used on any of Digital's Alpha platforms run­

ning under the Digital UNIX operating system.

I
Michael Pahner
Jeffrey M. Russo

Because of their time-critical nature, real-time applica­
tions do not respond well to the perturbations that
conventional UNIX debug and analysis tools cause.
For instance, the static debugging model of the dbx
debugger requires that a program be stopped before it
can be debugged. Also, execution analysis using the
profiling techniques of the prof profiler often provide
erroneous results for real-time applications because of
the low-resolution sampling employed.

This paper describes the critical aspects of debugging
real-time applications, the deficiencies found in con­
ventional UNIX tools, and the methodology Encore
Computer Corporation used to develop Parasight,
a set of easy-to-use graphical user interface tools that
debug and perform execution analysis on real-time
programs while they are running. Parasight can be
used on any ofDigital's Alpha platforms that operate
under the Digital UNIX operating system.

Real-time Applications

Real-time applications perform a wide variety of
functions, from flying state-of-the-art military aircraft
to controlling nuclear power plants. All real-time appli­
cations have one common denominator: They must
complete their calculations before a deadline expires.
Taking too long to calculate the correct answer can
have just as detrimental an effect as arriving at an incor­
rect answer; either result could cause an aircraft to crash
or a nuclear power plant to experience a meltdown.

Most real-time applications consist of one or more
programs that are scheduled to run in response to an
event. The triggering event is usually transmitted in the
form of an interrupt and can be generated randomly by
an external event or regularly by a interval timer run­
ning at a fixed rate, such as 60 times per second. Once
the interrupt is received, the application must perform
the allotted task before the next interrupt occurs.

The elements of a real-time application communi­
cate with each other dynamically; that is, the results of
the calculations of one element are used immediately
for the calculations of another element. Real-time
applications are often referred to as dynamic applica­
tions, since they react dynamically to changes in their

Digital Technical Journal Vol. 7 No. 4 1995 101

environment and often refer to elapsed time in their
calculations. In contrast, static applications have
results that rarely depend on changes in their environ­
ment or on elapsed time.

The Problems Associated with Debugging and
Analyzing Real-time Applications Using
Conventional UNIX Tools

Debugging a real-time application during execution,
debugging and analyzing multiple programs, con­
stantly monitoring variables, and analyzing program
execution are all activities that debug and analysis tools
have to deal with. This section discusses the capabili­
ties and limitations of conventional UNIX tools and
describes the features required of effective real-time
debug and analysis tools.

Running Programs
Debugging a static program typically involves control­
ling the execution flow and examining the values of
variables within the program. Stopping a real-time
program or even delaying it by single stepping, how­
ever, is usually not possible without adversely affecting
the application. Debugging real-time applications is
therefore limited to examining the values of program
variables while the program is still running.

Conventional UNIX debuggers are not able to
examine variables during program execution and
therefore cannot be employed on running real-time
applications. Consequently, these debuggers are useful
only in the early stages ofreal-time program develop­
ment, essentially while the program is still static.

The traditional methods of debugging real-time
applications involve placing all the critical data into
one or more global, shared memory regions. A data­
monitoring tool, usually written by the user, runs as
a normal UNIX process and attaches to the global
region. The tool can then be used to inspect and/or
change the values of the global variables. This tech­
nique is nonintrusive in that it does not affect the real­
time application programs in any way. Unfortunately,
the debugging is restricted to global data, and, unless
the programs are designed with this in mind, this
restriction can be a severe limitation. Modifying exist­
ing programs to change local data into global data for
debugging purposes can result in a whole new set of
problems in managing the separation of data.

An effective real-time debugging tool must be able
to attach to a running program without stopping it
and then be able to nonintrusively inspect and/or
change the global data.

Debugging and Analyzing Multiple Programs
Real-time applications typically consist of several pro­
grams working together. Invoking multiple copies of

102 Digital Technical Journal Vol. 7 No. 4 1995

the dbx debugger to debug each program individually
is cumbersome and precludes studying the interaction
between programs.

A real-time debugger must be able to work with
one or more programs at the same time, providing
the user with an integrated and cohesive debugging
environment.

Monitoring Variables

The one-shot variable evaluation capability of conven­
tional UNIX debuggers is oflimited use for programs
that are running. These debugging tools provide the
user with only one previous value of a variable, not
necessarily the current value.

A real-time debugger must be able to constantly
monitor the values of global variables. Tbe minimum
and maximum values that each variable attained
should optionally be available as a record of transient
conditions.

Execution Analysis (Profiling)

Since performance is important in real-time applica­
tions, program execution analysis is often needed to
locate areas of a program where the performance
could be improved. A real-time application may have
a strict execution order requirement, whereby one
routine must run prior to the execution of another
routine. This requirement may be accomplished easily
if the routines are in the same program; however, often
the routines are in different programs or are executing
on different CPUs in a symmetric multiprocessing
(SMP) environment.

The Digital UNIX profiling tools provide two kinds
of execution analysis:

1. PC sampling, which involves interrupting the
program periodically to record the value of the
program counter.

2. Block counting, which inserts profiling code at key
points in the program to count the number of times
each basic block of code executes. (A basic block
is a region of the program that can be entered only
at the beginning and exited only at the end.)

Both techniques involve the following basic steps:

l. Preprocess the program to produce the desired
profiling information.

2. Execute the program to produce a profiling data
file.

3. Postprocess the program with the profiling tools
to view the data collected.

The normal sampling period employed by the
PC-sampling method is based on the hard clock
(CLOCK_REALTIME) of the Digital UNIX operating
system. This method results in 1,024 samples being

l

taken per second, which provides a timing resolution
of976 microseconds, or approximately 1 millisecond.

The routines that make up a real-time application
typically take from a few microseconds to several
milliseconds to execute. Attempting to measure the
execution time of routines that take less than 1 mil­
lisecond to execute with a clock resolution of 1 milli­
second can lead to erroneous results. A test on a
150-megahertz (MHz) Alpha 21064 CPU showed
that the prof tool, using the normal PC-sampling rate,
reported the execution time of a routine to be 4 milli­
seconds when the true execution time was 20 micro­
seconds. (The true execution time was measured using
the Parasight tool set.)

It is possible to increase the sampling rate using the
uprofile utility, but doing so also proportionally
increases the number of interrupts per second that the
system must handle. For instance, to obtain even
10-microsecond resolution would require the system to
handle 100,000 interrupts per second. This amount of
interrupt activity would rapidly swamp the system, leav­
ing little or no CPU time to execute the program being
instrumented. The PC-sampling method of execution
analysis is therefore not suitable for the short execution
times typical in real-time application routines.

The block-counting method, although capable of
high-resolution measurement, suffers from the inabil­
ity of the pixie utility to work with programs that
receive signals. Most real-time applications use signals
for program scheduling and are therefore disqualified
from using the block-counting method.

In addition to the problems just discussed, the tradi­
tional UNIX profiling tools are unsuitable for real­
time program execution analysis for the following
reasons:

• A program must be preprocessed for profiling
prior to execution. Adding or removing profil­
ing requires stopping, processing, and restarting
the program. This assumes that the problem area is
known before the application starts to run. If
a problem suddenly develops after an uninstru­
mented program has been running for 24 hours,
the user will have lost the opportunity to determine
which routine is causing the problem.

• A program must be profiled as a whole, unless
source code modifications are made to the program
to control the profiling. This can cause excessive
overhead, which real-time programs usually cannot
tolerate.

• The profiling results cannot be seen until the pro­
gram terminates, unless source code modifications
are made to the program to permit the results to
be dumped on command. The user needs to see
the results while the program is running and often
needs to repeat a test several times to get the

desired results. Stopping and restarting the applica­
tion once for each test could be laborious.

• Only the average and cumulative times for each
routine are available. That is, the individual execu- .
tion times for each call to a routine are not avail­
able. This also precludes the examination of the
calling sequence.

• The results cannot be cross-correlated between
programs to provide information about the rela­
tive calling sequences between programs or across
processors.

A real-time execution analysis tool must operate
with sufficient resolution to measure the execution
time of a routine that may take 10 microseconds to
execute. Tbe instrumentation should be dynamically
insertable into the current areas of interest and
should be able to move to new areas of interest as
required-all without stopping and restarting the
real-time application.

Parasight: A Solution for Real-time Debugging
and Program Analysis

Parasight is an integrated set of real-time debugging
and analysis tools with a graphical user interface. The
tool set consists of a debugger (Debug), a data monitor
(DataMon), and a program analysis tool (Paragraph).
The Parasight tool set solves the real-time deficiencies
found in dbx, prof, and the other conventional UNIX
debug and analysis tools used under the Digital UNIX
operating system. Parasight is able to debug applica­
tions in either a dynamic (running) or a static (stopped)
state; it can perform debugging and program execu­
tion analysis on several programs simultaneously, with­
out adversely affecting the dynamics of time-critical
applications.

Parasight's Foundation
The Parasight tool set features the use of a symbol table,
the /prof file system, global memory, and scanpoints.

The Symbol Table, .pg File, and /proc File System
Parasight's source of knowledge about the target
application is derived from the symbol table and the
.pg file. Both are generated at compile time as a result
of the -para special compiler option.

Parasight manipulates target applications by using
the /proc file system services available under the Digital
UNIX operating system. The /proc file system enables
Parasight to control the program flow and to read and
write any memory address in the target application.

Global Data Just as the traditional means of debug­
ging real-time applications depends on global memory
regions, Parasight uses the global memory access

Digital Technical Journal Vol. 7 No. 4 1995 103

concept as the basis for accomplishing most of its
advanced capabilities. Parasight either accesses the
target program data directly, through the use of /proc,

or uses global memory to access data gathered for
Parasight by one ofits scanpoints.

Scanpoints The Parasight tool set uses global mem­
ory access whenever possible to provide nonintrusive
access to the target application. Certain functions,
however, require access to data that is local to a pro­
gram. Parasight accesses this data through small seg­
ments of code called scanpoints.

A scanpoint is a function that is dynamically inserted
into the target program by Parasight. The scanpoint
function then runs in the same context as the target
program and thus has access to all the local data of the
program. The scanpoint function works as an agent
for Parasight, gathering data that Parasight does not
have direct access to. The Parasight tool set uses two
principal types of scanpoints: datamon-scanpoints,
which are used by Dat aMon to perform local data
monitoring, and sensor-scanpoints, which are used by
Paragraph to perform program execution analysis.

Inserting the scanpoints does not require modifying
the application's source code or preprocessing the
application's object code. The only requirement is to
link each program with the special -para option. This
adds a memory buffer to the target program for use by
Parasight. The buffer is benign until used by Parasight.

Parasight dynamically inserts scanpoints by using
the /proc service to build a scanpoint template in the
special buffer of the target program. This can occur
even while the program is running. The template code
contains the functionality to

• Save the register state that existed when the pro­
gram counter was at the scanpoint insertion location

• Set up the arguments to the scanpoint function,
including the register state

• Call the scanpoint function

• Restore the register state

• Execute the instruction that was originally at the
insertion location

• Branch back to the instruction following the inser­
tion location

Parasight then dynamically alters the template code
according to the insertion location and the instruction
contained therein. If the instruction was a branch con­
trol instruction, Parasight alters the instruction's dis­
placement so that the location corresponds to the
instruction's new displaced location within the tem­
plate. All other instructions, including jump control
instructions, do not require altering and are simply
copied to the new displaced location.

Once this code is constructed in the buffer,
Parasight completes the scanpoint insertion process by

104 Digital Technical Journal Vol. 7 No. 4 1995

overwriting the instruction at the insertion location
with a branch to the newly generated scanpoint
template. The fixed instruction length of Digital's
Alpha microprocessors simplifies this step enormously.

It is important to note that the scanpoint is built by
Parasight, not the target program. The target program
is affected only by the final step of the scanpoint inser­
tion, when Parasight overwrites the instruction at the
insertion location. This design prevents excessive inter­
ference of the target program. Scanpoints are written in
highly optimized code to minimize the impact on the
target application when they are executed.

Parasight dynamically deletes scanpoints by writing
back the original instruction at the insertion location.
This design allows Parasight to disable a scanpoint
even if the scanpoint function has not completed.

Meeting Requirements
Parasight has the capabilities required of effective real­
time debugging and analysis tools.

Debugging Running Programs Conventional UNIX
debuggers deliberately stop a program when attaching
to it, because these tools do not operate on running
programs. When Parasight's debugger, Debug, attaches
to a program, there is no impact on the program.

Conventional UNIX debuggers refuse to access any
data while a program is running, even though global
data resides at fixed memory locations that are accessi­
ble at all times through the /proc service. The reason
for this limitation of the conventional UNIX tools is
unclear. Parasight's debugger is able to examine and to
change the value of any global data while the program
is running or stopped.

Conventional UNIX tools also refuse to set any
breakpoints in a program while the program is run­
ning. Again, the reason for this constraint is unknown.
Parasight's debugger is able to insert breakpoints into
running programs, a feature that is valuable in debug­
ging error conditions in real-time applications.

Debugging Multiple Programs Parasight's Debug,

DataMon, and Paragraph components constitute an
integrated set of tools capable of working on one or
more applications simultaneously, as shown in Figure
1. The Parasight main window displays the programs
(and any children they create) attached to Parasight.
The window also provides an easy mechanism to
access the Parasight tool for each specific program.

Monitoring Variables Constantly Parasight's DataMon

tool allows the user to simultaneously monitor the
values of any local or global variables in one or more
stopped or running programs. Parasight constantly
monitors the values and shows any change on the
DataMon display screen. DataMon is also capable
of displaying the minimum, maximum, and average

42
43
~

45
oil
,0
48
49
!iO
51
52
53
54
55
56
57
58
59
60
61
61'
63

,.

7!I
BO
81
92
113
114
85
llfi
81
88
99
90
91

' 92

l I

Jl
32
33
3'4

~

!13
94
!l!i
9G
81
911
99

100
101
10:2
103
104
105
106
107
lOII
lO!I
uo
111
U2
w
u~

35 It-- --------- - - ·-------------

Figure 1

65
66
67
68
65 70 .
71
12
n ,~
75
711
77
711
7!I
BO
81
82
Bl

l!!!!!!!!!I m
UB ~
U9
120

36
D
311
39
40
41
42
43
~
45
oil
,0
48
49
!iO
!i1
5l' D
53
54
55
56
57
58
59
60
61
61'
63
~
6li
66
67
611
69
70
71
12

2!i ..
27
28
29
3c)

31
32
l!3
3'4
35
36
o1
38
39
40
41
42
43
4'4
45 ..
<fl
411
49
!iO
51
52
53
54
55
51,
57
58
59
60
61
61'
63
~
6li
66

reti.rn 11icroneC1l;
I
.. 1.

int. 1J
r-~~~,-v-,,,-,,,-.-,-.10-,-.,,-,~~ ..

dp-)cpu1U1Ct.uklll't] • O;

ti.MrG4.•ttach(O)J

E>qn!Dim [:i.--oc-~ __ J -
int aet.usec(int tnkn.Jn>
I

1
........ '"'-Ml -,&J (Olce3)

1
p

rebrn < Cint) ti"8f'ti4-usec(dp•>cpu
J
.. ,ultr

dp->ett9cUN1(tnlo'ull = dp-}e:tapU•eCtanlQt) - dp->sUrt.J.M(t...._..h

if ~;t::~u:1t=~r":'11Aiti&ii4\&r1
,

If ' ·--tlne[taia...l < dp->wtlntlne[taslmulol)
dp-)11intiM[~J • dp->eimctiM[t.ulaulJ::

dp-)fra,i.UMltukN911 • dp-}e.tapliHCt:annmll - dp->at..l"UMB[O]J
dp->ta\t.i.nol\•sknunl +m dp-)1N1ocl.i••ltoslc1N1Jt

dp-}i>ao taltulmut,l .. ,
dp->tak:stethaslcnu,il • ~LETE:,

If (tukn,., == dp-)1-taa I
dp->dDMt1M[.-)f rM18l • ,et_uuc(t:anrut>t

,.,

Parasight 's Debugger Working with Five Tasks Simultaneously

values attained for any variable. A scrolling history
display along with a time stamp is also available for
solving transient problems.

The variables to be monitored can be selected using
the mouse on the Debug browser or entered into a dia­
log box using the keyboard. The DataMon graphical
user interface has a point-and-edit capability, which
allows the user to edit the mnemonic data (i.e., name,
display format , value, location, or comment) directly
on the screen. The user can store mnemonic lists on
disk for fast retrieval when required . Figure 2 shows
a DataMon display screen.

DataMon is able to monitor global data completely
and nonintrusively using the /proc service and uses
a datamon-scanpoint to implement local data moni­
toring. The datamon-scanpoint is attached to the

DataMon database, which is a shared memory region
connecting all the scanpoints and the DataMon display
program. The datamon-scanpoints deposit the values
of local data into the database for the display program
to show on the screen. Datamon-scanpoints are also
used to change the values oflocal data, depositing the
value from the database into the specified variable.

DataMon uses the Debug tool's expression evaluator
to parse the required mnemonic to derive the location
of the value to be displayed . This may include register
access for local variables saved on the stack. Multiple
mnemonics can be monitored locally at the same
location since a datamon-scanpoint function can tra­
verse a list of mnemonics to be monitored.

Note that Data Mon monitors data asynchronously;
therefore, DataMon cannot guarantee to display every

Digital Technical Journal Vol. 7 No. 4 1995 105

I
I

..,l OlltaMDII ' !J l -· -
FBe QpUons ~ws !9tUp !!elp

IIQ~~ J1Jm~1J1malnml~ rl
HneMonic f Mt Value Location CoMent

~ dp-)startirne[tasknurn] He x Ox152bbfce [1564] ** Global ** Start time (uSec)
dp->stoptime[tasknuml Hex Ox152bc2ad [1564] ** Global ** Stop time (uSec)
dp->exectime[tasknuml Dec 735 [1564] ** Global ** Execution time <uSec)
dp-)mintime[tasknuml Dec 709 [1564] ** Global ** .. ~! - l ' i;
dp->maxtime[tasknumJ Dec 32990 [1564] ** Global **
dp-)fr time[tasknuml Dec 735 < 735 < 2064 [1564] ** Global ** 1fi:R7:ll ltp->frnml.iHll!(lii!'!il numJ = J:!15 :SI
dp->passcnts[Ol Dec 4216 [1564] account.c:60 account 1G:OHl3 dp-,hmtjme~um) - 7!J7
dp-)passcnts[1] Dec 4216 [1564] account.c:60 account 15:11:U •p-•ll'Omllmtl(tannum1 = 791
dp-)passcnts[2l Dec 4215 [1564] account.c:60 account lG:07:G-i dp-,hmtjme(tmknuml - 80-t

dp-)passcnts[3l Dec 4215 [1564] account.c:60 account "111114. idp-'!ltramtlm•(tannumJ = Jg)

dp->passcnts[4l Dec 4214 [1564] account.c:60 account lG:87:G-i dp-,hmtjme[tmknuml - 80G
1u1,:1~ dp->lrarntlmo[tasknuml - /HJ

loops Dec 49449067 [1572] task3.c:102 main() 11:87:0~ dp-,hmtime[ta.l.num) • 700
dp->numtasks Dec 10 [1565] exec.c:144 main() u::Uf:JU dp-?olr;.mtlme[ta.stnumJ - J~,t

tasknum Dec 4 [1573] account.c:51 account -J
7 ~

D] 0 :liilYP. Tn RIP. I IuM Hts'°"' .cat

I n,..., 11 01-!;r 11 I

Figure 2
The Data Mon Display Screen with History Window

value that the variables reach. For global data,
Parasight records only the minimum and maximum
values that DataMon sees. For local data, however, the
scanpoint keeps track of the minimum, maximum,
and average values, so these can be guaranteed.
Parasight can also monitor global data by using a
datamon-scanpoint to monitor the value at a particu­
lar line of code.

On-the-Fly Execut ion Analysis Paragraph displays
static source-code call graphs of the application's
programs, illustrating the hierarchy of function calls,
system calls, and statement-level control flow. Point­
and-click operations allow the user to quickly view the
source code for any program or function, thus simpli­
fying the task of analyzing source code. Figure 3 shows
a Paragraph call graph and browser.

Ale ~strument View _QJnleict §!!tup

cursor 4

DEFINmON: periodcalc Narltr,e..,.Jmp

Figure 3
Paragraph Call Graph and Browser

j lJ

tinclude -dp.h­
linclude "e><K.h"

/Yar1Usershnpalmerlexectestlpe11od.c

int:. pm-1Ddcalc<1nL t11,skm.,)
(

dp- >atartl11B[tae1m ... 1 = e,,L_usec(taslm..,) J

if (dp->p""ttnt.s [t.ask,,...I > 1 >
I
~)plll"lod[taalnum] = dp->startl,...[taslm..,] - last_swrtlne[tasknunlJ
~) totp..-lodltaabiu11l •= dp-)per iodltasknunh

if C dp-)period[t,,ck,,...J < dp->ninperiodlt<nakn..,J > I• Nin period "'
dp-hunper iod [t,,ck,,... J m dp-)period[tasknu11J i

if (dp-}pm-lod [&.esk,,...J > dp->n-riod[taskn.,..J > I• n- pc,r!od *'
dp->11o111<perlod[t.a,dc,,...] = dp-)period[t.aslmui,11

Top

106 Digital Technical Journal Vol. 7 No. 4 1995

Call graphs are also used to define where to insert
instrumentation in an application. The instrumenta­
tion is used to perform execution timing analysis on
a part or the whole of one or more of an application's
programs. The instrumentation is inserted dynami­
cally into a running program, without the need for
source-level changes or object code preprocessing and
without significantly affecting the dynamics of a run­
ning application. The inserted instrumentation may be
deleted or added to at any time.

Paragraph uses sensor-scanpoints to measure
how long a function takes to execute. The sensor­
scanpoint function is placed at a branch-to-subroutine
instruction. The function takes a time stamp from a
nanosecond-resolution timer before and after the
instruction to note the exact time the function started
and ended. The sensor-scanpoints are attached to
the Pa ragraph database, a shared region accessible
to the sensor-scanpoints and Paragraph. Data is written
into the database each time an instrumented function
is executed. The results of the instrumentation may

-..... , -
f.11 ~ @_Uffer ~ ~
Qnor, 44.295s Mat1c8r: 44.3011

ftocess

22928

22920

22912

21090

22918

22936

22902

Onor, 44.281 s

22928

22920 aa:ount() iaa1.c:100

22912

21090

22918

22936

22902

Figure4

:'

'

0

Rl
44.262s

I
I
E
6

~

Dlffemnce: 6815us

I IE I I
I I I
I E D I
I I D 6
u I I E 6
E I 6

I I I
E

c I

Dlffemnce: 107us

"""'2(

be viewed immediately, even while the program is
running. The graphical view shows each function call
as it occurred in time. Each program has a different
bar, so the user can determine the relative time
between functions called in different programs or even
across multiple processors in an SMP environment.
The zoom capability may be used to measure time peri­
ods down to a single microsecond. Figure 4 shows
the Paragraph graphical display, called Bargraph, and
the zoom capability.

Data gathering is continuous until the instrumen­
tation is removed, so new data can be added onto
the previous snapshot's view at any time. Multiple
Bargraph ,vindows can be used to recall previously
saved timing data to easily compare current results
with past results.

The nanosecond-resolution timer used by Paragraph
is derived from the process control counter (PCC)
register available on all Alpha microprocessors. This
32-bit, free-running timer operates at the same
rate as the microprocessor and therefore provides a

- -· 1; [...

.!!•Ip

.. 47.440s [I] . ;
,-.. ·· ·.JL ··0'i!i

44.455!1:

I I I I I I I CJ
rn E I E 6 D E

l (Ir

II m E I 6 6 I u
I E I 6 I I E ;;;;;;;;;a;;;;

I E I I I rn •1 .II I 6 I
u I m

I I
E D -

The Paragraph Graphical Display, Bargraph, Showing Zoom Capability

Digital Technical Journal Vol. 7 No. 4 1995 107

3.6-nanosecond-resolution timer on a 275-MHz
Alpha CPU. Unfortunately, since it is only a 32-bit
timer, it wraps every 15.6 seconds. Parasight keeps
track of the wrap count to create a 64-bit timer that
allows problem-free timing for more than 2,000 years!

Adverse Effects
Although, ideally, the Parasight tool set should
be completely nonintrusive and thus not affect the
application in any way, such operation is not com­
pletely achievable for all functions. Capabilities such as
inspecting (Debug) and monitoring (DataMon) global
variables require no intrusion to implement; however,
monitoring local variables and analyzing program exe­
cution do require a small amount ofintrusion.

While most real-time applications cannot tolerate
exceeding the time available for the completion of
the task, they do have some spare time available after
completing the task. Without this spare time, the risk
of exceeding the deadline before program completion
would be too great. This spare time can be used judi­
ciously for the mildly intrusive functions of Parasight.

Summary

This paper discusses several capabilities required to
effectively debug and analyze real-time applications.
These capabilities include debugging of running pro­
grams, constant monitoring of variables, and on-the-fly
execution analysis. The paper also details some of the
problems associated with conventional UNIX tools,
such as the inability to debug running programs, the
adverse effects on target programs, the erroneous pro­
filing results, and the cumbersome operation. Encore
Computer Corporation's Parasight tool set offers a
solution to these difficult problems. The paper
describes the methodology behind the product and the
capabilities that make Parasight an invaluable tool for
debugging and analyzing real-time applications.

Acknowledgments

The authors would like to acknowledge the efforts of
the following Parasight team members for their contri­
butions to the product: Raghuveer Chakravarthi,
Dileep Katta, Carlos Gonzalez, Deborah Grimstead,
and Ken Shaffer.

General References

Z. Aral, I. Gertner, and G. Shaffer, "Efficient Debugging
Primitives for Multiprocessors" (Fort Lauderdale, Fla.:
Encore Computer Corporation, 1989).

DEC OSF/ 1 Programmer's Guide, Section 6 (Maynard,
Mass .: Digital Equipment Corporation, August 1994).

l 08 Digital Technical Journal Vol. 7 No. 4 1995

Biographies

Michael Palmer
Michael Palmer is a principal member of Encore Computer
Corporation's technical staff and has led the Parasight team
for the past three years. Prior to joining Encore in 1991,
Mike worked for several major flight simulation vendors
throughout the world, advancing from computer systems
engineer to lead software engineer for a $50 million, dual­
dome tactical fighter simulator. He has used his real-time
simulation background to mold Parasight into a leading
tool set for real-time development. Mike holds a B.Sc.
(Honors) in electronics from Newcastle Polytechnic,
Newcastle upon Tyne, England.

Jeffrey M. Russo
Jeff Russo has been employed by IBM since June 1995.
He is an Advisory Programmer working as a team leader
for the OS/2 operating system. Prior to joining IBM, Jeff
worked at Encore Computer Corporation for 10 years,
advancing from the position of software engineer to that
of Senior Section Manager responsible for several real-time
software groups. He has significant experience with real­
time, microkernel-based operating systems, as well as with
the accompanying critical, real-time tool set. Jeff earned
a B.S. in computer engineering from the University of
Florida in 1985.

_J

Call for AL1thors
from Digital Press

DigitJ I Press i s an imprint of Butterworth-Heinemann, a major international pub­
l isher of professional books and a member of the Reed Elsevier group. Digital
Press is the authorized p u blisher for Digi tal Equipment Corporatio n : The nvo
companies arc working in partnership to identi�' and publish new books under the
D igita l Press imprint and create opportuni ties for authors to publ ish their work.

Digi tal Press is committed to publ ish ing h igh-qua l ity books on a wide variety
of subjects. \Ve wou ld l ike to hear tl·om you if you are writi ng or th ink ing about
writing a book .

Contact: Mike Cash, Digital Press Manager, or
Liz McCarthy, Assistant Editor

DIGfTA L P RESS
3 1 3 Wash ington Street
Newton, MA 02 1 58- 1 626
U .S .A.
Tel : (6 1 7) 928-2649, Fax : (6 1 7) 928-2640
E-mai l : Mike .Casb@BHein . reJ .co.uk or
LizMc@world .std .com

mamaomo,.

ISSN 0898-90 1 X

Printed i n LI S .A . l:Y U002 F-TJIY6 3 1 4 1 8 . S Copwight Digit .1 l Lqui pmL· rn C :mpor,nion.

	Front cover
	Contents
	Editor's Introduction
	Foreword
	DECtalk Software: Text-to-Speech Technology and Implementation
	The J300 Family of Video and Audio Adapters: Architecture and Hardware Design
	The J300 Family of Video and Audio Adapters: Software Architecture
	Software-only Compression, Rendering, and Playback of Digital Video
	Integrating Video Rendering into Graphics Accelerator Chips
	Technical Description of the DECsafe Available Server Environment
	Parasight: Debugging and Analyzing Real-time Applications under Digital UNlX
	Call for Authors from Digital Press
	Back cover

