
Digital
Technical
Journal

I
INTERNET PROTOCOL V.6

PRESERVATION OF HI STORICAL
COM PUTER SYSTEMS

FORTRAN FOR PARALLEL COMPUTING

SERVER PERFORMANCE EVALUATION
AND OPTIM IZATION

INTERNET COLLABORATION SO FTWARE

Volume 8 Number 3

1996

Editorial
)an� C. Bl.1kc, ;Vl;ln;1ging Editor
Helen L. Pattnson, Editm
Kathleen M. Stetson, Editor

Circulation
Catherine M. Phillip>, Administrator
Dorothc� R. C1ss;1dv, Sccrct<1ry

Production
T�rri Auticri, Production Editor
Ann� S. K�tzcff, T)'l.lOf'.L1phcr
PetcT R. \.Yoodhury, Illustrator

Advisory Board
S�rnuel H. hiller, Chairman
Rich.1rd W. !kane
Donald Z. H<1rixrr
Williollll R. Hall'e
Rich�rd). Hollings11·orrl1
Willi<1m A. L1ing
Richard 1'. l.ary
Alan(;. NenH:th
P�ulinc A. Nist
Robert M. Supnik

Cover Design
The tiuKtion of the lnrc:mct is a simple: one:
C:ounecr indi1·idu·.1ls through computer
nct\\'orks 11 orld11 ide ti>r rhc purpose of
(CllllllH111iGHion. The sr.tphic ()l) our({)\'(]"
symbolizes this 11·orld11 ide: connection of
innumcr:1bk peopk in "cl'ixrsp:1ce." Inside
the issue, tii'O p<lJ><:rs <Hldrcss aspects of the:
c·omplcs 11·ork needed to n1:1ke the: connec­
tions, tit·st, :lt the protocol kvd, Internet
Protocol version 6, and :lt the: user ln•el,
Alt�Vist<1 rorum software t(>r collabor:1rion
on rhe lmcrnct.

The cover image is based on a phorograph
t.lkenlw Chuck Cilkttc ofsh dil'<:rs 11·ho
set a rcwrd in October 1996 tilr rhc lllllll­
ber of pwplc (I 04) in � si nglc timm rion.
The· COI'l'r dc:sign is 111' l.ucincb O'Neill
of Digit� I\ Corporate Design (;roup .

The !)fgiwl 'f(•cbuical.foumal is a refereed
journJl published quarterly by Digital
Equipmenr Corporarion, SO N;1gog Park,
AK02-3/R3, Anon, MA 01720-9843.

Subscriptions un be ordered by sending
:�check in U.S. funds (lll<1cl� pJvable ro
Digiral Equipment Corporation) to the
published-bv address. General subscription
rates ar� $40.00 (non-U.S. $60) for four
issues and $75.00 (non-U.S. $115) tor
eight issues. Univnsitv and ..:ollegc pmti.:s­
sors and Ph.D. sructcnrs in the dectric1l
engineering and computer s..:ience tields
re..:eive COtnf'limentJry subscriptions upon
request. Digit;1l's utstomers m.1y qualit\•
for gift subsu·iptions <1nd Me cncour « ged
ro cont«([their account represenr<Hives.

Single copies <1nd back issues ;.Jrc a1·ailabk
fm$16.00 (non-U.S $18) each and L<ll1
be ordered bv sending the requested issue's
volume and number :111d ;1 check to the
published-lw address. See the Further
Rc1dings section in the back of this issue
t(>r a ..:omplctc listing. R.:cetlt issues are
also <11.;1ilabk on the fnrcnKt ar
http:/ jwww.digital.com/info/dtj.
Digit:1l ctnployees may order subscriptions
through Readers Choice <lt URL
http:/ jwebrc.clas.dec.com or lw entering
VTX PROFILE at the SI'Stem prompr.

lmptirics, address ch;1ngcs, and compli­
metltal'\' subscription meters em be s<:tlt
to the IJ(�f/({/'/i>chnico!Jollnwl ;Jt the
publishcd-lw address or the ek([mnic
m;1il ;1ddress, cltj@digir<11.com. Inquiries
can ,1lso be tmcle bv calling thejollrnal

oftice :1r 508-486-2538.

Comments on the conretlt of anv f'aper
;1rc 11·ckomed and mav be sent to the
managing editor at the publishcd-lw or
electronic mail address.

Copvright © 1996 Digital Equipment
Corpor<1tion. Copying ll'itholl[fcc is per­
mitted provided that such copies arc ll1<1de
for usc in cclucarional institutions bv t:JCulrv
menJbcrs and arc nor distributed for com­
nH:Tei<li adv�ntage. Abstr:JCting 11·ith credit
of Digital Equipment Corporation's ;1uthor­
ship is permitted.

The intt)rtnation in thc.fouma/ is subject
ro change ll'ithour notice Jnd should not
be construed .1s .\ cnmmittnenr bv Digit<11
Equipment Corporation or lll' the comp:1·
nics herein rq1resented. Digital Equipment
Corpor.Hion assumes no responsibilitY for
atw errors that lll<1)' :1ppear in thejounwl.

ISSN 089R-90 I X

Documetlt,Jtion ::--lumber �:C-;-...17285-18

Book production \\'aS done bv Qu<HHic
Communications, Inc.

The folloll'ing arc rradem,11·ks of Digital
Equipment Corporation: AlphaServcr,
AlphaStation, Alt<1Vista, DEChub, DECm,ne,
DEC Notes,DECsystem-10, DECt<1pe,
DECl'S, DECII'rirer, Di&it<11, the DIGITAL
logo, (;ICAswitch, GI(;J, HSC, HSZ,
J-11, KA10, KJ, LA, LN03, LQP03,
LSI-II , MicroVAX, MicroVMS, MINC,
Open VMS, P ATH WORKS, PDP, PDP-11,
POLYCENTER, Q-bus, RC, RC25, RK,
RL, RM, !U', ltSTS/E, RSX-11 M, RT-11,
lc\01, RX02, RZ, TM, TruCiusrer, TS,
TU, UNIBUS, VAX, VAXclustcr, VAXmJte,
VAXsr.nion, VMS, and VT.
A I X, DB2, IBM, L.otus Notes, l'oll'crPC,
<1nd RlSC Systcm/6000 are registered
trJdemarks <1ncl Svstcm/360 is a rr.1denurk
oflnternation;J] Business MKhines
Corporation.

BASIC is a registered tr.1ckm;1rk of the
trustees of Dartmouth College, D.I3.A.
Dartmourh College.

BSD is :1 rr,1clemark of rhe Uni1·crsit1' of
Calitornia ;lt lkrkelcv.

·

CHALLENGE is a registered tr�ckmark
ot'Silicon (;r;1pbics, ftK.

Hcll'lctt-Packard, HP, c1nd HP-UX .11-c
registered tradctnarks ot'Hcll·ktt-Packard
Companv.

H im.11�1'<1 and Tandem at-e registered track­
marks ofT.111ckn1 Computers, Inc.

INI-'ORNIIX and INI-'ORMIX-OnLinc
<lrc registered tr<Hkmarks of I ntimnix
Softii'.HT, Inc.

KAP is ;1 tradem,nk ofKuck & Associates,
lnc.

J\t!EMORY CH ANNEL is <1 tr<1detmrk ot·
Encore Computer C:orpor:Hion.

Microsoh and Visual C++ .He registered
trademarks and Windo11·s and Win doll's NT
.liT tradem,Hks of Microsoft Corporation.

MIMIC is a trademark of Sierra
Geophvsics, fne.
Mosaic is a tr.1dcm;nk of Mosaic
Communications Corpor;Jtic>n.

Orack7 is :1 tr;Jckmark ofOr�de Corporation.

SoLlris ;111d S l't\ RCcelltcr ;H·e rcgistuecl
trademat-ks of Sun Minosvstcms, Inc.

SPFCint is <1 tradcm:Jrk of the St�nd;1rd
Pcrtimn:HKe b·;1luarion CotHKil.

Svbasc is <1 registered tr;1tkmark of
Svbase, Inc.

TPC-C is a tr;�ckmark of the Tt-;1nsacrion
Processing Pt'rt()rm;lncc Coun..:il.

Tuxedo is a registered tr;Hkmark of BE;\
Svstems, Inc

UNIX is :1 registered tradem.Jrk in the
United St,Jtcs ;md in other coutJtries,
lic·et1scd exclusi,·ch• through X/Opcn
Comp.1n1' I .rd.

Contents

Foreword

INTERNET PROTOCOL V.6

Internet Protocol Version 6 and the Digital UNIX
Implementation Experience

PRESERVATION OF HISTORICAL COMPUTER SYSTEMS

Alan G. Nemeth

Daniel T. Harrington, James P. Bound,
John J. McCann, and Matt Thomas

Preserving Computing's Past: Restoration and Simulation Maxwell M. Burnet and Robert M. Supnik

FORTRAN FOR PARALLEL COMPUTING

Modern Fortran Revived as the Language of Scientific
Parallel Computing

William N. Celmaster

SERVER PERFORMANCE EVALUATION AND OPTIMIZATION

Performance Measurement of TruCluster Systems
under the TPC-C Benchmark

Performance Analysis Using Very Large Memory
on the 64-bit Alpha Server System

INTERNET COLLABORATION SOFTWARE

Building Collaboration Software for the Internet

Judith A. Piantedosi, Archana S. Sathaye, and
D. John Shakshober

TareefKawaf, D. John Shak:shober, and
David C. Stanley

Dah Ming Chiu and David M. Griffin

3

5

23

39

46

58

66

Digital Technical Journal Vol. 8 No. 3 1996

2

Editor's
Introduction

This issue presents papers on diverse
computing topics-the Internet,
modern Fortran language extensions
for parallel computing, and perfor­
mance measurement of AlphaServer
64-bit RISC systems-each repre­
senting an area of engineering
strength for Digital. Also in the issue
is a thought-provoking paper on the
preservation of historical computers.

The opening paper on the Internet
Protocol version 6 examines the status
of today's Internet and looks toward
its future. Digital is one of several
companies participating in the work­
ing groups of the Internet Engineer­
ing Task Force on the transition to
a new protocol. Dan Harrington,
Jim Bound, Jack McCann, and Matt
Thomas report what they have learned
from designing an IPv6 prototype,
and compare and contrast the new
version with the existing protocol,
IPv4. The most important difference
between the versions-one that will
relieve the strain on the Internet-is
the increase in 1Pv6 of address size
from 32 bits to 128 bits. The authors
conclude with a look at future work
in such areas as security and data link
interfaces for ATM.

Our next paper-an unusual one
not only for the issue but for this
Journal-temporarily moves the dis­
cussion from computing's future to
its past. Max Burnet and Bob Supnik
argue that an understanding of com­
puting's past is vital to its future. The
authors present two computer preser­
vation techniques: restoration and
simulation. To exemplify issues in
restoration, they review the status of
a project to restore a large UNIBUS­
based PDP-11 system. The section

Digital Technical Journal

on simulation describes the types and
purposes of simulators and presents a
case study of SIM, a simulator imple­
mented in C for the study of historical
computer architectures.

In a paper on modern Fortran, Bill
Celmaster demonstrates that today's
Fortran is a viable mainstream lan­
guage for parallel computing. Since
its development more than 40 years
ago, Fortran has been extended by
language designers to meet the needs
of users, particularly the needs of
scientific/technical users who require
mathematical expressivity and code
optimization. Bill reviews key features
of Fortran 90, recent efforts to stan­
dardize parallel extensions to Fortran,
and shared-memory parallelism. He
includes three case studies that illus­
trate the data parallel and single­
program-multiple-data styles of
programming.

Two papers describe testing
methodologies that resulted in lead­
ership system performance under
the TPC-C benchmark for a cluster
system and for a single-node system.
The first paper presents the evalua -
tion of an AlphaServer 8400 5 /3 50
TruCluster configuration support­
ing the Oracle Parallel Server data­
base. Judy Piantedosi, Archana
Sathaye, and John Shakshober dis­
cuss the system tuning and the record­
setting results of their work. The sec­
ond paper, byTareefKawaf, John
Shakshober, and Dave Stanley, looks
at two optimization techniques­
locking intrinsics and OM profile­
based optimization-applied to a
large database program running in
the very large memory (VLM) envi­
ronment on an AlphaServer 8400

Vol. 8 No. 3 1996

system. The results of these optimi­
zations are significant increases in
throughput and database-cache hit
ratios.

The development of Alta Vista
Forum is the subject of our final
paper. Unlike other groupware prod­
ucts, Alta Vista Forum uses the World
Wide Web as an infrastructure to
facilitate the rapid development of
collaboration applications for NT and
UNIX systems. Dah Ming Chiu and
Dave Griffin explain this design deci­
sion and share their experiences with
usability studies, an interpretive lan­
guage (Tel) for building the toolkit,
and the inclusion of an indexing and
search engine.

The next issue of the journal will
feature the new AlphaServer 4100
high-performance midrange server
system, a new implementation of
MEMORY CHANNEL, and large­
database technologies in the VLM
environment.

r~
Jane C. Blake
Managing Editor

Foreword

Alan G. Nemeth
Corporate Consultant
UNIX Architecture and Technology

"The Internet is dying." I feel quite
confident you will regularly see articles
with this message in the industry and
general press over the next few years.
The message won't be as new as the
authors of the articles might believe,
and the work to remove the most
frequently identified problems was
begun years ago within the Internet
Engineering Task Force (IETF).
Internet Protocol version 6 (IPv6)
is a large family of protocols that
form the basis of the IETF response
to a set of problems identified in the
early 1990s and for which the need
is accelerated by the explosion of
Internet usage.

One of the major concerns about
the current Internet is the limited
amount of address space. The under­
lying address for IP endpoints is 32
bits wide, permitting a total of 4 bil­
lion distinct addresses. Although this
number seems large (and it seemed
truly gigantic in the early 1970s when
the width was selected), it is currently
a real, practical barrier to current
deployment patterns. Large users
of Internet addresses can no longer
get the address space they need for
assignments. Because the Internet

has run as a decentralized organization
over the years, there is no effective
central administration to support com­
petition for scarce resources such as
address space. Instead, the response of
the community is to provide resources
sufficient to keep allocation as a low­
overhead activity. So IPv6 defines an
address space of 128 bits. This cur­
rently seems like a gigantic number!

But limited address space is hard to
build into a persuasive case for change.
End users are much more likely to be
concerned about the local problem
of getting just "one more address,"
rather than the problems of keep
ing the Internet as a whole alive and
functioning. So the 1Pv6 design delib­
erately incorporates a set of func­
tionality improvements that provide
attractive end-user capabilities. 1Pv6
includes much easier schemes for
assigning addresses, which will reduce
the administrative burden for users
and their network managers. IPv6
provides a better framework for
encryption and an expectation that
it will be widely available and used.
And IPv6 provides some systematic
mechanisms for describing requests
for specific quality levels in the service
offered by the transport provider.
These capabilities will address some
very real, practical problems that
do afflict individual end users of the
Internet.

However, there is no expectation
that it is acceptable to switch the set
oflnternet users to 1Pv6 either simul­
taneously or even over an extended
time period. 1Pv6 must interoperate
with the current installed 1Pv4 pro­
tocols for an indefinite period. This
implies services that translate between
the different addresses (and address

assignment approaches that ease
mechanical derivation ofIPv6
addresses from 1Pv4 addresses),
dual protocol stacks to permit com­
munication with both protocols
depending on the capabilities of the
participants in the conversation, and
schemes to accommodate security
mechanisms and quality of service
requests.

The entirety of1Pv6 represents
a large implementation effort to
be undertaken by many different
organizations. The Internet repre­
sents the largest example I know of a
distributed computation that has sur­
vived for 27 years. (I date from 1969
when the first ARPANET [Advanced
Research Projects Agency Network]
nodes were installed.) With a few
notable exceptions, this computation
has run continually, despite constant
changes in hardware, software, imple­
menters, and operators. It has sur­
vived explosive growth far beyond
the designs of its originators. It has
done so with a volunteer organiza­
tion driving the development direc­
tion. The community spirit has been
crucial to making this work. 1Pv6
is an example of that community
at work; no one organization can
implement it all, either at a product
level or at a deployment level.

The 1Pv6 paper in this issue
describes the technical design needed
to build an 1Pv6 implementation
for the core protocols under the
Digital UNIX operating system.
Digital has been one of the leading
prototype builders of the design spec­
ifications as they have evolved in the
industry debates. At the time the
Internet Protocol Next Generation
(IPng) Directorate officially adopted

Digital Technical Journal Vol. 7 No. 3 1996 3

4

key elements of the protocol,
Digital's implementation was
the only one running to demonstrate
that the design was indeed feasible.
But we don't believe that we can
implement all the pieces of1Pv6 as a
single company. Therefore we choose
to share the implementation experi­
ence through this paper to aid others
in their efforts to deal with the imple­
mentation problems. We also don't
claim completeness; the full suite of
specifications for IPv6 is evolving, and
the software to implement it is large.
We fully expect that portions of our
ultimate product offerings will be
developed by others in the industry.

The long-term evolution of the
Internet captured in the IPv6 imple­
mentation paper is but one example
in this issue of the extent to which
computing now has a history that
gives us much insight into the future.
Certainly the paper by Supnik and
Burnet is an explicit trip through
computing history. The re-creation,
both physical and logical, of comput­
ing systems of the past can only help
remind us that the artifacts we create
have a longer life than we anticipate.
As our programmers write new code,
or our hardware designers produce
new architectural approaches, or our
storage designers push the bound­
aries on new media technologies, do
they consider the imponderables of
running these systems 25 or more
years in the future? The view of archi­
vists trying to preserve this history
reminds us of the difficulty of preser­
vation after the fact and of the amaz­
ing duration of design decisions.

The paper on the evolution of
Fortran is yet another example of the
rich history of computing. Here we

Digital Technical Journal

see clearly the evolution of a key
language to accommodate the chang­
ing patterns of system architectural
designs and parallel program con -
cepts. The computer industry fre­
quently develops commercially
important programs by evolution­
the 100,000-line program that 10
years later has become 10 million
lines of code in an assortment of
languages and computing styles.
Here the venerable Fortran (first
introduced in 1954!) adds support
for some of the latest approaches to
fast system interconnect represented
by MEMORY CHANNEL and the
parallel architectures of clusters of
SMP systems.

MEMORY CHANNEL reappears in
the paper about TPC-C performance
on TruCluster systems. This paper,
one of a pair on the issues of tuning
a commercially important benchmark,
presents an attractive model for the
benefits in performance that can be
derived from a very fast interconnect
and software structures to match.
The performance levels achieved
shatter world records on a bench­
mark that has had extensive atten­
tion and work.

The other paper on TPC-C per­
formance with very large memory
(VLM) illustrates the truth of an old
design maxim, "If memory is get­
ting cheaper, use more ofit!" When
Digital first built a 2-gigabyte (GB)
memory board, it took more than
a million dollars' worth of DRAM
chips to populate the initial instance.
However, memory prices have con­
tinued to drop sharply, and today
over 40 percent of the AlphaServer
8400 systems ship with 2 GB or more
of memory. The memory prices will

Vol. 8 No. 3 1996

continue to come down, and the
insights offered in this paper will help
in understanding where additional
memory can provide real benefits to
customer workloads.

The final paper in the collection is
on the Alta Vista Forum approach to
collaboration among groups exploit­
ing the Internet and WWW technolo­
gies and brings us back around to the
initial thoughts in this foreword. The
ubiquitous nature of the Internet per­
mits and encourages tools such as this
that utilize computer systems in new
ways. This approach builds on the
fabric that we emphasized in the IPv6
paper but sees the Internet as a tool
and a component of a larger solution
and shows how to exploit these capa­
bilities to allow new ways of working.
Using imagination and building on
the work of others are characteristic
of the approach taken by those who
are catalysts in the industry. The
paper demonstrates how easy it is to
build a system that would have been
a major project just five years ago.
This ease of construction is a benefit
of the programming techniques and
infrastructure investments and a spur
to keep doing more ofit.

Internet Protocol
Version 6 and the Digital
UNIX Implementation
Experience

In the early 1990s, the Internet community rec­

ognized that the current TCP/IP architecture was

not capable of sustaining the explosive growth

of the Internet. In July 1994, the Internet Protocol

next generation (IPng) directorate responded to

the problem with the Internet Protocol version 6

(1Pv6) as the replacement network layer proto­

col. Working groups of the Internet Engineering

Task Force (IETF) then began to build specifications

that would address the needs for an expanded

Internet address space, an increase in router table

size, and new technology features. As a contrib­

utor to these efforts, Digital has implemented

1Pv6 on the Digital UNIX platform. The primary

goal of Digital's efforts has been to evaluate the

technical feasibility of the proposed architecture

and provide critical feedback to the standards

development process in the IETF. The secondary

goal has been to evaluate system design alter­

natives to gain the experience needed to allow

Digital to incorporate this new architecture into

existing products.

I
Daniel T. Harrington
James P. Bound
John J. McCann
Matt T homas

As one ofits ongoing advanced development efforts in
networking technology, Digital has built an Internet
Protocol version 6 (1Pv6) prototype for the Digital
UNIX operating system. In this paper, we describe the
design of the Digital UNIX 1Pv6 prototype and its his­
tory relevant to the Internet Protocol next generation
(IPng) effort in the Internet Engineering Task Force
(IETF). We also compare its relationship with the
existing Transmission Control Protocol/Internet
Protocol (TCP /IP) suite. We emphasize techniques
and technologies that were developed to accommo­
date particular aspects of the 1Pv6 architecture and
issues that required further discussion in the IETF. In
particular, we discuss the modifications to the trans­
port layer modules to use two distinct network layer
protocols, along with the implications to the UNIX
socket layer and applications. In addition, we describe
the new 1Pv6 and Internet Control Message Protocol
(ICMP) network layer modules, including their inter­
actions with both the data link layer and the 1Pv4
protocol. We review the new Neighbor Discovery
Protocol and its algorithms and give details of its
implementation.

To accommodate the dynamic nature of future net­
works, 1Pv6 includes mechanisms to do both stateless
and stateful address configuration, as well as router
discovery; we explain the design of a user-mode
process that implements these functions. The paper
includes a discussion of enhancements to well-known
1Pv4 services, such as dynamic updates to the domain
naming service (DNS), as well as general techniques
to support the transition of existing applications. The
paper concludes with an overview of what we have
learned in this project and summarizes our current sta­
tus and future work, including efforts in nonbroadcast
multiple access (NBMA) data link technologies such as
asynchonous transfer mode (ATM) and resource reser­
vation protocols.

Internet Protocol Next Generation

In the early 1990s, the members of the Internet com­
munity realized that the address space and certain
aspects of the current TCP/ IP architecture were not
capable of sustaining the explosive growth of the

Digital Technical Journal Vol. 8 No. 3 1996 5

6

Internet. Within the IETF, several efforts were under­
taken to both study and improve the use of the 32-bit
Internet Protocol (IPv4) addresses, as well as to iden­
tify and replace protocols and services that would limit
growth. The 32-bit addressing architecture in the net­
work layer was quickly determined to be the crux of
the problem, with both hardware and human limits
approaching fundamental boundaries. 1 IPv4 addresses
are unevenly allocated in blocks that are often too
large or too small; they are also difficult to change
within any existing network.

When the IETF called for replacement proposals,
Digital participated in this industry-wide effort by
submitting white papers outlining issues and by devel­
oping and evaluating prototypes of the various pro­
posals. Digital also participated in the IETF working
groups and in the IPng directorate, which had the
responsibility for making the ultimate decision. In July
1994, the IPng directorate selected the Internet
Protocol version 6 (IPv6) as the replacement network
layer protocol, and IETF working groups began to
build specifications. "The Recommendation for the
IP Next Generation Protocol" summarizes the candi­
dates and explains the selection of this protocol. 2

Digital UNIX Prototype

The current Digital UNIX IPv6 prototype project is
Digital's most recent addition to an ongoing effort to

develop and evaluate the competing IPng proposals.
This began with the Simple Internet Protocol (SIP),
which used eight octet addresses. SIP was later melded
with another early proposal and became known as
Simple Internet Protocol Plus (SIPP), the direct
antecedent of IPv6.3 The primary goal of Digital's
efforts has been to evaluate the technical feasibility of
the proposed architecture and provide feedback to the
IETF working groups. This is critical to the standards
development process in the IETF, which requires mul­
tiple independent and interoperable implementations
of a specification before it may become an Internet
standard. An additional goal has been to evaluate sys­
tem design alternatives to gain the experience needed
to allow Digital to incorporate this new architecture
into existing products. Digital has made the prototype
available to researchers within the company as a source

VERSION I PRIORITY I
PAYLOAD LENGTH I

code distribution and more recently has begun to sup­
ply binary kits for early adopters and evaluators in the
Internet community. As the IPv6 protocol and archi­
tecture matures, we have begun to focus on how to
best integrate the code into the Digital UNIX product.

/Pv6 Overview
To understand the system-wide impact of IPv6, we
review some ofits new features and contrast them with
the IPv4 model. IPv6 is both a completely new
network layer protocol and a major revision of the
Internet architecture. At both levels, it builds upon
and incorporates experiences gained with IPv4.

Figure 1 shows the evolution of the packet format
into the new IPv6 header. It retains some fields (ver­
sion, source, and destination address), clarifies the role
of others (for example, the Time To Live [TTL] field
is renamed the Hop Limit), and introduces new ones
(such as Flow ID) with as yet untapped potential. The
next header field allows for modular construction of
complex packets: different header types can be chained
together to provide specialized functionality, includ­
ing security and source routing. Finally, all headers are
structured to allow 64-bit alignment, which should
allow optimal processing both at source and destina­
tion systems, as well as in transit.4

The most striking departure from 1Pv4 is the
address size: it has increased from 32 bits to 128 bits.
The IPv6 addressing architecture is rich, with prefixes
for multicast addresses and predefined scopes for both
unicast and multicast addresses. One special type of
unicast address is the link-local address, which permits
communications with only those systems directly con­
nected on the same link. This allows a standard boot­
strapping mechanism, so that systems can learn about
neighbors and services before a mutable address is
assigned to an interface. Various address assignment
options have been defined, including hierarchical
models based upon regional registries and service
provider identifiers.5

•
6 In each case, care has been taken

to ensure proper route aggregation, which will help
yield more efficient backbone router performance.

Multiple means of acquiring addresses have been
defined for IPv6 addressing, with the goals of allmving
flexibility through different administrative policies

FLOW LABEL

NEXT HEADER I HOP LIMIT

SOURCE ADDRESS

Figure 1
IPv6 Header

Digital Technical Journal

DESTINATION ADDRESS

Vol. 8 No. 3 1996

and, perhaps more important, of demanding that net­
work address reassignment be supported throughout
the architecture. The two new addressing services are
Stateless Address Autoconfiguration and the stateful,
transaction-based Dynamic Host Configuration Pro­
tocol version 6 (DHCPv6).7

•
8 In the stateless model,

address prefixes are learned by listening for router
advertisement packets. Addresses are formed by com­
bining the prefix with a link-specific token such as the
48-bit Ethernet hardware address. In the stateful pro­
cedure, hosts may request addresses, configuration
information, and services from dedicated configura­
tion servers, with routers potentially serving as relay
stations during the initial phase. In both cases, the
resulting addresses have associated lifetimes, and sys­
tems must be prepared to both learn new addresses
and release expired addresses. Combined with the
ability to register updated address information with
DNS servers, these mechanisms provide a path toward
network renumbering, a goal that has proved difficult
to achieve in the IPv4 world.

Finally, the Internet Control Message Protocol ver­
sion 6 (ICMPv6) was developed.9 This specification
aimed to merge the functions of two distinct IPv4 pro­
tocols for reporting errors and status, ICMP for uni­
cast packet transmission and the Internet Group
Message Protocol (IGMP) for multicast traffic.

The messages defined in this protocol are catego­
rized as either error or informational, with a family of
messages in the second group used to provide the
Neighbor Discovery Protocol. 10 Neighbor discovery
serves multiple purposes with the overall theme of
providing a system with topological and environmen­
tal hints. For example, link-layer address resolution,
router discovery, destination address redirection, and
address autoconfiguration mechanisms are all specified
using neighbor discovery packet types.

Although the network layer did experience the largest
amount of change, Figure 2 shows that the effects of
this work touch nearly all aspects of the Digital UNIX
system. We point out examples of decisions made due to
our fundamental design philosophy, which is based
upon integration with the UNIX system framework,
modular and extensible software, support for multiple
operational policies, and a desire to take advantage of
the Alpha platform without compromising portability.

In the following sections, we study these topics in
depth, beginning with the network layer, then cover­
ing the transport layer modifications and the new
neighbor discovery algorithms. After that, we discuss
address autoconfiguration mechanisms and their
effects upon the system. We conclude with services
that will be affected by the transition from IPv4 to
IPv6 such as the socket application programming
interface (API) and DNS.

G
USER

IP-BASED
APPLICATIONS

TRANSITION
MECHANISMS

NETWORK
COMMANDS
AND UTILITIES

KERNEL

TRANSITION
MECHANISM

! SOCKET LAYER ! 1..! __ s_Ec_u_R_1_TY _ __.

DYNAMIC
ADDRESS

IPV6/IPV4
TUNNELS

Figure 2

88
I NETWORK LAYER I

LINK-LAYER
MODULES

Base Platform Changes

Network Layer

ROUTING TABLE
AND NEIGHBOR
CACHE

NEIGHBOR
DISCOVERY

In this section, we review the processing requirements
of the IPv6 modules, including ICMPv6, extension
header options, and fragmentation. An early design
decision was made to base the networking subsystem
on the Berkeley Standard Distribution (BSD) 4.4
model and code base, which allows great flexibility in
dealing with multiple network layers. 11 This also has
the advantage of providing support for variable-bit­
length netmasks (also known as CIDR-style netmasks,
from Classless Inter-Domain Routing), which are
appropriate to both IPv4 and IPv6. 12 We have also
tried to take maximum advantage of the 64-bitAlpha
architecture when implementing IPv6, while making
certain that this implementation would run on 32-bit
CPUs as well. For example, the checksum routines
operate on 32-bit quantities (allowing the carry to
overflow into the upper 32 bits of a 64-bit register).
The checksum routine is also designed to allow it to be
issued to multiple Alpha execution units, which
remains a topic for further investigation.

Adaptations to Existing IP and ICMP Routines

The IPv6 and ICMPv6 routines are completely
independent of the corresponding IPv4 and ICMPv4
routines, and the processing styles have distinct differ­
ences. In IPv6, the incoming packet is treated as being
read-only, while the BSD IPv4 code manipulates fields
within the IPv4 header. We also avoid unnecessary use
of the m_pullup routine (which consolidates chained
memory buffers into a single large buffer) because this
could cause the packet to be needlessly lost. Finally,
instead of passing numerous arguments when calling
from function to function, a common data structure is

Digital Technical Journal Vol. 8 No. 3 1996 7

8

used to store necessary data and pointers; for most
function calls, it is only necessary to pass a pointer
to this structure. This reduces the stack overhead and
also yields modular and easily extensible subroutines.

1Pv6 has a dedicated interrupt processing thread,
and received 1Pv6 packets are placed onto their own
interface input queue (ifqueue). When an 1Pv6 packet
is taken off the ifqueue, basic validity tests are done;
only after passing them is the packet tested to see if it
is directed to a unicast or a multicast address.

If the packet is to a multicast address, the destina­
tion is compared to the enabled 1Pv6 multicasts for the
interface over which the packet was received. If the
destination matches, the packet is passed up to normal
packet processing; otherwise, a copy of the packet is
passed to the multicast forwarder.

Similarly, unicast packets are checked to see that the
destination matches one of the system's addresses. In
the special case of the packet being targeted to a link­
local address, only the link-local address for the receiv­
ing interface is compared. If there is an exact match,
the packet is processed normally; otherwise, it is
passed to the unicast packet forwarding routine.

Header Processing
After a packet has been matched to a local address, the
1Pv6 headers must be processed, independently of
whether the packet is multicast or unicast. This pro­
cessing is done in a common routine that handles all
types of1Pv6 headers. A number of actions may result
from the verification and analysis phase, including an
ICMPv6 packet being sent back to the source, the
packet being silently dropped, or being forwarded to
another node due to a source route. If none of these
possibilities occurs, the next 1Pv6 header in the packet
is processed.

If the header is a known 1Pv6 header type, the
appropriate routine is called. If not, this packet is
probably destined for another protocol module such
as TCP, the User Datagram Protocol (UDP), or
ICMPv6. The header type is looked up in the list of
active protocols and passed to the matching protocol
input routine. If no entry is found, an ICMPv6 error
may be sent back.

Header Options
Since the hop-by-hop and destination node headers
have the same format, a common routine processes
both types. As the routine processes each option,
it validates the option. If this fails, it checks whether
an ICMPv6 parameter problem error should be
sent, whether the packet should be discarded, or the
option ignored.

/CMPv6 Processing and Checksums
Upon receipt of an ICMPv6 packet from a node in the
network reporting an error or other information, it is

Digital Technical Journal Vol. 8 No. 3 1996

first validated for correct packet format and checksum.
The packet is then further processed based upon its
ICMPv6 type value. Ifit has an ICMPv6 error type (i.e.,
type value less than 128), the appropriate notifications
are sent to the affected protocol. Neighbor discovery
packets, which are all informational, have a number of
additional consistency checks, and the packet is
dropped if it fails them. After the ICMPv6 packet has
been processed, it is also sent to any ICMPv6 raw sock­
ets that have requested reception of that type. The
exception to this rule is an ICMPv6 echo request
packet, which is not copied to the raw sockets.

When an ICMPv6 echo request is received and
validated, the ICMPv6 echo response packet is pre­
pared. In the typical case, it is identical to the echo
request except for the ICMPv6 type and checksum
value. The exception would be an echo request sent to
a multicast address, in which case a source address
must also be selected. Rather than computing the
checksum on the new packet, the received checksum is
simply adjusted down by 1, since the sole difference
between the two packets is the value of the ICMPv6
type fields, and ICMPv6 echo request and echo
response types differ by 1.

1Pv6 requires all nodes to support multicasting,
specifically level 2 as defined in "Host Extensions for
IP Multicasting."13 Although this was written for 1Pv4,
the same general algorithms are used for 1Pv6. One
notable exception to this is that the multicast addresses
used for neighbor solicitions and the predefined link­
Jocal multicasts such as all-nodes and all-routers do
not require periodic status reports.

Path Maximum Transmission Unit Discovery
One of the significant differences between 1Pv4 and
IPv6 concerns fragmentation. In IPv6, fragmentation
may be done only by the node from which a packet
originates. Forwarders, which may be routers or hosts
acting upon source routing headers, are not permitted
to fragment packets. The burden is on the originating
node to send packets that are small enough to fit
through all the links along the paths to their destina­
tions, where each link type may have a different maxi­
mum transmission unit (MTU). To ease this burden,
1Pv6 defines a minimum link MTU of 576 bytes. A
node may use this as the upper limit on packet size and
be assured that its packets are sufficiently small to
reach their destinations.

The minimum MTU of all the links in a path
between two nodes is referred to as the path MTU. 14 In
many cases, the path MTU will exceed 5 7 6 bytes, and it
is desirable to send the largest possible packets. IPv6
provides a mechanism by which a node may discover
a path's MTU. 15 When a forwarder cannot forward a
packet because the packet is too large for the next hop's
link MTU, it sends an ICMPv6 Packet Too Big (PTB)
message back to the source of the packet. The PTB

message contains the MTU of the constricting link.
The source node adjusts its packet size to fit through
this link.

Path MTU information is kept on a per-destination
basis and is stored in the routing table entry for a given
destination. Packets sent on that route will be sized
according to the path MTU value. When a PTB mes­
sage is received, the appropriate route is updated to
contain the new path MTU value as reported in the
PTB message, and a timer is started. When the timer
expires, the path MTU value is increased to the
(known) MTU of the first hop link. This allows the
node to detect increases in the path MTU.

Switches are provided to disable path MTU discov­
ery system-wide, on a per-destination basis and on
a per-socket basis. When path MTU discovery is dis­
abled, packets are Limited to 576 bytes.

Fragmentation
A packet that is larger than the MTU of the path on
which it is to be sent must be fragmented. Unlike IPv4,
the IPv6 header contains no fields to carry fragmenta­
tion information. Instead, this information is carried
in a specialized extension header, called the fragment
header. As shown in Figure 3, the fields in the frag­
ment header include an offset, in eight octet units, and
an identifier common to all fragments of the original
packet. The M (managed) flag is used to indicate inter­
mediate fragments; the terminal fragment has the bit

RESERVED
\

NEXT HEADER I RESERVED I FRAGMENT OFFSET I \ I M

IDENTIFICATION

Figure 3
Fragment Header

ORIGINAL PACKET

cleared. Note that the amount of data in a fragment
packet is derived from the total packet length.

The first step in the fragmentation process is
to identify the fragmentable and unfragmentable parts
of the original packet (see Figure 4). The unfrag­
mentable part of the packet consists of the IPv6 header
and any extension headers that must be processed by
each node traversed by the packet (e.g., hop-by-hop
header, routing header). The fragment header is
appended to the unfragmentable part. The rest of the
packet is divided into fragments, and each fragment is
appended to a copy of the unfragmentable part plus
fragment header.

When the fragment header is appended to the
unfragmentable part, two fields in the unfragmentable
part must be updated. First, the payload length field in
the IPv6 header must be updated to reflect the length
of the fragment packet. Second, the next header field
in the last header of the unfragmentable part must be
changed to indicate that a fragment header follows.

A copy of the unfragmentable part is created for
each fragment packet. As an optimization, Digital
UNIX allows portions of a packet to be shared among
copies of the packet, to avoid an actual data copy. As
with IPv4, care must be taken to ensure that fields
being updated are not contained in shared buffers.
This is typically accomplished by copying the portions
that must be updated into a private memory buffer
(mbuf). Unlike IPv4, the unfragmentable part may
not fit in a single mbuf, and the IPv6 fragmentation
code must be capable of handling this case.

To reduce the possibility of fragment loss at the
source node, all the fragment packets are built before
any is passed to the data link for transmission.

A question that arises here is how big should
the fragment packets be? Should they be sized accord­
ing to the path MTU, or should they be limited to
576 bytes? The former yields the desirable larger

FRAGMENTABLE PART

UNFRAGMENTABLE FIRST SECOND LAST
FRAGMENT

Figure4
Fragmentation

PART FRAGMENT FRAGMENT

FRAGMENT PACKETS

UNFRAGMENTABLE FRAGMENT FIRST
PART HEADER FRAGMENT

UNFRAGMENTABLE FRAGMENT SECOND
PART HEADER FRAGMENT

UNFRAGMENTABLE FRAGMENT LAST
PART HEADER FRAGMENT

Digital Technical Journal Vol. 8 No. 3 1996 9

packets, while the latter avoids undesirable fragment
loss (due to the fragment packet being too big). The
Digital UNIX 1Pv6 prototype supports either choice
on a system-wide, per-destination, or per-socket basis.
This is an example of separation of mechanism from
policy, a basic guideline being used across this project.

Reassembly
The reassembly process reconstructs the original
packet from fragment packets. Fragments belonging
to the same packet are identified by a combination of
source IP address, next header type (first header of the
fragmentable part) and fragment identifier. Individual
fragments are queued within the network layer until the
original packet can be completely reassembled, at which
point it is passed to the appropriate protocol module.

When all fragments have arrived, the original packet
can be reassembled. A single copy of the unfragment­
able part is kept, and the data from each fragment
packet is appended. The payload length field of the IPv6
header is updated to reflect the length of the reassem­
bled packet, and the next header field of the last header
of the unfragmentable part is restored to reflect the first
header in the fragmentable part.

As with the fragmentation code, care must be taken
so that fields being updated are not in buffers shared
with other copies of the packet.

When the first fragment of a packet arrives, a timer
is started. If the timer expires before that packet is
complete, the fragments are discarded. If the offset
zero fragment has been received, an ICMPv6 error
message is sent.

Forwarding and Routing
If a received packet does not match one of the system's
addresses and the system is not acting as a router, the
packet is silently dropped. Otherwise, an attempt is
made to forward the packet. The first step in forward­
ing is to do a lookup in the routing table; the type of
lookup depends on whether the packet contains a
nonzero flow label. If it does, the lookup is based on
both the source address and the flow label; otherwise
the destination address is userl. If the lookup succeeds
and the length of the packet fits within the MTU of the
resultant route and interface, the packet is transmitted
to the next hop as indicated by the route. Otherwise
an appropriate ICMPv6 error is sent back to the origi­
nating node.

Tunnels
Tunneling is a mechanism that allows packets of one
network type to be encapsulated and forwarded within
a network layer packet of the same or a different type.
IPv6 packets can be tunneled over either IPv4 or IPv6
networks, as may IPv4 packets.16

•
17 The tunneling rou­

tine takes as input a packet, prepends the appropriate

10 Digital Technical Journal Vol. 8 No. 3 1996

IP header for the network over which the packet will
be tunneled, and transmits the resultant packet over
that network. Tunnels are unidirectional; there need
not be a corresponding tunnel in the reverse direction.

Rather than having multiple tunnel interfaces (one
for each possible combination of protocol Y over
protocol X), the Digital UNIX implementation uses
a single tunnel interface. This method was the sugges­
tion of Keith Sklower of the University of California
at Berkeley. 18 When the interface is initialized, only
automatic tunneling of IPv6 over 1Pv4 is enabled. 19

To configure a static tunnel, where fixed end points
are used, a static route is added to the routing tables
with the proper destination and gateway (tunnel end
point) addresses.

When a packet is presented to the tunnel interface,
it looks up the route entry of the destination address.
The route contents tells the tunneling routine how the
packet is to be encapsulated and forwarded. The route's
gateway address indicates what underlying network to
use, and the route's destination address indicates what
type of packet is being tunneled.

When a tunneled packet is received, the initial
header is stripped and the resulting packet is placed on
the appropriate IPv6 or IPv4 ifqueue.

Transports

One of the strengths of the IPng effort was the com­
mitment to preserve the well-understood transports,
TCP and UDP, upon which a wealth of applications
have been built.

The IPv6 specification calls for three particular
requirements of upper-layer protocols:

1. The pseudoheader checksum must accommodate
larger addresses.

2. The maximum packet lifetime is no longer
computed.

3. The larger 1Pv6 header(s) must be taken into
account when computing the maximum payload
size (e.g., TCP's maximum segment size (MSS]).4

In addition to these mandated modifications, we had
to make a fundamental design choice. With two differ­
ent network layer protocols in the system, each using a
different size address, our design choice could have
been to use two independent transport modules, one
for each network layer. Figures 5 and 6 show the inde­
pendent versus the integrated transport design options.

Although the independent model offers an element
of design simplicity, it wastes memory by duplicating
each transport layer function. In the Digital UNIX
implementation, these modules are implemented in
the kernel, and duplication would be expensive. Also,
the design and use of a single programming interface
to access both sets of services would be complicated.

SOCKET
LAYER

~~--------------- ! __
KERNEL

AF_INET AF_INET6

..... ~-'P_v_4~ ! ! ~~~'P_v_s~

Figure 5
Independent Transport Implementation

SOCKET
LAYER

~~ _______________ ! __
KERNEL

AF _INET/AF _INET6

V4 AND V6 TRANSPORT ..
PCB ~

..... ~-'P_v_4~__,j ~l~~'P_v_s~__,

Figure 6
Integrated Transport Implementation

The ability to maintain, let alone extend, the code base
would also suffer. Fortunately, due to the fact that
1Pv4 addresses are a well-defined subset of the entire
1Pv6 address space, it is relatively straightforward to
implement the transports so that a single set of mod­
ules can be used over both network layers.20 To accom­
plish this, we increased the storage space allocated
for addresses and separated those functions that are
dependent upon a particular network layer. We discuss
each of these issues in this section.

Storing Large Addresses
Two specific data structures must be modified to
accommodate addresses larger than the 32-bit 1Pv4
type. The first of these is the sockaddr struct, which is
used when dealing with the BSD socket layer and
passed along to user applications. The second is the
Internet Protocol Control Block (PCB) data struc­
ture, the in_pcb. In this section, we review the modifi­
cations to each structure.

A program that uses a transport does so by means of
the BSD sockets interface and passes addressing infor­
mation in a sockaddr structure. For 1Pv6, this is a
sockaddr_in6. Internally, the structure is defined so
that 64-bit alignment is preserved; however, it has the
following public definition:

str uct so ckaddr i n6 {

} . ,

u_c ha r si n6_ Le n;
u_ c har sin 6_ family ;
u short s i n6_port;
u_int s in6_ f l ow l abel;
s truc t i n6_add r s in6_add r;

Although the concept of a sockaddr is generic in the
BSD architecture, the flow label and in6_addr mem­
bers of this structure are unique to 1Pv6 and would be
used only in the AF _INET6 address family. The details
of this are specified in Reference 21 .

The in_pcb data structure is created for each socket
using TCP, UDP, or other clients of the network layer.
In addition to storing the source and destination
addresses, various other pieces ofinformation required
for proper communication are stored here, including
the port numbers, options and flags, a pointer to the
socket receiving the data, a header template, and a
pointer to the routing entry for the given destination.
For 1Pv6, this basic model has been retained, and addi­
tional information is stored. This information includes
local and remote flow labels and indicators of which
address family the application is using and which net­
work layer the transport communication is using .
Finally, a partial checksum of the transport pseudo­
header is stored here as well; its use is described in the
following section.

In addition to the explicit storage of the network
layer and address family, the fundamental technique
that facilitates the use of a common transport is the
storage of 1Pv4 addresses in an 1Pv6 format. This is
known as an 1Pv4-mapped address and is described
in "IP Version 6 Addressing Architecture. " 20 This
address format is explicitly reserved to store addresses
of systems that are capable of using only the IPv4
protocol, and thus is an appropriate form of storage
in the PCB for communications that will be sent using
the 1Pv4 protocol, as opposed to 1Pv4-compatible
addresses, which are sent using IPv6 packets. These
mapped addresses are of the following form:

0000:0000:0000:0000:0000:FF FF: 204 . 123.2 .75

These addresses are manipulated within the 1Pv4
TCP and UDP protocols by means of macros that
allow the 1Pv4 addresses to be inserted, extracted ,
or compared while in an 1Pv6 address structure
(in6_addr). As an example, the code fragment in
Figure 7 shows an address being extracted for use
in evaluating a configurable 1Pv4 socket option.

Special Transport/Network Layer Interactions
Within the integrated transport layers, the transport
protocol is treated independently of the particular
network layer being used, and network-layer-specific
functions are used to interface to either 1Pv4 or IPv6.

There are two particular instances in which the
transport layer has interactions with the 1Pv6 network
layer over and above the exchange of data packets for
input or output. These are the notification and update
of path MTU, which is required in 1Pv6, and the
potential to refresh the neighbor discovery cache
based on forward progress; i.e., if the transport knows
that data is reaching its destination, it can validate the

Digital Technical Journal Vol. 8 No. 3 1996 11

12

I *
* Te st address for 1Pv4 characteristic
*I

if Cinp->inp_netla yer == AF I NET) {
struct in_addr tmp;

tmp.s_a ddr = IN6_E XTRA CT_V4 ADDR (inp->inp_fa ddr);
if (!i n_Localaddr(tmp))

}

Figure 7
Code Fragment of a IPv4-mapped Address

current network layer path. We investigate each of
these issues in turn.

Path MTU discovery, as previously described, is
triggered by ICMP messages processed in the network
layer, with learned information stored in the routing
table. In the course of processing a PTB message, the
transport layer is notified through its control input
(ctlinput) path. This is required because the reception
of such an ICMP message indicates that the packet in
transit has been discarded, thus the protocol may need
to take appropriate action. In the case of TCP, it is
necessary to recompute the maximum segment size
and retransmit the affected data. Although this is not
required for UDP, which is a pure datagram service,
this knowledge can be made available to the corre­
sponding socket owner.

The other interaction between an upper layer and
the IP layer occurs when the upper layer, specifically
the TCP transport, wishes to indicate that communi­
cations with a destination host has made forward
progress, for the purpose of resetting the timer in the
neighbor discovery cache. This positive feedback
mechanism is described in the neighbor unreachability
detection portion of the "Neighbor Discovery for IP
Version 6" specification and prevents unnecessary
probing of the current path. 10 When acknowledg­
ments to previously sent data have been received, the
TCP updates the routing table entry by means of an
RTM_CONFIRM message. This call is handled by the
neighbor discovery module, which resets the internal
neighbor discovery state for appropriate route entries,
as described later in this section.

Source Address Selection
Many applications do not specify a particular source
address to use when initiating communications
with a remote host but instead use the symbol
INADDR_ANY, which allows the transport to select
a source address (and corresponding interface) to use.
For most IPv4 systems, this is a trivial exercise if only
a single address on a single interface exists. However,
multiple addresses per interface will be a common

Digital Technical Journal Vol. 8 No. 3 1996

occurrence on IPv6 hosts, and so the process of
choosing a source address to use becomes important.
The source address selection is typically done when
the PCB is bound to the application's socket, but this
function is also available to users of raw sockets and to
other network-layer users such as ICMPv6.

The source address selection function takes as argu­
ments a destination address and an optional interface
pointer. The latter is used when known, but in the case
of initiating a transport connection it is null. The
destination address is first checked against the list of
current prefixes that have been advertised on the
host's links, which would indicate which interface to
use. (It also indicates that the destination is a potential
neighbor, but this knowledge is not used at this
point.) Next, the address is tested for multicast versus
unicast, and then the scope (link-local, site-local,
organization-local, and global) is evaluated. Finally,
a local address of equivalent (or greater) scope than
the destination with the longest prefix match is
returned. The scope must be taken into consideration
to ensure that the destination system will be able to
successfully respond to the communication. The
longest prefix match is an attempt to ensure a reason­
able routing path between the two systems, which
could involve a complex mix of service providers.

Checksum Optimization
Although the IPv6 header itself does not contain a
checksum, the TCP, UDP, and ICMPv6 protocols do
require a 16-bit one's complement checksum calcu­
lation to validate the integrity of transmitted and
received data. Performing this checksum can be an
expensive operation. While this prototype was being
developed, some alternative mechanisms were investi­
gated, such as varying the size of the sum variables and
operand units and tight versus expanded loops. The
selected algorithm offered the best performance for
the Alpha processors, while retaining the ability to be
used on 32-bit processors.

At the point where the PCB is established for trans­
port communications, a partial checksum is calculated

for the 1Pv6 pseudoheader, which consists of the source
and destination addresses, the packet payload length,
and the next header value. This partial checksum, with
the exception of the payload length (which varies per
packet), is then stored in the PCB, to be passed along
with the pointer to user data within the memory buffer
to the checksum function. The initial checksum calcu­
lations are done using 32-bit values in 64-bit registers,
and later are collapsed to the final 16-bit sum. This is
coded as one large C statement, adding the various
pseudoheader components in piecemeal fashion. This
allows the compiler to schedule the instructions for
optimal performance. The final packet checksum can
then be computed by adding the partial checksums for
the pseudoheader with the checksum values for the
data itself, plus the payload length.

Neighbor Discovery Overview

The Neighbor Discovery specification describes sev­
eral important aspects of an 1Pv6 node's behavior in
relation to other 1Pv6 nodes connected to a common
link. 1Pv6 nodes on the same link use neighbor discov­
ery to discover each other's presence, to determine
each other's link-layer addresses, to find routers, and
to maintain reachability information about the paths
to active neighbors and remote destinations. 10 These
functions are performed with several ICMPv6 mes­
sages and options, as shown in Figure 8. The same
messages are also used for address autoconfiguration
and duplicate address detection, as described in "1Pv6
Stateless Address Autoconfiguration." 7

Interface Initialization
When an interface is initialized for use with 1Pv6, a
link-local address may be created without any external
configuration, allowing the system to begin transmit­
ting and receiving packets to nodes sharing a common
link. This is performed by appending an interface
token to the predefined link-local address prefix,
FE80::. The length and content of the interface token
is link specific. For example, the address token for an
Ethernet interface is the interface's built-in 48-bit
IEEE 802 address, resulting in a link-local address
such as FE80::0800:2BBE:6260.22

Duplicate Address Detection
Before a unicast address can be assigned to an inter­
face, a process known as duplicate address detection
(DAD) must be performed.7 This process provides a
degree of assurance that two nodes do not use the
same address on the same link. The basic mechanism
involves sending an ICMPv6 neighbor solicitation
(NS), where the target address is the address being
tested. If another node is using the address, it will
respond with a neighbor advertisement (NA). Multi­
cast is used for both NS and NA packets, so DAD can

be performed for all unicast addresses, including the
first address assigned to the interface.

While an address is undergoing DAD, it is said
to be a tentative address. It is not used to receive
packets, nor is it used in outbound packets. The
LA6_TENTATIVE flag in the in6_localaddr structure
identifies addresses in this state. When a duplicate
address is detected, the error is logged and the
LA6_DADFAILED flag is set in the in6_localaddr
structure. If a duplicate address is not detected, the
LA6_TENTATIVE flag is cleared, making the address
available for use on the interface.

Address Resolution
In 1Pv6, the function of mapping unicast 1Pv6
addresses into link-layer addresses is performed using
ICMPv6 messages. This is a departure from 1Pv4,
which relied on separate protocols (e.g., Address
Resolution Protocol [ARP]) to perform this func­
tion.23 1Pv6 unicast address resolution is defined in
a generic manner and can be run over any link layer
that provides a link-layer multicast service (this
includes point-to-point and broadcast links, special
cases of multicast). This protocol may also be used for
nonmulticast-capable media (e.g., nonbroadcast mul­
tiple access [NBMA] media such as ATM), provided
that the link layer provides the necessary services. The
function of mapping multicast 1Pv6 addresses into
link-layer addresses is specific to each link type.

The unicast address resolution function uses two
ICMPv6 message types: the NS and the NA. When a
node needs to resolve the unicast 1Pv6 address of
a neighbor to a link-layer address, it builds an NS
containing the 1Pv6 address to be resolved (target)
and sends it to the solicited-node multicast address
corresponding to the target address. As an optimiza­
tion, the node includes its own link-layer address as
an option in the NS message.

When an address is assigned to an interface, a node
is required to join the solicited-node multicast group
corresponding to that address, so a node will receive
NSs sent to its solicited-node multicast address. Upon
receipt of an NS, the target node builds an NA con­
taining its link-layer address. The NA also contains the
1Pv6 target address, so that the soliciting node can
associate the response with the corresponding request.
The NA is then sent back to the soliciting node.

Upon receipt of an NA, the soliciting node can map
the target 1Pv6 address to the corresponding link-layer
address and send any packets that were queued awaiting
address resolution. Once a node has resolved an 1Pv6
address, the link-layer address is cached until it must
be replaced or deleted. A different link-layer address
may be received in a subsequent NA packet, with the
0-bit (override flag) set to indicate a new value. If
the neighbor unreachability detection algorithm
(explained in the next section) detects that the cached

Digital Technical Journal Vol. 8 No. 3 1996 13

ROUTER SOLICITATION

TYPE CODE CHECKSUM

RESERVED

OPTIONS •••

ROUTER ADVERTISEMENT

TYPE I CODE I CHECKSUM

CURRENT HOP LIMIT I M I O I RESERVED I ROUTER LIFETIME

REACHABLE TIME

RETRANSMIT TIMER

OPTIONS •••

NEIGHBOR SOLICITATION

TYPE I CODE I CHECKSUM

RESERVED

TARGET ADDRESS

OPTIONS •••

NEIGHBOR ADVERTISEMENT

TYPE I CODE I CHECKSUM

RI s I ol RESERVED

TARGET ADDRESS

OPTIONS •••

REDIRECT

TYPE I CODE I CHECKSUM

RESERVED

TARGET ADDRESS

DESTINATION ADDRESS

OPTIONS •••

SOURCE/TARGET LINK-LAYER ADDRESS OPTION

TYPE LENGTH LINK-LAYER ADDRESS • ••

PREFIX INFORMATION OPTION

TYPE I LENGTH I PREFIX LENGTH I L I A I RESERVED1

VALID LIFETIME

PREFERRED LIFETIME

RESERVED2

PREFIX

REDIRECTED HEADER OPTION

TYPE I LENGTH I RESERVED

RESERVED

IP HEADER AND DATA

MTU OPTION

TYPE LENGTH RESERVED

MTU

Figure s
Neighbor Discovery Packets

14 Digital Technical Journal Vol. 8 No. 3 1996

value is not reachable, the mapping will be deleted.
The address resolution process has several implica­

tions for the implementation. Outbound packets must
be queued pending link-layer address resolution, and
link-layer addresses must be stored somewhere. The
"Neighbor Discovery for IP Version 6" specification
describes a conceptual neighbor cache to hold this
information.10 The Digital UNIX IPv6 prototype uses
several data structures to implement the neighbor
cache. An nd6_llinfo structure keeps track of each
entry in the neighbor cache. This structure contains
the queue header for packets awaiting link-layer­
address resolution. The link-layer address is stored in
the routing table, in a host route entry for the destina­
tion IPv6 address. The RTF _LLINFO flag in the route
entry indicates the presence oflink-layer information.
Each nd6_llinfo structure contains a pointer to the
corresponding routing table entry, and the routing
table entry points back to the nd6_llinfo structure.

The use of routing table entries to hold the link­
layer-address information is an optimization. A rout­
ing table entry is associated with the majority of
packets transmitted for reasons other than address res­
olution. Storing the link-layer address in the routing
table entry avoids the overhead of a separate link-layer­
address table. This approach is modeled after the BSD
4.4 system's ARP implementation.

Neighbor Unreachability Detection
Neighbor unreachability detection (NUD) has its
roots in the dead gateway detection in IPv4 but has
been generalized in IPv6 to include all neighboring
nodes (not just gateways).24 Unlike IPv4, the mecha­
nisms supporting NUD are an integral part of IPv6.
IPv6 nodes monitor the reachability of neighboring
nodes to which packets are being sent. An IPv6 node

relies on reachability confirmations to determine the
reachability state of a neighbor. In the absence of any
reachability indications, an IPv6 node will periodically
use an NS to actively probe the reachability of a neigh­
bor. An NA sent in response to an NS provides reacha­
bility confirmation. The S (solicited) flag in the NA
is provided specifically for this purpose. If neither
method succeeds within a given period of time, a
neighbor is considered unreachable. Figure 9 shows
the neighbor unreachability states.

A reachability confirmation may take several differ­
ent forms. Any packet received from a neighbor can be
viewed as a reachability confirmation, provided that
the packet would only have been sent by the neighbor
in response to a packet sent from the local node.
A TCP acknowledgment is one example: receipt of
a TCP ACK indicates that a packet sent to the neigh­
bor did in fact reach it. Another example is an ICMPv6
redirect message. Receipt of a redirect message indi­
cates that the neighboring router received a packet
from the local node.

In the Digital UNIX IPv6 prototype, the nd6_llinfo
structure holds NUD state and retransmit count infor­
mation. A field in the routing table entry is used for
NUD timers. The RTF_LLVALID flag in the route
entry is used to indicate that the neighbor is reachable.
A new routing message type (RTM_CONFIRM)
was defined to pass reachability confirmations to the
neighbor cache. This mechanism is used by TCP upon
receipt of new acknowledgments.

Autoconfiguration

One of the goals of IPv6 is to work properly in a
dynamic network environment without the need for
manual intervention on each system attached to the

RECEIVE LINK-LAYER ADDRESS (UNSOLICITED)

RECEIVE LINK-LAYER ADDRESS (UNSOLICITED)

QUEUE I
PACKET

INCOMPLETE

LJ
SEND NS
(MULTICAST)

NONE MAX_MULTICAST _SOLICIT
RETRIES EXCEEDED

t
MAX_UNICAST _SOLICIT
RETRIES EXCEEDED

Figure 9
Neighbor Unreachability States

REACHABLE
RECEIVE NA TIME
(SOLICITED) EXCEEDED

REACHABLE

_J LJ t
REACHABILITY
CONFIRMATION

REACHABILITY REACHABILITY
CONFIRMATION CONFIRMATION

PROBE
DELAY _FIRST _PROBE_ TIME

LJ
SEND NS
(UNICAST)

EXCEEDED

Digital Technical Journal

STALE

SEND
PACKET

DELAY

Vol. 8 No. 3 1996 15

16

network. The solution is to allow important pieces of
information to be learned and the system to autocon­
figure itself using this data. IPv6 autoconfiguration
encompasses the following items:

• Router discovery

• On-link prefix discovery

• Interface attribute configuration

• Stateless address configuration

• Stateful address configuration

The mechanism for delivering this information to
the hosts is the router advertisement (RA) packet of
the Neighbor Discovery Protocol. In the following
sections, we describe the methods we developed to
process these packets and update the system.

Host Autoconfiguration Daemon

To process these RAs, we designed a host daemon
called nd6hostd, which resides in the application space
of the Digital UNIX operating system. We determined
that a user-mode daemon was the most efficient way
to implement IPv6 autoconfiguration for the follow­
ing reasons:

• A user-mode daemon would avoid kernel bloat.

• Maintenance and extensibility would be easier.

• The function is not performance critical.

The autoconfiguration processing is implemented
as a single executable image, as a cohesive set of tightly
coupled modules. The daemon currently is designed
as a single-threaded application that uses a dispatch
mechanism to call each specialized function module in
turn. We will examine the idea of having this daemon
run as a multithreaded application in the future.

The nd6hostd daemon communicates with the
network subsystem in the kernel through multiple
techniques. Figure 10 shows the autoconfiguration
processing modules. The raw socket interface is used to
receive RAs, and 1/0 control messages (ioctls) are used

ROUTER
DISCOVERY

ON-LINK
PREFIX
DISCOVERY

INTERFACE
ATTRIBUTE
PROCESSING

to manipulate kernel data structures. Also, the routing
table is updated as necessary, by means of a raw socket
interface to the PF _ROUTE protocol family.

We designed the IPv6 raw socket's interface with
the ability to pass only specific ICMPv6 messages to
a user and to filter extraneous packets or protocols.
The nd6hostd daemon sets a socket option to receive
only neighbor discovery RAs. It then executes a dis­
patch routine that polls the raw socket, awaiting
packets. When data is available on the socket, the dae­
mon determines the characteristics of the message,
creates a data structure to contain it, and calls the nec­
essary functions to perform autoconfiguration. The
dispatch module, in addition to polling socket descrip­
tors, supports necessary timer management functions
such as creation, deletion, and expiration. Figure 11
shows the application daemon design center.

Kernel Interface Data Structures

In many ways, the data link interface is the focus of
IPv6 autoconfiguration support. The kernel data struc­
tures for IPv4 interfaces are not sufficient to implement
the necessary IPv6 functions. We designed and imple­
mented new interface data structures that encapsulated
the existing IPv4 structures. This allowed us to avoid a
recompilation of the existing data link drivers on the
Digital UNIX operating system. In the future, we will
attempt a design in which the interface structures for
IPv4 and IPv6 are completely integrated.

As shown in Figure 12, we designed an in6_ifnet
structure to support each data link type (e.g.,
Ethernet, PPP, loopback) and used the existing
ifnet structures to point to those link interfaces. The
in6_ifnet has its own in6_ifaddr structure for each
IPv6 address configured in the data structure
in6_localaddr. We also defined the in6_router struc­
ture to support each router available for the imple­
mentation. The in6_router structure specifies the
interface of the router, neighbor cache route, and
the IPv6 address of the router.

STATELESS
ADDRESS
CONFIGURATION

STATEFUL
ADDRESS
CONFIGURATION (DHCPV6)

RECEIVING INTERFACE

Figure 10

IPV6SOURCE
ADDRESS DEFAULT
ROUTER
LIFETIME

PREFIX OPTIONS: HOP LIMIT
ON-LINK PREFIX REACHABLE TIME
PREFIX LENGTH RETRANSMIT TIME
VALID LIFETIME LINK MTU

PREFIX OPTIONS:
ADDRESS PREFIX
PREFIX LENGTH
VALID LIFETIME
PREFERRED LIFETIME

ROUTER ADVERTISEMENT

Autoconfiguration Processing Modules

Digital Technical Journal Vol. 8 No. 3 1996

MANAGED BIT, OTHER
CONFIGURATION BIT

CALL AUTOCONFIGURATION
PROCESSING MODULE

PROCESS
AUTOCONFIGURATION SET AUTOCONFIGURATION DISPATCH MODULE DATA AND UPDATE PROCESSING TIMERS
KERNEL STRUCTURES

POLL ON SOCKET

OPEN RAW SOCKET DESCRIPTOR

BUILD TO LISTEN FOR RAs

AUTOCONFIGURATION
DATA LISTS

USER SPACE -- ---- --- -
IOCTL$ I

- ---- - ---- - ---- -- --- -
KERNEL SPACE

ROUTING TABLE
AND INTERFACE I-+-- RAW SOCKET MODULE
STRUCTURES

Figure 11
Application Daemon Design Center

in6_ifnet

ifnet (1Pv4) r---- ------- --- ----~
I ETHERNET, PPP, FDDI, ATM, TUNNEL I

~6~i:d~r- l--------------_J

r---- ----------- - -- ~
I ADDRESS CONFIGURATION PARAMETERS I

L ~N~ ~~NT~R~ ~0_1~v~ ~~R!~s_:s_ - r ~
I in6_1ocaladdr
I ADDRESSES

I ADDRESS STATES

L
DATA LINK INTERFACE I

- - - - - - - - - - _J

Figure 12
Autoconfiguration Interface Structures and Relationships

- NEIGHBOR
DISCOVERY
PROCESSING

in6_router

ROUTING
TABLE

in6_prefixes

Interface Attribute Autoconfiguration
To autoconfigure the interfaces for IPv6, we created
new ioctl functions to create, delete, update, and
access the interfaces. In addition to their use by the
nd6hostd daemon, these ioctls may be used by any
future modules that need to access or manipulate the
interfaces. This might include specialized configura­
tion utilities, Simple Network Management Protocol
(SNMP) management functions, security tools, or
other services.

router discovery, on-link prefixes, and address configu­
ration. Figure 13 shows the interface attribute updates.

The interface module to update and maintain inter­
face structures for nd6hostd serves two purposes: to
update data link atttibutes provided by the RA, and to
maintain the data structures as a set of linked lists for

Router Discovery
An RA packet has mandatory and optional parts.
Before a default router is added to the routing table,
the following interface attributes must be determined:

1. Receiving interface

2. Current hop limit

3. Reachable and retransmit times for use in NUD

The link-local address from the source link-layer
option of the RA is then added to the routing table,

Digital Technical Journal Vol. 8 No. 3 1996 17

AUTOCONFIGURATION
INTERFACE ATTRIBUTE -
PROCESSING

USER SPACE

I OCT Ls
SIOCIPV6ADDRTR
SIOCIPV6DELRTR
SIOCIPV61FINIT
SIOCIPV6AIFADDR
SIOCIPV6SIFATTR

SIOCIPV6GIFATTR
SIOCIPV6MIFADDR
SIOCIPV6GIFADDR
SIOCIPV6DIFADDR

-------- -- -- ~------------
KERNEL SPACE

IPV6 INTERFACE CONTROL MODULE
ADDRESSES AND STATE
ON-LINK PREFIXES
ROUTE ATTRIBUTES
DATA LINK ATTRIBUTES

Figure 13
Interface Attribute Updates

and the kernel data structures for router information
are updated. The router lifetime field in the RA defines
how long this router may be used as a default router.

The nd6hostd daemon first updates the interface
attributes. A timer is set using the appropriate routine
from the dispatch module. When the timer expires,
the delete default router routine is called, and the
router is deleted from the routing table. The daemon
must also be able to delete the router if it receives an
RA with a zero lifetime value, which can occur when a
node is acting as a router but is reset to be a host.

On-link Prefixes

An on-link prefix in 1Pv6 defines a subnet and is typi­
cally configured on a router for a specific link by the
network administrator. The router then advertises this
prefix to all nodes connected to that link as a prefix
option, appended to an RA. A prefix option defines a
single prefix only, but an RA may contain more than
one such option. As shown in Figure 8, the prefix
option provides the following information:

• Prefix length

• Link- or L-bit, which is set if the prefix is directly
readable on link (i.e., a neighbor)

• Autonomous- or A-bit, which is set if the prefix can
be used for stateless address configuration

• The length of time the prefix is valid

The daemon adds the prefix to the routing table.
Then a timer routine is called from the dispatch mod­
ule and is set for the time the prefix is valid. When the
dispatch routine calls the delete on-link prefix module,
the prefix is deleted from the routing table. A prefix
can also be deleted when a new RA presents the pre­
fix with a lifetime of zero. In that case, the on-link
prefix module will stop the timer routine and delete
the prefix from the routing table.

18 Digital Technical Journal Vol. 8 No. 3 1996

Address Configuration

Address configuration is one of the new paradigms
that must be supported in 1Pv6. Two configuration
methods, stateless and stateful, are provided to auto­
configure addresses for a host. The M · bit flag in an RA
message determines which method to use and informs
a host. In addition, the other-bit (0-bit) flag is pro­
vided to configure other network parameters required
for the host's operation on the network when the
stateful configuration is used.

Address autoconfiguration in 1Pv6 supports the
ability to dynamically renumber a link or a complete
network through the use of lifetimes specified in the
RA message. The valid lifetime is the time the address
has before expiration. When the timer expires, all con­
nections using that address are dropped by the imple­
mentation, and no new connections are permitted.
The preferred lifetime is provided to inform an imple­
mentation that an address is about to expire; it typi­
cally is set to a lower value than the valid lifetime.
When this timer expires, the address is said to enter the
deprecated state, at which point an implementation is
permitted (as a configuration option) to prevent new
communications using this address as a source or des­
tination. This model is designed to provide network
administrators with control over the use of network
addresses without manual intervention of each host on
the network. The stateless model is intended for users
who do not need tight control over address config­
uration; stateful mechanisms will be used where the
administrators want to delegate addresses based on a
client/server method. Figure 14 shows the address
autoconfiguration diagram.

When the daemon receives an RA, and the A-bit is
set, the daemon can use the prefixes provided to per­
form stateless address configuration. The daemon uses
the on-link prefix(es) provided in the RA to configure
addresses for an interface. Addresses are created ,

ADDRESS
AUTOCONFIGURATION
DAEMON

STATELESS
AUTOCONFIGURATION:
USE ON-LINK PREFIXES
AND INTERFACE TOKEN

STA TEFUL
AUT OCON FIGURATION:
PRO GESS CONFIGURATION

RMATION, START INFO
DHC PV6 CLIENT

!
DHCPV

LOCATE
DHCPV6
SERVER

USER

KERN

SPACE
----- -

EL SPACE
'".::''~~'-t'".::'' IOCTL

ADMINISTER ADDRESS
CONFIGURATION STATE
FOR THE RECEIVING
INTERFACE

Figure 14
Address Autoconfiguration

deleted, or updated on the interface based on the pre­
fixes and lifetimes received in the RA packet.

Interactions with Stateful Address Configuration
When the daemon receives an RA, and the managed
bit flag is set, the host can use stateful address con­
figuration, using DHCPv6. DHCPv6 is implemented
as a separate daemon process in our prototype.
DHCPv6 defines a complete new model from the
existing DHCPv4 implementations in the industry to
dynamically configure addresses. The use oflink-local
addresses, multicast, address configuration, and inher­
ent support for dynamic renumbering of hosts in
IPv6 caused a new architecture and design in the
DHCPv6 specification. A comparison of the architec­
tural changes between DHCPv4 and DHCPv6 can be
found in the DHCPv6 specification.8

Application Services

Most TCP and UDP applications can be used with
IPv6 with relatively minor modifications. The primary
issue is the larger address size, both for internal storage
needs in the application and for address transfer across
system interfaces. In this section, we review these
issues and others.

AP/
Any API currently in use for IPv4 could be modified
for IPv6, but only the BSD sockets API is being inves­
tigated within the IETF for two reasons. 21 .25 First, large
numbers of applications use the sockets interface for

IPv4, which represents a very large investment and a
potential pool of1Pv6 applications. Second, this API is
perhaps in the most widespread use in the industry and
is available on a wide variety of platforms: the benefits
of standardization are compelling.

DNS AAAA Support
DNS provides support for mapping names to IP
addresses and mapping IP addresses back to their cor­
responding names. 26 The type A resource record is
used to hold an IPv4 address. Since its size is fixed
at 4 bytes, a new resource record type, MAA, was
defined to hold IPv6 addresses. 27 The Digital UNIX
IPv6 prototype includes a widely used implementation
of the DNS known as Berkeley Internet Name
Domain (BIND), which has been modified to support
MAA records.

Address Manipulation Routines
A typical IP implementation provides several library
routines for manipulating IP addresses. These include
routines for converting addresses between binary and
textual representations and routines for translating
names to addresses and addresses to names. New rou­
tines had to be provided to perform these functions
for IPv6 addresses. The Digital UNIX IPv6 prototype
provides the routines described in "Basic Socket
Interface Extensions for IPv6." 21

inetd Daemon
The inetd daemon creates sockets on behalf of applica­
tions, invoking the applications only when needed and

Digital Technical Journal Vol. 8 No. 3 1996 19

passing the open sockets to them. With the advent
of the AF _INET6 socket type, inetd was modified
to accept a new application configuration option in
its configuration file. The keyword inet6 is used to
indicate an application that wants to use AF _INET6
sockets. The keyword inet (or the absence of a key­
word) indicates use of AF _INET sockets.

Applications
A typical application needs only minor modification to
use the AF _INET6 address family. Applications that
use addresses as part of their design or protocol, such
as the File Transfer Protocol (FTP), require more
extensive modification. The Digital UNIX IPv6 proto­
type includes several basic applications that have been
modified to support IPv6, including Telnet and FTP.
These programs were modified to use IPv6 sockets,
address structures, and library routines. Note that the
IPv6 sockets also support communications over IPv4,
so that applications need not maintain separate sockets
for IPv4 and IPv6, and a single executable image can
interoperate with both types of remote system.

Future Work

Future implementation efforts will include security,
routing, stateful address configuration, dynamic
updates to DNS, IPv6 over PPP and ATM, resource
reservation, and service location. In addition, we will
review elements of our existing design and implemen­
tation architecture to increase performance and to ease
the transition from IPv4 to IPv6. We will continue to
participate in the IPv6 industry multivendor interop­
erability events, which is a practical and concentrated
effort to debug the specifications and the code base.

IPv6 security supports both the authentication and
the encryption ofIPv6 packets end-to-end.28 The mod­
ule for these functions will reside in the kernel and most
likely will be called at the point where the IPv6 network
layer packet is processed. A key management frame­
work is being developed to support both authentica­
tion and encryption. To access the key management
interface, a sockets API extension will be provided to
supply the keying criteria for the security modules.

To test the interoperability and robustness of
the IPv6 implementations, a test network known as
the 6BONE has been created on the Internet. This
nascent test bed is currently being built with statically
defined tunnels connecting IPv6 networks. Our next
step in IPv6 development will be to implement rout­
ing protocols, starting with Routing Information
Protocol version 6 (RIPv6) for unicast routing.
Subsequent goals will be to support Open Shortest
Path First version 6 (OSPFv6) and to provide multi­
cast routing.

20 Digital Technical Journal Vol. 8 No. 3 1996

Stateful address configuration will be implemented
as specified in DHCPv6 and will contain a client, a
server, and a relay-agent. This work will be tightly cou­
pled with dynamic updates to DNS to provide auto­
configuration in conjunction with autoregistration in
the directory service. Even for networks that use state­
less address autoconfiguration, DHCPv6 will be avail­
able to configure other parameters for the host and to
add, delete, and update name information associated
with addresses in DNS.

Additional data link interfaces will be supported for
PPP and ATM. These nonbroadcast architectures will
require some design analysis to implement in order to
support neighbor discovery, autoconfiguration, and
the routing models for IPv6. Digital has been active
within the IETF working groups that are defining the
ATM solutions.

IPv6 now supports flow information in the IPv6
header and in the IPv6 BSD socket API structure. This
inherent quality-of-service (QOS) mechanism in IPv6
meshes well with efforts to support reserve resources
on a network as specified in the Resource Reservation
Protocol (RSVP).2° Using RSVP over broadcast and
nonbroadcast data links will encompass a design cen­
ter that supports a wide range of resource reservation
parameters to maintain a consistent performance
model for video- and audio-related applications across
a network path.

Service location is an emerging technology that will
permit a host to query the network about the location
of different services (e.g., NFS, security key manage­
ment, directory services).3° Currently in development
for IPv4, service location holds promise for IPv6 and
may benefit from the greater level of support for basic
technologies, such as security and multicast capabilities.

Summary

Digital has designed a prototype ofIPv6 on the Digital
UNIX operating system. Techniques and technologies
have been developed to accommodate aspects of the
IPv6 architecture; in particular, the transport layer
modules were modified to use two distinct network­
layer protocols. The new Neighbor Discovery Protocol
and algorithms have also been implemented in the pro­
totype. IPv6 includes mechanisms to do both stateless
and stateful address configuration as well as router dis­
covery. The Digital UNIX IPv6 prototype contains
a user-mode process that implements these functions.
In addition, enhancements have been made to IPv4
services, and techniques have been developed to sup­
port the transition of existing applications.

References

1. P. Gross and P. Almquist, "IESG Deliberations on Rout­
ing and Addressing," RFCl 380 (November 1992).

2. S. Bradner and A. Mankin, "The Recommendation
for the IP Next Generation Protocol," RFC1752
(January 1995).

3. R. Hinden, "Simple Internet Protocol Plus White
Paper," RFC1710 (October 1994).

4. S. Deering and R. Hinden, "Internet Protocol, Version
6 (IPv6) Specification," RFC1883 (January 1996).

5. Y. Rekhter and T. Li, "An Architecture for IPv6 Uni­
cast Address Allocation," RFC1887 (January 1996) .

6. R. Hinden and J. Postel, "IPv6 Testing Address
Allocation," RFC1897 (January 1996).

7. S. Thomson and T. Narten, "IPv6 Stateless Address
Autoconfiguration," RFC1971 (August 1996).

8. J. Bound and C. Perkins, "Dynamic Host Configura­
tion Protocol for 1Pv6 (DHCPv6)," Work in progress
(August 1996).

9 . A. Conta and S. Deering, "Internet Control Message
Protocol (ICMPv6) for the Internet Protocol Version
6 (1Pv6)," RFC1885 (January 1996).

10. T. Narten, E. Nordmark, and W. Simpson, "Neighbor
Discovery for IP Version 6 (IPv6)," RFC1970 (August
1996).

11 . M. McKusick et al., 1be Design and Implementation
of the 4.4 BSD Operating System, (Reading, Mass.:
Addison-Wesley, ISBN: 0-201-54979-4, 1996).

12. V. Fuller et al., "Classless Inter-Domain Routing
(CIDR): An Address Assignment and Aggregation
Strategy," RFC1519 (September 1993).

13. S. Deering, "Host Extensions for IP Multicasting,"
RFCll 12 (August 1989).

14. J. Mogul and S. Deering, "Path MTU Discovery,"
RFCll 91 (November 1990).

15. J. McCann et al., "Path MTU Discovery for IP
Version 6," RFC1981 (August 1996).

16. W. Simpson, "IP in IP Tunneling," RFC1853
(October 1995).

17. A. Conta and S. Deering, "Generic Packet Tunneling in
IPv6 Specification," Work in progress (October 1996).

18. K. Sklower, private communication to Matt Thomas,
September 1995.

19. R. Gilligan and E. Nordmark, "Transition Mecha­
nisms for IPv6 Hosts and Routers," RFC1933 (April
1996).

20. S. Deering and R. Hinden, "IP Version 6 Addressing
Architecture," RFC1884 (January 1996).

21. R. Gilligan et al., "Basic Socket Interface Extensions
for IPv6," (Work in progress, April 1996).

22. M. Crawford, "A Method for the Transmission ofIPv6
Packets over Ethernet Networks," RFC1972 (August
1996).

23. D. Plummer, "An Ethernet Address Resolution Proto­
col," RFC826 (November 1982).

24. D. Clark, "Fault Isolation and Recovery," RFC816
(July 1982).

25. W. Stevens and M. Thomas, "Advanced Sockets API
for IPv6," Work in progress (October 1996).

26. P. Mockapetris, "Domain Names-Concepts and
Facilities," RFC1034 (November 1987).

27. S. Thomson and C. Huitema, "DNS Extensions to
Support IP Version 6," RFC1886 (December 1995).

28. R. Atkinson, "Security Architecture for the Internet
Protocol," (Work in progress, June 1996).

29. "Resource ReSerVation Protocol (RSVP)-Version 1
Functional Specification," (Work m progress,
August 1996).

30. J. Veizades et al., "Service Location Protocol," (Work
in progress, June 1996).

General References

S. Bradner and A. Mankin, eds., !Png-lnternet Protocol
Next Generation (Reading, Mass.: Addison-Wesley, ISBN:
0-201-63395-7, 1996).

S. Thomas, !Png and the TCP/JP Protocols (New York:
John Wiley & Sons, Inc., ISBN: 0-471-13088-5, 1996).

R. Braden, "Requirements for Internet Hosts-Communi­
cation Layers," RFC1122 (October 1989).

G. Wright and R. Stevens, TCP/IP Illustrated, Volume 2-
The Implementation (Reading, Mass.: Addison-Wesley,
ISBN: 0-201-63354-X, 1995).

Biographies

Daniel T. Harrington
As a principal software engineer in Digital's IPv6 Program
Office, Dan Harrington participated in the Digital UNIX
IPv6 prototype effort. Prior to this work, he helped develop
the DECnet/OSI products on the ULTRIX and the Digital
UNIX platforms. After joining Digital in 1982, Dan worked
in performance analysis, field support, and software devel­
opment. He received a B.S. in mathematics from Rensselaer
Polytechnic Institute. Dan is currently with Lucent
Technologies.

Digital Technical Journal Vol. 8 No. 3 1996 21

22

James P. Bound
Jim Bound is a consulting software engineer and the tech­
nical director for IPv6 within the 1Pv6 Program Office. Jim
is responsible for the overall advanced development archi­
tecture and reference Alpha Digital UNIX code base, which
verifies that the IPv6 specifications are implementable. He
is also Digital's IETF 1Pv6 technical leader and one of the
1Pv6 advanced development engineers on Alpha Digital
UNIX. In 1993, Jim began his participation in the IETF
to work on the IPng and the advanced development IPng
prototype. As a member of the IETF's IPng Directorate,
Jim helped determine the requirements and core architec­
ture for IPng's Internet protocol and related functionality
to support IPng. The result was the selection of a proposal,
now known as the Internet Protocol version 6 (IPv6). Jim
has an A.S. in business management and an A.S. in com­
puter science. He is a coauthor of several IPv6 specifica­
tions and a contributing author to the book I Png: Internet
Protocol Next Generation . He is a member of the IEEE
and the Internet Society.

JohnJ. McCann
Jack McCann is a principal software engineer in the UNIX
Engineering Group and a member of the IPv6 project team.
He contributed to the design and implementation of the
Digital UNIX IPv6 prototype, including router discovery,
autoconfiguration, fragmentation, reassembly, path MTU
discovery, forwarding, and the IPv6 AP!. He participates in
several IETF working groups and is a coauthor oflnternet
RFC 1981, "Path MTU Discovery for IP version 6." Jack
joined Digital in 1988 to become a member of the Distrib­
uted Systems Technical Evaluation Group. He also worked
in the DECnet/OSI for OpenVMS Engineering Group
before taking his current position. He received a B.S. in
computer science (magna cum laude) from the University
of Lowell in 1988 and an M.S. in computer science from
Boston University in 1995.

Digital Technical Journal Vol. 8 No. 3 1996

Matt Thomas
Matt Thomas joined Digital in 1983 with Software Services
in California. Although he is a principal software engineer
in the Open VMS Systems Software Group, Matt has spent
the last eight years as a developer of networking products
for the Digital UNIX and ULTRIX systems. In addition to
his ongoing involvement with Digital UNIX 1Pv6 efforts,
he is responsible for adding IP security to the Digital UNIX
operating system. Matt is an active participant in various IETF
working groups and is a coauthor of several Internet Drafts.

Preserving Computing's
Past: Restoration and
Simulation

Restoration and simulation are two techniques

for preserving computing systems of historical

interest. In computer restoration, historical sys­

tems are returned to working condition through

repair of broken electrical and mechanical sub­

systems, if necessary substituting current parts

for the original ones. In computer simulation,

historical systems are re-created as software

programs on current computer systems. In each

case, the operating environment of the original

system is presented to a modern user for inspec­

tion or analysis. This differs with computer con­

servation, which preserves historical systems

in their current state, usually one of disrepair.

The authors argue that an understanding of

computing's past is vital to understanding its

future, and thus that restoration, rather than

just conservation, of historic systems is an

important activity for computer technologists.

I
Maxwell M . Burnet
Robert M. Supnik

The Computing Past

The continuous improvements in computing technol­
ogy cause the rapid obsolescence of computer systems,
architectures, media, and devices. Since old comput­
ing systems are rarely perceived to have any value, the
danger of losing portions of the computing record is
significant. When a computing architecture becomes
extinct, its software, data, and written and oral records
often disappear with it.

Older computer systems embody major investments
in software, the value of which may persist long after the
systems have lost their technical relevancy. For example,
the PDP-11 computer has not been a leading-edge
architecture since the introduction of 32-bit systems
in the late 1970s and has not received a new hardware
implementation since 1984. Nonetheless, PDP-11 sys­
tems continue to be used worldwide, particularly in
real-time and control applications. The unavailability
of suitable replacements of worn-out original parts is
a serious issue for PDP-11 systems still in use.

Another area of potential loss is data. In recent
years, archival storage media have undergone rapid
technologic evolution, and the industry standards of
computing's first 30 years, such as 0.5-inch magnetic
tape, are now antiques. Salvaging data from original
media is an industry-wide problem and has generated
a small cottage industry of specialists in data recovery.
This problem will only proliferate, as transitions in
media types accelerate. Ten years from now, the large­
diameter optical disks used for today's archives will
look as quaint as DECtape and magnetic tape storage
systems do to current computer users.

Finally, the disappearance of older equipment typi­
cally entails loss of information: not only design
sketches, blueprints, and documentation but also the
folklore about these systems. The absence of system­
atic archiving, as well as the absence of a perceived
value of the archived data, causes continual informa­
tion decay about design and operational details.

This paper describes two techniques for preserving
computing systems of historical interest. The first
section of the paper discusses the restoration of old
computers to working order. It also includes a descrip­
tion of the Australian Museum collection and the

Digital Technical Journal Vol. 8 No. 3 1996 23

24

process of restoring a particular PDP-11 mm1com­
puter. The second section discusses the simulation
of old computers on modern systems. It describes a
simulation framework called SIM, which has been
used to implement simulators for the PDP-8, PDP-11,
PDP-4/7 /9/15, and Nova minicomputers.

Restoring Old Computers

Since the computer became a mass-produced item in
the late 1960s, its typical life cycle has consisted of initial
installation, rental or depreciation for about five years,
retention and use for a few more years (just in case), and
then retirement and a trip to the refuse dump. There is
only a brief window of opportunity to collect old com­
puters at the end of their working life. Once that win­
dow is closed, the computers are gone forever.

The Australian Museum Collection
In Sydney, Australia, this window of opportunity
first became apparent in 1971, when the early PDP
systems reached the ends of their life cycles. Digital's
Australian subsidiary began collecting systems by a
creative program of trade-ins for new equipment. 1 It
was especially urgent to obtain examples of the 12-bit,
18-bit, and 36-bit PDP series, as they were relatively
few in number. Table l lists the percentage of available
units that have been collected. The status of each is
given as

• Static-can never be made to work for various
reasons

• Restorable-could be made to work with enough
care, patience, time, and effort

• Working-running its operating system the last
time it was turned on

Table 1
Early Digital CPUs in Australia

Model
Name

PDP-5

PDP-6

PDP-7

PDP-8

PDP-8/S

LINC-8

PDP-9

PDP-10

PDP-12

PDP-8/1

PDP-8/L

PDP-15

PDP-8/E

Digital Technical Journal

Number Brought
to Australia

1

28

20

2

7

8

2

24

21

10

90

Vol. 8 No. 3 1996

Once a representative sample of the early PDP
systems had been collected, the urgency abated.
Hundreds of PDP-11 and VAX systems were then
brought to Australia; the window of opportunity for
collecting them is still open.

The collection has grown significantly during the
last 25 years. At the present time, we have in Sydriey
a comprehensive collection of most early Digital
machines, including hardware, manuals, software, and
spares (see Table 2). The collection is catalogued in
a 6,000-line database that resides, appropriately, on a
MicroVAX I computer, running the first version of
the MicroVMS operating system. Figure 1 shows an
example from the collection, a PDP-8/E computer
system with peripheral equipment.

The goals of the collection are varied and are sum­
marized in Table 3. Apart from the academic challenge
of keeping all old data media running, there is the
responsibility to ensure that they can be kept alive and
available. The extensive variety of media types offered
by Digital alone in only 30 years is summarized in
Table 4. The evolving status of the collection has been
reported at several Australian DECUS Symposia.2

•
3

The restoration of the Australian collection will prob­
ably ensure a retirement job for the curator for the
next 30 years!

General Issues in Restoration
Restoration is a painstaking and time-consuming
process. The goal of restoration is to return a system to
a state where it will reliably run a major operating sys­
tem and offer as many media conversion facilities of
the vintage as possible. Fortunately, computers do not
deteriorate greatly in storage, provided the storage
area is dry. (One item that does decay dramatically is
the black foam used to line side panels and to separate

Number in
Museum Collection

1

3
2

2

1

2

2

2

4

Condition

Restorable

Some items

Static

Working

Static

Restorable

Restorable

Some items

Restorable

Restorable

Restorable

Static

Working

Table2
The Digital Australian Collection (chronological order)

Year Item Description Status

1958 138 AID converter Static

1960 ASR-33 Teletype reader/punch, 110 baud Working

1962 KSR-35 Heavy-duty Teletype Working

1963 PDP-6 Modules of first Digital computer in Australia Parts

1963 PDP-5 First minicomputer in Australia Working

1967 PDP-7 Third Digital computer in Australia Static

1965 PDP-8 Classic, table-top model Working

1965 PDP-8 Cabinet model Restorable

1965 PDP-8 Typesetting system Static

1965 PDP-8 Cabinet model, first in New Zealand Restorable

1965 COPE-45 Remote batch (OEM PDP-8) Restorable

1966 PDP-9 18-bit computer Static

1966 KA10 Console of PDP-10 mainframe Static

1966 Linc-8 Early medical computer Working

1967 PDP-8/S Serial, under $10,000, CPU Static

1967 PDP-8/S Serial comput er Static

1967 DF32 Digital's first disk, 1/16 Mb Static

1967 PDP-9/L Last transistor logic, 18-bit Static

1968 PDP-8/1 Digital's first IC minicomputer Working

1968 PDP-8/L OEM version of PDP-8/1 Static

1969 PDP-12 Laboratory computer Working

1969 PDP-12 Laboratory computer Static

1969 PDP-15 Last of 18-bit family Static

1969 Kl10 Console of DECsystem-10 Static

1970 PDP-8/E Pinnacle of PDP-8 development Working

1970 PDP-8/E Full LAB 8 configuration Working

1970 PDP-11/20 The first PDP-11 Working

1970 CRl 1 Card reader, 285 cpm Working

1971 PDP-8/F Small PDP-8/E Working

1971 VT05 Digital's first video terminal Working

1971 LA30P Digital's first hard-copy terminal Working

1971 PDP-11/45 Last PDP-11 Static

1972 GT40 Graphics workstation Broken

1972 PDP-11/10 Small PDP-11 Static

1973 PDP-11 ElO First packaged system Working

1973 PDP-11/35 Mid-range PDP-11 Static

1973 PDP-8/A Last non-chip PDP-8 Working

1974 PDP-11/40 Mid-range, end-user PDP-11 Restorable

1975 VT50 Video terminal Working

1975 LA36 DECwriter II printer Working

1975 DS310 Desk-based commercial system Working

1975 PDP-1 lnO Largest PDP-11 Restorable

1976 PDP-11/34 Mid-range PDP-11 Working

1977 PRSOl Portable paper tape reader Working

1977 LS120 DECwriter printer Working

1977 WS78 Word processor, 8-inch floppy disks Working

1978 LA120 DECwriter Ill printer, 180 cps Working

1978 VAX-11n80 Original unit of 1 VAX-11n80 Restorable

continued on next page

Digital Technical Journal Vol. 8 No. 3 1996 25

Table 2 (continued)

Year Item Description Status

1979 VT1 00 Famous video terminal Working

1980 MINC LSl-11 lab unit with RT-11 Working

1980 vAx-11nso Mid-range VAX system Restorable

1980 PDT-150 Table-top LSl-11 with RX01 drives Working

1981 GIGI Low-cost terminal for schools Working

1982 VT125 Video terminal with graphics Working

1982 WS278 DECmate I word processor Restorable

1982 VAX-11n30 Low-performance VAX system Working

1982 LA12 Portable hard-copy terminal Static

1982 LQP03 Letter-quality printer Working

1982 DECmate II Word processor on mobile stand Working

1982 DECmate II Word processor Working

1982 Rainbow Personal computer Working

1982 PR0350 Professional PC Working

1983 VT241 Graphics color terminal Working

1983 MicroVAX I Smallest VAX .3 VUP Working

1983 VAX-11n2s Lowest cabinet VAX .3 VUP Working

1984 LN03 Laser printer Working

1985 MicroVAX II Famous MicroVAX II Working

1986 VAXmate 286-based PC with RX33 drive Working

1986 DECmate Ill Small word processor Working

1987 MicroVAX Ill 3-VUP MicroVAX II system Working

1987 VAX8250 Dual VAX CPU, Bl-based Restorable

1989 VAX 9000 Chip set Static

1990 053100 Mips UNIX workstation Restorable

ribbon cables. After 20 years, it turns into a sticky,
gooey mess. It should be removed as soon as possible;
otherwise, it falls into the modules and backplane.
Replacing it with a modern equivalent can be done but
is not essential.)

The first step in restoration is to collect hardware,
software, and documentation.

• Collect the hardware, if possible two or ideally
three items of each example. This provides a system
to work on and a spare, as well as the ability to make
comparisons between units.

• Collect diagnostic and operating software on origi­
nal bootstrap media. Sources are very useful, partic­
ularly for diagnostics.

• Collect hardware manuals and schematics.

There is a network of enthusiasts around the world
who can help at this stage.

Once the "ingredients" have been collected, the
steps needed to restore a 1960s or 1970s vintage
machine are as follows:

• Inspect the hardware for physical safety, particularly
the heavy drawers and slide mechanisms.

26 Digital Technical Journal Vol. 8 No. 3 1996

• Physically assemble the hardware, checking module
allocations, cabling, etc.

• Carefully inspect the power system, high-voltage
sources can kill. Although most of the power wiring
material appears to stand the test of time, the early
machines often had rather thin coverings on termi­
nals. Safety-first is a principal criterion in restora­
tion, since someday nontechnical people may open
the back door.

• Assemble a minimal system of CPU, memory, and
console switch register for initial tests.

• Power up the computer, checking supply voltages,
fans, and front console for signs oflife.

• Use simple routines at the switch register to check
for elementary operation.

• Fit a serial line unit so that a VT or a Teletype con­
sole can be used.

• Get the keyboard echoing to the screen or printer
with simple routines.

• If they are available, run the internal tests of the
read-only memory (ROM).

Figure 1
PDP-8/E Computer System

Conventional wisdom would now advise that all the
diagnostic routines be run. However, diagnostics were
(philosophically) always used to find bugs in a previ­
ously good machine; they are too complex when huge
chunks of the machine might still be missing. The
most practical next step is to get mass storage on-line.
Depending on the manufacturer, the target device
may be a floppy disk drive, a cartridge hard disk drive,
or some form of magnetic tape. With a working mass
storage device and a bootstrap routine, it becomes
possible to boot a simple operating system (like OS/8
or RT-11 for Digital's systems). This quickly shows
whether the machine is working or not.

If a mass storage device is not available, the next best
thing is paper tape. This can be either the system's
rack-mounted reader and punch or the paper tape
reader on an ASR33 or ASR35 console. The relia-

}

RX01
DUAL 8-INCH FLOPPY DISKETIES

}
}
}

}
}
}

TOBE TU56
ACCUMULATOR TRANSFER
DUAL DECTAPE SYSTEM

PCBE 300 CPS READER,
50 CPS PUNCH PAPER TAPE

PDP-8/E CPU WITH EXTENDED ARITHMETIC
ELEMENT, 16K WORDS MEMORY,
KLBE 2400-BAUD CONSOLE,
KLBE 2400-BAUD COMMUNICATION PORT,
DECTAPE BOOTSTRAP, RK05 DISK BOOTSTRAP,
REAL-TIME CLOCK

RK05 REMOVABLE 2.4-MB
CARTRIDGE DISK

STORAGE RACK FOR 10
DECTAPE SYSTEMS

H861 POWER DISTRIBUTION

bility is questionable, however, and the procedure is
tedious. Many diagnostics were on paper tape, but
usually the quickest test is to load a complete paper
system (such as FOCAL for Digital's systems). If the
diagnostics run, the system is probably functional.

Once the CPU, console, and memory are verified,
additional peripherals can be added, one at a time. It
pays to take the time and effort to research bus
addresses, interrupt vectors, power supply loading,
and module placement, and to keep a log book with
configuration diagrams and results. In general, if the
configuration rules are followed, the items will work.
There are few electronic failures, even in 20- or 30-
year-old modules. When a problem arises, it is usually
address vector strapping, physical damage, or missing
cables. Corrosion of board contacts can be a problem;
they should be cleaned with a clean cloth or cardboard

Digital Technical Journal Vol. 8 No. 3 1996 27

Table 3
Goals of the Australian Digital Museum

To preserve one of each model of Digital's computers

To keep each major Digital operating system working

To have a working unit of each Digital terminal, con­
sole, and PC

To provide conversion and archival facilities for old
media

To preserve significant Digital literature and manuals

To preserve a VAX-11n80 computer as the original
unit of 1 VUP

To disseminate instructive and educational material

To educate and amuse our staff, our customers, and
the public

To support the DECUS NOP (nostalgic obsolete prod­
uct) Special Interest Group

To preserve spares, tools, test gear, and documenta­
tion to keep the collection working

To preserve and protect these treasures for future
generations

(for example, a business card), not with a pencil eraser,
which leaves residues. Silicon components appear to
be very stable and a tribute to the conservative design
principles of early computer engineers.

The main components that seem to age are power
supply capacitors, fans, and lights. The filter capaci­
tors across the high-voltage sources can short, and
reference electrolytic capacitors in power supply regu­
lators can dry out. Although the large capacitors in
power supply RC filters have proven to be reliable,
some restorers replace them as a matter of course for
safety reasons. Small rotary fans may seize if they have
logged many hours. Incandescent panel lamps are
always failing and can be replaced by modern light­
emitting diodes (LEDs) if required. The irony is that
the panel lamps are needed only during initial check­
out; once the operating system is running, they are
rarely used.

Once restored, are old units reliable? Experience
proves that they are. A classic PDP-8 system restored
in 1988 still turns on happily (untouched) eight years
later. A fully configured PDP-8/E system is still work­
ing four years after restoration.

Restoring a Minicomputer: A Case Study
An ongoing project is the restoration of a large,
UNIBUS-based PDP-11 system with many UNIBUS
peripherals attached to it. The project was started
using the original PDP-11/20 CPU. Since many
PDP-11 peripherals were designed long after the
PDP-11/20 CPU, it could not cope with single-board
direct memory access (DMA) devices, metal-oxide

28 Digital Technical Journal Vol. 8 No. 3 1996

Table 4
Digital Data Media from 1960to 1996

Paper tape

80-column punched and mark sense cards

7-track, half-inch magnetic tape

9-track, half-inch magnetic tape

DECtape and LINCtape systems

Aud iocassette

DECtape II cartridge (TU58)

CompacTape (TK50, etc.)

Quarter-inch cartridge tape

Digital audio tape

8-inch floppy disk

5.25-inch floppy disk

3.5-inch floppy disk

RK05 removable disk

RK06, RK07 removable disk

RL01, RL02 removable disk

RP01 ... RP06 removable disk

RM03, RM05 removable disk

RC25 removable disk

semiconductor (MOS) memory, and other later inven­
tions. The project refocused on the mid-range
PD P-11 /34, which in retrospect has proved wise. The
PDP-11/34 supports MOS memory, has an LED and
push-button console, and represents a mature imple­
mentation of the PDP-11 instruction set. It has an
optional cache, battery backup, floating-point opera­
tion, and the extended instruction set (EIS).

The current configuration occupies three large cab­
inets in what used to be the dining room of Max
Burner's house. The virtues of the UNIBUS are many;
in particular, it allows modular connection of 1/0
devices and other components. However, 1/0 devices
of the era often weigh 100 pounds and are mounted in
10-inch drawers; their sheer physical size and weight
are disincentives to reconfiguration.

The project currently uses the RT-11 operating
system because of its simplicity and extensive device
drivers. Eventually, it may be possible to run the
RSX-llM and the RSTS/E systems, but there is little
to gain from a media conversion point of view, because
RT-11 includes utilities for dealing with foreign file
formats.

The main difficulties encountered have been associ­
ated with the power supply: the DC low signal threads
its way through every peripheral. The absence of
UNIBUS grant continuity cards can create havoc.
Since this PDP-11 system is very large, it is straining
the design rules concerning floating vectors, current
loading, and bus loads.

The CPU and memory are relatively easy to check
out. Due to the versatility of the UNIBUS, however,
checking out the 1/0 system is very laborious.
Starting with programmed 1/0 tests works best, fol­
lowed by interrupt tests, and finally DMA or non­
processor reference (NPR) tests. Experience shows
that tests need to be rerun whenever a new peripheral
is added.

The system currently runs the RT-11 version 5.04
operating system on a configuration comprising

• RT-11/34 CPU with real-time clock and bootstraps

• 256 kilobits of MOS memory

• RXOl and RX02 floppy disks

• Dual RL02 disks

• TU56 dual DECtape storage system

• TU58 DECtape II storage system

• Serial line units for console and serial printer

• CMll mark sense and CRll punched card reader

• TU60 cassette

• PCl 1 paper tape reader and punch

Although the following peripherals are available,
they await installation time and effort:

• LPS-40 analog-to-digital (A/D) converter

• TUlO magnetic tape

• TSV03 magnetic tape

• Cache and commercial instruction set

• Battery backup kit

The eventual goal is to keep "the last great
(UNIBUS) PDP-11" running with almost every
UNIBUS peripheral ever made.' Time will tell.

Simulating Old Computers

A simulator is a computer program operating on one
computer system (known as the host system) which
mimics the behavior of another computer system
(known as the target system). The simulator's data is
the state of the target computer system-registers,
memory, timed events, and so on. The simulator oper­
ates on presented state and transforms it, usually by
sequential evaluation, in the same manner as would
the target computer system.

Simulators typically consist of an execution engine,
which performs the state transformations; a simple
timed-event mechanism, which supports deferred and
asynchronous events such as 1/0 completions; and a
control panel, which provides user access to simulated
state. The execution engine is responsible for decoding
instructions in simulated memory and performing the
specified alterations of simulated machine state. The
execution engine keeps track of simulated time in arbi­
trary units, which may be precise representations of the

execution time of the target system, or simple represen­
tations of advancing time, such as the number of
instructions executed. The event mechanism provides a
way to schedule events, such as 1/0 completion, for
later evaluation. It can also implement other time­
based mechanisms such as keyboard polling. Finally,
the control panel provides access to simulated state as
well as basic control commands such as start and stop.
It may also provide more elaborate facilities to support
performance instrumentation or debugging.

Historically, simulators have been used for many
purposes, including the following:

• Design of new systems. The simulator mimics the
behavior of a future chip or computer system and is
used to understand and debug the behavior of the
proposed design. For example, prior to fabrication,
all modern microprocessors are extensively simu­
lated, first as abstract performance models and then
at increasing levels of detail. ,_9

• Debugging for embedded systems. If the simula­
tor contains facilities for program debugging, it
becomes a useful tool for debugging programs that
run in highly constrained environments such as
embedded systems. Simulators can capture more
state and provide a wider range of facilities than in
situ debuggers. For example, simulators can imple­
ment program counter (PC) change queues, data
access breakpoints, or precise traps on errors.

• Replicable event tracing. Most simulators are fully
deterministic. Asynchronous events are scheduled
based on simple, nonrandom algorithms, such as
fixed time-out or calculated seek time. As a result,
simulators allow for straightforward replication or
playback of complicated sequences, removing the
randomness factor that often plagues the debug­
ging of asynchronous software on real systems.

• Preservation of past software. Simulators can pro­
vide migration assistance in the transition from older
to newer architectures. Many transitional computer
systems have provided simulators for older archi­
tectures, typically at the microcode level, to assist
customers and developers in preserving their invest­
ments in the previous architecture. Examples
include the early IBM System/360 series, which had
models that simulated the 1401, 1410, 7070, and
7090 families, and the early Digital VAX systems,
which included a PDP-11 compatibility mode. 10

•
11

Simulation Levels
Simulators can be written at various levels of detail and
thus various levels of fidelity to the target system.
Three common levels of simulation are register trans­
fer level (RTL), instruction, and software specific.

An RTL simulator attempts to mimic the major
hardware blocks of the target system and to imple­
ment its actual logic equations. The goal is absolute

Digital Technical Journal Vol. 8 No. 3 1996 29

fidelity, the test of which is that no piece of software
running on the simulator should behave differently
than it would on the target hardware. In practice, such
perfect mimicry is difficult to achieve, as it requires a
painstaking re-creation of timing detail (for example,
the actual acceleration curve of a DECtape storage
system) and access to implementation documentation
that has often vanished. Nonetheless, some simulators
have achieved results very close to this goal: MIMIC,
a DECsystem-10 simulator written at Applied Data
Research, was able to run CPU- and device-specific
diagnostics. (As testimony to the vulnerability of
computing's past, all machine-readable copies of the
MIMIC sources appear to have been lost.)

An instruction simulator steps back from the RTL
level and tries to simulate at the functional or the
behavioral level. System elements are treated as func­
tions that transform state according to the abstract
definitions of the system architecture, rather than
as logic blocks that transform state based on imple­
mentation equations. Instruction simulators sacrifice
absolute fidelity to the idiosyncrasies of a particular
implementation and focus on the intentions of the
architecture specification. As a result, instruction sim­
ulators can usually run systems software and applica­
tions but can rarely fool diagnostics.

Finally, a software-specific simulation further
abstracts the functions of the target system to only those
needed by a particular piece of target system software.
For example, the OS/8 operating system on the PDP-8
computer does not use program interrupts; a simulator
aimed at running only the OS/8 operating system
would not need to implement interrupts or even
queued events. A recent PDP-11 simulator designed to
run the 2.9 BSD UNIX operating system abstracted
parts of the PDP-11 system's interrupt model and could
not run other PDP-11 operating systems.12

Simulating Minicomputers: A Case Study
SIM is a portable instruction-level minicomputer sim­
ulator implemented in C. Its objectives are to facilitate
the study and use of historic computer architectures by
making simulated implementations and historic soft­
ware available to anyone who has a 32-bit computer. It
supports the following target architectures

• PDP-8

• PDP-11

• Nova

• 18-bit PDP series (PDP-4, PDP-7, PDP-9, PDP-15)

and has been successfully ported to the VAX VMS, the
Alpha OpenVMS, the Digital UNIX, and the Linux
architectures. Ports to the Windows NT and the
Windows 95 architectures and to an IBM 1401 simu­
lator are under way.

30 Digital Technical Journal Vol. 8 No. 3 1996

General Design Considerations The design of an
instruction-level simulator is not technically compli­
cated; indeed, simulating a PDP-8 system is a common
problem in undergraduate computer science courses.
SIM follows the processor-memory-switch (PMS)
structure proposed by Bell and Newell and imple­
mented in MIMIC and countless other simulators
since. 10

•
13 The simulated system is a collection of

devices, one of which has special properties (the
CPU). Each device has state (registers) and one or
more units. Each unit has state and fixed- or variable­
sized storage. In the CPU device, the storage is main
memory. In an I/0 device, the storage is the device
media. The CPU is distinguished from other devices
by having the master routine for instruction execu­
tion. This routine is responsible for the sequential eval­
uation ofinstructions and for the state transformations
that represent simulated execution. The CPU also pro­
vides a few systemwide routines, such as symbolic dis­
assembly and input and a binary loader.

The devices interface to a control panel that pro­
vides access to simulated state and control over execu -
tion. The available commands in SIM are listed in
Table 5.

The control panel also includes routines that are
needed by most simulators, such as event queue main­
tenance and character-by-character terminal I/0.
Different simulators need not use the same time base,
but all the SIM-based implementations to date use the
number ofinstructions executed as the time base.

Note that the control panel provides for starting sim­
ulation, but termination is determined entirely by the
simulated CPU. By convention, the CPU returns con­
trol to the control panel under the following conditions:

1. If a HALT instruction is executed

2. If a fatal exception is detected

3. If a fatal I/0 error is detected

4. If a special character is typed at the controlling
terminal

Likewise, the control panel does not implement any
debugging facilities beyond state examination and
modification and instruction stepping. To facilitate
debugging with operating systems, CPUs provide
a simple instruction breakpoint capability and a one­
level PC trace facility.

Implementation The implementation of a particular
simulator begins with collecting reference manuals,
maintenance manuals, design documents, folklore,
and prior simulator implementations for the target
system. This is nontrivial. In the early days of comput­
ing, companies did not systematically collect and
archive design documentation. In addition, collected
material is subject to information decay, as noted

Table 5
Commands Available in SIM

Command Definition

Associate file with unit's media. attach <Unit> <file>

detach <Unit> I ALL

reset <device> I ALL

load <file>

Disassociate unit's (all units) media from any file.

Reset device (all devices).

Load binary program from file.

boot <unit> Reset all devices and bootstrap from unit.

run {<new PC>}

go-{<new PC>}

Reset all devices and resume execution at the current PC {or new PC}.

Resume execution at the current PC {or new PC}.

cont Resume execution at the current PC.

step {<number>}

examine <list>

iexamine <list>

Execute one instruction {or number instructions}.

Display contents of list of memory locations or registers.

Display contents of list of memory locations or registers and allow interactive
modification.

deposit <list> <value>

ideposit <list>

save <file>

Store value in list of memory locations or registers.

Interactively modify list of memory locations or registers.

Save simulator state in file.

restore <file> Restore simulator state from file.

show queue Display the simulator's event queue.

show configuration

show time

Display the simulator's configuration.

Display the simulated time counter.

show <device> Show device's configuration options.

set <device> <Option>

help

Set a device configuration option.

Display a terse help message.

exit I quit I bye Leave the simulator.

earlier. Lastly, the material is likely to be contradictory,
embodying differing revisions or versions of the archi­
tecture, as well as errors that have crept in during the
documentation process.

For Digital's 12-bit and 16-bit minicomputers, the
typical hierarchy of documentation was the following:

• Processor Handbook. Providing an all-inclusive
summary of the instruction set architecture, periph­
erals, bus interface, and software, these paperback­
size books are the most common form of system
documentation but also the least accurate.

• Subsystem Reference Manual. As the programmer's
reference manual for a particular subsystem, such as
the CPU or the disk drive, these manuals describe
the registers and functions accurately but omit
maintenance-level features and other fine points.

• Subsystem Maintenance Manual. As the mainte­
nance engineer's manual for a particular subsystem,
these manuals describe the registers and functions
at the hardware implementation level, often includ­
ing substantial abstracts from the print set. Because
of the level of detail, the maintenance manuals have
proven to be the most useful references for simula­
tor implementation.

• Design documents. For systems that do not have
very large-scale integration (VLSI), the only extant
design documents are the logic prints and the binary
microcode ROM listings. The prints are essential for
RTL simulation: they provide the only documenta­
tion of implementation quirks. For VLSI systems,
there are chip-level design specifications as well as
human-readable microprogram listings.

• Folklore. During the useful lifetime of a system, its
users exchange information and create an informal
record, both written and verbal, of shared expe­
riences (folklore) regarding the fine points of
operations, hardware/software interfaces, system
"personality," and other factors. Folklore is subject
to rapid information decay, particularly once the
target system becomes obsolete.

• Prior implementations. Prior simulator implementa­
tions can provide useful information, but it must be
used cautiously. Unless the prior implementation is
an RTL model, it embodies simplifications and
abstractions that are not explicitly documented. The
MIMIC sources (which are fragmentary and avail­
able only on paper) proved trustworthy, but others
did not: for example, the 1970s PDP-11 simulator
in the DECUS archives is highly misleading about
interrupts, condition codes, and other details .

Digital Technical Journal Vol. 8 No. 3 1996 31

32

An important consideration is that much of the
documentation, all the folklore, and most working
systems are in the hands of individual collectors.
The Internet plays a vital role in locating material held
by enthusiasts, through news conferences such as
alt.folklore.computers, alt.sys.pdp8, alt.sys.pdpll,
and comp.emulators.misc, and more recently, through
World Wide Web sites devoted to historic systems.14

-
16

The sources for each simulator in SIM are listed in
Table 6.

The last step in implementation is collecting soft­
ware to run on the simulator. Software collection
immediately raises the problem of media translation.
Software for historic systems resides on paper tapes,
DECtape storage systems, 200/556/800 bits-per­
inch magnetic tapes, disk cartridges, 8-inch floppy
disks, and so on. Few if any modern systems have these
peripherals; and few if any historic systems have mod­
ern network interconnects. Thus, media translation
usually entails linking a working version of the target
system to a modern system by means of a serial line.
KERMIT or some other simple protocol allows for a
byte-by-byte network copy from the original media to
a file on a modern system.

Once the software has been located and moved
to a file, the next issue is sources. Without sources,
diagnostics and other test programs are useless;
detected errors cannot be traced back to causes with­
out manual decode of the binary program. The
absence of sources was a principal reason for including
symbolic disassembly and input in SIM.

Table6
Sources for Simulators in SIM

Architecture Documents

The final issue in software is licensing. Even though
the target systems are obsolete and often no longer
manufactured, the operating system software may be
protected by copyrights and licenses. Most PDP-8
software is in the public domain; however, the PDP-11
and Nova operating systems are still licensed, as are
all versions of UNIX. Corporate licensing policies
rarely accommodate hobbyists; this limits operating
system distribution to legitimate (that is, business)
users. Table 7 lists the software found for each simula­
tor in SIM.

Debug The debug path for a simulator depends
on the available software. Ideally, the simulator would
be debugged with the same software tests used
to debug the target hardware, but this software is
rarely archived. Diagnostics can provide low-level
checking, but diagnostics typically check for broken
parts in a correct implementation, rather than an
incorrect implementation. Even when diagnostics
do check architecture rather than implementation (as
in the basic instruction diagnostics on the PDP-11
system), the absence of sources limits their utility.
Consequently, the simulators were debugged mostly
with simple hand tests and then with the operating
systems.

Operating systems are both exacting and imprecise
tests of implementation correctness. Unless an
operating system takes a deliberately restrictive view
of hardware (for example, OS/8 does not use the
PDP-8 interrupt system, and RT-11 does not use any

Location

PDP-8 Minicomputer Handbook
Reference manuals
Maintenance manuals
Print sets

Private collection
Digital archive
Digital Australia collection
Digital Australia collection
Public archive11

PDP-11

Nova

18-bit PDP

Digital Technical Journal

Prior implementations

Minicomputer Handbook
Reference manuals
Maintenance manuals
Chip specifications
Microcode listings
Prior implementations

System Reference Manual
Reference manuals
Maintenance manuals
Prior implementations

Reference manuals
Maintenance manuals
Print sets

Vol. 8 No. 3 1996

Public archive'"
MIMIC, private collection

Private collection
Digital archive
Digital Australia collection
Private collection
Private collection
Public archive19

MIMIC, private collection

Private collection
Data General archive
Private collection
MIMIC, private collection

Digital archive
Digital archive
Digital archive

Table 7
Software for Simulators in SIM

Architecture

PDP-8

PDP-11

Nova

18-bit PDP

Software

Basic instruction tests 1 and 2
Memory management test
FOCAL69
05/8 system disk

RT-11
RSX-11M
RSTS/E
UNIX V5, V6, V7, 2.9 BSD
2.1 1 BSD

RDOS

No software to dat e

optional PDP-11 instructions), the operating sys­
tem will be sensitive to every error in implementation.
For example, Digital's second-generation PDP-11
systems-the PDP-11/0S, 11/40, and ll/4S­
were debugged with DOS- 11 and RSTS after diag­
nostics failed to detect certain subtle implementation
errors. Unfortunately, in an operating system, the
distance in time and space between the error and the
symptom may be enormous, and the traceable path
may be lengthy and complicated. Artifacts in the
software can also complicate debug: the OS/8 disk
image on the Internet contains a copy of BASIC that
is broken.

Results SIM implements four minicomputer architec­
tures: PDP-8, PDP-11, Nova, and 18-bit PDP. Each
simulator includes a particular CPU; basic peripherals
such as terminal, paper tape, clock, and printer; and
a selection of mass storage peripherals (see Table 8).

The PDP-8 simulator has run the FOCAL69 and
the OS/8 operating systems. The PDP-11 simulator
has run the following operating systems: RT-11 V4
and VS; RSX-llM V4; RSTS/E VS; UNIX VS,
V6, and V7; and BSD V2.9 and V2.ll. The Nova
simulator has run the ROOS V7.S operating system.
No system software for the 18-bit PDP systems
has been found. The simulators were exercised on an
AlphaStation 3000/600 workstation (approximately
120 SPECint92); the performance is given in Table 9.

Figures 2, 3, and 4 show screen shots from the various
simulators running their principal operating systems.

In Defense of Computing's History

As professional engineers who have been lucky
enough to witness the computer revolution, the
authors believe that the industry has a duty to keep
early machines alive. There are practical reasons, such

Location

Digital Australia collection
Digital Australia collection
Digital Australia collection
Public archive'"

Transcribed from real system
Transcribed from real system
Transcribed from real system
PDP UNIX Preservation Society (PUPS) archive20

Private collection

Private collection

as preservation of software and data; beyond that,
there is an obligation to future generations. In 100
years, the systems from computing's early history will
appear to be absolute dinosaurs of the past. Yet their
educational and sociological value will be consider­
able. A computer is a machine with a soul, and it must
be kept alive with its operating environment to show
its abilities and the contemporary state of the art.

Acknowledgments

Max Burnet: I would like to thank Digital Equipment
Corporation Australia Pty Ltd for tolerating my
eccentricity and for supporting the Australian Digital
museum collection. Also the DECUS Australia NOP
(nostalgic obsolete product) SIG members for help,
encouragement, knowledge, good humor, and cama­
raderie on the last Wednesday of the month. My thanks
to my coauthor Bob Supnik for his continued inspira­
tion; it is great to see a V.P. who can cut code with the
best of them. My thanks also to the contributors to the
Digital Notes files, a great source of folklore. Therein
lies a treasure trove of solutions from people who are
helping each other solve the same problems.

Bob Supnik: The design, implementation, and debug
of SIM was made possible by the generous help of
many people. Craig St. Clair and Deb Toivonen of the
Digital archives located rare manuals and documents
on Digital's 12-bit, 16-bit, and 18-bit systems. Tom
West and Don Lewine of Data General Corporation
provided documentation and support on the Nova.
Carl Friend's private collection of Data General
hardware and software was a crucial source of docu -
mentation and software for the Nova and the ROOS
operating system. Doug Jones, Bill Haygood, and
John Wilson allowed me to use the sources to their
simulators and freely answered arcane questions about

Digital Technical Journal Vol. 8 No. 3 1996 33

Table 8
Architectures Implemented by SIM

PDP-8 PDP-11 Nova

CPU PDP-8/E J-11, Q-bus Nova 820

Options KEBE EAE, Integral FP11 Multiply/divide
KM8E memory extension

Memory 4-32K words 16 KB-4 MB 4-32K words

Terminal KL8E DL 11 KSR-33, Dasher

Paper tape PC8E PC11 Yes

Clock DK8E KW11L Yes

Printer LESE LP11 Yes

Storage RX8E/RX01 RX11/RX01 4019
RK8E/RK05 RK11/RK05 4046/4047, 4048,
RF08/RS08 RLV11 /RL01 ,2 4057, 4234

Magnetic tape TM8E/TU10 TM11/TU10 6026

PDP-4 PDP-7 PDP-9 PDP-15

CPU PDP-4 PDP-7 PDP-9 PDP-15/30

Options T1 77 EAE, KE09A EAE, KE15 EAE,
T148 memory KX09A memory KM15 memory
extension protection prot ection

KP09A power KP15 power

Memory 4-8K words 4-32K words 4-32K words 4-128K words

Terminal KSR-28 KSR-33

Paper t ape Int egra l T444 reader
T75 punch T75 punch

Clock Yes Yes

Printer T62 T647

Storage T24drum

Magnetic tape

the hardware. In addition, Bill provided a working
OS/8 system disk, and John copied several PDP-11
operating system disks off a working PDP-11/ 34.
Megan Gentry was an important source of PDP-11
folklore, debugged some of the subtlest problems, cre­
ated the Makefile, and provided the first and most
frequently used distribution site. Ben Thomas
provided the character-by-character 1/0 routines
for VMS. Chris Suddick helped debug the PDP-11
floating-point code. Warren Toomey and the enthusi­
asts at PUPS (the PDP UNIX Preservation Society)
in Australia allowed me access to their archive of early
UNIX releases. Leendert Van Doorn debugged
the PDP-11 simulator with UNIX V6, and Franc
Grootjen with 2.11 BSD. Larry Stewart provided the
initial impetus to the project, and Ken Harrenstein
made an important contribution to preservation
by implementing a DECsystem-IO simulator. Last,
but not least, Max Burnet generously provided
documentation and software from the Digital

34 Digital Technical Journal Vol. 8 No. 3 1996

KSR-33 KSR-35

PC09A PC1 5 reader-
reader- punch punch

Yes Yes

T647E LP15

RF09/RS09 RF15/RS09
RP15/RP02

TC59/TU 10 TC59/TU10

Australia collection, answered questions based on his
30 years of experience with Digital's systems, and
made connections with and introductions to the
worldwide community of historic machine hobbyists
and enthusiasts.

References and Notes

1. As managing director of Digital's Australian subsidiary
from 1975 to 1982, Max Burnet created and operated
the PDP trade-in program.

2. M . Burnet, "An Update on the Museum Treasures,"
DECUS Australia Symposium Proceedings, August
1993.

3. M. Burnet, "The '94 Update on the Museum Trea­
sures," DECUS Australia Symposium Proceedings,
August 1994.

4. M. Burnet, "The Last Great PDP-11," DECUS
Australia Symposium Proceedings, August 1995.

Table9
Simulator Performance

Simulator Simulated Real Ratio
Instructions Instructions
per Second per Second

PDP-8 1,800,000 400,000 4.5:1
PDP-11 440,000 500,000 .88:1

Nova 1.700,000 750,000 2.26:1

ucoder> pdp8

PDP-8 simulator V2.2b
sim> att rkO os8.dsk
s i m> boot rkO

.DA 08-APR-96

. DIR

08-Apr-96

COPYIT.SV 2 09-Mar-93 PASS2 .sv 20 11-0ct-92 FORT3 .LD 3 06-Jul-93
DIRECT.SV 7 11-0ct-92 PASS20.SV 5 11-0ct-92 CLOSE .sv 2 10-Jul-93
CCLX .sv 24 25-Feb-93 PASS3 .sv 8 11-0ct-92 FORT4 . FT 1 11-Jul-93
PIP .sv 11 11-0ct-92 RALF .sv 1 9 11-0ct-92 FORT4 .LD 2 04-Aug-93
FOTP .sv 8 11-0ct-92 RESORC.SV 1 0 11-0ct-92 FORT6 .LD 2 09-Aug-93
ABSLDR.SV 5 11-0ct-92 RUNOFF.SV 24 11-0ct-92 FORTS . FT 1 09-Aug-93
BASIC .sv 11 11-0ct-92 SABR .sv 24 11-0ct-92 FORTS .LD 2 09-Aug-93
BATCH .sv 10 11-0ct-92 SCROLL.SV 1 7 11-0ct-92 FORT6 . FT 1 09-Aug-93
BCOMP .sv 26 11-0ct-92 SET .sv 20 11-0ct-92 MET SC .sv 10 11-Aug-93
BIT MAP. SV 5 11-0ct-92 SRCCOM.SV 5 11-0ct-92 METSC2.SV 10 11-Aug-93
BLOAD .sv 10 11-0ct-92 TECO . sv 32 11-0ct-92 EMAT .sv 9 11-Aug-93
BOOT .sv 5 11-0ct-92 VERSN3.SV 10 11-0ct-92 EMDCT .sv 14 11-Aug-93
BRTS .sv 24 11-0ct-92 BUILD .sv 33 11-0ct-92 EMT ST .sv 1 0 11-Aug-93
CHEKMO.SV 15 11-0ct-92 BASIC .ov 16 11-0ct-92 SINS T1.SV 1 4 11-Aug-93
COMPAF.SV 5 11-0ct-92 BUILD6. SV 33 11-0ct-92 ADDER .sv 1 3 11-Aug-93
CREF .sv 13 11-0ct-92 BUil T .sv 33 12-0ct-92 FORT? . FT 1 30-Aug-93
ED IT .sv 10 11-0ct-92 HELP .HE 1 18-0ct-92 CLEAR .LS 2 13-Jan-94
EDITS .sv 6 11-0ct-92 HELP .HL 72 18-0ct-92 CLEAR . CF 2 13-Jan-94
EPIC .sv 14 11-0ct-92 HELP .oc 4 18-0ct-92 CLEAR .sv 2 13-Jan-94
F4 .sv 20 11-0ct-92 FORT? .LD 2 07-Sep-93 CLEAR .PA 1 13-Jan-94
FRTS .sv 26 11-0ct-92 JMPTST.SV 3 18-0ct-92 CLEAR .BN 2 13-Jan-94
FUT IL .sv 26 11-0ct-92 JMPJMS.SV 3 18-0ct-92 DEMO 28 21-Mar-95
HELP .sv 5 11-0ct-92 RK8ENS.BN 1 30-0ct-92 DOS .PA 4 25-Jan-94
LIBRA .sv 11 11-0ct-92 INST1 . sv 14 01-Dec-92 DOS .BN 1 25-Jan-94
LIBSET.SV 5 11-0ct-92 INST2 .sv 11 01-Dec-92 DOS .LS 10 25-Jan-94
LOAD .sv 16 11-0ct-92 FORT .FT 1 17-Jun-93 SHE LL .PA 1 25-Jan-94
LOADER.SV 12 11-0ct-92 FORT . LD 2 09-Jul-93 SHELL .BN 1 25-Jan-94
MAT ST .sv 9 11-Aug-93 FORT2 . LD 2 09-Jul-93 SHELL . LS 2 25-Jan-94
MDT ST .sv 14 11-Aug-93 FORT2 .FT 1 22-Jun-93 BASIC .ws 1 10-Mar-94
OCOMP .sv 8 11-0ct-92 DOS .sv 2 25-Jan-94 FOO .PA 1 31-Mar-94
OPTF4 .sv 13 11-0ct-92 SHELL .sv 2 25-Jan-94 FOO .BN 1 31-Mar-94
PALS .sv 19 11-0ct-92 FORT3 . FT 1 26-Jun-93

95 Files In 980 Blocks - 2212 Free Blocks

Simulation stopped, PC: 01207 C KS F)

sim>

Figure 2
PDP-8 Simulator Running OS/8

Digital Technical Journal Vol. 8 No. 3 1996 35

36

uco de r> nova

NOVA simulator V2.2b
sim> att dpO rdos.dsk
sim> set tti dasher
sim> boot dpO

Filen am e?

NOVA RDOS Rev 7.50
Date Cm/d/y) ? 4 8 96
Time Ch:m:s) ? 16 26 0

R
list/e sys-.­
SYS5.LB
SYS.SV

17216
56320
20240
30720
23040

D 05/24/77 13:18 05/31/85
12/14/95
05/31/85
12/14/95
05/31/85

[001017]
[005057]
[000746]
[005272]
[001401 J

0
0
0
0
0

SD 12/14/95 16:21
SYS.LB D 04/30/85 14:49
SYS.OL
SYSGEN.SV

C 12/14/95 16:21
SD 05/02/85 22:20

R
disk
LEFT: 2158
R

USED: 2706 MAX. CONTIGUOUS: 2054

Simulation stopped, PC: 41740 (LDA 1,4,3)
sim>

Figure 3
Nova Simulator Running RDOS

5. A. Ahi, G. Burroughs, A. Gore, S. LaMar, C.-Y. Lin,
and A. Wiemann, "Design Verification of the HP 9000
Series 700 PA-RISC Workstations," Hewlett-Packard
Journal, vol. 43, no. 4 (1992).

6. W. Anderson, "Logical Verification of the NVAX CPU
Chip Design," Digital Technical Journal, vol. 4,
no. 3 (1992): 38-46.

7. R. Calcagni and W. Sherwood, "VAX 6000 Model 400
CPU Chip Set Functional Design Verification,"
Digital Technical Journal, vol. 2, no. 2 (1990):
64-72.

8. A. Hutchings, "The Evolution of the Custom CAD
Suite Used on the MicroVAX II System," Digital
Technica!Journal, vol. 1, no. 2 (1986): 48-55.

9. M. Kantrowitz and L. Noack, "Functional Verification
of a Multiple-issue, Pipelined, Superscalar Alpha
Processor-the Alpha 21164 CPU Chip," Digital
Technica!Journal, vol. 7, no. 1 (1995): 136--144.

10. D. Siewiorek, C. Bell, and A. Newell, Computer
Structures: Principles and £:camp/es, "The IBM
System/360, System/370, 3030, and 4300: A Series
of Planned Machines That Span a Wide Performance
Range," and "PMS Notation" (New York: McGraw­
Hill, 1982).

11. R. Brunner, ed., VAX Architecture Reference
Manual, chapter 9, "Compatibility Mode" (Bedford,
Mass.: Digital Press, 1991).

12. This simulator has since been withdrawn from the
network.

Digital Technical Journal Vol. 8 No. 3 1996

13. R. Rustin, ed., Debugging Techniques in wrge
Systems, R. Supnik, "Debugging Under Simulation"
(Englewood Cliffs, N. J.: Prentice-Hall, 1971).

14. For information on and pictures of Data General
minicomputers, see C. Friend's web page at
http:/ /www.ultranet.com/-engelbrt/carJ/museum
/index.html.

15. For information on and pictures of many historic
computers, see J. Jaeger's web page at http://
www.msn.fullfeed.com/-cube/collect.htm.

16. For information on and pictures of many historic
computers, see P. Pierce's web page at http://
www.teleport.com/-prp / collect/index.html.

17. For documentation and relevant links, see D. Jones's
web page at www.cs.uiowa.edu/-jones/pdp8/. For
his simulator, cross assembler, and core images, see
ftp:/ /ftp.cs.uiowa.edu/pub/jones/pdp8.

18. For information on his simulator and OS/8 disk
image, see W. Haygood's web page at ftp://
sunsite.unc.edu/pub/academic/computer-science/
history /pdp-8 / emulators/haygood.

19. For more information on J. Wilson's simulator (exe­
cutable only), see his web page at ftp://
ftp.update.uu.se/pub/ibmpc/emulators.

20. For more information on the PDP-11 UNIX archive,
see the PUPS home page at http://
minnie.cs.adfa.oz.au/PUPS/index.html.

Figure4

ucoder> pdp11

PDP-11 simulator V2.2b
sim> att rkO rtrk.dsk
sim> boot rkO

RT-11SJ (S) VOS.04

.da 8-apr-96

. di r
08-Apr-96

NL .SYS
RT11SJ.SYS
PTESTX. MAC
BINCOM.SAV
DIR .SAV
LIBR . SAV
LINK .SAV
FORMAT.SAV
PBCOPY.SAV
ODT .OBJ
SIPP .SAV
IOP .SAV
TT .SYS
DM .SYS
DX .SYS
LS .SYS
LP .SYS
PIP .SAV
LD .SYS
LC .SYS
UCL .CCL
MTPIP .SAV
MLIB .SYS
XPC .SAV
PTESTX. OBJ

49 Files,
3330 Free

.sho dev

Device

NL
TT
DL
DM
DP
DX
RK

2
80
23
24
19
24
49
24

2
8

21
11

2
5
4
5
2

30
8
2
4

28
300

16
8

18-Sep-89
18-Sep-89
27-Jan-94
27-Sep-88
27-Sep-88
27-Sep-88
27-Sep-88
27-Sep-88
16-Feb-89
05-0ct-89
27-Sep-88
24-Apr-89
18-Sep-89
18-Sep-89
18-Sep-89
05-0ct-89
18-Sep-89
27-Sep-88
26-Dec-90
01-Jan-80
07-0ct-90
27-Feb-87
20-Dec-90
25-Jun-91

1432 Blocks
blocks

Status CSR

Installed 000000
Installed 000000
Installed 174400
Not installed 177440
Not installed 176710
Installed 177170
Resident 177400

LS -Not installed 176500
MT Installed 172520
LP Installed 177514
SP Installed 000000
LD Installed 000000
LC Installed 177514

Simulation stopped, PC: 146506
sim>

PDP-11 Simulator Running RT-11

RT11FB.SYS
SPOOL . REL
GVI .SAV
DUP .SAV
IND .SAV
MACRO . SAV
RESORC.SAV
ODT . SAV
SYSLIB.OBJ
SYSMAC.SML
DATE . SAV
SWAP . SYS
DL . SYS
DP .SYS
RK .SYS
MT .SYS
SP . SYS
HANDLE.SAV
MAC .SAV
UCL .SAV
STARTS.COM
MTROL .SAV
HELP .SAV
DESS .SAV

Vector(s)

000
000
160
210
254
264
220
470 474 300
224
200
11 0
000
200

(ASR RS)

94
11

5
49
58
61
25

8
55P
61

3
27

4
3
3
9
6
7

61
13

1
1 7

132
1 8

304

Digital Technical Journal

18-Sep-89
14-Apr-87
18-Apr-90
27-Sep-88
27-Sep-88
27-Sep-88
27-Sep-88
05-0ct-89
05-0ct-89
16-Mar-89
02-Feb-89
27-Sep-88
18-Sep-89
18-Sep-89
18-Sep-89
18-Sep-89
18-Sep-89
16-Feb-89
27-Sep-88
22-Dec-89
19-Jan-94
27-Feb-87
20-Dec-90
09-Mar-88

Vol. 8 No. 3 1996 37

38

Biographies

Maxwell M. Burnet
Max Burnet has been with Digital in Australia for 29 years.
During that time, he has sold, serviced, or marketed all the
machines in the collection. He managed the Digital
Australia subsidiary for seven years. He was a salesman
in Boston during 1971 and managed to replace an IBM
1620 at Tufts University with a PDP-10. He is currently
the oldest surviving "techie" in the Sydney office and
makes many corporate presentations in Australia. He
manages the Australian DECUS Society, the Subsidiary's
local content and export obligations with the Australian
Government, and the local Product Assurance Group.
He has collected a museum of early Digital machines and
is known around Sydney as "Museum Max." He received
a B.Sc. (honours) from Melbourne University.

Robert M. Supnik
Bob Supnik has been with Digital in the United States
for 19 years. He joined the Mass Storage Group and then
moved into Semiconductor Engineering, where he succes­
sively managed the last PDP-11 implementation (the J-11),
Advanced Development, the first single-chip VAX imple­
mentation (the MicroVAX chip), and the VAX Micro­
processor Group. He also wrote or contributed to the
microcode of every single-chip VAX microprocessor. In
1988, he started the Alpha program, which he managed
through launch of the first products in 199 2. He then
became technical director, first of Engineering and then
of the Computer Systems Division. In 1996, he became
vice president of Research and Advanced Development.
He has B.A. degrees in mathematics and in history from
MIT, and an M.A. in history from Brandeis University.

Digital Technical Journal Vol. 8 No. 3 1996

Modern Fortran
Revived as the
Language of Scientific
Parallel Computing

New features of Fortran are changing the way

in which scientists are writing and maintaining

large analytic codes. Further, a number of these

new features make it easier for compilers to

generate highly optimized architecture-specific

codes. Among the most exciting kinds of

architecture-specific optimizations are those

having to do with parallelism. This paper

describes Fortran 90 and the standardized

language extensions for both shared-memory

and distributed-memory parallelism. In par­

ticular, three case studies are examined, show­

ing how the distributed-memory extensions

{High Performance Fortran) are used both for

data parallel algorithms and for single-program­

multiple-data algorithms.

I
William N . Cehnaster

A Brief History of Fortran

The Fortran (FORmula TRANslating) computer lan­
guage was the result of a project begun by John
Backus at IBM in 1954. The goal of this project was to
provide a way for programmers to express mathemati­
cal formulas through a formalism that computers could
translate into machine instructions. Initially there was
a great deal of skepticism about the efficacy of such
a scheme. "How," the scientists asked, "would anyone
be able to tolerate the inefficiencies that would result
from compiled code?" But, as it turned out, the first
compilers were surprisingly good, and programmers
were able, for the first time, to express mathematics in
a high-level computer language.

Fortran has evolved continually over the years in
response to the needs of users, particularly in the areas
of mathematical expressivity, program maintainability,
hardware control (such as I/0), and, of course, code
optimizations. In the meantime, other languages such
as C and C+ + have been designed to better meet the
nonmathematical aspects of software design, such as
graphical interfaces and complex logical layouts. These
languages have caught on and have gradually begun to
erode the scientific/engineering Fortran code base.

By the 1980s, pronouncements of the "death of
Fortran" prompted language designers to propose
extensions to Fortran that would incorporate the best
features of other high-level languages and, in addition,
provide new levels of mathematical expressivity popu­
lar on supercomputers such as the CYB ER 205 and the
CRAY systems. This language became standardized as
Fortran 90 (ISO/IEC 1539: 1991; ANSI X3.198-
1992). At the present time, Fortran 95, which
includes many of the parallelization features of H igh
Performance Fortran discussed later in this paper, is in
the final stages of standardization. It is not yet clear
whether the modernization of Fortran can, of itself,
stem the C tide. However, I will demonstrate in this
paper that modern Fortran is a viable mainstream lan­
guage for parallelism. It is true that parallelism is not
yet part of the scientific programming mainstream.
However, it seems likely that, with the scientists'
never-ending thirst for affordable performance, paral­
lelism will become much more common-especially

Digital Technical Journal Vol. 8 No. 3 1996 39

now that appropriate standards have evolved. Just as
early Fortran enabled average scientists and engineers
to program the computers of the 1960s, modern
Fortran may enable average scientists and engineers to
program parallel computers of the next decade.

An Introduction to Fortran 90

Fortran 90 introduces some important capabilities in
mathematical expressivity through a wealth of natural
constructs for manipulating arrays.1 In addition,
Fortran 90 incorporates modern control constructs
and up-to-date features for data abstraction and data
hiding. Some of these constructs, for example, DO
WHILE, although not part of FORTRAN 77, are
already part of the de facto Fortran standard as pro­
vided, for example, with DEC Fortran.

Among the key new features of Fortran 90 are the
following:

• Inclusion of all of FORTRAN 77, so users can
compile their FORTRAN 77 codes without
modification

• Permissibility of free-form source code, so pro­
grammers can use long (i.e., meaningful) variable
names and are not restricted to begin statements
in column 7

• Modern control structures like CASE and DO
WHILE, so programmers can take advantage of
structured programming constructs

• Extended control of numeric precision, for archi­
tecture independence

• Array processing extensions, for more easily express­
ing array operations and also for expressing inde­
pendence of element operations

• Pointers, for more flexible control of data placement

• Data structures, for data abstraction

• User-defined types and operators, for data
abstraction

• Procedures and modules, to help programmers
write reusable code

• Stream character-oriented input/output features

• New intrinsic functions

With these new features, a modern Fortran pro­
grammer can not only successfully compile and exe­
cute previous standards-compliant Fortran codes but
also design better codes with

• Dramatically simplified ways of doing dynamic
memory management

• Dynamic memory allocation and deallocation for
memory management

• Better modularity and therefore reusability

40 Digital Technical Journal Vol. 8 No. 3 1996

• Better readability

• Easier program maintenance

Additionally, of course, programmers have the
assurance of complete portability between platforms
and architectures.

The following code fragment illustrates the simplic­
ity of dynamic memory allocation with Fortran 90. It
also includes some of the new syntax for declaring vari­
ables, some examples of array manipulations, and an
example of how to use the new intrinsic matrix multi­
plication function . In addition, the exclamation mark,
which is used to begin comment statements, is a new
Fortran 90 feature that was widely used in the past as
an extension to FORTRAN 77.

REAL, DIMENSION(:,:,:), NEW DECLARATION SYNTAX
& ALLOCATABLE :: GRID DYNAMIC STORAGE

REAL*B A(4,4),B(4,4),C(4,4) OLD DECLARATION SYNTAX
READ*, N READ IN THE DIMENSION
ALLOCATE(GRID(N+2,N+2,2)) ALLOCATE THE STORAGE
GRID(:,:,1) = 1.0 ASSIGN PART OF ARRAY
GRID(:,:,2) = 2.0 ASSIGN REST OF ARRAY
A= GRID(1:4,1:4,1) ASSIGNMENT
B = GRID(2:5,1:4,2) ASSIGNMENT
C = MATMUL(A,B) MATRIX MULTIPLICATION

Some of the new features of Fortran 90 were intro­
duced not only for simplified programming but also
to permit better hardware-specific optimizations.
For example, in Fortran 90, one can write the array
assignment

A = B + C

which in FORTRAN 77 would be written as

DO 100 J = 1,N
DO 200 I= 1,M

A(I,J) = B(I,J) + C(I,J)
200 END DO
100 END DO

The Fortran 90 array assignment not only is more
elegant but also permits the compiler to easily recog­
nize that the individual element assignments are inde­
pendent of one another. If the compiler were targeting
a vector or parallel computer, it could generate code
that exploits the architecture by taking advantage of
this independence between iterations.

Of course, the particular DO loop shown above is
simple enough that many compilers would recognize
the independence of iterations and could therefore
perform the architecture-specific optimizations with­
out the aid of Fortran 90's new array constructs. But
in general, many of the new features of Fortran 90
help compilers to perform architecture-specific opti­
mizations. More important, these features help pro­
grammers express basic numerical algorithms in ways
inherently more amenable to optimizations that take
advantage of multiple arithmetic units.

A Brief History of Parallel Fortran: PCF and HPF

During the past ten years, two significant efforts have
been undertaken to standardize parallel extensions to
Fortran. The first of these was under the auspices of
the Parallel Computing Forum (PCF) and targeted
global-shared-memory architectures. The PCF effort
was directed to control parallelism, with little atten­
tion to language features for managing data locality.
The 1991 PCF standard established an approach to
shared-memory extensions of Fortran and also estab­
lished an interim syntax. These extensions were later
somewhat modified and incotporated in the standard
extensions now known as ANSI X3H5.

At about the time the ANSI X3H5 standard
was adopted, another standardization committee
began work on extending Fortran 90 for distributed­
memory architectures, with the goal of providing
a language suitable for scalable computing. This
committee became known as the High Performance
Fortran Forum and produced in 1993 the High
Performance Fortran (HPF) language specification.2

The HPF programming-model target was data paral­
lelism, and many data placement directives are pro­
vided for the programmer to optimize data locality. In
addition, HPF includes ways to specify a more general
style of single-program-multiple-data (SPMD) execu­
tion in which separate processors can independently
work on different parts of the code. This SPMD speci­
fication is formalized in such a way as to make the
resulting code far more maintainable than previous
message-passing-library ways of specifying SPMD dis­
tributed parallelism.

Can HPF and PCF extensions be used together in
the same Fortran 90 code? Sure. But the PCF specifi­
cation has lots of "user-beware" warnings about the
correct usage of the PARALLEL REGION construct,
and the HPF specification has lots of warnings about
the correct usage of the EXTRINSIC(HPF_LOCAL)
construct. So as you can see, there are times when
a programmer had better be very knowledgeable if she
or he wants to write a mixed HPF / PCF code. Digital's
products support both the PCF and HPF extensions.
The HPF extensions are supported as part of the DEC
Fortran 90 compiler, and the PCF extensions are sup­
ported through Digital's KAP Fortran optimizer.3-4

Shared Memory Fortran Parallelism

The traditional discussions of parallel computing focus
rather heavily on what is known as control parallelism.
Namely, the application is analyzed in terms of the
opportunities for parallel execution of various threads
of control. The canonical example is a DO loop in
which the individual iterations operate on inde­
pendent data. Each iteration could, in principle, be

executed simultaneously (provided of course that the
hardware allows simultaneous access to instructions
and data). Technology has evolved to the point at
which compilers are often able to detect these kinds
of parallelization opportunities and automatically
decompose codes. Even when the compiler is not able
to make this analysis, the programmer often is able to
do so, perhaps after performing a few algorithmic
modifications. It is then relatively easy to provide lan­
guage constructs that the user can add to the program
as parallelization hints to the compiler.

This kind of analysis is all well and good, provided
that data can be accessed democratically and quickly by
all processors. With modern hardware clocked at about
300 megahertz, this amounts to saying that memory
latencies are lower than 100 nanoseconds, and memory
bandwidths are greater than 100 megabytes per sec­
ond. This characterizes today's single and symmetric
multiprocessing (SMP) computers such as Digital's
AlphaServer 8400 system, which comes with twelve
600-megaflop processors on a backplane with a band­
width of close to 2 gigabytes per second.

In summary, the beauty of shared-memory paral­
lelism is that the programmer does not need to worry
too much about where the data is and can concentrate
instead on the easier problem of control parallelism. In
the simplest cases, the compiler can automatically
decompose the problem without requiring any code
modifications. For example, automatic decomposition
for SMP systems of a code called, for example, cfd.f,
can be done trivially with Digital's KAP optimizer by
using the command line

kf90 -fkapargs='-conc' cfd.f -o cfd.exe

As an example of guided automatic decomposition,
the following shows how a KAP parallelization asser­
tion can be included in the code. (Actually, the code
segment below is so simple that the compiler can auto­
matically detect the parallelism without the help of the
assertion.)

C*S* ASSERT DO (CONCURRENT)
DO 100 I = 4,N

A(I) = 8(1) + CCI)
END DO

For explicit control of the parallelism, PCF direc­
tives can be used. In the example that follows, the KAP
preprocessor form of the PCF directives are used to
parallelize a loop.

C*KAP*PARALLEL REGION
C*KAP*&SHARED(A,8,C) LOCAL(!)
C*KAP*PARALLEL DO

DO 10 I = 1,N
A(I) = 8(1) + CCI)

10 CONTINUE
C*KAP*END PARALLEL REGION

Digital Technical Journal Vol. 8 No. 3 1996 41

Cluster Fortran Parallelism

High Performance Fortran Vl .1 is currently the only
language standard for distributed-memory parallel
computing. The most significant way in which HPF
extends Fortran 90 is through a rich family of data
placement directives. There are also library routines
and some extensions for control parallelism. HPF
is the simplest way of parallelizing data-parallel appli ­
cations on clusters (also known as "farms") of work­
stations and servers. Other methods of cluster
parallelism, such as message passing, require more
bookkeeping and are therefore less easy to express and
less easy to maintain. In addition, during the past year,
HPF has become widely available and is supported on
the platforms of all major vendors.

HPF is often considered to be a data parallel Ian -
guage. That is, it facilitates parallelization of array­
based algorithms in which the instruction stream can
be described as a sequence of array manipulations,
each of which is inherently parallel. What is less well
known is that HPF also provides a powerful way of
expressing the more general SPMD parallelism men­
tioned earlier. This kind of parallelism, often expressed
with message-passing libraries such as MPI,5 is one in
which individual processors can operate simultane­
ously on independent instruction streams and gener­
ally exchange data either by explicitly sharing memory
or by exchanging messages. Three case studies follow
which illustrate the data parallel and the SPMD styles
of programming.

A One-dimensional Finite-difference Algorithm

Consider a simple one-dimensional grid problem­
the most mind-bogglingly simple illustration of HPF
in action-in which each grid value is updated as a lin­
ear combination of its (previous) nearest neighbors.

For each interior grid index i, the update algorithm is

Y(i) = X(i - 1) + X(i + 1) - 2 x X(i)

In Fortran 90, the resulting DO loop can be
expressed as a single array assignment. How would
this be parallelized? The simplest way to imagine paral­
lelization would be to partition the X and Y arrays into
equal-size chunks, with one chunk on each processor.
Each iteration could proceed simultaneously, and at
the chunk boundaries, some communication would
occur between processors. The HPF implementation
ofthis idea is simply to add the Fortran 90 code to two
data placement statements. One of these declares that
the X array should be distributed into chunks, or
blocks. The other declares that the Y array should be
distributed such that the elements align to the same
processors as the corresponding elements of the X
array. The resultant code for arrays with 1,000 ele­
ments is as fo llows:

42 Digital Technical Journal Vol. 8 No. 3 1996

!HPF$ DISTRIBUTE XCBLOCK)
!HPF$ ALIGN Y WITH X

REAL*8 X(1000), Y(1000)

<initialize x>

YC2:999) = XC1:998) + XC3:1000) - 2 * XC2:999)

<check the answer>
END

The HPF compiler is responsible for generating all of
the boundary-element communication code. The com­
piler is also responsible for determining the most even
distribution of arrays. (If, for example, there were 13
processors, some chunks would be bigger than others.)

This simple example is useful not only as an illustra­
tion of the power ofHPF but also as a way of pointing
to one of the hazards of parallel algorithm develop­
ment. Each of the element-updates involves three
floating-point operations-an addition, a subtraction,
and a multiplication. So, as an example, on a four­
processor system, each processor would operate on
250 elements with 750 floating-point operations. In
addition, each processor would be required to com­
municate one word of data for each of the two chunk
boundaries. The time that each of these communica­
tions takes is known as the communications latency.
Typical transmission control protocol/internet proto­
col (TCP /IP) network latencies are twenty thousand
times (or more) longer than the time it typically takes
a high-performance system to perform a floating­
point operation. Thus even 750 floating-point opera­
tions are negligible compared with the time taken to
communicate. In the above example, network paral­
lelism would be a net loss, since the total execution
time would be totally swamped by the network
latency.

Of course, some communication mechanisms are of
lower latency than TCP /IP networks. As an example,
Digital's implementation of MEMORY CHANNEL
cluster interconnect reduces the latency to less than
1000 floating-point operations (relative to the perfor­
mance of, say, Digital's AlphaStation 600 5/300 sys­
tem). For SMP, the latency is even smaller. In both
cases, there may be a benefit to parallelism.

A Three-dimensional Red-Black Poisson
Equation Solver

The example of a one-dimensional algorithm in the
previous section can be easily generalized to a more
realistic three-dimensional algorithm for solving
the Poisson equation using a relaxation technique
commonly known as the red-black method. The
grid is partitioned into two colors, following a two­
dimensional checkerboard arrangement. Each red
grid element is updated based on the values of neigh­
boring black elements. A similar array assignment can

be written as in the previous example or, as shown in
the partial code segment below, alternatively can use
the HPF FORALL construct to express the assign­
ments in a style similar to that for serial DO loops.

!HPF$ DISTRIBUTEC*,BLOCK,BLOCK) :: U,V
<other stuff>
FORALL (1=2:NX-1,J=2:NY-1 :2,K=2:NZ-1 :2)

U(l,J,K) = FACTOR*(HSQ*FCl,J,K) + &
UCl-1,J,K) + U(l+1,J,K) + &

The distribution directive lays out the array so that
the first dimension is completely contained within
a processor, with the other two dimensions block­
distributed across processors in rectangular chunks.
The red-black checkerboarding is performed along
the second and third dimensions. Note also the
Fortran 90 free-form syntax employed here, in which
the ampersand is used as an end-of- line continuation
statement.

In this example, the parallelism is similar to that
of the one-dimensional finite-difference example.
However, communication now occurs along the two­
dimensional boundaries between blocks. The HPF
compiler is responsible for these communications.
Digital's Fortran 90 compiler performs several opti­
mizations of those communications. First, it pack­
ages up all of the data that must be communicated
into long vectors so that the start-up latency is effec­
tively hidden. Second, the compiler creates so-called
shadow edges (processor-local copies of nonlocal
boundary edges) for the local arrays so as to minimize
the effect of buffering of neighbor values. These kinds
of optimizations can be extremely tedious to message­
passing programmers, and one of the virtues of a high­
level language like HPF is that the compiler can take
care of the bookkeeping. Also, since the compiler
can reliably do buffer-management bookkeeping (for
example, ensuring that communication buffers do not
overflow), the communications runtime library can
be optimized to a far greater extent than one would
normally expect from a user-safe message library.
Indeed, Digital's HPF communications are performed
using a proprietary optimized communications library,
Digital's Parallel Software Environment.6

Figure 1

!HPF$ DISTRIBUTEC*,BLOCK) :: U
!HPF$ ALIGN V WITH U

REAL*B UCN,2),V(N,2)
<initialize arrays>
VC:,1) = U(:,2)

Communications and SPMD Programming with HPF
Since HPF can be used to place data, it stands to
reason that communication can be forced between
processors. The beauty ofHPF is that all of this can be
done in the context of mathematics rather than in the
context of distributed parallel programming. The
code fragment in Figure l illustrates how this is done.

On two processors, the two columns of the U and V
arrays are each on different processors; thus the array
assignment causes one of those columns to be moved
to the other processor. This kind of an operation begins
to provide programmers with explicit ways to control
data communication and therefore to more explicitly
manage the association of data and operations to
processors. Notice that the programmer need not be
explicit about the parallelism. In fact, scientists and
engineers rarely want to express parallelism. In typical
message-passing programs, the messages often express
communication of vector and array information.

However, despite the fervent hopes of programmers,
there are times when a parallel algorithm can be
expressed most simply as a collection of individual
instruction streams operating on local data. This SPMD
style of programming can be expressed in HPF with the
EXTRINSIC(HPF_LOCAL) declaration, as illustrated
by continuing the above code segment as shown in
Figure 2.

Because the subroutine CPD is declared to be
EXTRINSIC(HPF_LOCAL), the HPF compiler exe­
cutes that routine independently on each processor (or
more generally, the execution is done once per peer
process), operating on routine-local data. As for the
array argument, V, which is passed to the CFD routine,
each processor operates only on its local slice of that
array. In the specific example above on two processors,
the first one operates on the first column ofV and the
second one operates on the second column ofV.

It is important to mention here that, although HPF
permits- and even encourages-SPMD program­
ming, the more popular method at this time is the
message-passing technique embodied in, for example,
the PVM7 and MPI5 libraries. These libraries can be
invoked from Fortran, and can also be used in conjunc­
tion with EXTRINSIC(HPF_LOCAL) subroutines.

MOVE A VECTOR BETWEEN PROCESSORS

Code Example Showing Control of Data Communication without Expression of Parallelism

Digital Technical Journal Vol. 8 No. 3 1996 43

CALL CFO(V) ! 00 LOCAL WORK ON THE LOCAL PART OF V
<finish the main program>

EXTRINSIC(HPF_L OCAL) SUBROUTINE CFO(VLOCAL)
REAL*8, DIME NSION(:,:) :: VLOCAL

!HPF$ DISTRIBUTE *(*,BLOCK) :: VLOCAL
<do arbitrarily complex work with vloca l >
ENO

Figure 2
Code Example of Parallel Algorithm Expressed as Collection of Instruction Streams

Clusters of SMP Systems
During these last few years of the second millennium,
we are witnessing the emergence of systems that con­
sist of clusters of shared-memory SMP computers.
This exciting development is the logical result of the
exponential increase in performance of mid-priced
($100K to $1000K) systems.

There are two natural ways of writing parallel
Fortran programs for clusters of SMP systems. The
easiest way is to use HPF and to target the total num­
ber of processors. So, for example, if there were two
SMP systems, each with four processors, one would
compile the HPF program for eight processors (more
generally, for eight peers). If the program contained,
for instance, block-distribution directives, the affected
arrays would be split up into eight chunks of contigu­
ous array sections.

The second way of writing parallel Fortran pro­
grams for clustered SMP systems is to use HPF to
target the total number of SMP machines and then
to use PCF (or more generally, shared-memory exten­
sions) to achieve parallelism locally on each of the SMP
machines. For example, one might write

!HPFS DISTRIB UTE (*,BLOCK) :: V
<stuff>
EXTRINSIC(HPF_LOCAL) SUBROUTINE CFO(V)
<stuff>

C*KAP*PARALLEL REGION

If the target system consisted of two SMP systems,
each with four processors, and the above program was
compiled for two peers, then the V array would be dis­
tributed into two chunks of columns-one chunk
per SMP system. Then the routine, CFD, would be
executed once per SMP system; and the PCF directives
would, on each system, cause parallelism on four
threads of execution.

It is unclear at this time whether there would ever
be a practical reason for using a mix of HPF and PCF
extensions. It might be tempting to think that there
would be performance advantages associated with the
local use of shared-memory parallelism. However,
experience has shown that program performance
tends to be restricted by the weakest link in the perfor­
mance chain (an observation that has been enshrined

44 Digital Technical Journal Vol. 8 No. 3 1996

as "Amdahl's Law"). In the case of clustered SMP sys­
tems, the weak link would be the inter-SMP commu­
nication and not the intra-SMP (shared-memory)
communication. This casts some doubt on the worth
of local communications optimizations. Experimenta­
tion will be necessary.

Whatever else one might say about parallelism, one
thing is certain: The future will not be boring.

Summary

Fortran was developed and has continued to evolve as
a computer language that is particularly suited to
expressing mathematical formulas. Among the recent
extensions to Fortran are a variety of constructs for
the high-level manipulation of arrays. These constructs
are especially amenable to parallel optimization. In
addition, there are extensions (PCF) for explicit
shared-memory parallelization and also data-parallel
extensions (HPF) for cluster parallelism. The Digital
Fortran compiler performs many interesting optimiza­
tions of codes written using HPF. These HPF codes
are able to hide- without sacrificing performance­
much of the tedium that otherwise accompanies clus­
ter programming. Today, the most exciting frontier
for Fortran is that of SMP clusters and other
nonuniform-memory-access (NUMA) systems.

References

1. J. Adams et al., Fortran 90 Handbook (New York:
McGraw-Hill, Inc., 1992).

2. "High Performance Fortran language specification,"
Scientific Programming, vol. 2: 1- 170 (New York:
John Wiley and Sons, Inc., 1993), and C. Koelbel et al.,
The High Performance Fortran Handbook (Boston:
MIT Press, 1994).

3. J. Harris et al., "Compiling High Performance Fortran
for Distributed-memory Systems," Digital Technical
Journal, vol. 7, no. 3 (1995): 5- 23.

4. R. Kuhn, B. Leasure, and S. Shah, "The KAP Parallelizer
for DEC Fortran and DEC C Programs," Digital
Technicaljournal, vol. 6, no. 3 (1994): 57- 70.

5. For example see Proceedings of Supercomputing '93
(IEEE, November 1993): 878-883, and W. Gropp,
E. Lusk, and A. Skjellum, Using MPI (Boston: MIT
Press, 1994).

6. E. Benson et al., "Design of Digital's Parallel Software
Environment," Digital Technical journal, vol. 7, no. 3
(1995): 24-38.

7. For example see A. Geist et al., PVM: Parallel Virtual
Machine. A Users' Guide and Tuton"al for Network
Parallel Computing (Boston: MIT Press, 1994).

Biography

William N. Celmaster
Bill Celmaster has long been involved with high-performance
computing, both as a scientist and as a computing consul­
tant. Joining Digital from BBN in 1991, Bill managed the
porting of major scientific and engineering applications to
the DECmpp 12000 system. Now a member ofDigital's
High Performance Computing Expertise Center, he is
responsible for parallel software demonstrations and per­
formance characterization ofDigital's high-performance
systems. He has published numerous papers on parallel
computing methods, as well as on topics in the field of
physics. Bill received a bachelor of science degree in mathe­
matics and physics from the University of British Columbia
and a Ph.D. in physics from Harvard University.

Digital Technical Journal Vol. 8 No. 3 1996 45

Performance
Measurement of
TruCluster Systems under
the TPC-C Benchmark

Digital Equipment Corporation and Oracle

Corporation have announced a new TPC-C

performance record in the competitive mar-

ket for database applications and UNIX ser-

vers on the AlphaServer 8400 5/350 four-node

TruCluster system. A performance evaluation

strategy enabled Digital to achieve record­

setting performance for this TruCluster con­

figuration supporting the Oracle Parallel Server

database application under the TPC-C workload.

The system performance in this environment is

a result of tuning the system under test and tak­

ing advantage of TruCluster features such as the

MEMORY CHANNEL interconnect and Digital's

distributed lock manager and distributed raw

disk service.

46 Digital Technical Journal Vol. 8 No. 3 1996

I
Judith A. Piantedosi
Archana S. Sathaye
D. John Shakshober

Current industry trends have moved from centralized
computing offered by uniprocessors and symmetric
multiprocessing (SMP) systems to multinode, highly
available and scalable systems, called clusters. The
TruCluster multicomputer system for the Digital
UNIX environment is the latest cluster product from
Digital Equipment Corporation. 1 In this paper, we
discuss our test and results on a four-node AlphaServer
8400 5/350 TruCluster configuration supporting the
Oracle Parallel Server database application. We evalu­
ate this system under the Transaction Processing
Performance Council's TPC-C benchmark to provide
performance results in the competitive market for
database applications.

The TPC-C benchmark is a medium-complexity,
on-line transaction processing (OLTP) workload.2

•
3 It

is based on an order-entry workload, with different
transaction types ranging from simple transactions to
medium-complexity transactions that have 2 to 50
times the number of calls of a simple transaction.4 To
run the TPC-C benchmark on a clustered system, the
operating system and the database engine must present
a single database to the benchmark client. Thus the
TruCluster system running the Oracle Parallel Server
differs greatly from a network-based cluster system by
two significant features. First, the Digital UNIX distrib­
uted raw disk (DRD) service enables the distributed
Oracle Parallel Server to access all raw disk volumes
regardless of their physical location in the cluster.
Second, the Oracle Parallel Server uses Digital's distrib­
uted lock manager (DLM) to synchronize all access to
shared resources (such as in memory cache blocks or
disk blocks) across a TruCluster system.

In tuning the system under test, we used the D RD
and the DLM services to balance the database across
the TruCluster multicomputer system. The config­
uration includes a specialized peripheral compo­
nent interconnect (PCI) known as the MEMORY
CHANNEL interconnect to greatly improve the band­
width and latency between two or more member
nodes.5 We tuned the system under test to attain the
peak bandwidth of 100 megabytes per second (MB/s)
for heavy inte rnode communication du ring check­
pointing by using a dedicated PCI bus fo r the
MEMORY CHANNEL interconnect. We also tuned

the system under test to use the very large memory
technology and trade off memory for the database
cache with memory for DLM locks to improve the
throughput. (For a discussion of this technology, see
the section Performance Evaluation Methodology.)
We measured the maximum throughput, the 90th
percentile response time for each transaction type, and
the keying and think times. Finally, we compared our
measured throughput and price/performance with
competitive vendors like Tandem Computers and
Hewlett-Packard Company.

The rest of the paper is organized as follows. In the
next section, we provide a synopsis of the Tm Cluster
technology and introduce the Oracle Parallel Server,
an optional Oracle product that enables the user to use
TruCluster technology with the Oracle relational
database management system. Following that, we give
an overview of the TPC-C benchmark. Next, we
describe the system under test and our performance
evaluation methodology. Then we discuss our perfor­
mance measurement results and compare them with
competitive vendor results. Finally, we present our
concluding remarks and discuss our future work.

TruCluster Clustering Technology

Digital's TruCluster configuration consists of inter­
connected computers (uniprocessors or SMPs) and
external disks connected to one or more shared, small
computer systems interface (SCSI) buses providing
services to clients.6 It presents a single raw volume
namespace to a client with better application availabil ­
ity than a single system and better scalability than an
SMP. A TruCluster configuration supports highly par­
allelized database managers, such as the Oracle Parallel

CLIENT CLIENT

Server, to provide incremental performance scaling
of at least 80 percent for transaction processing appli­
cations. The underlying technology to provide this
incremental growth includes a PCI-based MEMORY
CHANNEL interconnect for communication between
cluster members.6 The MEMORY CHANNEL
interconnect provides a 100-MB/s, memory-mapped
connection between cluster members.7 The cluster
members map transfers from the MEMORY
CHANNEL interconnect into their memory using
standard memory access instructions. The use of
memory store instructions rather than special J/0
instructions provides low latency (two microseconds)
and low overhead for a transfer of any length.7

The TruCluster for Digital UNIX product supports
up to eight (four for commercial DLM/DRD-based
applications) cluster members connected to a com -
mon cluster interconnect. The computer systems
supported within a cluster are AlphaServer systems of
varying processor speed and number of processors.
The member systems run applications (for example,
user applications), as well as monitor the state of each
member system, each shared disk, the MEMORY
CHANNEL interconnect, and the network. These
cluster members communicate over the MEMORY
CHANNEL interconnect.6•

8 A MEMORY CHANNEL
configuration consists of a MEMORY CHANNEL
adapter installed in a PCI slot and link cables to con­
nect the adapters. In a configuration with more than
two members, the MEMORY CHANNEL adapters
are connected to a MEMORY CHANNEL hub. A
typical TruCluster configuration with a MEMORY
CHANNEL hub is shown in Figure 1.

Applications can attain high availability by connect­
ing two or more member systems to one or more

CLIENT

r--- - ----- -- ------- -- -- --1

Figure 1

I SERVER 1
I
I
I
I
I
I
I
I
I
I
I

MEMORY
CHANNEL
ADAPTER

KZPSA
ADAPTER

SHARED STORAGE

I LOCAL STORAGE

SERVER 2

MEMORY
CHAN NEL
ADAPTER

KZPSA
ADAPTER

L __ __ ____ __ ____ ___ _____ ___ _

A TruCluster Configuration with MEMORY CHANNEL Hub

Digital Technical Journal Vol. 8 No. 3 1996 47

shared SCSI buses, thus constructing an Available
Server Environment (ASE). A shared SCSI bus is
required only for two-member configurations that do
not have a MEMORY CHANNEL hub. Although
MEMORY CHANNEL is the only supported cluster
interconnect, Ethernet and fiber distributed data
interface (FDDI) are supported for connecting clients
to cluster members. Disks are connected either locally
(i.e., nonshared) to a SCSI bus or to a shared SCSI bus
between two or more member systems. A single node
in the cluster is used to serve the disk to other cluster
members. Disks on local buses obviously become
unavailable upon failure of the server node. The SCSI
controller supported in this configuration is the PCI
disk adapter, KZPSA.

The distinguishing feature of the TruCluster
software is its support of the MEMORY CHANNEL
as a cluster interconnect, thus providing industry­
leadership performance to intracluster communica­
tion.9 The TruCluster software includes the following
components: the DLM, the connection manager, the
DRD, and the cluster communication service. The
DLM facilitates synchronization to shared resources to
all member systems in a cluster by means of a run-time
library. Cooperating processes use the DLM to syn­
chronize access to a shared resource, a DRD device,
a file, or a program. The DLM service is primarily used
by the Oracle Parallel Server to coordinate access to the
cache and shared disks that have the database installed.6

The connection manager maintains information about
the cluster configuration and maintains a communica­
tion path between each cluster member for use by the
DLM. The DLM uses this configuration data and other
connection manager services to maintain a distributed
lock database. The DRD allows the exporting of clus­
terwide raw devices. This allows disk-based user-level
applications to run within the cluster, regardless of
where in the cluster the actual physical storage resides.
Therefore a DRD service allows the Oracle Parallel
Server parallel access to storage media from multiple

cluster members. The cluster communication service is
used to allocate the MEMORY CHANNEL address
space and map it to the processor main memory.

TPC-C Benchmark

The TPC-C benchmark depicts the activity of a generic
wholesale supplier company. The hierarchy
in the TPC-C business environment is shown in
Figure 2. The company consists of a number of geo­
graphically distributed sales districts and associated
warehouses. Further, there are 10 districts under each
warehouse with each district serving 3,000 (3K) cus­
tomers. All the warehouses maintain a stock of 10,000
items sold by the company. As the company grows,
new warehouses and associated sales districts are cre­
ated. The business activity consists of customer calls
to place new orders or request the status of existing
orders, payment entries, processing orders for delivery,
and stock-level examination. The orders on an average
are composed of 10 order lines (i.e., line items).
Ninety-nine percent of all orders can be met by a local
warehouse, and only one percent of them need to be
sold by a remote warehouse.

The TPC-C logical database components consist of
nine tables. 3 Figure 3 shows the relationship between
these tables, the cardinality of the tables (i.e., the num­
ber of rows), and the cardinality of the relationships.
The figure also shows the approximate row length in
bytes for each table and the table size in megabytes.
The cardinality of all the tables, except the item table,
grows with the number of warehouses. The order,
order-line, and history tables grow indefinitely as the
orders are processed.

The five types of TPC-C transactions are listed in
Table 1.3 The new-order transaction places an order
(of 10 order lines) from a warehouse through a single
database transaction; it inserts the order and updates
the corresponding stock level for each item. Ninety­
nine percent of the time the supplying warehouse is

COMPANY

Figure 2

WAREHOUSE 1 · · · · · · • · WAREHOUSE W

I I
DISTRICT 1 ·· · · ········ · ······ DISTRICT 10 DISTRICT 1 ··················· DISTRICT 10

I I I I
CUSTOMER CUSTOMER CUSTOMER CUSTOMER

1K ······················ 3K 1K ···· · ················· 3K 1K ······· · ·· · ····· · ··· · · 3K 1K ···················· · · 3K

Source: Transaction Processing Performance Council, TPC Benchmark C Standard Specification,
Revision 3.0, February 1995.

Hierarchical Relationship in the TPC-C Business Environment

48 Digital Technical Journal Vol. 8 No. 3 1996

WAREHOUSE
10

DISTRICT

W,89,0.000089'W W'10,95,0.00095'W

t 100K HISTORY 1+
i 3K

STOCK W,89,0.000089'W L CUSTOMER
~

W'100K,306,30.6'W 3+ W'30K,655, 19.65' W

fw NEW-ORDER 0-1
i 1+

ITEM W'9K,8,0.016'W+ ~ ORDERS

100K,82,8.2 5-15 ~ W'30K+,24,0.72'W+

ORDER-LINE - -W'300K+,54, 16.2'W+

KEY.

TABLE NAME

CARDINALITY,
APPROXIMATE ROW,
TABLE SIZE

CARDINALITY OF RELATIONSHIP

LENGTH (BYTES)

Note: + implies variations over measurement interval as rows are deleted or added.

Figure 3
TPC-C Database Tables Relationship

Table 1
TPC-C Requirements for Percentage in Mix, Keying Time, Response Time, and Think Time•

90th
Percentile Minimum

Minimum Response Mean Think
Minimum Keying Time Time

Transaction Percentage Time Constraint Distribution
Type in Mix (Seconds} (Seconds) (Seconds}

New order N/Ab 18 5 12
Payment 43 3 5 12
Order status 4 2 5 10
Delivery 4 2 5 5
Stock level 4 2 5 5
Notes

• Table 1 is published in the Transaction Processing Performance Council's TPC Benchmark C Standard Specification, Revision 3.0, February 1995.

' Not applicable (NIA) because the measured rate is the reported throughput , though it is desirable to set it as high as possible (45%).

the local warehouse, and only one percent of the time
is it a remote warehouse. The payment transaction
processes a payment for a customer, updates the cus­
tomer's balance, and reflects the payment in the dis­
trict and warehouse sales statistics. The customer
resident warehouse is the local warehouse 85 percent
of the time and is the remote warehouse 15 percent of
the time. The order-status transaction returns the sta­
tus of a customer order. The customer order is selected
60 percent of the time by last name and 40 percent of
the time by identification number. The delivery trans-

action processes orders corresponding to 10 pending
orders, 1 for each district with 10 items per order. The
corresponding entry in the new-order table is also
deleted. The delivery transaction is intended to be exe­
cuted in deferred mode through a queuing mecha­
nism, rather than being executed interactively; there is
no terminal response indicating the transaction com­
pletion. The stock-level transaction examines the
quantity of stock for the items ordered by each of the
last 20 orders in a district and determines the items
that have a stock level below a specified threshold.

Digital Tcclmical Journal Vol. 8 No. 3 1996 49

The TPC-C performance metric measures the total
number of new orders completed per minute, with a
90th percentile response-time constraint of 5 seconds.
This metric measures the business throughput rather
than the transaction execution rate. 3 It is expressed in
transactions-per-minute C (tpmC). The metric implic­
itly takes into account all the transaction types as their
individual throughputs are controlled by the mix per­
centage given in Table 1. The tpmC is also driven by
the activity of emulated users and the frequency of
checkpointing. 10 The cycle for generating a TPC-C
transaction by an emulated user is shown in Figure 4.

The transactions are generated uniformly and at
random while maintaining a minimum percentage in
mix for each transaction type. Table 1 gives the mini­
mum mix percentage for each transaction type, the
minimum keying time, the maximum 90th percentile
response-time constraint, and the minimum think
time defined by the TPC-C specification.

The delivery transaction, unlike the other trans­
actions, must be executed in a deferred mode.3 The
response time in Table 1 is the terminal response
acknowledging that the transaction has been queued
and not that the delivery transaction itself has been
executed. Further, at least 90 percent of the deferred
delivery transactions must complete within 80 seconds
of their being queued for execution. The performance
tuning for the system under test determines the
number of checkpoints done in the measurement
interval and the length of the checkpointing inter­
val. The TPC-C specification, however, defines the
upper bound on the checkpointing interval to be
30 minutes.3

The other TPC-C metric is the price/performance
ratio or dollars per tpmC. This metric is computed by
dividing the total five-year system cost for the system
under test with the reported tpmC. 11

Performance Evaluation Methodology

In this section, we first describe the configuration of
the system under test (SUT) used for the performance
evaluation of the TruCluster system under the TPC-C

MEASURE MENU
SELECT A RESPONSE TIME

workload. Then we discuss the testing strategy used to
enhance the performance of the SUT.

We show the configuration of the client-server SUT
in Figure 5. The server SUT consists of a TruCluster
configuration with four nodes; each node is an
AlphaServer 8400 5/350 system with eight 350-
megahertz (MHz) CPUs and 8 gigabytes (GB) of
memory. These nodes are connected together by a
MEMORY CHANNEL link cable from the MEMORY
CHANNEL adapter on the node to a single MEMORY
CHANNEL hub. The local storage configuration for
each node consists of 6 HSZ40 redundant array of
inexpensive disks (RAID) controllers, 31 RZ28 and
141 RZ29 disk drives, connected to the node by SCSI
buses to 6 KZPSA disk adapters. Further, each node is
connected to FDDI by a DEFPA FDDI adapter. The
nodes communicate with the clients over this FDDI.

The client SUT consists of 16 AlphaServer 1000
4/266 systems, each with 512 MB of memory, one
RZ28 disk drive, and one DEFPA FDDI adapter. 12 The
remote terminal emulators (RTEs) that are used to gen­
erate the transactions and measure the various times
(i.e., think, response, or keying time) for each trans­
action are 16 VAXstation 3100 workstations, each with
one RZ28 disk drive. From our logical description of
the network topology shown in Figure 6, we see that
each of the four nodes in the cluster is connected to four
client systems, and each RTE is connected to one client
system. The four clients associated with each node are
connected to a DEChub 900 switch. Each of the four
DEChub 900 products contains two concentrators,
one DEFHU-MU 14-port unshielded twisted-pair
(UTP) concentrator (for FDDI) and one DEFHU-MH
concentrator (for the twisted-pair Ethernet). The
DEChub 900 switches are connected to an 8-port
GIGAswitch system, which is used to route communi­
cations between the client and the server.

The software configuration of the server system is
the TruCluster software running under the Digital
UNIX version 4.0A operating system and the Oracle
Parallel Server database manager (Oracle? version 7. 3)
installed on each cluster member. The software config­
uration installed on each client system is the Digital

KEYTIME:TO
TRANSACTION TYPE DISPLAY SCREEN ENTER REQUIRED
FROM MENU

THINK TIME: WHILE
SCREEN REMAINS
DISPLAYED

Figure 4
Cycle for Generating a TPC-C Transaction by an Emulated User

50 Digital Technical Journal Vol. 8 No. 3 1996

INPUT FIELD

MEASURE
TRANSACT ION

TIME RESPONSE

DISPLAY DATA

6 HSZ40
RAID
CONTROLLERS

8-CPU, 8-GB
ALPHASERVER 8400
5/350 SYSTEM

8-CPU, 8-GB
ALPHASERVER 8400
5/350 SYSTEM 6 HSZ40

RAID
CONTROLLERS

31 RZ28

MEMORY
CHANNEL HUB J:=:::::::1 31 RZ28

AND 141 RZ29
DISK DRIVES

6 HSZ40
RAID
CONTROLLERS

31 RZ28
AND 141 RZ29
DISK DRIVES

4 VAXSTATION 3100
WORKSTATIONS

4 VAXSTATION 3100
WORKSTATIONS

Figure 5
Client-Server System under Test

8-CPU, 8-GB
ALPHASERVER 8400
5/350 SYSTEM

FDDI

UNIX version 3.2D operating system and the BEA
Tuxedo System/I version 4.2 transaction processing
monitor. Further, each RTE runs the Open VMS oper­
ating system and a proprietary emulation package,
VAXRTE. In the remainder of this section, we discuss
the testing strategy used to generate the transactions
on the front end. Then we discuss the tuning done on
the back end to achieve the maximum possible tpmC
measurements from the SUT.

In conformance with the TPC-C specification, we
used a series of RTEs to drive the SUT. The one-to­
one correspondence between emulated users on the
RTE and the TPC client forms on the client required
us to determine the maximum number of users to be
generated by the RTE. The main factor we used to
determine the number of users was the client's mem ·
ory size. We assumed that on a client, 32 MB of mem­
ory is used for the operating system and 0.25 MB for
each TPC client form process. Therefore, with these
constraints, each RTE generates 1,620 emulated users.
The emulated users then generate transactions ran­
domly based on the predefined transaction mix (as

8-CPU, 8-GB
ALPHASERVER 8400
5/350 SYSTEM

FDDI

16 ALPHASERVER 1000 4/266
SYSTEMS

AND 141 RZ29
DISK DRIVES

6 HSZ40
RAID
CONTROLLERS

31 RZ28
AND 141 RZ29
DISK DRIVES

4 VAXSTATION 3100
WORKSTATIONS

4 VAXSTATION 3100
WORKSTATIONS

described in Table 1) with a unique seed. This ensures
the mix is well defined and a variety of transaction
types are running concurrently (to better simulate a
real -world environment). We had a local area trans­
port (LAT) connection over Ethernet between each
emulated user and a corresponding TPC client form
process on the client for faster communication. We
show the communication between an RTE, a client,
and a server in Figure 7.

We built five order queues on each client corre­
sponding to a transaction type, which allowed us to
control the transaction percentage mix. A TPC client
form process queues transactions generated by the
emulated users to the appropriate order queue using
Tuxedo library calls. These transaction requests in
each queue are processed in a first in, first out (FIFO)
order by the Tuxedo server processes running on the
client. We had 44 Tuxedo server processes that were
not evenly distributed among the 5 order queues but
were distributed so that the number of Tuxedo server
processes dedicated to a queue was directly correlated
to the percentage of the workload handled by the

Digital Technical Journal Vol. 8 No. 3 1996 51

52

KEY:

NODE1

MEMORY CHANNEL LINK CABLE

FDDI

ETHERNET

Figure 6
Logical Description of the Network Topology

GIGASWITCH
SYSTEM

RTE

MEMORY
CHANNEL
HUB

NODE4

Each emulated user on the RTE uses a different RTE / For this test. 1,620 users were emulated
seed so all clients are not executing the mix in ----- .---------------/ on each RTE. This number. however. is
the same order. ----.._ dependent on the amount of memory on

USERS the client.

There is a one-to-one relationship between
emulated users and TPC Client Forms. ~

1 2 3 n 1,619 1,620 LAT connections were used from emulated

--------------__.~ users to TPC Client Forms.

CLIENT

TPC Client Forms
make Tuxedo
Library calls to

...,.-..,..,,.......,...,------------.... ---.------------.-----.-,....---.... /" send requests

For this test. 44 total
Tuxedo Servers service
requests. Each process
services one type of
transaction. However.
not all transaction
types have the same
number of server

processes. ---

Figure 7

TUXEDO LIBRARIES

PAYMENT ORDER-STATUS
QUEUE QUEUE

~

... ~~

Communication is TCP/IP. ------

i
DELIVERY
QUEUE

FDDI RING

SERVER (CLUSTER NODE)

Communication between an RTE, a Client, and a Server

Digital Technical Journal Vol. 8 No. 3 1996

to the appropriate
order queue.

Each queue
represents one
transaction type.

/

queue. In other words, the greater the percentage of
the workload on a queue, the greater the number
of Tuxedo server processes dedicated to that queue.
The number of Tuxedo server processes per client is
computed based on the rule of thumb that each queue
should have no more than 300 outstanding requests
during checkpointing and 15 at other times. These
Tuxedo server processes communicate with the server
system (cluster node) using the Transmission Control
Protocol/Internet Protocol (TCP / IP) over FDDI to
execute related database operations.13

The industry-accepted method of tuning the TPC-C
back end is to add enough disks and disk controllers on
the server to eliminate the potential for an I/0 bottle­
neck, thus forcing the CPU to be saturated. Once the
engineers are assured that the performance limitation is
CPU saturation, the amount of memory is tuned to
improve the database hit ratio. Because all vendors sub­
mitting TPC-C results use this style of tuning, the per­
formance limitation for TPC-C is usually the back-end
server's CPU power. In fact, tests have shown that if
this method of tuning is not followed on the back-end
server, the user will not obtain the optimal TPC-C per­
formance results. Instead, the tests reveal a back-end
server configuration that has not fully utilized the
server's potential by having unbalanced CPU and I/0
capabilities. This type of configuration not only reduces
the server's throughput capacity but also adversely
affects the price/performance of the SUT.

On the back end, we used TruC!uster technology
features to achieve the maximum possible transactions
per minute (tpm).1• We balanced the I/ 0 across all the
RAID controllers and disks of the cluster and distrib­
uted the database across all the server nodes. We dis­
tributed the database such that each node in the
cluster had an almost equal part of the database. The
TPC-C benchmark execution requires a single data­
base view across the cluster. We used the ORD and
OLM services of the TruCluster software to present
a contiguous view of the database across the cluster. If
both the database and the indexes could have been
completely partitioned, we could have achieved close
to linear scaling per node. However, since the Oracle
Parallel Server does not have horizontal partitioning
of the indexes, we could not completely partition the
indexes across the cluster. 15 This resulted in 15 percent
to 20 percent of internodal access, which means that
15 percent to 20 percent of the new orders were satis­
fied by remote warehouses, therefore making our
TPC-C results more realistic.

We also tuned the physical memory to trade off
memory for database cache and the OLM locks.
Heuristically, we observed a 40-percent gain in
throughput on a single-node AlphaServer 8400 5 /350
server system running TPC-C when the memory size
was increased from 2 GB to 8 GB. This is because, with
more data being served by memory, the number of

processor stalls decreases, and the database-cache hit
ratio improves from 88 percent to more than 95 per­
cent.16 Tuning physical memory beyond 2 GB is called
very large memory (VLM). We used the tpm results of
the AlphaServer 8400 system to tune the physical
memory size and configuration. We show these mea­
sured tpm results for the AlphaServer 8400 cluster
systems in Figure 8.

To achieve optimal server performance, it is impor­
tant to tune the amount of memory used by the Oracle
System Global Area (SGA) and the OLM. Our testing
found that using VLM to increase the size of the SGA to
5.0 GB of physical memory yielded optimal perfor­
mance in a TruCluster environment. However, it is
important to note that on a single-node server that does
not run the Oracle Parallel Server, we could assign 6.6
GB of physical memory to the SGA. (One reason that
the SGA was smaller in an Oracle Parallel Server envi­
ronment is that memory needed to be set aside for the
OLM.) Consequently, as seen in Figure 8, the tpm on
a single-node cluster system running the Oracle Parallel
Server (8.4K tpm) is less than a single-node cluster not
running the Oracle Parallel Server (l l .4K tpm).

In an Oracle Parallel Server environment, we
assigned 1 GB of memory to the OLM for the follow­
ing reasons: The OLM, under the 64-bit Digital UNIX
operating system, requires 256 bytes for each lock. In
addition, the OLM must be able to hold at least one
other location (and sometimes three) for lock call­
back. As a result, each lock requires between 512 bytes
and 1 kilobyte (KB) of physical memory. To tune the
system, we added more locks to increase the granu­
larity of the locks and reduce lock contention. We
observed that for this configuration, a system of this
size supporting the Oracle Parallel Server requires
1 million locks (occupying 1 GB of memory) for the
DLM when using 5.0 GB of memory for the SGA.
Again heuristically, we observed that if we used less
memory for the OLM, the total number oflocks per
page was reduced. The decrease in locks per page
increases contention across nodes and hence reduces
the tpm as the number of nodes increases.

With the help of engineers from Digital's
MEMORY CHANNEL Group, we were able to use a
hardware data analyzer to measure the percentage of
the MEMORY CHANNEL interconnect's bandwidth
used when running the TPC-C benchmark. By using
the data analyzer, we determined that we do not
approach saturation of the PCI-based MEMORY
CHANNEL hardware during a TPC-C test, even
though it is capable of sustaining a peak throughput
rate of 100 MB/ s. In fact, we observed that the
MEMORY CHANNEL bandwidth was not saturated;
a TPC-C test required a peak throughput rate of
only 15 MB/ s to 17 MB/ s from the MEMORY
CHANNEL. As stated previously, the benchmark
specification forces 15 percent of the database accesses

Digital Technical Journal Vol. 8 No. 3 1996 53

35,000

30,000

25,000

20,000
E
g.

15,000

10,000

5,000

0

3.62X

II
2.89X

1.89X

1-NODE (8-CPU)
WITHOUT THE ORACLE
PARALLEL SERVER

1-NODE (8-CPU) 2-NODE (16-CPU) 3-NODE (24-CPU) 4-NODE (32-CPU)

RUNNING THE ORACLE PARALLEL SERVER

Notes: 1. Each node is an 8-CPU AlphaServer 8400 5/350 cluster system.
2. The number preceding the X indicates a multiple of the tpmC measured on a single node running the Oracle Parallel Server.

Figure 8
TPC-C Results on the AlphaServer 8400 Family

to be remote, resulting in database accesses across the
MEMORY CHAN EL. Using the DRD administra­
tion service available with the UNIX TruCluster soft­
ware, we measured the DRD remote read percentages
to match the 15-percent remote accesses rate. The
DRD remote write performance was only 3 percent to
4 percent during the steady state and rose to 10 per­
cent to 11 percent during a database checkpoint. It is
important to note that the TPC-C benchmark per­
forms random 2K I/Os using the Oracle Parallel
Server. Small, random 1/0 transfers are much more
difficult to perform than large, sequential transfers.
Because the MEMORY CHANNEL interconnect not
only has sufficient bandwidth for TPC-C but also pro­
vides excellent latency (less than 5 microseconds), we
are able to report very good scaling results.

In the section TPC-C Benchmark, we discussed that
the time taken for a checkpoint impacts the through­
put. Therefore, we focused on improving the check­
pointing time to increase the tpmC number. First,
we used a dedicated PCI bus on each node for the
MEMORY CHANNEL interconnect and thus
obtained a 5-percent improvement in performance
during checkpointing. Next we implemented the
highly optimized "fastcopy" routine in DRD, which
packs data on the PCI when transmitting through the
MEMORY CHANNEL interconnect.

Performance Measurement Results

In this section, we present our results for the
TruCluster configuration running the TPC-C work­
load and compare them with results from competitive

54 Digital Technical Journal Vol. 8 No. 3 1996

vendors. We conducted the test on a database with
2,592 warehouses and 25,920 emulated users. The
database was equally divided, which means each node
contained 648 warehouses and served 6,480 emulated
users. We show the initial cardinality of the database
tables in Table 2. The cardinality of the history, orders,
new-order, and order-line tables increased as the test
progressed and generated new orders. We conducted
the experimental runs for a minimum of 160 min­
utes.10 The measurement on the SUT began approxi­
mately 3 minutes after the simulated users had begun
executing transactions. The measurement period of
120 minutes, however, started after the SUT attained a
steady state in approximately 30 minutes. In agree­
ment with the TPC-C specification, we performed
4 checkpoints at 30-minute intervals during the mea­
surement period.

On the SUT, we measured a maximum throughput
of 30,390 .65 tpmC, which unveiled a new record high
in the competitive market for database applications
and UNIX servers. We repeated the experiment once

Table2
Initial Cardinality of the Database Tables

Warehouse
District
Customer
History
Order
New order
Order lines
Stock
Item

2,592
25,920

77,760,000
77,760,000
77,760,000
23,328,000

777,547,308
259,200,000

100,000

more to ensure the reproducibility of the maximum
measured tpmC. Digital Equipment Corporation and
Oracle Corporation also present a price/performance
ratio of$305 per tpmC.

In Table 3, we present the total occurrences of each
transaction type and the percentage transaction mix
used to generate the transactions in each test run. We
compare the percentage transaction mix in Table 1
and Table 3 and observe that our measurements are in
agreement with the TPC-C specification. We present
the 90th percentile response time measured for each
transaction type in Table 4. The 90th percentile
response time we measured is well below the TPC-C
specification requirement (compare Table 1 and Table
4). In Table 5, we present the minimum, average, and
maximum keying and think times. Again, we comply
with the TPC-C specification (compare Table 1 and
Table 5).

Now we compare the maximum throughput
achieved on the AlphaServer 8400 5/350 four-node
TruCluster configuration with results from Tandem

Table 3
Measured Total Occurrences of Each Transaction Type
and Percentage Transaction Mix

Transaction
Type

New order
Payment
Order status
Delivery
Stock level

Table4

Total
Occurrences

3,645,228
3,540, 119

336,255
337.423
337.730

Percentage
in Mix

44.47
43.19
4.10
4.12
4.12

Measured 90th Percentile Response Time

Transaction
Type

New order
Payment
Order status
Delivery (interactive)
Delivery (deferred)
Stock level

Table 5

90th Percentile
Response Time

3.4
3.2
0.9
0.4
5.0
1.7

Measured Keying/Think Times

Transaction Minimum Average Maximum
Type (Seconds) (Seconds) (Seconds)

New order 18.0/0.00 18.1/12.2 18.8/188.1
Payment 3.0/0.00 3.1/12.1 3.7/201.4
Order status 2.0/0.00 2.1/10.1 2.7/125.6
Delivery 2.0/0.00 2.1/5.2 2.1n4.9
Stock level 2.0/0.00 2.1/5.2 2.7/62.7

Computers and from Hewlett-Packard Company
(HP). 17 The Tandem nonstop Himalaya Kl0000-112
112-node cluster reported 20,918.03 tpmC at $1,532
per tpmC. Observe that Digital's measured tpmC
are 45 percent higher than Tandem's, and Digital's
price/performance is 20 percent of Tandem's cost.
In Figure 9, we compare Digital's performance with
HP's. The HP 9000 EPS30 C/S 48-CPU four-node
cluster system using the Oracle Parallel Server Oracle7
version 7.3 reported 17,826.50 tpmC at $396. 18

Again, observe that the tpmC we measured on
Digital's TruCluster configuration are 59 percent
higher than HP's at 77 percent of the cost.

Conclusion and Future Work

In this paper, we discussed the performance evaluation
ofDigital's TruCluster multicomputer system, specifi­
cally the AlphaServer 8400 5/350 32-CPU, four­
node cluster system, under the TPC-C workload.
For completeness, we gave an overview ofTruCluster
clustering technology and the TPC-C benchmark. We
discussed tuning strategies that took advantage of
TruCluster technology features like the MEMORY
CHANNEL interconnect, the DRD, and the DLM.
We tuned memory to use VLM for the database cache
and made memory allocation trade-offs for DLM locks
to reduce processor stalls and improve cache hit ratios.

One common concern is performance scalability of
cluster systems, that is, incremental performance
growth with the size of the cluster. In Figure 8, we
showed the measured performance of an SMP server,
both with and without the Oracle Parallel Server, and
cluster configurations with two, three, and four SMP
servers. We do not see linear scaling because the Oracle
Parallel Server imposes a significant amount of over­
head on each cluster node. This overhead equates to
approximately a 25-percent reduction in tpmC on a
per node basis. However, it is important to note that
due to the time constraints of obtaining audited results
for the product announcement, the testing team was
unable to fully tune the server and saturate the server
CPUs. In future testing, additional performance tuning
is planned to further optimize server performance.

The performance testing of the TruCluster multi­
computer system was time-consuming and expensive.
Thus, answering "what if" questions regarding sizing
and tuning of varying cluster configurations under dif­
ferent workloads using measurements is an expensive
(with respect to money and time) task. To address this
problem, we are developing an analytical performance
cluster model for capacity planning and tuning. 10 The
model will predict the performance of cluster con­
figurations (ranging from two to eight members)
with varying workloads and system parameters (for

Digital Technical Journal Vol. 8 No. 3 1996 55

35,000

20,000

0

KEY:

30,390.65

$305

ALPHASERVER 8400 5/350 C/S
(32-CPU, 4-NODE)

D · tpmC

- PRICE/PER FORMANCE

Figure 9
Comparison of TPC-C Results

example, memory size, storage size, and CPU power).
We will implement this model in Visual C++ to
develop a capacity planning tool.

Acknowledgments

Many people within several groups and disciplines
in both Digital and Oracle contributed to the success
of this performance project. We would like to thank
the following individuals from Digital: Lee Allison,
Roger Deschenes, Tareef Kawaf, Maria Lopez, Joe
McFadden, Bhagyam Moses, Ruth Morgenstein,
Sanjay Narahari, Dave Stanley, and Greg Tarsa of
the CSD Performance Group; Brian Stevens and
Tim Burke of the Digital UNIX Engineering Group;
Jim Woodward, Digital UNIX Performance Team
member; Sean Reilly, Doug Williams, and Zarka
Cvetanovic of the AVS Performance Group; and Don
Harbert and Pauline Nist, the test sponsors. Lastly, we
would like to thank J ef Kennedy, Peter Lai, Karl Haas,
and Vipin Gokhale of the Oracle Performance Group.

References and Notes

1. Throughout this paper, we use the term cluster inter·
changeably with TruCluster.

2. W. Kohler, A. Shah, and F. Raab, "Overview of TPC
Benchmark C: The Order Entry Benchmark" (Trans·
action Processing Performance Council, Technical
Report, December 1991).

3. Transaction Processing Performance Council, TPC
Benchmark C Standard Specification, Revision 3.0,
February 1995.

56 Digital Technical Journal Vol. 8 No. 3 1996

17,826.5

$396

HP 9000 ENTERPRISE SERVER MODEL EPS30 C/S
(48-CPU, 4-NODE)

4. S. Leutenegger and D. Dias, "A Modeling Study of the
TPC-C Benchmark," ACM SIGMOD Record, vol. 22,
no. 2 (June 1993): 22-31.

5. R. Gillett, "MEMORY CHANNEL Network for PCI,"
IEEE Micro, vol. 16, no. 1 (February 1996): 12-19.

6. TntCluster for Digital UNIX Version 1.0 (Maynard,
Mass.: Digital Equipment Corporation, Software
Product Description 63.92, October 1995).

7. W. Cardoza, F. Glover, and W. Snaman Jr., "Design of
the TruCluster Multicomputer System for the Digital
UNIX Environment," Digital Technical Journal,
vol. 8, no.I (1996): 5-17.

8. TntCluster Software, Hardware Configuration
(Maynard, Mass.: Digital Equipment Corporation,
Order No. AA·QL8LA-TE, December 1995).

9. TntCluster: Software Installation and Configura­
tion (Maynard, Mass.: Digital Equipment Corpora·
tion, Order No. AA·QL8MA·TE, September 1995).

10. Checkpointing is a process to make the copy of the
database records/pages on the durable media current;
systems do not write the modified records/pages of
the database at the time of the modification but at
some deferred time.

11. This cost includes the hardware system cost, the soft·
ware license charge, and the maintenance charges for
a five-year period.

12. The AlphaServer 1000 4/266 system can be config·
ured with as much as 1 GB of memory. Due to a supply
shortage of denser error correction code (ECC) mem·
ory, the clients in the SUT could be configured with
a maximum memory of512 MB.

13. Digital Equipment Corporation and Oracle Corpora­
tion, "Digital AlphaServer 8400 5/350 32-CPU
4-Node Cluster Using Oracle?, Tuxedo, and Digital
UNIX " TPC Benchmark C Full Disclosure Report
filed ~ith the Transaction Processing Performance
Council, April 1996. Also available from the TPC Web
page.

14. Note that these results were not audited; per TPC-C
specification, we refer to them as tpm instead oftpmC.

15. Horizontal partitioning of the indexes allows the user
to have each node in the cluster store indexes that are
mapped only to tables that are local.

16. T. Kawaf, D . Shakshober, and D. Stanley, "Perfor­
mance Analysis Using Very Large Memory on the
64-bit AlphaServer System," Digital Technical
Journal, vol. 8, no. 3 (1996, this issue): 58- 65.

17. These results were withdrawn by Tandem on April 12,
1996, and hence are not included in Figure 9 .

18. Hewlett-Packard Company, General Systems Division,
and Oracle Corporation, "HP 9000 Enterprise Parallel
Server Model EPS30 (4-Node) Using HP-UX 10.20
and Oracle?," TPC Benchmark C Full Disclosure
Report filed with the Transaction Processing Perfor­
mance Council, May 1996. Also available from the
TPC Web page.

Biographies

Judith A. Piantedosi
A principal software engineer in the CSD Performance
Group, Judy Piantedosi evaluates J/0 perform~~ce on
Digital UNIX systems, specializing in charactenzmg NFS
file servers. Judy is the project leader of the TruCluster
capacity planning modeling effort and Digital's tech.nical
representative to the Standard Performance Evaluation
Corporation {SPEC) System File Server (SFS) Subcom­
mittee. Judy joined Digital in 1987 to help solve customer
hardware/software problems when using System V. Before
joining Digital, Judy was employed at Mitre Corporation.
She was the lead software designer on the Joint STARS
Radar Evaluation Activity, a radar simulation built to pro­
vide proof of concept to the U.S. Air Fo_rce for the ! oint
STARS project. She was responsible for implementing sev­
eral radar models into the simulation. Judy holds a B.A.
from Boston College (1984).

Archana S. Sathaye
Archana Sathaye is currently a consultant to Digital in its
CSD Performance Group. From 1987 to 1994, she was an
employee of Digital and worked on several reliability, avail­
ability, and performability modeling projects for Open VMS
Cluster systems and other high-end CPU products. She
resigned from Digital and accepted a position as adjunct
assistant professor in the Department of Electrical and
Computer Engineering at the University of Pittsburg?.
Archana holds a Ph.D. in electrical and computer engineer­
ing from Carnegie Mellon University (1993); an M.S. from
Virginia Polytechnic and State University (1986), a B.Sc
(1981) and an M.Sc (1983) from the University ofBombay,
India, all in mathematics. She is an affiliate member of
ACM SIGMETRICS and has authored or coauthored sev­
eral papers on reliability, availability, and performability
modeling and control synthesis.

D. John Shakshober
John Shakshober is the technical director of the CSD
Performance Group. The Computer Systems Division
Performance Group evaluates Digital's systems against
industry-standard benchmarks such as those of the Trans­
action Processing Performance Council (TPC) and the
Standard Performance Evaluation Corporation (SPEC).
In this function, John has been responsible for integrat­
ing Digital's state-of-the-art software technologies with
Digital's Alpha-based products since their introduction
in 1992. Prior to joining the CSD Performance Group,
John modeled the performance of the 21064 and 21164
Alpha 64-bit VLSI microprocessors and was a member
of the VAX 6000 Hardware Group. He joined Digital in
1984 after receiving a B.S. in computer engineering from
the Rochester Institute ofTechnology. John also received
an M.S. in electrical engineering from Cornell University
in 1988.

Digital Technical Journal Vol. 8 No. 3 1996 57

Performance Analysis
Using Very Large
Memory on the 64-bit
AlphaServer System

Optimization techniques have been used to
deploy very large memory (VLM} database tech­

nology on Digital's AlphaServer 8400 multi­

processor system. VLM improves the use of

hardware and software caches, main memory,
the 1/0 subsystems, and the Alpha 21164 micro­
processor itself, which in turn causes fewer
processor stalls and provides faster locking.

Digital's 64-bit AlphaServer 8400 system running

database software from a leading vendor has
achieved the highest TPC-C results to date, an
increased throughput due to increased database
cache size, and an improved scaling with sym­

metric multiprocessing systems.

58 Digital Technical Journal Vol. 8 No. 3 1996

I
Tareef S. Kawaf
D. John Shakshober
David C. Stanley

Digital's AlphaServer 8400 enterprise-class server com­
bines a 2-gigabyte-per-second (GB/s) multiprocessor
bus with the latest Alpha 21164 64-bit microprocessor.1

Between October and December 1995, an AlphaServer
8400 multiprocessor system running the 64-bit Digital
UNIX operating system achieved unprecedented results
on the Transaction Processing Performance Council's
TPC-C benchmark, surpassing all other single-node
results by a factor of nearly 2. As of September 1996,
only one other computer vendor has come within 20
percent of the AlphaServer 8400 system's TPC-C
results.

A memory size of 2 GB or more, known as very
large memory (VLM), was essential to achieving these
results. Most 32-bit UNIX systems can use 31 bits
for virtual address space, leaving 1 bit to differentiate
between system and user space, which creates diffi­
culties when attempting to address more than 2 GB
of memory (whether virtual or physical).

In contrast, Digital's Alpha microprocessors and the
Digital UNIX operating system have implemented
a 64-bit virtual address space that is four billion times
larger than 32-bit systems. Today's Alpha chips are
capable of addressing 43 bits of physical memory. The
AlphaServer 8400 system supports as many as 8 physi­
cal modules, each of which can contain 2 CPUs or
as much as 2 GB of memory.2 Using these limits, data­
base applications tend to achieve peak performance
using 8 to 10 CPUs and as much as 8 GB of memory.

The examples in this paper are drawn primarily from
the optimization of a state-of-the-art database appli­
cation on AlphaServer systems; similar technical con­
siderations apply to any database running in an Alpha
environment. As of September 1996, three of the
foremost database companies have extended their
products to exploit Digital's 64-bit Alpha environ­
ment, namely Oracle Corporation, Sybase, Inc. , and
Informix Software, Inc.

The sections that follow describe the TPC-C work­
load and discuss two database optimizations that are
useful regardless of memory size: locking intrinsics
and OM instruction-cache packing. (OM is a post­
link time optimizer available on the Digital UNIX
operating system.)3 VLM experimental data is then
presented in the section VLM Results.

TPC-C Benchmark

The TPC-C benchmark was designed to mimic com -
plex on-line transaction processing (OLTP) as speci­
fied by the Transaction Processing Performance
Council.4 The TPC-C workload depicts the activity of
a generic wholesale supplier company. The company
consists of a number of distributed sales districts and
associated warehouses. Each warehouse has 10 districts.
Each district services 3,000 customer requests. Each
warehouse maintains a stock ofl00,000 items sold by
the company. The database is scaled according to
throughput (that is, higher transaction rates use larger
databases). Customers call the company to place new
orders or request the status of an existing order.

Method
The benchmark consists of five complex transactions
that access nine different tables. 5 The five transactions
are weighted as follows:

1. Forty-three percent-A new-order transaction
places an order (an average of 10 lines) from a ware­
house through a single database transaction and
updates the corresponding stock level for each item.
In 99 percent of the new-order transactions, the
supplying warehouse is the local warehouse and only
1 percent of the accesses are to a remote warehouse.

2. Forty-three percent-A payment transaction
processes a payment for a customer, updates the cus­
tomer's balance, and reflects the payment in the
district and warehouse sales statistics. The customer
resident warehouse is the home warehouse 85 per­
cent of the time and is the remote warehouse
15 percent of the time.

3. Four percent-An order-status transaction returns
the status of a customer order. The customer order is
selected 60 percent of the time by the last name and
40 percent of the time by an identification number.

4. Four percent-A delivery transaction processes
orders corresponding to 10 pending orders for each
district with 10 items per order. The corresponding
entry in the new-order table is also deleted. The
delivery transaction is intended to be executed in
deferred mode through a queuing mechanism.
There is no terminal response for completion.

5. Four percent-A stock-level transaction examines
the quantity of stock for the items ordered by each
of the last 20 orders in a district and determines the
items that have a stock level below a specified
threshold. This is a read-only transaction.

The TPC-C specification requires a response time
that is less than or equal to 5 seconds for the 90th
percentile of all but the delivery transaction, which
must complete within 20 seconds.

In addition, the TPC-C specification requires that
a complete checkpoint of the database be done. A
checkpoint flushes all transactions committed to the
database from the database cache (memory) to non­
volatile storage in less than 30 minutes. This impor­
tant requirement is one of the more difficult parts
to tune for systems with VLM.6

Results
Table 1 gives the highest single-node TPC-C results
published by the Transaction Processing Performance
Council as of September 1, 1996.4

For a complete TPC-C run, a remote terminal
emulator must be used to simulate users making trans­
actions. For performance optimization purposes, how­
ever, it is convenient to use a back-end-only version
of the benchmark in which the clients reside on the
server. The transactions per minute (tpm) derived in
this environment are called back-end tpm in Table 2
and cannot be compared to the results of audited runs
(such as those given in Table 1). However, when a per­
formance improvement is made to the back-end-only
environment, performance improvements are clearly
seen in the full environment.

Tuning for the system is iterative. For each data
point collected, clients were added to try to saturate
the server; then the amount of memory was varied for
the database cache. A trade-off between database mem­
ory, system throughput, and checkpoint performance
required us to tune each data point individually. The
system was configured with a sufficient number of
disk drives and I/0 controllers to ensure that it was
100-percent CPU saturated and never I/0 limited.
The experiments reported in this paper use database
sizes of approximately 100 GB, spread over 172 RZ29
spindles and 7 KZPSA adapter /HSZ40 controller pairs,
with each HSZ40 controller using 5 small computer
systems interface (SCSI) buses.

Tuning Specific to Alpha

UNIX databases on Digital's Alpha systems were first
ported in 1992. For database companies to fully use
the power of Alpha's 64-bit address space, each data­
base vendor had to expand the scope of its normal
32-bit architecture to make use of 64-bit pointers.
Thus, each database could then address more than
2 GB of physical memory without awkward code seg­
ments or other manipulations to the operating system
to extend physical address space.

By 1994, most vendors oflarge databases were offer­
ing 64-bit versions of their databases for Digital's Alpha
environment. As a group chartered to measure database
performance on Alpha systems, Digital's Computer
Systems Division (CSD) Performance Group worked
with each database vendor and with the Digital System
Performance Expertise Center to improve performance.

Digital Technical Journal Vol. 8 No. 3 1996 59

Table 1
TPC-C Results

Price/ Number
System Throughput Performance of CPUs Date

AlphaServer 8400 5/350, 14,227 tpmC $269/tpmC 10 May 1996
Oracle Rdb7 V7.0, OpenVMS V7.0

AlphaServer 8400 5/350, 14, 176tpmC $198/tpmC 10 May 1996
Sybase SQL Server 11.0, Digital UNIX,
iTi Tuxedo

AlphaServer 8400 5/350, 13,646.17 tpmC $277/tpmC 10 March 1996
lnformix V7.21, Digital UNIX, iTi Tuxedo

Sun Ultra Enterprise 5000, 11,465.93 tpmC $191/tpmC 12 April 1996
Sybase SQL Server V 11.0.2

AlphaServer 8400 5/350, 11,456.13 tpmC $286/tpmC 8 December 1995
Oracle 7, Digital UNIX, iTi Tuxedo

AlphaServer 8400 5/300, 11,014.10 tpmC $222/tpmC 10 December 1995
Sybase SQL Server 11.0, Digital UNIX,
iTi Tuxedo

AlphaServer 8400 5/300, 9,414.06 tpmC $316/tpmC 8 October 1995
Oracle 7, Digital UNIX, iTi Tuxedo

SGI CHALLENGE XL Server, 6,313.78 tpmC $479/tpmC 16 November 1995
INFORMIX-OnLine V7.1, IRIX, IMC Tuxedo

HP 9000 Corporate Business Server, 5,621.00tpmC $380/tpmC 12 May 1995
Sybase SQL Server 11,
HP-UX, IMC Tuxedo

HP 9000 Corporate Business Server, 5,369.68 tpmC $535/tpmC 12 May 1995
Oracle 7, HP-UX, IMC Tuxedo

Sun SPARCcenter 2000E 5, 124.21 tpmC $323/tpmC 16 April 1996
Oracle 7, Solaris, Tuxedo

Sun SPARCcenter 2000E, 3,534.20 tpmC $495/tpmC 20 July1995
INFORMIX-OnLine 7.1,
Solaris, Tuxedo

IBM RS/6000 PowerPC R30, 3, 119.16 tpmC $355/tpmC 8 June1995
DB2 for AIX, AIX, IMC Tuxedo

IBM RS/6000 PowerPC J30, 3119.16 tpmC $349/tpmC 8 June1995
DB2 for AIX, AIX, IMC Tuxedo

Table 2
Amount of Memory versus Back-end tpm, Database-cache Miss Rate, and Instructions per Transaction

Database Back-end
Memory (Normalized
(GB) tpm)

1.0

2 1.3
3 1.5

4 1.6

5 1.7

6 1.8

Two optimizations generally realized 20 percent gains
on Alpha systems.7 These were

1. Optimization of spinlock primitives supported now
by DEC C compiler intrinsics

2. OM profile-based link optimization, which per­
forms instruction-cache packing during the final
link of the database

60 Digital Technical Journal Vol. 8 No. 3 1996

Relative Relative
Database-cache Instructions per
Miss (Percentage) Transaction

1.0 1.0

0.73 0.75

0.58 0.63

0.50 0.57

0.42 0.50

0.40 0.45

In addition, the Digital UNIX operating system
version 3.2 and higher versions have optimized I/0
code paths and support advanced processor affinity
and other scheduling algorithms that have been opti­
mized for enterprise-class commercial performance.
With these optimizations, database performance on
Digital's Alpha systems has been significantly improved.

Lock Optimization
Locks are used on multiprocessor systems to synchro­
nize atomic access to shared data. A lock is either
unowned (clear) or owned (set). A key design decision
leading to good multiprocessor performance and scal­
ing is partitioning the shared data and associated locks.
The discussion of how to partition data and associated
locks to minimize contention and the number oflocks
required is beyond the scope of this paper.

The implementation of locks requires an atomic
~est-and-set operation. On a particular system, the
implementation of the lock is dependent on the primi­
tive test-and-set capabilities provided by the hardware.

Locks are used to synchronize atomic access to
shared data. A shared data element that requires
atomic access is associated with a lock that must be
acquired and held while the data is modified. On mul­
tiprocessing systems, locks are used to synchronize
atomic access to shared data. A sequence of code that
accesses shared data protected by a lock is called a crit­
ical section. A critical section begins with the acquisi­
tion of a lock and ends with the release of that lock.
Although it is possible to have nested critical sections
where multiple locks are acquired and released, the
discussion in this section is limited to a critical section
with a single lock.

To provide atomic access to shared data, the critical
section running on a given processor locks the data by
acquiring the lock associated with the shared data. In
the simplest case, if a second processor tries to acquire
access to shared data that is already locked, the second
processor loops and continually retries the access
(spins) until the processor owning the lock releases it.
In a complex case, if a second processor tries to acquire
access to shared data that is already locked, the second
processor loops a few times and then, if the lock is still
owned by another processor, puts itself into a wait
state until the processor owning the lock releases it.

The Alpha Architecture Reference Manual specifies
that " ... the order of reads and writes done in an Alpha
implementation may differ from that specified by the
programmer. "8 Therefore, process coordination
requires a special test-and-set operation that is imple­
mented through the load-locked/store-conditional
instruction sequence. To provide good performance
~nd scaling on multiprocessor Alpha systems, it is
important to optimize the test-and-set operation to
minimize latency. The test-and-set operation can be
optimized by the following methods:

• Use an in-lined load-locked/store-conditional
sequence through an embedded assembler or com­
piler intrinsics.

• Preload a lock using a simple load operation prior
to a load-locked operation.

• If a lock is held, spin on a simple load instruction
rather than a load-locked instruction sequence.

The basic hardware building block used to imple­
ment the acquisition of a lock is the test-and-set
operation. On many microprocessors, an atomic test­
and-set operation is provided as a single instruction.
<?n an Alpha microprocessor, the test-and-set opera­
tion needs to be built out ofload-locked (LDx_L) and
store-conditional (STx_C) instructions. The LDx L
... STx_ C instructions allow the Alpha microproces~r
to provide a multiprocessor-safe method to implement
the test-and-set operation with minimal restrictions on
read and write ordering. The load-locked operation
sets a locked flag on the cache block containing the
data item. The store-conditional operation ensures
that no other processor has modified the cache block
before it stores the data. If no other processor has
modified the cache block, the store-conditional opera­
tion is successful and the data is written to memory. If
another processor has modified the cache block the
store-conditional operation fails, and the data i; not
written to memory. Optimizing the test-and-set
sequence on Alpha systems is a complex task that pro­
vides significant performance gains.

Figure 1 shows code sequences that Digital's CSD
Performance Group has given to database vendors to
improve locking intrinsics in the Alpha environment.
These code sequences can be used to implement spin­
locks in the DEC C compiler on the Digital UNIX
operating system.

Using OM Feedback
As previously mentioned, OM is a post-link time opti­
mizer available on the Digital UNIX operating system.
It performs optimizations such as compression of
addressing instructions and dead code elimination
through the use of feedback. The performance
improvement provided by OM on Alpha 21164
systems is dramatic for the following two reasons. 3

• The 21164 microprocessor has an 8-kilobyte (KB)
direct-mapped instruction cache, which makes
code placement extremely important. In a direct­
mapped cache, the code layout and linking order
maps one for one to its placement in cache. Thus
a poorly chosen instruction stream layout or sim­
ply unlucky code placement within libraries can
alter performance by 10 to 20 percent. Routines
are frequently page aligned, which can increase
the likelihood of cache collisions.

• The high clock rate of the Alpha 21164 micro­
processor (300 to 500 megahertz [MHz])
requires a cache hierarchy to attempt to keep the
CPU pipelines filled. The penalty of a first-level
cache miss is 5 to 9 cycles, which means that an

Digital Technical Journal Vol. 8 No. 3 1996 61

62

//TEST_AND_SET implements the Alpha version of a test and set operation using
//the Load-Locked .. store-conditional instructions. The purpose of this
//function is to check the value pointed to by spinlock_address and, if the
//value is O set it to 1 and return success (1) in RO. If either the spinlock
//value is already 1 or the store-conditional failed, the value of the spinlock
//remains unchanged and a failure status (0,2, or 3) is returned in RO.
II
//The status returned in RO is one of the following:
II O - failure Cspinlock was clear; still clear, store-conditional failed)
II 1 - success Cspinlock was clear; now set)
II 2 - failure Cspinlock was set; still set, store-conditional failed)
II 3 - failure Cspinlock was set; still set)
II
#define TEST_AND SET Cspinlock_address) asm("ldl $0,($16); \

\
\
\
\

"or $0,1,$1;
"stl c $1,($16);
"sll $0,1,$0;
"or $0,$1,$0 ,
Cspinlock_address));

II BASIC_SPINLOCK_ACQUIRE implements the simple case of acquiring a spinlock. If
II the spinlock is already owned or the store-conditional fails, this function
II spins until the spinlock is acquired. This function doesn't return until the
II spinlock is acquired.
II
#define BASIC_SPINLOCK_ACQUIRE(spinlock_address) \

\
\
\

{ Long status= O;

while (1)
{

if C*Cspinlock_address) == 0)
{

\
\
\

status= TEST_AND_SET Cspinlock_address); \
if (status== 1) \

{ \
MB;

break;
\
\
\ }

}
}

}

Figure 1
Code Sequences for Locking Intrinsics

instruction-cache miss rate oflO to 12 percent can
effectively stall the CPU 70 to 80 percent of the
time. Conversely, decreasing the miss rate by
2 percent can increase throughput by 10 percent.

OM performs profile-based optimization. A pro-
gram is first partitioned into basic blocks (that is,
regions containing only one entrance and one exit),
and instrumentation code is added to count the num­
ber of times each block is executed. The instrumented
version of the program is run to create a feedback file
that contains a profile of basic block counts. OM then
uses the feedback to rearrange the blocks in an optimal
way for the first-level caches on the Alpha chip. The
details of the procedure for using OM may be found
in the manpage for cc on the Digital UNIX operating
system but can be summarized as follows:

Digital Technical Journal Vol. 8 No. 3 1996

\
\

• Build executable with -non_shared -om options,
producing prog.

• Use pixie to produce prog.pixie (the instrumented
executable) and prog.Addrs (addresses).

• Run prog.pixie to produce prog.Counts, which
records the basic block counts.

• Now build prog again with -non_shared -om -WL,
om_ireorg_feedback.

VLM Results

Figure 2 shows the increase in throughput realized
when using VLM. Note that throughput nearly dou­
bles as the amount of memory allocated to the data­
base cache is varied from 1 GB to 6 GB. Of course, the
overall system requires additional memory beyond
the database cache to run UNIX itself and other

2 3 4 5 6
DATABASE CACHE SIZE IN GB

Figure 2
Database Cache Size versus Throughput

processes. For example, an 8-GB system allows 6.6 GB
to be used for the database cache.

Performance Analysis
Why does the use ofVLM improve performance by a
factor of nearly 2? Using statistics within the database,
we measured the database-cache hit ratio as memory
was added. Figure 3 shows the direct correlation
between more memory and decreased database-cache
misses: as memory is added, the database-cache miss
rate declines from 12 percent to 5 percent. This raises
two more questions: (1) Why does the database-cache
miss rate remain at 5 percent? and (2) Why does a
small change in database-cache miss rates improve the
throughput so greatly?

The answer to the first question is that with a data­
base size of more than 100 GB, it is not possible to
cache the entire database. The cache improves the
transactions that are read-intensive, but it does not
entirely eliminate I/0 contention.

35

30

25
I-z
W20
(.)
er:
~ 15

10

5

0
1 2 3 4

MEMORY IN GB

KEY:

-- BUS UTILIZATION
.,._.... B·CACHE MISS RATE

~ I-CACHE MISS RATE
...._. DATABASE CACHE MISS RATE

Figure 3
Cache Miss Rates and Bus Utilization

5 6

To answer the second question, we need to look at
the AlphaServer 8400 system's hardware counters that
measure instruction-cache (I-cache) miss rate, board­
cache (B-cache) miss rate, and the bandwidth used on
the multiprocessor bus. With an increase in throughput
and memory size, the VLM system is spanning a larger
data space, and the bus utilization increases from 24
percent to 32 percent. Intuitively, one might think this
would result in less optimal instruction-and data-stream
locality, thus increasing both miss rates. As shown in
Figure 3, this proved true for instruction stream misses
(I-cache miss rate) but not true for the data stream as
represented by the B-cache miss rate. The instruction
stream rarely results in B-cache misses, so B-cache
misses can be attributed primarily to the data stream.

Performance analysis requires careful examination
of the throughput of the system under test. The appar­
ent paradox just related can be resolved ifwe normal­
ize the statistics to the throughput achieved. Figure 4
shows that the instruction-cache misses per transaction
declined slightly as the memory size was increased from
1 GB to 6 GB-and as transaction throughput doubled.
Furthermore, the B-cache works substantially better
with more memory: misses declined by 2X on a per­
transaction basis. Why is this so?

Analysis of the system monitor data for each run
indicates that bringing the data into memory helped
reduce the I/0 per second by 30 percent. If the trans­
action is forced to wait for I/0 operations, it is done
asynchronously, and the database causes some other
thread to begin executing. Without VLM, 12 percent
of transactions miss the database cache and thus stall
for I/0 activity. With VLM, only 5 percent of the
transactions miss the database cache, and the time to
perform each transaction is greatly reduced. Thus each
thread or process has a shorter transaction latency. The
shorter latency contributes to a 15-percent reduction
in system context switch rates. We attribute tl1e
measured improvement in hardware miss rates per
transaction when using VLM to the improvement in
context switching.

The performance counters on the Alpha micro­
processor were used to collect the number of instruc­
tions issued and the number of cycles.9 In Table 2,
the relative instructions per transaction results are the
ratios of instructions issued per second clivided by the
number of new-order transactions. (In TPC-C, each
transaction has a different code path and instruction
count; therefore the instructions per transaction
amount is not the total number of new-order trans­
actions.) The relative difference between instructions
per transaction for 1 GB of database memory versus
6 GB of database memory is the measured effect of
eliminating 30 percent of the IjO operations, satisfy­
ing more transactions from main memory, reducing
context switches, and reducing lock contention.

Digital Technical Journal Vol. 8 No. 3 1996 63

4.5

4.0
1-
rlj 3.5

~ 3.0

~ 2.5

~ 2.0
i=
:'.5 1.5
~1.0 y--~~--....~~--.~~~-+-~~---.~~~~

0.5

O L_~~-'-~~--'-~~--'~~~~5~~---:-6
1 2 3 4

MEMORY IN GB

KEY:

- BUS TRAFFIC
-- B-CACHE MISS RATE
+-----+ I-CACHE MISS RATE

Figure4
Normalized Cache Miss Rates and Bus Traffic

Improved CPU Scaling-More Efficient Locking
A final benefit of using VLM is improved symmetric
multiprocessing (SMP) scaling. Because the TPC-C
workload has several transactions with high read con­
tent, having the data available in memory, rather than
on disk allows an SMP system to perform more effi­
ciently. More requests can be serviced that are closer in
cycles to the CPU. Data found in memory is less_th~
a microsecond away, whereas data found on disk 1s
on the order of milliseconds away.

We have shown how this situation improves the
overall system throughput. In addition, it improves
SMP scaling. Figure 5 shows the relative scaling
between 2 CPUs and 8 CPUs with only 2 GB of system
memory (1.5 GB of database cache) compared to the
same configurations having 8 GB of system memory
(6.6 GB of database cache).

We used the performance counters on the Alpha
21164 microprocessor to monitor the number of
cycles spent on the memory barrier instruction.9

Memory barriers are required for implementing
mutual exclusion in the Alpha processor. They are used
by all locking primitives in the database and the operat­
ing system. With VLM at 8 GB of memory, we mea­
sured a 20-percent decline in time spent in the memory
barrier instruction. Larger memory implied less con­
tention for critical disk and I/0 channel resources and
thus less time in the memory barrier instruction.

Conclusions

Open system database vendors are expanding into
mainframe markets as open systems acquire greater
processing power, larger I/0 subsystems, and the
ability to deliver higher throughput at reasonable
response times. To this end, Digital's AlphaServer
8400 5 /350 system using VLM database technology
has demonstrated substantial gains in commercial

64 Digital Technical Journal Vol. 8 No. 3 1996

4.5

4.0

E 3.5
.9- 3.0
0
~ 2.5

~ 2.0
:;;
~ 1.5
2

1.0

0.5

OL_~ ~~~-'-~~~~---"'--~~~~-:-8
2 4 6

NUMBER OF CPUs

KEY:

+-----+ NORMALIZED tpm AT 2 GB

-- NORMALIZED tpm AT 8 GB

Figure 5
CPU Scaling versus Memory

performance when compared to systems without the
capability to use VLM. The use ofup to 8 GB of mem­
ory helps increase system throughput by a factor of 2,
even for databases that span 50 GB to 100 GB in size.

The Digital AlphaServer 8400 5/350 system com­
bined with the Digital UNIX operating system to
address greater than 2 GB of memory has made possi­
ble improved TPC-C results from several vendors. In
this paper, we have shown how VLM

• Increased the throughput by a factor of nearly 2

• Increased the database-cache hit ratios from 88 per­
cent to 95 percent

By using monitor tools designed for the Alpha plat­
form we have measured the effect ofVLM in issuing

' fewer instructions per transaction on the Alpha 21164
microprocessor. When transactions are satisfied by
data that is already in memory, the CPU has fewer
hardware cache misses, fewer memory barrier proces­
sor stalls, faster locking, and better SMP scaling.

Future Digital AlphaServer systems that will be
capable of using more physical memory will be able to
further exploit VLM database technology. The results
of industry-standard benchmarks such as TPC-C,
which force problem sizes to grow with increased
throughput, will continue to demonstrate the realistic
value of state-of- the-art computer architectures.

Acknowledgments

Many people from a variety of groups throughout
Digital helped tune and deliver the TPC-C results. In
particular, we would like to thank Lee Allison, Roger
Deschenes, Joe McFadden, Bhagyam Moses, and
Cheryl O'Neill (CSD Performance Group); Jim
Woodward (Digital UNIX Group); Sean Reilly, Simon
Steely, Doug Williams, and Zarka Cvetanovic (Server

Engineering Group); Mark Davis and Rich Grove
(Compilers Group); Peter Y akutis (I/0 Performance
Group); and Don Harbert and Pauline Nist (project
sponsors).

References and Notes

1. D. Fenwick, D. Foley, W. Gist, S. VanDoren, and
D. Wissell, "The AlphaServer 8000 Series: High-end
Server Platform Development," Digital Technical
Journal, vol. 7, no. 1 (1995): 43-65.

2. At the time this paper was written, 2 GB was the largest
size module. Digital has announced that a 4-GB option
will be available in January 1997.

3. L. Wilson, C. Neth, and M. Rickabaugh, "Delivering
Binary Object Modification Tools for Program Analysis
and Optimization," Digital Technical journal, vol. 8,
no. 1 (1996): 18-31.

4. Transaction Processing Performance Council, TPC
Benchmark C Standard Specification, Revision 3.0,
February 1995.

5. W. Kohler, A. Shah, and R. Raab, Overoiew of TPC
Benchmark: Tbe Order Entry Benchmark, Technical
Report (Transaction Processing Performance Council,
December 199 1).

6. More information about the TPC-C benchmark may
be obtained from the TPC World Wide Web site,
http:/ /www.tpc.org.

7. J. Shakshober and B. Waters, "Improving Database
Performance on Digital Alpha 21064 with OM and
Spinlock Optimizations" (CSD Performance Group,
Digital Equipment Corporation, July 1995).

8. R. Sites, ed., Alpha Architecture Reference Manual
(Burlington, Mass.: Digital Press, 1992).

9. B. Wibecan, Guide to /PROBE (Digital Equipment
Corporation, December 1994).

Biographies

Tareef S. Kawaf
TareefKawafreceived a B.S. in computer science (magna
cum laude) from the University of Massachusetts at
Amherst. He is a member of Phi Beta Kappa. Tareef joined
Digital in 1994 to work on performance enhancements
and tuning of high-end systems and is a senior software

engineer in the CSD Performance Group. He worked on
attaining the world record-setting TPC-C results on the
AlphaServer 8400 5/300 and 5/350 systems and the four­
node AlphaServer 8400 5/350 cluster system running a
state-of-the-art database application. Tareefhas received
two excellence awards from Digital for his work in TPC-C
performance measurement on the AlphaServer 8000 series.

D. John Shakshober
John Shakshober is the technical director of the CSD
Performance Group. The Computer Systems Division
Performance Group evaluates Digital's systems against
industry-standard benchmarks such as those of the Trans­
action Processing Performance Council (TPC) and the
Standard Performance Evaluation Corporation (SPEC).
In this function, John has been responsible for integrat­
ing Digital's state-of-the-art software technologies with
Digital's Alpha-based products since their introduction
in 1992. Prior to joining the CSD Performance Group,
John modeled the performance of the 21064 and 21164
Alpha 64-bit VLSI microprocessors and was a member
of the VAX 6000 Hardware Group. He joined Digital in
1984 after receiving a B.S. in computer engineering from
the Rochester Institute ofTechnology. John also received
an M.S. in electrical engineering from Cornell University
in 1988.

David C. Stanley
Dave Stanley joined Digital in 1984. He is a principal soft­
ware engineer in the CSD Performance Group and was
the project leader for the TruCluster system that achieved
a world-record result for the TPC-C benchmark. Dave has
also led several TPC-C audits on the AlphaServer 8000
series running a state-of-the-art database application. He
is a secondary representative at the TPC General Council
and a member of the TPC-C Maintenance Subcommittee.
Prior to these responsibilities, he was a microprocessor
application engineer at Digital Semiconductor, where he
ran competitive benchmarks on the MicroVAX II processor
chip versus the Motorola 68020. Dave received a B.S.E.E.
from the State University of New York at Buffalo (1981).

Digital Technical Journal Vol. 8 No. 3 1996 65

Building Collaboration
Software for the Internet

Collaboration software for the Internet's World

Wide Web involves the development of shared

information systems for network computing.

The AltaVista Forum version 2.0 software from

Digital contains extensions to World Wide Web

technology that facilitate collaboration on the

Internet. The extensions consist of a toolkit

and a set of collaboration applications. The

toolkit components include a built-in data­

base with an indexing and search capability.

Generic applications include discussion, docu­

ment sharing, and calendar applications and

administrative functions for managing users,

teams, and access control.

66 Digital Technical Journal Vol. 8 No. 3 1996

I
Dah Ming Chiu
David M. Griffin

The Internet and the World Wide Web (WWW)
have changed the scope of network computing. As
the Internet user population has grown, so has the
demand for better ways to collaborate on the Internet.
Some examples include the abili ty to share and discuss
issues of common interest, coauthor documents, and
track project status. Although today's WWW is ideal
for publishing information, it requires considerable
customized programming to support collaboration.
The Alta Vista Forum version 2.0 product is both a set
of collaborative applications and a toolkit (platform)
that facilitates easy, efficient, and rapid development of
collaborative applications for the Internet for both
UNIX and Windows NT systems.

In this paper, we describe our experiences in build­
ing collaboration software for the Internet. We begin
with a brief discussion of WWW technology and
groupware applications. Then we present our design
philosophy and the framework of the software and dis­
cuss the applications supplied by AltaVista Forum.
Following that, we discuss the various experiences
gained in developing software for the new Internet
paradigm. We conclude the paper by discussing our
plans for future development efforts.

World Wide Web Technology

Today's Internet was originally a government-funded
computer network that facilitated collaboration
among academic researchers. Information exchange
was conducted by means of electronic mail (e-mail)
and file transfer. Over time, bulletin-board style
discussions were supported by the Network News
Transfer Protocol (NNTP), which propagated textual
discussion threads to a large number ofNNTP servers
for viewing. With the development of the WWW tech­
nology, collaborating over the Internet has become
even easier.

The WWW technology consists of the following
elements:

• Universal resource locator (URL), a convention for
information naming and linking

• Hypertext markup language (HTML), a text-based
language for information rendering

• Hypertext Transfer Protocol (HTTP), a simple
client-server protocol to transport information
associated with a URL

• Web browser, a program that renders HTML docu­
ments, provides URL caching, and supports a
directory for URLs

• Web server, a server that responds to requests for
information from the Web browsers

Information Access
WWW technology has transformed the way users
access information through computer networks.
Access to information on the Internet was primarily
text-based; with the WWW, users are able to access
information in multimedia format. The combination
of functionality (information linking, graphical inter­
face, and caching), extensibility (for dealing with new
protocols and new information types), ease-of-use,
and low cost appealed to a wide range of users in
homes, offices, and corporations. In addition, the
Mosaic-style of "point-and-click" graphical Internet
browser has become the most widely accepted user
interface for network computing.

The most popular use of the WWW today is for pub­
lishing information, and the process is comparable to
the way a newspaper publishes or a television station
broadcasts information. The roles of the information
provider and the information consumer are clearly
defined. The information provider gathers and orga­
nizes the pertinent information, converts it to the
HTML scripting format, and makes it available on a
Web server. The information consumer, after obtain­
ing initial access to the Web server (as one might tune
into the correct television station), can then browse
and search for various types of information available
on that server. The linking capability of URL and
HTML allows the references or links to additional
information on various servers to be easily published
along with the original information.

In contrast, multiple information providers work
in collaboration to generate the content of shared
information. For the purposes of this paper, we will
assume that there is only one type of user-informa­
tion collaborators.

Collaboration and Groupware
The WWW is useful for many types of collaboration.
For example, a project team may need to keep track of
project status and individual progress; people with
a common interest (e.g., film enthusiasts) may want to
share and discuss their views on that topic; a customer
support group may need a system to provide on-line
answers to real-world customer problems; or several
authors may wish to work on a document together.

Today, several computer applications facilitate such
collaboration. Collectively, these applications are
known as groupware. Lotus Notes is a popular group­
ware application. Typically, groupware applications
support the following capabilities:

• Management of a set of users and groups

• Storage of shared information in a database (some­
times with replication capability)

• Viewing information stored in the databases by
means of a graphical interface

• Protection of the collaboration environment when
necessary through authentication and access control

Groupware systems are built to run in homoge­
neous client environments, such as the Microsoft
Windows environment. They rely on specific client­
server technology, which is often proprietary, to sup­
port remote operations.

The popularity and rapid growth of the Internet and
the WWW have created an open, universal, and easy-to­
program infrastructure that can readily serve several
groupware functions. Engineers at Digital's Internet
Software Business Group recognized the potential of
using the WWW as the underlying infrastructure for
groupware solutions and at the same time saw that the
groupware applications available today have features
that the WWW lacks. Our goal was to add groupware
features to the WWW to facilitate collaboration.

We started exploring the idea of using the Internet
and the WWW for groupware applications in the sum­
mer of 1994. By the end of that year, we had built
a prototype that supported the simplified discussion
(bulletin-board) features of an internal product known
as DEC Notes.' This prototype generated considerable
interest among active DEC Notes users who were
seeking a similar solution built around an Internet
infrastructure. Based on their feedback, the prototype
was redesigned and became a product. 2

By September 1995, we had built several collabora­
tive applications to run over the WWW. In a workshop
organized by the World Wide Web Consortium and
the Massachusetts Institute of Technology, we par­
ticipated in discussions on how to extend the WWW
technology to support collaboration. All the work­
shop participants presented their ideas to the WWW
Consortium for review.3

Design

In this section, we summarize our design philosophy
and discuss the framework and applications developed
for the Alta Vista Forum product. For our design, we
adopted an object-oriented approach, which meant
that we would have to modularize the various compo­
nents for reuse and modification.

Digital Technical Journal Vol. 8 No. 3 1996 67

Design Philosophy
Our fundamental design philosophy required using
the Internet and its infrastructure as building blocks
for our collaboration software. After years of experi­
menting and collaborating to develop an open
process, the Internet developers realized that the
Internet had reached a state of critical mass. In the case
of networks and connectivity, reaching critical mass is
a tremendous impetus for agreeing on a common
standard. As more and more users access the Internet,
the need for software development for the Internet
also increases. In addition, the very nature of the
Internet demands an open standardization process to
ensure the long-term viability of a product.

Our philosophy also included the reuse of existing
open software as building blocks whenever possible.
In addition to our choice of building upon the
Internet and the WWW technology, we selected
the Tool Command Language (Tel) as the primary
language for developing most of our application and
user interface functions.4 We also took advantage of
the database library in the Berkeley UNIX distribution
for built-in database support.5

Another objective was to make sure our software
would be easy to port to all the relevant operating
system platforms. This principle guided our selection
of components and helped us isolate a small set of plat­
form-dependent functions into a special library for
porting the software.

As stated earlier, we tried to take an object-oriented
approach whenever possible. The advantages of our
approach became increasingly apparent as more peo­
ple became involved with the software development.
The object-oriented approach made component reuse
feasible.

Framework
Our framework organizes the Alta Vista Forum soft­
ware into two layers: toolkit and applications. The tools
required to build the applications overlap each other.
We have used them to build generic applications,
including a discussion application that supports users
discussing a set of related topics, much like newsgroups
do; a calendar application that supports users' abilities
to schedule events on a specific date and at a particular

APPLICATION DISCUSSION
LAYER APPLICATION

DOCUMENT
APPLICATION

time; and a newspaper application that provides a per­
sonalized news filtering service. We envision that, over
time, the framework we have developed will support
a number of diverse applications. Figure 1 shows the
Alta Vista Forum toolkit and application layers.

The toolkit is a combination of both C and Tel code
that creates the following interface components:

• Built-in database. The application uses a built-in
database to store its object instances. The database
is a very simple relational model with an object
hierarchy relationship facility available to those
applications that need it. The library also provides
inversions on certain attributes to support fast
retrieval and sorting based on attribute values.

• Built-in indexing and search. An indexing and
search function complements the database by
providing a high-speed query facility. For less­
structured objects, it is often easier to index them
and look them up using a search tool.

• Graphical user interface support. The use of a graph­
ical user interface insulates applications from hav­
ing to deal with HTML directly and cope with its
changes over time. Abstract definitions of user inter­
face objects also tend to simplify and clarify the code
and create a more uniform appearance on the screen.

• Access control. All applications require some form
of access control to regulate who can access, create,
modify, and delete various objects.

• Internationalization. An internationalization facil­
ity gathers strings that appear in the user interface
into message catalogs for later translation to differ­
ent languages.

• Platform-specific support. A special library isolates
those operating system-dependent functions that
vary from platform to platform. Certain file system
accesses and date/time library accesses are exam­
ples of this component.

Armed with all the components in the toolkit, an
Alta Vista Forum application consists of a set of func­
tions, each responding to a different user request. The
organization of an application is modular. A function
can call various objects that are defined separately as
part of the application, including the following:

USER LISTING,
REGISTRATION

CALENDAR
APPLICATION D

TOOLKIT
LAYER

DATABASE, INDEXING/SEARCH, GUI LIBRARY,

Figure 1

ACCESS CONTROL, INTERNATIONALIZATION SUPPORT,
PLATFORM-SPECIFIC FILE SYSTEM, AND TIME SUPPORT ...

Alta Vista Forum Toolkit and Application Layers

68 Digital Technical Journal Vol. 8 No. 3 1996

• Graphical objects such as definitions of buttons,
toolbars, various objects that are part of a form
(e.g., select boxes, radio buttons, check boxes, text
boxes), and icons.

• Database entries, the definitions of their attributes,
and default values.

• User interface aggregate objects such as forms,
views, dialogs, and error messages.

• Default access control policies, including default
groups, access rights, and their mappings, to con­
trol who can access individual forums and what
actions they can take within them.

This approach encapsulates the details in low-level
modules, making the software more readable and
maintainable. It also makes it easy for different func­
tions to reuse the objects.

To further facilitate code sharing, the framework
also allows applications to inherit a set of functions
and objects that have been grouped together as a
pseudoapplication. For example, the access control
management functions can be grouped into a
pseudoapplication and certain button and toolbar
definitions can be grouped into another pseudo­
application. All applications that need access control
and the common graphical objects that lend a consis­
tent "look-and-feel" can inherit those functions and
objects from pseudoapplications.

The Alta Vista Forum product works in conjunction
with the Web browser and the Web server. The Web
browser submits requests to the Web server whenever
the user opens a link. If the link points to a file, then
the Web server sends the file to the browser, which is
the normal interaction. The link can also point to pro­
grams on the server; in this case, the Web server
invokes the program and then the program responds
to the user.

When the link points to the Alta Vista Forum, the
Web server invokes the AltaVista Forum dispatcher
program through the common gateway interface
(CGI). Based on the information passed along with
the user request, the dispatcher invokes a specific
application, which, in turn, calls various tools in the
toolkit to respond to the user's request. Figure 2 illus­
trates the interaction of the Alta Vista Forum software
with the Web browser and server.

Figure 2

WEB
BROWSER

t

HTTP WEB
SERVER

HTTP

Parameters are passed to the dispatcher from seg­
ments of the URL. The dispatcher parses the URL into
the pieces that provide the overall control of the pro­
gram: (1) the forum name, (2) the access control area
name, (3) the message name, and (4) the message
arguments.

Each forum is an instance of an application object.
For example, many discussion forums are available on
various topics. Each discussion forum has its own name
at the time of creation; however, the same discussion
application can be used to manage all the forums.

An access control area contains a set of forums and
a common user/group database. An administrator
group helps administer the user/group database and
establish overall access control policies for the environ­
ment. A user registers only once with an access control
area. Based on the access control area location, the
hypertext server not only knows where to find the
user's credentials for authentication purposes but also
knows how to authenticate the user and pass the
authenticated user identity to the Alta Vista Forum
environment. Given the user identity and the access
control location, AltaVista Forum software can also
look up the user profile, check access control, and per­
form other user-specific functions.

The message name and message arguments
then select particular actions to perform within the
application.

Generic Applications
The Alta Vista Forum product supplies a set of generic
applications that make the software immediately
usable. The applications are described in this section.

User and Group Management and Lookup This appli­
cation provides an interface for user registration
(either by the user or by an administrator). Users can
supply and modify their business card information
such as phone numbers and e-mail addresses. Users
can also set certain preference parameters that help
the AltaVista Forum software tailor its responses
(e.g., native language and preferred display formats).
In addition, groups can be created and modified as a
set of users. This application also provides the interface
for listing and searching for user and group informa­
tion for all forums. As discussed earlier, the Alta Vista

____ ,,::::=:::, HTML

1
._ __ _, l___J FILES

CGI INTERFACE "I._ -~-~-Ti_~_! _TH-AE_R__.

Interaction of Alta Vista Forum, Web Browser, and Web Server

Digital Technical Journal Vol. 8 No. 3 1996 69

Forum product can support all the users that a Web
server can handle since only one repository of users
and groups is necessary.

Community, Team, and Personal Vistas A vista is
another term for home page, which is a place for the
user to log in to the WWW. Once in the community
vista, the user sees a set of public forums and links to
perform various tasks, e.g., register oneself, look up
teams or join a team, perform Alta Vista Forum admin­
istrative tasks (if an administrator), and so on. For this
reason, the community vista is also called the summit.
In much the same way, a team vista keeps track of all
the forums and links for a group of users, and a per­
sonal vista performs this function for a single user.
Both team and personal vistas can own forums that are
not visible to the public community vista.

Discussion Much like a bulletin-board discussion
group or Digital's DEC Notes software, this appli­
cation permits users to share ideas on a set of related
topics. Users create topics and replies that form a hier­
archical tree (also known as threaded topics), providing
a way for users to navigate through existing discussions.
Other methods of reading the existing discussion are
also provided. These include chronologically navigat­
ing through items not read; listing unread items only
and selectively reading them; and searching for topics
and replies containing certain words that were entered
during a particular time period by a certain author.
Users can also create multiple discussion forums to
discuss different topics; this is true for the following
applications as well.

Document Sharing The document sharing applica­
tion enables users to organize documents of the same
type into hierarchically organized folders. In addition,
it keeps track of versions of the documents, attach­
ments, and comments. As with the discussion applica­
tion, users can browse through and search for specific
documents using a variety of methods.

Newspaper The newspaper application lets users
select a specific source of information and then define
filters to present only those items of potential interest.
A good example of an information source on the
Internet is one of the real-time news feeds. Using the
newspaper application, it is also possible to read and
monitor other information sources, e.g., e-mail sent to
a distribution list or information appearing on a set of
WWW sites.

Calendar The calendar application permits users
to enter a set of scheduled events (or a to-do list) and
present the events as a calendar (sometimes called
a diary). The application supports requests to add
items to the calendar, thus allowing the calendar to be

70 Digital Technical Journal Vol. 8 No. 3 1996

used as a scheduling tool. Although a calendar forum
can be set up for each person, it is equally useful
to have a team calendar, a community calendar, or
even a calendar for a specific type of event.

Experiences

In this section, we summarize some of our experiences
and discuss the lessons we learned along the way. As
a result of our decision to rely on the Web browser
as the universal user interface, we had to resolve some
unique user interface issues. Because we chose to use
Tel for developing higher-level objects, we had to cope
with using an interpretive language. We designed the
database and indexing and search interfaces based
on extensibility and portability goals. Finally, in the
design of access control, we had to carefully weigh
the pros and cons of simplicity and flexibility.

Coping with the User Interface Defined in HTML
Very early in the design phase, we decided to make
AltaVista Forum client-independent, with the excep­
tion of dependence on the Web browser. This decision
was based on the fact that the Web browser was already
freely available on most of the platforms. We expected
the browser to become a ubiquitous network front
end, allowing us to focus on building groupware func­
tions on the server. This meant that we were faced with
the task of designing the user interface using HTML.6

Since HTML was evolving, our first step was to
define graphical objects in more abstract constructs
supported by our toolkit. Each construct encapsulates
the specifics into a representation of a graphical artifact
in HTML in the toolkit. Thus as HTML evolves, or as
the page design changes, only one area needs to be
updated. For example, a select box object on a form
may be defined as follows:

forum selectbox s.la nguage \
-mapto Language \
-Label "Select a Language:" \
-Labelbreak

s.Language add_option English 1 selected
s.Language add_optio n French 2

In this example, a select box is defined to begin with
a label and some spacing and then to contain two
options: English and French, with English as the
default. The values 1 and 2 are internal representations
of the selected values. Also, the "map-to" switch spec­
ifies that this object must correspond to the language
attribute in the database, a feature that was included to
simplify database update.

Note that although a label is specified, no specifica­
tion is provided to represent that label in a particular
font or typeface. Neither is the actual spacing for label
break specified. These decisions are made in the foru m

select box part of the toolkit procedure, which trans­
lates this object into HTML.

Most of the early Web browsers were single-window
based. This limitation was especially problematic for us
because most of our applications provide some organi­
zation to the information content. A much more nat­
ural way of browsing for our environment would
include at least two windows: one showing the context
and the other showing the content of a specific item.
For this reason, we introduced multiple navigational
methods. For example, the discussion application

• Allows hierarchical navigation (previous, next, up)

• Allows navigation in chronological order (next
unseen, what's new)

• Provides a category view that lists topics according
to their category

• Supports content-based search or an index-like
function

Newer versions of Web browsers support frames,
which have multiple window-browsing capabilities
(although the standards in this area are still a bit
vague). We are updating our applications to take
advantage of these new features.

Usability studies guided our decisions as we were
designing forms and dialog boxes. It is likely that
many potential users of our product are familiar with
Windows-style user interface objects. Because the
early Web browsers (e.g., Mosaic) were UNIX-based,
little attention was given to providing a human­
computer interface that resembled the more widely
used Windows interface. However, our usability
studies indicated that many personal computer (PC)
users had difficulty using Web browsers out-of-the­
box. For example, a user might expect a dialog box to
have certain standard buttons, such as OK, cancel, and
clear. Ideally, the user would know what to do with
these buttons without any training. To make our soft­
ware easy to learn, we tried to follow the same user
interface style that was already familiar to most users.
Since we were limited by HTML and browser design,
this was not a simple task. Thus we were often forced
to produce rough facsimiles of the more well-known
interface artifacts.

In summary, we found usability studies to be
extremely valuable when designing end-user applica­
tions. For this reason, it is important to allocate
enough time in the product design cycle to collect user
feedback before beginning product development.

The Pros and Cons of Using an Interpretive Language

As mentioned earlier, we selected Tel as the language
for building the Alta Vista Forum toolkit. Tel is a
highly portable, extensible, and freely available lan­
guage that was originally designed to be embedded in
a larger framework.• However, it is also an interpretive

language, which supported our goal of rapid and
iterative development of collaborative applications
for the WWW.

We extended standard Tel to provide a set of com­
mands and objects that formed the Alta Vista Forum
toolkit: database, HTML generation, access control,
internationalization, user profile management, and
platform-specific support. Many of these extensions
supported an object-based environment (i.e., the
environment supported standard Tel objects and our
simple inheritance mechanism). The use of these
extensions made it easier to develop applications than
it would have been with Tel (or any other language),
alone. As a result, these extensions form the basis for
future development tools.

From the beginning, we knew that the choice of
an interpretive language was going to involve trade­
offs. In fact, performance, which was our most critical
trade-off, continues to be a concern for the engineer­
ing team. Although the performance of an interpreted
language is lower than that of a compiled language,
fast processors have made the use of an interpreter
worthwhile because of the reduced expense of devel­
oping applications. The use of Tel in the Alta Vista
Forum software certainly takes advantage of this.
Although the applications and part of the toolkit are
written in Tel, many critical parts are implemented in
a compiled language (such as C) to stay within per­
formance requirements. The engineering team is con­
tinually searching for ways to improve performance
while accommodating requests for new features and
tracking the rapidly evolving WWW environment.

The second trade-off was the absence of a sophisti­
cated debugging and profiling environment. Partly
due to the limitations of Tel and partly due to the
stateless nature of WWW transactions, some of
the more sophisticated development tools that pro­
grammers expect to see are not readily available.
Despite these shortcomings, rapid development is still
possible; however, we expect even larger gains as we
correct these problems in the future.

Interfacing to the Database
Several factors (primarily portability and cost) influ­
enced our decision to build a hybrid database rather
than the more customary relational database. The
database in the Alta Vista Forum toolkit consists of a
B-tree indexed file (from the Berkeley ndbm package)
for storage of basic attributes about documents, which
is backed by the file system for the nonstructured data.
This design, combined with the search engine
(described in the next section), is quite effective for
the types of applications we initially developed with
the Alta Vista Forum toolkit.

In effect, the database is organized as a collection of
documents (or entries) that have unique identifiers
(document IDs), hierarchical document numbers, and

Digital Technical Journal Vol. 8 No. 3 1996 71

a set of attributes that is similar to a relational database
table. The toolkit provides each entry with a set of
built-in attributes (such as title, creation and modi­
fication dates, and author). The applications can then
deliver additional attributes.

The toolkit provides the means to retrieve, modify,
and iterate through the collection of entries in a
straightforward manner. Because the attributes are
part of the application description and are not stored
in a separate database, the toolkit can use its knowl­
edge of the attributes to simplify certain common
operations. For example, because transferring data
from HTML forms to the database and back is a basic
operation in collaborative applications, the toolkit can
link fields on forms to database attributes, making it
possible to store them with a single command. To sup­
port a dynamic development environment, the toolkit
also upgrades databases in real time as new attributes
are added or deleted. This permits the application
developer to concentrate on the task at hand rather
than worry about database management tasks.

Although the primary organization mechanism is a
flat table indexed by document identifiers, the database
integrates a hierarchical relationship between entries
when necessary. Because hierarchies are common in
collaborative applications (e.g., folders/ documents
and topics/replies), it was important to reflect this in
a natural way in the database.

In addition to attributes, the database offers proper­
ties. Compared to attributes, which are stored for each
entry in the database, properties are stored within
each forum. Application designers can use these prop­
erties in any way they desire: they are simple key-value
relationships. The AltaVista Forum software uses
properties to implement a variety of features, from
access control policies to the background color of the
screen display.

User properties are an extension of standard forum
properties. They act like forum properties except that
they are tied to the user who is executing the transac­
tion. User properties keep database locking to a mini­
mum because, in collaborative applications, a user will
typically execute only one transaction at a time.

Indexing and Search: The Way of the Future?
One key design decision was to include an indexing
and search engine as a basic component of the prod­
uct. Although the database is often the central piece of
a groupware product, an indexing and search engine
often plays a similar role for a WWW site. This devel­
opment is completely consistent with the philosophy
of the WWW-information is linked as needed, not
necessarily following any structure. Database use is
more suitable for information objects that have some
unifo rmity in their definitions.

The basic function of the indexing engine is to map
a set of words to a document containing those words.

72 Digital Technical Journal Vol. 8 No. 3 1996

(The term document is used in a generic sense. It can
be any logical entity associated with a set or words.)
The indexing information must be stored in such a
way that subsequent searches based on individual
words (and phrases) are efficient and speedy. The
indexing engine in the Alta Vista Forum toolkit is
basically the same indexing engine available on the
Alta Vista Web site.7 Designed and implemented at
Digital's System Research Center, it is highly scalable
and efficient.

The built-in database functions as a repository for
entries with a predefined set of attributes. It provides
fast retrieval when the entries are identified using either
an entry ID or a hierarchical ID, and it provides simple
creating, updating, and sorting functions associated
with retrieval. The indexing and search engine comple­
ments the Alta Vista Forum database: it provides a
content-based search method and functions at higher
speed. Since the search engine is extremely fast and
scalable, we also use it to index some of the attribute
values in the database. This allows us to use the search
engine for certain compute-intensive searches that
otherwise would be performed by the database.

Based on our experience, we expect the capabilities
of the indexing and search engine to continue to
expand. As the popularity of the WWW technology
continues to grow, the volume of published informa­
tion will also increase. Only a small amount of this
information can be effectively captured in databases.
The indexing and search engine is an invaluable tool
for mining useful information out of the vast amount
of data stored in these databases.

The Dilemma of Access Control
Designing access control is very challenging because
users and administrators have different requirements.
On the one hand, administrators want a high degree
of flexibility in controlling access. Their issues include
the following:

• What type of information is subject to access control?

• Should access control be defined for every possible
access/action type?

• Should there be arbitrary flexibility in defining
groups (including nesting)?

On the other hand, users have stated that they do
not like products in which access control operations
are complex, especially in the case of a product that
is supposed to help people collaborate. In a majority
of scenarios, they argue that very little access control
is needed.

For this reason, we tried to strike a balance between
administrators' needs and users' preferences. Although
we recognize the importance of access control, we did
not give it precedence over product usability. Since
usability was our priority, and the time available to

work on it was limited, we divided our efforts between
making access control flexible and choosing default
options that would promote collaboration.

We defined access control for the whole database
(forum), rather than for individual entries and attrib­
utes of entries. However, some entry-level access con­
trol is necessary. For example, it is preferable to let only
the owner (or the creator) of an entry modify and
delete that entry. As a result, we allowed the group def­
inition to include entry-specific logical users, rather
than provide a general mechanism for entry-level access
control. Therefore, a group may contain a member
who is the owner of the current entry. During access
control checking, the current entry's owner is looked
up and matched against the currently logged-in user.

Instead of letting the administrator define access
control for each possible incoming access/action, our
framework allows the application definition to group
accesses together into logical access rights. For exam -
ple, for the discussion application, we defined the fol­
lowing access rights:

• Read-Includes all read URLs (different views,
whether for a single entry or a list of entries)

• Contribute-Includes adding a topic or reply

• Modify-Includes any form of modification or
deletion

• Moderate-Includes such functions as creating key­
words, polling options, controlling number oflevels
of replies, and setting certain entries as hidden

• Administrate-Change access control or other
kinds of resource consumption policies

By defining these access rights, the administrator only
needs to establish who can do these five operations,
rather than define numerous other kinds of opera­
tions. It is still possible to change and add to this
group of access rights by making simple modifications
to the application definition.

Our basic strategy for making access control easy to
manage is to set up default policies of access control
that apply to as many situations as possible, within rea­
son. The default policy is added to the application def­
inition. If the administrator is satisfied with the default
policies, then the access control can be used as sup­
plied. For the discussion application, the default policy
is the following:

• Read-All users, including anonymous

• Contribute-All users, excluding anonymous

• Modify-Owner (creator) of entry and moderators

• Moderate-Owner of the forum

• Administrate-Owner of the forum

To simplify implementation, we chose not to allow
nesting of groups. Our design allows for adding it in

the future as long as it makes management of access
control policies easier.

Future Directions

To date, we have received encouraging feedback from
users. Of the ways that we can continue to improve
the AltaVista Forum product, we feel the following
deserve the highest priority.

First, we need to provide better ways to help users
deal with information overflow. Although we have
built ways to filter and search information into our
application, further simplification is necessary. We
are working on smart agents that bring the relevant
information to the user's fingertips.

Second, a number of the functions that we provide
can be more easily performed on the client machine.
The Java language is the best candidate for providing
these functions since it enables us to handle a wide
variety of client platforms. Initially, we are looking into
using Java to improve certain user interface problems,
such as opening additional windows on the client
machine to notify users of new information.

Third, synchronous collaboration using video,
audio, and whiteboard will soon become feasible and
cost effective. It is important for us to help bring users
together through both synchronous and asynchro­
nous methods of collaboration. For example, users
should be able to use the calendar application to
schedule a meeting over the Internet, and Windows
should be available to the user automatically.

Fourth, as the Alta Vista Forum software matures,
we hope to add to its performance and increase
its scalability. As its environment evolves, we are look­
ing into ways to bypass the CGI interface and use a
compiled language for more of the toolkit implemen­
tation. We also hope to add support for large commer­
cial databases.

Finally, we will continue to add innovative applica­
tions to our product. We recently built a prototype of
a customer-support application that keeps track of
problem reporting. We are looking into other applica­
tions such as project management, group review, and
survey and decision-support systems.

Acknowledgments

We wish to thank the AltaVista Forum development
and management teams for their contributions to the
product. In particular, we wish to thank Peter Hurley
for his leadership in starting the effort; Ralph DeMent,
Bob Travis, David Marques, and Rick Frankosky, who
have worked with us throughout the lifetime of the
product and with whom we have developed a special
camaraderie; and Dan Kalikow, who was the first
adopter and has cheered us on ever since.

Digital Technical Journal Vol. 8 No. 3 1996 73

74

References and Notes

1. DEC Notes is a discussion application running primarily
on VAX systems connected on a DECnet network. Still a
very popular tool within Digital, it is used for collaborat­
ing on many topics, ranging from product development,
customer support, and marketing to various personal
interest topics.

2. The product was originally called Workgroup Web
Forum. It was subsequently merged into a larger family
of products and the product name became Alta Vista
Forum.

3. For more information on the World Wide Web Consor­
tium/MIT Laboratory for Computer Science Workshop
on the World Wide Web and Collaboration held Sep­
tember 11-12, 1995, see http://www.w3.org/pub/
WWW /Collaboration.

4. J. Ousterhout, Tel and the Tk Toolkit(Reading, Mass.:
Addison-Wesley Publishing Company, 1994).

5. NDBM(3), 4.3 BSD Unix Programming Manual Ref­
erence Guide(University of California, Berkeley, 1986).

6. During this time, Java was still on the drawing board, or at
least not generally supported by Web browsers. We did
expect to use Java to enhance our user interface over time.

7. For access to Digital's indexing and search engine,
visit the Alta Vista Web site at http://altavista.software.
digital.com.

Biographies

Dah Ming Chiu
Dah Ming Chiu was a consulting engineer in Digital's
Internet Software Business Unit and a technical leader in
developing the Alta Vista Forum groupware product for the
Internet. Before that project, he worked for the Networks
Architecture Group on congestion and flow control, net­
work monitoring, name service, and the X.500 standard.
Previous to that, he worked on performance modeling
and analysis network protocols and graphical workstation
design. Dah Ming is currently an architect in the Internet
Solutions Group of Sun Microsystems, Inc. He received a
Ph.D. in applied mathematics (1980) from Harvard Uni­
versity and a B.Sc. in electrical engineering (1975) from
the Imperial College, London University. He holds three
patents in the areas of congestion control and network
moni toring and is a coauthor of Network Monitoring
E:>.pl a i /led.

Digital Technical Journal Vol. 8 No. 3 1996

David M. Griffin
Dave Griffin joined Digital in 1981. He is a principal soft­
ware engineer in the Alta Vista Collaboration Engineering
Group, where he leads the Alta Vista Forum Toolkit team
for version 3.0. Dave also led the toolkit team for version
2.0 and was the primary designer and implementer of
the (Workgroup Web Forum) version 1.0 toolkit and the
author of the document-sharing application for version
1.0. Prior to this work, Dave led the DECdns server proj­
ect (part of the DECnet/OSI program) and designed
and implemented the hierarchical cells and cell-renaming
facilities in the DCE Cell Directory Service. He has been
involved in the development of a number of distributed
information systems for Digital and other companies. He
holds two patents in distributed systems technology.

Further Readings

The Digital Technical journal is a refereed, quarterly
publication of papers that explore the foundations of
Digital's products and technologies.Journal content
is selected by the Journal Advisory Board, and papers
are written by Digital's engineers and engineering
partners. Engineers who would like to contribute a
paper to the journal should contact the managing
editor, Jane Blake, at Jane.Blake@ljo.dec.com.

Topics covered in previous issues of the Digital
Technical journal are as follows:

Spiralog Log-structured File System/Open VMS
for 64-bit Addressable Virtual Memory/
High-performance Message Passing for Clusters/
Speech Recognition Software
Vol. 8, No. 2, 1996, EY-N6992-18

Digital UNIX Clusters/Object Modification
Tools/eXcursion for Wmdows Operating Systems/
Network Directory Services
Vol. 8, No. 1, 1996, EY-U025E-TJ

Audio and Video Technologies/UNIX Available
Servers/Real-time Debugging Tools
Vol. 7, No. 4, 1995, EY-U002E-TJ

High Performance Fortran in Parallel
Environments/Sequoia 2000 Research
Vol. 7, No. 3, 1995, EY-T838E-TJ
(Available only on the Internet)

Graphical Software Development/Systems Engineering
Vol. 7, No. 2, 1995, EY-UOOlE-TJ

Database Integration/ Alpha Servers & Workstations/
Alpha 21164 CPU
Vol. 7, No. 1, 1995, EY-Tl35E-TJ
(Available only on the Internet)

RAID Array ControllersjWorkflow Models/PC LAN
and System Management Tools
Vol. 6, No. 4, Fall 1994, EY-Tl 18E-TJ

AlphaServer Multiprocessing Systems/DEC OSF/1
Symmetric Multiprocessing/Scientific Computing
Optimization for Alpha
Vol. 6, No. 3, Summer 1994, EY-S799E-TJ

Alpha AXP Partners-Cray, Raytheon, Kubota/
DECchip 21071/21072 PCI Chip Sets/DLT2000
Tape Drive
Vol. 6, No. 2, Spring 1994, EY-F947E-TJ

I

High-performance Networking/Open VMS AXP
System Software/ Alpha AXP PC Hardware
Vol. 6, No. 1, Winter 1994, EY-QOl lE-TJ

Software Process and Quality
Vol. 5, No. 4, Fall 1993, EY-P920E-DP

Product Internationalization
Vol. 5, No. 3, Summer 1993, EY-P986E-DP

Multimedia/ Application Control
Vol. 5, No. 2, Spring 1993, EY-P963E-DP

DECnet Open Networking
Vol. 5, No. 1, Winter 1993, EY-M770E-DP

Alpha AXP Architecture and Systems
Vol. 4, No. 4, Special Issue 1992, EY-J886E-DP

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, EY-J884E-DP

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EY-L521E-DP

PATHWORKS: PC Integration Software
Vol. 4, No. 1, Winter 1992, EY-J825E-DP

Image Processing, Video Terminals, and Printer
Technologies
Vol. 3, No. 4, Fall 1991, EY-H889E-DP

Availability in VAXcluster Systems/Network
Performance and Adapters
Vol. 3, No. 3, Summer 1991, EY-H890E-DP

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY-H876E-DP

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. 1, Winter 1991, EY-F588E-DP

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E762E-DP

DECwindows Program
Vol. 2, No. 3, Summer 1990, EY-E756E-DP

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990, EY-Cl97E-DP

Compound Document Architecture
Vol. 2, No. 1, Winter 1990, EY-Cl 96E-DP

Digital Technical Journal Vol. 8 No. 3 1996 75

Technical Publications by Digital Authors

R. Abugov and X. Dietrich, "A Yield Based Replacement
for Capability Indexes," Advanced Semiconductor Manu­
facturing Conference and Workshop (November 1995).

P. Bhat, "A Case for a Knowledge-based Performance
Tuning Advisor," CMG95: Proceedings of the 21st
Annual Conference for the Resource Management
and Performance Evaluation of Enterprise Computing
Systems (December 1995).

C. Boutin, "From Manager to Individual Contributor­
Would You Rather Be a Worker Bee?" Proceedings of
the 43rd Conference of the Society for Technical
Communication (May 1996).

W. Bowhill, "A 300MHz CMOS RISC Microprocessor,"
IEEE Journal of Solid State Circuits (November 1995).

C. Brench, "Modeled and Measured Results from
Two Standard EMI Problems," IEEE Transactions
on Electromagnetic Compatibility (August 1995).

A. Charny, "Scalability Issues for Explicit Rate Allocation
in ATM Networks," IEEE Infocom '96: Proceedings of
the 15th Annual Conference of the IEEE Computer and
Communications Societies (March 1996).

A. Charny, "Timescale Analysis for Explicit Rate Allocation
in ATM Networks," IEEE Infocom '96: Proceedings of
the 15th Annual Conference of the IEEE Computer and
Communications Societies (March 1996).

J. Clement, "Pulsed-current Duty Cycle Dependence of
Electromigration-induced Stress Generation in Aluminum
Conductors," IEEE Electron Device Letters (May 1 996).

T. Collins, "POLYCENTER License System: Enabling
Electronic License Distribution," chapter 10 in Inte­
grated Network Management V- Proceedings of
the Fourth International Symposium on Integrated
Network Management (London: Chapman & Hall,
ISBN 0-41271-570-8, 1995).

T. Collins, "The Wolf as a Metaphor for Software Agent,"
chapter five in Bots and Internet Beasties (Indianapolis,
Ind.: Sams.net Publishing, ISBN 1-57521-016-9, 1996).

A. Conn, "Time Affordances: The Time Factor in Diag­
nostic Usability Heuristics," Human Factors in Comput­
ing, CHI '95 Proceedings (May 1995).

Z. Cvetanovic, "Performance Characterization of the
Alpha 21164 Microprocessor Using TP and SPEC Work­
loads," Proceedings of the IEEE Second International
Symposium on High-performance Computer
Architecture (February 1996).

M. Desai, R. Cvijetic, and J. Jensen, "Sizing of Clock
Distribution Networks for High Performance CPU
Chips," Proceedings of the 33rd Design Automation
Conference (June 1996).

M. Desai and Y. Yen, "A Systematic Technique for Verify­
ing Critical Path Decays in a 300MHz Alpha CPU Design
Using Circuit Simulation," Proceedings of the 33rd
Design Automation Conference (June 1996).

76 Digital Technical Journal Vol. 8 No. 3 1996

M. Elbert and R. Howe, "Manufacturing Process Study
and Certification," IEEE 34th Annual Spring Reliability
Symposium (April 1996).

L. Elliott, R. Shuman, J. Rose, and T. Spooner, "The
Electromigration and Failure Behaviour in Layered
Tungsten Via Structures," Materials Research Society
Symposium Proceedings (April 1995).

J. Erner et al., "Predictive Sequential Associative Cache,"
Proceedings of the Second International Symposium
on High-performance Computer Architecture (February
1996)

J. Erner, R. Stamm et al., "Exploiting Choice: Instruction
Fetch and Issue on an Implementable Simultaneous Multi­
threading Processor," Proceedings of the IEEE ACM 23rd
International Symposium on Computer Architecture
(May 1996).

A. Flanders and M. Raven, "Using Contextual Inquiry to
Learn about your Audiences," Tbe Journal of Computer
Documentation (February 1996).

K Gehlert and D. Scipione, "In Situ Monitoring of
Product Wafers," Solid State Technology (March 1996).

J. Grodstein, E. Lehman, H . Harkness, and Y. Watanabe,
"Logic Decomposition During Technology Mapping,"
IEEE/ACM International Conference on Computer­
aided Design (November 1995).

P. Gronowski, "A433MHz 64b Quad-issue RISC
Microprocessor," Digest of Papers, IEEE International
Solid State Circuits Conference (February 1996).

P. Gronowski, "Dynamic Logic and Latches Part 11-
Practical Implementation Methods and Circuit Examples
Used on the Alpha 21164," VLSI Circuits Symposium
(June 1996).

E. Hanson and H. Woodward, "Process Control
Methodology for PSG and PETEOS Films in a Highly
Interactive Multiprocess CVD System," Advanced Semi­
conductor Manufacturing Conference and Workshop
(November 1995).

C.-L. Huang, J. Faricelli, N. Khalil, and R. Rios, "An
Accurate Gate Length Extraction Method for Sub-quarter
Micron MOSFETs," IEEE Transactions on Electron
Devices(June 1996).

H . Jakiela, "Performance Visualization of a Distributed
System: A Case Study," Computer(November 1995).

R. Kelsey, "Bad Fixes, Change Specifications and Lin­
guistic Constraints on Problem Diagnosis," Software
Engineering Notes (March 1996).

J. Kern, "The Chicken is Involved, But the Pig is Com­
mitted-Building Commitment Through Cascading
Teams," QualityProgress (October 1995).

N. Khalil, J. Faricelli, and J. Huang, "Two-dimensional
Dopant Profiling ofSubmicron MOSFETs Using Nonlinear
Least Squares Inverse Modeling," Journal of Vacuum
Science and Technology (January /February 1996).

J. Kitchin, "Design for Reliability in the Alpha 21164
Microprocessor," Proceedings of the IEEE 34th Annual
Spring Reliability Symposium (April 1996).

B. Mirman, "Choice of Models and Failure Indicators
for Thermally Loaded Solder Joints," Proceedings of
the Technical Program NEPCON EAST '96 (June 1996).

W. Nagorski, W. McGee, E. Piccioli, and L. Bair, "Auto­
matic Test Chip Documentation Synthesis," Proceedings
of the 1996 IEEE International Conference on Micro­
electronic Test Strnctures (March 1996).

L. Noack and M. Kantrowitz, "I'm Done Simulating;
Now What? Verification Coverage Analysis and Cor­
rectness Checking of the D ECchip 21164 Alpha
Microprocessor," Proceedings of the 33rd Design
Automation Conference(June 1996).

0. Ramahi, "Adaptive Absorbing Boundary Conditions
in Finite-difference Time Domain Applications for EMC
Simulations," IEEE/Transactions on Electromagnetic
Compatibility (November 1995).

0. Ramahi et al., "Dynamic Analysis of V Transmission
lines," Conference Proceedings of the 12th Annual
Review of Progress in Applied Computational
Electromagnetics (March 1996).

S. Rege, "A Distributed System Client/Server Architecture
for Interactive Multimedia Applications," COMP96: Digest
of Papers 4 lst IEEE Computer Society International
Conference (February 1996).

R. Rios, N. Arora, C.-L. Huang, N. Khalil, J. Faricelli,
and L. Gruber, "A Physical Compact MOSFET Model,
Including Quantum Mechanical Effects, for Statistical
Circuit Design Applications," IEEE/Electron Devices
Technical Digest (December 1995).

K Roselle, "Estimating Crosstalk in Multiconductor
Transmission Lines," IEEE Transactions on Components,
Packaging, and Manufacturing Technology Part B:
Advanced Packaging (May 1996).

N. Rubin, "Efficient Instruction Scheduling Using Finite
State Automata," Proceedings of the 28th Annual
International Symposium on Microarchitecture
(November 1995).

C. Smith and T. Vallone, "Mentoring: Providing Profes­
sional and Organizational Benefits," Proceedings of
the 43rd Conference of the Society for Technical
Communication (May 1996).

N. Sullivan, S. Dass, G. Pollard, W. Jones, and T. Lindsay,
"A Comparison of State-of-the-Art DUV Lenses," Pro­
ceedings of the Society of Photo-optical Instrnmenta­
tion Engineers (February 1995).

H. Teegan, "Distributed Performance Monitor Using
SNMP V2," IEEE/IFIP Network operations and Man­
agement Symposium (April 1994).

M. Tsuk, "FD-TD Analysis of Electromagnetic Radiation
from Modules-on-Backplane Configurations," IEEE
Transactions on Electromagnetic Compatibility
(August 1995).

A. Villani and H. Nguyen, "Correlation of the Mechanical
to the Thermal Strength of Ceramic Packages," American
Ceramic Society Transactions: Hybrid Microelectronic
Materiat'.5(November 1994).

W. Zahavi, "Modeling the Performance Budget-A Case
Study," CMG95: Proceedings of the 21st Annual Con­
ference for the Resource Management and Perform­
ance Evaluation of Enterprise Computing Systems
(December 1995).

Digital Technical Journal Vol. 8 No. 3 1996 77

Recent Digital
U.S. Patents

The following patents were recently issued to Digital
Equipment Corporation. Titles and names supplied
to us by the U.S. Patent and Trademark Office are
reproduced as they appear on the original published
patent.

D353,800

5,371,807

5,371,822

5,371,868

5,371,870

5,371,874

5,371,889

5,372,262

5,373,421

5,375,068

5,375,199

5,377,190

5,377,327

5,377,354

5,378,945

5,379,419

5,381,052

5,381,146

M. S. Lewis, L. A. Treseder, R. M. Tusler,
and G. Suzda

N. Kannan and M. S.

F. Horwitz and E. Thomson

G. P. Konig, H . S. Yang, and W. Hawe

P. M. Goodwin, D. Smelser, and
D. A. Tatosian

M. Gagliardo, J. Lynch, K. Chinnaswamy,
and J. Tessari

J. Klein

J.M. Benson and J.E. Fritscher

C. Detsikas and T. Spellman

R. S. Palmer and L. G. Palmer

J. R. Harrow and F. P. Messinger

H. Yang, K. K. Ramakrishnan, B. Spinney,
and K. R. Jain

K. R. Jain, K. K. Ramakrishnan, and
D.-M. Chiu

N . Scannell, A. Redmond, P. Bares, A. Clark,
S. Dawson, and S. Himbaut

H. Partovi, S. Butler, and L. Tran

J. S. Heffernan, P. L. Savage, S. J. Pittman,
and R . V. Sunkara

R. Kolte

R. Kolte

78 Digital Technical Journal Vol. 8 No. 3 1996

I

Modular Enclosure for Electronic Equipment

Register Method and Apparatus for Text Classification

Method of Packaging and Assembling Opto-electronic
Integrated Circuits

Method and Apparatus for Deriving Addresses for Stored
Address Information for Use in Identifying Devices during
Communication

Stream Buffer Memory Having a Multiple-entry Address
History Buffer for Detecting Sequential Reads to Initiate
Pref etching

Write-read/Write-pass Memory Subsystem Cycle

Journalling Optimization System and Method for
Distributed Computations

Frame Assembly for Rack-mountable Equipment

Fiber Optic Transceiver Mounting Bracket

Video Teleconferencing for Networked Workstations

System Monitoring Method and Device, Including a
Graphical User Interface to View and Manipulate System
Information

Frame Removal Mechanism Using Frame Count for Token
Ring Networks

Congestion Avoidance Scheme for Computer Networks

Method and System for Sorting and Prioritizing Electronic
Mail Messages

Voltage Level Converting Buffer Circuit

Methods and Apparatus for Accessing Non-relational Data
Files Using Relational Queries

Peak Detector Circuit and Application in a Fiber Optic
Receiver

Voltage-tracking Circuit and Application in a Track-and­
hold Amplifier

5,382,831

5,383,096

5,384,779

5,385,289

5,385,630

5,386,514

5,386,523

5,386,524

5,387,495

5,387,530

5,388,099

5,388,222

5,388,224

5,388,247

5,388,263

5,389,757

5,390,173

5,390,286

5,390,299

5,390,302

5,390,318

5,390,327

5,392,219

5,394,143

5,394,347

5,394,401

5,394,529

B. Lee, E. Atakov, and J. Clement

M. C. Benson and L. M. Mazzone

M. Patrick and J. A. Daly

C. Bloch, P. McKinley, and R. Ranganathan

A. Philipossian, H. Soleimani, and B. Doyle

V. Boaen, R. Lary, B. Rubinson, D. Thiel,
C. Van Ingen, W. Watson, R. Willard, and
E. A. Gardner

N. A. Crook, M. J. Seaman, and
D. L. A. Brash

V. Boaen, R. Lary, B. Rubinson, D. Thiel,
C. Van Ingen, W. Watson, and R. Willard

J.C. K. Lee, M. Castro, F. Tung, C. Lee,
and A.Ahmad

A. Philipossian and B. Doyle

N. Poole

L.A. P. Chisvin, J. F. Rantala, J. K. Grooms,
and D. W. Hartwell

B. Maskas

P. Goodwin, K. Thaller, and B. Maskas

R. K. Peterson, J. R . Ellis, and C. G. Nylander

E. Souliere

B. Spinney, R. Simcoe, G. Varchese, and
R. Thomas

K. K. Rarnakrishnan

S. L. Rege, K. K. Ramakrishnan, and
D. A. Gagne

J. Johnson, M. Howell, and C. Whitaker

K. K. Rarnakrishnan and P. Biswas

C. Lubbers and D. Thiel

S. Birch, G. Gavrel, and Z. Memon

J. Murray and G. Antoshenkov

R. Kita, S. Tremblay, and T. Lynch

M. Patrick and J. A. Daly

J. Brown, J. Meyer, and S. Perscls

Integrated Circuit Metal Film Interconnect Having
Enhanced Resistance to Electromigration

I/0 Expansion Box

State Machines for Configuration of a Communications
Network

Embedded Features for Registration Measurement in
Electronics Manufacturing

Process for Increasing Sacrificial Oxide Etch Rate to

Reduce Field Oxide Loss

Queue Apparatus and Mechanics for a Communications
Interface Architecture

Addressing Scheme for Accessing a Portion of a
Large Memory Space

System for Accessing Information in a Data Processing
System

Sequential Multilayer Process for Using Fluorinated
Hydrocarbons as a Dielectric

Threshold Optimization for SOI Transistors through Use
of Negative Charge in the Gate Oxide

Backplane Wiring for Hub in Packet Data
Communications System

Memory Subsystem Input Queue

Processor Identification Mechanism for a Multiprocessor
System

History Buffer Control to Reduce Unnecessary Allocations
in a Memory Stream Buffer

Procedure State Descriptor System for Digital Data
Processors

Elastomeric Key Switch Actuator

Packet Format in Hub for Packet Data Communications
System

Reticular Discrimination Network for Specifying Real-time
Conditions

System for Using Three Different Methods to Report
Buffer Memory Occupancy Information Regarding
Fullness-related and/or Packet Discard-related
Information

Transaction Control

Cache Arrangement for File System in Digital Data
Processing System

Method for On-line Reorganization of the Data on a
RAID-4 or RAID-5 Array in the Absence of One Disk
and the On-line Restoration of a Replacement Disk

Determination oflnterconnect Stress Test Current

Run-length Compression oflndex Keys

Method and Apparatus for Generating Tests for Structures
Expressed as Extended Finite State Machines

Arrangement for a Token Ring Communications Network

Branch Prediction Unit for High-performance Processor

Digital Technical Journal Vol. 8 No. 3 1996 79

Call for Papers
Networl(Products
and Technologies

The Digital Techuicctl .fou rnal seeks technical papers i n a l l areas of networki ng
tec hnology tor an issue to be published in the fal l of 1 997. Digita l 's engineers and
industry p:trtners interested in participating in the special issue shou ld send topics
and brief abstracts (1 0 0 words) by February 10, 1 997, to

Jane B l ake , Managing Editor
Dil; itctl Tech nical]ou rna!

Digital Equipment Corporation
5 0 Nagog Park, AK0 2 - 3/B3
Acton, MA 0 1 72 0-9843
Email : jane .blake@ljo.dec .com
508-486-2544

Notice of the topics accepted wi l l be sent to all authors by February 2 8 , 1 997.

The man uscri pt-submission d ate t(x accepted topics is M:ty 30, 1 997.

for i nti:mnati on on topics publ ished in the Journal. the audience, writ ing guide­
l ines, and the peer-review process, see Imp :/ jwww.d igital .com/i ntC"J/dtj/
dtj -guide . htm or contact the Managing Ed itor at the address above .

ISSN 0898 -901X

Printed in U .S.A. EC-N72 8 5 - 1 8j96 12 1 4 2 l .S Copyright © Digital Equipment Corporation

	Front cover
	Contents
	Editor's Introduction
	Foreword
	lnternet Protocol Version 6 and the Digital UNIX Implementation Experience
	Preserving Computing's Past: Restoration and Simulation
	Modern Fortran Revived as the Language of Scientific Parallel Computing
	Performance Measurement of TruCluster Systems under the TPC-C Benchmark
	Performance Analysis Using Very Large Memory on the 64-bit AlphaServer System
	Building Collaboration Software for the Internet
	Further Readings
	Recent Digital U.S. Patents
	Call for Papers Network Products and Technologies
	Back cover

