
Digital
Technical
Journal

I
SPIKE OPTIMIZE R FOR ALPHA EXECUTAB LES

ANALYSIS O F MEMORY ACCESS PATIERNS

OPENVM S ALPHA VLM

POWERSTORM 4 DT G RAPHICS ADAPTE R

FAST APPLI CATION-LEVEL NETWORKING

Volume 9 Number 4

1997

Editorial
Jane C. Bbkc, Managing Editor
Helen L. Panerson, Editor
Kathleen M. Srer�on, Editor

Circulation
Catherine M. Phillips, Manager
Kristine JVI. Lowe, Administrator

Production
Christa W. Jcssico, Production Editor
Elizabeth iv!cGrail, Typographer
Peter R. Woodburv, Illustrator

Advisory Board
Thomas F. Gannon, Cbair01<1l1 (Acting)
Scott E Cu tier
Donald z. Harbert
William A. Laing
Richard F. Lary
Alan G. Ncmah
Robert M. Supnik

Cover Design
The power of graphics workstations is mca­
smed by the speed at which the machine
can cre;ue ;md manipulate 3-D objects .
The l'owerStorrn 4D60T graphics adapter
design, a topic featured in this issue, com­
b.incs Alpha 64-bit microprocessor technol­
ogy and modi tied rendering technology to
attain high levels ofpcrtormance both on
leading real-world CAD/CAM applicatjons
such as Pro/ENGINEER, and on widely
accepted industry benchmarks such as
OpenG L Viewperf. Om cover design is
made up ofrepr·esentativc images fi·orn the
Viewperfbenchrnark program and standard
vicwscts.

The cover was designed by Lucinda O'Neill
of the DIGITAL Industrial and Graphic
Design Group. The editors thank author
Benjamin Lipchak tor supplying rhc images
used on the cover.

The nigital Technicaljourrwlis a refereed
journal published quarterly by D igit3l
Equipment Corporation, 50 Nagog l'uk,
AK02-3/B3, Acton, MA 01720-9843.

H<1rd-copv subscriptions can be ordered bv
send ing a check in U.S. funds (made payable
to Digital Equipment Corporation) ro the
publishcd-bv address. Gcocral subscription
rates arc 540.00 (non-U.S. S60) for four issues
and $75.00 (non-U.S. $115) tor eight issues.
University and college professors :1od Ph.D.
students in the electrical engineering a11d com­
puter science fields receive compliment:�ry sub­
scriptions upon request. DIGITAL customers
rnav qualli)' tor gilt subscriptions and are encour­
�lged ro contact their sales reprcscnratin.:s.

Electronic subscriptions are available at
no charge by accessing URL
http://www.d.igital.com/subscription.
This service will send an clecrronic mail
notification when a new issue is available
on rhe Internet.

Single copies and back issues can be ordered
by sending rhe requested issue's volume and
number and a check for $16.00 (non-U.S.
$18) each ro the published-by address. Recent
issues are also available on rhe J nrerncr at
http://www.digital.com/drj.

DIGITAL employees may order subsc rip­
rjons rhrough Readers Choice at U Rl.
http://web•·c.das.dec.com.

Inquiries, address changes, and compli­
mentary subscription o rders can be sent.
to rhe Di.�ilal Tecbnica!Journa/ H rhe
published- by address or rbc electronic
maiJ address, dtj@digital.com. Inquiries
can also be made by calling rhcJournal
oFtice at 978-264-7556.

Comments on rhe conrcnr of an)' paprr and
requests to conracr aurhors are welcomed
and may be scm to rhc managing ectiwr at
tbc published -by or electronic mail address.

Copvright© 1998 Digital Equipment
Corporation . Copying wirhour kc is per­
mitted provided that such copies arc made
for use in educ.ational institutions bv laculrv
members and arc nor distributed fo;· com-.
mcrci.li c1dvanrc1ge. Abstracting with credit
of D igital Equipment Corpor<�tion's author­
ship is permitted.

The information in rllcJournal is subjccr
to change without notice and should not
be construed as a commitment by D igital
Equipment Corporation or by the compan­
ies herein represented. Digital Equipment
Corpora tion assumes no responsibility tor
any errors rhar mav appear in tbeJuurna/.

ISSN 0898-90 I X
Docurnemat.ion Number EC-P9257-18

Book production was done by Quanric
Communications, Inc.

The tollowing are trademarks of Digital
F.quipmenr Corporation : AlphaServcr,
DEC, DECner, DEC,rarion, DIGITAL,
rhc DIGITAL logo, DIGITAL UNIX,
Open VMS, PowcrStorm, and VA)(.

ARC/INFO is a registered tradermrk
of Environmental Systems Research
lnstirurc, Jnc.

AuroCf\D and t\urodesk are registered
trademarks of Autodcsk, Inc.

DirecL\, !v!inosoh, Visual C++, and
Windows NT arc reg istered trademarks
of Microsoft Corporation .

EDS cHJd Unigraphics arc registered
trademarks of Electronic Dara Systems
Corporation.

Hewlcrr-Packard is a registered trademark
ofl-lewlctt-Packard Companv.

IBM is a registered trademark of· I nrernational
Business Nhchines Corporation.

Intel is a registered trademark of inrel
Corporation.

,'v!icroSration is a registered rradernark
of Bcnrlcv Svstc:ms, lnco rpor,1ted.

MIPS, R4400, and RIOOOO arc trademarks
of MIPS Technologies, Inc., a wholly owned
subsidiary of Silicon Graphics, Inc.

OpenGL and Silicon Graphics Me registered
trademarks and lndigo2 and IMPACT are
trademarks of Si licon Graphics Inc.

Oracle7 is a trademark of Oracle Corporarjon.

OrCAD is a registered rrc1demark ofOrCAD,
Incorporated.

Pro/ENGINEER is a re gistered trademark
of Parametric Technology Corporation.

SolidWorks is a registered rrademe1rk of
SolidWorks Corporation .

SPEC is ,1 registered rradernark ofSrandard
Pcrtonnance Evaluat ion Co •poration .

Sun is a registered trademark of Sun
J\t!icrosystcms, Inc.

Svbasc is a registered trademark and SQ L
Server is a trademark ofSvbase, Incorporated.

UNIX is a registered trademark in rhc United
Srares and orhcr countries, licensed exclusively
through X/Open Companv Lrd.

X Window Svstern is a trademark ofrhe
Mass<Khusctts Insriturc ofTcchnology.

Contents

Optimizing Alpha Executables on Windows NT
with Spike

Analyzing Memory Access Patterns of Programs
on Alpha-based Architectures

OpenVMS Alpha 64-bit Very Large Memory Design

PowerStorm 4DT: A High-performance Graphics
Software Architecture

DART: Fast Application-level Networking via
Data-copy Avoidance

Patents

Robert S. Cohn, David W. Goodwin,
and P. Geoffrey Lowney

Susanne M. Balle and Simon C. Steely, Jr.

Karen L. Noel and Nitin Y. Karkhanis

Benjamin N. Lipchak, Thomas Frisinger,
Karen L. Bircsak, Keith L. Comeford,
and Michael I. Rosenblum

Robert J. Walsh

3

21

33

49

61

76

Digital Technical Journal Vol. 9 No. 4 1997

2

Editor's
Introduction

In 1992, DIGITAL announced the
fastest 64-bit RISC microprocessor, the
Alpha, with a clock rate of200 MHz.
Today's Alpha processor remains the
leader in performance; the newest gen­
eration operates at 600 MHz, and the
next generation will operate at greater
than 1,000 MHz - gigahertz speed.
With the industry's most powerful
processor in hand, DIGITAL's engi­
neers are working to apply Alpha in
different areas of computing and effect
optimal solutions to computing prob­
lems. Samples of that work are pre­
sented in this issue and include
programming performance tools, the
Open VMS operating system for very
large memory (VLM) applications,
graphics adapters for workstations,
and the DART network adapter for
high-end systems.

Spike is a profile-directed perfor­
mance tool for optimizing Alpha exe­
cutables running on the Windows NT
operating system. Designed specifi­
cally to improve the performance of
large, call-intensive programs, such
as commercial databases, CAD pro­
grams, compilers, and productivity
tools, Spike has been shown to speed
program execution by as much as 33
percent. Robert Cohn, Dave Goodwin,
and GeoffLowney describe Spike's
two components. The Optimizer
modifies code layout to improve
instruction cache behavior and per­
forms hot-cold optimization to
reduce the number of instructions
executed on frequent paths through
the program. The Optimization
Environment collects, manages,
and applies profile information
transparently for the programmer.

Digital Technical Journal

An experimental Atom-based per­
formance tool presented by Susanne
Balle and Simon Steely provides pro­
grammers with an understanding of
the access pattern behavior of their
technical applications. The tool gen­
erates histograms for each memory
reference in a program, thus allowing
the programmer to spot bottlenecks.
The authors step through an instruc­
tive case study in the use of the tool
with Fortran programs, showing how
different compiler switches affect the
execution of a program algorithm.

The Open VMS Alpha operating
system version 7.1 extends its support
for VLM applications. The design
work discussed by Karen Noel and
Nitin Karkhanis focused on increasing
flexibility for VLM applications and
on adding system management capa­
bilities. Areas reviewed are the shared
memory objects designed to improve
application scaling on the system,
shared page tables to reduce applica­
tion start-up/shut-down times, and
the physical memory reservation sys­
tem to allow efficient application use
of system components, namely the
translation buffer.

DIGITAL's PowerStorm series
of graphics adapters for mid-range
workstations provides exceptional
performance on the DIGITAL UNIX
and the Windows NT operating sys­
tems. Benj Lipchak, Tom Frisinger,
Karen Bircsak, Keith Comeford,
and Mike Rosenblum have written
an informative tutorial about the
PowerStorm adapter design that was
shaped in large part by the existing
competitive environment. Their dis­
cussion covers selected benchmarks

Vol. 9 No. 4 1997

and real-world performance experi­
ences, the advantages and disadvan­
tages in choosing a direct-rendering
or an indirect-rendering scheme, and
the ways in which the engineering
team exploited the Alpha micro­
processor's exceptional floating­
point speed.

DART is a 622-megabit-per-second
network adapter that connects gigabit­
class networks to gigabit-class 1/0
buses. It is designed to increase net­
work throughput and decrease system
overhead. Bob Walsh explains that
the DART project, started in the
late 1980s, anticipated the need to
address fundamental memory band­
width bottleneck issues from a system­
level perspective. The main approach
taken in the DART adapter is data
copy avoidance, without requiring
changes to system call semantics.

The upcoming]ournalwill be a
special issue that features papers on
programming languages and tools.
Topics include C and Fortran paral­
lelizing compilers, the C++ template
facility, alias analysis algorithms,
debuggers, and performance tools
for software running on the Windows
NT, UNIX, and Open VMS operating
systems.

Jane C. Blake
Managing Editor

Optimizing Alpha
Executables on
Windows NT with Spike

Many Windows NT-based applications are

large, call-intensive programs, with loops that

span multiple procedures and procedures that

have complex control flow and contain numer­

ous basic blocks. Spike is a profile-directed opti­

mization system for Alpha executables that is

designed to improve the performance of these

applications. The Spike Optimizer performs code

layout to improve instruction cache behavior

and hot-cold optimization to reduce the number

of instructions executed on the frequent paths

through the program. The Spike Optimization

Environment provides a complete system for

performing profile feedback by handling the

tasks of collecting, managing, and applying

profile information. Spike speeds up program

execution by as much as 33 percent and is being

used to optimize applications developed by

DIGITAL and other software vendors.

I
Robert S. Cohn
David W. Goodwin
P. Geoffrey Lowney

Spike is a performance tool developed by DIGITAL to
optimize Alpha executables on the Windows NT oper­
ating system. This optimization system has two main
components: the Spike Optimizer and the Spike
Optimization Environment. The Spike Optimizer1

-
3

reads in an executable, optimizes the code, and writes
out the optimized version. The Optimizer uses profile
feedback from previous runs of an application to guide
its optimizations. Profile feedback is not commonly
used in practice because it is difficult to collect, manage,
and apply profile information. The Spike Optimization
Environment1 provides a user-transparent profile feed­
back system that solves most of these problems,
allowing a user to easily optimize large applications
composed of many executables and dynamic link
libraries (DLLs).

Optimizing an executable image after it has been
compiled and linked has several advantages. The Spike
Optimizer can see the entire image and perform inter­
procedural optimizations, particularly with regard to
code layout. The Optimizer can use profile feedback
easily, because the executable that is profiled is the
same executable that is optimized; no awkward map­
ping of profile data back to the source language takes
place. Also, Spike can be used when the sources to an
application are not available, which is beneficial when
DIGITAL is working with independent software ven­
dors (ISVs) to tune applications.

Applications can be loosely classified into two cate­
gories: loop-intensive programs and call-intensive
programs. Conventional compiler technology is well
suited to loop-intensive programs. The important
loops in a program in this category are within a single
procedure, which is typically the unit of compilation.
The control flow is predictable, and the compiler can
use simple heuristics to determine the frequently exe­
cuted parts of the procedure.

Spike is designed for large, call-intensive programs;
it uses interprocedural optimization and profile feed­
back. In call-intensive programs, the important loops
span multiple procedures, and the loop bodies contain
procedure calls. Consequently, optimizations on the
loops must be interprocedural. The control flow is

Digital Technical Journal Vol. 9 No. 4 1997 3

4

complex, and profile feedback is required to accurately
predict the frequently executed parts of a program.
Call overhead is large for these programs. Optimiza­
tions to reduce call overhead are most effective with
interprocedural information or profile feedback.

The Spike Optimizer implements two major optimiza­
tions to improve the performance of the call-intensive
programs just described. The first is code layout:+-<>
Spike rearranges the code to improve locality and
reduce the number of instruction cache misses. The sec­
ond is hot-cold optimization (HC0):7 Spike optimizes
the frequent paths through a procedure at the expense
of the infrequently executed paths. HCO is particularly
effective in optimizing procedures with complex con­
trol flow and high procedure call overhead.

The Spike Optimization Environment provides a
system for managing profile feedback optimization.1

The user interface is simple-it requires only two user
interactions: (1) the request to start feedback collec­
tion on an application and (2) the request to end col­
lection and to use the feedback data to optimize the
application. Spike maintains a database of profile infor­
mation. When a user selects an application, Spike
makes an entry in its database for the application and
for each of its component images. For each image,
Spike keeps an instrumented version, an optimized
version, and profile information. When the original
application is run, a transparency agent substitutes the
instrumented or optimized version of the application,
as appropriate.

This paper discusses the Spike performance tool and
its use in optimizing Windows NT-based applications
running on Alpha processors. In the following section,
we describe the characteristics ofWindows NT-based
applications. Next, we discuss the optimizations used
in the Spike Optimizer and evaluate their effectiveness.
We then present the Spike Optimization Environment
for managing profile feedback optimization. A sum­
mary of our results concludes the paper.

Characteristics of Windows NT-based
Applications

To evaluate Spike, we selected applications that are
typically used on Alpha computers running the
Windows NT operating system. These applications
include commercial databases, computer-aided design
(CAD) programs, compilers, and personal productiv­
ity tools. For comparison, we also included the bench­
mark programs from the SPECint95 suite.8 Table 1
identifies the applications and benchmarks, and the
workloads used to exercise them. All programs are
optimized versions of DIGITAL Alpha binaries and are
compiled with the same highly optimizing back end
that is used on the UNIX and Open VMS systems.9 The
charts and graphs in this paper contain data from a

Digital Technical Journal Vol. 9 No. 4 1997

core set of applications. Note that we do not have a full
set of measurements for some applications.

In obtaining most of the profile-directed optimiza­
tion results presented in this paper, we used the same
input for both training and timing so that we could
know the limits of our approach. Others in the field
have shown that a reasonably chosen training input
will yield reliable speedups for other input sets. 10 Our
experience confirms this result. For the code layout
results presented in Figure 11, we used the official
SPEC timing harness to measure the SPECint bench­
marks. This harness uses a SPEC training input for
profile collection and a different reference input for
timing runs.8

Figure 1 is a graph that shows, for each application
and benchmark, the size of the single executable or
DLL responsible for the majority of the execution
time. The figure contains data for most of the applica­
tions and all the benchmarks listed in Table 1. Some
Windows NT-based applications are very large. For
example, PTC has 30 times more instructions than
GCC, the largest SPECint95 benchmark. Large
Windows NT-based applications have thousands of
procedures and millions of basic blocks. With such
programs, Spike achieves significant speedups by rear­
ranging the code to reduce instruction cache misses.
Code rearrangement should also reduce the working
set of the program and the number of virtual memory
page faults, although we have not measured this
reduction.

To characterize a call-intensive application, we
looked at SQLSERVR. We estimated the loop behav­
ior ofSQLSERVR by classifying each of its procedures
by the average trip count of its most frequently exe­
cuted loop, assigning a weight to each procedure
based on the number of instructions executed in the
procedure, and graphing the cumulative distribution
of instructions executed. The graph is presented in
Figure 2. Note that 69 percent of the execution time
in SQLSERVR is spent in procedures that have loops
with an average trip count less than 2. Nearly all the
run time is spent in procedures with loops with an
average trip count less than 16. An insignificant
amount of time is spent in procedures containing
loops with high trip counts. Of course, SQLSERVR
executes many loops, but the loop bodies cross multi­
ple procedures. To improve SQLSERVR performance,
Spike uses code layout techniques to optimize code
paths that cross multiple procedures. Also note that 69
percent of the execution time is spent in procedures
where the entry basic block is the most frequently exe­
cuted basic block. The entry basic block dominates the
other blocks in the procedure, and compilers often
find it a convenient location for placing instructions,
such as register saves. In SQLSERVR, this placement is
a poor decision. Our HCO targets this opportunity to

Table 1
Windows NT-based Applications for Alpha Processors and SPECint95 Benchmarks

Program Full Name

SQLSERVR Microsoft SQL Server 6.5

SYBASE Sybase SQL Server 11.5.1

EXCHANGE Microsoft Exchange 4.0

EXCEL Microsoft Excel 5.0

WINWORD Microsoft Word 6.0

TEXIM Welcom Software Technology
Texim Project 2.0e

MAXED A Orcad MaxEDA 6.0

ACAD Autodesk AutoCAD Release 13

CV Computervision Pmodeler v6

PTC Parametric Technology
Corporation Pro/ENGINEER
Release 18.0

SOLIDWORKS SolidWorks Corporation
SolidWorks 97

USTATION Bentley Systems MicroStation 95

EDS Electronic Data Systems
Unigraphics 11.1

MPEG DIGITAL Light & Sound Pack

(1, (2 Microsoft Visual C++ 5.0

OPT, EM486 DIGITAL FX!32 Version 1.2

ESRI Environmental Systems
Research Institute
ARC/INFO 7.1.1

VORTEX SPECint95

GO SPECint95

M88KSIM SPECint95

LI SPECint95

COMPRESS SPECint95

!JPEG SPECint95

GCC SPECint95

PERL SPECint 95

move instructions from the entry basic block to less
frequently executed blocks.

Figure 3 presents the loop behavior data for many of
the Windows NT- based applications listed in Table 1.
Note that the applications fall into three groups. The
most call-intensive applications are SQLSERVR,
ACAD, and EXCEL, which spend approximately 70
percent of their run time in procedures with an aver­
age trip count less than 2. C2, WINWORD, and
USTATION are moderately call intensive; they spend

Type Workload

Database Transaction processing

Database Transaction processing

Mail system Mail processing

Spreadsheet BAPCo SYSmark for
Windows NT Version 1.0

Word processing BAPCo SYSmark for
Windows NT Version 1.0

Project management BAPCo SYSmark for
Windows NT Version 1.0

Electronic CAD BAPCo SYSmark for
Windows NT Version 1.0

Mechanical CAD San Diego Users Group
benchmark

Mechanical CAD Mechanical model

Mechanical CAD Bench97

Mechanical CAD Intake runner model

Mechanical CAD Rendering

Mechanical CAD Brake shoe model

MPEG viewer MPEG playback

Compiler 5,000 lines of C code
C1: front end
C2: back end

Emulation software BYTEmark benchmark
OPT: x86-to-Alpha
translator
EM486: x86 emulator

Geographical Reg ional model
Information Systems

Database SPEC ref erence

Game SPEC reference

Simulator SPEC reference

LISP interpreter SPEC reference

Compression SPEC reference

JPEG compression/ SPEC reference
decompression

(compiler SPEC reference

Interpreter SPEC reference

approximately 40 percent of their run time in loops
with an average trip count less than 2. MAXEDA and
TEXIM are loop intensive; they spend approximately
10 percent of their run time in loops with an average
trip count less than 2 . TEXIM is dominated by a single
loop with an average trip count of 465.

We further characterized the nonlooping proce­
dures by control flow. If a pro_cedure consists of only a
few basic blocks, techniques such as inlining are effec­
tive. To estimate the control flow complexity of

Digital Technical Journal Vol. 9 No. 4 1997 5

6

10,000

en
f- o 1,000
zz
::::, <(
QCIJ
CJ::::, 100 o
~~
::?~ 10

_____

(/) ::::; :::;; (!) 0 ...I x (.) :::;;
(/) cii w (!) a: w (.) x w a.. w f- (!) a: ~ :2 a.. a: w
a.. co 0 f-co :::;; :::;; >
0
(.)

__ ,

<("' a: a: z
0 (.)

(/) > 0 w a:
~ ~

w w
(/) f-:::;; ...I (/) a ::::,
(/)

__ ,
,-----

...I 0 0 > w a: <((.)
(.) 0 (.) x <(w :l!: z

~

(/) (.)
0 f-
w a..

APPLICATION OR BENCHMARK

KEY:

INSTRUCTIONS
BASIC BLOCKS

Figure 1
Size ofWindows NT-based Applications and Benchmarks

4 8 16 32
AVERAGE TRIP COUNT

Figure 2
Loop Behavior ofSQLSERVR

100

SQLSERVR, we classified each ofits procedures by the
number of basic blocks, assigned a weight to each pro­
cedure based on the number of instructions executed
in the procedure, and graphed a cumulative distribu­
tion of the instructions executed. We restricted this
analysis to procedures that have loops with an average
trip count less than 4. (These procedures account
for 69 percent of the execution time of SQLSERVR.)
The line labeled ALL in Figure 4 represents the results
of our analysis. Note that 90 percent of the run time
of the nonlooping procedures is spent in procedures
with more than 16 basic blocks. The line labeled
FILTERED in Figure 4 represents the results when we
ignored basic blocks that are rarely executed. Note
that 65 percent of the run time of the nonJooping pro-

2 4 8 16 32 64 128 256 512 1K 2K 4K BK 16K 32K 64K128K256K512K

KEY:

-+- SQLSERVR

--- ACAD
,.. EXCEL

--- C2

Figure3

~ WINWORD

-o- USTATION

.....c.- MAXEDA

-o- TEXIM

AVERAGE TRIP COUNT

Loop Behavior of Windows NT-based Applications

Digital Technical Journal Vol. 9 No. 4 1997

I

_,
-­, -

, --

0 16 32 48 64 80 96 112 128

SIZE IN BASIC BLOCKS

KEY:

-- ALL
- - - FILTERED

Figure4
Complexity of Procedures in SQLSERVRfor Procedures
with an Average Trip Count Less Than 4, Which Account
for 69 Percent of the Execution Time

cedures is spent in procedures with more than 16 basic
blocks. In SQLSERVR, procedures are large; many
basic blocks are executed, and many are not. Spike
uses code layout and HCO to optimize the frequently
executed paths through large procedures.

Figure 5 presents the control flow data for many of
the Windows NT-based applications listed in Table l.
Again we measured only nonlooping procedures and
ignored basic blocks that are rarely executed. Note that
all the applications have large procedures. More than
half the run time of the nonlooping procedures is spent
in procedures that execute at least 16 basic blocks.

100

To estimate procedure call overhead, we counted
the number of instructions executed in the prolog and
epilog of each procedure. This estimate is conserva­
tive; it ignores the cost of the procedure linkage and
argument setup and measures only the number of
instructions used to create or remove a frame from the
stack and to save or restore preserved registers. In
SQLSERVR, 15 percent of all instructions are in pro­
logs and epilogs. HCO removes approximately one
half of this overhead.

The chart in Figure 6 shows the procedure call over­
head for most of the Windows NT-based applications
listed in Table l. The overhead ranges from 23 percent
to 2 percent. The applications are ordered according to
the amount of run time in procedures with an average
trip count less than 8 in Figure 3. The call overhead is
roughly correlated with the amount of run time in low
trip count procedures. Figure 6 includes data for some
of the SPECint95 benchmarks, which are ordered by
the amount of run time in procedures with an average
trip count less than 2. The amount of call overhead for
these benchmarks ranges from 24 percent to O percent
and is more strongly correlated with the amount of run
time in low trip count procedures.

Optimizations

The Spike Optimizer is organized like a compiler. It
parses an executable into an intermediate representa­
tion, optimizes the representation, and writes out an
optimized executable. The intermediate representa­
tion is a list of Alpha machine instructions, annotated

0 16 32 48 64 80 96 112 128

Figure 5

KEY:

-- SQLSERVR (69%)

--- ACAD (82%)

__.._ EXCEL (71%)

-- C2 (44%)

SIZE IN BASIC BLOCKS (FILTERED)

~ WINWORD (49%)

-a- USTATION (44%)

--6- MAXEDA (13%)

Note that the number that appears after the application name indicates the percentage of the total
execution time spent in procedures with an average trip count less than 4.

Complexity of Procedures in Windows NT-based Applications for Procedures with an Average Trip Count Less Than 4

Digital Technical Journal Vol. 9 No. 4 1997 7

8

a: Cl ..J N Cl z <(::E :::; x ::E 0 CJ en
> <(w (.) a: 0 Cl x w iii CJ w en
a: (.) (.) 0 ~

w I- a. w
w <(x ~ ~

w a: :.: :2 a:
en w I- 0 co a. z I- co
..J en ::E > ::E ::E 0 ~ :) 0 en (.)

APPLICATION OR BENCHMARK

Figure 6
Procedure Call Overhead (Time Spent in Prolog and Epilog)

with a small amount of additional information. On top
of the intermediate representation, the optimizer
builds compiler-like structures, including basic blocks,
procedures, a flow graph, a loop graph, and a call
graph. 11 Images are large, and the algorithms and rep­
resentations used in the optimizer must be time and
space efficient.

The Spike Optimizer performs an interprocedural
dataflow analysis to summarize register usage within
the image.12 This enables optimizations to use and
reallocate registers. The interprocedural dataflow is
fast, requiring less than 20 seconds on the largest
applications we tested. Memory dataflow is much
more difficult to analyze because of the limited infor­
mation available in an executable, so the optimizer
analyzes only references to the stack.

Optimizations rewrite the intermediate representa­
tion. The important optimizations are code layout and
HCO. The Spike Optimizer also performs additional
optimizations to reduce the overhead of shared
libraries.

Code Layout
We derived our code layout algorithm from prior work
on profile-guided code positioning by Pettis and
Hansen. 6 The goal of the algorithm is to reduce
instruction cache miss. Our algorithm consists of three
steps. The first step reorganizes basic blocks so that the
most frequent paths in a procedure are sequential,
which permits more efficient use of cache lines and the
exploitation of instruction prefetch. The second step
places procedures in memory to avoid instruction
cache conflicts. The third step splits procedures into
hot and cold sections to improve the performance of
procedure placement.

The following example illustrates basic block reor­
ganization. Consider the flow graph in Figure 7, where
each node is a basic block that contains four instruc­
tions. The arms of the conditional branches are labeled

Digital Technical Journal Vol. 9 No. 4 1997

with their relative probabilities. Assume that the target
is an Alpha 21164 processor. 13 Each instruction is
4 bytes, and the instruction cache is organized into
32-byte lines; each cache line holds two of the four­
instruction basic blocks. A simple breadth-first code
layout orders the code AB CD EF GH, and the com­
mon path ABDFGH requires four cache lines. Two
cache lines (CD and EF) each contain a basic block
that is infrequently used but which must be resident in
the cache for the frequently used block to be executed.
If we order the code so that the common path is adja­
cent (AB DF GH CE), the infrequently used blocks are
in the same line (CE), and they do not need to be in
the cache to execute the frequently used blocks.

Straight-line code is also better able to exploit
instruction prefetch. On an instruction cache miss, the
Alpha 21164 processor prefetches the next four cache
lines into a refill buffer. After an instruction cache miss,
the processor frequently is able to execute a straight­
line code path without stalling if the code is in the
second-level cache. A branch that is taken typically
requires an additional cache miss if the target of the
branch is not already in the instruction cache.

We reorganize the basic blocks using a simple,
greedy algorithm, similar to the trace-picking alga-

Figure 7
Basic Block Reorganization

18
DF

GH
CE

rithm used in trace scheduling. 14 Our goal is to find a
new ordering of the basic blocks so that the fall­
through path is usually taken. We sort the list of flow
graph edges by execution count and process them in
order, beginning with the highest values. For each
edge we make the destination basic block immediately
follow the source block, unless the source has already
been assigned a successor or the destination has
already been assigned a predecessor.

We place procedures to avoid conflicts in the
instruction cache. An Alpha 21164 has a primary
instruction cache of 8 kilobytes (KB) that holds 256
lines of 32 bytes each. Two instructions conflict in the
cache if they are more than 32 bytes apart and map to
the same cache line, specifically, if address0/32 mod
256 = addressl/32 mod 256. Our strategy is to place
procedures so that frequently called procedures are
near the caller. Consider the simple example in Figure
8. Assume procedure A calls procedure Cina loop. A
and C map to the same cache lines, so on each call to
C, C replaces A in the cache, and on each return from
C, A replaces C. If we reorganize the code such that C
follows A, both A and C can fit in the cache at once,
and there are no conflict misses when A calls C.

We use another greedy algorithm to place proce­
dures. The example presented in Figure 9 illustrates
the steps. We build a call graph and assign a weight to

T

each edge based on the number of calls. If there is
more than one edge with the same source and destina­
tion, we compute the sum of the execution counts and
delete all but one edge. Figure 9a shows the call graph.
To place the procedures in the graph, we select the
most heavily weighted edge (B to C), record that the
two nodes should be placed adjacently, collapse the
two nodes into one (B.C), and merge their edges (as
shown in Figure 9b). We again select the most heavily
weighted edge and continue (Figure 9c) until the
graph is reduced to a single node A.D.B.C (Figure
9d) . The final node contains an ordering of all the pro­
cedures. Special care is taken to ensure that we rarely
require a branch to span more than the maximum
branch displacement.

The effectiveness of procedure placement is limited
by large procedures. In the PERL benchmark from
SPEC, which is one of the smallest programs we stud­
ied, one frequently executed procedure is larger than
32 KB, four times the size of the instruction cache on
the Alpha 21164 processor. In SQLSERVR, more than
half the run time is spent in procedures with more
than 16 basic blocks. To address this problem, we split
procedures into hot and cold sections and treat each
section as an independent procedure when placing
procedures. To split a procedure, we examine each
basic block and use a threshold on the execution count

A 8-KB PRIMARY
INSTRUCTION
CACHE

A
O r:m~
,~~ B l

B

16KB 16KB

Figure 8
Procedure Placement

A A.D

/~
D- .- B.C

1

\:1 A.D.B.C

B.C

(a) (b) (c) (d)

Figure 9
Steps in the Procedure Placement Algorithm

Digital Technical Journal Vol. 9 No. 4 1997 9

to decide if a basic block is cold. We use a single
threshold for the entire program. The threshold is
chosen so that the total execution time for all the basic
blocks below the threshold constitutes no more than
1 percent of the execution time of the program.
Procedures with both hot and cold basic blocks are
split; otherwise, they are left intact.

Figure 10 illustrates the importance of procedure
splitting. The figure charts the speedup on SQlSERVR,
running on an Alpha 21064 workstation,15 for the
components of our code layout algorithm. The bar
graph indicates that chaining basic blocks or placing
procedures results in a speedup ofless than 4 percent,
but placing procedures after splitting yields a 15 per­
cent speedup. Using all our optimizations (chaining,
splitting, and placing) together produces a 16 percent
speedup.

Figure 11 presents the speedups from code layout for
the Windows NT-based applications and the SPECint
benchmarks running on an Alpha 21164 workstation.
Speedups range from 45 percent to O percent; most

CHAIN PLACE PLACEJSPLIT ALL

CODE LAYOUT ALGORITHM COMPONENT

Note that this data is for the SQLSERVR application running on an
Alpha 21064 microprocessor.

Figure 10
Speedup for Code Layout by Optimization

50

45

I=' 40

m 35
u
ffi 30
~ 25
a..
::::, 20
0
tfJ 15

fu 10

5

applications show a noticeable improvement. The
leftmost seven Windows NT-based applications
(SQlSERVR through TEXIM) are ordered by the
amount of time spent in procedures with an average
trip count less than 8 in Figure 3. Note that all but the
most loop-intensive application show a significant
speedup from code layout. Three programs show min­
imal speedup: TEXIM is dominated by a single loop
that fits in the instruction cache, and !JPEG and
COMPRESS are dominated by two or three small
loops. These programs do not have an appreciable
amount of instruction cache miss; changing the code
layout cannot improve their performance.

Hot-Cold Optimization
Hot-cold optimization is a generalization of the
procedure-splitting technique used in our code layout
algorithm.7 We optimize the hot part of the procedure
(ignoring the cold part) by eliminating all instructions
that are required only by the cold part. To implement
this optimization, we create a hot procedure by copy­
ing the frequently executed basic blocks of a proce­
dure. All calls to the original procedure are redirected
to the hot procedure. Flow paths in the hot procedure
that target basic blocks that were not copied are redi­
rected to the appropriate basic block in the original
(cold) procedure; that is, the flows jump into the mid­
dle of the original procedure. We then optimize the
hot procedure, possibly at the expense of the flows
that pass through the cold path.

HCO is best understood by working through an
extended example. Consider the procedure f o o
(shown in Figure 12), which is a simplified version of
a procedure from the Windows NT kernel.

o~~ ~~ ~~__.~~~~~ ~~~~~~ ~~~~~~
UJ UJ > u (/) (/) (!) l) f- CD
(!) (/) u f- ~ 0 UJ a.. co
z <(a.. a: UJ a.. 0 '"" <(ID 0 ::;; ::;;
I >- ~

UJ

u (/)
0 x :::; UJ 0

:::; x ::;; u ...J 0 (!) (/)
UJ iii u a: (!) UJ (/)
f- (!) UJ a.. UJ a: ~ a.. ::2 a:
0 co a.. co > ::;; ::;;

0
(.)

(/)

APPLICATION OR BENCHMARK

Figure 11
Speedup from Code Layout

10 Digital Technical Journal Vol. 9 No. 4 1997

1 foo: lda sp,16Csp) adjust stack
2 stq sO,OCsp) save sO
3 stq ra,8Csp) save ra
4 addl a0,1,sO sO = aO + 1
5 addl a0,a1,a0 ; aO = aO + a1
6 bne s0,L2 ; branch if sO !=
7 L 1: bsr f1 ; call f1
8 addl s0,a0,t1 t1 = aO + sO
9 stl t1,40Cgp) ; store t1

10 L2: ldq sO,OCsp) ; restore sO
11 ldq ra,8Csp) ; restore ra
12 lda sp,-16Csp) ; adjust stack
13 ret Cra) return

Figure 12
Simplified Version of a Procedure from the Windows NT
Kernel

0

Assume that the branch in line 6 of f o o is almost
always taken and that lines 7 through 9 are almost
never executed. When we copy the hot part of the pro­
cedure, we exclude lines 7 through 9 of foo. The
resulting procedure f o o 2 is shown in Figure 13.

1
2
3
4
5
6
7
8
9

10

foo2: lda sp,16Csp>
stq sO,OCsp)
stq ra,8(sp)
addl a0,1,sO
addl a0,a1 ,a0
beq sO,L 1
ldq sO,OCsp)
ldq ra,8Csp)
lda sp,-16Csp>
ret Cra)

Figure 13
Hot Procedure

Note the reversal of the sense of the branch from
b n e in f o o to be q in f o o 2 and the change of the
branch's target from L2 to L 1. All calls to foo are
redirected to the hot procedure f o o 2. If the branch in
line 6 of f o o 2 is taken, then control transfers to line
7 off o o, which is in the middle of the original proce­
dure. Once passed to the original procedure, control
never passes back to the hot procedure. This feature
of HCO enables optimization; when optimizing the
hot procedure, we can relax some of the constraints
imposed by the cold procedure.

So far, we have set up the hot procedure for opti­
mization, but we have not made the procedure any
faster. Now we show how to optimize the procedure.
The hot procedure no longer contains a call, so we can
delete the save and restore of the return address in
lines 3 and 8 of f o o 2 in Figure 13. If the branch trans­
fers control to L 1 in the cold procedure f o o, we must
arrange for r a to be saved on the stack. In general,
whenever we enter the original procedure from the
hot procedure, we must fix up the state to match the
expected state. We call the fix-up operations compen­
sation code. To insert compensation code, we create a
stub and redirect the branch in line 6 of f o o 2 to

branch to the stub. The stub saves r a on the stack and
branches to L 1 .

Next, note that the instruction in line 5 of f o o 2
writes a O, but the value of a O is never read in the hot
procedure. a O is not truly dead, however, because it is
still read if the branch in line 6 of foo2 is taken.
Therefore, we delete line 5 from the hot procedure
and place a copy of the instruction on the stub. HCO
tries to eliminate the uses of preserved registers in a
procedure. Preserved registers can be more expensive
than scratch registers because they must be saved and
restored if they are used. Preserved registers are typi­
cally used when the lifetime of a value crosses a call. In
the hot procedure, no lifetime crosses a call and the
use of a preserved register is unnecessary. We rename
all uses of s O in the hot procedure to use a free scratch
register t 2. We insert a copy on the stub from t 2 to
s O. We can now eliminate the save and restore instruc­
tions in lines 2 and 7 of Figure 13 and place the save
on the stub.

We have eliminated all references to the stack in
the hot procedure. The stack adjusts on lines 1 and 9
in Figure 13 can be deleted from the hot procedure,
and the initial stack adjust can be placed in the stub.
The final code, including the stub stub 1, is listed in
Figure 14. The number ofinstructions executed in the
frequent path has been reduced from 10 to 3. If the
stub is taken, then the full 10 instructions and an extra
copy and branch are executed.

1 foo2: addl a0,1,t2
2 beq t2,stub1
3 ret Cra)
4 stub1: lda sp,16Csp)
5 stq sO,OCsp)
6 stq ra,8Csp)
7 addl a0,a1,a0
8 mov t2,s0
9 br L1

Figure 14
Optimized Hot Procedure

Finally, we would like to inline the hot procedure.
Copies of instructions 1 and 2 can be placed inline.
For the inlined branch, we must create a new stub that
materializes the return address into r a before transfer­
ring control to s tub 1 .

Except for partial inlining, we have implemented all the
HCO optimizations in Spike. These optimizations are

• Partial dead code elimination 16- the removal of
dead code in the hot procedure

• Stack pointer adjust elimination-the removal of
the stack adjusts in the hot procedure

• Preserved register elimination-the removal of the
save and restore of preserved registers in the hot
procedure

Digital Technical Journal Vol. 9 No. 4 1997 11

12

• Peephole optimization-the removal in the hot
procedure of self-assignments and conditional
branches with an always-false condition

Figure 15 shows coverage statistics for the HCO
optimizations. Coverage represents the percentage of
execution time spent in each category. To compute
coverage, we assigned each procedure to a category
and then for each category calculated the total number
of instructions executed by its procedures. The cate­
gory OPTIMIZED indicates the set of proced~res
optimized by HCO. The portion of the execunon
time spent in these procedures is typically 60 percent
but often higher. The category INFREQUENT is the
set of procedures whose execution times are so small
(less than 0.1 percent of the total time) that we did not
think it was worthwhile to optimize the procedures.
Ignoring procedures with small executi~n times _allo~s
us to optimize less than 5 percent of the mstrucno?s m
a program, a significant reduction in optimizer nme .
The category NO SPLIT represents the procedures
that we could not split into hot and cold parts because
all basic blocks had similar execution counts. The cate­
gory SP MODIFIED contains procedures in which ~e
stack pointer is modified after the initial stack adjust m

100

90

80

~ z 70 w
()
0:
w 60 !!:.
w
:;

50 i=
z
0

40 i=
::>
()
w 30 x w

20

10

0:
>
0:
w
(/)
...J
0
(/)

...J
w
~
w

"' ()
Cl
0:

~ z
~

z
0 s
(/)

::>

the prolog. We decided not to optimize these proce­
dures, but it is possible to do so with extra analysis.
Note that the execution time spent in this category of
procedures is small except for in C2, where the c~te­
gory contains two procedures and the coverage 1s 7
percent. Finally, the category NO ADVANTAGE rep­
resents the procedures that were split but that the
optimizer was not able to improve.

Figure 16 shows the overall reduction i~ ~ath
length as a result ofHCO, broken down by opnrruza­
tion. Most of the reduction in path length comes
equally from the removal of unnecessary save a~d
restore instructions and from the removal of parnal
dead code. Stack pointer adjust elimination and peep­
hole optimization result in smaller additional gains. A
large peephole category is usually the result of a save
and restore of a preserved register that is made unnec­
essary by HCO; the restore is converted to a self­
assignment by copy propagation, which is then
removed by peephole optimization.

HCO is most effective on call-intensive programs
such as SQLSERVR, ACAD, and C2, where we
eliminate calls when creating the hot procedures. For
WINWORD, the speedup is small because coverage is
low; we could not find a way to split the procedures.

APPLICATION OR BENCHMARK
KEY:

CJ NOADVANTAGE
O SP MODIFIED
O NOSPLIT

- INFREQUENT
- OPTIMIZED

Figure 15
HCO Coverage by Execution Time

Digital Technical Journal Vol. 9 No. 4 1997

12

~10
z
UJ
(.)
a:
UJ
e:. 8
I
I-
(!)
z
~
I 6

~
z
0 4
i==
(.)
:::J
0
UJ
a: 2

0 a:
> a:
UJ
(J)
....J a
(J)

0J N 0
<(UJ (.) a:
(.) (.) 0
<(x :i:: UJ

z
~

z ::re ::J x ::re 0 (J) (!)
0 x UJ iii (!) UJ (J)

i== I- 0.. UJ UJ a: ~ :::2 a: <(I- 0 co 0.. I- co
(J) > ::re ::re
:::J 0

(.)

APPLICATION OR BENCHMARK

KEY:

O PEEPHOLE
O SPADJUST

DEAD CODE

- SAVE/RESTORE

Figure 16
Reduction in Path Length As a Result ofHCO

For EXCEL, HCO was able to split the procedures,
but there is often a call in the hot path. Inlining may
help in optimizing EXCEL, but frequently the call is
to a shared library.

HCO is less effective on loop-intensive programs
such as USTATION, MAXEDA, and TEXIM. HCO
provides a framework for optimizing loops, and
Chang, Mahlke, and Hwu have shown that eliminat­
ing the infrequent paths in loops enables additional
optimizations, such as loop invariant removal. 17

However, our current implementation of Spike
includes almost no information about the aliasing of
memory operations; it can only optimize operations to
local stack locations, such as spills of registers.

A leaf procedure is a procedure that does not
contain a procedure call. Figure 17 compares the
amount of time spent in leaf procedures before and
after HCO is applied. By eliminating infrequent
code, HCO is able to eliminate all calls in procedures
that represent 10 percent to 20 percent of the execu­
tion time in C2, ACAD, SQLSERVR, and MAXEDA.
For the other Windows NT-based applications, the
increase in time spent in leaf procedures is very small.
Most Windows NT-based applications spend much
less than half the time in leaf procedures. To improve

the performance of these applications, an optimizer
needs to improve the performance of code with calls
in the frequent path.

Code size and its effect on cache behavior is a major
concern for us. In large applications, locality for
instructions is present but not high. If an optimization
decreases path length but also decreases locality as a
side effect, the net result can be a loss in performance.

Figure 18 shows the total increase in code size as a
result of optimization. HOT+ COLD is the part of the
increase that comes from replacing a single procedure
with the original procedure plus a copy of the hot part.
STUB is the increase attributed to stub procedures.
Overall, the increase in size is small. The maximum
increase is 11.6 percent for C2. SQLSERVR has the
best speedup and is only 3.1 percent larger. Looking at
the increase in total code size is misleading, however.
HCO is not applied to procedures that are executed
infrequently, which typically account for more than 95
percent of the instructions in a program, so tripling
the size of optimized procedures would result in only a
modest increase in code size. Note that tripling the
size of the active part of an application usually disas­
trously decreases performance.

Digital Technical Journal Vol. 9 No. 4 1997 13

14

100

~ 70

~ 60

ffi 50
~ 40
UJ
::i: 30
i== 20

10

0
a:
> a:
UJ
Cl)
...J
0
Cl)

a
<(
(.)
<(

...J "' a z
UJ (.) a: 0 (.) 0 i== x s: ~ UJ z

Cl)

~ ::)

<(::l, ::::; x ::l, 0 (!) Cl)
a x UJ ci5 (!) UJ Cl)
UJ UJ f- :,,:: a. UJ

~ f- a: CD ::::1 a:
0 CD a.

::l, > ::l, ::l,
0
(.)

APPLICATION OR BENCHMARK

KEY:

--+- ORIGINAL
-a- AFTER HCO

Figure 17
Time Spent in Leaf Procedures before and after HCO

For this reason, we also measured the increase in
code size based on the procedures that were optimized.
Figure 19 compares the total sizes of the hot proce­
dures with the total sizes of the original procedures
from which they were derived. For each procedure, by
copying just the frequently executed part of the proce­
dure, we excluded about 50 percent of the original .
Next, we eliminated code that was frequently executed
but only reachable through an infrequently executed
path and therefore unreachable in the hot procedure.
This code usually represents only 1 percent of the total
size of a procedure. Finally, we optimized the hot pro­
cedure, reducing the remaining code size by about
10 percent, which is 5 percent of the size of the origi-

~ 14
UJ
U 12 a:
[10

~ 8
ci5
~ 6
UJ 4 Cl)
<(
UJ 2 a:
()

0 ~ a:
> a:
UJ
en
...J
0 en

a
<(
(.)
<(

...J "' a z <(
UJ (.) a: 0 a
(.) 0 i== UJ

~ ~ s: ~ z en ::l,
~ ::)

::l,
x
UJ

nal procedure. The final sizes of the hot procedures as
percentages of the sizes of the original procedures
are shown in the line labeled HOT. Making the most
frequently executed part of a program 50 percent to
80 percent smaller yields a big improvement in
instruction cache behavior; however, it would be mis­
leading to attribute this improvement to HCO, since
our code layout optimization achieves the same result.
When HCO is enabled, the cache layout optimizations
are run after HCO. The baseline we compare against
also has cache optimizations enabled, so improve­
ments attributed to HCO are improvements beyond
those that the other optimizations can make. HCO
does make the frequently executed parts 10 percent

::::; x ::l, 0 (!) Cl)
UJ ci5 (!) UJ Cl)
f- a. UJ :,,:: a: ::::1 a: f- CD 0 a. CD
> ::l, ::l,

0
(.)

APPLICATION OR BENCHMARK

KEY:

--+- TOTAL
-a- HOT + COLD
......._ STUB

Figure 18
Overall Increase in Code Size after HCO

Digital Technical Journal Vol. 9 No. 4 1997

i=' 180 z
~ 160

ffi 140
()__

~ 120
~ 100
(fJ

~ 80
w 60
(fJ
<(40 w
[(

20 (.)

~ 0
[(Cl ...J

> <(w
[((.) (.)
w <(x
(fJ w
...J
0
(fJ

"' Cl z <(::; ::J x ::; 0 (!) (fJ
(.) [(0 Cl x w iii (!) w (fJ

0 ~ w I- ()__ w
~

w [(~ ::2 [(3: <(I- 0 CXl ()__ z I- CXl

~
(fJ ~ > ~ ~
::> 0

(.)

KEY: APPLICATION OR BENCHMARK

--+- TOTAL
-o- COLD
--o- HOT

---- STUB

Figure 19
Size of Optimized Procedures after HCO

smaller, but we did not see significantly better instruc­
tion cache behavior when we ran programs with a
cache simulator.

If we were to perform partial inlining, only the hot
procedure would be copied. Since the hot procedure is
less than half the size of the original procedure, partial
inlining would greatly reduce the growth in code size
due to inlining.

The line labeled COLD in Figure 19 shows how the
size of the cold procedure is affected by HCO. When
we redirect all calls to the hot procedure, some code in
the original procedure becomes unreachable. The
amount of unreachable code is usually less than 10
percent, which is much smaller than the 50 percent of
the code we copied to create the hot procedure. The
infrequent paths in a procedure often rejoin the fre­
quent paths, which makes it necessary to have copies
of both types of paths in the original procedure.

The line labeled STUB shows the code size of the
stubs, which is very small. A stub contains the com­
pensation code we introduce on a transition from
a hot routine to a cold routine. We also implemented a
variation of HCO that avoided stubs by reexecuting
a procedure from the beginning instead of using a stub
to reenter a routine in the middle. It is usually not pos­
sible to reexecute the procedure from the beginning
because arguments have been overwritten. Given the
small cost of stubs, we did not pursue this method.

The line labeled TOTAL shows that HCO makes
the total code (HOT+ COLD+ STUB) 20 percent to
60 percent bigger. A procedure is partitioned so that
there is less than a 1 percent chance that the stub and
cold part are executed, so their size should not have a
significant effect on cache behavior as long as the pro­
file is representative.

Figure 20 shows how splitting affects the distri­
bution of time spent among different procedure sizes
for two programs where HCO is effective (C2 and
SQLSERVR) and two programs where it is not
(MAXEDA and WINWORD). For the graphs shown
in parts a through d of Figure 20, we classified each
procedure by its size in instructions before and after
HCO and plotted two cumulative distributions of exe­
cution time. The farther apart the two lines, the better
HCO was at shifting the distribution from large proce­
dures to smaller procedures. Note that most of the
programs spend a large percentage of the time in large
procedures, which suggests that optimizers need to
handle complex control flow well, even if profile infor­
mation is used to eliminate infrequent paths.

Managing Profile Feedback Optimization

Profile feedback is rarely used in practice because of
the difficulty of collecting, managing, and applying
profile information. The Spike Optimization Environ­
ment1 provides a system for managing profile feedback
that simplifies this process.

The first step in profile-directed optimization is to
instrument each image in an application so that when
the application is run, profile information is collected.
Instrumentation is most commonly done by using a
compiler to insert counters into a program during
compilation18 or by using a post-link tool to insert
counters into an image. 19·20 Statistical or sampling­
based profiling is an alternative to counter-based tech­
niques.21·22 Some compiler-based and post-link systems
require that the program be compiled specially, so that
the resulting images are only useful for generating
profiles. Many large applications have lengthy and

Digital Technical Journal Vol. 9 No. 4 1997 15

30 50 70 90 110 130 150 170 190

MAXIMUM ROUTINE SIZE (INSTRUCTIONS)

KEY:

-o- HCO WEIGHT
--+- ORIGINAL WEIGHT

(a) SQLSERVR

30 50 70 90 110 130 150 170 190

MAXIMUM ROUTINE SIZE (INSTRUCTIONS)

KEY:

-o- HCO WEIGHT
--+- ORIGINAL WEIGHT

(c) WINWORD

Figure 20

~100
a1i 90
~ 80

~ 70
w 60
~ 50
z 40
g 30
:::> 20
frl 10
GS

010

KEY:

30 50 70 90 110 130 150 170 190

MAXIMUM ROUTINE SIZE (INSTRUCTIONS)

-o- HCO WEIGHT
--+- ORIGINAL WEIGHT

(b) C2

30 50 70 90 110 130 150 170 190
MAXIMUM ROUTINE SIZE (INSTRUCTIONS)

KEY:

-o- HCO WEIGHT
--+- ORIGINAL WEIGHT

(d) MAXEDA

Cumulative Distribution of Execution Time by Procedure Size before and after HCO

complex build procedures. For these applications,
requiring a special rebuild of the application to collect
profiles is an obstacle to the use of profile-directed
optimization.

Spike directly instruments the final production
images so that a special compilation is not required.
Spike does require that the images be linked to include
relocation information; however, including this extra
information does not increase the number of instruc­
tions in the image and does not prevent the compiler
from performing full optimizations when generating
the image.

Most applications consist of a main executable and
many DLl."5. Instrumenting all the images in an appli­
cation can be difficult, especially when the user doing
the profile-directed optimization does not know all
the DLLs in the application. Spike relieves the user of
this task by finding all the DLLs that the application
uses, even if they are loaded dynamically with a call to
LoadLibrary.

16 Digital Technical Journal Vol. 9 No. 4 1997

After instrumentation, the next step in profile­
directed optimization is to execute the instrumented
application and to collect profile information. Most
profile-directed optimization systems require the user
to first explicitly create instrumented copies of each
image in an application. Then the user must assemble
the instrumented images into a new version of the
application and run it to collect profile information. As
the profile information is generated, the user is
responsible for locating all the profile information
generated for each image and merging that informa­
tion into a single set of profiles. Our experience with
users has shown that requiring the user to manage the
instrumented copies of the images and the profile
information is a frequent source of problems. For
example, the user may fail to instrument each image or
may attempt to instrument an image that has already
been instrumented. The user may be unable to locate
all the generated profile information or may incor­
rectly combine the information. Spike frees the user

from these tedious and error-prone tasks by managing
both the instrumented copy of each image and the
profile information generated for the image.

After profile information is collected, the final step is
to use the profile information to optimize each image.
As with instrumentation, the typical profile-directed
optimization system requires the user to optimize each
image explicitly and to assemble the optimized appli­
cation. Spike uses the profile information collected for
each image to optimize all the images in an application
and assembles the optimized application for the user.

Spike Optimization Environment
The Spike Optimization Environment (SOE) provides a
simple means to instrument and optimize large applica­
tions that consist of many images. The SOE can be
accessed through a graphical interface or through a
command-line interface that provides identical func­
tionality. The command-line interface allows the SOE to
be used as part of a batch build system such as make. 23

In addition to providing a simple-to-use interface,
the SOE keeps the instrumented and optimized ver­
sions of each image and the profile information associ­
ated with each image in a database. When an
application is instrumented or optimized, the original
versions of the images in the application are not modi­
fied; instead, the SOE puts an instrumented or opti­
mized version of each image into the database. When
the user invokes the original version of an application,
the SOE uses a transparency agent to execute the
instrumented or optimized version.

The SOE allows the user to instrument and optimize
an entire application using the following procedure:

1. Register: The user selects the application or applica­
tions that are to be instrumented and optimized. The
user needs to specify only the application's main
image. Spike then finds all the implicitly linked images
(DLLs loaded when the main image is loaded) and
registers that they are part of the application.

2. Instrument: The user requests that an application
be instrumented. For each image in the application,
the SOE invokes the Spike Optimizer to instrument
that image. The SOE places the instrumented ver­
sion of each image in the database. The original
images are not modified.

3. Collect profile information: The user runs the origi­
nal application in the normal way, e.g., from a com­
mand prompt, from Wmdows Explorer, or indirectly
through another program. Our transparency agent
(explained later in this section) invokes the instru­
mented version of the application in place of the
original version. Any images dynamically loaded by
the application are instrumented on the fly. Each
time the application terminates, profile information
for each image is written to the database and merged
with any existing profile information.

4. Optimize: The user requests that an application be
optimized. For each image in the application, the
SOE invokes the Spike Optimizer to optimize the
image using the collected profile information and
places the optimized version of each image in the
database.

5. Run the optimized version: The user runs the orig­
inal application, and our transparency agent substi­
tutes the optimized version, allowing the user to
evaluate the effectiveness of the optimization.

6. Export: The SOE exports the optimized images
from the database, placing them in a directory spec­
ified by the user. The optimized images can then be
packaged with other application components.

The Spike Manager is the principal user interface for
the SOE. The Spike Manager displays the contents of
the database, showing the applications registered with
Spike, the images contained in each application, and
the profile information collected for each image. The
Spike Manager enables the user to control many
aspects of the instrumentation and optimization
process, including specifying which images are to be
instrumented and optimized and which version of the
application is to be executed when the original applica­
tion is invoked.

Transparent Application Substitution (TAS) is the
transparency agent developed for the Spike system to
execute a modified version of an application transpar­
ently, without replacing the original images on disk.
TAS was modeled after the transparency agent in the
DIGITAL FX!32 system24 but uses different mecha­
nisms. When the user invokes the original application,
the SOE uses TAS to load an instrumented or opti­
mized version. With TAS, the user does not need to do
anything special to execute the instrumented or opti­
mized version of an application. The user simply
invokes the original application in the usual way (e.g.,
from a command prompt, from Windows Explorer, or
indirectly through another application), and the
instrumented or optimized application runs in its
place. TAS performs application substitution in two
parts. First, TAS makes the Windows NT loader use a
modified version of the main image and DLLs.
Second, TAS makes it appear to the application that
the original images were invoked.

TAS uses debugging capabilities provided by the
Windows NT operating system to specify that when­
ever the main image of an application is invoked, the
modified version of that image should be executed
instead. In each image, the table of imported DLLs is
altered so that instead ofloading the DLLs specified in
the original image, each image loads its modified
counterparts. Thus, when the user invokes an applica­
tion, the Windows NT operating system loads the
modified versions of the images contained in the appli­
cation. Some applications load DLLs with explicit calls

Digital Technical Journal Vol. 9 No. 4 1997 17

to LoadLibrary. TAS intercepts those calls and instead
loads the modified versions.

The second part ofTAS makes the modified version
of the application appear to be the original version of
the application. Applications often use the name of the
main image to find other files. For example, if an
instrumented image requests its full path name, TAS
instead returns the full path name of the corresponding
original image. To do this, TAS replaces certain calls to
kernel32.dll in the instrumented and optimized images
with calls to hook procedures. Each hook procedure
determines the outcome the call would have had for
the original application and returns that result.

Instrumentation
Spike instruments an image by inserting counters into
it. Using the results of these counters, the optimizer
can determine the number of times each basic block
and control flow edge in the image is executed. Spike
uses a spanning-tree technique proposed by Knuth25

to reduce the number of counters required to fully
instrument an image. For example, in an if-then-else
clause, counting the number of times the if and then
statements are executed is enough to determine the
number of times the else statement is executed.
Register usage information is used to find free registers
for the instrumentation code, thereby reducing the
number of saves and restores necessary to free up reg­
isters.12 Typically, instrumentation makes the code 30
percent larger. As part of the profile, Spike also cap­
tures the last target of a jump or procedure call that
cannot be determined statically.

Spike's profile information is persistent; small
changes to an image do not invalidate the profile infor­
mation collected for that image. Profile persistence is
essential for applications that require a lengthy or
cumbersome process to generate a profile, even when
using low-cost methods like statistical sampling. For
example, generating a good profile of a transaction
processing system requires extensive staging of the sys­
tem. Even when it is possible to automate the genera­
tion of profiles, some ISVs find the extra build time
unacceptable. With persistence, the user can collect a
profile once and continue to use it for successive builds
of a program as small changes are made to it. Our
experience with an ISV has shown that the speedup
from Spike declines as the profile gets older, but using
a two- or three-week-old profile is acceptable. It is also
possible to merge a profile generated by an older
image with a profile generated by a newer image.

When using an old profile, Spike must match up
procedures in the current program with procedures in
the profiled program. Spike discards profiles for proce­
dures that have changed. Relying on a procedure
name derived from debug information to do the

18 Digital Technical Journal Vol. 9 No. 4 1997

matching is not practical in a production environment.
Instead, Spike generates a signature based on the flow
graph of each procedure. Since signatures are not
based on the code, small changes to a procedure will
not invalidate the profile. Signatures are not unique,
however, so it can be difficult to match two lists of sig­
natures when there are differences. A minimum edit
distance algorithm26 is used to find the best match
between the list of signatures of the current program
and the list of signatures of the profiled program.

Summary

Many Windows NT-based applications are large, call­
intensive programs, with loops that cross multiple pro­
cedures and procedures that have complicated control
flow and many basic blocks. The Spike optimization
system uses code layout and hot-cold optimization to
optimize call-intensive programs. Code layout places
the frequently executed portions of the program
together in memory, thereby reducing instruction
cache miss and improving performance up to 33 per­
cent. Our code layout algorithm rearranges basic
blocks so that the fall-through path is the common
path. The algorithm also splits each procedure into a
frequently executed (hot) part and an infrequently
executed (cold) part. The split procedures are placed
so that frequent (caller, callee) pairs are adjacent.

The hot part of a procedure is the collection of the
common paths through the procedure. These paths
can be optimized at the expense of the cold paths by
removing instructions that are required only if the cold
paths are executed. Hot-cold optimization exploits this
opportunity by performing optimizations that remove
partially dead code and replace uses of preserved regis­
ters with uses of scratch registers. Hot-cold optimiza­
tion reduces the instruction path length through the
call-intensive programs by 3 percent to 8 percent.

Profile feedback is rarely used because of the diffi­
culty of collecting, managing, and applying profile
information. Spike provides a complete system for
profile feedback optimization that eliminates these
problems. It is a practical system that is being actively
used to optimize applications for Alpha processors
running the Windows NT operating system.

Acknowledgments

Tryggve Fossum supported the development of Spike
from the beginning; he also implemented two of our early
optimizations. David Wall helped us get started parsing
Windows NT images. Mike McCallig implemented our
first symbol table package. Norman Rubin contributed to
the design of the transparency agent. Many people helped
collect the data presented in this paper, including Michelle

Alexander, Brush Bradley, Bob Corrigan, JeffDonsbach,
Hans Graves, John Henning, Phil Hutchinson, Herb
Lane, Matt Lapine, Wei Liu, Jeff Seltzer, Arnaud Sergent,
John Sha.kshober, and Robert Zhu.

References

1. R. Cohn, D . Goodwin, P. G. Lowney, and N.
Rubin, "Spike: An Optimizer for Alpha/NT Exe­
cutables," The USENIX Windows NT Workshop Pro­
ceedings, Seattle, Wash. (August 1997): 17-24.

2. A. Srivastava and D. Wall, "Link-time Optimization
of Address Calculation on a 64-bit Architecture,"
Proceedings of the ACM SIGPLAN'94 Conference
on Programming Language Design and Implemen­
tation, Orlando, Fla. (June 1994): 49-60.

3. L. Wilson, C. Neth, and M. Rickabaugh, "Deliver­
ing Binary Object Modification Tools for Program
Analysis and Optimization," Digital Technical
Journal, vol. 8, no. 1 (1996): 18- 31.

4. S. Mcfarling, "Program Optimization for Instruc­
tion Caches," ASPLOS III Proceedings, Boston,
Mass. (April 1989): 183-193.

5. W. Hwu and P. Chang, "Achieving High Instruc­
tion Cache Performance with an Optimizing Com­
piler," Proceedings of the Sixteenth Annual
International Symposium on Computer Architec­
ture, Jerusalem, Israel (June 1989).

6. K. Pettis and R. Hansen, "Profile Guided Code
Positioning," Proceedings of the ACM SIGPLAN'90
Conference on Programming Language Design
and Implementation, White Plains, N.Y. (June
1990): 16-27.

7. R. Cohn and P. G. Lowney, "Hot Cold Optimiza­
tion of Large Windows/NT Applications," MICR0-
29, Paris, France (December 1996): 80- 89.

8 . Information about the SPEC benchmarks is avail­
able from the Standard Performance Evaluation
Corporation at http://www.specbench.org/.

9. D. Blickstein et al., "The GEM Optimizing Com­
piler System," Digital Technical Journal, vol. 4, no. 4
(1992): 121-136.

10. B. Calder, D. Grunwald, and A. Srivastava, "The
Predictability of Branches in Libraries," Proceed­
ings of the Twenty-eighth Annual International
Symposium on Microarchitecture, Ann Arbor,
Mich. (November 1995): 24-34.

11. A. Aho, R . Sethi, and J. Ullman, Compilers: Princi­
ples, Techniques, and Tools (Reading, Mass.: Addison­
Wesley, 1985).

12. D. Goodwin, "lnterprocedural Dataflow Analysis
in an Executable Optimizer," Proceedings of the
ACM SIGPLAN'97 Conference on Programming
Language Design and Implementation, Las Vegas,
Nev. (June 1997): 122- 133.

13. Alpha 21164 Microprocessor Hardware Reference
Manual, Order No. EC-QAEQB-TE (Maynard,
Mass.: Digital Equipment Corporation, April
1995).

14. J. Fisher, "Trace Scheduling: A Technique for
Global Microcode Compaction," IEEE Transac­
tions on Computers, C-30, 7 (July 1981): 478-490.

15. DECchip 21064 and DECchip 21064A Alpha AXP
Microprocessors Hardware Reference Manual,
Order No. EC-Q9ZUA-TE (Maynard, Mass. : Dig­
ital Equipment Corporation, June 1994).

16. J. Knoop, 0 . Riithing, and B. Steffen, "Partial Dead
Code Elimination," Proceedings of the ACM SIG­
PLAN'94 Conference on Programming Language
Design and Implementation, Orlando, Fla. (June
1994): 147-158.

17. P. Chang, S. Mahlke, and W. Hwu, "Using Profile
Information to Assist Classic Code Optimizations,"
Software-Practice and Experience, vol. 21, no.
12 (1991): 1301-1321.

18. P. G. Lowney et al., "The Multiflow Trace Schedul­
ing Compiler," The Journal of Supercomputing,
vol. 7, no. 1/ 2 (1993): 51- 142.

19. A. Srivastava and A. Eustace, "ATOM: A System for
Building Customized Program Analysis Tools,"
Proceedings of the ACM SJGPLAN'94 Conference
on Programming Language Design and Implemen­
tation, Orlando, Fla. (June 1994): 196-205.

20. UMIPS-V Reference Manual (pixie and pixstats)
(Sunnyvale, Calif.: MIPS Computer Systems,
1990).

21. J. Anderson et al., "Continuous Profiling: Where
Have All the Cycles Gone?" Proceedings of the Six­
teenth ACM Symposium on Operating System Prin­
ciples, Saint-Malo, France (October 1997): 1-14.

22. X. Zhang et al., "System Support for Automatic
Profiling and Optimization," Proceedings of the
Sixteenth ACM Symposium on Operating System
Principles, Saint-Malo, France (October 1997):
15-26.

23. S. Feldman, "Make-A Program for Maintaining
Computer Programs," Software-Practice and
Experience, vol. 9, no. 4 (1979): 255- 265.

24. R. Hookway and M . Herdeg, "DIGITAL FX!32 :
Combining Emulation and Binary Translation,"
Digital Technical Journal, vol. 9, no. 1 (1997):
3-12.

25 . D. Knuth, TheArtofComputerProgramming: Vol.
1, Fundamental Algorithms (Reading, Mass.: Addi­
son-Wesley, 1973).

26. W. Miller and E. Meyers, "A File Comparison Pro­
gram," Software-Practice and Experience, vol. 11
(1985): 1025- 1040.

Digital Technical Journal Vol. 9 No. 4 1997 19

20

Biographies

Robert S. Cohn
Robert Cohn is a consulting engineer in the VSSAD
Group, where he works on advanced compiler technology
for Alpha microprocessors. Since joining DIGITAL in
1992, Robert has implemented profile-feedback and trace
scheduling in the GEM compiler. He also implemented the
code layout optimizations in UNIX OM. Robert has been
a key contributor to Spike, implementing both hot-cold
optimization and the code layout optimizations. Robert
received a B.A. from Cornell University and a Ph.D. in
computer science from Carnegie Mellon University.

David W. Goodwin
David W. Goodwin is a principal engineer in the VSSAD
Group, where he works on architecture and compiler
advanced development. Since joining DIGITAL in 1996,
he has contributed to the performance analysis of the 21164,
21164PC, and 21264 microprocessors. For the Spike pro­
ject, David implemented the Spike Optimization Environ­
ment and the interprocedural dataflow analysis. David
received a B.S.E.E. from Virginia Tech. and a Ph.D. in
computer science from the University of California, Davis.

Digital Technical Journal Vol. 9 No. 4 1997

P. Geoffrey Lowney
P. Geoffrey Lowney is a senior consulting engineer in the
VSSAD Group, where he works on compilers and architec­
ture to improve the performance of Alpha microprocessors.
Geoff is the leader of the Spike project. For Spike, he
implemented the infrastructure for parsing executables.
Priorto joining DIGITAL in 1991, Geoff worked at
Hewlett Packard/ Apollo, Multiflow Computer, and New
York University. Geoff received a BA. in mathematics and
a Ph.D . in computer science, both from Yale University.

Analyzing Memory
Access Patterns of
Programs on Alpha­
based Architectures

The development of efficient algorithms on
today's high-performance computers is far from
straightforward. Applications need to take full
advantage of the computer system's deep mem­
ory hierarchy, and this implies that the user
must know exactly how his or her implementa­
tion is executed. The ability to understand or
predict the execution path without looking
at the machine code can be very difficult with
today's compilers. By using the outputs from
an experimental memory access profiling tool,
the programmer can compare memory access
patterns of different algorithms and gain insight
into the algorithm's behavior, e.g., potential
bottlenecks resulting from memory accesses.
The use of this tool has helped improve the
performance of an application based on sparse
matrix-vector multiplications.

I
Susanne M. Balle
Simon C. Steely, Jr.

The development of efficient algorithms on today's
high-performance computers can be a challenge. One
major issue in implementing high-performing algo­
rithms is to take full advantage of the deep memory
hierarchy. To better understand a program's perfor­
mance, two things need to be considered: computa­
tional intensiveness and the amount of memory traffic
involved. In addition to the latter, the pattern of the
memory references is important because the success of
hierarchy is attributed to locality of reference and
reuse of data in the user's program.

In this paper, we investigate the memory access pat­
tern of Fortran programs. We begin by presenting an
experimental Atom1 tool that analyzes how the pro­
gram is executed. We developed the tool to help us
understand how different compiler switches impact
the algorithm implemented and to determine if the
algorithm is doing what it is intended to do. In addi­
tion, our tool helps the process of translating an algo­
rithm into an efficient implementation on a specific
machine. The work presented in this paper focuses
primarily on a better understanding of the behavior
of technical applications. Related work for Basic
Linear Algebra Subroutine implementations has been
described.2 In most scientific programs, the data ele­
ments are matrix-elements that are usually stored in two­
dimensional (2-D) arrays (column-major in Fortran).
Knowing the order of array referencing is important in
determining the amount of memory traffic.

In the final section of this paper, we present an
example of a memory access pattern study and illus­
trate how the use of our program analysis tool
improved the considered algorithm's performance.
Guidelines on how to use the tool are given as well as
comments about conclusions to be derived from the
histograms generated.

Memory Access Profiling Tool

Our experimental tool generates a set of histograms
for each reference in the program or in the subroutine
under investigation. The first histogram measures

Digital Technical Journal Vol. 9 No. 4 1997 21

strides from the previous reference, the second his­
togram gives the stride from the second-to-last refer­
ence, and so on, for a total of MAXEL histograms for
each memory reference in the part of the program we
investigate. By stride, we mean the distance between
two memory references (load or store). We chose a
MAXEL of five for our case study, but MAXEL can be
given any value.

Two variants of this tool were implemented.

1. The first version takes all memory references into
account in all histograms.

2. The second version takes into account in the next
histogram those memory references whose stride
is more than 128 bytes. It does not consider in the
(i + 1)th histogram (i = 1, ... ,5) strides that are less
than 128 bytes in the ith histogram.

The second version of the tool has proven to be
more useful in understanding the access patterns. It
highlights memory accesses that are stride one for a
while and then have a stride greater than 128 bytes.
The choice ofl28 bytes was arbitrary; the value can be
changed.

The following bins are used in the histograms: 0-
through 127-byte strides are accounted for separately.
Strides greater than or equal to 128 bytes are grouped
into the following intervals: [128 through 255], [256
through 511], [512 through 1,023], [1,024 through
2,047], [2,048 through 4,095], [4,096 through
8,191], [8,192 through 16,383], [16,384 through
32,767], and [32,768 through infinity].

In the next section, we present the output his­
tograms obtained with the second version of this
experimental tool for a Fortran loop. In our case study,
we chose to perform the histograms on a single array
instead of all references in the program. This method
provided a clearer picture of the memory access pat­
tern for each array in the piece of the program under
consideration. We present separate histograms for the
loads and the stores of each array in the memory traffic
of the subroutine we investigated.

When looking at memory access patterns, it is
important not to include load instructions that per­
form prefetching. Even though prefetching adds to
the memory traffic, its load instructions pollute the
memory access pattern picture.

Case Study

In this section, we study and compare different ver­
sions of the code presented in Figure 1 using our
experimental memory access profiling tool. We show
that the same code is not executed in the same way for
different compiler switches. Often a developer has to
delve deeply into the assembler of the given loop to
understand how and when the different instructions

22 Digital Technical Journal Vol. 9 No. 4 1997

1 QCi>=O, i=1, n
2 do k1 = 1, 4
3 index= Ck1-1) * numrows
4 do j=1,n
5 p1=COLSTR(j,k1)
6 p2=COLSTR(j+1,k1)-1
7 p3= [snip]
8 sumO=O.dO
9 sum1=0.d0
ID sum2=0.d0
11 sum3=0.d0
12 x1 = P(index+ROWIDX(p1,k1))
13 x2 = P(index+ROWIDX(p1+1,k1))
14 x3 = P(index+ROWIDX(p1+2,k1))
15 x4 = PCindex+ROWIDXCp1+3,k1))
16 do k = p1, p3, 4
17 sumO = sumO + AA(k,k1) * x1
18 sum1 = sum1 + AA(k+1,k1) * x2
19 sum2 = sum2 + AA(k+2,k1) * x3
20 sum3 = sum3 + AA(k+3,k1) * x4
21 x1 = P(index+ROWIDXCk+4,k1))
22 x2 = P(index+ROWIDXCk+5,k1))
23 x3 = P(index+ROWIDX(k+6,k1))
24 x4 = P(index+ROWIDX(k+7,k1))
25 end do
26 do k = p3+1, p2
27 x1=PCindex+ROWIDXCk,k1))
28 sumO = sumO + AA(k, k1)*x1
29 end do
30 YTEMP(j,k1)=sumO+sum1+sum2+sum3
31 enddo
32 do i = 1, n, 4
33 Q(i) = Q(i) + YTEMP(i,k1)
34 Q(i+1) = Q(i+1) + YTEMPCi+1,k1)
35 Q(i+2) = Q(i+2) + YTEMP(i+2,k1)
36 Q(i+3) = Q(i+3) + YTEMP(i+3,k1)
37 enddo
38 enddo

where n = 14000,
real*8 AAC511350,4), YTEMP(n,4)
real*8 Q(n), P(n)
integer*4 ROWIDXC511350,4), COLSTR(n,4)

Figure 1
Original Loop

are executed. The output histograms from our tool
ease that process and give a clear picture of the refer­
ence patterns. The loop presented in Figure 1 imple­
ments a sparse matrix-vector multiplication and is part
of a larger application. Ninety-six percent of the appli­
cation's execution time is spent in that loop. We ana­
lyze the loop compiled with two different sets of
compiler switches. To illustrate the effective use of the
tool, we present the enhanced performance results
due to changes made based on the output histograms.

From lines 5 and 6 in the loop shown in Figure 1,
we would expect the array COLSTR to be read stride
one 100 percent of the time. Line 30 of the figure
indicates that YIEMP is accessed stride one through
the whole jloop. From lines 33 through 36, we expect
YIEMP's stride to be equal to one most of the time and
equal to the number of columns in the array every
time kl is incremented. Q should be referenced 100

percent stride one for both the loads and the stores
(lines 33 through 36). As illustrated in lines 12
through 15, 21 through 24, and 27, ROW/DX is
expected to be accessed with a stride of one between
the pl and p2 bounds of the k loop. Even though it
looks like the k loop is violating the array bounds of
ROW/DX in lines 21 through 24 for the last iteration of
the loop, this is not the case. We expect array Pto have
nonadjacent memory references since we have deliber­
ately chosen an algorithm that sacrifices this array's
access patterns to improve the memory references of
QandAA.

Original Code
We investigate the memory access patterns achieved
by the loop in Figure 1 when compiled with the fol­
lowing switches:

f77 -g3 -fast -05

The -g3 switch is needed to extract the addresses
of the arrays from the symbol table. For more infor­
mation on DIGITAL Fortran compiler switches, see
Reference 3.

From Figures 2 and 3, we see that array Q is accessed
as we expected, 100 percent stride one for the loads
and the stores. Since Q is accessed contiguously in 100
percent of its memory references, we will not have any
entries in the next four histograms. As described in

100

90

80

.=-z
UJ 70
(.)
a:
UJ
e,_ 60
(j)
0
~ g 50

u..
O 40 a:
UJ
ID

~ 30
z

20

10

0
a ... co ~ ~ a ... co "' "' a ...

"' "' "' (') (') co ...

the previous section, we only record in the next his­
togram the strides that are greater than 128 bytes in
the current histogram.

Figure 4 illustrates that COLSTR is accessed 50
percent stride zero and 50 percent stride one. This is
unexpected since lines 5 and 6 in Figure 1 suggest that
this array would be accessed stride one 100 percent of
the time. The fact that we have entries only for the
strides between the current and the previous loads
indicates that the elements of COLSTR are accessed in a
nearly contiguous way. A closer look at Figure 1 tells
us that the compiler is loading COLSTR twice. We
expected the compiler to do only one load into a regis­
ter and reuse the register. The work-around is to per­
form a scalar replacement as described by Blickstein et
al.4 We put p2 = COLSTR(l,kl) -1 outside the j loop
and substituted inside the j loop pl = COLSTR(j,kl)
with pl = p2 + 1. Inside the j loop, p2 remains the
same. Eliminating the extra loads did not enhance per­
formance, and a possible assumption is that the analy­
sis done by the compiler concluded that no gain would
result from that optimization.

Figures 5 and 6 show the strides for the loads and the
strides for the stores for the array YTEMP. One more
time, the implementation is not being executed the
way we thought it would. In Figure 1, lines 33 through
36 suggested that YlEMP would be referenced stride
one through the whole i loop as well as with a stride

"' "' a r-. l() (') r-. l() ;;; (') r-.
~ l() l() "' ~ l() U1 "' ... O> co "' "' a . a a (') r-.

I I I ci -i ai co· ci z ... co "' I I I I (') u::
"' ~

l()

"' ~ ~ ~ I I ~
"' ~ "' ... ~ ~ U1 I

KEY: STRIDES IN BYTES co ~ ~

"' D 1 STEPAGO • 4 STEPS AGO
(')

D 2 STEPS AGO • 5 STEPS AGO

3 STEPS AGO

Figure 2
Strides for Array Q between the Current Load and the Load One through Five Steps Ago

Digital Technical Journal Vol. 9 No. 4 1997 23

100

90

80

r=-z
~ 70
a:
w
!!:.. 60
(/)
w
a:

50 0
I-
(/)

u..
0 40
a:
w
ID

30 :!:
::::,
z

20

10

0
0 <t c:o "' co 0 <t c:o "' co 0 <t c:o "' co 0,., ('),.,

ai
(') ~ "' "' "' (') (') <t <t <t .,., .,., co "'

.,., ;;; "' <t a, c:o co

"' q 0 0 (') z I I I ci ..j a5 <D ci
<t c:o co I I I I (') u::
co "'

.,.,
"' ~ ~ ~ I I ~

"' ;;; "' <t ~ ~ I
KEY: STRIDES IN BYTES c:o co

~

D 1 STEPAGO • "' 4STEPSAGO (')

D 2STEPSAGO • 5STEPSAGO

• 3STEPSAGO

Figure 3
Strides for Array Q between the Current Store and the Store One through Five Steps Ago

60

50

r=-z
w
(.) 40 a:
w
!!:..
(/)
D
<(

30 g
u..
0
a:
w
ID 20 ::;:;
::::,
z

10

0
0 <t c:o "' co 0 <t c:o "' co 0 ~ c:o "' co 0,., ('),.,

ai (')
~ "' "' "' (') (') <t <t .,., .,., co "'

.,., ;;; "' c5 a, c:o co
"' q 0 (')

I I I ci ..j a5 <D ci z
<t c:o co I I I I (') u::
co "'

.,.,
"' ~ ~ ~ I I ~

"' ;;; "' <t ~ ~ I
KEY: STRIDES IN BYTES c:o co

~

"' D 1 STEPAGO • 4 STEPS AGO
(')

D 2STEPSAGO • 5STEPSAGO

• 3STEPSAGO

Figure 4
Strides for Array COLSTR between the Current Load and the Load One through Five Steps Ago

24 Digital Technical Journal Vol. 9 No. 4 1997

100

90

BO

i=-
ifi 70
(.)
a: w
!!o, 60
CJ)
Cl
<(
0
...J

50

u.
0 40 a:
w
CD
:::; 30 ::> z

20

10

0
0 ...

KEY:

0 1 STEPAGO

0 2STEPSAGO

1\1!1 3 STEPS AGO

Figure 5

Cl) "' <O 0 ... Cl)

"' "' "' "' "'

• 4STEPSAGO

• 5STEPSAGO

<O 0 ... Cl) "' <O 0 "' <')

"' ... st st "' ll') <O "' "' ;-;:; "' "' ~
I I I

st Cl) <O I
<O "' "' "' "' ;-;:;

STRIDES IN BYTES

Strides for Array nEMPbetween the Current Load and the Load One through Five Steps Ago

100

90

BO
i=-z w
U 70
a: w
a..
; 60
w
a:
~ 50
u.
0
a: 40
w
CD

~ 30
z

20

10

KEY:

0 1 STEPAGO

0 2STEPSAGO

3STEPS AGO

Figure 6

• 4STEPSAGO I. 5 STEPS AGO

STRIDES IN BYTES

.... "' "' "' "' ;-;:; "' "' ~
I I I ... Cl) <O I

<O "' "' "' "' ;-;:;

Strides for Array Y1EMPbetween the Current Store and the Store One through Five Steps Ago

Digital Technical Journal

.... "' oi <')
~ ... 0, Cl) <O

0 0 "'
C\i st- r:tS cs5 "' z
I I I "' u::
~ ~ ~ I I ~

"' ... ~ ~ I Cl) <O
~

"' "'

.... "' oi ra ~ ... 0, <O
0 0 - <') z "' ,,i a5 cs5 "' I I I <') u::
~ ~ ~ I I ~

"' ... ~ ~ I Cl) <O
~

"' <')

Vol. 9 No. 4 1997 25

equal to the number of columns in the array when kl is
incremented. By considering Figure 5 along with lines
33 through 36 in Figure 1, we conclude that YTEMPis
unrolled by four in the kl-direction in the iloop. The
fact that all strides between the current load and the
load two loads back or three loads back or four loads
back have a stride between 32K and infinity is consis­
tent with traversing a matrix along rows. Figure 6
shows that the j loop is not unrolled by four in the
kl -direction, because all the loads of YIEMP are 100
percent stride one. The compiler must split the kl loop
into two separate loops, the first consists of the j loop
and the second consists of the i loop. The latter has
been unrolled by four in the kl -direction thereby elim­
inating the extra overhead from the kl loop.

Figure 7 shows that the matrix AA is accessed as we
expected. The strides are not greater than 128 bytes
or, in other words, a maximum stride of 16 elements.
The fact that there is no stride other than the one
between the current load and the previous load in the
histograms shows that AA is referenced in a controlled
way. In this case, AA is accessed 39 percent of its total
loads in stride one and 23 percent in stride two.

From lines 12 through 15, 17 through 20, and 21
through 24 in Figure 1, we know that the arrays AA
and ROW/DX should have relatively similar behaviors.
Only the four extra prefetches of ROWIDXin lines 21
through 24 for the last iteration in the j loop differen-

50

45

40

I='
lfl 35
(.)
a:
w
!h 30
Cf)
Cl
<{ 25 0
...J

u..
0 20 a:
w
CD
::? 15 ::::>
z

10

5

0
0 '¢ co ~ ~ 0 '¢ co "' co 0

"' "' "' (') (') '¢

tiate the access patterns of the two arrays. Figure 8
con.firms that assumption. RO\:(IJDXis referenced with
controlled strides. Because ROW/DX is accessed close
to contiguously, we will not have any entries in the
next four histograms. As described in the previous sec­
tion, we only record in the next histogram the strides
that are greater than 128 bytes in the current his­
togram. ROW/DX is referenced 24 percent of its total
loads in stride one and 34 percent in stride two.

As illustrated in Figure 9, array Pis accessed exactly
the way we expected it. When designing this algorithm,
we had to make some compromises. We decided to
have AA and Q referenced as closely as possible to stride
one, thus giving up the control of P's references.

By examining these arrays' access patterns, we can see
how they are accessed and whether or not the imple­
mentation is doing what it is supposed to do. If the loop
in Figure 1 is used on a larger matrix [n = 75,000 and
AA(204427,12) has 15 million nonzero elements], the
execution time for the total application on a single
21164 processor of an AlphaServer 8400 5 / 625 system
is 1,970 seconds. The application executes 26 x 75
(= 1,950) times the considered loop. When profiling
the program, we measured that the loop under investi­
gation takes 96 percent of the total execution time. It is
therefore a fair assumption to say that any improvement
in this building block will improve the overall perfor­
mance of the total program.

"' II)
CO O
II) co

~
I

'¢
co

II)
II)

"' I
co
~

(')
;;:; "' '¢

C?. 0
I ci

co I I
II)

"' :,,::
"' ~

II) m (') i; O> co co
0 ~ (')
.f ai '° ci z
I I (') u::

:,,:: :,,:: I I ~

"' '¢ :,,:: :,,::
KEY: STRIDES IN BYTES

;;; co I
~ :,,::

0 1 STEPAGO

0 2STEPSAGO

3STEPSAGO

Figure 7

• 4STEPSAGO

• 5STEPSAGO

Strides for Array AA between the Current Load and the Load One through Five Steps Ago

26 Digital Technical Journal Vol. 9 No. 4 1997

"' (')

40

35

~ 30
z
UJ
(.)
a: t 25

Cl)
a
<t: 20 0
...J
u...
0
a: 15 UJ
ID
:::;;
:::,
z 10

5

0
0 v

KEY:

0 1 STEPAGO

0 2STEPSAGO

3 STEPS AGO

Figure 8

-~
(IC) ~ (t) 0 v (IC)

"' "' "' "' "'

• 4STEPSAGO

• 5STEPSAGO

-~
(t) 0 v (IC) "' (t) 0 ll) "' "' v v v ll) ll) (t) "' ll) ;:;; "' "' q

I I I -v (IC) (t) I
(t) "' ll)

"' "' STRIDES IN BYTES
;:;;

Strides for Array ROWIDXbetween the Current Load and the Load One through Five Steps Ago

50

45

40

~
~ 35
(.)
a:
UJ
e:_ 30
Cl)
a
<t: 25 0
...J
u...
0
a: 20
UJ
ID
:::;; 15 :::,
z

10

5

0
0 v

KEY:

0 1 STEPAGO

0 2STEPSAGO

3 STEPS AGO

Figure 9

(IC) ~ (t) 0 v (IC)

"' "' "' "' "'

• 4STEPSAGO

• 5STEPSAGO

(t) 0 v (IC) "' (t) 0 ll)

"' v v v ll) ll) (t) "' ll) ;:;;
"' I I I

v (IC) (t)
(t) "' ll)

"' STRIDES IN BYTES

Strides for Array Pbetween the Current Load and the Load One through Five Steps Ago

Digital Technical Journal

"' (\j
q

I

"' ll)

..... ll) ;;; "' ~ v a, (IC) (t)
0 0 "' z ci ..f cxi <D ci
I I I "' u:::

:,:: :,:: :,:: I I ~

"' v :,:: :,:: I (IC) (t) :,::

"' "'

..... ll) ;;; "' ~ v a, (IC) (t)
0 0 "' z ci ..f cxi <D ci
I I I "' u:::

:,:: :,:: :,:: I I ~

"' v :,:: :,:: I (IC) (t) :,::

"' "'

Vol. 9 No. 4 1997 27

Modified Code
In this section, we describe a new experiment in which we
used different compiler switches and changed the original
loop to the loop in Figure 10. The code changes were
based on the analysis in the previous section as well as on a
more extended series of investigations.

In this example, we used the following compiler
switches:

f77 -g3 -fast -05 -unroll 1

Lines 3, 5, and 6 from Figure 10 show that we imple­
mented the scalar replacement technique as described by
Blickstein et al.4 to avoid COLS'1R being loaded twice. From
Figure 11, we see that array COLS'1R is now behaving as we
expect: 100 percent of the strides for the loads are stride one.

In our first attempt to optimize the original loop, we
split the kl loop into two loops in the same way the com­
piler did as described in the previous section. We then hand
unrolled the YlEMP array in the kl direction. Further
analysis showed that a considerable gain could be made
by removing the YTEMP array and writing the results
directly into Q. By replacing the zeroing out of the Q array

1 do k1 = 1, 4
2 index = C k1-1) * numrows
3 p2=COLSTRC1,k1)-1
4 do j=1,n
5 p1=p2+1
6 p2=COLSTR(j+1,k1)-1
7 p3= [snip]
8 sumO=O.dO
9 sum1=0.d0
10 sum2=0. dO
11 sum3=0.d0
U x1 = PCindex+ROWIDXCp1,k1))
13 x2 = PCindex+ROWIDX(p1+1,k1))
14 x3 = P(index+ROWIDX(p1+2,k1))
15 x4 = P(index+ROWIDX(p1+3,k1))
16 dok=p1,p3,4
17 sumo= sumo+ AACk,k1) * x1
18 sum1 = sum1 + AA(k+1,k1) * x2
19 sum2 = sum2 + AA(k+2,k1) * x3
20 sum3 = sum3 + AA(k+3,k1) * x4
21 x1 = PCindex+ROWIDX(k+4,k1))
22 x2 = PCindex+ROWIDX(k+5,k1))
23 x3 = PCindex+ROWIDXCk+6,k1))
24 x4 = P(index+ROWIDX(k+7,k1))
25 enddo
26 do k = p3+1, p2
27 x1=P(index+ROWIDX(k,k1))
28 sumO = -sumO + AA(k,k1)*x1
29 enddo
30 if(k1 .eq.1) then
31 QC j) = sumo + sum1 + sum2 + sum3
32 els e
33 Q(j) = Q(j) +sumo+ sum1 + sum2 + sum3
34 endi f
35 enddo
36 enddo

where n = 14000,
real*8 AA(511350,4)
real*8 Q(n), P(n)
integer*4 ROWIDXC511350,4), COLSTR(n,4)

Figure 10
Modified Loop

28 Digital Technical Journal Vol. 9 No. 4 1997

(Figure 1, line 1) with an IF statement (Figure 10, line 30),
we further improved the performance of the loop. The last
two changes were possible because we decided that, for
performance enhancement issues, the serial version of the
code was going to be different from its parallel version.

Figures 12 and 13 show that {!s load and store access
pattern is 100 percent stride one as we expected it to be.
For both ROWIDX and AA, we see a significant increase in
stride one references. Figure 14 shows that AA is now
accessed 69 percent stride one instead of 39 percent.
ROWIDX's stride one increased to 52 percent from 24
percent as illustrated in Figure 15. These two arrays are
the reason for using the -u n r o l l 1 switch. Without it,
stride one for both arrays would stay approximately the
same as in the previous study. The pattern of accesses of
array P in Figure 16 is similar to the prior pattern of
accesses in Figure 9 as expected.

To better understand the effects of the unrolling, we
counted the number of second-level cache misses for 26
calls to the loop, using an Atom tool1 that simulated a
4-megabyte direct-mapped cache. By considering only these
26 matrix-vector multiplications, we do not get a full picture
of what is going on and how the different arrays interact.
Nevertheless, it gives us hints about what caused the
improvement in performance. Use of the cache tool on the
whole application would increase the run time dramatically.

Twenty-six calls to the original loop (Figure 1) have a
total of 1,476,017,322 memory references, of which
77,638,624 are cache misses. The modified loop (Figure
10), on the other hand, has fewer references due to the fact
that we eliminated an expensive array initialization at each
step and removed the temporary array YIEMP. The number
of cache misses dropped from 77,638,624 to 72,384,348
or a reduction in misses of 7 percent. If we compile the
modified loop without the -u n r o l l 1 switch, the number
of cache misses increases slightly. On the 21164 Alpha
microprocessor, all the misses are effectively performed in
serial . This means that for memory-bound codes like the
loop we are currently investigating, execution time primar­
ily depends on the number of cache misses.

The histograms illustrating the access strides for the dif­
ferent arrays helped us design a more suitable algorithm for
our architecture. By increasing the stride one references in
the loads for the arrays AA and ROWIDX, eliminating the
extra references in COLS'1Rand Q, and improving the strides
for Q, we increased the performance of this application dra­
matically. Counting the number of cache misses gave us a
better understanding as to why the new access patterns
achieve enhanced performance. It also helped us under­
stand that not allowing the compiler to unroll the already
hand-unrolled loops in the modified loop decreased the
number of cache misses. The execution time for this appli­
cation [n = 75,000 and AA(204427,12) has 15 million
nonzero elements] decreased from 1,970 seconds to 1,831
seconds on a single 625-megahertz (MHz) 21164 Alpha
microprocessor of an AlphaServer 8400 5/ 625 system.
This is an improvement of 139 seconds or 8 percent.

100

90

80

I=' z
UJ 70
(.)
a:
UJ
!!:. 60
(/)
Cl
<{

50 0
....J
LL
0 40 a:
UJ
ID
::!!: 30 :)
z

20

10

0
0 '<t co C\I ID 0 '<t co C\I ID 0 '<t co C\I ID 0 I{) (') I{) oi (') ~ C\I C\I C\I (') (') '<t '<t '<t I{) I{) ID C\I I{) ;;:; C\I '<t "' co ID

C\I q 0 0 (') z I I I C\i -i' ai <ti C\i
'<t co m I I I I (') u::
m C\I I{)

C\I ~ ~ ~ I I ~ C\I ;;:; C\I '<t ~ ~ I
KEY: STRIDES IN BYTES co ID

~
C\I

D 1 STEPAGO • 4 STEPS AGO
(')

D 2STEPSAGO • 5 STEPS AGO

• 3 STEPS AGO

Figure 11
Strides for Array COLSTR between the Current Load and the Load One through Five Steps Ago

100

90

80

I=' z
UJ 70
(.)
a:
UJ
!!:. 60
(/)
Cl
<{

50 0
....J
LL
0 40 a:
UJ
ID
::!!: 30 :)
z

20

10

0
0 '<t co C\I ID 0 '<t co C\I m 0 '<t co C\I ID g I{) (') I{) ai (') ~ C\I C\I C\I (') (') '<t '<t '<t I{) I{) C\I I{) ;;:; C\I '<t "' co m

C\I o_ 0 0 (') z I I I C\i -i' ai <ti C\i
'<t co ID I I I I (') u::
ID C\I I{)

C\I ~ ~ ~ I I ~ C\I ;;:; C\I '<t ~ ~ I
KEY: STRIDES IN BYTES co ID

~
C\I

D 1 STEPAGO • 4STEPSAGO (')

D 2STEPSAGO • 5 STEPS AGO

• 3STEPSAGO

Figure 12
Strides for Array Q between the Current Load and the Load One through Five Steps Ago

Digital Technical Journal Vol. 9 No. 4 1997 29

100

90

80

i=-z
~ 70
a:
LU
~ 60
(/)
LU
a:
0
f-

50
(/)

u..
0 40
a:
LU
co
:::;; 30
=i z

20

10

0
0 '<t <Xl N <D 0 '<t <Xl N <D 0 '<t <Xl N <D 0 "' (') "' oi (')

~ N N N (') (') '<t '<t '<t "' "' <D N "' ;,; N '<t 0, <Xl <D
N ~ 0 0 (')

I I I "' .f aj (0 "' z
cli <Xl <D I I I I (') u::

N "' N :.:: :.:: :.:: I I ~ N ;,; N '<t :.:: :.:: I
KEY: STRIDES IN BYTES <Xl <D :.::

N

D 1 STEPAGO • 4STEPSAGO
(')

D 2 STEPS AGO • 5 STEPS AGO

3 STEPS AGO

Figure 13
Strides for Array Q between the Current Store and the Store One through Five Steps Ago

70

60

i=-z 50 LU
()
a:
LU
~
(/) 40
0
<{
0
...J
u.. 30 0
a:
LU
co
:::;;
=i
z 20

10

0
0 '<t <Xl N <D 0 '<t <Xl N <D 0 '<t <Xl N <D 0 "' (') "' oi

(')
~ N N N (') (') '<t '<t '<t "' "' <D N "' ;,; N '<t 0, <Xl <D

N ~ 0 0 (') z I I I t\i ,q-" a," (0 "' '<t <Xl <D I I I I (') u::
<D N "' N :.:: :.:: :.:: I I ~ N ;,; N '<t :.:: :.:: I

KEY: STRIDES IN BYTES <Xl ~ :.::

D 1 STEPAGO • N

4 STEPSAGO (')

D 2 STEPS AGO • 5STEPS AGO

3STEPS AGO

Figure 14
Strides for Array AA between the Current Load and the Load One through Five Steps Ago

30 Digital Technical Journal Vol. 9 No. 4 1997

60

50

~ z
w
(..) 40 a:
w
e:..
(/)
Cl
<I: 30 0
-'
u.
0
a:
w
Cll 20
~
::::> z

10

0
.n .~ .n

0 v a:> N <O 0 v a:>
N N N

N <O 0 v a:> N <O 0 ,._
"' (')

(') (') v v v "' "' <O N "' i,i N
N o_

I I I -v a:> <O I
<O N "' N N

KEY: STRIDES IN BYTES i,i

D 1 STEPAGO • 4STEPSAGO

D 2 STEPS AGO • 5STEPSAGO

• 3 STEPS AGO

Figure 15
Strides for Array ROWTDX between the Current Load and the Load One through Five Steps Ago

50

45

40

~
d:l 35
(..)
a:
w
e:._ 30
(/)
Cl
<I: 25 0
-'
u.
0
a: 20
w
Cll
~ 15 ::::>
z

10

5

0
0 v

KEY:

0 1 STEPAGO

0 2STEPSAGO

3STEPSAGO

Figure 16

n
a:>

n

~ <O 0
N

n
v
N

• 4STEPSAGO

• 5STEPSAGO

n
N
(')

<O
(')

n n

v a:> N <O v v "' "'

STRIDES IN BYTES

@
~ 1.l

,._
"' N "' i,i N

I I I
v
<O

a:> <O
N "' N

Strides for Array Pbetween the Current Load and the Load One through Five Steps Ago

Digital Technical Journal

(')

~
I

N

i,i

,._
"' ai (') ,._

i'.: v Ol a:> <O
0 0 (') ,._ z N. .f aS <ti ci
I I I (') u::

:.:: :.:: :.:: I I ~
N v :.:: :.:: I a:> <O :.::

N
(')

rm ~
,._

"' m gs ,._
i'.: v Ol <O

0 0 (') ,._ z ci .f aS <ti ci
I I I (') u::

:.:: :.:: :.:: I I ~
N v :.:: :.:: I a:> <O :.::

N
(')

Vol. 9 No. 4 1997 31

Conclusion

The case study shows that, given the right program
analysis tools, a program developer can take better
advantage of his or her computer system. The experi­
mental tool we designed was very useful in providing
insight into the algorithm's behavior. The approach
considered yields an improvement in performance of
8 percent on a 625-MHz 21164 Alpha microproces­
sor. This is definitely a worthwhile exercise since a sub­
stantial reduction in execution time was obtained
using straightforward and easy guidelines.

The data collected from a memory access profiling
tool helps the user understand a given program as well
as its memory access patterns. It is an easier and faster
way to gain insight into a program than examining the
listing and the assembler generated by the compiler.
Such a tool enables the programmer to compare mem­
ory access patterns of different algorithms; therefore,
it is very useful when optimizing codes. Probably its
most important value is that it shows the developer if
his or her implementation is doing what he or she
thinks the algorithm is doing and highlights potential
bottlenecks resulting from memory accesses. Optimiz­
ing an application is an iterative process, and being able
to use relatively easy-to-use tools like Atom is a very
important part of the process. The major advantage of
the tool presented in this paper is that no source code
is needed, so it can be used to analyze the performance
of program executables.

Acknowledgments

The authors wish to thank David LaFrance-Linden,
Dwight Manley, Jean-Marie Verdun, and Dick Foster
fo_r fruitful discussions. Thanks to John Eck, Dwight
Manley, Ned Anderson, and Chuck Schneider for
reading and commenting on earlier versions of the
paper. Special thanks go to the anonymous referees for
comments and suggestions that helped us consider­
ably improve the paper. Finally, we thank John
Kreatsoulas and Dave Fenwick for encouraging our
collaboration.

References

1. Programmer's Guide, Digital UNIX Ver:sion 4.0, chapter
9 (Maynard, Mass., Digital Equipment Corporation,
March 1996).

2. 0 . Brewer, J. Dongarra, and D. Sorensen, Tools to Aid in
the Analysis of Memory Access Patterns for Fortran Pro­
grams, Technical Report, Argonne National Laboratory
(June 1988).

3. DEC Fortran Language Reference Manual (Maynard,
Mass., Digital Equipment Corporation, 1997).

32 Digital Technical Journal Vol. 9 No. 4 1997

4. D. Blickstein, P. Craig, C. Davidson, R. Faiman, K Glos­
sop, R. Grove, S. Hobbs, and W. Noyce, The GEM
Optimizing Compiler System, Digital Technical Jour­
nal, vol. 4, no. 4 (1992): 121-136.

Biographies

Susanne M. Balle
Susanne Balle is currently a member of the High Perfor­
mance Computing Expertise Center. Her work areas are
performance prediction for 21264 microprocessor-based
architectures, memory access pattern analysis, parallel
Lancws algorithms for solving very large eigenvalue prob­
lems, distributed-memory matrix computations, as well as
improving performance of standard industry and customer
benchmarks. Before joining DIGITAL, she was a postdoc­
toral fellow at the Mathematical Sciences Department at the
IBM Thomas J. Watson Research Center where she worked
on high-performance mathematical software. From 1992 to
1995, she consulted for the Connection Machine Scientific
Software Library (CMSSL) group at Thinking Machines
Corporation. Susanne received a Ph.D. in mathematics and
an M.S. in mechanical engineering and computational fluid
dynamics from the Technical University of Denmark. She is
a member of SIAM.

Simon C. Steely, Jr.
Simon Steely is a consulting engineer in DIGITAL's
AlphaServer Platform Development Group. In his 21 years
at DIGITAL, he has worked on many projects, including
development of the PDP-11, VAX, and Alpha systems. His
work has focused on writing microcode, designing proces­
sor and system architecture, and doing performance analysis
to make design decisions. In his most recent project, he was
a member of the architecture team for a future system. In
addition, he led the team developing the cache-coherency
protocol on that project. His primary interests are computer
architecture, performance analysis, prediction technologies,
cache/memory hierarchies, and optimization of code for
best performance. Simon has a B.S. in engineering from the
University ofNew Mexico and is a member ofIEEE and
ACM. He holds 15 patents and has several more pending.

OpenVMS Alpha 64-bit
Very Large Memory
Design

The OpenVMS Alpha version 7.1 operating

system provides memory management features

that extend the 64-bit VLM capabilities intro­

duced in version 7.0. The new OpenVMS Alpha

APls and mechanisms allow 64-bit VLM applica­

tions to map and access very large shared mem­

ory objects (global sections). Design areas

include shared memory objects without disk

file backing storage {memory-resident global

sections), shared page tables, and a new physi­

cal memory and system fluid page reservation

system.

I
Karen L. Noel
Nitin Y. Karkhanis

Database products and other applications impose heavy
demands on physical memory. The newest version of
DIGITAL's Open VMS Alpha operating system extends
its very large memory (VLM) support and allows large
caches to remain memory resident. OpenVMS Alpha
version 7 .1 enables applications to take advantage of
both 64-bit virtual addressing and very large memories
consistent with the Open VMS shared memory model.
In this paper, we describe the new 64-bit VLM capabili­
ties designed for the Open VMS Alpha version 7.1 oper­
ating system. We explain application flexibility and the
system management issues addressed in the design and
discuss the performance improvements realized by
64-bit VLM applications.

Overview

A VLM system is a computer with more than 4 giga­
bytes (GB) of main memory. A flat, 64-bit address
space is commonly used by VLM applications to
address more than 4 GB of data.

A VLM system allows large amounts of data to
remain resident in main memory, thereby reducing
the time required to access that data. For example,
database cache designers implement large-scale caches
on VLM systems in an effort to improve the access
times for database records. Similarly, VLM database
applications support more server processes than ever
before. The combination oflarge, in-memory caches
and an increased number of server processes signifi­
cantly reduces the overall time database clients wait to
receive the data requested. 1

The Open VMS Alpha version 7.0 operating system
took the first steps in accommodating the virtual
address space requirements of VLM applications by
introducing 64-bit virtual addressing support. Prior to
version 7.0, large applications-as well as the Open VMS
operating system itself-were becoming constrained by
the limits imposed by a 32-bit address space.

Although version 7.0 eased address space restric­
tions, the existing Open VMS physical memory man -
agement model did not scale well enough to
accommodate VLM systems. Open VMS imposes spe­
cific limits on the amount of physical memory a

Digital Technical Journal Vol. 9 No. 4 1997 33

process can occupy. As a result, applications lacked the
ability to keep a very large object in physical memory.
In systems on which the physical memory is not plen­
tiful, the mechanisms that limit per-process memory
utilization serve to ensure fair-and-equal access to a
potentially scarce resource. However, on systems rich
with memory whose intent is to service applications
creating VLM objects, the limitations placed on per­
process memory utilization inhibit the overall perfor­
mance of those applications. As a result, the benefits of
a VLM system may not be completely realized.

Applications that require very large amounts of
physical memory need additional VLM support. The
goals of the Open VMS Alpha VLM project were the
following:

• Maximize the operating system's 64-bit capabilities

• Take full advantage of the Alpha Architecture

• Not require excessive application change

• Simplify the system management of a VLM system

• Allow for the creation ofVLM objects that exhibit
the same basic characteristics, from the program­
mer's perspective, as other virtual memory objects
created with the OpenVMS system service pro­
gramming interface

These goals became the foundation for the follow­
ing VLM technology implemented in the Open VMS
Alpha version 7.1 operating system:

• Memory-resident global sections-shared memory
objects that do not page to disk

• Shared page tables- page tables mapped by multiple
processes, which in turn map to memory-resident
global sections

• The reserved memory registry-a memory reserva­
tion system that supports memory-resident global
sections and shared page tables

The remainder of this paper describes the major
design areas of VLM support for Open VMS and dis­
cusses the problems addressed by the design team, the
alternatives considered, and the benefits of the extended
VLM support in Open VMS Alpha version 7 .1.

Memory-resident Global Sections

We designed memory-resident global sections to
resolve the scaling problems experienced by VLM
applications on Open VMS. We focused our design on
the existing shared memory model, using the 64-bit
addressing support. Our project goals included simpli­
fying system management and harnessing the speed of
the Alpha microprocessor. Before describing memory­
resident global sections, we provide a brief explanation
of shared memory, process working sets, and a page
fault handler.

Global Sections
An Open VMS global section is a shared memory
object. The memory within the global section is
shared among different processes in the system. Once
a process has created a global section, others may map
to the section to share the data. Several types of global
sections can be created and mapped by calling
Open VMS system services.

Global Section Data Structures Internally, a global
section consists of several basic data structures that are
stored in system address space and are accessible to all
processes from kernel mode. When a global section is
created, OpenVMS allocates and initializes a set of
these data structures. The relationship between the
structures is illustrated in Figure 1. The sample global
section is named "SHROBJ" and is 2,048 Alpha pages
or 16 megabytes (MB) in size. Two processes have
mapped to the global section by referring to the global

GLOBAL SECTION DESCRIPTOR GLOBAL SECTION TABLE ENTRY GLOBAL PAGE TABLE

HEADER J GSTX

OTHER INFORMATION

"SHROBJ"

KEY:

GSTX GLOBAL SECTION TABLE INDEX
GPTX GLOBAL PAGE TABLE INDEX
GPTE GLOBAL PAGE TABLE ENTRY

Figure 1
Global Section Data Structures

HEADER

GPTX

SIZE = 2,048 PAGES

REFCNT = 4,096

FLAGS

FILE BACKING STORAGE
INFORMATION, ETC.

34 Digital Technical Journal Vol. 9 No. 4 1997

11
GPTE

GPTE

GPTE

PAGEO

PAGE 1

PAGE 2,047

section data structures m their process page table
entries (PTEs).

Process PTEs Mapping to Global Sections When a
process maps to a global section, its process PTEs refer
to global section pages in a one-to-one fashion. A page
of physical memory is allocated when a process
accesses a global section page for the first time. This
results in both the process PTE and the global section
page becoming valid. The page frame number (PFN)
of the physical page allocated is stored in the process
PTE. Figure 2 illustrates two processes that have
mapped to the global section where the first process
has accessed the first page of the global section.

When the second process accesses the same page as
the first process, the same global section page is read
from the global section data structures and stored in
the process PTE of the second process. Thus the two
processes map to the same physical page of memory.

The operating system supports two types of global
sections: a global section whose original contents are
zero or a global section whose original contents are
read from a file. The zeroed page option is referred to
as demand zero.

Backing Storage for Global Sections Global section
pages require backing storage on disk so that more fre­
quently referenced code or data pages can occupy
physical memory. The paging of least recently used
pages is typical of a virtual memory system. The back­
ing storage for a global section can be the system page
files, a file opened by Open VMS, or a file opened by
the application. A global section backed by system
page files is referred to as a page-file-backed global sec­
tion. A global section backed by a specified file is
referred to as a file-backed global section.

When a global section page is invalid in all process
PTEs, the page is eligible to be written to an on-disk

backing storage file. The physical page may remain in
memory on a list of modified or free pages. Open VMS
algorithms and system dynamics, however, determine
which page is written to disk.

Process Working Sets
On OpenVMS, a process' valid memory is tracked
within its working set lists. The working set of a
process reflects the amount of physical memory a
process is consuming at one particular point in time.
Each valid working set list entry represents one page of
virtual memory whose corresponding process PTE is
valid. A process' working set list includes global sec­
tion pages, process private section pages, process pri­
vate code pages, stack pages, and page table pages.

A process' working set quota is limited to 512 MB
and sets the upper limit on the number of pages that
can be swapped to disk. The limit on working set
quota matches the size of a swap 1/0 request.2 The
effects on swapping would have to be examined to
increase working set quotas above 512 MB.

Process working set lists are kept in 32-bit system
address space. When free memory is plentiful in the sys­
tem, process working set lists can increase to an extended
quota specified in the system's account file for the user.
The system parameter, WSMAX, specifies the maximum
size to which a process working set can be extended.
Open VMS specifies an absolute maximum value of4 GB
for the WSMAX system parameter. An inverse relation­
ship exists between the size specified for WSMAX and the
number of resident processes Open VMS can support,
since both are maintained in the 32-bit addressable por­
tion of system space. For example, specifying the maxi­
mum value for WSMAX sharply decreases the number of
resident processes that can be specified.

Should Open VMS be required to support larger
working sets in the future, the working set lists would
have to be moved out of32-bit system space.

FIRST PROCESS PTEs GLOBAL PAGE TABLE SECOND PROCESS PTEs

Figure 2

VALID- PFN

INVALID - GPTX LJ

INVALID • GPTX LJ

KEY:

GPTX GLOBAL PAGE TABLE INDEX
GPTE GLOBAL PAGE TABLE ENTRY

Process and Global PTEs

VALID- PFN L_ INVALID - GPTX

GPTE
L_

INVALID - GPTX

. .
GPTE L_ INVALID · GPTX

Digital Technical Journal Vol. 9 No. 4 1997 35

Page Fault Handling for Global Section Pages
The data within a global section may be heavily
accessed by the many processes that are sharing the
data. Therefore, the access time to the global section
pages may influence the overall performance of the
application.

Many hardware and software factors can influence
the speed at which a page within a global section is
accessed by a process. The factors relevant to this dis­
cussion are the following:

• Is the process PTE valid or invalid?

• If the process PTE is invalid, is the global section
page valid or invalid?

• If the global section page is invalid, is the page on
the modified list, free page list, or on disk within the
backing storage file?

If the process PTE is invalid at the time the page is
accessed, a translation invalid fault, or page fault, is
generated by the hardware. The Open VMS page fault
handler determines the steps necessary to make the
process PTE valid.

If the global section page is valid, the PFN of the
data is read from the global section data structures.
This is called a global valid fault. This type of fault is
corrected quickly because the data that handles this
fault is readily accessible from the data structures in
memory.

If the global section page is invalid, the data may still
be within a physical page on the modified or free page
list maintained by OpenVMS. To correct this type of
fault, the PFN that holds the data must be removed
from the modified or free page list, and the global sec­
tion page must be made valid. Then the fault can be
handled as ifit were a global valid fault.

If the page is on disk within the backing storage file,
an I/0 operation must be performed to read the data
from the disk into memory before the global section
page and process PTE can be made valid. This is the
slowest type of global page fault, because performing a
read I/0 operation is much slower than manipulating
data structures in memory.

For an application to experience the most efficient
access to its shared pages, its process PTEs should be
kept valid. An application may use system services to
lock pages in the working set or in memory, but typi­
cally the approach taken by applications to reduce
page fault overhead is to increase the user account's
working set quota. This approach does not work when
the size of the global section data exceeds the size of
the working set quota limit of512 MB.

Database Caches as File-backed Global Sections
Quick access to a database application's shared mem­
ory is critical for an application to handle transactions
quickly.

36 Digital Technical Journal Vol. 9 No. 4 1997

Global sections implement shared memory on
Open VMS, so that many database processes can share
the cached database records. Since global sections
must have backing storage on disk, database caches are
either backed by the system's page files or by a file cre­
ated by the database application.

For best performance, the database application
should keep all its global section pages valid in the
process PTEs to avoid page fault and I/0 overhead.
Database processes write modified buffers from the
cache to the database files on an as-needed basis.
Therefore, the backing storage file required by
Open VMS is redundant storage.

Ve,y Large Global Sections

The OpenVMS VLM project focused on VLM data­
base cache design. An additional goal was to design
the VLM features so that other types ofVLM applica­
tions could benefit as well.

Consider a database cache that is 6 GB in size.
Global sections of this magnitude are supported on
OpenVMS Alpha with 64-bit addressing support. If
the system page files are not used, the application must
create and open a 6-GB file to be used as backing stor­
age for the global section.

With the maximum quota of512 MB for a process
working set and with the maximum of a 4-GB working
set size, no process could keep the entire 6-GB data­
base cache valid in its working set at once. When an
OpenVMS global section is used to implement the
database cache, page faults are inevitable. Page fault
activity severely impacts the performance of the VLM
database cache by causing unnecessary I/0 to and
from the disk while managing these pages.

Since all global sections are pageable, a 6-GB file
needs to be created for backing storage purposes. In
the ideal case, the backing storage file is never used.
The backing storage file is actually redundant with the
database files themselves.

VLM Design Areas
The VLM design team targeted very large global sec­
tions (4 GB or larger) to share data among many
processes. Furthermore, we assumed that the global
section's contents would consist of zeroed memory
instead of originating from a file. The team explored
whether this focus was too narrow. We were con­
cerned that implementing just one type ofVLM global
section would preclude support for certain types of
VLM applications.

We considered that VLM applications might use
very large amounts of memory whose contents origi­
nate from a data file. One type ofread-only data from
a file contains program instructions (or code). Code
sections are currently not pushing the limits of 32-bit
address space. Another type of read-only data from a
file contains scientific data to be analyzed by the VLM

application. To accommodate very large read-only
data of this type, a large zeroed global section can be
created, the data from the file can be read into mem -
ory, and then the data can be processed in memory.

If writable pages are initially read from a file instead
of zeroed, the data will most likely need to be written
back to the original file. In this case, the file can be
used as the backing storage for the data. This type of
VLM global section is supported on Open VMS Alpha
as a file-backed global section. The operating system's
algorithm for working set page replacement keeps the
most recently accessed pages in memory. Working set
quotas greater than 512 MB and working set sizes
greater than 4 GB help this type of VLM application
scale to higher memory sizes.

We also considered very large demand-zero private
pages, "malloc" or "heap" memory. The system page
files are the backing storage for demand-zero private
pages. Currently, processes can have a page file quota
as large as 32 GB. A VLM application, however, may
not want these private data pages to be written to a
page file since the pages are used in a similar fashion as
in-memory caches. Larger working set quotas also
help this type ofVLM application accommodate ever­
increasing memory sizes.

Backing Storage Issues
For many years, database cache designers and database
performance experts had requested that the
Open VMS operating system support memory with no
backing storage files. The backing storage was not
only redundant but also wasteful of disk space. The
waste issue is made worse as the sizes of the database
caches approach the 4-GB range. As a result, the
OpenVMS Alpha VLM design had to allow for non­
file-backed global sections.

The support of 64-bit addressing and VLM has always
been viewed as a two-phased approach, so that function­
ality could be delivered in a timely fashion. 3 Open VMS
Alpha version 7.0 provided the essentials of 64-bit
addressing support. The VLM support was viewed as an
extension to the memory management model and was
deferred to Open VMS Alpha version 7 .1.

Working Set List Issues. Entries in the process work­
ing set list are not required for pages that can never be
written to a backing storage file. The fundamental con­
cept of the Open VMS working set algorithms is to sup­
port the paging of data from memory to disk and back
into memory when it is needed again. Since the focus
of the VLM design was on memory that would not be
backed by disk storage, the VLM design team realized
that these pages, although valid in the process PTEs,
did not need to be in the process' working set list.

VLM Programming Interface
The Open VMS Alpha VLM design provides a new pro­
gramming interface for VLM applications to create,

map to, and delete demand-zero, memory-resident
global sections. The existing programming interfaces
did not easily accommodate the new VLM features.

To justify a new programming interface, we looked
at the applications that would be calling the new system
service routines. To address more than 4 GB of mem­
ory in the flat Open VMS 64-bit address space, a 32-bit
application must be recompiled to use 64-bit pointers
and often requires source code changes as well.
Database applications were already modifying their
source code to use 64-bit pointers and to scale their
algorithms to handle VLM systems.1 Therefore, calling
a new set of system service routines was considered
acceptable to the programmers of VLM applications.

Options for Memory-resident Global Sections

To initialize a very large memory-resident global sec­
tion mapped by several processes, the overhead of
hardware faults, allocating zeroed pages, setting
process PTEs valid, and setting global section pages
valid is eliminated by preallocating the physical pages
for the memory-resident global section. Preallocation
is performed by the reserved memory registry, and is
discussed later in this paper. Here we talk about
options for how the reserved memory is used.

Two options, ALLOC and FLUID, are available
for creating a demand-zero, memory-resident global
section.

ALLOC Option The ALLOC option uses preallocated,
zeroed pages of memory for the global section. When
the ALLOC option is used, pages are set aside during
system start-up specifically for the memory-resident
global section. Preallocation of contiguous groups of
pages is discussed in the section Reserving Memory
during System Start-up. Preallocated memory-resident
global sections are faster to initialize than memory­
resident global sections that use the FLUID option.

Run-time performance is improved by using the
Alpha Architecture's granularity hint, a mechanism we
discuss later in this paper. To use the ALLOC option,
the system must be rebooted for large ranges of physi­
cally contiguous memory to be allocated.

FLUID Option The FLUID option allows pages not
yet accessed within the global section to remain fluid
within the system. This is also referred to as the fault
option because the page fault algorithm is used to allo­
cate the pages. When the FLUID (or fault) option
is used, processes or the system can use the physical
pages until they are accessed within the memory­
resident global section. The pages remain within the
system's fluid memory until they are needed. This type
of memory-resident global section is more flexible
than one that uses the ALLOC option. If an applica- ·
tion that uses a memory-resident global section is run
on a system that cannot be rebooted due to system

Digital Technical Journal Vol. 9 No. 4 1997 37

availability concerns, it can still use the FLUID option.
The system will not allow this application to run unless
enough pages of memory are available in the system
for the memory-resident global section.

The system service internals code checks the
reserved memory registry to determine the range of
pages preallocated for the memory-resident global
section or to determine if the FLUID option will be
used. Therefore the decision to use the ALLOC or the
FLUID option is not made within the system services
routine interface. The system manager can determine
which option is used by specifying preferences in the
reserved memory registry. An application can be
switched from using the ALLOC option to using the
FLUID option without requiring a system reboot.

Design Internals
The internals of the design choices underscore the mod­
ularity of the shared memory model using global sec­
tions. A new global section type was easily added to the
Open VMS system. Those aspects of memory-resident
global sections that are identical to pageable global sec­
tions required no code modifications to support.

To support memory-resident global sections, the
MRES and ALLOC flags were added to the existing
global section data structures. The MRES flag indi­
cates that the global section is memory resident, and
the ALLOC flag indicates that contiguous pages were
preallocated for the global section.

The file-backing storage information within global
section data structures is set to zero for memory­
resident global sections to indicate that no backing
storage file is used. Other than the new flags and the
lack of backing storage file information, a demand­
zero, memory-resident global section looks to
Open VMS Alpha memory management like a demand­
zero, file-backed global section. Figure 3 shows the
updates to the global section data structures.

One important difference with memory-resident
global sections is that once a global section page
becomes valid, it remains valid for the life of the global
section. Global section pages by definition can never
become invalid for a memory-resident global section.

When a process maps to a memory-resident global
section, the process PTE can be either valid for the
ALLOC option or invalid for the FLUID option.
When the ALLOC option is used, no page faulting
occurs for the global section pages.

When a process first accesses an invalid memory­
resident global section page, a page fault occurs just as
with traditional file-backed global sections. Because
the same data structures are present, the page fault
code initially executes the code for a demand-zero,
file-backed global section page. A zeroed page is allo­
cated and placed in the global section data structures,
and the process PTE is set valid.

The working set list manipulation steps are skipped
when the MRES flag is encountered in the global sec­
tion data structures. Because these global section
pages are not placed in the process working set list,
they are not considered in its page-replacement algo­
rithm. As such, the OpenVMS Alpha working set
manipulation code paths remained unchanged.

System Management and Memory-resident Global
Sections
When a memory-resident global section is used
instead of a traditional, pageable global section for a
database cache, there is no longer any wasted page file
storage required by OpenVMS to back up the global
section.

The other system management issue alleviated by
the implementation of memory-resident global sec­
tions concerns working set sizes and quotas. When a
file-backed global section is used for the database
cache, the database processes require elevated working

GLOBAL SECTION DESCRIPTOR GLOBAL SECTION TABLE ENTRY GLOBAL PAGE TABLE

HEADER LJ HEADER

GSTX GPTX 11
SIZE = n

OTHER INFORMATION
REFCNT

FLAGS ,x
"SHROBJ"

FILE BACKING STO lA' INFORMATION = 0

KEY:

GSTX GLOBAL SECTION TABLE INDEX
GPTX GLOBAL PAGE TABLE INDEX
GPTE GLOBAL PAGE TABLE ENTRY
DZRO DEMAND ZERO

Figure 3
Memory-resident Global Section Data Structures

38 Digital Technical Journal Vol. 9 No. 4 1997

\
MRES ALLOC
FLAG FLAG

INVALID - DZRO,GSTX

INVALID - DZRO,GSTX

.
INVALID - DZRO,GSTX

PAGEO

PAGE 1

PAGE n - 1

set quotas to accommodate the size of the database
cache. This is no longer a concern because memory­
resident global section pages are not placed into the
process working set list.

With the use of memory-resident global sections,
system managers may reduce the value for the
WSMAX system parameter such that more processes
can remain resident within the system. Recall that a
process working set list is in 32-bit system address
space, which is limited to 2 GB.

Shared Page Tables

VLM applications typically consume large amounts of
physical memory in an attempt to minimize disk 1/0
and enhance overall application performance. As the
physical memory requirements of VLM applications
increase, the following second-order effects are
observed due to the overhead of mapping to very large
global sections:

• Noticeably long application start-up and shut­
down times

• Additional need for physical memory as the num­
ber of concurrent sharers of a large global section
increases

• Unanticipated exhaustion of the working set quota
and page file quota

• A reduction in the number of processes resident in
memory, resulting in increased process swapping

The first two effects are related to page table map­
ping overhead and size. The second two effects, as
they relate to page table quota accounting, were also
resolved by a shared page tables implementation. The
following sections address the first two issues since
they uniquely pertain to the page table overhead.

Application Start-up and Shut-down Times
Users ofVLM applications can observe long applica­
tion start-up and shut-down times as a result of creat­
ing and deleting very large amounts of virtual
memory. A single process mapping to a very large
virtual memory object does not impact overall system
performance. However, a great number of processes
that simultaneously map to a very large virtual mem­
ory object have a noticeable impact on the system's
responsiveness. The primary cause of the performance
degradation is the accelerated contention for internal
operating system locks. This observation has been
witnessed on OpenVMS systems and on DIGITAL
UNIX systems (prior to the addition ofVLM support.)

On Open VMS, the memory management spinlock
(a synchronization mechanism) serializes access to priv­
ileged, memory-management data structures. We have
observed increased spinlock contention as the result
of hundreds of processes simultaneously mapping to

large global sections. Similar lock contention and sys­
tem unresponsiveness occur when multiple processes
attempt to delete their address space simultaneously.

Additional Need for Physical Memory
For pages of virtual memory to be valid and resident,
the page table pages that map the data pages must also
be valid and resident. If the page table pages are not in
memory, successful address translation cannot occur.

Consider an 8-GB, memory-resident global section
on an Open VMS Alpha system (with an 8-kilobyte page
size and 8-byte PTE size). Each process that maps the
entire 8-GB, memory-resident global section requires
8 MB for the associated page table structures. If 100
processes are mapping the memory-resident global sec­
tion, an additional 800 MB of physical memory must be
available to accommodate all processes' page table
structures. This further requires that working set list
sizes, process page file quotas, and system page files be
large enough to accommodate the page tables.

When 100 processes are mapping to the same
memory-resident global section, the same PTE data is
replicated into the page tables of the 100 processes.
If each process could share the page table data, only
8 MB of physical memory would be required to map
an 8-GB, memory-resident global section; 792 MB of
physical memory would be available for other system
purposes.

Figure 4 shows the amount of memory used for
process page tables mapping global sections ranging in
size from 2 to 8 GB. Note that as the number of
processes that map an 8-GB global section exceeds

<ii
~ 8.000

(3 7,000
w
6 6,000
en w
...J
~ 5,000
I-'
w
C!J 4,000
cI:
~ 3,000
w
0

~ 2,000
a.
lL
0 1,000
w
N
en

3,072 4,096 5,120 6,144 7,168 8,192

GLOBAL SECTION SIZE (MEGABYTES)

KEY:

-o- 1,000 PROCESSES
-0- 800 PROCESSES

-- 600 PROCESSES
--- 400 PROCESSES
-+- 200 PROCESSES

Figure 4
Process Page Table Sizes

Digital Technical Journal Vol. 9 No. 4 1997 39

1,000, the amount of memory used by process page
tables is larger than the global section itself.

Shared Memory Models
We sought a solution to sharing process page tables
that would alleviate the performance problems and
memory utilization overhead yet stay within the
shared memory framework provided by the operating
system and the architecture. Two shared memory
models are implemented on Open VMS, shared system
address space and global sections.

The Open VMS operating system supports an address
space layout that includes a shared system address
space, page table space, and private process address
space. Shared system address space is created by plac­
ing the physical address of the shared system space
page tables into every process' top-level page table.
Thus, every process has the same lower-level page
tables in its virtual-to-physical address translation
path. In turn, the same operating system code and
data are found in all processes' address spaces at the
same virtual address ranges. A similar means could be
used to create a shared page table space that is used to
map one or more memory-resident global sections.

An alternative for sharing the page tables is to create
a global section that describes the page table structure.
The operating system could maintain the association
between the memory-resident global section and the
global section for its shared page table pages. The
shared page table global section could be mapped at
the upper levels of the table structure such that each
process that maps to it has the same lower-level page
tables in its virtual-to-physical address translation
path. This in turn would cause the data to be mapped
by all the processes.

Figure 5 provides a conceptual representation of the
shared memory model. Figure 6 extends the shared
memory model by demonstrating that the page tables
become a part of the shared memory object.

The benefits and drawbacks of both sharing models
are highlighted in Table 1 and Table 2.

Model Chosen for Sharing Page Tables
After examining the existing memory-sharing models
on Open VMS and taking careful note of the composi­
tion and characteristics of shared page tables, the design
team chose to implement shared page tables as a global
section. In addition to the benefits listed in Table 2, the

UPPERLEVEL~~~~~~ ~~~~~~~~---LOWERLEVEL

LEVEL 1 LEVEL2 LEVEL3

PAGE TABLE (PT) ~ L1PT ~ L2PT - L3PT ~o BASE REGISTER
~ -

'+- L2PT .. L3PT LJ - -

- L2PT .. L3PT LJ -

+ L3PT LJ

LJ
SHROBJ

Figure 5
Shared Memory Object

40 Digital Technical Journal Vol. 9 No. 4 1997

UPPERLEVEL-~~~ ~~~~~~~~~~ ----.LOWERLEVEL

LEVEL 1 LEVEL2 LEVEL3

PAGE TABLE - L1PT - L2PT f-------. L3PT ~u BASE REGISTER - - I

~ L2PT ~ L3PT ~-u -

+. L2PT • L3PT • DATA

Figure6
Shared Memory Objects Using Shared Page Tables

Table 1
Shared Page Table Space-Benefits and Drawbacks

Benefits

Shared page table space begins at the same
virtual address for all processes.

Table 2
Global Sections for Page Tables-Benefits and Drawbacks

Benefits

The same virtual addresses can be used by all
processes, but this is not required.
The amount of virtual address space mapped by shared
page tables is determined by application need.
Shared page tables are available only to those processes
that need them.
Shared page tables allow for significant reuse of exist ing
global section data structures and process address space
management code.

.__ -

• L3PT .. DATA

-

• DATA

SHROBJ

Drawbacks

The virtual address space is reserved for every process.
Processes not using shared page tables are penalized
by a loss in available address space.
Shared page table space is at least 8 GB in size,
regardless of whether the entire space is used.
A significant amount of new code would need to be
added to the kernel since shared system space is man­
aged separately from process address space.

Drawbacks

Shared page tables are mapped at different virtual
addresses per process unless additional steps are taken.

Digital Technical Journal Vol. 9 No. 4 1997 41

design team noticed that shared page table pages bear
great resemblance to the memory-resident pages they
map. Specifically, for a data or code page to be valid and
resident, its page table page must also be valid and resi­
dent. The ability to reuse a significant amount of the
global section management code reduced the debug­
ging and testing phases of the project.

In the initial implementation, shared page table
global sections map to memory-resident global sec­
tions only. This decision was made because the design
focused on the demands ofVLM applications that use
memory-resident global sections. Should significant
demand exist, the implementation can be expanded to
allow the mapping of pageable global sections.

Shared page tables can never map process private data.
The design team had to ensure that the shared page table
implementation kept process private data from entering
a virtual address range mapped by a shared page table
page. If this were to happen, it would compromise the
security of data access between processes.

Shared Page Tables Design
The goals for the design of shared page tables included
the following:

• Reduce the time required for multiple users to map
the same memory-resident global section

• Reduce the physical memory cost of maintaining
private page tables for multiple mappers of the same
memory-resident global section

• Do not require the use of a backing storage file for
shared page table pages

• Eliminate the working set list accounting for these
page table pages

• Implement a design that allows upper levels of the
page table hierarchy to be shared at a later time

Figure 6 demonstrates the shared page table global
section model. The dark gray portion of the figure
highlights the level of sharing supplied in Open VMS
Alpha version 7.1. The light gray portion highlights
possible levels of sharing allowed by creating a shared
page table global section consisting of upper-level
page table pages.

Modifications to Global Section Data Structure Table 2
noted as a benefit the ability to reuse existing data
structures and code. Minor morufications were
exacted to the global section data structures so that
they could be used to represent a shared page table
global section. A new flag, SHARED_PTS, was added
to the global section data structures. Coupled with
this change was the requirement that a memory­
resident global section and its shared page table global
section be uniquely linked together. The correspon­
dence between the two sets of global sections is man­
aged by the operating system and is used to locate the
data structures for one global section when the struc­
tures for the other global section are in hand. Figure 7
highlights the changes made to the data structures.

Creating Shared Page Tables To create a memory­
resident global section, an application calls a system
service routine. No flags or extra arguments are
required to enable the creation of an associated shared
page table global section.

The design team also provided a means to disable
the creation of the shared page tables in the event that
a user might find shared page tables to be undesirable.
To rusable the creation of shared page tables, the
reserved memory registry entry associated with the
memory-resident global section can specify that page
tables are not to be used. Within the system service
routine that creates a memory-resident global section,

GLOBAL SECTION DESCRIPTOR GLOBAL SECTION TABLE ENTRY GLOBAL PAGE TABLE

HEADER J GSTX

OTHER INFORMATION
RELATED_GSTX

"SHROBJ''

KEY:

GSTX GLOBAL SECTION TABLE INDEX
GPTX GLOBAL PAGE TABLE INDEX
GPTE GLOBAL PAGE TABLE ENTRY

Figure 7
Data Structure Modifications

HEADER

GPTX --i
SIZE = n

REFCNT

FLAGS 1

FILE BACKING STORA'
INFORMATION = 0

\
SHPTS
FLAG

42 Digital Technical Journal Vol. 9 No. 4 1997

VALID GPTE

VALID GPTE

. .
VALID GPTE

PAGEO

PAGE 1

PAGE n - 1

the reserved memory registry is examined for an entry
associated with the named global section. If an entry
exists and it specifies shared page tables, shared page
tables are created. If the entry does not specify shared
page tables, shared page tables are not created.

If no entry exists for the global section at all, shared
page tables are created. Thus, shared page tables are
created by default if no action is taken to disable their
creation. We believed that most applications would
benefit from shared page tables and thus should be
created transparently by default.

Once the decision is made to create shared page
tables for the global section, the system service routine
allocates a set of global section data structures for the
shared page table global section. These structures are
initialized in the same manner as their memory­
resident counterparts, and in many cases the fields in
both sets of structures contain identical data.

Note that on current Alpha platforms, there is one
shared page table page for every 1,024 global section
pages or 8 MB. (The number of shared page table
pages is rounded up to accommodate global sections
that are not even multiples of8 MB in size.)

Shared JYIEs represent the data within a shared page
table global section and are initialized by the operating
system. Since page table pages are not accessible
through page table space4 until the process maps to
the data, the initialization of the shared page table
pages presented some design issues. To initialize the
shared page table pages, they must be mapped, yet
they are not mapped at the time that the global section
is created.

A simple solution to the problem was chosen. Each
shared page table page is temporarily mapped to a sys­
tem space virtual page solely for the purposes of initial­
izing the shared PTEs. Temporarily mapping each
page allows the shared page table global section to be
fully initialized at the time it is created.

An interesting alternative for initializing the pages
would have been to set the upper-level PTEs invalid,
referencing the shared page table global section. The
page fault handler could initialize a shared page table
page when a process accesses a global section page,
thus referencing an invalid page table page. The
shared page table page could then be initialized
through its mapping in page table space. Once the
page is initialized and made valid, other processes
referencing the same data would incur a global valid
fault for the shared page table page. This design was
rejected due to the additional overhead of faulting
during execution of the application, especially when
the ALLOC option is used for the memory-resident
global section.

Mapping to a Shared Page Table Global Section Map­
ping to a memory-resident global section that has
shared page tables presented new challenges and con-

straints on the mapping criteria normally imposed by
the virtual address space creation routines. The map­
ping service routines require more stringent mapping
criteria when mapping to a memory-resident global
section that has shared page tables. These require­
ments serve two purposes:

1. Prevent process private data from being mapped
onto shared page tables. If part of a shared page
table page is unused because the memory-resident
global section is not an even multiple of 8 MB, the
process would normally be allowed to create private
data there.

2. Accommodate the virtual addressing alignments
required when mapping page tables into a process'
address space.

For applications that cannot be changed to conform
to these mapping restrictions, a memory-resident
global section with shared page tables can be mapped
using the process' private page tables. This capability is
also useful when the memory-resident global section is
mapped read-only. This mapping cannot share page
tables with a writable mapping because the access pro­
tection is stored within the shared JYIEs.

Shared Page Table Virtual Regions The virtual region
support added in OpenVMS Alpha version 7.0 was
extended to aid in prohibiting process private pages
from being mapped by JYIEs within shared page
tables. Virtual regions are lightweight objects a
process can use to reserve portions of its process
virtual address space. Reserving address space prevents
other threads in the process from creating address
space in the reserved area, unless they specify the
handle of that reserved area to the address space cre­
ation routines.

To control which portion of the address space
is mapped with shared page tables, the shared page
table attribute was added to virtual regions. To map a
memory-resident global section with shared page
tables, the user must supply the mapping routine with
the name of the appropriate global section and the
region handle of a shared page table virtual region.

There are two constraints on the size and alignment
of shared page table virtual regions.

1. The size of a shared page table virtual region must
be an even multiple of bytes mapped by a page table
page. For an 8-KB page system, the size of any
shared page table virtual region is an even multiple
of8MB.

2. The caller can specify a particular starting virtual
address for a virtual region. For shared page table
virtual regions, the starting virtual address must be
aligned to an 8-MB boundary. If the operating
system chooses the virtual address for the region, it
ensures the virtual address is properly aligned.

Digital Technical Journal Vol. 9 No. 4 1997 43

If either the size or the alignment requirement for a
shared page table virtual region is not met, the service
fails to create the region.

The size and alignment constraints placed on shared
page table virtual regions keep page table pages from
spanning two different virtual regions. This allows the
operating system to restrict process private mappings
in shared page table regions and shared page table
mappings in other regions by checking the shared
page table's attribute of the region before starting the
mapping operation.

Mapping within Shared Page Table Regions The address
space mapped within a shared page table virtual region
also must be page table page aligned. This ensures that
mappings to multiple memory-resident global sec­
tions that have unique sets of shared page tables do
not encroach upon each other.

The map length is the only argument to the map­
ping system service routines that need not be an even
multiple of bytes mapped by a page table page. This
is allowed because it is possible for the size of the
memory-resident global section to not be an even
multiple of bytes mapped by a page table page. A
memory-resident global section that fits this length
description will have a portion of its last shared page
table page unused.

The Reserved Memory Registry

OpenVMS Alpha VLM support provides a physical
memory reservation system that can be exploited by
VLM applications. The main purpose of this system is
to provide portions of the system's physical memory
to multiple consumers. When necessary, a consumer
can reserve a quantity of physical addresses in an
attempt to make the most efficient use of system com­
ponents, namely the translation buffer. More efficient
use of the CPU and its peripheral components leads to
increased application performance.

Alpha Granularity Hint Regions
A translation buffer (TB) is a CPU component that
caches recent virtual-to-physical address translations
of valid pages. The TB is a small amount of very fast
memory and therefore is only capable of caching a lim­
ited number of translations. Each entry in the TB rep­
resents a single successful virtual-to-physical address
translation. TB entries are purged either when a
request is made by software or when the TB is full and
a more recent translation needs to be cached.

The Alpha Architecture coupled with software can
help make more effective use of the TB by allowing
several contiguous pages (groups of 8, 64, or 512) to
act as a single huge page. This single huge page is

44 Digital Technical Journal Vol. 9 No. 4 1997

called a granularity hint region and is composed of
contiguous virtual and physical pages whose respective
first pages are exactly aligned according to the number
of pages in the region. When the conditions for a gran­
ularity hint region prevail, the single huge page is
allowed to consume a single TB entry instead of sev­
eral. Minimizing the number of entries consumed for
contiguous pages greatly reduces turnover within the
TB, leading to higher chances of a TB hit. Increasing
the likelihood of a TB hit in turn minimizes the num­
ber of virtual-to-physical translations performed by
the CPU.5

Since memory-resident global sections are nonpage­
able, mappings to memory-resident global sections
greatly benefit by exploiting granularity hint regions.
Unfortunately, there is no guarantee that a contiguous
set of physical pages (let alone pages that meet the
alignment criteria) can be located once the system is
initialized and ready for steady-state operations.

Limiting Physical Memory
One technique to locate a contiguous set of PFNs on
OpenVMS (previously used on Alpha and VAX plat­
forms) is to limit the actual number of physical pages
used by the operating system. This is accomplished by
setting the PHYSICAL_MEMORY system parameter
to a value smaller than the actual amount of physical
memory available in the system. The system is then
rebooted, and the PFNs that represent higher physical
addresses than that specified by the parameter are allo­
cated by the application.

This technique works well for a single application
that wishes to allocate or use a range of PFNs not used
by the operating system. Unfortunately, it suffers from
the following problems:

• It requires the application to determine the first
page not used by the operating system.

• It requires a process running this application to be
highly privileged since the operating system does
not check which PFNs are being mapped.

• Since the operating system does not arbitrate access
to the isolated physical addresses, only one applica­
tion can safely use them.

• The Alpha Architecture allows for implementations
to support discontiguous physical memory or phys­
ical memory holes. This means that there is no
guarantee that the isolated physical addresses are
successively adjacent.

• The PFNs above the limit set are not managed by
the operating system (physical memory data struc­
tures do not describe these PFNs). Therefore, the
pages above the limit cannot be reclaimed by the
operating system once the application is finished
using them unless the system is rebooted.

The Reserved Memory Solution
The Open VMS reserved memory registry was created
to provide contiguous physical memory for the pur­
poses of further improving the performance of VLM
applications. The reserved memory registry allows the
system manager to specify multiple memory reserva­
tions based on the needs of various VLM applications.

The reserved memory registry has the ability to
reserve a preallocated set of PFNs. This allows a set of
contiguous pages to be preallocated with the appro­
priate alignment to allow an Alpha granularity hint
region to be created with the pages. It can also reserve
physical memory that is not preallocated. Effectively,
the application creating such a reservation can allocate
the pages as required. The reservation ensures that the
system is tuned to exclude these pages.

The reserved memory registry can specify a reserva­
tion consisting of prezeroed PFNs. It can also specify
that a reservation account for any associated page
tables. The reservation system allows the system man­
ager to free a reservation when the corresponding
consumer no longer needs that physical memory.

The memory reserved by the reserved memory reg­
istry is communicated to Open VMS system tuning
facilities such that the deduction in fluid memory is
noted when computing system parameters that rely on
the amount of physical memory in the system.

SYSMAN User Interface The Open VMS Alpha
SYSMAN utility supports the RESERVED_MEMORY
command for manipulating entries in the reserved
memory registry. A unique character string is specified
as the entry's handle when the entry is added, modi­
fied, or removed. A size in megabytes is specified for
each entry added.

Each reserved memory registry entry can have the
following options: preallocated PFNs (ALLOC), zeroed
PFNs, and an allotment for page tables. VLM applica­
tions enter their unique requirements for reserved
memory. For memory-resident global sections, zeroed
PFNs and page tables are usually specified.

Reserving Memory during System Start-up To ensure
that the contiguous pages can be allocated and that
run-time physical memory allocation routines can be
used, reserved memory allocations occur soon after
the operating system's physical memory data struc­
tures have been initialized.

The reserved memory registry data file is read to
begin the reservation process. Information about each
entry is stored in a data structure. Multiple entries
result in multiple structures being linked together in a
descending-order linked list. The list is intentionally
ordered in this manner, so that the largest reservations
are honored first and contiguous memory is not frag­
mented with smaller requests.

For entries with the ALLOC characteristic, an
attempt is made to locate pages that will satisfy the
largest granularity hint region that fits within the
request. For example, reservation requests that are
larger than 4 MB result in the first page allocated to be
aligned to meet the requirements of a 512-page gran­
ularity hint region.

The system's fluid page counter is reduced to
account for the amount of reserved memory specified
in each entry. This counter tracks the number of phys­
ical pages that can be reclaimed from processes or the
system through paging and swapping. Another system­
defined value, minimum fluid page count, is calculated
during system initialization and represents the
absolute minimum number of fluid pages the system
needs to function. Deductions from the fluid page
count are always checked against the minimum fluid
page count to prevent the system from becoming
starved for pages.

RunningAUTOGEN, the Open VMS system tuning
utility, after modifying the reserved memory registry
allows for proper initialization of the fluid page
counter, the minimum fluid page count, and other sys­
tem parameters, thereby accommodating the change
in reserved memory. AUTOGEN considers entries in
the reserved memory registry before selecting values
for system parameters that are based on the system's
memory size. Failing to retune the system can lead to
unbootable system configurations as well as poorly
tuned systems.

Page Tables Characteristic The page table reserved
memory registry characteristic specifies that the
reserved memory allotment for a particular entry
should include enough pages for its page table
requirements. The reserved memory registry reserves
enough memory to account for lower-level page table
pages, although the overall design can accommodate
allotments for page tables at any level.

The page table characteristic can be omitted if
shared page tables are not desired for a particular
memory-resident global section or if the reserved
memory will be used for another purpose. For exam­
ple, a privileged application such as a driver could call
the kernel-mode reserved memory registry routines
directly to use its reservation from the registry. In this
case, page tables are already provided by the operating
system since the reserved pages will be mapped in
shared system address space.

Using Reserved Memory Entries are used and
returned to the reserved memory registry using a set
of kernel-mode routines. These routines can be called
by applications running in kernel mode such as the
system service routines that create memory-resident

Digital Technical Journal Vol. 9 No. 4 1997 45

global sections. For an application to create a memory­
resident global section and use reserved memory, the
global section name must exactly match the name of
the reserved memory registry entry.

After the system service routine has obtained the
reserved memory for the memory-resident global sec­
tion, it calls a reserved memory registry routine again
for the associated shared page table global section. If
page tables were not specified for the entry, the system
service routine does not create a shared page table
global section.

A side benefit of using the ALLOC option for the
memory-resident global section is that the shared page
tables can be mapped into page table space using gran­
ularity hint regions as well.

Returning Reserved Memory The memory used by
a memory-resident global section and its associated
shared page table global section is returned to the
reserved memory registry (by calling a kernel-mode
routine) when the global section is deleted. Reserved
memory is only returned when a memory-resident
global section has no more outstanding references.
Preallocated pages are not returned to the system's
free page list.

Freeing Reserved Memory Preallocated reserved mem­
ory that is unused or partially used can be freed to the
system's free page list and added to the system's fluid
page count. Reserved fluid memory is returned to the
system's fluid page count only.

Once an entry's reserved memory has been freed,
subsequent attempts to use reserved memory with the
same name may be able to use only the FLUID option,
because a preallocated set of pages is no longer set
aside for the memory-resident global section. (If the
system's fluid page count is large enough to accom­
modate the request, it will be honored.)

The ability to free unused or partially used reserved
memory registry entries adds flexibility to the manage­
ment of the system. If applications need more mem­
ory, the registry can still be run with the FLUID
option until the system can be rebooted with a larger
amount of reserved memory. A pool of reserved mem­
ory can be freed at system start-up so that multiple
applications can use memory-resident global sections
to a limit specified by the system manager in the
reserved memory registry.

Reserved Memory Registry and Other Applications
Other Open VMS system components and applications
may also be able to take advantage of the reserved
memory registry.

Applications that relied upon modifications to the
PHYSICAL_MEMORY system parameter as a means

46 Digital Technical Journal Vol. 9 No. 4 1997

of gaining exclusive access to physical memory can
enter kernel mode and call the reserved memory reg­
istry kernel-mode routines directly as an alternative.
Once a contiguous range of PFNs is obtained, the
application can map the pages as before.

Using and returning reserved memory registry
entries requires kernel-mode access. This is not viewed
as a problem because applications using the former
method (of modifying the PHYSICAL_MEMORY
system parameter) were already privileged. Using the
reserved memory registry solves the problems associ­
ated with the previous approach and requires few code
changes.

Performance Results

In a paper describing the 64-bit option for the Oracle7
Relational Database System, 1 the author underscores
the benefits realized on a VLM system running the
DIGITAL UNIX operating system. The test results
described in that paper highlight the benefits of being
able to cache large amounts of data instead ofresort­
ing to disk I/0. Although the Open VMS design team
was not able to execute similar kinds of product tests,
we expected to realize similar performance improve­
ments for the following reasons:

• More of a VLM application's hot data is kept resi­
dent instead of paging between memory and sec­
ondary storage.

• Application start-up and shut-down times are sig­
nificantly reduced since the page table structures
for the large shared memory object are also shared.
The result is that many fewer page tables need to be
managed and manipulated per process.

• Reducing the amount of PTE manipulations results
in reduced lock contention when hundreds of
processes map the large shared memory object.

As an alternative to product testing, the design team
devised experiments that simulate the simultaneous
start-up of many database server processes. The exper­
iments were specifically designed to measure the
scaling effects of a VLM system during application
start-up, not during steady-state operation.

We performed two basic tests. In the first, we used a
7.5-GB, memory-resident global section to measure
the time required for an increasing number of server
processes to start up. All server processes mapped to
the same memory-resident global section using shared
page tables. The results shown in Figure 8 indicate
that the system easily accommodated 300 processes.
Higher numbers of processes run simultaneously
caused increasingly large amounts of system stress due
to the paging of other process data.

10,000

9,000

en 8,000
0
~ 7,000

frl 6,000

~ 5,000
...J

~ 4,000

~ 3,000

~ 2,000

1,000

9,991.61

o~~~_._~~~~~~~~~~~~
50 100 150 200 250 300 350 400 450 500 550

PROCESS COUNT

KEY:

-+- MEMORY-RESIDENT GLOBAL SECTION/SHARED PAGE
TABLE

Figure 8
Server Start-up Time versus Process Count

In another test, we used 300 processes to measure
the time required to map a memory-resident global
section with and without shared page tables. In this
test, the size of global section was varied. Note that the
average time required to start up the server processes
rises at nearly a constant rate when not using shared
page tables. When the global section sizes were 5 GB
and greater, the side effect of paging activity caused
the start-up times to rise more sharply as shown in
Figure 9.

The same was not true when using shared page
tables. The time required to map the increasing sec­
tion sizes remained constant at just under three sec­
onds. The same experiment on an AlphaServer 8400
system with 28 GB of memory showed identical con­
stant start-up times as the size of the memory-resident
global section was increased to 27 GB.

16,000

en o 12,000
z
8 10,000
w
~ 8,000
...J

~ 6,000
w
::E 4,000
~

2,000

15,515.35

2,931.03\

o~~~~~~~~~~~~~~-'-~-"-

2,048 2,560 3,072 3,584 4,096 4,608 5,120 5,632 6,144

GLOBAL SECTION SIZE (MEGABYTES)

KEY:

- MEMORY-RESIDENT GLOBAL SECTION/PRIVATE OR
PROCESS PAGE TABLE

-+- MEMORY-RESIDENT GLOBAL SECTION/SHARED PAGE
TABLE

Figure 9
Server Start-up Time on an 8-GB System

Conclusion

The Open VMS Alpha VLM support available in ver­
sion 7.1 is a natural extension to the 64-bit virtual
addressing support included in version 7.0. The 64-bit
virtual addressing support removed the 4-GB virtual
address space limit and allowed applications to make
the most of the address space provided by Alpha sys­
tems. The VLM support enables database products or
other applications that make significant demands on
physical memory to make the most of large memory
systems by allowing large caches to remain memory
resident. The programming support provided as part
of the VLM enhancements enables applications to take
advantage of both 64-bit virtual addressing and very
large memories in a modular fashion consistent with
the Open VMS shared memory model. This combina­
tion enables applications to realize the full power of
Alpha VLM systems.

The Oracle? Relational Database Management
System for OpenVMS Alpha was modified by Oracle
Corporation to exploit the VLM support described in
this paper. The combination of memory-resident
global sections, shared page tables, and the reserved
memory registry has not only improved application
start-up and run-time performance, but it has also
simplified the management of Open VMS Alpha VLM
systems.

Acknowledgments

The authors wish to thank other members of the
Open VMS Alpha Kernel Group who contributed to
the design and implementation of VLM support on
Open VMS Alpha: Tom Benson, Richard Bishop, Clair
Grant, Andy Kuehnel, and Dave Wall. Jef Kennedy
and Tony Lekas of Oracle Corporation provided great
assistance as well. We would also like to thank Ron
Higgins for his management support and Mike
Harvey for his long-standing mentorship. Margie
Sherlock and Tom Benson were especially helpful in
assisting us with the writing aspects of this paper. We
are also thankful to Gaitan D'Antoni who found the
time in current project schedules to accommodate the
writing of this paper.

References

1. V. Gokhale, "Design of the 64-bit Option for the Ora­
cle7 Relational Database Management System," Digital
Tecbnicaljoumal, vol. 8, no. 4 (1996): 76-82.

2. R . Goldenberg and S. Saravanan, Open VMS AXP Inter­
nals and Data Structures, Version 1.5 (Newton, Mass.:
Digital Press, 1994).

3. T. Benson, K. Noel, and R. Peterson, "The Open VMS
Mixed Pointer Sized Environment," Digital Technical
Journal, vol. 8, no. 2 (1996): 72-82.

Digital Technical Journal Vol. 9 No. 4 1997 47

48

4. M. Harvey and L. Szubowicz, "Extending OpenVMS
for 64-bit Addressable Virtual Memory," Digital Tech­
nical]ournal, vol. 8, no. 2 (1996): 57-71.

5. R. Sites and R. Witek, AlphaAXP Architecture Reference
Manual, 2d ed. (Newton, Mass.: Digital Press, 1995).

General References

Open VMS Alpha Guide to 64-bit Addressing and VLM Fea­
tures (Maynard, Mass.: Digital Equipment Corporation,
Order No. AA-QSBCB- E).

Open VMS System Seroices Reference Manual: A-GETMSG
(Maynard, Mass.: Digital Equipment Corporation, Order
No. AA-QSBMG-TE) and OpenVMS System Seroices
Reference Manual: GETQUI-Z (Maynard, Mass.: Digital
Equipment Corporation, Order No. AA-QSBNB-TE).

For a more complete description of shared memory creation
on DIGITAL UNIX, see the DIGITAL UNIX Programmer's
Guide.

Biographies

Karen L. Noel
A consulting engineer in the Open VMS Engineering
Group, Karen Noel was the technical leader for the VLM
project. Currently, as a member of the Open VMS Galaxy
design team, Karen is contributing to the overall Galaxy
architecture and focusing on the design of memory parti­
tioning and shared memory support. After receiving a
B.S. in computer science from Cornell University in 1985,
Karen joined DIGITAL's RSX Development Group. In
1990, she joined the VMS Group and ported several parts
of the VMS kernel from the VAX platform to the Alpha
platform. As one of the principal designers of Open VMS
Alpha 64-bit addressing and VLM support, she has applied
for nine software patents.

Digital Technical Journal Vol. 9 No. 4 1997

Nitin Y. Karkhanis
Nitin Karkhanis joined DIGITAL in 1987. As a member
of the Open VMS Alpha Executive Group, he was one of
the developers of Open VMS Alpha 64-bit addressing sup­
port. He was also the primary developer for the physical
memory hole (discontiguous physical memory) support for
Open VMS Alpha. He is a coapplicant for two patents on
Open VMS VLM. Currently, Ni tin is a principal software
engineer in the Open VMS NT Infrastructure Engineering
Group, where he is a member of the Open VMS DCOM
porting team. Nitin received a B.S. in computer science
from the University ofVermont in 1987.

PowerStorm 4DT: A High­
performance Graphics
Software Architecture

The PowerStorm 4DT series of graphics devices
established DIGITAL as the OpenGL performance
leader for mid-range workstations, both on the
DIGITAL UNIX and the Windows NT operating
systems. Achieving this level of success required
combining the speed of the Alpha microprocessor
with the development of an advanced graphics
subsystem architecture focused on exceptional
software performance. The PowerStorm 4DT
series of graphics adapters uses a modified
direct-rendering technology and the Alpha CPU
to perform geometry and lighting calculations.

II
Benjamin N. Lipchak
Thomas Frisinger
Karen L. Bircsak
Keith L. Comeford
Michael I. Rosenblum

The PowerStorm 4D40T, 4D50T, and 4D60T mid­
range graphics adapters from DIGITAL have exceeded
the performance of all OpenGL graphics devices cost­
ing as much as $25,000. In addition, these products
achieved twice the price/performance ratio of com­
peting systems at the time they were announced.

The PowerStorm 4DT series of mid-range graphics
devices was developed in 1996 to replace the com­
pany's ZLX series. In its search for a vendor to replace
the graphics hardware, DIGITAL found Intergraph
Systems Corporation. This company had been design­
ing three-dimensional (3-D) graphics boards for a
few years and was then on its second-generation
chip design. The schedule, cost, and performance of
Intergraph's new design matched our project's target
goals. Intergraph was building software for the
Windows NT operating system on its Intel processor­
based workstations, but was not doing any work for
the UNIX operating system or the Alpha platform.

The goals of the PowerStorm 4DT project were to
develop a mid-range graphics product powered by the
Alpha microprocessor that would lead the industry in
performance and price/performance.

This paper describes the competitive environment
in the graphics industry at the conception of the
PowerStorm 4DT project. It discusses our design deci­
sions concerning the graphics subsystem architecture
and performance strategy. The paper concludes with a
performance summary and comparison in the industry.

Competitive Analysis

Overall performance of today's mid-range workstations
is markedly better than that of just two years ago. This
improvement is largely due to the dramatic increases in
CPU speeds, both in the number of instructions exe­
cuted per clock cycle and the number of clock cycles per
second. Without trivializing the efforts of the CPU
architects, such year-over-year increases in CPU perfor­
mance have become the trend of the last decade, espe­
cially with the Alpha microprocessor.

Digital Technical Journal Vol. 9 No. 4 1997 49

More astounding is the central role that the graphics
component of the workstation is playing in defining
the overall performance of the workstation. We are in
the age of visual computing. Whether or not an appli­
cation requires 3-D graphics, even the most primitive
applications often rely on a graphical user interface
(GUI). As such, the graphical components of today's
system-level benchmarks now carry significant weight.

More importantly, a prospective buyer often looks
at results from standard graphics benchmarks as a gen­
eral indication of a machine's overall performance. In
the computer-aided design/ computer-aided manu -
facturing (CAD/CAM) market, a customer typically
buys a workstation to run a set of applications that has
a large 3-D component. Performance is measured by
how fast a workstation can create and manipulate 3-D
objects. For the most part, this performance is deter­
mined wholly by the graphics subsystem. The hard­
ware components of the graphics subsystem, however,
vary from vendor to vendor and may or may not
include the CPU.

Performance Metrics
Simply stated, the primary goal of the PowerStorm
4DT graphics device series was to provide the fastest
mid-range OpenGL graphics performance while offer­
ing the best price/performance ratio. OpenGL is the
industry-standard 3-D graphics application program­
ming interface (API) and associated library that pro­
vides a platform-independent interface for rendering
3-D graphics. 1

Quantifying performance can be an elusive goal.
Product managers in our Workstation Graphics Group
chose two metrics to compare the performance of the
PowerStorm 4DT adapter to our competitors' prod­
ucts. The first metric was performance on the industry­
standard OpenGL Viewperf benchmark, Conceptual
Design and Rendering Software (CDRS).2 This bench­
mark was chosen for its universal acceptance in the
CAD /CAM and process control markets. When buyers
compare graphics performance of two systems running
OpenGL, the Viewperf scores are among the first
measurements they seek. The second measurement
was performance on the Pro/ENGINEER application
from Parametric Technology Corporation (PTC).

The CDRS benchmark, as shown in Figure 1, was
established by the OpenGL Performance Characteri­
zation (OPC) organization as one of several Viewperf
viewsets. It emulates the variety of operations a user
typically executes when running a CAD/CAM applica­
tion. Specifically, this benchmark uses a series of tests
that rotate a 3-D model on the screen in a variety of
modes, including wireframe vectors, smooth-shaded
facets, texturing, and transparency. Performance is
measured by how many frames per second can be
generated. Higher frame rates equate to faster and
smoother rotations of the model. Each test carries a

50 Digital Technical Journal Vol. 9 No. 4 1997

Figure 1
CDRS ViewperfBenchmark ofOpenGL Performance

weight determined to roughly correspond to how
important that operation is in a real-world CAD /CAM
package. The test results are geometrically averaged to
produce a composite score. This single number is a
representation of the graphics performance of any
given system.

Although standard benchmarks are good perfor­
mance indicators, they cannot substitute for actual
performance on an application. To ensure that the
PowerStorm 4DT adapter realized exceptional real­
world performance, the second metric chosen was the
CAD/CAM industry's market share leader, the Pro/
ENGINEER application. PTC provides the industry
with a set of playback files called trail files. As shown in
Figure 2, each file contains a recording of a session in
which a user has created and rotated a 3-D part. The
recordings typically have large wireframe and smooth­
shading components and little or no texture mapping.
Performance is measured by how quickly a system can
play back a trail file. The CDRS benchmark stresses
only the graphics subsystem, but the Pro/ENGINEER
trail file stresses the CPU and the memory subsystem
as well.

Graphics Hardware Standards
In 1996, Silicon Graphics Inc. (SGI) captured the
mid-range graphics workstation market with its
Indigo2 Maximum IMPACT graphics subsystem pow­
ered by the MIPS RlOOOO microprocessor. DIGITAL,
Sun Microsystems, and International Business Machines
(IBM) Corporation had yet to produce a product with
the performance SGI offered; instead, they competed
in the low to lower mid-range graphics arena.

Figure 2
Screen Capture from the Pro/ENGINEER Trail File Used to Stress the PowerStorm 4DT Series

Hewlett-Packard was notably absent from either
bracket due to its lack of a mid-range workstation with
OpenGL graphics capability. Mid-range workstations
can be loosely classified as costing from $15,000 to
$40,000. Graphics performance in this price range dif­
fers, sometimes dramatically, from vendor to vendor.

Considering only raw graphics hardware perfor­
mance, a vendor had to offer a certain level of perfor­
mance to be competitive with SGI. By 1996 standards,
a competitive device needed to be capable of achieving
the following:

• 1 million Gouraud-shaded, 25-pixel, Z-buffered
triangles per second

• 2 million flat-shaded, antialiased, 10-pixel vectors
per second

• Trilinear, mipmapped, texture fill rates of 30 mega-
pixels per second

• 24-bit deep color buffer

• 4-bit overlay buffer

• 4-MB dedicated or unified texture memory

• Dedicated hardware support for double buffering
and Z-buffering

• Screen resolution ofl,280 by 1,024 pixels at 72 hertz

In 1996, the PowerStorm 4D60T, the most
advanced graphics adapter in the new series, was capa -
ble of the following:

• 1.1 million Gouraud-shaded, 25- to SO-pixel,
Z-buffered triangles per second

• 2.5 million flat-shaded, antialiased, 10-pixel vectors
per second

• Trilinear, mipmapped, texture fill rates of greater
than 30 megapixels per second

• 32-bit deep color buffer

• 8-bit overlay buffer

• 0- to 64-MB dedicated texture memory

• Dedicated hardware support for double buffering
(including overlay planes) and Z-buffering

• Screen resolution up to 1,600 by 1,200 pixels at 76
hertz

Digital Technical Journal Vol. 9 No. 4 1997 51

It is important to understand that these are hard­
ware maximums. The interesting work is not in
achieving these rates under the best of conditions, but
in achieving these rates under most conditions. To
reiterate, building hardware that can theoretically per­
form well and building a system that performs well in
benchmark applications are two distinctly different
goals. The latter requires the former, but the former in
no way guarantees the latter.

Different viewpoints on the best way to provide the
highest level of performance have divided the industry
into several camps. Workstation vendors must decide
which approach best exploits the competitive advan­
tages of their systems. In the mid-range workstation
market, our graphics philosophy is decidedly different
from that of our competitors. For the most part,
DIGITAL is alone in its choice of a CPU-based, direct­
rendering graphics architecture.

In the next section, we discuss the various graphics
design architectures in the industry, focusing on the
design of the PowerStorm series and comparing it
with SGI's approach.

Graphics Subsystem Architectures

The two essential choices for graphics subsystem design
are deciding between indirect and direct rendering and
choosing whether the CPU or an application-specific
integrated circuit (ASIC) performs the geometry and
lighting calculations. In this section, we discuss the
advantages and disadvantages of both rendering
schemes and calculation devices and explore designers'
decisions for graphics subsystem architectures.

By order of occurrence, 3-D graphics can be divided
into three stages: (1) transferal of OpenGL API calls to
the rendering library, (2) geometry and lighting, and
(3) rasterization. In the next section, we compare
direct and indirect image rendering.

Direct Ver.sus Indirect Rendering
Before the popularization of the Windows NT operat­
ing system and the personal computer, almost all
graphics workstations used the X Window System or
a closely related derivative. The typical X Window
System implementation is a standard client-server
model. 3 An application that draws to the screen
requests the X server to manage the graphics hardware
on its behal£

The graphics API, either Xlib for two-dimensional
(2-D) applications or OpenGL for 3-D, was the func­
tional breaking point. Traditionally, client applications
would make graphics API calls to do drawing or
another graphics-related operation. These calls would
be encoded and buffered on the client side. At some
point, either explicitly by the client or implicitly by the
API library, the encoded and buffered requests would
be flushed to the X server. These commands would

52 Digital Technical Journal Vol. 9 No. 4 1997

then be sent to the X server over a transport such as
the Transmission Control Protocol/Internet Protocol
(TCP /IP), a local UNIX domain socket, or local
shared memory.

When the requests arrived at the X server, it would
decode and execute them in order. Many requests
would then require the generation of commands to be
sent to the hardware. This client-server model was
named indirect rendering because of the indirect way
in which clients interacted with the graphics hardware.

Direct rendering is a newer method often employed
in the design of high-end graphics systems. 4•5 In this
scheme, the client OpenGL library is responsible for all
or most 3-D rendering. Instead of sending commands
to the X server, the client itself processes the com­
mands. The client also generates hardware command
buffers and often communicates directly with the
graphics hardware. In this rendering scheme, the X
server's role is greatly diminished for 3-D OpenGL
requests but remains the same for 2-D Xlib requests.

The designers chose to support direct rendering for
the PowerStorm 4DT adapter. Direct rendering offers
considerably better performance than indirect render­
ing. Note, however, direct rendering does not pre­
clude indirect rendering. All devices that support
direct rendering under the X Window System also
support indirect rendering.

In the following subsections, we discuss the advan -
tages and disadvantages of direct and indirect render­
ing. We also explain the impetus for making the
PowerStorm 4DT adapter the first graphics device
from DIGITAL capable of direct rendering.

Indirect Rendering One advantage of indirect ren­
dering that should never be underestimated is its proven
track record. This technology is widely accepted and
understood. It offers network transparency, which
means a client and server need not reside on the same
machine. A client can redirect its graphics to any
machine running an X server as long as the two
machines are connected on a TCP /IP network. This
model worked well until faster CPUs and graphics
devices were developed. The protocol encode, copy,
and decode overhead associated with sending requests
to the server became a bottleneck.

The increased use of display lists provided an inter­
mediate solution to this problem. Display lists are a
group of OpenGL commands that can be sent to the X
server once and executed multiple times by referenc­
ing the display list ID instead of sending all the data
each time. Display lists dramatically reduced commu­
nication overhead and returned graphics to the point
at which communication to the X server was no longer
the bottleneck.

Unfortunately, display lists had significant disadvan­
tages. Once defined, they could not be modified. To
achieve performance using indirect rendering, almost

all OpenGL commands had to be collected into dis­
play lists. This caused resource problems because
display lists could be quite large and had to be stored
in the X server until explicitly deleted by the client.
Probably the greatest disadvantage was that display
lists were generally awkward for application programs
to use. Application programmers prefer the more
straightforward method of immediate-mode pro­
gramming by which commands are called individually.
For these reasons, indirect rendering proved to be
insufficient, even with the advent of display lists.

Direct Rendering The PowerStorm 4DT project
team was committed to designing a product with lead­
ership performance for both the display-list-mode and
immediate-mode rendering. The designers realized
early that they would have to adopt direct rendering to
address the performance problems with immediate­
mode indirect rendering.

As mentioned earlier, the philosophy behind classi­
cal direct rendering is that each client handles all
OpenGL processing, creates a buffer of hardware
commands for the device, and then sends the com­
mands to the device without any X server interaction.
This model has several drawbacks. First, access to the
graphics hardware is difficult to synchronize between
clients and the X server. Second, windows and their
properties such as position and size have to be main­
tained by the clients, which also requires a complex
synchronization design. SGI used this model for its
IMPACT series of graphics devices.

The PowerStorm 4DT designers took a more con­
servative approach, based largely on the same model.
One fundamental difference is that each client gener­
ates hardware command buffers in shared memory.
The client then sends requests to the X server telling it
where to locate the hardware commands. The X server
sets up the hardware to deal with window position and
size and then initiates a direct memory access (DMA) of
the hardware command buffer to the graphics device.
Essentially, the X server becomes an arbitrator of hard­
ware buffers. This approach worked quite well, because
the X server was the logical place for synchronization to
occur and it already maintained window properties. We
were able to have all the performance benefits of classi­
cal direct rendering without the pitfalls.

One implication of direct rendering is that the client
and the server have to be on the same physical machine.
When first evaluating direct rendering, designers were
curious to determine how often our customers used
this configuration; that is, did most users perform their
work and display their graphics on the same computer?
Our surveys showed that more than 95 percent of
users did display their graphics locally. The remaining
5 percent rarely cared about performance. Today, this
may seem obvious; two years ago, it could not be
assumed.

Direct rendering offered a huge performance
improvement to nearly all our customers. The perfor­
mance gains were two to four times the performance
ofindirect rendering.

Direct-rendering 2-D Most graphics device imple­
mentations use direct rendering only for OpenGL,
because indirect rendering of immediate-mode
OpenGL is protocol rich. As mentioned previously,
the transferal of this protocol to the X server can be
quite expensive. One interesting aspect of our design
is its support for direct rendering of 2-D Xlib calls.

Other graphics vendors consider 2-D performance
important only for 2-D benchmarks. These bench­
marks, which largely stress the graphics hardware's
ability to draw 2-D primitives quickly, can generate a
lot of work for the hardware with relatively few
requests. Unlike 3-D, these requests do not need
much geometry processing before they can be sent to
the hardware. This means that very little protocol is
needed to saturate the hardware. As long as the proto­
col generation does not produce a bottleneck, indirect
rendering performs as well as direct rendering. In
addition, given that OpenGL benchmarks like CDRS
have almost no 2-D component, it seems reasonable
to conclude that indirect-rendered 2-D should suffice.

Benchmarks often are not sufficiently representative
of real applications, especially when they isolate 2-D
and 3-D operations. CAD /CAM applications typically
have a substantial 2-D GUI, which interacts closely
with the 3-D components of the application. A bench­
mark that exercises both 2-D and 3-D by emulating a
user session on an application will provide results that
more accurately reflect the performance witnessed by
an end user. These benchmarks simply measure how
long it takes to complete a session, so both 3-D and
2-D performance impact the overall score.

Our research showed that with a highly optimized
OpenGL implementation, in many cases it was no
longer the 3-D components that slowed down a
benchmark, but the 2-D components. Further exam­
ination revealed that it was the same protocol bottle­
neck evident with indirect-rendered OpenGL.
Applications were generating relatively small drawing
operations with many drawing attribute changes
intermixed, such as draw line, change color, draw
line, change color, and so forth. This type of request
stream tends to generate tremendous amounts of
protocol, unlike 2-D benchmarks that rarely change
drawing attributes.

Accordingly, 2-D direct rendering presented itself as
the logical solution. With the direct-rendering infra­
structure and design already in place, developers sim­
ply needed to extend it for 2-D/Xlib. This required
the development of two additional libraries: the
Vectored X library and the Direct X library (unrelated
to Microsoft's DirectXAPI).

Digital Technical Journal Vol. 9 No. 4 1997 53

The Vectored X library replaced the preexisting Xlib.
It allows devices that support direct rendering to vector,
or redirect, Xlib function calls to direct-rendering rou­
tines instead of generating the X protocol and sending it
to the X server. If a graphics device does not support
direct rendering, it defaults to the generic protocol­
generating routines. It is important to understand that
this is a device-independent library responsible only for
vectoring Xlib calls to the appropriate library.

The Direct X library, on the other hand, is a device­
dependent library. It contains all the vectored functions
that the Vectored X library calls when the device sup­
ports direct rendering. This library operates in much
the same way as the direct-rendering OpenGL library.
It processes the requests and places graphics hardware
commands in a shared memory buffer. The X server
later sends the buffer to the graphics device by OMA.

The entire functionality of the X library is not imple­
mented through direct rendering for several reasons. In
many cases, a shared resource resides in the server (e.g.,
the X server performs all pixmap rendering). In other
cases, the hardware is not directly addressable by the
client (e.g., the X server handles all frame buffer reads).
Often the client does not have access to all window
information that the server maintains (e.g., the X server
handles all window-to-window copies). Fortunately,
these operations are either not frequently used, not
expected to be fast, or easily saturate the hardware.

Further details of the Vectored X library and Direct
X library are beyond the scope of this paper. The con­
cept of direct-rendered 2-D, however, is sound . It has
helped DIGITAL outperform other vendors on many
application benchmarks that were largely focused on
OpenGL but had significant 2-D components. Our
2-D direct-rendering technology has also enhanced
2-D performance and response time for the many
thousands of exclusively 2-D applications for the
X Window System.

Geometry and Lighting
The geometry and lighting phase can be performed by
the host CPU or by a specialized, high-speed ASIC,
which is typically located on the graphics device.
Regardless of where these calculations take place, the
general idea is that the user's vertices are transformed
and lit, then fed to the rasterizer. Since the rasterizer is
on the graphics device, choosing the host to do the
geometry and lighting implies that the transformed
and lit vertices are then sent across the bus to the ras­
terizer. The use of a specialized ASIC implies that the
user's vertices are sent across the bus, transformed and
lit by the custom ASIC, and then fed directly to the
rasterizer. The information transferred across the bus
is obviously different, but in terms of amount of data
per vertex, it is approximately the same. Therefore,
bus bandwidth does not become a deciding factor for
either design.

54 Digital Technical Journal Vol. 9 No. 4 1997

Host CPU Geometry and Lighting Traditionally,
DIGITAL has chosen the host CPU to perform the
geometry and lighting calculations. The PowerStorm
project designers chose this approach because of the
Alpha microprocessor's exceptional floating-point
speed, and because almost all 3-D calculations involve
floating-point values. At the time this project was con­
ceived, the only general-purpose, widely available
processor capable of feeding more than 1 million
transformed and lit vertices per second to the hard­
ware was the Alpha CPU. An additional benefit of
having the Alpha CPU do the work was an overall cost
reduction of the graphics device. Custom ASICs are
expensive to develop and manufacture.

Another important and related advantage is that our
software becomes proportionally faster as clock speeds
rise on available Alpha microprocessors. This results
in a near linear performance increase without any
additional engineering cost. For example, using the
same software, a 500-megahertz (MHz) Alpha micro­
processor is able to produce 25 percent more vertices
per second than a 400-MHz Alpha microprocessor.
Because of this, developers can write optimized Alpha
code once and reuse it for successive generations of
Alpha CPUs, reaping performance improvements with
virtually no further invested effort.

It is obvious that rendering can proceed no faster
than vertices can be generated. If the OpenGL library
can transform and light only 750,000 vertices per sec­
ond, and the graphics device can rasterize 1 million,
the effective rendering rate will be 750,000. In this
example, the OpenGL geometry and lighting software
stages are the bottleneck. However, if the numbers
were reversed, and the hardware could only rasterize
750,000 vertices while the OpenGL software provided
1 million, the rasterization hardware would become
the bottleneck.

Thus far, we have discussed two potential bottle­
necks: the OpenGL implementation itself and the ras­
terization hardware. The third and potentially most
damaging bottleneck may be the client's ability to feed
vertices to the OpenGL library. It should be clear that
this is the top level of vertex processing. The OpenGL
library can render no faster than the rate at which the
client application feeds it vertices. Consequently, the
rasterizer can render primitives no faster than the
OpenGL library can produce them. Thus, a bottleneck
in generating vertices for the OpenGL library will slow
the entire pipeline. Ideally, we would like each level to
be able to produce at least as many vertices as the
lower levels can consume.

Clearly, the performance of the application, in terms
of handing vertices to the OpenGL library, is a func­
tion of CPU speed. This is only an issue for applica­
tions that have large computation overhead before
rendering. Currently, almost all graphics benchmarks
have little or no computation overhead in getting ver-

rices to the OpenGL library. Most attributes are pre­
computed, since they are trying to measure only the
graphics performance and throughput. For the most
part, this holds true for the traditional CAD /CAM
packages. However, some emerging scientific visual­
ization applications as well as some high-end CAD
applications require significant compute cycles to gen­
erate the vertices sent to the OpenGL library. For
these applications, only the DIGITAL Alpha CPU­
based workstations can produce the vertices fast
enough for interactive rates.

There are some potential disadvantages to this
design. Namely, the CPU is responsible for both the
application's and the graphics library's computations. If
the application and the OpenGL implementation must
contend for compute cycles, overall performance will
suffer. Analysis of applications revealed that typical 3-D
and 2-D graphics applications do internal calculations
followed by rendering. Only under rare circumstances
do the two processes mix with a substantial ratio. If the
applications should start mixing their own processing
needs with those of the OpenGL library, the notion of
host-based geometry would need to be revisited.

Another potential disadvantage is the rate at which
Alpha CPU performance increases versus the rate at
which the rasterizer chip's performance increases. The
emerging generation of graphics devices is capable of
rasterizing more than 4 million triangles per second. It
is unknown whether future generations of the Alpha
CPU will be able to feed the faster graphics hardware.

ASIC-based Geometry and Lighting Performing geom­
etry and lighting calculations with a custom ASIC on the
graphics device is often referred to as OpenGL in hard­
ware because most of the OpenGL pipeline resides in the
ASIC. The OpenGL library is limited to handing the API
calls to the hardware. SGI has adopted the ASIC-based
approach for many generations of workstations and
graphics devices. In this section, we discuss why this
method works for them and its potential shortcomings.

SGI workstations use either the R4400 or the RlOOOO
CPU developed by MIPS Technologies. Although these
CPUs have good integer performance, their tloating­
point performance cannot generate the number of ver­
tices that the Alpha CPU can. As a consequence, SGI has
to use the custom-graphics ASIC approach. One advan­
tage to the custom ASIC is the decoupling of graphics
from the CPU. Since each can operate asynchronously,
the application has full use of the CPU.

Typically, custom geometry ASICs, also known
as geometry engines, perform better than a general­
purpose CPU for several reasons. First, the custom
ASIC must perform only a well-understood and lim­
ited set of calculations. This allows the ASIC designers
to optimize their chip for these specific calculations,
releasing them from the burden and complexity of
general-purpose CPU design.

Second, the graphics engine and the rasterizer can
be tightly coupled; in fact, they can be located on the
same chip. This allows for better pipelining and
reduced communication latencies between the two
components. Even if the geometry engine and raster­
izer are located on different chips, which is not at all
uncommon, a much stronger coupling exists between
the geometry engine and the rasterizer than does
between the host CPU and rasterizer.

Third, geometry engines can yield high perfor­
mance when executing certain display lists. The use of
a display list allows an object to be quickly re-rendered
from a different view by changing the orientation of
the viewer and reexecuting the stored geometry. If the
display list can fit within the geometry engine's cache,
it can be executed locally without having to resend the
display list across the bus for each execution. This
helps alleviate the transportation overhead in getting
the display list data over the bus to the graphics device.
It is unclear how often this really happens since rasteri­
zation is typically the bottleneck. If the display list is
filled with many small area primitives, however, its use
can result in noticeable performance gains. Geometry
engines often have a limited amount of cache. If an
application's display list exceeds the amount of cache
memory, performance degrades significantly, often to
below the performance attainable without a geometry
accelerator. Our research shows that display list sizes
used by applications increase every year; therefore,
cache size must increase at the same rate to maintain
display list performance advantages.

The primary disadvantage of using custom AS I Cs to
perform the geometry and lighting calculations is the
expense associated with their design and manufacture.
In addition, a certain risk is involved with their devel­
opment: hardware bugs can seriously impact a prod­
uct's viability. Fixing the bugs causes the schedule to
slip and the cost to rise. Hardware bugs discovered by
customers can be devastating. With host-based geom­
etry, a software fix in the OpenGL library can easily be
incorporated and distributed to customers.

A sometimes unrecognized disadvantage of dedi­
cated geometry engines is that they are bound to fixed
clock rates, with little room for scalability. Although
this is true of most CPU designs, CPU vendors can jus­
tify the engineering effort required to move to a faster
technology, because of competitive pressures and the
larger volume of host CPU chips.

Rasterization
During the rasterization phase, primitives are shaded,
blended, textured, and Z-buffered. In the early years
of raster-based computer graphics, rasterization was
done using software. As computer graphics became
more prevalent, graphics performance became an
issue. Because rasterization is highly computational
and requires many accesses to frame buffer memory,

Digital Technical Journal Vol. 9 No. 4 1997 55

it quickly became the performance bottleneck.
Specialized hardware was needed to accelerate the
rasterization part of graphics. Forrunately, hardware
acceleration of rasterization is well understood and is
now the de facto standard. Today, nearly every graph­
ics device has rasterization hardware. Even low-priced
commodity products have advanced raster capabilities
such as texture mapping and antialiasing.

In the next section, we relate our strategy for
obtaining optimal graphics software performance
from an Alpha processor-based system.

Performance Strategy

The goals of the PowerStorm 4DT program were
largely oriented toward performance. Our strategy
consisted of having a generic code path and then tun­
ing performance where necessary using Alpha assem­
bly and integrated C code.

Performance Architecture
The designers optimized the software performance
of the PowerStorm 4DT series within the framework
of a flexible performance architecture. This architec­
ture provided complete functionality throughout the
performance-tuning process, as well as the flexibility
to enhance the performance of selected, performance­
sensitive code paths.

In this context, code paths refer to the vertex­
handling routines that conduct each vertex through
the geometry, lighting, and output stages. Whereas
most OpenGL API calls simply modify state condi­
tions, these vertex routines perform the majority of
computation. This makes them the most likely choices
for optimization.

The Generic Path A solid, all-purpose code base
written in C and named the generic path offers full
coverage of all OpenGL code paths. The generic path
incurs a significant performance penalty because its
universal capabilities require that it test for and handle
every possible combination of state conditions. In fact,
under certain conditions, the generic path is incapable
of driving the hardware at greater than 33 percent of
its maximum rendering rate. The generic path assumes
responsibility for the rare circumstances that are not
deemed performance-sensitive and thus not worthy
of optimization. It also acts as a safety net when high­
performance paths realize mid-stride that they are not
equipped to handle new, unanticipated conditions.

Multicompiled Speed of Light (SOL) Paths High ­
performance SOL paths provide greatly increased per­
formance where such performance is necessary. Under
prescribed conditions, SOL paths replace the generic
path, yielding equivalent functionality with perfor­
mance many times that of the generic path. SOL paths

56 Digital Technical Journal Vol. 9 No. 4 1997

were written for the combinations of state conditions
exercised most frequently by the target applications
and benchmarks.

The developers responsible for performance tuning
designed two classes of SOL paths. First, they gener­
ated a large number of SOL paths by compiling a C
code template multiple times. Whereas the generic
path is composed of several routines, each correspond­
ing to a single stage of the pipeline, a multicompiled
SOL path integrates these stages into a monolithic
routine. Each compilation turns on and off a different
subset of state conditions, resulting in integrated paths
for every combination of the available conditions. This
multicompilation of integrated SOL paths yields the
following benefits:

• The C compiler is allowed a broader overview of
the code and can more wisely schedule instructions.
In contrast, the generic path is composed of several
individual stages. These relatively short routines do
not provide the C compiler with enough space or
enough scope to make informed and effective,
instruction-ordering decisions. Multicompiling the
various stages into a series of monolithic, integrated
routines relieves each of these problems.

• The multicompilation assumes a fixed set of condi­
tions for each generated path. This eliminates the
need for run-time testing of these conditions dur­
ing each execution of the path. Instead, such test­
ing is necessary only when state conditions change.
Validation, as this testing is called, determines
which new path to employ, based on the new state
conditions. With the great number and complexity
of state conditions influencing this decision, valida­
tion can be an expensive process. Performing vali­
dation only in response to state changes, rather
than for every vertex, results in significant perfor­
mance gains.

• The SOL path coverage at least doubles every time
that support for a new state condition is added to
the template. Each new condition increases the
number of combinations of conditions being multi­
compiled into SOL paths by a factor of two or
more. An adverse side effect of this strategy is that
the compile time and resulting library size will
increase at the same rate as the SOL path coverage.

Assembly Language SOL Paths Hand-coded Alpha
assembly language paths constitute the other class of
high-performance SOL paths. These paths, designed
specifically for extremely performance-sensitive condi­
tions, require much more time and attention to pro­
duce. Taking advantage of the many features of the
Alpha microprocessor transforms assembly language
coding from a science into an art form.6 The Alpha
assembly coders kept the following issues foremost in
their minds:

• The 21164 and subsequent Alpha microprocessors
are capable of quad-issuing instructions, which
means that as many as four instructions can be initi­
ated during each cycle. The combination of instruc­
tions that may be issued, however, depends on the
computational pipelines and other resources
employed by each instruction. Coders must care­
fully order instructions to gain the maximum bene­
fit from the multiple-issue capability.

• As a consequence of the above restrictions, inte­
ger and floating-point operations must be sched­
uled in parallel. With few exceptions, only two
floating-point and two integer instructions can
be issued per cycle. Efficiency in this case requires
not only local instruction-order tweaking but also
global changes at the algorithmic level. Integer
and floating-point operations must be balanced
throughout each assembly routine. If a particular
computation can be easily performed using either
integer math or floating-point math, the choice is
made according to which pipeline has more free
cycles to use.

• Register supply is another factor that affects the
design of an assembly language routine. Although
the Alpha microprocessor has a generous number
ofregisters (32 integer and 32 floating-point), they
are still considered a scarce resource. The coder
must organize the routine such that some calcula­
tions complete early, freeing registers for reuse by
subsequent calculations.

• The crucial performance aspect of assembly coding
is transporting the data where and when it is
needed. The latency of loading data from main
memory or even from cache into a register can eas­
ily become any routine's bottleneck. To minimize
such latencies, load instructions must be issued well
in advance of a register's use; otherwise, the
pipeline will stall until the data is available. In an
ideal architecture with an infinite quantity of regis­
ters, all loads could be performed well in advance.
Unfortunately, due to the scarce amount of free
registers, the number of cycles available between
loading a register and its use is frequently limited.

Each of these assembly language programming con­
siderations requires intense attention but yields
unmatched performance.

Performance Tuning
After reviewing benchmark comparisons and recom­
mendations from independent software vendors, we
determined which areas required performance improve­
ment. We approached performance tuning from two
directions: either by increasing SOL path coverage or
improving the existing SOL code.

Increasing SOL path coverage was the more straight­
forward but the more time-consuming approach. If an
SOL path did not exist for a specific condition, a new
one would have to be written. Adding a new option to
the multicompilation template required a significant
effort in some cases. Implementing a new assembly
language SOL path always required significant effort.

Improving the performance of an existing SOL
path required an iterative process of profiling and
recoding. We employed the DIGITAL Continuous
Profiling Infrastructure (DCPI) tools to analyze and
profile the performance of our code.7 DCPI indicated
where bottlenecks occurred and whether they were
due to data cache misses, instruction slotting, or
branch misprediction. This information provided the
basis for obtaining the maximum performance from
every line of code.

Development of 3-D Graphics on Windows NT

At the start of the PowerStorm 4DT project, the
Windows NT operating system was an emerging tech­
nology. The DIGITAL UNIX platform held the larger
workstation market share, while Windows NT
accounted for only a small percentage of customers.
For that reason, designers targeted performance for
applications running on DIGITAL UNIX and devel­
oped 3-D code entirely under that operating system.

Nevertheless, we recognized the potential gains of
developing 3-D graphics for the Windows NT system.
One of the company's goals was to be among the first
vendors to provide accelerated OpenGL hardware and
software for Windows NT.

With a concerted effort and a few compromises, the
team developed the PowerStorm 4DT into the fastest
OpenGL device for Windows NT, a title that was held
for more than 18 months. To achieve this capability,
the designers made the following key decisions:

• To write code that was portable between the
DIGITAL UNIX and Windows NT systems.

• To dedicate two people to the integration of the
DIGITAL UNIX-based code into the Wmdows NT
environment. Most OpenGL code was operating­
system independent, but supporting infrastructure
needed to be developed for Windows NT.

• To use Intergraph's preexisting 2-D code and to
avoid writing our own. Intergraph provided us with
a stable 2-D code base for Windows NT. This code
base had room for optimization, but further opti­
mization of the 3-D code took precedence.

• To ship the graphics drivers for DIGITAL UNIX
first, and the graphics drivers for Windows NT
three months later. In this way, we allowed the
DIGITAL UNIX development phase to advance
unimpeded by the efforts to port Wmdows NT.

Digital Technical Journal Vol. 9 No. 4 1997 57

Results and Conclusion

In August of 1996, the PowerStorm 4D60T graphics
adapter was best in its price category with a CDRS per­
formance number of 49.01 using a 500-MHz Alpha
processor. It yielded a new price/ performance record
of $321 per frame per second. At the same time, SGI
attained a CDRS number of only 48.63 on a system
costing nearly three times as much.

Figure 3 shows the relative performance of the
PowerStorm 4D60T for four of the major Viewperf
benchmarks. The viewsets are based on the following
applications: CDRS, a computer-aided industrial design
package from PTC; Data Explorer (DX), a scientific
visualization package from IBM; DesignReview (DRV),
a model review package from Intergraph; Advanced
Visualizer, a 3-D animation system from Alias/
Wavefront (AWadvs).

Figure 3

D

~ 9,000
u
~ 8,000

ffi 7,000
a.
UJ 6,000
::!: ti 5,000

~ 4,000

~ 3,000
CJ)

~ 2,000

i5 1,000

D OL-m--L-...1......a
CDRS

KEY:

• POWERSTORM 4060T

D SGI MAXIMUM IMPACT

D SGI HIGH IMPACT

DX

The PowerStorm 4D60T mid-range graphics adapter
easily outperformed the Indigo2 High IMPACT system
from SGI by a wide margin and even surpassed SGI's
more expensive graphics card, the Indigo2 Maxi­
mum IMPACT, by a factor of more than 2:1 in price/
performance on these benchmarks. Figure 4 shows
that the PowerStorm 4D60T was the performance
leader in three of the four benchmarks. SGI has yet to
produce a graphics product in this price range that
outperforms the PowerStorm 4D60T.

Acknowledgments

The authors would like to acknowledge the many
other engineers who made the PowerStorm 4DT proj­
ect a successful one, including Monty Brandenburg,
Shih-Tang Cheng, Bill Clifford, John Ford, Chris
Kniker, Jim Rees, Shuhua Shen, Shree Sridharan,

ORV AWAD VS

Price/ Performance Comparison of Graphics Adapters on ViewperfBenchmarks

Figure4

60

D 50
z
0
~ 40
CJ)

ffi 30
a.
CJ)

~ 20

ti
u. 10

0

KEY:

CDRS

• SGI MAXIMUM IMPACT

• SGI HIGH IMPACT

O POWERSTORM 4060T

DX

Performance of Graphics Adapters on Vicwperf Benchmarks

58 Digital Technical Journal Vol. 9 No. 4 1997

ORV AWADVS

Bruce Stockwell, and Mark Yeager. We would also like
to thank the Graphics Quality Assurance Group and
the Workstation Application Benchmarking Group for
their unending patience and cooperation.

References

1. M. Segal and K. Akeley, The OpenGL Graphics System: A
Specification (Mountain View, Calif.: Silicon Graphics,
Inc., 1995).

2. The OpenGL Performance Characterization Project,
http:/ /www.specbench.org/ gpc/ ope.static.

3. R. Scheifler and J. Gettys, X Window System (Boston:
Digital Press, 1992).

4. H. Gajewska, M. Manasse, and J. McCormack, "Why X
Is Not Our Ideal Window System," Software Practice
andExperience(October 1990).

5. M. Kilgard, "Dll: A High-Performance, Protocol­
Optional, Transport-Optional Window System with
Xl 1 Compatibility and Semantics," Tbe Ninth Annual
XTechnical Conference, Boston, Mass. (1995).

6. R. Sites and R. Witek, Alpha AXP Architecture Refer­
ence Manual (Boston: Digital Press, 1995).

7. J. Anderson et al., "Continuous Profiling: Where Have All
the Cycles Gone?" The 16th ACM Symposium on operat­
ing Systems Principles, St. Malo, France (1997): 1-14.

General References

J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer
Graphics Principles and Practice (Reading, Mass.: Addison­
Wesley, 1993).

M. Woo, J. Neider, and T. Davis, OpenGL Programming
Guide(Reading, Mass.: Addison-Wesley, 1997).

Biographies

Benjamin N. Lipchak
Benjamin Lipchak joined DIGITAL in 1995 to develop
software for the PowerStorm 4DT graphics adapter and
later developed 3-D software for the PowerStorm 4D30T
project. A senior software engineer in the Workstation
Graphics Group, he is currently leading the software effort
of a new graphics project. Benjamin received B.S. (highest
honors) and M.S. degrees in computer science from
Worcester Polytechnic Institute. He is the recipient of the
Salisbury Award in Computer Science.

Thomas Frisinger
Tom Frisinger was a senior software engineer in the
Workstation Graphics Group at DIGITAL for three years.
During that time, he contributed to nearly all aspects of the
PowerStorm 4DT project. As a member of the core soft­
ware engineering team, he helped develop software for the
4D40T, 4D50T, and 4D60T graphics adapters as well as
the 4D30T and 4051 T models. He was also part of the
core software design team for the 4031 T graphics acceler­
ator. Tom is currently doing research and development in
PC graphics for ATI Research, Inc.

Karen L. Bircsak
As one of the developers of the PowerStorm 4DT graphics
adapter, Karen Bircsak designed and implemented
enhancements to the X library and contributed to other
software development areas. A principal software engineer
in the Workstations Graphics Group, Karen is currently
working on supporting new graphics hardware. Prior to
joining DIGITAL in 1995, she held software engineering
positions at Concurrent Computer Corporation and Data
General Corporation. She earned a B.S. in computer sci­
ence and engineering from the University of Pennsylvania
in 1984 and an M.S. in computer science from Boston
University in 1990.

Digital Technical Journal Vol. 9 No. 4 1997 59

60

Keith L. Comeford
Keith Comeford is a principal software engineer in the
Workstation Graphics Development Group. He is currently
working on the next generation of graphics cards and accel­
erators for DIGITAL. Keith was the project leader for the
Wmdows NT drivers for the PowerStorm 4D40T/50T/60T
graphics cards. In previous project work, Keith contributed
significantly to the GKS and PHI GS implementations in a
variety of capacities from developer to project leader for
more thanlO years. Keith joined DIGITAL in 1983 after
receiving a B.S. in computer science from Worcester
Polytechnic Institute.

Michael I. Rosenblum
Mike Rosenblum is a consulting software engineer at
DIGITAL and the technical director for the Workstations
Business Segment Graphics Group. He was the project
leader and architect of the PowerStorm 4DT series and
implemented some of its 2-D DDX code. Currently, he is
managing two graphics projects and consulting to the
company on graphics-related issues. Mike joined DIGITAL
in 1981, to work on the terminal driver in the VMS
Engineering Group. Later he helped design the company's
first workstations. He has a B.S. in computer science from
Worcester Polytechnic Institute and is a member of the
ACM.

Digital Technical Journal Vol. 9 No. 4 1997

DART: Fast Application­
level Networking via
Data-copy Avoidance

The goal of DART is to effectively deliver high­

bandwidth performance to the application,

without a change to the operating system call

semantics. The DART project was started soon

after the first DART switch was completed, and

also soon after line-rate communication over

DART was achieved. In looking forward to giga­

bit class networks as the next hurdle to conquer,

we foresaw a need for an integrated hardware­

software project that addressed fundamental

memory bandwidth bottleneck issues through

a system-level perspective.

© 1997 IEEE. Reprinted, with permission, from IEEE Network,
July/August 1997, pages 28-38.

I
RobertJ. Walsh

The Ethernet supported large 100-node networks in
1976.1 By 1985, 10 Mb/s Ethernet had been available
for a while, even for PCs. However, high-performance
hardware and software lagged, due to system bottle­
necks above the physical layer. The premier implemen­
tations for UNIX were achieving only 800 kb /s (8 % of
10 Mb/s) in benchmark scenarios on common system
platforms of the day. 2

The deployment oflOO Mb/s fiber distributed data
interface (FDDI) provided an order of magnitude
bandwidth increase in the link speed around 1987.
However, the end system could not saturate the link
on generally available machines and operating systems
until 1993,3 when Transmission Control Protocol
(TCP) improvements and a CPU capable of 400 mil­
lion operations per second became available.' Once
again, high-performance hardware and software
lagged the potential provided by the physical layer.

The current technological approach is switching.
Gigabit-class links and adapters, such as 622 Mb/s
asynchronous transfer mode (ATM), are becoming
available. Since ATM links are dedicated point-to­
point connections, the use of 622 Mb/sin switch-to­
switch links and at the periphery implies that one
ought to be able to move data at gigabit rates.

Switched capacity promises a lot to servers; how­
ever, mainstream systems are not currently capable of
effectively using the bandwidth. The DART project
attempts to avoid the Ethernet and FDDI scenarios
where end-system performance lags physical-layer
potential.

One of the early goals was to go beyond simple
benchmark scenarios where line rate communication
connects a phony bit source to a phony bit sink, with
the CPU saturated. The context for the work was to
connect two applications at high speed, leaving CPU

'The TCP improvements included a small architectural update,
the window scaling extension, to abstractly support the advertise­
ment of more than 64 kbytes of receive buffering. The rest of the
improvements derived from implementation efforts to increase
the actual buffering allocated to advertised TCP windows, and to
improve the segmentation of the TCP byte stream into packets.

Digital Technical Journal Vol. 9 No. 4 1997 61

resources available to execute the applications. In the
past, the CPU had been saturated in Ethernet and
FDDI quests for line rate communication.

Layering

The motivation for DART arises from the specific lay­
ering and abstraction used in BSD-derived UNIX sys­
tems, but the context is sufficiently general that the
problem and solution have wide applicability. Since
various layers within system software will be refer­
enced repeatedly, we introduce them using Figure 1.

The application generates and consumes data. It
tells the operating system which data to communicate
when, by using read and write system calls.

The socket layer moves data between the operating
system and the application. It also synchronizes the
application with the networking protocols based on
data and buffer availability.

The transport protocol layer provides a connection
to the remote peer. In the case of TCP, the connection
is a reliable byte stream. TCP takes on the responsibil­
ity of retransmitting lost or corrupted data, and of
ignoring reception of retransmitted data that was pre­
viously received.

The network protocol layer provides an abstract
address and path to the remote host. It hides the vari­
ous hardware-specific addresses used by the various
media in existence. In the case of IP, fragmentation
allows messages to traverse media which have different
frame sizes.

A conventional driver layer moves data between the
network and the system. It uses buffers and data struc­
tures whose representation percolates throughout all
the operating system networking layers.

The DART Concept

DART increases network throughput and decreases
system overheads, while preserving current system call
semantics. The core approach is data copy avoidance,
to better utilize memory bandwidth.

APPLICATION

SOCKET

TRANSPORT PROTOCOL
OPERATING (TCP, UDP)
SYSTEM

NElWORK PROTOCOL
(IP)

DRIVER

Figure 1
Software Layering

62 Digital Technical Journal Vol. 9 No. 4 1997

Memory bandwidth is a scarce resource that must
not be squandered. In DIGITAL's transition from
MIPS processor systems to Alpha processor systems,
CPU performance increased more rapidly than main
memory bandwidth. It took approximately 340 µs to
move 4500 bytes on the MIPS-based DECstation
5000/200, and approximately 200 µs on the Alpha­
based DEC 3000/500. In the same time, the fixed
per-packet costs were reduced by a factor of three or
more. (General trends are also stated in Reference 4.)

One breakdown of networking costs is reported in
Reference 5. The variable per-byte costs reported
there are all associated with memory bandwidth,
which is improving slowly. The fixed per-packet costs
in the driver, protocol, and operating system overhead
are all generally associated with the CPU, which is
improving rapidly. Thus, we focus on the per-byte
memory bandwidth issues as those most needing
architectural improvement.

A traditional system follows the networking subsys­
tem model implemented within the BSD releases of
UNIX, shown in Figure 2. An application uses the
CPU to create data (1), the socket portion of the sys­
tem call interface copies the data into operating system
buffers (2 and 3), the network transport protocol
checksums the data for error detection purposes (4),
and the device driver uses programmed input/output
(I/0) or direct memory access (DMA) to move the
data to the network (5). Graphs showing the domi­
nant costs of checksumming and kernel buffer copies
are presented in Reference 6.

These five memory operations are a profligate waste
of memory bandwidth. A system with a 300 Mbyte/s
memory system would achieve at most 300*8/5 =

480 Mb/s I/0 rates. The system would be saturated.
The DART model is shown in Figure 3. The DART

model is that data is created (1) and sent (2). Two
memory operations make efficient use of the memory
bandwidth.

Figure 2
BSD Copy-based Architecture

Figure 3
DART Zero-copy Architecture

Squandering of memory bandwidth is avoided. A
system with a 300-Mbyte/s memory system would
encounter the larger bound of300*8/2 = 1200 Mb/s
for I/0 rates. Resources are available for the applica­
tion even when running at line rate.b

To support the DART concept, we need a system
perspective that integrates the hardware and software
changes implied by the DART model. Hardware is
responsible for checksumming instead of software.
Hardware is solely responsible for data movement,
instead of redundant actions by both hardware and
software. These hardware changes are bounded and
generic.

Operating system software retains the application
interface and general coding of the BSD UNIX imple­
mentation. Extensive changes are unnecessary, since
the focus is the core lines that represent data move­
ment consumption of memory bandwidth. Extensive
changes are also undesirable, since there is a large base
of software written to the current properties of the
BSD networking subsystem.

The DART Hardware

The first implementation of the DART concept is a
high-performance 622-Mb/s ATM network adapter
for the PCI bus called DART. DART's design reflects
an awareness of the interactions of the components of
the system in which it is placed. The PCI bus, main
memory, cache, and system software can all be used
efficiently.

Store-and-Forward Buffering and DMA
DART is an adapter that connects a gigabit-class net­
work to a gigabit-class I/0 bus, and is appropriate for
systems with gigabit-class memory systems. DART is
focused on the server market where a slight increase in
adapter cost can be acceptable if the system perfor­
mance is significantly improved, since main memory
and other costs dominate the cost of the DART
adapter.

DART alleviates main memory bottlenecks through
a store-and-forward design, as shown in Figure 4.
Traditional networking software subsystems and appli­
cations perform at least five memory operations to cre­
ate, copy, checksum, and communicate data. DART's
exposed buffering allows data to be created and com­
municated with just two main memory operations.

i.rhe 1200-Mb/s figure includes the cost of having the application
write the data to memory. Some memory bandwidth might be
consumed to fill the CPU's cache in order to execute the applica­
tion and operating system. In this scenario, if non-network band­
width is greater than 300*8 - 2*1000 - 400 Mb/ s, data
production would be the bottleneck and the network would
run at less than line rate. This is beneficial; the bottleneck has
been moved to the application.

The adapter memory is a resource that can be better
utilized by exposing it to the operating system, and
better performance results as well. This is similar to the
exposure of the CPU-internal mechanism in the CISC­
RISC (complex to reduced instruction set) transition.

DART contains a number of features to make the
store-and-forward design effective. DART's bus mas­
ter and receiver summarize network transport proto­
col checksums for software. DART's bus master
provides byte-level scatter-gather data movement to
support communication out of application buffers,
not just operating system buffers. DART provides
packet headers for software to parse so that software
can direct the bus master to place received data in the
application's buffers when the application desires,
without operating system copy overhead.

Buffering Design An ATM segmentation and reassem­
bly (SAR) chip accesses virtual circuit state for each
cell, and operates on 48-byte cell payloads. The pay­
load naturally corresponds to a burst-mode operation,
leading to the use of synchronous dynamic DRAM
(SDRAM) to buffer cells. The circuit state is generally
smaller and randomly accessed, leading to the use of
static RAM (SRAM) for control information. Dividing
the data storage architecture into two parts allows the
interface designs to be tailored to the characteristics of
the data type in question.

The DART prototype uses 16 Mbytes of SDRAM
for the data memory. The prototype uses 1 Mbyte of
SRAM for the control memory. The SDRAM supports
hardware-generated transmissions, aggregation of
data for efficient PCI and host memory interactions~
and buffering for received data until the application
indicates the proper destination for it. The SRAM con­
tains the SAR intermediate state; with a large number
of virtual circuits and ATM's interleaving of packet
contents, there is too much state to be recorded on­
chip at this time.

Packet Summarization for Software The receiver parses
the cells for the various packets which are interleaved
on the network connection, and reassembles the cells
into packets. Once all the cells composing a packet
have been received, a packet descriptor is prepended
to the packet. The descriptor contains length, circuit
number, checksum, and all other information that the
driver may need to parse and process the packet.

Upon packet reassembly, a hardware-initiated DMA
operation moves software-configured amounts of
descriptor and packet contents to host memory. When

<some adapters segment (or reassemble) from host memory,
leading to 48-byte payload transactions with host memory.
Transaction size should be an integral multiple of the cache
block size, and should be aligned, in order to avoid wasting
system bandwidth.

Digital Technical Journal Vol. 9 No. 4 1997 63

CONTROL
MEMORY

CONTROL
MEMORY
INTERFACE

BUS MASTER
AND BUS
SLAVE

DATA
MEMORY
INTERFACE DATA

MEMORY

TRANSMIT

Figure 4
DART Block Diagram

properly configured, the hardware provides the net­
work and transport headers, allowing software to
determine where to place the packet data. Software
data copies are avoided by allowing software to initiate
a DMA operation to move the data to its final application­
desired location, rather than to some expedient, but
inefficient, operating system buffer.

Receive Buffering DART's store-and-forward receive
buffers are divided into two classes. The per-circuit
class guarantees each circuit forward progress. Each
circuit is individually allocated some buffers in which
to store cells. No other circuit can prevent data from
passing through such buffers. The shared class is pref­
erentially used, and avoids resource fragmentation
problems. Any circuit can consume a shared buffer for
an incoming cell.

Since software specifies when and where to store
packet data, adapter buffers are recycled when soft­
ware decides to do so, and not independently by hard­
ware. Part of a packet may be stored in application
buffers at one time, and other parts of the same packet
may be stored in application buffers at later times.
Hardware cannot assume a one-to-one correspon­
dence between receive DMA and complete packet
consumption.

Flow control occurs in the socket layer based on
transmit buffer availability, in the transport layer based
on remote receive buffer availability, in the driver
based on adapter resource availability, and in the ATM
layer based on cell buffer availability within the net­
work. Credit-based flow-control protocols for ATM
are based on the source of a cell stream on a link
decreasing a counter (quota) when a cell is sent, and
increasing a counter when a credit is received.7 The
decrement represents buffer consumption at the next
hop. The credit advertises buffer availability to the
source; the next hop has forwarded a cell and thus
freed a buff er~

dForwarding the cell is required for (per-cirruit) buffers of which
the transmitter on the link was made aware during link initialization.
The receiver on the link can generate credits immediately for (shared)
buffers hidden from the transmitter during link initialization.

64 Digital Technical Journal Vol. 9 No. 4 1997

RECEIVE

With FLOWmaster, the credit is conveyed across the
link to the source of the cell stream by overlaying the
virtual path identifier (VPI) field with the circuit to
credit. This is a nonstandard optional use of the ATM
cell header. Quantum Flow Control is a credit-based
flow-control protocol for ATM that batches the credits
into cells instead of overlaying the VPI field.

Since credit-based flow-control is based on buffer
availability, credits advertising free buffers can poten­
tially be held up by software actions. The shared class
allows immediate credit advertisement, and best
enables line rate communication. The per-circuit class
involves software packet processing in the credit
advertisement latency. To advertise a credit for a cir­
cuit whose per-circuit quota is exhausted, either the
circuit must recycle an adapter-buffered packet, or any
circuit must recycle a shared-class, adapter-buffered
packet.

A minimal memory that constantly ran out of per­
circuit buffers and flow-controlled the source would
exhibit poor performance. DART uses a large data
memory. Advertising (shared) buffers via credits keeps
the data flowing through the overall network and sys­
tems with high performance.

Transmit Buffering Software performs all transmit
buffer management. Software creates a free buffer list
ofits own design, allocates buffers from the list to hold
packet data, and recycles buffers after observing packet
completion events. Software makes the trade-off
between large efficient buffers which may be incom­
pletely filled, and small buffers which waste less stor­
age but incur increased allocation, free, DMA
specification, and transmit description overheads.

Peer-to-Peer VO
DART avoids system resource consumption in server
designs by supporting peer-to-peer I/0. A traditional
server would consume PCI bus and main memory
bandwidth twice by using main memory as the store­
and-forward resource between two I/0 devices, as
shown in Figure 5. The PCI bus is consumed during
steps 2 and 5. The main memory is consumed during

PCIBUS

Figure 5
Traditional Server Architecture

steps 3 and 4. On some systems, 1/0 operations com­
pete for cache cycles during steps 3 and 4, whether
the cache is external to or internal to the CPU. Such
resource consumption can cause the CPU to stall even
though the CPU will never examine such data.

DART allows a single PCI bus transaction to move
the data, as shown in Figure 6. This also avoids any
main memory bandwidth consumption when a bridge
isolates the PCI 1/0 bus from the main system bus.
The cache is not consumed with nuisance coherence
loads for data the CPU will never examine, and the
CPU does not have to contend with 1/0 for cache or
main memory cycles.

For peer-to-peer 1/0 over DART, the CPU is only
involved in initiating packet transmission. This is a rel­
atively small burden, since only a little bit of control
information needs to be computed and communi­
cated to the adapter.

To enable efficient peer-to-peer 1/0, DART
includes a bus slave as well as a bus master. Tbe bus
slave makes the internal resources of the adapter visi­
ble on the PC! bus through DART's PCI configuration
space base address registers. Therefore, on the PCI
bus, the data memory looks like a linear contiguous
region of memory, just as main memory does. The bus
slave supports both read and write operations for these
typically internal resources.

PCIBUS

Figure 6
DART Server Architecture

CPU, CACHE,
MEMORY

DART provides efficient handling of small packets.
Typically, describing a number of small packets for
transmission is onerous for software, limiting the peak
packet rate. DART's transmitter can automatically
subdivide a large amount of data into small packets,
eliminating a lot of per-packet overhead. This feature
is appropriate for a video server, whose software can­
not possibly fill the network pipe ifit must operate on
8-cell packets.

PC/ Interface
DART supports both 64- and 32-bit variants of the
PCI bus. The network interface and DART memories
provide prodigious bandwidth. To fully take advan­
tage of them, a 64-bit PCI bus is recommended, but
DART will also operate on a 32-bit PCI bus.

Bus Reads and Writes The DART architecture sup­
ports memory write-and-invalidate hints to the bridge
between the system bus and the PCI 1/0 bus. Such a
hint informs the bridge that the 1/0 device is only
writing complete cache blocks. There is no need for
read-modify-write operations on main memory cache
blocks in such circumstances.

Write operations within a system are generally
buffered. A path from the origin of the write to the
final destination can be viewed as a sequence of seg­
ments. As data flows through each segment, each
recipient accepts data with the promise of completing
the operation, allowing each source to free resources
and proceed to new operations. Thus, write paths are
generally not performance-limiting as long as there is
sufficient buffering to accept burst operations. In the
DART context, the bridge between the system bus and
the PCI 1/0 bus accepts DART's writes and provides
buffering for high throughput.

However, read operations are more problematic.
When memory locations are shared between CPUs,
caches may or may not be kept coherent by hardware.
Here, the memory locations are shared between the CPU
and 1/0 device, and there is no coherence support. Each
DART read suffers a round-trip time through the bridge
to access the main memory. DART addresses this latency
through large read transactions (up to 512 bytes).

As an example, consider a simplified 64-bit bus
where 540 Mb/s of data are written in 64-byte bursts,
reads suffer 15 stall cycles until the data starts to
stream, and writes require a stall cycle for the target
to recognize its address. Address and data are time­
multiplexed at 33 MHz. Then writes consume 540 *
(1 + 1 + 8)/ 8 = 675 Mb/s of bus bandwidth. Reads
have 33 * 8 * 8 - 675 = 1437 Mb/s of bus band­
width into which they must fit. Thus, the minimum
burst length L required is 540 * (1 + 15 + L) = Ls 1437.
The burst must be at least 9 cycles, 72 bytes, in the
ideal case. DART's large read burst size compensates
for overheads like large read latencies.

Digital Technical Journal Vol. 9 No. 4 1997 65

Importance of Bus Slave Interface The bus master inter­
face is appropriate for software-generated transmis­
sions. A packet created by an application in main
memory can be moved via DMA to the network.

The bus slave interface is appropriate for hardware­
generated transmissions. Another 1/0 device which is
designed to always be bus master, like a disk interface,
can move data directly to the DART without interme­
diate staging in a memory. Peer-to-peer 1/0, however,
was a by-product of other concerns.

Data transfer within TCP is based on a stream of
large data packets flowing in one direction, and a
stream of small acknowledgments flowing in the
opposite direction. Traffic analysis studies often find a
mix of smaller and larger packets. One of the early
concerns for the DART project was to make transport
protocol generation of acknowledgments inexpensive
by avoiding DMA. A small packet, constructed entirely
by the CPU anyway, could be moved to the I/0
device instead ofto main memory. This is fundamen­
tally a short sequence of write operations that could
easily be buffered, allowing the CPU to proceed in par­
allel on other work.

DMA from an application buffer to a device inter­
face is generally specified to hardware by stating the
physical addresses of the application buffer in main
memory. DMA requires a guarantee that the data is at
the specified locations. If the virtual memory system
were to migrate the data to disk and recycle the physi­
cal memory for some other use, the parallel DMA
activity would move the wrong data. Therefore, DMA
operations are surrounded by page lock and unlock
calls to the virtual memory system, to inform it that
certain memory locations should not be migrated.

Additional concerns that led to incorporation of the
bus slave interface were related to the cost of page
locking, and the cost of acquiring and releasing DMA
resources (e.g., in the bridge). An acknowledgment
might be constructed in nonpaged kernel memory,
but a small application packet would likely be con -
structed in application memory subject to paging.
Even if page locks were cached for temporal locality, it
might be cheaper to simply move the data via pro­
grammed I/0.

The break-even point between DMA and pro­
grammed 1/0 is system-dependent, but can be mea­
sured at boot time in order to learn an appropriate
threshold to use for such a decision. Demands on the
main memory system from its various clients will
change over time, and a single measurement is only
optimal for the sample's conditions. The suggestion
here is to enable a quick judgment in the software. The
intent is to make large gains and avoid egregious per­
formance errors. We suspect that fine-tuning the deci­
sion is less important, and requires the collection of
excessive information during the normal operation of
the system~

66 Digital Technical Journal Vol. 9 No. 4 1997

Interrupt Strategy As noted above, on-chip access
rates for the CPU increase more quickly than off-chip
access rates. Interrupt processing and context switching
are fundamentally off-chip actions; new register values
must be loaded into the CPU, and the cache must be
primed with data. Thus, the general system trend is that
interrupt processing and context switching improve
more slowly than raw processing performance.

DART provides a programmable interrupt holdoff
mechanism. By delaying interrupts, events can be
batched to reduce various system overheads. If the
batching mechanism were not present, an interrupt per
packet would swamp system software at gigabit rates.

Since the interrupt delay interval is programmable,
software may use adaptive algorithms to decrease
interrupt latency if the system is idle, or to increase the
amount of batching if the system is busy. The delay
timer starts decrementing as soon as it is written.
Typically, the timer will be written at the end of the
interrupt service routine.

Interrupts can be divided into two classes by
software. Each class has its own delay interval, in
case software assigns distinct importance or latency
requirements to the classes.

The Dart Software

DART provides increased performance with the same
system calls, and with the existing system call seman­
tics. The only change is to the underlying implementa­
tion of the existing system call semantics.

Unmodified existing applications can consume giga -
bit network bandwidth. The application can assist the
system software by using large contiguous data buffers,
but it is not required. System software can specify byte­
level scatter/gather operations to the DART adapter in
order to access arbitrary application buffers.

Changes to the system software are confined to a
few locations above the driver layer, and are generic.
Successive high-bandwidth adapters for other media
can be supported by just writing drivers; no changes
will be needed above the driver layer. The shared set of
upper-layer software changes are only needed to take
maximum advantage of a DART-style adapter; a tradi­
tional copy-based implementation is supported by the
hardware.

'Given the parallel nature of the environment (other I/0, cache
operations, and multiprocessor CPUs), a software system could
only estimate non-DART memory loads. Queued DMA operations
may start later than expected, or finish before their completion has
been noticed. CPU cache activity is dependent on the program
executing at that moment; fine-tuning is problematic. The focus of
DART has been the large gains, like avoiding copies, or allowing
either DMA or programmed IjO to be used. The focus has been
on the structure of the system.

We developed a prototype UNIX driver to test the
upper-layer changes, and executed a modified kernel
against a user-level behavioral model of a DART-style
adapter. The code was subjected to constant back­
ground testing on a workstation relied on for daily use.
The prototype driver supports buffer descriptors refer­
encing either kernel buffers or adapter buffers. The
implementation effort to support kernel-buffered
packets was minimal, and enables multiple protocol
families to be layered above the driver.

The software changes modify the existing upper­
level software, rather than bypassing it via a collapsed
socket, transport, network, and driver implementa­
tion. The current UNIX networking subsystem pro­
vides a rich set of features that needs to be completely
supported for backward compatibility.

Transmit Overview
A comparison of traditional transmission with DART
transmission is shown in Table 1. For a traditional
adapter, the system call layer copies application data to
operating system buffers. With a DART adapter, the
data is copied to the adapter. Uiomove is the copy
function typically used within UNIX. The DART
mechanism is to use an indirect function call through a
pointer, rather than a direct function call to an address
specified by the compiler's linker. High-performance
copy functions are associated with the device driver.
The driver's copy function is free to use DMA or pro­
grammed 1/0, depending on the length of the copy.

For a traditional adapter, software wastes machine
resources computing checksums. With a DART
adapter, the checksum is computed by hardware as the
data flows into the adapter. The adapter can patch the
checksum into the packet header. The adapter can also
move checksum summaries back to host memory so
that they are available for retransmission algorithms.

For a traditional adapter, the driver instigates addi­
tional memory references to copy the data to the
adapter for transmission. With a DART adapter, the
data is already on the adapter, ready to be sent! Much
of the data copy avoidance work is throughput-related.
In this instance, we also create the potential for a
latency advantage for the DART model, since the data
copy overlapped work in the system call, transport, net­
work, and driver layers of the operating system.

Table 1
Transmit Overview

Traditional

Uiomove user buffer to kernel buffer

Receive Overview
In many ways, the receive path for networking is usu -
ally considered more complicated than the transmit
path, since the various demultiplexing and lookup
steps are based on fields that historically have been
considered too large to use simple table indexing oper­
ations. Also, the receive path requires a rendezvous
between the transport protocol and the application (to
unblock the application process upon data arrival). So
it should come as a pleasant surprise that the DART­
style changes for packet reception can be as simple and
localized as two conditionals in the socket layer and
one in the network transport layer.

Table 2 is a comparison of traditional receive pro­
cessing with DART receive processing. It is almost
identical to the packet transmission comparison. The
distinction is which portion of the DART adapter
computes the checksum on behalf of the software
(receiver instead of D MA engine).

Interrupts
Transmit completion interrupts do not need to be
eagerly processed. Software can piggyback processing
to reclaim transmit buffers upon depletion of transmit
buffer resources, upon unrelated packet reception
events (e.g., User Datagram Protocol, UDP), and
upon related packet reception events (e.g., TCP
acknowledgment). The transmit completion events
can be masked, or the hardware interrupt holdoff
mechanism can be used to give them a longer latency.

Receive interrupts are batched to reduce overheads.
Short packets are fully contained in the initial packet
summary which would be deposited in a kernel buffer.
Adapter buffers for short packets can be recycled
immediately by system software. Long packets are not
fully contained in the initial packet summary provided
software for parsing and dispatch. The summary is
noticed during one interrupt, and scatter/gather 1/0
completion into application buffers is noticed during
another interrupt if performed asynchronously.

The side-effect of the decision to create a store-and­
forward adapter is that a received packet is related to
two interrupts. The intent is not to burden a system
and cause multiple interrupts per packet. The distinc­
tion between relation and causality is important.

When the system is under load, there is a steady
stream of packets, and thus a steady stream of batched

DART

System call layer

Protocol layer
Driver layer

For all buffers for all bytes, update checksum
Programmed 1/0 or DMA

*Uiomove user buffer to adapter buffer
For all buffers, update checksum

Data is already on the adapter!

Digital Technical Journal Vol. 9 No. 4 1997 67

68

Table 2
Receive Overview

Traditional DART

Programmed 1/0 or DMA Data stays on adapter! Driver layer

Protocol layer For all buffers for all bytes, update checksum Use checksum computed by receiver
hardware as packet was reassembled

System call layer Uiomove kernel buffer to user buffer

interrupts. If 3 Mbytes were transferred using a burst
of 1-kbyte packets, there would be 3000 packets.
Batching 20 packets/interrupt, there would be 150
interrupts to report packet arrivals. The first interrupt
is just for packet arrival events, to allow header parsing.
The intent is for the next 149 interrupts to report 20
new arrivals and the DMA completion for 20 previous
arrivals. A final interrupt would take care of the final
DMA requests. In this case, the additional interrupt
load for a DART adapter is minor: one interrupt for
3000 packets. The interrupt load is not doubled (even
if one chooses to move received data asynchronously).

Store-and-forward latency is incurred because of
the memory write and read on the adapter (to store
data from the network and to later move it to the
application's buffers). DART adapter memory oper­
ates at a high rate, over 4 Gb/s, to minimize this. Due
to the intervening software decision concerning where
to place DART data for large packets, the data may be
placed at its initial location in host memory later than
for a traditional adapter which fills kernel buffers.
However, store-and-forward reduces main memory
bandwidth consumption, and quickly places the data
at its final location within the application buffers in
host memory. The correct metric is latency to data
availability to the application, not data latency to first
reaching the system bus.

CSR Operations

Control and status registers (CSRs) are used within
hardware implementations to allow software to con­
trol the action of hardware, and for hardware to pre­
sent information to software. For example, a CSR can
inform a device of the device's address on a bus. In this
case, the CSR's definition is generic in the context of
the bus definition. Alternatively, a CSR can be used to
initialize a state machine within the hardware imple­
mentation. In that case, the CSR's definition is specific
to that version of the device.

CSR reads are very expensive. Generally, a single CSR
read is required for DART interrupt processing, and
that CSR is placed in the PCI clock domain of DART in
order to avoid operation retries on the PCI bus.

Most packet processing information is written to
host memory by the adapter for quick and easy CPU
access. For example, packet summaries are placed in

Digital Technical Journal Vol. 9 No. 4 1997

Uiomove adapter buffer to user buffer

one or more arrays in host memory, and software can
use an ownership bit in each array element to termi­
nate processing of such an array.

CSR writes are buffered; nevertheless, they can be
minimized. The packet summaries in host memory are
managed with a single-producer, single-consumer
model. When the consumer and producer indices into
an array are equal, the array is empty. When hardware's
producer index is greater, there are entries to be
processed by software. (Redundant information in
array element ownership bits means that software does
not actually need to read the DART adapter to perform
the producer-consumer comparison.) When the hard­
ware's producer index reaches the software's consumer
index minus one, the array is fully utilized. When soft­
ware has processed a number of packet summaries, the
hardware can be informed that they can be recycled by
a single write of the consumer index to the adapter.

The DMA engine processes a list of "copy this from
here to there" commands. By supporting a list of
operations instead of a single operation, software can
quickly queue an operation and move along to its next
action without a lot of overhead. The copy commands
reside in an array within host memory, with a software­
specified base and a software-specified length.

DMA commands also follow the producer-consumer
model. However, since instructions are only read by
DART, there are no ownership-bit optimizations. To
compensate for this, software can allocate a large array
and cache a pessimistic value for the hardware's con­
sumer index in order to avoid CSR reads. Alternatively,
the DMA engine could periodically be given instruc­
tions to DMA such information to host memory.

A typical DART interrupt involves one CSR read and
three CSR writes, yielding an efficient interface. One
read determines interrupt cause. One write informs the
DMA engine of new copy commands for newly received
data. Another write informs the DMA engine that the
CPU processed a number of the packet summaries
DART placed in main memory. A third write initializes
the interrupt delay register to batch future events.

Occasionally, an interrupt also involves an extra CSR
read. The read discovers a large number of commands
processed by the DMA engine, allowing software to
recycle entries in the command queue and thereby
issue more commands.

Driver
The driver classifies received packets, and decides
whether to continue to use adapter buffers for them,
or to copy the data into kernel buffers. For the proto­
type, adapter-buffered packets are:

• Long enough to contain maximal-length IP and
transport protocol headers.

• Version 4 IP packets (buffering assumptions perco­
late throughout the layers of the system, so a proto­
col family must be updated and tested to support
adapter-buffered packets).

• TCP or UDP protocol packets. Other protocols lay­
ered over IP do not use adapter buffers, to make the
scope of the effort manageable by handling just the
common case.

The operating system uses a single mbuf to describe
a single set of contiguous bytes in a buffer which may
be within or external to the mbuf structure. Mbufs can
be placed in lists to form packets from a number of
noncontiguous buffers.

Received adapter-buffered packets are two mbufs
long. The first m buf contains the initial contents of the
packet DMAed into memory by the adapter, that is the
protocol headers and summary information from the
adapter.

The second mbuf refers to the packet in adapter
memory. For ATM, the received packet is stored in a
linked list of buffers on the adapter. Programmed 1/0
access to the buffers requires software to traverse the
links, but this would not be done in practice since the
CPU read path to the 1/0 device is unbuffered and
high-latency. The DART DMA hardware would be
used, and it would traverse the links as-needed. The
DMA hardware allows the software to pretend the
packet is contiguous.

Fields of the second mbuf are used in specific ways.
The length of the second mbuf does not contain the
initial portion of the packet copied into the first mbuf,
even though the adapter memory buffers the entire
packet. The initial portion is replicated, but only the
copy local to the CPU is accessed. The pointers of the
second mbuf point to bogus virtual addresses, even
though the adapter looks like an extension of main
memory. This speeds software debugging by trapping
inefficient accesses to the adapter. Adjusting the
length and pointer fields is still allowed in order to
drop data from the front or back of the mbuf. The
m_ext fields record the location and amount of
adapter buffering used to hold the packet. They also
point to a driver-specific buffer reclamation routine.

For TCP, or for UDP packets with nonzero check­
sums, the driver makes incremental modifications to
the DART receive hardware's checksum. The hard­
ware computes the l 's complement checksum over all
the cell payloads except for the final ATM trailer bytes.

As a result, the driver modifies the hardware checksum
to account for:

• Contributions made by IP options

• Construction of the pseudo-header which is not
transmitted on the network

• The transport layer checksum, which was zero
when the checksum was computed but may be
nonzero on the network

To transmit a packet, the transport and network lay­
ers operate on protocol headers in main memory. The
driver moves the headers to the adapter as part of
transmitting a packet whose encapsulated data is in
adapter buffers.

The ifnet structure is the interface between the pro­
tocol layers and the driver. It contains, for example,
fields expressing the maximum packet size on the
directly connected network, the network-layer address
of the interface, and function pointers used to enter
the driver.

We add an (•if_ uiomove)() field to be associated
with buffers as described below. It represents a driver
entry to copy data to or from the adapter. We also add
an (•if_ xmtbufalloc)() field to be used within the
mbuf allocation loop of the transmit portion of the
socket layer. This allows the socket layer to give prece­
dence to allocating (large) adapter buffers over main
memory buffers.

The driver always retains some transmit adapter
buffers for its own use. When the system is busy, there
will be TCP packets consuming adapter buffers. The
packets are associated with the socket send queue.
There will also be packets on the interface send queue,
which may or may not use adapter buffers. If the first
item on the interface queue uses just kernel buffers,
then the driver must have reserved adapter buffers in
order to complete the transmission and avoid transmit
deadlock. At least one packet of adapter buffering
must be reserved for the driver output routine.

UDP
UDP motivates many of the changes without getting
involved in the complexity of retransmission and relia­
bility. Many of these changes are generic to UDP and
TCP: augmenting the buffer and interface descrip­
tions, discovering the availability of efficient buffers
for a connection, and allocating and filling the efficient
buffers.

One portion of the mbuf is the strnct pktbdr, which
is used only in the first mbuf of a packet. It summarizes
interesting information about the packet, like its total
length.

We add a protoco/Sum field to the pkthdr of the
mbuf so that the driver can communicate the received
transport-layer checksum to the upper layers. The
transport-layer checksum is not ignored, as it would

Digital Technical Journal Vol. 9 No. 4 1997 69

be if checksums were negotiated away or cavalierly
disregarded. The checksum is verified by the trans­
port layer as usual, but without accessing all the bytes
of the packet. The protocolSum field is valid if an
M_PROTDCOL_SUM bit is set in the mbuf m_flags field.

Another portion of the mbuf is the strnct m_ext,
which is used to describe data buffers external to the
mbuf structure. We add an (•uiomove_f)() field so
that the driver can communicate a buffer- or driver­
specific copy routine to the socket layer. Socket layer
usage of the standard pre-existing uiomove routine
assumes that the received data is in the address space
and should be moved by CPU byte-copying. The indi­
rection allows the data to be moved by programmed
1/0 or DMA. The uiomove_f field is valid if an
M_UIOMOVE bit is set in the mbuf m_flags field.
Parameters to the uiomove_f function are an mbuf, an
offset into the packet at which to start copying bytes, a
number of bytes to copy, and the standard uio struc­
ture that describes where the application wants the
data.

The UDP input routine performs protocol process­
ing on received UDP packets. Before the pseudo­
header is constructed for checksum verification, the
M_PROTOCOL_SUM bit is tested in order to skip
CPU-based checksumming.

if Cm->m_flags & M_PROTOCOL_SUM) {
NETIO_COUNTCrch_hw_sum);
assert(m->m_f lags & M_PKTHDR);
if Cui->ui_sum != m->m_pkthdr.protocoLSum) {

NETIO_COUNT(rch_hw_sum_bad);
goto badsum;

}

goto ok;
}

Error processing can be based on packets reformat­
ted into kernel buffers. The UDP output routine per­
forms protocol processing on transmitted UDP
packets.

Checksum overhead avoidance is similar to the receive
path; but instead of testing the M_PROTOCOL_SUM
bit, the mbuf checksum field is assumed to be valid for
all transmit mbufs referencing adapter buffers (they
have the M_UIOMOVE bit set). We assume that no
adapter which saves the operating system the effort of
data copying would forget to save the operating sys­
tem the effort of checksumming. It does not make
sense to eliminate some, but not all, of the per-byte
overhead operations.

For UDP transmission, software recycles (adapter)
buffering after the packet has been transmitted.

Changes like checksum avoidance are based on
adding a conditional to the existing code paths. For a
DART adapter, the test and branch penalty are small
relative to the gain. For large external buffers, there
are one or two M_PROTOCOL_ SUM tests per
packet, depending on packet length and buffer size.
This could be viewed as a constant-time overhead.

70 Digital Technical Journal Vol. 9 No. 4 1997

The gain is avoiding the linear-time access of each byte
within each packet.

For a traditional adapter, the test and branch repre­
sent overhead for each packet. The cost of the added
conditionals occurs in the context of a large code base
between the system call interface and the driver, and
that networking code provides a rich feature set
through the use of conditionals. If the added condi­
tionals are viewed as significant, consider the approach
of generating two binary files from a single source
module. To avoid penalizing systems populated solely
with traditional adapters, operating system software
configuration procedures can choose not to incorpo­
rate the DART-conditionalized version of the code. A
DART adapter installed at a later date would still oper­
ate under such a software configuration, but would not
reach its peak performance until the software is recon­
figured to use the DART-conditionalized version.

TCP
The TCP input routine performs protocol processing
on received TCP packets. Before the pseudo-header is
constructed for checksum verification, the M_PRO­
TOCOL_SUM bit is tested in order to skip CPU-based
checksumming. The only differences with the UDP
input processing change are the names of the TCP
header structure and TCP header checksum field.

All the adapter resources represented by the second
mbuf of a received packet are consumed until the final
reference to the packet is freed. If large packets are
exchanged and the application is doing small reads,
not until the final read is any storage reclaimed. This
space consumption is represented on the socket
receive queue, and therefore affects the advertised
TCP window.

The TCP output routine performs protocol pro­
cessing on transmitted TCP packets. The checksum
overhead avoidance is similar to that done for UDP.
Checksum computations for transport-layer retrans­
missions are simplified by the association of checksum
contributions with mbufs, rather than an association
of checksums with packets. The association with
buffers instead of packets also simplifies handling of
packets using a mix of kernel and adapter buffers.

For TCP transmission, software recycles (adapter)
buffering after the packet has been acknowledged by
the remote end of the connection. Between transmis­
sion and acknowledgment, the data is held on the
socket's send queue. Previously, the socket code
copied data from one mbuf into another whenever
both mbufs' contents fit into one, trading increased
CPU load for space efficiency. For DART adapters, the
copy decision is cut short.

We add a bytesSummed field to the mbuf so that
when a packet is transmitted or retransmitted by the
transport layer, code can double-check that all the data
the checksum is supposed to cover is still present in the

buffer. For example, a TCP acknowledgment of part of
an original packet generally leads to the sender delet­
ing its copy of the acknowledged data retransmitting
the rest. The software implementation handles the
generality of acknowledgments which are not com­
plete transmit mbufs, the unit covered by the
protocolSum field. A retransmission must not send a
packet with an improper transport-layer checksum,
even ifit means using an algorithm linear in the num­
ber of bytes remaining in the buffer to recompute the
checksum.

The transmitter's socket layer buffers data in seg­
ments convenient for both the network-layer protocol
and the driver. Checksum contributions remembered
for retransmission are recorded at a similar level of
granularity. The transmitter is liberal in what the
receiver can acknowledge; the receiver's implementa­
tion affects efficiency, but not correctness.

Socket Data Movement
The copy from the network buffers to the application
data space occurs in the soreceive routine, which uses
information left in the mbuf by the device driver. The
call(s) to uiomove become conditionalized as follows:

if Cm->m_flags & M_UIOMOVE) {
assert(m->m_flags & M_EXT);
error= C*m->m_ext.uiomove_f)Cm, moff, Len, uio);

} else
error= uiomoveCmtodCm, caddr_t) + moff, Len, uio);

The reverse copy in sosend is similar.
The standard uiomove function makes the opti­

mistic assumption that the addresses of user buffers
provided by the application are valid. If addresses are
not valid, a trap occurs and situation-specific code is
called.

To support drivers that use programmed I/0
movements with the application's buffer, an additional
code point is added to the error processing so that an
EFAULT error is returned to the application.

Note that the changes are generic, and can be used
with existing devices. The uiomove_f function can per­
form both copies to kernel buffers and protocol check­
summing for transmission over traditional adapters.

In the transmit portion of the socket layer, the appli­
cation data is moved to kernel buffers or to adapter
buffers by sosend. In order to take advantage of DART
adapters, sosend needs to know:

• That the protocol layers between the socket and
driver support DART-style buffering

• That the driver supports DART-style buffering

In general, formatting data efficiently for transmis­
sion can require knowing the amount of headers that
will be prepended by the various layers below the
socket layer, so device alignment restrictions can be
met. Due to protocol options and to the variety of

media in existence, the amount prepended may vary
from socket to socket. Given a socket, we introduced a
function that computes:

• A function pointer for allocating adapter-based
buffers

• A function pointer for moving data from user
buffers to adapter buffers

• The number of bytes required to prepend all headers

To simplify the prototype implementation effort,
the function disallows the use of adapter buffers for IP
multicast packets.

When allocating adapter buffers, sosend uses the
if_xmtbufalloc entry to allocate adapter buffers. Each
time it does so, it passes a maximum number of bytes
of buffering that attempts to allocate a buffer for the
entire (remaining portion of the) packet. The driver
indicates the actual amount of buffering allocated;
sosend loops until all the necessary buffering is allo­
cated. The driver may decline to allocate an adapter
buffer if the requested amount of buffering is small. At
that time the driver can best decide if CPU-based byte
copying from user buffers to kernel buffers, and also
copying kernel buffers to the adapter, is preferable to
programmed I/0 or DMA from user buffers.

Once an adapter buffer allocation fails, no further
allocations are attempted within a segment that will be
passed to the lower layers. This ensures that drivers will
see, at worst, an (internal) mbuf containing headers,
one or many adapter buffers containing data, and
potentially one or many kernel buffers containing the
rest of the packet. This simplifies the driver, and
ensures that alignment restrictions are met without
shuffling data around on the adapter. It also simplifies
transport-layer checksum computation algorithms.

There is an unusual boundary case in which a long
segment of transmit data may not immediately be
copied to adapter buffers, even though the driver
would prefer to do so. If the driver has many free
transmit adapter buffers when the socket code starts to
prepare a segment, it may not have any free buffers
when the segment nears completion. This is because
the socket layer runs at a lower interrupt priority level
than the device driver, and buffers are allocated indi­
vidually. A device interrupt can lead to servicing the
device output queue, consuming adapter buffers in
order to transmit traditional kernel-buffered packets.
Rather than block and wait for transmit adapter buffer
availability, the prototype software uses kernel buffers.

Both the socket and network protocol (TCP) layers
contain segmentation algorithms. In the socket layer,
the segmentation process is confused with the (cluster
mbuf) buffer choice decision procedure. As part of
eliminating that confusion, we introduce an if_buflen
field to the ifnet structure.

Digital Technical Journal Vol. 9 No. 4 1997 71

If the socket layer creates segments longer than the
device frame size, excess work occurs in the lower lay­
ers (e.g., TCP segmentation or IP fragmentation). If
the socket layer creates segments shorter than the
device frame size, the system foregoes large packet
efficiencies. A large 8-kbyte write that leads to eight 1-
kbyte duster mbufs being individually processed by
the lower layers might benefit from overlapped 1/0 of
the first segment with computation of the last, but the
CPU would be wasted for a benefit that is only rele­
vant when a large number of such poorly chosen seg­
ments are constructed. Such a write could go out as a
single packet over an ATM network.

Socket Buffering and Flow Control
A number of papers have commented on the require­
ment for a reasonable amount of socket buffering to
enable applications to "fill the pipe" with a "band­
width times delay" amount of data. 1 Delay includes
the link distance, device interrupt latency, software
processing, and 1/0 queuing delays. It also includes
interrupt delays that aggregate events for efficient soft­
ware processing.

The requirement for sufficient socket buffering is a
lesson learned over and over again. Traditional solu­
tions include marginal increases in systemwide
defaults, and application modification to request more
buffering than the default. Facilities like rsh imply that
anything can become a network application, unbe­
knownst to the application author; so changes to
applications are a poor solution. Also, applications are
insulated from the network by the network protocol
and socket abstractions; no application should need to
know the buffering requirements for high throughput
for the media du jour.

We introduce an (•if sockbuj)() entry that allows
the driver to increase socket buffering. When local
network-layer addresses are bound to socket connec­
tions, an interface is associated with the connection, and
the driver is allowed to adjust the socket buffer quota.

For TCP server connections, the server may not be
restricting incoming connections to a particular inter­
face. Overriding the default buffering value must be
done on the socket created when the incoming SYN
arrives, not on the placeholder server socket. The
buffer allocation needs to be determined as soon as
possible, because the initial SYN packet also triggers
the determination of the proper window scaling value.

UDP does not queue packets on the socket send
queue. Although calls to if_sockbuf from the socket
layer are independent of the protocol, the buffer quota
only affects the maximum UDP packet size sent, not
the number of UDP packets that can be in flight at the
same time. The socket is not charged for UDP packets
queued on the driver output queue or UDP packets in
the hardware transmit queues.

72 Digital Technical Journal Vol. 9 No. 4 1997

The adapter buffer resources are distinct from main
memory mbuf and duster resources. The socket data
structure and support routines support consumption
and quota numbers for adapter buffering that are dis­
tinct from the current main memory consumption
and quota numbers. For example, a connection re­
directed from a DART adapter to a traditional adapter
is quickly flow-controlled in the socket layer as a result.
The large adapter buffer allocation does not enable it
to hog main memory buffers and adversely affect
other connections.

IP
The prototype software contains conditionals to
enable or disable the use of adapter buffers for mes­
sages undergoing IP fragmentation. This only affects
UDP, since the socket layer segments appropriately for
the TCP and driver layers. Software computes the
amount of header space for the first fragment, and also
the amount of header space for the following frag­
ments (which will not contain transport protocol
headers). This information is used during the socket
layer's movement of application data to kernel or
adapter buffers. UDP and IP receive the segments as a
single message; the IP fragmentation code uses the
fragment boundaries precomputed in the socket layer.

IP reassembly ofreceived adapter-buffered packets
was implemented in the prototype code to keep up
with a transmitter using adapter buffers for IP frag­
mentation. The driver adjusts the hardware-computed
checksum to ignore the contribution to the hardware
sum caused by the successive IP. fragment headers,
which are not presented to the transport layer.

Resource Exhaustion
The hardware provides a scalable data memory. The
memory holds received data until the application
accepts it, and transmits data until the acknowledg­
ment arrives. The prototype provides 16 Mbytes,
which was considered a significant quantity after
examining network subsystem buffering at centralized
servers for several large "campus" sites.

When adapter memory is scarce, it should be allo­
cated to connections whose current data flows are
high-bandwidth flows. Low-bandwidth connections,
connections blocked by a closed remote window, and
connections over extremely loss-prone paths will not
be significantly impacted by the copying overhead
associated with the use of kernel buffers.

Data Relocation
Reformatting data from adapter buffers to kernel
buffers allows existing code to be ignorant of adapter­
buffered data. Socket-based TCP communication can
use adapter buffers for high throughput, and other

protocol environments can simultaneously use the
familiar kernel buffers. DART support can be phased
in by protecting legacy code with a conditional reloca­
tion call before entering or queuing data to the legacy
code. Cache fill operations should be targeted to main
memory, not adapter memory, for best performance in
legacy code.

Relocation is also appropriate for error handling
and other rarely executed code paths. For example,
a multi-homed host may lose TCP connectivity
through the first-hop router associated with a DART
link, and be forced to send packets over another link.
The new communication path could use any network
interface, DART or otherwise. The software needs
to be able to handle the scenario where the new
adapter, or some system resource, has a constraint
preventing it from transmitting packets located in
DART memory.

We selected a lazy evaluation solution which
assumes that data sent over an old route will be deliv­
ered and acknowledged. An eager solution would
incur a large burst of data relocation when the new
route takes precedence, with the disadvantages that
the work would be wasted for data which is acknowl­
edged, and the burst of activity consumes resources
and incurs increased latency for other activities.

For TCP connections marked as using adapter
buffers, a driver entry through (*if_ pktok)() allows
the driver to comment on each outgoing packet. This
implies that the driver also comments on TCP retrans­
mission packets. The driver has a chance to double­
check constraints and trigger data relocation, if
necessary. Drivers not supporting if_pktok always trig­
ger data relocation, and also lead to unmarking the
TCP connection.

Comparison to Other Methods
Traditional adapters contain minimal onboard mem­
ory and hide their buffering from the CPU. Unable to
manage a traditional adapter's buffers, a copy of data
must be kept in host memory until it is acknowledged
in case it needs to be retransmitted.

We felt copy-on-write approaches to using a tradi­
tional adapter would be inadequate due to book­
keeping overheads experienced by other projects.
Also, the application may commonly reuse the same
application buffer before the transport protocol
semantics allow. For an unmodified application, this
would lead to blocking the application, or incurring
both copy-on-write and data copy overheads. All
applications are network-based when one considers
networked file systems and pipes to remote program
invocations; architectures that require applications to
be recoded to interact with page mapping schemes
(e.g., 8

) are inadequate. Another objection is that
copy-on-write focuses on packet transmission, ignor­
ing packet reception.

When a write is performed by an application using
DART, the application blocks only long enough to
buffer the data, as for a traditional adapter. The copy
of the application's data on DART enables retransmis­
sion for reliable communication. The application is
free to immediately dirty its write buffer, and no per­
formance impact is associated with that action.

Van Jacobson's WITLES paper design uses the CPU
to copy data to and from the adapter via programmed
I/0.9 Reading the adapter is an expensive operation, and
in practice would provide worse receive performance
than even a traditional adapter. The Medusa design is a
WITLES variant that uses programmed I/0 transmis­
sion and addresses the receive penalty with system block­
move resources for reception.10 The Afterburner design
used the same approach, achieving 200 Mb/s.• The
WITLES approach keeps the packet in adapter memory
until it is copied to the application buffer.

To minimize resource consumption, the checksum
and copy loop are combined. This means that the TCP
acknowledgment is deferred until the application con­
sumes the data, which might be much later than nec­
essary. Applications read data at a rate of their own
choosing. Care must be taken that this deferral does
not lead to TCP messages to the data source that cause
unnecessary data retransmission.

Unlike WITLES, DART supports DMA to and from
the adapter. Software can use DMA where appropriate,
intelligently balancing the costs of programmed I/0
andDMA.

Since DART provides the IP checksum with the
packet, the TCP acknowledgment can be sent as soon
as the packet is reassembled and reported to the CPU.
The acknowledgment contents and transmission time
are traditional BSD UNIX; it states that the data has
been received, and the offered window reflects buffer
consumption until the application receives the data at
its leisure.

Adapters have been built that offload protocol pro­
cessing.1 However, the cost of TCP processing is low,
and such an architecture introduces message-passing
overheads that counterbalance the offloaded protocol
processing efficiencies. CPU execution rates are scal­
ing well. The issue to address is the main memory
bandwidth bottleneck. Also, it is expensive and diffi­
cult to create, maintain, and augment the firmware for
such an adapter. The firmware is tied to a single
adapter, and replicates work done within the operating
system that can be shared by a number of adapters.

DART provides assist via checksumming methods.
It does not attempt to offload network- or protocol­
layer processing.

Performance

The simulation environment used to debug and test
the chip design was also used to extract performance

Digital Technical Journal Vol. 9 No. 4 1997 73

information. The chip model used to fabricate the part
is connected to a PCI bus simulation, some generic
bus master devices, and some generic bus slave
devices. The simulation environment is connected to
and controlled by a TCL-based environment.

Within the TCL environment, the hardware design­
ers wrote a device driver. With this driver, DART
copied packets from host memory, looped packets on
an external interface, reported packet summaries, and
copied packets into host memory. Both 64- and 32-bit
PCI buses were exercised. Target read latency of host
memory was incorporated into the simulation (the
data presented in Figure 7 is based on a 16-cycle
latency). Credit-based flow-control operations were
enabled since they consume additional control mem­
ory bandwidth, and therefore represent worst-case­
scenario operation, Similarly, a large number of virtual
circuits were used to loop data, to prevent the use of
on-chip, cached circuit state.

Because the TCL driver was written by hardware
designers, and they were focused on designing and
testing the chip, performance numbers extracted from
their work suffer from a lot of CSR accesses. A real
driver would reduce the CSR operations and have
increased batching of interrupts and other actions.

CSR reads are costly, since they involve a round-trip
time within the chip which crosses clock boundaries,
in addition to the round-trip time between the CPU
and the pins on the device. Crossing clock boundaries
means that there are internal first-in first-out (FIFO)
delays involved to deal with synchronization and
meta-stability issues. To meet PCI latency specifica­
tions, the bus master is told to retry such operations,
freeing the PCI bus for other use during the internal
round-trip time. CSR writes are efficient, since they
are buffered throughout the levels of the system.

The dip in Figure 7 is near the 512-byte burst size
used to read from host memory. Packet transmissions
no longer fit in a single DMA burst, and incur the extra
cost of an additional short fetch. This incurs additional
overhead cycles to place the address on the bus and for
the target to start to respond with the first bytes.

For each simulation we extract numerous detailed
statistics. Table 3 contains a few for 32-cell packets
(1536 bytes) on a 32-bit PCI bus. These particular fig­
ures are for the TCL driver, and include time intervals
to initialize the adapter, to transmit before the first
packets are received, and to receive after the last packet
was transmitted.

DART 4 OR MORE VC, BIDIRECTIONAL,
FLOW-CONTROLLED PERFORMANCE

Figure 7
DART Performance

74 Digital Technical Journal

90%

80%

70%

60%

50%

40%

30%

20%

10%

0 10 20 30 40 50

PACKET LENGTH IN CELLS

KEY:

-+- PERCENT OF LINE RATE (64·BIT BUS)

~ PERCENT OF LINE RATE (32-BIT BUS}

Vol. 9 No. 4 1997

60 70

Table 3
Examples of Additional Statistics

Control memory idle
Data memory idle
PCI busy (frame or irdy asserted)
PCI transferring data (irdy and trdy asserted)
CSR operations share of bus operations

Future Work

79%
48%
75%
60%
41%

Due to the large amount of onboard buffering, we do
not expect DART to encounter resource exhaustion
issues. However, some work will be appropriate to
determine the best solution should buffering require­
ments exceed the electrical capabilities of the high­
speed SAR-SDRAM interface. Is it efficient to move
unacknowledged data off the adapter so that new
transmit data can be moved from user space to the
adapter in the socket layer? Is it efficient to block in the
socket layer, waiting for adapter buffers to be freed by
a future, or arrived but unprocessed, acknowledg­
ment? Is it efficient to use conventional kernel buffers
to transmit when the space allocated to DART-style
transmissions is exhausted?

DART structures the system software so that the
operating system does not examine the application's
data, which should be private to the application any­
way. This separation of control operations (on head­
ers) from data operations (primarily movement) is a
common theme in embedded system design for
bridges and routers. DART provides a generic struc­
ture that enables high-performance networking in a
variety of systems.

With features like peer-to-peer 1/0, one can con­
ceive of a system with multiple gigabit links, where the
bottlenecks have shifted from the system software to
the application or service. We think DART-style
adapters will enable and accomplish the delivery of
high-bandwidth service to the application.

Acknowledgments

Robert Walsh implemented the transmitter and PCI
bus interface. Kent Springer implemented the receiver
and packet reporting functions. Steve Glaser imple­
mented the DMA engine. Tom Hunt implemented
the external control RAM interface, the external data
RAM interface, and the board design. Robert Walsh
developed the prototype UNIX changes. Phil Pears,
Mark Mason, James Ma, and Ken-ichi Satoh provided
significant assistance in placing and routing the ASIC.

We also had assistance from Joe Todesca, Elias
Kazan, and Linda Strahle. Bob Thomas participated in
the initial concept and design. KK Ramakrishnan pro­
vided some information on networking performance.

References

1. Metcalfe, "Computer/Network Interface Design:
Lessons from Arpanet and Ethernet," IEEEJSAC, vol.
11, no. 2 (Feb. 1993).

2. Walsh and Gurwitz, "Converting the BBN TCP /IP
to 4.2BSD," USEMX 1984 Summer Conj Proc. (June
1984).

3. Chang et al., "High-Performance TCP /IP and
UDP /IP Networking in DEC OSF /1 for Alpha AXP,"
Digital Technica/Journal, vol. 5, no. 1 (Winter 1993).

4. Dalton et al., "Afterburner," IEEE Network (July 1993).

5. Clark et al., "An Analysis of TCP Processing Over­
head," IEEECommun.Mag.(June 1989).

6. Kay and Pasquale, "Measurement, Analysis, and
Improvement of UDP /IP Throughput for the
DECstation 5000," USENIX 1993 Winter Conj Proc.
(1993).

7. Owicki, "AN2: Local Area Network and Distributed
System," Proc. 12th Symp. Principles of Dist. Comp.
(Aug.1993).

8. Smith and Traw, "Giving Applications Access to Gb/s
Networking," IEEENetwork(July 1983).

9. Van Jacobson, "Efficient Protocol Implementation,"
ACM SIGCOMM 1990 tutorial (Sept.1990).

10. Banks and Prudence, "A High-Performance Network
Architecture for a PA-RISC Workstation," IEEE]SAC,
vol. 11, no. 2 (Feb. 1993).

Additional Reading

1. Kay and Pasquale, "The Importance of Non-Data Touch­
ing Processing Overheads in TCP /IP," Proc. SIGCOMM
'93 Symp. Commun. Architectures and Protocols (1993).

2. Ramakrishnan, "Performance Considerations in
Designing Network Interfaces," IEEE]SAC, vol. 11,
no. 2 (Feb. 1993).

Biography

Robert J. Walsh
Robert Walsh has been working on high-speed networking
since the beginning of the 1980s. He developed network­
ing software for BSD UNIX, BBN's Butterfly multiproces­
sor, and DIGITAL's GIGAswitch/FDDI.

Digital Technical Journal Vol. 9 No. 4 1997 75

Recent DIGITAL
U.S. Patents

I

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied by the
U.S. Patent and Trademark Office are reproduced as they appear on the original published patent.

0391,927

5,596,218

5,596,283

5,596,575

5,596,715

5,596,754

5,608,653

5,608,883

5,614,444

5,615,167

5,615,283

5,615,363

5,615,382

5,617,283

5,617,409

5,619,657

5,619,662

5,619,710

Robert T. Faranda and
Bradford G. Chapin

Hamid R. Soleimani, Brian Doyle, and
Ara Philipossian

Richard I. Mellitz and Michael V. Dowd

Henry S. Yang, Donald L. Post, and
Wen-Yi Huang

Philippe Klein, David W. Maruska, and
Kevin W. Ludlam

David B. Lomet

Ricky S. Palmer and Larry G. Palmer

Robert R. Kando and Paul L. Godin

Janos Farkas, Rahul Jairath, Matt Stell,
and Sing-Mo Tzeng

Anil K Jain, John H. Edmondson, and
Peter J. Bannon

Dale R. Donchin

Steven M. Jenness

Vincent G. Gavin, Michael J. Seaman,
Neal A. Crook, and Bipin Mistry

David B. Krakauer, Kaizad Mistry,
Steven Butler, and Hamid Partovi

Cuneyt M. Ozveren, Hallam G. Murray, Jr.,
Gregory M. Waters, and Robert J. Simcoe

Ram Sudama, David M. Griffin,
Brad Johnson, Dexter Sealy,
James Shelhamer, and Owen H. Tallman

Simon C. Steely, Jr., David J. Sager, and
David B. Fite, Jr.

Robert L. Travis, Jr., Andrew P. Wilson,
Neal F. Jacobson, and Michael J. Renzullo

76 Digital Technical Journal Vol. 9 No. 4 1997

Notebook personal computer

Hot carrier-hard gate oxides by nitrogen implantation
before gate oxidation

Continuous motion electrical circuit interconnect test
method and apparatus

Automatic network speed adapter

Method and apparatus for testing high speed busses
using gray-code data

Method for performing private lock management

Video teleconferencing for networked workstations

Adapter for interconnecting single-ended and differen­
tial SCSI buses to prevent 'busy' or 'wired-or' glitches
from being passed from one bus to the other

Method ofusing additives with silica-based slurries to
enhance selectivity in metal CMP

Method for increasing system bandwidth through an
on-chip address lock register

Pattern recognition device

Object oriented computer architecture using directory
objects

Data transfer system for buffering and selectively
manipulating the size of data blocks being transferred
between a processor and a system bus of a computer
system

Self-referencing modulation circuit for CMOS
integrated circuit electrostatic discharge protection
clamps

Flow control with smooth limit setting for multiple
virtual circuits

Method for providing a security facility for a network
of management servers utilizing a database of trust
relations to verify mutual trust relations between
management servers

Memory reference tagging

Method and apparatus for object-oriented invocation
of a server application by a client application

5,621,678

5,621,734

5,621,874

5,623,690

5,625,802

5,625,805

5,625,822

5,627,773

5,627,842

5,627,981

5,629,840

5,629,950

5,630,049

5,630,055

5,630,097

5,630,166

5,631,908

5,633,867

5,634,014

5,634,023

5,636,355

5,636,366

5,638,259

Michael J. Barnaby and James W. Brissette

Bruce E. Mann, Darrell J. Duffy,
Anthony G. Lauck, and
William D. Strecker

Peter Lucas and Jeffrey A. Senn

Larry G. Palmer and Ricky S. Palmer

Hoe T. Cho, Maw Z. Jau, and
W. Hugh Durdan

David M. Fenwick, Daniel Wissell,
Richard Watson, and Denis Foley

Bevin R. Brett

Gilbert M. Wolrich, Timothy C. Fischer,
and John A. Kowaleski, Jr.

Joseph H. Brown and Dilip K Bhavsar

Michael C. Adler, Steven 0. Hobbs, and
Paul G. Lowney

William R. Hamburgen, John S. Fitch,
and Norman P. Jouppi

Nitin D. Godiwala, Kurt M. Thaller,
Jeffrey A. Metzger, and Barry A. Maskas

Wayne M. Cardoza, Jeffrey M. Diewald,
Jeffrey E. Nelson, Steven D. DiPirro,
James R. Goddard, Wendell B. Fisher, Jr.,
Anne E. McElearney, and Richard Sayde

Peter J. Bannon, Ruben W. Castelino,
and Chandrasekhara Somanathan

David A. Orbits, Kenneth D. Abramson,
and H. Bruce Butts, Jr.

Rodney Gamache, Stuart Farnham,
Michael Harvey, William A. Laing,
Kathleen Morse, and Michael Uhler

James B. Saxe

Michael Ben-Nun, Simoni Ben-Michael,
Simcha Perl, and Kadangode K
Ramakrishnan

William B. Gist and Joseph P. Coyle

Michael C. Adler, Steven 0. Hobbs, and
Paul G. Lowney

Kadangode K Ramakrishnan and
Prabuddha Biswas

Scott G. Robinson, Richard L. Sites, and
Richard T. Witek

William F. McCarthy, Colin E. Brench,
and Daniel M. Snow

Programmable memory controller for power and
noise reduction

Local area network with server and virtual circuits

Three dimensional document representation using
strands

Audio/video storage and retrieval for multimedia work­
stations by interleaving audio and video data in data file

Apparatus and method for adapting a computer
system to different architectures

Clock architecture for synchronous system bus which
regulates and adjusts clock skew

Using sorting to do matchup in smart recompilation

Floating point unit data path alignment

Architecture for system-wide standardized intra-module
and inter-module fault testing

Software mechanism for accurately handling
exceptions generated by instructions scheduled
speculatively due to branch elimination

High powered die with bus bars

Fault management scheme for a cache memory

Method and apparatus for testing software on a
computer network

Autonomous pipeline reconfiguration for continuous
error correction for fills from tertiary cache or memory

Enhanced cache operation with remapping of pages
for optimizing data relocation from addresses causing
cache misses

Controlling requests for access to resources made by
multiple processors over a shared bus

Method and apparatus for generating and implementing
smooth schedules for forwarding data flows across cell­
based switches

Local memory buffers management for an ATM
adapter implementing credit based flow control

Semiconductor process, power supply voltage and tem­
perature compensated integrated system bus termination

Software mechanism for accurately handling exceptions
generated by speculatively scheduled instructions

Disk cache management techniques using non-volatile
storage

System and method for preserving instruction state­
atomicity for translated program

Enclosure for electronic modules

Digital Technical Journal Vol. 9 No. 4 1997 77

5,638,532

5,638,538

5,644,571

5,646,581

5,648,909

5,648,959

5,649,109

5,649,203

5,650,997

5,651,111

5,652,615

5,652,837

5,652,861

5,652,869

5,652,889

5,654,653

5,657,239

5,657,426

5,657,456

5,657,471

5,657,480

Robert C. Frame and Mark J. Foster

Stephen R. Van Doren, Denis J. Foley,
and Maurice B. Steinman

MichaelJ.Seaman

James 0. Pazaris and Richard P. Evans

Larry L. Biro, Joel J. Grodstein,
Jeng-Wei Pan, and Nicholas L.
Rethman

Nicholas Ilyadis and Richard Graham

Martin Edward Griesmer, Parayath
Gopal Krishnakumar, and David Benson

Richard Lee Sites

Henry Sha-Che Yang, Anthony G. Lauck,
Kadangode K Ramakrishnan, and
William R. Hawe

William M. McKeeman and
August G. Reinig

Stewart Frederick Bryant and
Shaheedur Reza Haque

Nicholas Allen Warchol and
Chester Pawlowski

David T. Mayo, David W. Hartwell, and
Hansel A. Collins

Mark A. Herdeg, James A. Wooldridge,
Scott G. Robinson, Ronald F. Brender,
and Michael V. Iles

Richard Lee Sites

Joseph P. Coyle and William B. Gist

Joel J. Grodstein, Nicholas L. Rethman,
and Jeng-Wei Pan

Keith Waters and Thomas M. Levergood

William B. Gist and Joseph P. Coyle

Richard Lary, Robert Willard,
Catharine van lngen, David Thiel,
William Watson, Barry Rubinson, and
Verell Boaen

Neal F. Jacobson

78 Digital Technical Journal Vol. 9 No. 4 1997

Apparatus and method for accessing SMRAM in a com­
puter based upon a processor employing system manage­
ment mode

Turbotable: apparatus for directing address and
commands between multiple consumers on a node
coupled to a pipelined system bus

Apparatus for message filtering in a network using
domain class

Low inductance electrical resistor terminator package

Static timing verification in the presence oflogically
false paths

Inter-module interconnect for simultaneous use with
distributed LAN repeaters and stations

Apparatus and method for maintaining forwarding
information in a bridge or router using multiple free
queues having associated free space sizes

Translating, executing, and re-translating a computer
program for finding and translating program code at
unknown program addresses

Method and apparatus for use in a network of the
ethernet type, to improve fairness by controlling
collision backoff times in the event of channel capture

Method and apparatus for producing a software test
system using complementary code to resolve external
dependencies

Precision broadcast of composite programs including
secondary program content such as advertisements

Mechanism for screening commands issued over a
communications bus for selective execution by a
processor

System for interleaving memory modules and banks

System for executing and debugging multiple codes in a
multi-architecture environment using jacketing means
for jacketing the cross-domain calls

Alternate execution and interpretation of computer pro­
gram having code at unknown locations due to transfer
instructions having computed destination addresses

Reduced system bus receiver setup time by latching
unamplified bus voltage

Timing verification using synchronizers and timing
constraints

Method and apparatus for producing audio-visual
synthetic speech

Semiconductor process power supply voltage and
temperature compensated integrated system bus
driver rise and fall time

Dual addressing arrangement for a communications
interface architecture

Method of recording, playback, and re-execution of
of concurrently running application program operational
commands using global time stamps

5,658,166

5,659,713

5,659,739

5,659,753

5,659,775

5,664,106

5,664,177

5,664,221

5,666,415

5,666,519

5,666,551

5,668,951

5,671,225

5,671,406

5,675,735

5,675,742

5,675,763

5,675,800

5,678,045

5,680,544

5,680,584

5,680,644

5,682,489

5,682,551

5,684,946

Mike Freeman, Stuart Keith Morgan,
and Mike Romm

Paul M. Goodwin, David A. Tatosian,
and Donald Smelser

Clark E. Lubbers, Susan G. Elkington,
and Richard F. Lary

Dennis Joseph Murphy and
Robert Neil Faiman, Jr.

Alexander Stein and William Grundmann

Frank Samuel Caccavale

Edward S. Lowry

Mark F. Amberg, William K Miller,
Frank M. Nemeth, and
Dwayne H. Swanson

Charles William Kaufinan

Peter C. Hayden

David M. Fenwick, Denis J. Foley,
Stephen R. Van Doren, David W. Hartwell,
Elbert Bloom, and Ricky C. Hetherington

Rajendra K Jain, K K Ramakrishnan,
and Dah-Ming Chiu

Donald F. Hooper, Dave M . Tonge!, and
Michael B. Evans

Clark E. Lubbers and Susan G. Elkington

Shawn Gallagher, James Scott Hiscock,
Dahai Ding, Scott D'Edwine Lawrence

Rajendra K Jain, K K Ramakrishnan,
and Dah-Ming Chiu

Jeffrey Clifford Mogul

Wendell Burns Fisher, Jr. and
Richard Sayde

Jurgen Bettels

John Edmondson and Scott Taylor

Mark A. Herdeg and Michael V. Iles

David J. Sager

Jeffrey R. Harrow and Fred P. Messinger

Chester Walenty Pawlowski, Nicholas
Allen Warchol, David Gerard Conroy,
and R. Stephen Polzin

James P. Ellis, Mike Kantrowitz, and
Will Sherwood

Modular coupler arrangement for use in a building wiring
distribution system

Memory stream buffer with variable-size prefetch
depending on memory interleaving configuration

Skip list data structure enhancements

Interface for symbol table construction in a multi­
language optimizing compiler

Topology independent system for state element conversion

Phase-space surface representation of server computer
performance in a computer network

Data processing system having a data structure with a
single, simple primitive

System for reconfiguring addresses of SCSI devices via
a device address bus independent of the SCSI bus

Method and apparatus for cryptographic authentication

Method and apparatus for detecting and executing
cross-domain calls in a computer system

Distributed data bus sequencing for a system bus with
separate address and data bus protocols

Avoiding congestion system for reducing traffic load on
selected end systems which utilizing above their allocated
fair shares to optimize throughput at intermediate node

Distributed interactive multimedia service system

Data structure enhancements for in-place sorting of a
singly linked list

Method and apparatus for interconnecting network
devices in a networking hub

System for setting congestion avoidance flag at
intermediate node to reduce rates of transmission
on selected end systems which utilizing above their
allocated fair shares

Cache memory system and method for selectively
removing stale aliased entries

Method and apparatus for remotely booting a
computer system

Method and apparatus for multiscript access to entries
in a directory

Method for testing an on-chip cache for repair

Simulator system for code execution and debugging
within a multi-architecture environment

Low delay means of communicating between systems
on different clocks

Method and device for monitoring, manipulating, and
viewing system information

System for checking the acceptance ofI/0 request to
an interface using software visible instruction which
provides a status signal and performs operations in
response thereto

Apparatus and method for improving the efficiency
and quality of functional verification

Digital Technical Journal Vol. 9 No. 4 1997 79

5,687,310

5,687,330

5,689,679

5,692,159

5,694,312

5,694,350

5,694,536

5,694,579

5,695,068

5,696,945

5,696,956

5,698,818

5,701,480

5,701,484

5,701,667

5,708,813

5,712,858

5,713,009

5,717,575

5,717,729

5,717,883

5,717,921

5,720,009

5,724,033

5,724,513

Paul Stuart Rotker and
Randall Dean Hinrichs

William B. Gist and Joseph P. Coyle

Norman Paul Jouppi

Mark A. Shand

Gerald J. Brand and Don L. Drinkwater

Gilbert M. Wolrich, Timothy C. Fischer,
and John A. Kowaleski, Jr.

Michel Gangnet and Jean-Manuel
Van Thong

Rahul Razdan and Gabriel Bischoff

Robert Allison Hart and Richard
Harry Plourde

Larry D. Seiler, Robert S. McNamara,
Christopher C. Gianos, and
JoelJ. McCormack

Rahul Razdan, Bill Grundmann, and
Michael D. Smith

Colin Edward Brench

YoavRaz

Yeshayahu Artsy

Stephen Michael Birch, Gerard
Michel Gavrel, and Zaffar Iqbal Memon

Hoe To Cho and Ming Huann Yuan

Nitin Dhiroobhai Godiwala, Andrew Myer
Ebert, and Chester Walenty Pawlowski

John Anthony DeRosa, Jr., Benn Lee
Schreiber, Peter Chapman Hayden, and
Scott Wade Apgar

Jeffi-ey P. Copeland and Dennis Robinson

Russell Iknaian and Richard B. Watson, Jr.

David J. Sager

David Lomet and Betty Salzberg

Steven A. Kirk, William Barabash, and
William S. Yerazunis

Michael Burrows

Michael Ben-Nun, Simoni Ben-Michael,
and Moshe De-Leon

80 Digital Technical Journal Vol. 9 No. 4 1997

System for generating error signal to indicate mismatch
in commands and preventing processing data associated
with the received commands when mismatch command
has been determined

Semiconductor process, power supply and temperature
compensated system bus integrated interface architec­
ture with precision receiver

Memory system and method for selective multi-level
caching using a cache level code

Configurable digital signal interface using field
programmable gate array to reformat data

U ninterruptible power supply with fault tolerance in
a high voltage environment

Rounding adder for floating point processor

Method and apparatus for automatic gap closing in
computer aided drawing

Using pre-analysis and a 2-state optimistic model to
reduce computation in transistor circuit simulation

Probe card shipping and handling system

Method for quickly painting and copying shallow
pixels on a deep frame buffer

Dynamically programmable reduced instruction set
computer with programmable processor loading on pro­
gram number field and program number register contents

Two part closely coupled cross polarized EMI shield

Distributed multi-version commitment ordering
protocols for guaranteeing serializability during
transaction processing

Routing objects on action paths in a distributed
computing system

Method of manufacture of an interconnect stress
test coupon

Programmable interrupt signal router

Test methodology for exceeding tester pin count for
an asic device

Method and apparatus for configuring a computer
system

Board mounting system with self guiding interengagement

Low skew remote absolute delay regulator chip

Method and apparatus for parallel execution of com -
puter programs using information providing for recon­
struction of a logical sequential program

Concurrency and recovery for index trees with nodal
updates using multiple atomic actions

Method of rule execution in an expert system using
equivalence classes to group database objects

Method for encoding delta values

Traffic shaping system for asynchronous transfer
mode networks

ISSN 0898 -90 1 X

Prinred in U.S .A. EC-P9257- 1 8 /98 05 1 9 2 3 . 0 Copyrighr © Digiral Equipmenr Corporarion .

' · ...

	Front cover
	Contents
	Editor's Introduction
	Optimizing Alpha Executables on Windows NT with Spike
	Analyzing Memory Access Patterns of Programs on Alpha-based Architectures
	OpenVMS Alpha 64-bit Very Large Memory Design
	PowerStorm 4DT: A High-performance Graphics Software Architecture
	DART: Fast Application-level Networking via Data-copy Avoidance
	Recent DIGITAL U.S. Patents
	Back cover

