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Editor's 
Introduction 

In 1992, DIGITAL announced the 
fastest 64-bit RISC microprocessor, the 
Alpha, with a clock rate of200 MHz. 
Today's Alpha processor remains the 
leader in performance; the newest gen­
eration operates at 600 MHz, and the 
next generation will operate at greater 
than 1,000 MHz - gigahertz speed. 
With the industry's most powerful 
processor in hand, DIGITAL's engi­
neers are working to apply Alpha in 
different areas of computing and effect 
optimal solutions to computing prob­
lems. Samples of that work are pre­
sented in this issue and include 
programming performance tools, the 
Open VMS operating system for very 
large memory (VLM) applications, 
graphics adapters for workstations, 
and the DART network adapter for 
high-end systems. 

Spike is a profile-directed perfor­
mance tool for optimizing Alpha exe­
cutables running on the Windows NT 
operating system. Designed specifi­
cally to improve the performance of 
large, call-intensive programs, such 
as commercial databases, CAD pro­
grams, compilers, and productivity 
tools, Spike has been shown to speed 
program execution by as much as 33 
percent. Robert Cohn, Dave Goodwin, 
and GeoffLowney describe Spike's 
two components. The Optimizer 
modifies code layout to improve 
instruction cache behavior and per­
forms hot-cold optimization to 
reduce the number of instructions 
executed on frequent paths through 
the program. The Optimization 
Environment collects, manages, 
and applies profile information 
transparently for the programmer. 

Digital Technical Journal 

An experimental Atom-based per­
formance tool presented by Susanne 
Balle and Simon Steely provides pro­
grammers with an understanding of 
the access pattern behavior of their 
technical applications. The tool gen­
erates histograms for each memory 
reference in a program, thus allowing 
the programmer to spot bottlenecks. 
The authors step through an instruc­
tive case study in the use of the tool 
with Fortran programs, showing how 
different compiler switches affect the 
execution of a program algorithm. 

The Open VMS Alpha operating 
system version 7.1 extends its support 
for VLM applications. The design 
work discussed by Karen Noel and 
Nitin Karkhanis focused on increasing 
flexibility for VLM applications and 
on adding system management capa­
bilities. Areas reviewed are the shared 
memory objects designed to improve 
application scaling on the system, 
shared page tables to reduce applica­
tion start-up/shut-down times, and 
the physical memory reservation sys­
tem to allow efficient application use 
of system components, namely the 
translation buffer. 

DIGITAL's PowerStorm series 
of graphics adapters for mid-range 
workstations provides exceptional 
performance on the DIGITAL UNIX 
and the Windows NT operating sys­
tems. Benj Lipchak, Tom Frisinger, 
Karen Bircsak, Keith Comeford, 
and Mike Rosenblum have written 
an informative tutorial about the 
PowerStorm adapter design that was 
shaped in large part by the existing 
competitive environment. Their dis­
cussion covers selected benchmarks 
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and real-world performance experi­
ences, the advantages and disadvan­
tages in choosing a direct-rendering 
or an indirect-rendering scheme, and 
the ways in which the engineering 
team exploited the Alpha micro­
processor's exceptional floating­
point speed. 

DART is a 622-megabit-per-second 
network adapter that connects gigabit­
class networks to gigabit-class 1/0 
buses. It is designed to increase net­
work throughput and decrease system 
overhead. Bob Walsh explains that 
the DART project, started in the 
late 1980s, anticipated the need to 
address fundamental memory band­
width bottleneck issues from a system­
level perspective. The main approach 
taken in the DART adapter is data 
copy avoidance, without requiring 
changes to system call semantics. 

The upcoming]ournalwill be a 
special issue that features papers on 
programming languages and tools. 
Topics include C and Fortran paral­
lelizing compilers, the C++ template 
facility, alias analysis algorithms, 
debuggers, and performance tools 
for software running on the Windows 
NT, UNIX, and Open VMS operating 
systems. 

Jane C. Blake 
Managing Editor 



Optimizing Alpha 
Executables on 
Windows NT with Spike 

Many Windows NT-based applications are 

large, call-intensive programs, with loops that 

span multiple procedures and procedures that 

have complex control flow and contain numer­

ous basic blocks. Spike is a profile-directed opti­

mization system for Alpha executables that is 

designed to improve the performance of these 

applications. The Spike Optimizer performs code 

layout to improve instruction cache behavior 

and hot-cold optimization to reduce the number 

of instructions executed on the frequent paths 

through the program. The Spike Optimization 

Environment provides a complete system for 

performing profile feedback by handling the 

tasks of collecting, managing, and applying 

profile information. Spike speeds up program 

execution by as much as 33 percent and is being 

used to optimize applications developed by 

DIGITAL and other software vendors. 

I 
Robert S. Cohn 
David W. Goodwin 
P. Geoffrey Lowney 

Spike is a performance tool developed by DIGITAL to 
optimize Alpha executables on the Windows NT oper­
ating system. This optimization system has two main 
components: the Spike Optimizer and the Spike 
Optimization Environment. The Spike Optimizer1

-
3 

reads in an executable, optimizes the code, and writes 
out the optimized version. The Optimizer uses profile 
feedback from previous runs of an application to guide 
its optimizations. Profile feedback is not commonly 
used in practice because it is difficult to collect, manage, 
and apply profile information. The Spike Optimization 
Environment1 provides a user-transparent profile feed­
back system that solves most of these problems, 
allowing a user to easily optimize large applications 
composed of many executables and dynamic link 
libraries (DLLs). 

Optimizing an executable image after it has been 
compiled and linked has several advantages. The Spike 
Optimizer can see the entire image and perform inter­
procedural optimizations, particularly with regard to 
code layout. The Optimizer can use profile feedback 
easily, because the executable that is profiled is the 
same executable that is optimized; no awkward map­
ping of profile data back to the source language takes 
place. Also, Spike can be used when the sources to an 
application are not available, which is beneficial when 
DIGITAL is working with independent software ven­
dors (ISVs) to tune applications. 

Applications can be loosely classified into two cate­
gories: loop-intensive programs and call-intensive 
programs. Conventional compiler technology is well 
suited to loop-intensive programs. The important 
loops in a program in this category are within a single 
procedure, which is typically the unit of compilation. 
The control flow is predictable, and the compiler can 
use simple heuristics to determine the frequently exe­
cuted parts of the procedure. 

Spike is designed for large, call-intensive programs; 
it uses interprocedural optimization and profile feed­
back. In call-intensive programs, the important loops 
span multiple procedures, and the loop bodies contain 
procedure calls. Consequently, optimizations on the 
loops must be interprocedural. The control flow is 
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complex, and profile feedback is required to accurately 
predict the frequently executed parts of a program. 
Call overhead is large for these programs. Optimiza­
tions to reduce call overhead are most effective with 
interprocedural information or profile feedback. 

The Spike Optimizer implements two major optimiza­
tions to improve the performance of the call-intensive 
programs just described. The first is code layout:+-<> 
Spike rearranges the code to improve locality and 
reduce the number of instruction cache misses. The sec­
ond is hot-cold optimization (HC0):7 Spike optimizes 
the frequent paths through a procedure at the expense 
of the infrequently executed paths. HCO is particularly 
effective in optimizing procedures with complex con­
trol flow and high procedure call overhead. 

The Spike Optimization Environment provides a 
system for managing profile feedback optimization.1 

The user interface is simple-it requires only two user 
interactions: ( 1) the request to start feedback collec­
tion on an application and (2) the request to end col­
lection and to use the feedback data to optimize the 
application. Spike maintains a database of profile infor­
mation. When a user selects an application, Spike 
makes an entry in its database for the application and 
for each of its component images. For each image, 
Spike keeps an instrumented version, an optimized 
version, and profile information. When the original 
application is run, a transparency agent substitutes the 
instrumented or optimized version of the application, 
as appropriate. 

This paper discusses the Spike performance tool and 
its use in optimizing Windows NT-based applications 
running on Alpha processors. In the following section, 
we describe the characteristics ofWindows NT-based 
applications. Next, we discuss the optimizations used 
in the Spike Optimizer and evaluate their effectiveness. 
We then present the Spike Optimization Environment 
for managing profile feedback optimization. A sum­
mary of our results concludes the paper. 

Characteristics of Windows NT-based 
Applications 

To evaluate Spike, we selected applications that are 
typically used on Alpha computers running the 
Windows NT operating system. These applications 
include commercial databases, computer-aided design 
(CAD) programs, compilers, and personal productiv­
ity tools. For comparison, we also included the bench­
mark programs from the SPECint95 suite.8 Table 1 
identifies the applications and benchmarks, and the 
workloads used to exercise them. All programs are 
optimized versions of DIGITAL Alpha binaries and are 
compiled with the same highly optimizing back end 
that is used on the UNIX and Open VMS systems.9 The 
charts and graphs in this paper contain data from a 
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core set of applications. Note that we do not have a full 
set of measurements for some applications. 

In obtaining most of the profile-directed optimiza­
tion results presented in this paper, we used the same 
input for both training and timing so that we could 
know the limits of our approach. Others in the field 
have shown that a reasonably chosen training input 
will yield reliable speedups for other input sets. 10 Our 
experience confirms this result. For the code layout 
results presented in Figure 11, we used the official 
SPEC timing harness to measure the SPECint bench­
marks. This harness uses a SPEC training input for 
profile collection and a different reference input for 
timing runs.8 

Figure 1 is a graph that shows, for each application 
and benchmark, the size of the single executable or 
DLL responsible for the majority of the execution 
time. The figure contains data for most of the applica­
tions and all the benchmarks listed in Table 1. Some 
Windows NT-based applications are very large. For 
example, PTC has 30 times more instructions than 
GCC, the largest SPECint95 benchmark. Large 
Windows NT-based applications have thousands of 
procedures and millions of basic blocks. With such 
programs, Spike achieves significant speedups by rear­
ranging the code to reduce instruction cache misses. 
Code rearrangement should also reduce the working 
set of the program and the number of virtual memory 
page faults, although we have not measured this 
reduction. 

To characterize a call-intensive application, we 
looked at SQLSERVR. We estimated the loop behav­
ior ofSQLSERVR by classifying each of its procedures 
by the average trip count of its most frequently exe­
cuted loop, assigning a weight to each procedure 
based on the number of instructions executed in the 
procedure, and graphing the cumulative distribution 
of instructions executed. The graph is presented in 
Figure 2. Note that 69 percent of the execution time 
in SQLSERVR is spent in procedures that have loops 
with an average trip count less than 2. Nearly all the 
run time is spent in procedures with loops with an 
average trip count less than 16. An insignificant 
amount of time is spent in procedures containing 
loops with high trip counts. Of course, SQLSERVR 
executes many loops, but the loop bodies cross multi­
ple procedures. To improve SQLSERVR performance, 
Spike uses code layout techniques to optimize code 
paths that cross multiple procedures. Also note that 69 
percent of the execution time is spent in procedures 
where the entry basic block is the most frequently exe­
cuted basic block. The entry basic block dominates the 
other blocks in the procedure, and compilers often 
find it a convenient location for placing instructions, 
such as register saves. In SQLSERVR, this placement is 
a poor decision. Our HCO targets this opportunity to 



Table 1 
Windows NT-based Applications for Alpha Processors and SPECint95 Benchmarks 

Program Full Name 

SQLSERVR Microsoft SQL Server 6.5 

SYBASE Sybase SQL Server 11.5.1 

EXCHANGE Microsoft Exchange 4.0 

EXCEL Microsoft Excel 5.0 

WINWORD Microsoft Word 6.0 

TEXIM Welcom Software Technology 
Texim Project 2.0e 

MAXED A Orcad MaxEDA 6.0 

ACAD Autodesk AutoCAD Release 13 

CV Computervision Pmodeler v6 

PTC Parametric Technology 
Corporation Pro/ENGINEER 
Release 18.0 

SOLIDWORKS SolidWorks Corporation 
SolidWorks 97 

USTATION Bentley Systems MicroStation 95 

EDS Electronic Data Systems 
Unigraphics 11.1 

MPEG DIGITAL Light & Sound Pack 

(1, (2 Microsoft Visual C++ 5.0 

OPT, EM486 DIGITAL FX!32 Version 1.2 

ESRI Environmental Systems 
Research Institute 
ARC/INFO 7.1.1 

VORTEX SPECint95 

GO SPECint95 

M88KSIM SPECint95 

LI SPECint95 

COMPRESS SPECint95 

!JPEG SPECint95 

GCC SPECint95 

PERL SPECint 95 

move instructions from the entry basic block to less 
frequently executed blocks. 

Figure 3 presents the loop behavior data for many of 
the Windows NT- based applications listed in Table 1. 
Note that the applications fall into three groups. The 
most call-intensive applications are SQLSERVR, 
ACAD, and EXCEL, which spend approximately 70 
percent of their run time in procedures with an aver­
age trip count less than 2. C2, WINWORD, and 
USTATION are moderately call intensive; they spend 

Type Workload 

Database Transaction processing 

Database Transaction processing 

Mail system Mail processing 

Spreadsheet BAPCo SYSmark for 
Windows NT Version 1.0 

Word processing BAPCo SYSmark for 
Windows NT Version 1.0 

Project management BAPCo SYSmark for 
Windows NT Version 1.0 

Electronic CAD BAPCo SYSmark for 
Windows NT Version 1.0 

Mechanical CAD San Diego Users Group 
benchmark 

Mechanical CAD Mechanical model 

Mechanical CAD Bench97 

Mechanical CAD Intake runner model 

Mechanical CAD Rendering 

Mechanical CAD Brake shoe model 

MPEG viewer MPEG playback 

Compiler 5,000 lines of C code 
C1: front end 
C2: back end 

Emulation software BYTEmark benchmark 
OPT: x86-to-Alpha 
translator 
EM486: x86 emulator 

Geographical Reg ional model 
Information Systems 

Database SPEC ref erence 

Game SPEC reference 

Simulator SPEC reference 

LISP interpreter SPEC reference 

Compression SPEC reference 

JPEG compression/ SPEC reference 
decompression 

(compiler SPEC reference 

Interpreter SPEC reference 

approximately 40 percent of their run time in loops 
with an average trip count less than 2. MAXEDA and 
TEXIM are loop intensive; they spend approximately 
10 percent of their run time in loops with an average 
trip count less than 2 . TEXIM is dominated by a single 
loop with an average trip count of 465. 

We further characterized the nonlooping proce­
dures by control flow. If a pro_cedure consists of only a 
few basic blocks, techniques such as inlining are effec­
tive. To estimate the control flow complexity of 
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Figure 2 
Loop Behavior ofSQLSERVR 

100 

SQLSERVR, we classified each ofits procedures by the 
number of basic blocks, assigned a weight to each pro­
cedure based on the number of instructions executed 
in the procedure, and graphed a cumulative distribu­
tion of the instructions executed. We restricted this 
analysis to procedures that have loops with an average 
trip count less than 4. (These procedures account 
for 69 percent of the execution time of SQLSERVR.) 
The line labeled ALL in Figure 4 represents the results 
of our analysis. Note that 90 percent of the run time 
of the nonlooping procedures is spent in procedures 
with more than 16 basic blocks. The line labeled 
FILTERED in Figure 4 represents the results when we 
ignored basic blocks that are rarely executed. Note 
that 65 percent of the run time of the nonJooping pro-

2 4 8 16 32 64 128 256 512 1K 2K 4K BK 16K 32K 64K128K256K512K 
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AVERAGE TRIP COUNT 

Loop Behavior of Windows NT-based Applications 
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Figure4 
Complexity of Procedures in SQLSERVRfor Procedures 
with an Average Trip Count Less Than 4, Which Account 
for 69 Percent of the Execution Time 

cedures is spent in procedures with more than 16 basic 
blocks. In SQLSERVR, procedures are large; many 
basic blocks are executed, and many are not. Spike 
uses code layout and HCO to optimize the frequently 
executed paths through large procedures. 

Figure 5 presents the control flow data for many of 
the Windows NT-based applications listed in Table l. 
Again we measured only nonlooping procedures and 
ignored basic blocks that are rarely executed. Note that 
all the applications have large procedures. More than 
half the run time of the nonlooping procedures is spent 
in procedures that execute at least 16 basic blocks. 

100 

To estimate procedure call overhead, we counted 
the number of instructions executed in the prolog and 
epilog of each procedure. This estimate is conserva­
tive; it ignores the cost of the procedure linkage and 
argument setup and measures only the number of 
instructions used to create or remove a frame from the 
stack and to save or restore preserved registers. In 
SQLSERVR, 15 percent of all instructions are in pro­
logs and epilogs. HCO removes approximately one 
half of this overhead. 

The chart in Figure 6 shows the procedure call over­
head for most of the Windows NT-based applications 
listed in Table l. The overhead ranges from 23 percent 
to 2 percent. The applications are ordered according to 
the amount of run time in procedures with an average 
trip count less than 8 in Figure 3. The call overhead is 
roughly correlated with the amount of run time in low 
trip count procedures. Figure 6 includes data for some 
of the SPECint95 benchmarks, which are ordered by 
the amount of run time in procedures with an average 
trip count less than 2. The amount of call overhead for 
these benchmarks ranges from 24 percent to O percent 
and is more strongly correlated with the amount of run 
time in low trip count procedures. 

Optimizations 

The Spike Optimizer is organized like a compiler. It 
parses an executable into an intermediate representa­
tion, optimizes the representation, and writes out an 
optimized executable. The intermediate representa­
tion is a list of Alpha machine instructions, annotated 

0 16 32 48 64 80 96 112 128 

Figure 5 

KEY: 

-- SQLSERVR (69%) 

--- ACAD (82%) 

__.._ EXCEL (71%) 

-- C2 (44%) 

SIZE IN BASIC BLOCKS (FILTERED) 

~ WINWORD (49%) 

-a- USTATION (44%) 

--6- MAXEDA (13%) 

Note that the number that appears after the application name indicates the percentage of the total 
execution time spent in procedures with an average trip count less than 4. 

Complexity of Procedures in Windows NT-based Applications for Procedures with an Average Trip Count Less Than 4 
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Figure 6 
Procedure Call Overhead (Time Spent in Prolog and Epilog) 

with a small amount of additional information. On top 
of the intermediate representation, the optimizer 
builds compiler-like structures, including basic blocks, 
procedures, a flow graph, a loop graph, and a call 
graph. 11 Images are large, and the algorithms and rep­
resentations used in the optimizer must be time and 
space efficient. 

The Spike Optimizer performs an interprocedural 
dataflow analysis to summarize register usage within 
the image.12 This enables optimizations to use and 
reallocate registers. The interprocedural dataflow is 
fast, requiring less than 20 seconds on the largest 
applications we tested. Memory dataflow is much 
more difficult to analyze because of the limited infor­
mation available in an executable, so the optimizer 
analyzes only references to the stack. 

Optimizations rewrite the intermediate representa­
tion. The important optimizations are code layout and 
HCO. The Spike Optimizer also performs additional 
optimizations to reduce the overhead of shared 
libraries. 

Code Layout 
We derived our code layout algorithm from prior work 
on profile-guided code positioning by Pettis and 
Hansen. 6 The goal of the algorithm is to reduce 
instruction cache miss. Our algorithm consists of three 
steps. The first step reorganizes basic blocks so that the 
most frequent paths in a procedure are sequential, 
which permits more efficient use of cache lines and the 
exploitation of instruction prefetch. The second step 
places procedures in memory to avoid instruction 
cache conflicts. The third step splits procedures into 
hot and cold sections to improve the performance of 
procedure placement. 

The following example illustrates basic block reor­
ganization. Consider the flow graph in Figure 7, where 
each node is a basic block that contains four instruc­
tions. The arms of the conditional branches are labeled 
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with their relative probabilities. Assume that the target 
is an Alpha 21164 processor. 13 Each instruction is 
4 bytes, and the instruction cache is organized into 
32-byte lines; each cache line holds two of the four­
instruction basic blocks. A simple breadth-first code 
layout orders the code AB CD EF GH, and the com­
mon path ABDFGH requires four cache lines. Two 
cache lines ( CD and EF) each contain a basic block 
that is infrequently used but which must be resident in 
the cache for the frequently used block to be executed. 
If we order the code so that the common path is adja­
cent (AB DF GH CE), the infrequently used blocks are 
in the same line (CE), and they do not need to be in 
the cache to execute the frequently used blocks. 

Straight-line code is also better able to exploit 
instruction prefetch. On an instruction cache miss, the 
Alpha 21164 processor prefetches the next four cache 
lines into a refill buffer. After an instruction cache miss, 
the processor frequently is able to execute a straight­
line code path without stalling if the code is in the 
second-level cache. A branch that is taken typically 
requires an additional cache miss if the target of the 
branch is not already in the instruction cache. 

We reorganize the basic blocks using a simple, 
greedy algorithm, similar to the trace-picking alga-

Figure 7 
Basic Block Reorganization 
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rithm used in trace scheduling. 14 Our goal is to find a 
new ordering of the basic blocks so that the fall­
through path is usually taken. We sort the list of flow 
graph edges by execution count and process them in 
order, beginning with the highest values. For each 
edge we make the destination basic block immediately 
follow the source block, unless the source has already 
been assigned a successor or the destination has 
already been assigned a predecessor. 

We place procedures to avoid conflicts in the 
instruction cache. An Alpha 21164 has a primary 
instruction cache of 8 kilobytes (KB) that holds 256 
lines of 32 bytes each. Two instructions conflict in the 
cache if they are more than 32 bytes apart and map to 
the same cache line, specifically, if address0/32 mod 
256 = addressl/32 mod 256. Our strategy is to place 
procedures so that frequently called procedures are 
near the caller. Consider the simple example in Figure 
8. Assume procedure A calls procedure Cina loop. A 
and C map to the same cache lines, so on each call to 
C, C replaces A in the cache, and on each return from 
C, A replaces C. If we reorganize the code such that C 
follows A, both A and C can fit in the cache at once, 
and there are no conflict misses when A calls C. 

We use another greedy algorithm to place proce­
dures. The example presented in Figure 9 illustrates 
the steps. We build a call graph and assign a weight to 

T 

each edge based on the number of calls. If there is 
more than one edge with the same source and destina­
tion, we compute the sum of the execution counts and 
delete all but one edge. Figure 9a shows the call graph. 
To place the procedures in the graph, we select the 
most heavily weighted edge (B to C), record that the 
two nodes should be placed adjacently, collapse the 
two nodes into one (B.C), and merge their edges (as 
shown in Figure 9b ). We again select the most heavily 
weighted edge and continue (Figure 9c) until the 
graph is reduced to a single node A.D.B.C (Figure 
9d) . The final node contains an ordering of all the pro­
cedures. Special care is taken to ensure that we rarely 
require a branch to span more than the maximum 
branch displacement. 

The effectiveness of procedure placement is limited 
by large procedures. In the PERL benchmark from 
SPEC, which is one of the smallest programs we stud­
ied, one frequently executed procedure is larger than 
32 KB, four times the size of the instruction cache on 
the Alpha 21164 processor. In SQLSERVR, more than 
half the run time is spent in procedures with more 
than 16 basic blocks. To address this problem, we split 
procedures into hot and cold sections and treat each 
section as an independent procedure when placing 
procedures. To split a procedure, we examine each 
basic block and use a threshold on the execution count 
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Figure 8 
Procedure Placement 
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Figure 9 
Steps in the Procedure Placement Algorithm 
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to decide if a basic block is cold. We use a single 
threshold for the entire program. The threshold is 
chosen so that the total execution time for all the basic 
blocks below the threshold constitutes no more than 
1 percent of the execution time of the program. 
Procedures with both hot and cold basic blocks are 
split; otherwise, they are left intact. 

Figure 10 illustrates the importance of procedure 
splitting. The figure charts the speedup on SQlSERVR, 
running on an Alpha 21064 workstation,15 for the 
components of our code layout algorithm. The bar 
graph indicates that chaining basic blocks or placing 
procedures results in a speedup ofless than 4 percent, 
but placing procedures after splitting yields a 15 per­
cent speedup. Using all our optimizations ( chaining, 
splitting, and placing) together produces a 16 percent 
speedup. 

Figure 11 presents the speedups from code layout for 
the Windows NT-based applications and the SPECint 
benchmarks running on an Alpha 21164 workstation. 
Speedups range from 45 percent to O percent; most 

CHAIN PLACE PLACEJSPLIT ALL 

CODE LAYOUT ALGORITHM COMPONENT 

Note that this data is for the SQLSERVR application running on an 
Alpha 21064 microprocessor. 

Figure 10 
Speedup for Code Layout by Optimization 
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applications show a noticeable improvement. The 
leftmost seven Windows NT-based applications 
(SQlSERVR through TEXIM) are ordered by the 
amount of time spent in procedures with an average 
trip count less than 8 in Figure 3. Note that all but the 
most loop-intensive application show a significant 
speedup from code layout. Three programs show min­
imal speedup: TEXIM is dominated by a single loop 
that fits in the instruction cache, and !JPEG and 
COMPRESS are dominated by two or three small 
loops. These programs do not have an appreciable 
amount of instruction cache miss; changing the code 
layout cannot improve their performance. 

Hot-Cold Optimization 
Hot-cold optimization is a generalization of the 
procedure-splitting technique used in our code layout 
algorithm.7 We optimize the hot part of the procedure 
(ignoring the cold part) by eliminating all instructions 
that are required only by the cold part. To implement 
this optimization, we create a hot procedure by copy­
ing the frequently executed basic blocks of a proce­
dure. All calls to the original procedure are redirected 
to the hot procedure. Flow paths in the hot procedure 
that target basic blocks that were not copied are redi­
rected to the appropriate basic block in the original 
(cold) procedure; that is, the flows jump into the mid­
dle of the original procedure. We then optimize the 
hot procedure, possibly at the expense of the flows 
that pass through the cold path. 

HCO is best understood by working through an 
extended example. Consider the procedure f o o 
(shown in Figure 12), which is a simplified version of 
a procedure from the Windows NT kernel. 
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Figure 11 
Speedup from Code Layout 
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1 foo: lda sp,16Csp) adjust stack 
2 stq sO,OCsp) save sO 
3 stq ra,8Csp) save ra 
4 addl a0,1,sO sO = aO + 1 
5 addl a0,a1,a0 ; aO = aO + a1 
6 bne s0,L2 ; branch if sO != 
7 L 1: bsr f1 ; call f1 
8 addl s0,a0,t1 t1 = aO + sO 
9 stl t1,40Cgp) ; store t1 

10 L2: ldq sO,OCsp) ; restore sO 
11 ldq ra,8Csp) ; restore ra 
12 lda sp,-16Csp) ; adjust stack 
13 ret Cra ) return 

Figure 12 
Simplified Version of a Procedure from the Windows NT 
Kernel 

0 

Assume that the branch in line 6 of f o o is almost 
always taken and that lines 7 through 9 are almost 
never executed. When we copy the hot part of the pro­
cedure, we exclude lines 7 through 9 of foo. The 
resulting procedure f o o 2 is shown in Figure 13. 

1 
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10 

foo2: lda sp,16Csp> 
stq sO,OCsp) 
stq ra,8(sp ) 
addl a0,1,sO 
addl a0,a1 ,a0 
beq sO,L 1 
ldq sO,OCsp) 
ldq ra,8Csp ) 
lda sp,-16Csp> 
ret Cra) 

Figure 13 
Hot Procedure 

Note the reversal of the sense of the branch from 
b n e in f o o to be q in f o o 2 and the change of the 
branch's target from L2 to L 1. All calls to foo are 
redirected to the hot procedure f o o 2. If the branch in 
line 6 of f o o 2 is taken, then control transfers to line 
7 off o o, which is in the middle of the original proce­
dure. Once passed to the original procedure, control 
never passes back to the hot procedure. This feature 
of HCO enables optimization; when optimizing the 
hot procedure, we can relax some of the constraints 
imposed by the cold procedure. 

So far, we have set up the hot procedure for opti­
mization, but we have not made the procedure any 
faster. Now we show how to optimize the procedure. 
The hot procedure no longer contains a call, so we can 
delete the save and restore of the return address in 
lines 3 and 8 of f o o 2 in Figure 13. If the branch trans­
fers control to L 1 in the cold procedure f o o, we must 
arrange for r a to be saved on the stack. In general, 
whenever we enter the original procedure from the 
hot procedure, we must fix up the state to match the 
expected state. We call the fix-up operations compen­
sation code. To insert compensation code, we create a 
stub and redirect the branch in line 6 of f o o 2 to 

branch to the stub. The stub saves r a on the stack and 
branches to L 1 . 

Next, note that the instruction in line 5 of f o o 2 
writes a O, but the value of a O is never read in the hot 
procedure. a O is not truly dead, however, because it is 
still read if the branch in line 6 of foo2 is taken. 
Therefore, we delete line 5 from the hot procedure 
and place a copy of the instruction on the stub. HCO 
tries to eliminate the uses of preserved registers in a 
procedure. Preserved registers can be more expensive 
than scratch registers because they must be saved and 
restored if they are used. Preserved registers are typi­
cally used when the lifetime of a value crosses a call. In 
the hot procedure, no lifetime crosses a call and the 
use of a preserved register is unnecessary. We rename 
all uses of s O in the hot procedure to use a free scratch 
register t 2. We insert a copy on the stub from t 2 to 
s O. We can now eliminate the save and restore instruc­
tions in lines 2 and 7 of Figure 13 and place the save 
on the stub. 

We have eliminated all references to the stack in 
the hot procedure. The stack adjusts on lines 1 and 9 
in Figure 13 can be deleted from the hot procedure, 
and the initial stack adjust can be placed in the stub. 
The final code, including the stub stub 1, is listed in 
Figure 14. The number ofinstructions executed in the 
frequent path has been reduced from 10 to 3. If the 
stub is taken, then the full 10 instructions and an extra 
copy and branch are executed. 

1 foo2: addl a0,1,t2 
2 beq t2,stub1 
3 ret Cra) 
4 stub1: lda sp,16Csp) 
5 stq sO,OCsp) 
6 stq ra,8Csp) 
7 addl a0,a1,a0 
8 mov t2,s0 
9 br L1 

Figure 14 
Optimized Hot Procedure 

Finally, we would like to inline the hot procedure. 
Copies of instructions 1 and 2 can be placed inline. 
For the inlined branch, we must create a new stub that 
materializes the return address into r a before transfer­
ring control to s tub 1 . 

Except for partial inlining, we have implemented all the 
HCO optimizations in Spike. These optimizations are 

• Partial dead code elimination 16- the removal of 
dead code in the hot procedure 

• Stack pointer adjust elimination-the removal of 
the stack adjusts in the hot procedure 

• Preserved register elimination-the removal of the 
save and restore of preserved registers in the hot 
procedure 
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• Peephole optimization-the removal in the hot 
procedure of self-assignments and conditional 
branches with an always-false condition 

Figure 15 shows coverage statistics for the HCO 
optimizations. Coverage represents the percentage of 
execution time spent in each category. To compute 
coverage, we assigned each procedure to a category 
and then for each category calculated the total number 
of instructions executed by its procedures. The cate­
gory OPTIMIZED indicates the set of proced~res 
optimized by HCO. The portion of the execunon 
time spent in these procedures is typically 60 percent 
but often higher. The category INFREQUENT is the 
set of procedures whose execution times are so small 
(less than 0.1 percent of the total time) that we did not 
think it was worthwhile to optimize the procedures. 
Ignoring procedures with small executi~n times _allo~s 
us to optimize less than 5 percent of the mstrucno?s m 
a program, a significant reduction in optimizer nme . 
The category NO SPLIT represents the procedures 
that we could not split into hot and cold parts because 
all basic blocks had similar execution counts. The cate­
gory SP MODIFIED contains procedures in which ~e 
stack pointer is modified after the initial stack adjust m 
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the prolog. We decided not to optimize these proce­
dures, but it is possible to do so with extra analysis. 
Note that the execution time spent in this category of 
procedures is small except for in C2, where the c~te­
gory contains two procedures and the coverage 1s 7 
percent. Finally, the category NO ADVANTAGE rep­
resents the procedures that were split but that the 
optimizer was not able to improve. 

Figure 16 shows the overall reduction i~ ~ath 
length as a result ofHCO, broken down by opnrruza­
tion. Most of the reduction in path length comes 
equally from the removal of unnecessary save a~d 
restore instructions and from the removal of parnal 
dead code. Stack pointer adjust elimination and peep­
hole optimization result in smaller additional gains. A 
large peephole category is usually the result of a save 
and restore of a preserved register that is made unnec­
essary by HCO; the restore is converted to a self­
assignment by copy propagation, which is then 
removed by peephole optimization. 

HCO is most effective on call-intensive programs 
such as SQLSERVR, ACAD, and C2, where we 
eliminate calls when creating the hot procedures. For 
WINWORD, the speedup is small because coverage is 
low; we could not find a way to split the procedures. 

APPLICATION OR BENCHMARK 
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Figure 15 
HCO Coverage by Execution Time 
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Figure 16 
Reduction in Path Length As a Result ofHCO 

For EXCEL, HCO was able to split the procedures, 
but there is often a call in the hot path. Inlining may 
help in optimizing EXCEL, but frequently the call is 
to a shared library. 

HCO is less effective on loop-intensive programs 
such as USTATION, MAXEDA, and TEXIM. HCO 
provides a framework for optimizing loops, and 
Chang, Mahlke, and Hwu have shown that eliminat­
ing the infrequent paths in loops enables additional 
optimizations, such as loop invariant removal. 17 

However, our current implementation of Spike 
includes almost no information about the aliasing of 
memory operations; it can only optimize operations to 
local stack locations, such as spills of registers. 

A leaf procedure is a procedure that does not 
contain a procedure call. Figure 17 compares the 
amount of time spent in leaf procedures before and 
after HCO is applied. By eliminating infrequent 
code, HCO is able to eliminate all calls in procedures 
that represent 10 percent to 20 percent of the execu­
tion time in C2, ACAD, SQLSERVR, and MAXEDA. 
For the other Windows NT-based applications, the 
increase in time spent in leaf procedures is very small. 
Most Windows NT-based applications spend much 
less than half the time in leaf procedures. To improve 

the performance of these applications, an optimizer 
needs to improve the performance of code with calls 
in the frequent path. 

Code size and its effect on cache behavior is a major 
concern for us. In large applications, locality for 
instructions is present but not high. If an optimization 
decreases path length but also decreases locality as a 
side effect, the net result can be a loss in performance. 

Figure 18 shows the total increase in code size as a 
result of optimization. HOT+ COLD is the part of the 
increase that comes from replacing a single procedure 
with the original procedure plus a copy of the hot part. 
STUB is the increase attributed to stub procedures. 
Overall, the increase in size is small. The maximum 
increase is 11.6 percent for C2. SQLSERVR has the 
best speedup and is only 3.1 percent larger. Looking at 
the increase in total code size is misleading, however. 
HCO is not applied to procedures that are executed 
infrequently, which typically account for more than 95 
percent of the instructions in a program, so tripling 
the size of optimized procedures would result in only a 
modest increase in code size. Note that tripling the 
size of the active part of an application usually disas­
trously decreases performance. 
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Figure 17 
Time Spent in Leaf Procedures before and after HCO 

For this reason, we also measured the increase in 
code size based on the procedures that were optimized. 
Figure 19 compares the total sizes of the hot proce­
dures with the total sizes of the original procedures 
from which they were derived. For each procedure, by 
copying just the frequently executed part of the proce­
dure, we excluded about 50 percent of the original . 
Next, we eliminated code that was frequently executed 
but only reachable through an infrequently executed 
path and therefore unreachable in the hot procedure. 
This code usually represents only 1 percent of the total 
size of a procedure. Finally, we optimized the hot pro­
cedure, reducing the remaining code size by about 
10 percent, which is 5 percent of the size of the origi-
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nal procedure. The final sizes of the hot procedures as 
percentages of the sizes of the original procedures 
are shown in the line labeled HOT. Making the most 
frequently executed part of a program 50 percent to 
80 percent smaller yields a big improvement in 
instruction cache behavior; however, it would be mis­
leading to attribute this improvement to HCO, since 
our code layout optimization achieves the same result. 
When HCO is enabled, the cache layout optimizations 
are run after HCO. The baseline we compare against 
also has cache optimizations enabled, so improve­
ments attributed to HCO are improvements beyond 
those that the other optimizations can make. HCO 
does make the frequently executed parts 10 percent 
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Figure 18 
Overall Increase in Code Size after HCO 
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Figure 19 
Size of Optimized Procedures after HCO 

smaller, but we did not see significantly better instruc­
tion cache behavior when we ran programs with a 
cache simulator. 

If we were to perform partial inlining, only the hot 
procedure would be copied. Since the hot procedure is 
less than half the size of the original procedure, partial 
inlining would greatly reduce the growth in code size 
due to inlining. 

The line labeled COLD in Figure 19 shows how the 
size of the cold procedure is affected by HCO. When 
we redirect all calls to the hot procedure, some code in 
the original procedure becomes unreachable. The 
amount of unreachable code is usually less than 10 
percent, which is much smaller than the 50 percent of 
the code we copied to create the hot procedure. The 
infrequent paths in a procedure often rejoin the fre­
quent paths, which makes it necessary to have copies 
of both types of paths in the original procedure. 

The line labeled STUB shows the code size of the 
stubs, which is very small. A stub contains the com­
pensation code we introduce on a transition from 
a hot routine to a cold routine. We also implemented a 
variation of HCO that avoided stubs by reexecuting 
a procedure from the beginning instead of using a stub 
to reenter a routine in the middle. It is usually not pos­
sible to reexecute the procedure from the beginning 
because arguments have been overwritten. Given the 
small cost of stubs, we did not pursue this method. 

The line labeled TOTAL shows that HCO makes 
the total code (HOT+ COLD+ STUB) 20 percent to 
60 percent bigger. A procedure is partitioned so that 
there is less than a 1 percent chance that the stub and 
cold part are executed, so their size should not have a 
significant effect on cache behavior as long as the pro­
file is representative. 

Figure 20 shows how splitting affects the distri­
bution of time spent among different procedure sizes 
for two programs where HCO is effective (C2 and 
SQLSERVR) and two programs where it is not 
(MAXEDA and WINWORD). For the graphs shown 
in parts a through d of Figure 20, we classified each 
procedure by its size in instructions before and after 
HCO and plotted two cumulative distributions of exe­
cution time. The farther apart the two lines, the better 
HCO was at shifting the distribution from large proce­
dures to smaller procedures. Note that most of the 
programs spend a large percentage of the time in large 
procedures, which suggests that optimizers need to 
handle complex control flow well, even if profile infor­
mation is used to eliminate infrequent paths. 

Managing Profile Feedback Optimization 

Profile feedback is rarely used in practice because of 
the difficulty of collecting, managing, and applying 
profile information. The Spike Optimization Environ­
ment1 provides a system for managing profile feedback 
that simplifies this process. 

The first step in profile-directed optimization is to 
instrument each image in an application so that when 
the application is run, profile information is collected. 
Instrumentation is most commonly done by using a 
compiler to insert counters into a program during 
compilation18 or by using a post-link tool to insert 
counters into an image. 19·20 Statistical or sampling­
based profiling is an alternative to counter-based tech­
niques.21·22 Some compiler-based and post-link systems 
require that the program be compiled specially, so that 
the resulting images are only useful for generating 
profiles. Many large applications have lengthy and 
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Cumulative Distribution of Execution Time by Procedure Size before and after HCO 

complex build procedures. For these applications, 
requiring a special rebuild of the application to collect 
profiles is an obstacle to the use of profile-directed 
optimization. 

Spike directly instruments the final production 
images so that a special compilation is not required. 
Spike does require that the images be linked to include 
relocation information; however, including this extra 
information does not increase the number of instruc­
tions in the image and does not prevent the compiler 
from performing full optimizations when generating 
the image. 

Most applications consist of a main executable and 
many DLl."5. Instrumenting all the images in an appli­
cation can be difficult, especially when the user doing 
the profile-directed optimization does not know all 
the DLLs in the application. Spike relieves the user of 
this task by finding all the DLLs that the application 
uses, even if they are loaded dynamically with a call to 
LoadLibrary. 
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After instrumentation, the next step in profile­
directed optimization is to execute the instrumented 
application and to collect profile information. Most 
profile-directed optimization systems require the user 
to first explicitly create instrumented copies of each 
image in an application. Then the user must assemble 
the instrumented images into a new version of the 
application and run it to collect profile information. As 
the profile information is generated, the user is 
responsible for locating all the profile information 
generated for each image and merging that informa­
tion into a single set of profiles. Our experience with 
users has shown that requiring the user to manage the 
instrumented copies of the images and the profile 
information is a frequent source of problems. For 
example, the user may fail to instrument each image or 
may attempt to instrument an image that has already 
been instrumented. The user may be unable to locate 
all the generated profile information or may incor­
rectly combine the information. Spike frees the user 



from these tedious and error-prone tasks by managing 
both the instrumented copy of each image and the 
profile information generated for the image. 

After profile information is collected, the final step is 
to use the profile information to optimize each image. 
As with instrumentation, the typical profile-directed 
optimization system requires the user to optimize each 
image explicitly and to assemble the optimized appli­
cation. Spike uses the profile information collected for 
each image to optimize all the images in an application 
and assembles the optimized application for the user. 

Spike Optimization Environment 
The Spike Optimization Environment (SOE) provides a 
simple means to instrument and optimize large applica­
tions that consist of many images. The SOE can be 
accessed through a graphical interface or through a 
command-line interface that provides identical func­
tionality. The command-line interface allows the SOE to 
be used as part of a batch build system such as make. 23 

In addition to providing a simple-to-use interface, 
the SOE keeps the instrumented and optimized ver­
sions of each image and the profile information associ­
ated with each image in a database. When an 
application is instrumented or optimized, the original 
versions of the images in the application are not modi­
fied; instead, the SOE puts an instrumented or opti­
mized version of each image into the database. When 
the user invokes the original version of an application, 
the SOE uses a transparency agent to execute the 
instrumented or optimized version. 

The SOE allows the user to instrument and optimize 
an entire application using the following procedure: 

1. Register: The user selects the application or applica­
tions that are to be instrumented and optimized. The 
user needs to specify only the application's main 
image. Spike then finds all the implicitly linked images 
(DLLs loaded when the main image is loaded) and 
registers that they are part of the application. 

2. Instrument: The user requests that an application 
be instrumented. For each image in the application, 
the SOE invokes the Spike Optimizer to instrument 
that image. The SOE places the instrumented ver­
sion of each image in the database. The original 
images are not modified. 

3. Collect profile information: The user runs the origi­
nal application in the normal way, e.g., from a com­
mand prompt, from Wmdows Explorer, or indirectly 
through another program. Our transparency agent 
( explained later in this section) invokes the instru­
mented version of the application in place of the 
original version. Any images dynamically loaded by 
the application are instrumented on the fly. Each 
time the application terminates, profile information 
for each image is written to the database and merged 
with any existing profile information. 

4. Optimize: The user requests that an application be 
optimized. For each image in the application, the 
SOE invokes the Spike Optimizer to optimize the 
image using the collected profile information and 
places the optimized version of each image in the 
database. 

5. Run the optimized version: The user runs the orig­
inal application, and our transparency agent substi­
tutes the optimized version, allowing the user to 
evaluate the effectiveness of the optimization. 

6. Export: The SOE exports the optimized images 
from the database, placing them in a directory spec­
ified by the user. The optimized images can then be 
packaged with other application components. 

The Spike Manager is the principal user interface for 
the SOE. The Spike Manager displays the contents of 
the database, showing the applications registered with 
Spike, the images contained in each application, and 
the profile information collected for each image. The 
Spike Manager enables the user to control many 
aspects of the instrumentation and optimization 
process, including specifying which images are to be 
instrumented and optimized and which version of the 
application is to be executed when the original applica­
tion is invoked. 

Transparent Application Substitution (TAS) is the 
transparency agent developed for the Spike system to 
execute a modified version of an application transpar­
ently, without replacing the original images on disk. 
TAS was modeled after the transparency agent in the 
DIGITAL FX!32 system24 but uses different mecha­
nisms. When the user invokes the original application, 
the SOE uses TAS to load an instrumented or opti­
mized version. With TAS, the user does not need to do 
anything special to execute the instrumented or opti­
mized version of an application. The user simply 
invokes the original application in the usual way ( e.g., 
from a command prompt, from Windows Explorer, or 
indirectly through another application), and the 
instrumented or optimized application runs in its 
place. TAS performs application substitution in two 
parts. First, TAS makes the Windows NT loader use a 
modified version of the main image and DLLs. 
Second, TAS makes it appear to the application that 
the original images were invoked. 

TAS uses debugging capabilities provided by the 
Windows NT operating system to specify that when­
ever the main image of an application is invoked, the 
modified version of that image should be executed 
instead. In each image, the table of imported DLLs is 
altered so that instead ofloading the DLLs specified in 
the original image, each image loads its modified 
counterparts. Thus, when the user invokes an applica­
tion, the Windows NT operating system loads the 
modified versions of the images contained in the appli­
cation. Some applications load DLLs with explicit calls 
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to LoadLibrary. TAS intercepts those calls and instead 
loads the modified versions. 

The second part ofTAS makes the modified version 
of the application appear to be the original version of 
the application. Applications often use the name of the 
main image to find other files. For example, if an 
instrumented image requests its full path name, TAS 
instead returns the full path name of the corresponding 
original image. To do this, TAS replaces certain calls to 
kernel32.dll in the instrumented and optimized images 
with calls to hook procedures. Each hook procedure 
determines the outcome the call would have had for 
the original application and returns that result. 

Instrumentation 
Spike instruments an image by inserting counters into 
it. Using the results of these counters, the optimizer 
can determine the number of times each basic block 
and control flow edge in the image is executed. Spike 
uses a spanning-tree technique proposed by Knuth25 

to reduce the number of counters required to fully 
instrument an image. For example, in an if-then-else 
clause, counting the number of times the if and then 
statements are executed is enough to determine the 
number of times the else statement is executed. 
Register usage information is used to find free registers 
for the instrumentation code, thereby reducing the 
number of saves and restores necessary to free up reg­
isters.12 Typically, instrumentation makes the code 30 
percent larger. As part of the profile, Spike also cap­
tures the last target of a jump or procedure call that 
cannot be determined statically. 

Spike's profile information is persistent; small 
changes to an image do not invalidate the profile infor­
mation collected for that image. Profile persistence is 
essential for applications that require a lengthy or 
cumbersome process to generate a profile, even when 
using low-cost methods like statistical sampling. For 
example, generating a good profile of a transaction 
processing system requires extensive staging of the sys­
tem. Even when it is possible to automate the genera­
tion of profiles, some ISVs find the extra build time 
unacceptable. With persistence, the user can collect a 
profile once and continue to use it for successive builds 
of a program as small changes are made to it. Our 
experience with an ISV has shown that the speedup 
from Spike declines as the profile gets older, but using 
a two- or three-week-old profile is acceptable. It is also 
possible to merge a profile generated by an older 
image with a profile generated by a newer image. 

When using an old profile, Spike must match up 
procedures in the current program with procedures in 
the profiled program. Spike discards profiles for proce­
dures that have changed. Relying on a procedure 
name derived from debug information to do the 
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matching is not practical in a production environment. 
Instead, Spike generates a signature based on the flow 
graph of each procedure. Since signatures are not 
based on the code, small changes to a procedure will 
not invalidate the profile. Signatures are not unique, 
however, so it can be difficult to match two lists of sig­
natures when there are differences. A minimum edit 
distance algorithm26 is used to find the best match 
between the list of signatures of the current program 
and the list of signatures of the profiled program. 

Summary 

Many Windows NT-based applications are large, call­
intensive programs, with loops that cross multiple pro­
cedures and procedures that have complicated control 
flow and many basic blocks. The Spike optimization 
system uses code layout and hot-cold optimization to 
optimize call-intensive programs. Code layout places 
the frequently executed portions of the program 
together in memory, thereby reducing instruction 
cache miss and improving performance up to 33 per­
cent. Our code layout algorithm rearranges basic 
blocks so that the fall-through path is the common 
path. The algorithm also splits each procedure into a 
frequently executed (hot) part and an infrequently 
executed (cold) part. The split procedures are placed 
so that frequent ( caller, callee) pairs are adjacent. 

The hot part of a procedure is the collection of the 
common paths through the procedure. These paths 
can be optimized at the expense of the cold paths by 
removing instructions that are required only if the cold 
paths are executed. Hot-cold optimization exploits this 
opportunity by performing optimizations that remove 
partially dead code and replace uses of preserved regis­
ters with uses of scratch registers. Hot-cold optimiza­
tion reduces the instruction path length through the 
call-intensive programs by 3 percent to 8 percent. 

Profile feedback is rarely used because of the diffi­
culty of collecting, managing, and applying profile 
information. Spike provides a complete system for 
profile feedback optimization that eliminates these 
problems. It is a practical system that is being actively 
used to optimize applications for Alpha processors 
running the Windows NT operating system. 
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Analyzing Memory 
Access Patterns of 
Programs on Alpha­
based Architectures 

The development of efficient algorithms on 
today's high-performance computers is far from 
straightforward. Applications need to take full 
advantage of the computer system's deep mem­
ory hierarchy, and this implies that the user 
must know exactly how his or her implementa­
tion is executed. The ability to understand or 
predict the execution path without looking 
at the machine code can be very difficult with 
today's compilers. By using the outputs from 
an experimental memory access profiling tool, 
the programmer can compare memory access 
patterns of different algorithms and gain insight 
into the algorithm's behavior, e.g., potential 
bottlenecks resulting from memory accesses. 
The use of this tool has helped improve the 
performance of an application based on sparse 
matrix-vector multiplications. 

I 
Susanne M. Balle 
Simon C. Steely, Jr. 

The development of efficient algorithms on today's 
high-performance computers can be a challenge. One 
major issue in implementing high-performing algo­
rithms is to take full advantage of the deep memory 
hierarchy. To better understand a program's perfor­
mance, two things need to be considered: computa­
tional intensiveness and the amount of memory traffic 
involved. In addition to the latter, the pattern of the 
memory references is important because the success of 
hierarchy is attributed to locality of reference and 
reuse of data in the user's program. 

In this paper, we investigate the memory access pat­
tern of Fortran programs. We begin by presenting an 
experimental Atom1 tool that analyzes how the pro­
gram is executed. We developed the tool to help us 
understand how different compiler switches impact 
the algorithm implemented and to determine if the 
algorithm is doing what it is intended to do. In addi­
tion, our tool helps the process of translating an algo­
rithm into an efficient implementation on a specific 
machine. The work presented in this paper focuses 
primarily on a better understanding of the behavior 
of technical applications. Related work for Basic 
Linear Algebra Subroutine implementations has been 
described.2 In most scientific programs, the data ele­
ments are matrix-elements that are usually stored in two­
dimensional (2-D) arrays (column-major in Fortran). 
Knowing the order of array referencing is important in 
determining the amount of memory traffic. 

In the final section of this paper, we present an 
example of a memory access pattern study and illus­
trate how the use of our program analysis tool 
improved the considered algorithm's performance. 
Guidelines on how to use the tool are given as well as 
comments about conclusions to be derived from the 
histograms generated. 

Memory Access Profiling Tool 

Our experimental tool generates a set of histograms 
for each reference in the program or in the subroutine 
under investigation. The first histogram measures 
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strides from the previous reference, the second his­
togram gives the stride from the second-to-last refer­
ence, and so on, for a total of MAXEL histograms for 
each memory reference in the part of the program we 
investigate. By stride, we mean the distance between 
two memory references (load or store). We chose a 
MAXEL of five for our case study, but MAXEL can be 
given any value. 

Two variants of this tool were implemented. 

1. The first version takes all memory references into 
account in all histograms. 

2. The second version takes into account in the next 
histogram those memory references whose stride 
is more than 128 bytes. It does not consider in the 
( i + 1 )th histogram ( i = 1, ... ,5) strides that are less 
than 128 bytes in the ith histogram. 

The second version of the tool has proven to be 
more useful in understanding the access patterns. It 
highlights memory accesses that are stride one for a 
while and then have a stride greater than 128 bytes. 
The choice ofl28 bytes was arbitrary; the value can be 
changed. 

The following bins are used in the histograms: 0-
through 127-byte strides are accounted for separately. 
Strides greater than or equal to 128 bytes are grouped 
into the following intervals: [128 through 255], [256 
through 511], [512 through 1,023], [1,024 through 
2,047], [2,048 through 4,095 ], [ 4,096 through 
8,191], [8,192 through 16,383], [16,384 through 
32,767], and [32,768 through infinity]. 

In the next section, we present the output his­
tograms obtained with the second version of this 
experimental tool for a Fortran loop. In our case study, 
we chose to perform the histograms on a single array 
instead of all references in the program. This method 
provided a clearer picture of the memory access pat­
tern for each array in the piece of the program under 
consideration. We present separate histograms for the 
loads and the stores of each array in the memory traffic 
of the subroutine we investigated. 

When looking at memory access patterns, it is 
important not to include load instructions that per­
form prefetching. Even though prefetching adds to 
the memory traffic, its load instructions pollute the 
memory access pattern picture. 

Case Study 

In this section, we study and compare different ver­
sions of the code presented in Figure 1 using our 
experimental memory access profiling tool. We show 
that the same code is not executed in the same way for 
different compiler switches. Often a developer has to 
delve deeply into the assembler of the given loop to 
understand how and when the different instructions 
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1 QCi>=O, i=1, n 
2 do k1 = 1, 4 
3 index= Ck1-1) * numrows 
4 do j=1,n 
5 p1=COLSTR(j,k1) 
6 p2=COLSTR(j+1,k1)-1 
7 p3= [snip] 
8 sumO=O.dO 
9 sum1=0.d0 
ID sum2=0.d0 
11 sum3=0.d0 
12 x1 = P(index+ROWIDX(p1,k1)) 
13 x2 = P(index+ROWIDX(p1+1,k1)) 
14 x3 = P(index+ROWIDX(p1+2,k1)) 
15 x4 = PCindex+ROWIDXCp1+3,k1)) 
16 do k = p1, p3, 4 
17 sumO = sumO + AA(k,k1) * x1 
18 sum1 = sum1 + AA(k+1,k1) * x2 
19 sum2 = sum2 + AA(k+2,k1) * x3 
20 sum3 = sum3 + AA(k+3,k1) * x4 
21 x1 = P(index+ROWIDXCk+4,k1)) 
22 x2 = P(index+ROWIDXCk+5,k1)) 
23 x3 = P(index+ROWIDX(k+6,k1)) 
24 x4 = P(index+ROWIDX(k+7,k1)) 
25 end do 
26 do k = p3+1, p2 
27 x1=PCindex+ROWIDXCk,k1)) 
28 sumO = sumO + AA( k, k1 )*x1 
29 end do 
30 YTEMP(j,k1)=sumO+sum1+sum2+sum3 
31 enddo 
32 do i = 1, n, 4 
33 Q(i) = Q(i) + YTEMP(i,k1) 
34 Q(i+1) = Q(i+1) + YTEMPCi+1,k1) 
35 Q(i+2) = Q(i+2) + YTEMP(i+2,k1) 
36 Q(i+3) = Q(i+3) + YTEMP(i+3,k1) 
37 enddo 
38 enddo 

where n = 14000, 
real*8 AAC511350,4), YTEMP(n,4) 
real*8 Q(n), P(n) 
integer*4 ROWIDXC511350,4), COLSTR(n,4) 

Figure 1 
Original Loop 

are executed. The output histograms from our tool 
ease that process and give a clear picture of the refer­
ence patterns. The loop presented in Figure 1 imple­
ments a sparse matrix-vector multiplication and is part 
of a larger application. Ninety-six percent of the appli­
cation's execution time is spent in that loop. We ana­
lyze the loop compiled with two different sets of 
compiler switches. To illustrate the effective use of the 
tool, we present the enhanced performance results 
due to changes made based on the output histograms. 

From lines 5 and 6 in the loop shown in Figure 1, 
we would expect the array COLSTR to be read stride 
one 100 percent of the time. Line 30 of the figure 
indicates that YIEMP is accessed stride one through 
the whole jloop. From lines 33 through 36, we expect 
YIEMP's stride to be equal to one most of the time and 
equal to the number of columns in the array every 
time kl is incremented. Q should be referenced 100 



percent stride one for both the loads and the stores 
(lines 33 through 36). As illustrated in lines 12 
through 15, 21 through 24, and 27, ROW/DX is 
expected to be accessed with a stride of one between 
the pl and p2 bounds of the k loop. Even though it 
looks like the k loop is violating the array bounds of 
ROW/DX in lines 21 through 24 for the last iteration of 
the loop, this is not the case. We expect array Pto have 
nonadjacent memory references since we have deliber­
ately chosen an algorithm that sacrifices this array's 
access patterns to improve the memory references of 
QandAA. 

Original Code 
We investigate the memory access patterns achieved 
by the loop in Figure 1 when compiled with the fol­
lowing switches: 

f77 -g3 -fast -05 

The -g3 switch is needed to extract the addresses 
of the arrays from the symbol table. For more infor­
mation on DIGITAL Fortran compiler switches, see 
Reference 3. 

From Figures 2 and 3, we see that array Q is accessed 
as we expected, 100 percent stride one for the loads 
and the stores. Since Q is accessed contiguously in 100 
percent of its memory references, we will not have any 
entries in the next four histograms. As described in 
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the previous section, we only record in the next his­
togram the strides that are greater than 128 bytes in 
the current histogram. 

Figure 4 illustrates that COLSTR is accessed 50 
percent stride zero and 50 percent stride one. This is 
unexpected since lines 5 and 6 in Figure 1 suggest that 
this array would be accessed stride one 100 percent of 
the time. The fact that we have entries only for the 
strides between the current and the previous loads 
indicates that the elements of COLSTR are accessed in a 
nearly contiguous way. A closer look at Figure 1 tells 
us that the compiler is loading COLSTR twice. We 
expected the compiler to do only one load into a regis­
ter and reuse the register. The work-around is to per­
form a scalar replacement as described by Blickstein et 
al.4 We put p2 = COLSTR(l,kl) -1 outside the j loop 
and substituted inside the j loop pl = COLSTR(j,kl) 
with pl = p2 + 1. Inside the j loop, p2 remains the 
same. Eliminating the extra loads did not enhance per­
formance, and a possible assumption is that the analy­
sis done by the compiler concluded that no gain would 
result from that optimization. 

Figures 5 and 6 show the strides for the loads and the 
strides for the stores for the array YTEMP. One more 
time, the implementation is not being executed the 
way we thought it would. In Figure 1, lines 33 through 
36 suggested that YlEMP would be referenced stride 
one through the whole i loop as well as with a stride 
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equal to the number of columns in the array when kl is 
incremented. By considering Figure 5 along with lines 
33 through 36 in Figure 1, we conclude that YTEMPis 
unrolled by four in the kl-direction in the iloop. The 
fact that all strides between the current load and the 
load two loads back or three loads back or four loads 
back have a stride between 32K and infinity is consis­
tent with traversing a matrix along rows. Figure 6 
shows that the j loop is not unrolled by four in the 
kl -direction, because all the loads of YIEMP are 100 
percent stride one. The compiler must split the kl loop 
into two separate loops, the first consists of the j loop 
and the second consists of the i loop. The latter has 
been unrolled by four in the kl -direction thereby elim­
inating the extra overhead from the kl loop. 

Figure 7 shows that the matrix AA is accessed as we 
expected. The strides are not greater than 128 bytes 
or, in other words, a maximum stride of 16 elements. 
The fact that there is no stride other than the one 
between the current load and the previous load in the 
histograms shows that AA is referenced in a controlled 
way. In this case, AA is accessed 39 percent of its total 
loads in stride one and 23 percent in stride two. 

From lines 12 through 15, 17 through 20, and 21 
through 24 in Figure 1, we know that the arrays AA 
and ROW/DX should have relatively similar behaviors. 
Only the four extra prefetches of ROWIDXin lines 21 
through 24 for the last iteration in the j loop differen-
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tiate the access patterns of the two arrays. Figure 8 
con.firms that assumption. RO\:(IJDXis referenced with 
controlled strides. Because ROW/DX is accessed close 
to contiguously, we will not have any entries in the 
next four histograms. As described in the previous sec­
tion, we only record in the next histogram the strides 
that are greater than 128 bytes in the current his­
togram. ROW/DX is referenced 24 percent of its total 
loads in stride one and 34 percent in stride two. 

As illustrated in Figure 9, array Pis accessed exactly 
the way we expected it. When designing this algorithm, 
we had to make some compromises. We decided to 
have AA and Q referenced as closely as possible to stride 
one, thus giving up the control of P's references. 

By examining these arrays' access patterns, we can see 
how they are accessed and whether or not the imple­
mentation is doing what it is supposed to do. If the loop 
in Figure 1 is used on a larger matrix [ n = 75,000 and 
AA(204427,12) has 15 million nonzero elements], the 
execution time for the total application on a single 
21164 processor of an AlphaServer 8400 5 / 625 system 
is 1,970 seconds. The application executes 26 x 75 
( = 1,950) times the considered loop. When profiling 
the program, we measured that the loop under investi­
gation takes 96 percent of the total execution time. It is 
therefore a fair assumption to say that any improvement 
in this building block will improve the overall perfor­
mance of the total program. 
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Modified Code 
In this section, we describe a new experiment in which we 
used different compiler switches and changed the original 
loop to the loop in Figure 10. The code changes were 
based on the analysis in the previous section as well as on a 
more extended series of investigations. 

In this example, we used the following compiler 
switches: 

f77 -g3 -fast -05 -unroll 1 

Lines 3, 5, and 6 from Figure 10 show that we imple­
mented the scalar replacement technique as described by 
Blickstein et al.4 to avoid COLS'1R being loaded twice. From 
Figure 11, we see that array COLS'1R is now behaving as we 
expect: 100 percent of the strides for the loads are stride one. 

In our first attempt to optimize the original loop, we 
split the kl loop into two loops in the same way the com­
piler did as described in the previous section. We then hand 
unrolled the YlEMP array in the kl direction. Further 
analysis showed that a considerable gain could be made 
by removing the YTEMP array and writing the results 
directly into Q. By replacing the zeroing out of the Q array 

1 do k1 = 1, 4 
2 index = C k1-1) * numrows 
3 p2=COLSTRC1,k1)-1 
4 do j=1,n 
5 p1=p2+1 
6 p2=COLSTR(j+1,k1)-1 
7 p3= [snip] 
8 sumO=O.dO 
9 sum1=0.d0 
10 sum2=0. dO 
11 sum3=0.d0 
U x1 = PCindex+ROWIDXCp1,k1)) 
13 x2 = PCindex+ROWIDX(p1+1,k1)) 
14 x3 = P(index+ROWIDX(p1+2,k1)) 
15 x4 = P(index+ROWIDX(p1+3,k1)) 
16 dok=p1,p3,4 
17 sumo= sumo+ AACk,k1) * x1 
18 sum1 = sum1 + AA(k+1,k1) * x2 
19 sum2 = sum2 + AA(k+2,k1) * x3 
20 sum3 = sum3 + AA(k+3,k1) * x4 
21 x1 = PCindex+ROWIDX(k+4,k1)) 
22 x2 = PCindex+ROWIDX(k+5,k1)) 
23 x3 = PCindex+ROWIDXCk+6,k1)) 
24 x4 = P(index+ROWIDX(k+7,k1)) 
25 enddo 
26 do k = p3+1, p2 
27 x1=P(index+ROWIDX(k,k1)) 
28 sumO = -sumO + AA(k,k1)*x1 
29 enddo 
30 if(k1 .eq.1) then 
31 QC j) = sumo + sum1 + sum2 + sum3 
32 els e 
33 Q(j) = Q(j) +sumo+ sum1 + sum2 + sum3 
34 endi f 
35 enddo 
36 enddo 

where n = 14000, 
real*8 AA(511350,4) 
real*8 Q(n), P(n) 
integer*4 ROWIDXC511350,4), COLSTR(n,4) 

Figure 10 
Modified Loop 
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(Figure 1, line 1) with an IF statement (Figure 10, line 30), 
we further improved the performance of the loop. The last 
two changes were possible because we decided that, for 
performance enhancement issues, the serial version of the 
code was going to be different from its parallel version. 

Figures 12 and 13 show that {!s load and store access 
pattern is 100 percent stride one as we expected it to be. 
For both ROWIDX and AA, we see a significant increase in 
stride one references. Figure 14 shows that AA is now 
accessed 69 percent stride one instead of 39 percent. 
ROWIDX's stride one increased to 52 percent from 24 
percent as illustrated in Figure 15. These two arrays are 
the reason for using the -u n r o l l 1 switch. Without it, 
stride one for both arrays would stay approximately the 
same as in the previous study. The pattern of accesses of 
array P in Figure 16 is similar to the prior pattern of 
accesses in Figure 9 as expected. 

To better understand the effects of the unrolling, we 
counted the number of second-level cache misses for 26 
calls to the loop, using an Atom tool1 that simulated a 
4-megabyte direct-mapped cache. By considering only these 
26 matrix-vector multiplications, we do not get a full picture 
of what is going on and how the different arrays interact. 
Nevertheless, it gives us hints about what caused the 
improvement in performance. Use of the cache tool on the 
whole application would increase the run time dramatically. 

Twenty-six calls to the original loop (Figure 1) have a 
total of 1,476,017,322 memory references, of which 
77,638,624 are cache misses. The modified loop (Figure 
10), on the other hand, has fewer references due to the fact 
that we eliminated an expensive array initialization at each 
step and removed the temporary array YIEMP. The number 
of cache misses dropped from 77,638,624 to 72,384,348 
or a reduction in misses of 7 percent. If we compile the 
modified loop without the -u n r o l l 1 switch, the number 
of cache misses increases slightly. On the 21164 Alpha 
microprocessor, all the misses are effectively performed in 
serial . This means that for memory-bound codes like the 
loop we are currently investigating, execution time primar­
ily depends on the number of cache misses. 

The histograms illustrating the access strides for the dif­
ferent arrays helped us design a more suitable algorithm for 
our architecture. By increasing the stride one references in 
the loads for the arrays AA and ROWIDX, eliminating the 
extra references in COLS'1Rand Q, and improving the strides 
for Q, we increased the performance of this application dra­
matically. Counting the number of cache misses gave us a 
better understanding as to why the new access patterns 
achieve enhanced performance. It also helped us under­
stand that not allowing the compiler to unroll the already 
hand-unrolled loops in the modified loop decreased the 
number of cache misses. The execution time for this appli­
cation [n = 75,000 and AA(204427,12) has 15 million 
nonzero elements] decreased from 1,970 seconds to 1,831 
seconds on a single 625-megahertz (MHz) 21164 Alpha 
microprocessor of an AlphaServer 8400 5/ 625 system. 
This is an improvement of 139 seconds or 8 percent. 
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Conclusion 

The case study shows that, given the right program 
analysis tools, a program developer can take better 
advantage of his or her computer system. The experi­
mental tool we designed was very useful in providing 
insight into the algorithm's behavior. The approach 
considered yields an improvement in performance of 
8 percent on a 625-MHz 21164 Alpha microproces­
sor. This is definitely a worthwhile exercise since a sub­
stantial reduction in execution time was obtained 
using straightforward and easy guidelines. 

The data collected from a memory access profiling 
tool helps the user understand a given program as well 
as its memory access patterns. It is an easier and faster 
way to gain insight into a program than examining the 
listing and the assembler generated by the compiler. 
Such a tool enables the programmer to compare mem­
ory access patterns of different algorithms; therefore, 
it is very useful when optimizing codes. Probably its 
most important value is that it shows the developer if 
his or her implementation is doing what he or she 
thinks the algorithm is doing and highlights potential 
bottlenecks resulting from memory accesses. Optimiz­
ing an application is an iterative process, and being able 
to use relatively easy-to-use tools like Atom is a very 
important part of the process. The major advantage of 
the tool presented in this paper is that no source code 
is needed, so it can be used to analyze the performance 
of program executables. 
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OpenVMS Alpha 64-bit 
Very Large Memory 
Design 

The OpenVMS Alpha version 7.1 operating 

system provides memory management features 

that extend the 64-bit VLM capabilities intro­

duced in version 7.0. The new OpenVMS Alpha 

APls and mechanisms allow 64-bit VLM applica­

tions to map and access very large shared mem­

ory objects (global sections). Design areas 

include shared memory objects without disk 

file backing storage {memory-resident global 

sections), shared page tables, and a new physi­

cal memory and system fluid page reservation 

system. 
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Database products and other applications impose heavy 
demands on physical memory. The newest version of 
DIGITAL's Open VMS Alpha operating system extends 
its very large memory (VLM) support and allows large 
caches to remain memory resident. OpenVMS Alpha 
version 7 .1 enables applications to take advantage of 
both 64-bit virtual addressing and very large memories 
consistent with the Open VMS shared memory model. 
In this paper, we describe the new 64-bit VLM capabili­
ties designed for the Open VMS Alpha version 7.1 oper­
ating system. We explain application flexibility and the 
system management issues addressed in the design and 
discuss the performance improvements realized by 
64-bit VLM applications. 

Overview 

A VLM system is a computer with more than 4 giga­
bytes (GB) of main memory. A flat, 64-bit address 
space is commonly used by VLM applications to 
address more than 4 GB of data. 

A VLM system allows large amounts of data to 
remain resident in main memory, thereby reducing 
the time required to access that data. For example, 
database cache designers implement large-scale caches 
on VLM systems in an effort to improve the access 
times for database records. Similarly, VLM database 
applications support more server processes than ever 
before. The combination oflarge, in-memory caches 
and an increased number of server processes signifi­
cantly reduces the overall time database clients wait to 
receive the data requested. 1 

The Open VMS Alpha version 7.0 operating system 
took the first steps in accommodating the virtual 
address space requirements of VLM applications by 
introducing 64-bit virtual addressing support. Prior to 
version 7.0, large applications-as well as the Open VMS 
operating system itself-were becoming constrained by 
the limits imposed by a 32-bit address space. 

Although version 7.0 eased address space restric­
tions, the existing Open VMS physical memory man -
agement model did not scale well enough to 
accommodate VLM systems. Open VMS imposes spe­
cific limits on the amount of physical memory a 
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process can occupy. As a result, applications lacked the 
ability to keep a very large object in physical memory. 
In systems on which the physical memory is not plen­
tiful, the mechanisms that limit per-process memory 
utilization serve to ensure fair-and-equal access to a 
potentially scarce resource. However, on systems rich 
with memory whose intent is to service applications 
creating VLM objects, the limitations placed on per­
process memory utilization inhibit the overall perfor­
mance of those applications. As a result, the benefits of 
a VLM system may not be completely realized. 

Applications that require very large amounts of 
physical memory need additional VLM support. The 
goals of the Open VMS Alpha VLM project were the 
following: 

• Maximize the operating system's 64-bit capabilities 

• Take full advantage of the Alpha Architecture 

• Not require excessive application change 

• Simplify the system management of a VLM system 

• Allow for the creation ofVLM objects that exhibit 
the same basic characteristics, from the program­
mer's perspective, as other virtual memory objects 
created with the OpenVMS system service pro­
gramming interface 

These goals became the foundation for the follow­
ing VLM technology implemented in the Open VMS 
Alpha version 7.1 operating system: 

• Memory-resident global sections-shared memory 
objects that do not page to disk 

• Shared page tables- page tables mapped by multiple 
processes, which in turn map to memory-resident 
global sections 

• The reserved memory registry-a memory reserva­
tion system that supports memory-resident global 
sections and shared page tables 

The remainder of this paper describes the major 
design areas of VLM support for Open VMS and dis­
cusses the problems addressed by the design team, the 
alternatives considered, and the benefits of the extended 
VLM support in Open VMS Alpha version 7 .1. 

Memory-resident Global Sections 

We designed memory-resident global sections to 
resolve the scaling problems experienced by VLM 
applications on Open VMS. We focused our design on 
the existing shared memory model, using the 64-bit 
addressing support. Our project goals included simpli­
fying system management and harnessing the speed of 
the Alpha microprocessor. Before describing memory­
resident global sections, we provide a brief explanation 
of shared memory, process working sets, and a page 
fault handler. 

Global Sections 
An Open VMS global section is a shared memory 
object. The memory within the global section is 
shared among different processes in the system. Once 
a process has created a global section, others may map 
to the section to share the data. Several types of global 
sections can be created and mapped by calling 
Open VMS system services. 

Global Section Data Structures Internally, a global 
section consists of several basic data structures that are 
stored in system address space and are accessible to all 
processes from kernel mode. When a global section is 
created, OpenVMS allocates and initializes a set of 
these data structures. The relationship between the 
structures is illustrated in Figure 1. The sample global 
section is named "SHROBJ" and is 2,048 Alpha pages 
or 16 megabytes (MB) in size. Two processes have 
mapped to the global section by referring to the global 
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section data structures m their process page table 
entries (PTEs). 

Process PTEs Mapping to Global Sections When a 
process maps to a global section, its process PTEs refer 
to global section pages in a one-to-one fashion. A page 
of physical memory is allocated when a process 
accesses a global section page for the first time. This 
results in both the process PTE and the global section 
page becoming valid. The page frame number (PFN) 
of the physical page allocated is stored in the process 
PTE. Figure 2 illustrates two processes that have 
mapped to the global section where the first process 
has accessed the first page of the global section. 

When the second process accesses the same page as 
the first process, the same global section page is read 
from the global section data structures and stored in 
the process PTE of the second process. Thus the two 
processes map to the same physical page of memory. 

The operating system supports two types of global 
sections: a global section whose original contents are 
zero or a global section whose original contents are 
read from a file. The zeroed page option is referred to 
as demand zero. 

Backing Storage for Global Sections Global section 
pages require backing storage on disk so that more fre­
quently referenced code or data pages can occupy 
physical memory. The paging of least recently used 
pages is typical of a virtual memory system. The back­
ing storage for a global section can be the system page 
files, a file opened by Open VMS, or a file opened by 
the application. A global section backed by system 
page files is referred to as a page-file-backed global sec­
tion. A global section backed by a specified file is 
referred to as a file-backed global section. 

When a global section page is invalid in all process 
PTEs, the page is eligible to be written to an on-disk 

backing storage file. The physical page may remain in 
memory on a list of modified or free pages. Open VMS 
algorithms and system dynamics, however, determine 
which page is written to disk. 

Process Working Sets 
On OpenVMS, a process' valid memory is tracked 
within its working set lists. The working set of a 
process reflects the amount of physical memory a 
process is consuming at one particular point in time. 
Each valid working set list entry represents one page of 
virtual memory whose corresponding process PTE is 
valid. A process' working set list includes global sec­
tion pages, process private section pages, process pri­
vate code pages, stack pages, and page table pages. 

A process' working set quota is limited to 512 MB 
and sets the upper limit on the number of pages that 
can be swapped to disk. The limit on working set 
quota matches the size of a swap 1/0 request.2 The 
effects on swapping would have to be examined to 
increase working set quotas above 512 MB. 

Process working set lists are kept in 32-bit system 
address space. When free memory is plentiful in the sys­
tem, process working set lists can increase to an extended 
quota specified in the system's account file for the user. 
The system parameter, WSMAX, specifies the maximum 
size to which a process working set can be extended. 
Open VMS specifies an absolute maximum value of4 GB 
for the WSMAX system parameter. An inverse relation­
ship exists between the size specified for WSMAX and the 
number of resident processes Open VMS can support, 
since both are maintained in the 32-bit addressable por­
tion of system space. For example, specifying the maxi­
mum value for WSMAX sharply decreases the number of 
resident processes that can be specified. 

Should Open VMS be required to support larger 
working sets in the future, the working set lists would 
have to be moved out of32-bit system space. 
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Page Fault Handling for Global Section Pages 
The data within a global section may be heavily 
accessed by the many processes that are sharing the 
data. Therefore, the access time to the global section 
pages may influence the overall performance of the 
application. 

Many hardware and software factors can influence 
the speed at which a page within a global section is 
accessed by a process. The factors relevant to this dis­
cussion are the following: 

• Is the process PTE valid or invalid? 

• If the process PTE is invalid, is the global section 
page valid or invalid? 

• If the global section page is invalid, is the page on 
the modified list, free page list, or on disk within the 
backing storage file? 

If the process PTE is invalid at the time the page is 
accessed, a translation invalid fault, or page fault, is 
generated by the hardware. The Open VMS page fault 
handler determines the steps necessary to make the 
process PTE valid. 

If the global section page is valid, the PFN of the 
data is read from the global section data structures. 
This is called a global valid fault. This type of fault is 
corrected quickly because the data that handles this 
fault is readily accessible from the data structures in 
memory. 

If the global section page is invalid, the data may still 
be within a physical page on the modified or free page 
list maintained by OpenVMS. To correct this type of 
fault, the PFN that holds the data must be removed 
from the modified or free page list, and the global sec­
tion page must be made valid. Then the fault can be 
handled as ifit were a global valid fault. 

If the page is on disk within the backing storage file, 
an I/0 operation must be performed to read the data 
from the disk into memory before the global section 
page and process PTE can be made valid. This is the 
slowest type of global page fault, because performing a 
read I/0 operation is much slower than manipulating 
data structures in memory. 

For an application to experience the most efficient 
access to its shared pages, its process PTEs should be 
kept valid. An application may use system services to 
lock pages in the working set or in memory, but typi­
cally the approach taken by applications to reduce 
page fault overhead is to increase the user account's 
working set quota. This approach does not work when 
the size of the global section data exceeds the size of 
the working set quota limit of512 MB. 

Database Caches as File-backed Global Sections 
Quick access to a database application's shared mem­
ory is critical for an application to handle transactions 
quickly. 
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Global sections implement shared memory on 
Open VMS, so that many database processes can share 
the cached database records. Since global sections 
must have backing storage on disk, database caches are 
either backed by the system's page files or by a file cre­
ated by the database application. 

For best performance, the database application 
should keep all its global section pages valid in the 
process PTEs to avoid page fault and I/0 overhead. 
Database processes write modified buffers from the 
cache to the database files on an as-needed basis. 
Therefore, the backing storage file required by 
Open VMS is redundant storage. 

Ve,y Large Global Sections 

The OpenVMS VLM project focused on VLM data­
base cache design. An additional goal was to design 
the VLM features so that other types ofVLM applica­
tions could benefit as well. 

Consider a database cache that is 6 GB in size. 
Global sections of this magnitude are supported on 
OpenVMS Alpha with 64-bit addressing support. If 
the system page files are not used, the application must 
create and open a 6-GB file to be used as backing stor­
age for the global section. 

With the maximum quota of512 MB for a process 
working set and with the maximum of a 4-GB working 
set size, no process could keep the entire 6-GB data­
base cache valid in its working set at once. When an 
OpenVMS global section is used to implement the 
database cache, page faults are inevitable. Page fault 
activity severely impacts the performance of the VLM 
database cache by causing unnecessary I/0 to and 
from the disk while managing these pages. 

Since all global sections are pageable, a 6-GB file 
needs to be created for backing storage purposes. In 
the ideal case, the backing storage file is never used. 
The backing storage file is actually redundant with the 
database files themselves. 

VLM Design Areas 
The VLM design team targeted very large global sec­
tions (4 GB or larger) to share data among many 
processes. Furthermore, we assumed that the global 
section's contents would consist of zeroed memory 
instead of originating from a file. The team explored 
whether this focus was too narrow. We were con­
cerned that implementing just one type ofVLM global 
section would preclude support for certain types of 
VLM applications. 

We considered that VLM applications might use 
very large amounts of memory whose contents origi­
nate from a data file. One type ofread-only data from 
a file contains program instructions ( or code). Code 
sections are currently not pushing the limits of 32-bit 
address space. Another type of read-only data from a 
file contains scientific data to be analyzed by the VLM 



application. To accommodate very large read-only 
data of this type, a large zeroed global section can be 
created, the data from the file can be read into mem -
ory, and then the data can be processed in memory. 

If writable pages are initially read from a file instead 
of zeroed, the data will most likely need to be written 
back to the original file. In this case, the file can be 
used as the backing storage for the data. This type of 
VLM global section is supported on Open VMS Alpha 
as a file-backed global section. The operating system's 
algorithm for working set page replacement keeps the 
most recently accessed pages in memory. Working set 
quotas greater than 512 MB and working set sizes 
greater than 4 GB help this type of VLM application 
scale to higher memory sizes. 

We also considered very large demand-zero private 
pages, "malloc" or "heap" memory. The system page 
files are the backing storage for demand-zero private 
pages. Currently, processes can have a page file quota 
as large as 32 GB. A VLM application, however, may 
not want these private data pages to be written to a 
page file since the pages are used in a similar fashion as 
in-memory caches. Larger working set quotas also 
help this type ofVLM application accommodate ever­
increasing memory sizes. 

Backing Storage Issues 
For many years, database cache designers and database 
performance experts had requested that the 
Open VMS operating system support memory with no 
backing storage files. The backing storage was not 
only redundant but also wasteful of disk space. The 
waste issue is made worse as the sizes of the database 
caches approach the 4-GB range. As a result, the 
OpenVMS Alpha VLM design had to allow for non­
file-backed global sections. 

The support of 64-bit addressing and VLM has always 
been viewed as a two-phased approach, so that function­
ality could be delivered in a timely fashion. 3 Open VMS 
Alpha version 7.0 provided the essentials of 64-bit 
addressing support. The VLM support was viewed as an 
extension to the memory management model and was 
deferred to Open VMS Alpha version 7 .1. 

Working Set List Issues. Entries in the process work­
ing set list are not required for pages that can never be 
written to a backing storage file. The fundamental con­
cept of the Open VMS working set algorithms is to sup­
port the paging of data from memory to disk and back 
into memory when it is needed again. Since the focus 
of the VLM design was on memory that would not be 
backed by disk storage, the VLM design team realized 
that these pages, although valid in the process PTEs, 
did not need to be in the process' working set list. 

VLM Programming Interface 
The Open VMS Alpha VLM design provides a new pro­
gramming interface for VLM applications to create, 

map to, and delete demand-zero, memory-resident 
global sections. The existing programming interfaces 
did not easily accommodate the new VLM features. 

To justify a new programming interface, we looked 
at the applications that would be calling the new system 
service routines. To address more than 4 GB of mem­
ory in the flat Open VMS 64-bit address space, a 32-bit 
application must be recompiled to use 64-bit pointers 
and often requires source code changes as well. 
Database applications were already modifying their 
source code to use 64-bit pointers and to scale their 
algorithms to handle VLM systems.1 Therefore, calling 
a new set of system service routines was considered 
acceptable to the programmers of VLM applications. 

Options for Memory-resident Global Sections 

To initialize a very large memory-resident global sec­
tion mapped by several processes, the overhead of 
hardware faults, allocating zeroed pages, setting 
process PTEs valid, and setting global section pages 
valid is eliminated by preallocating the physical pages 
for the memory-resident global section. Preallocation 
is performed by the reserved memory registry, and is 
discussed later in this paper. Here we talk about 
options for how the reserved memory is used. 

Two options, ALLOC and FLUID, are available 
for creating a demand-zero, memory-resident global 
section. 

ALLOC Option The ALLOC option uses preallocated, 
zeroed pages of memory for the global section. When 
the ALLOC option is used, pages are set aside during 
system start-up specifically for the memory-resident 
global section. Preallocation of contiguous groups of 
pages is discussed in the section Reserving Memory 
during System Start-up. Preallocated memory-resident 
global sections are faster to initialize than memory­
resident global sections that use the FLUID option. 

Run-time performance is improved by using the 
Alpha Architecture's granularity hint, a mechanism we 
discuss later in this paper. To use the ALLOC option, 
the system must be rebooted for large ranges of physi­
cally contiguous memory to be allocated. 

FLUID Option The FLUID option allows pages not 
yet accessed within the global section to remain fluid 
within the system. This is also referred to as the fault 
option because the page fault algorithm is used to allo­
cate the pages. When the FLUID ( or fault) option 
is used, processes or the system can use the physical 
pages until they are accessed within the memory­
resident global section. The pages remain within the 
system's fluid memory until they are needed. This type 
of memory-resident global section is more flexible 
than one that uses the ALLOC option. If an applica- · 
tion that uses a memory-resident global section is run 
on a system that cannot be rebooted due to system 
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availability concerns, it can still use the FLUID option. 
The system will not allow this application to run unless 
enough pages of memory are available in the system 
for the memory-resident global section. 

The system service internals code checks the 
reserved memory registry to determine the range of 
pages preallocated for the memory-resident global 
section or to determine if the FLUID option will be 
used. Therefore the decision to use the ALLOC or the 
FLUID option is not made within the system services 
routine interface. The system manager can determine 
which option is used by specifying preferences in the 
reserved memory registry. An application can be 
switched from using the ALLOC option to using the 
FLUID option without requiring a system reboot. 

Design Internals 
The internals of the design choices underscore the mod­
ularity of the shared memory model using global sec­
tions. A new global section type was easily added to the 
Open VMS system. Those aspects of memory-resident 
global sections that are identical to pageable global sec­
tions required no code modifications to support. 

To support memory-resident global sections, the 
MRES and ALLOC flags were added to the existing 
global section data structures. The MRES flag indi­
cates that the global section is memory resident, and 
the ALLOC flag indicates that contiguous pages were 
preallocated for the global section. 

The file-backing storage information within global 
section data structures is set to zero for memory­
resident global sections to indicate that no backing 
storage file is used. Other than the new flags and the 
lack of backing storage file information, a demand­
zero, memory-resident global section looks to 
Open VMS Alpha memory management like a demand­
zero, file-backed global section. Figure 3 shows the 
updates to the global section data structures. 

One important difference with memory-resident 
global sections is that once a global section page 
becomes valid, it remains valid for the life of the global 
section. Global section pages by definition can never 
become invalid for a memory-resident global section. 

When a process maps to a memory-resident global 
section, the process PTE can be either valid for the 
ALLOC option or invalid for the FLUID option. 
When the ALLOC option is used, no page faulting 
occurs for the global section pages. 

When a process first accesses an invalid memory­
resident global section page, a page fault occurs just as 
with traditional file-backed global sections. Because 
the same data structures are present, the page fault 
code initially executes the code for a demand-zero, 
file-backed global section page. A zeroed page is allo­
cated and placed in the global section data structures, 
and the process PTE is set valid. 

The working set list manipulation steps are skipped 
when the MRES flag is encountered in the global sec­
tion data structures. Because these global section 
pages are not placed in the process working set list, 
they are not considered in its page-replacement algo­
rithm. As such, the OpenVMS Alpha working set 
manipulation code paths remained unchanged. 

System Management and Memory-resident Global 
Sections 
When a memory-resident global section is used 
instead of a traditional, pageable global section for a 
database cache, there is no longer any wasted page file 
storage required by OpenVMS to back up the global 
section. 

The other system management issue alleviated by 
the implementation of memory-resident global sec­
tions concerns working set sizes and quotas. When a 
file-backed global section is used for the database 
cache, the database processes require elevated working 
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set quotas to accommodate the size of the database 
cache. This is no longer a concern because memory­
resident global section pages are not placed into the 
process working set list. 

With the use of memory-resident global sections, 
system managers may reduce the value for the 
WSMAX system parameter such that more processes 
can remain resident within the system. Recall that a 
process working set list is in 32-bit system address 
space, which is limited to 2 GB. 

Shared Page Tables 

VLM applications typically consume large amounts of 
physical memory in an attempt to minimize disk 1/0 
and enhance overall application performance. As the 
physical memory requirements of VLM applications 
increase, the following second-order effects are 
observed due to the overhead of mapping to very large 
global sections: 

• Noticeably long application start-up and shut­
down times 

• Additional need for physical memory as the num­
ber of concurrent sharers of a large global section 
increases 

• Unanticipated exhaustion of the working set quota 
and page file quota 

• A reduction in the number of processes resident in 
memory, resulting in increased process swapping 

The first two effects are related to page table map­
ping overhead and size. The second two effects, as 
they relate to page table quota accounting, were also 
resolved by a shared page tables implementation. The 
following sections address the first two issues since 
they uniquely pertain to the page table overhead. 

Application Start-up and Shut-down Times 
Users ofVLM applications can observe long applica­
tion start-up and shut-down times as a result of creat­
ing and deleting very large amounts of virtual 
memory. A single process mapping to a very large 
virtual memory object does not impact overall system 
performance. However, a great number of processes 
that simultaneously map to a very large virtual mem­
ory object have a noticeable impact on the system's 
responsiveness. The primary cause of the performance 
degradation is the accelerated contention for internal 
operating system locks. This observation has been 
witnessed on OpenVMS systems and on DIGITAL 
UNIX systems (prior to the addition ofVLM support.) 

On Open VMS, the memory management spinlock 
( a synchronization mechanism) serializes access to priv­
ileged, memory-management data structures. We have 
observed increased spinlock contention as the result 
of hundreds of processes simultaneously mapping to 

large global sections. Similar lock contention and sys­
tem unresponsiveness occur when multiple processes 
attempt to delete their address space simultaneously. 

Additional Need for Physical Memory 
For pages of virtual memory to be valid and resident, 
the page table pages that map the data pages must also 
be valid and resident. If the page table pages are not in 
memory, successful address translation cannot occur. 

Consider an 8-GB, memory-resident global section 
on an Open VMS Alpha system (with an 8-kilobyte page 
size and 8-byte PTE size). Each process that maps the 
entire 8-GB, memory-resident global section requires 
8 MB for the associated page table structures. If 100 
processes are mapping the memory-resident global sec­
tion, an additional 800 MB of physical memory must be 
available to accommodate all processes' page table 
structures. This further requires that working set list 
sizes, process page file quotas, and system page files be 
large enough to accommodate the page tables. 

When 100 processes are mapping to the same 
memory-resident global section, the same PTE data is 
replicated into the page tables of the 100 processes. 
If each process could share the page table data, only 
8 MB of physical memory would be required to map 
an 8-GB, memory-resident global section; 792 MB of 
physical memory would be available for other system 
purposes. 

Figure 4 shows the amount of memory used for 
process page tables mapping global sections ranging in 
size from 2 to 8 GB. Note that as the number of 
processes that map an 8-GB global section exceeds 
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1,000, the amount of memory used by process page 
tables is larger than the global section itself. 

Shared Memory Models 
We sought a solution to sharing process page tables 
that would alleviate the performance problems and 
memory utilization overhead yet stay within the 
shared memory framework provided by the operating 
system and the architecture. Two shared memory 
models are implemented on Open VMS, shared system 
address space and global sections. 

The Open VMS operating system supports an address 
space layout that includes a shared system address 
space, page table space, and private process address 
space. Shared system address space is created by plac­
ing the physical address of the shared system space 
page tables into every process' top-level page table. 
Thus, every process has the same lower-level page 
tables in its virtual-to-physical address translation 
path. In turn, the same operating system code and 
data are found in all processes' address spaces at the 
same virtual address ranges. A similar means could be 
used to create a shared page table space that is used to 
map one or more memory-resident global sections. 

An alternative for sharing the page tables is to create 
a global section that describes the page table structure. 
The operating system could maintain the association 
between the memory-resident global section and the 
global section for its shared page table pages. The 
shared page table global section could be mapped at 
the upper levels of the table structure such that each 
process that maps to it has the same lower-level page 
tables in its virtual-to-physical address translation 
path. This in turn would cause the data to be mapped 
by all the processes. 

Figure 5 provides a conceptual representation of the 
shared memory model. Figure 6 extends the shared 
memory model by demonstrating that the page tables 
become a part of the shared memory object. 

The benefits and drawbacks of both sharing models 
are highlighted in Table 1 and Table 2. 

Model Chosen for Sharing Page Tables 
After examining the existing memory-sharing models 
on Open VMS and taking careful note of the composi­
tion and characteristics of shared page tables, the design 
team chose to implement shared page tables as a global 
section. In addition to the benefits listed in Table 2, the 

UPPERLEVEL~~~~~~ ~~~~~~~~---LOWERLEVEL 

LEVEL 1 LEVEL2 LEVEL3 

PAGE TABLE (PT) ~ L1PT ~ L2PT - L3PT ~o BASE REGISTER 
~ -

'+- L2PT .. L3PT LJ - -

- L2PT .. L3PT LJ -

+ L3PT LJ .... 

LJ 
SHROBJ 

Figure 5 
Shared Memory Object 
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UPPERLEVEL-~~~ ~~~~~~~~~~ ----.LOWERLEVEL 

LEVEL 1 LEVEL2 LEVEL3 

PAGE TABLE - L1PT - L2PT f-------. L3PT ~u BASE REGISTER - - I 

~ L2PT ~ L3PT ~-u -

+. L2PT • L3PT • DATA 

Figure6 
Shared Memory Objects Using Shared Page Tables 

Table 1 
Shared Page Table Space-Benefits and Drawbacks 

Benefits 

Shared page table space begins at the same 
virtual address for all processes. 

Table 2 
Global Sections for Page Tables-Benefits and Drawbacks 

Benefits 

The same virtual addresses can be used by all 
processes, but this is not required. 
The amount of virtual address space mapped by shared 
page tables is determined by application need. 
Shared page tables are available only to those processes 
that need them. 
Shared page tables allow for significant reuse of exist ing 
global section data structures and process address space 
management code. 

.__ -

• L3PT .. DATA 

-

• DATA 

SHROBJ 

Drawbacks 

The virtual address space is reserved for every process. 
Processes not using shared page tables are penalized 
by a loss in available address space. 
Shared page table space is at least 8 GB in size, 
regardless of whether the entire space is used. 
A significant amount of new code would need to be 
added to the kernel since shared system space is man­
aged separately from process address space. 

Drawbacks 

Shared page tables are mapped at different virtual 
addresses per process unless additional steps are taken. 
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design team noticed that shared page table pages bear 
great resemblance to the memory-resident pages they 
map. Specifically, for a data or code page to be valid and 
resident, its page table page must also be valid and resi­
dent. The ability to reuse a significant amount of the 
global section management code reduced the debug­
ging and testing phases of the project. 

In the initial implementation, shared page table 
global sections map to memory-resident global sec­
tions only. This decision was made because the design 
focused on the demands ofVLM applications that use 
memory-resident global sections. Should significant 
demand exist, the implementation can be expanded to 
allow the mapping of pageable global sections. 

Shared page tables can never map process private data. 
The design team had to ensure that the shared page table 
implementation kept process private data from entering 
a virtual address range mapped by a shared page table 
page. If this were to happen, it would compromise the 
security of data access between processes. 

Shared Page Tables Design 
The goals for the design of shared page tables included 
the following: 

• Reduce the time required for multiple users to map 
the same memory-resident global section 

• Reduce the physical memory cost of maintaining 
private page tables for multiple mappers of the same 
memory-resident global section 

• Do not require the use of a backing storage file for 
shared page table pages 

• Eliminate the working set list accounting for these 
page table pages 

• Implement a design that allows upper levels of the 
page table hierarchy to be shared at a later time 

Figure 6 demonstrates the shared page table global 
section model. The dark gray portion of the figure 
highlights the level of sharing supplied in Open VMS 
Alpha version 7.1. The light gray portion highlights 
possible levels of sharing allowed by creating a shared 
page table global section consisting of upper-level 
page table pages. 

Modifications to Global Section Data Structure Table 2 
noted as a benefit the ability to reuse existing data 
structures and code. Minor morufications were 
exacted to the global section data structures so that 
they could be used to represent a shared page table 
global section. A new flag, SHARED_PTS, was added 
to the global section data structures. Coupled with 
this change was the requirement that a memory­
resident global section and its shared page table global 
section be uniquely linked together. The correspon­
dence between the two sets of global sections is man­
aged by the operating system and is used to locate the 
data structures for one global section when the struc­
tures for the other global section are in hand. Figure 7 
highlights the changes made to the data structures. 

Creating Shared Page Tables To create a memory­
resident global section, an application calls a system 
service routine. No flags or extra arguments are 
required to enable the creation of an associated shared 
page table global section. 

The design team also provided a means to disable 
the creation of the shared page tables in the event that 
a user might find shared page tables to be undesirable. 
To rusable the creation of shared page tables, the 
reserved memory registry entry associated with the 
memory-resident global section can specify that page 
tables are not to be used. Within the system service 
routine that creates a memory-resident global section, 

GLOBAL SECTION DESCRIPTOR GLOBAL SECTION TABLE ENTRY GLOBAL PAGE TABLE 

HEADER J GSTX 

OTHER INFORMATION 
RELATED_GSTX 

"SHROBJ'' 

KEY: 

GSTX GLOBAL SECTION TABLE INDEX 
GPTX GLOBAL PAGE TABLE INDEX 
GPTE GLOBAL PAGE TABLE ENTRY 

Figure 7 
Data Structure Modifications 
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the reserved memory registry is examined for an entry 
associated with the named global section. If an entry 
exists and it specifies shared page tables, shared page 
tables are created. If the entry does not specify shared 
page tables, shared page tables are not created. 

If no entry exists for the global section at all, shared 
page tables are created. Thus, shared page tables are 
created by default if no action is taken to disable their 
creation. We believed that most applications would 
benefit from shared page tables and thus should be 
created transparently by default. 

Once the decision is made to create shared page 
tables for the global section, the system service routine 
allocates a set of global section data structures for the 
shared page table global section. These structures are 
initialized in the same manner as their memory­
resident counterparts, and in many cases the fields in 
both sets of structures contain identical data. 

Note that on current Alpha platforms, there is one 
shared page table page for every 1,024 global section 
pages or 8 MB. (The number of shared page table 
pages is rounded up to accommodate global sections 
that are not even multiples of8 MB in size.) 

Shared JYIEs represent the data within a shared page 
table global section and are initialized by the operating 
system. Since page table pages are not accessible 
through page table space4 until the process maps to 
the data, the initialization of the shared page table 
pages presented some design issues. To initialize the 
shared page table pages, they must be mapped, yet 
they are not mapped at the time that the global section 
is created. 

A simple solution to the problem was chosen. Each 
shared page table page is temporarily mapped to a sys­
tem space virtual page solely for the purposes of initial­
izing the shared PTEs. Temporarily mapping each 
page allows the shared page table global section to be 
fully initialized at the time it is created. 

An interesting alternative for initializing the pages 
would have been to set the upper-level PTEs invalid, 
referencing the shared page table global section. The 
page fault handler could initialize a shared page table 
page when a process accesses a global section page, 
thus referencing an invalid page table page. The 
shared page table page could then be initialized 
through its mapping in page table space. Once the 
page is initialized and made valid, other processes 
referencing the same data would incur a global valid 
fault for the shared page table page. This design was 
rejected due to the additional overhead of faulting 
during execution of the application, especially when 
the ALLOC option is used for the memory-resident 
global section. 

Mapping to a Shared Page Table Global Section Map­
ping to a memory-resident global section that has 
shared page tables presented new challenges and con-

straints on the mapping criteria normally imposed by 
the virtual address space creation routines. The map­
ping service routines require more stringent mapping 
criteria when mapping to a memory-resident global 
section that has shared page tables. These require­
ments serve two purposes: 

1. Prevent process private data from being mapped 
onto shared page tables. If part of a shared page 
table page is unused because the memory-resident 
global section is not an even multiple of 8 MB, the 
process would normally be allowed to create private 
data there. 

2. Accommodate the virtual addressing alignments 
required when mapping page tables into a process' 
address space. 

For applications that cannot be changed to conform 
to these mapping restrictions, a memory-resident 
global section with shared page tables can be mapped 
using the process' private page tables. This capability is 
also useful when the memory-resident global section is 
mapped read-only. This mapping cannot share page 
tables with a writable mapping because the access pro­
tection is stored within the shared JYIEs. 

Shared Page Table Virtual Regions The virtual region 
support added in OpenVMS Alpha version 7.0 was 
extended to aid in prohibiting process private pages 
from being mapped by JYIEs within shared page 
tables. Virtual regions are lightweight objects a 
process can use to reserve portions of its process 
virtual address space. Reserving address space prevents 
other threads in the process from creating address 
space in the reserved area, unless they specify the 
handle of that reserved area to the address space cre­
ation routines. 

To control which portion of the address space 
is mapped with shared page tables, the shared page 
table attribute was added to virtual regions. To map a 
memory-resident global section with shared page 
tables, the user must supply the mapping routine with 
the name of the appropriate global section and the 
region handle of a shared page table virtual region. 

There are two constraints on the size and alignment 
of shared page table virtual regions. 

1. The size of a shared page table virtual region must 
be an even multiple of bytes mapped by a page table 
page. For an 8-KB page system, the size of any 
shared page table virtual region is an even multiple 
of8MB. 

2. The caller can specify a particular starting virtual 
address for a virtual region. For shared page table 
virtual regions, the starting virtual address must be 
aligned to an 8-MB boundary. If the operating 
system chooses the virtual address for the region, it 
ensures the virtual address is properly aligned. 
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If either the size or the alignment requirement for a 
shared page table virtual region is not met, the service 
fails to create the region. 

The size and alignment constraints placed on shared 
page table virtual regions keep page table pages from 
spanning two different virtual regions. This allows the 
operating system to restrict process private mappings 
in shared page table regions and shared page table 
mappings in other regions by checking the shared 
page table's attribute of the region before starting the 
mapping operation. 

Mapping within Shared Page Table Regions The address 
space mapped within a shared page table virtual region 
also must be page table page aligned. This ensures that 
mappings to multiple memory-resident global sec­
tions that have unique sets of shared page tables do 
not encroach upon each other. 

The map length is the only argument to the map­
ping system service routines that need not be an even 
multiple of bytes mapped by a page table page. This 
is allowed because it is possible for the size of the 
memory-resident global section to not be an even 
multiple of bytes mapped by a page table page. A 
memory-resident global section that fits this length 
description will have a portion of its last shared page 
table page unused. 

The Reserved Memory Registry 

OpenVMS Alpha VLM support provides a physical 
memory reservation system that can be exploited by 
VLM applications. The main purpose of this system is 
to provide portions of the system's physical memory 
to multiple consumers. When necessary, a consumer 
can reserve a quantity of physical addresses in an 
attempt to make the most efficient use of system com­
ponents, namely the translation buffer. More efficient 
use of the CPU and its peripheral components leads to 
increased application performance. 

Alpha Granularity Hint Regions 
A translation buffer (TB) is a CPU component that 
caches recent virtual-to-physical address translations 
of valid pages. The TB is a small amount of very fast 
memory and therefore is only capable of caching a lim­
ited number of translations. Each entry in the TB rep­
resents a single successful virtual-to-physical address 
translation. TB entries are purged either when a 
request is made by software or when the TB is full and 
a more recent translation needs to be cached. 

The Alpha Architecture coupled with software can 
help make more effective use of the TB by allowing 
several contiguous pages (groups of 8, 64, or 512) to 
act as a single huge page. This single huge page is 
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called a granularity hint region and is composed of 
contiguous virtual and physical pages whose respective 
first pages are exactly aligned according to the number 
of pages in the region. When the conditions for a gran­
ularity hint region prevail, the single huge page is 
allowed to consume a single TB entry instead of sev­
eral. Minimizing the number of entries consumed for 
contiguous pages greatly reduces turnover within the 
TB, leading to higher chances of a TB hit. Increasing 
the likelihood of a TB hit in turn minimizes the num­
ber of virtual-to-physical translations performed by 
the CPU.5 

Since memory-resident global sections are nonpage­
able, mappings to memory-resident global sections 
greatly benefit by exploiting granularity hint regions. 
Unfortunately, there is no guarantee that a contiguous 
set of physical pages (let alone pages that meet the 
alignment criteria) can be located once the system is 
initialized and ready for steady-state operations. 

Limiting Physical Memory 
One technique to locate a contiguous set of PFNs on 
OpenVMS (previously used on Alpha and VAX plat­
forms) is to limit the actual number of physical pages 
used by the operating system. This is accomplished by 
setting the PHYSICAL_MEMORY system parameter 
to a value smaller than the actual amount of physical 
memory available in the system. The system is then 
rebooted, and the PFNs that represent higher physical 
addresses than that specified by the parameter are allo­
cated by the application. 

This technique works well for a single application 
that wishes to allocate or use a range of PFNs not used 
by the operating system. Unfortunately, it suffers from 
the following problems: 

• It requires the application to determine the first 
page not used by the operating system. 

• It requires a process running this application to be 
highly privileged since the operating system does 
not check which PFNs are being mapped. 

• Since the operating system does not arbitrate access 
to the isolated physical addresses, only one applica­
tion can safely use them. 

• The Alpha Architecture allows for implementations 
to support discontiguous physical memory or phys­
ical memory holes. This means that there is no 
guarantee that the isolated physical addresses are 
successively adjacent. 

• The PFNs above the limit set are not managed by 
the operating system (physical memory data struc­
tures do not describe these PFNs ). Therefore, the 
pages above the limit cannot be reclaimed by the 
operating system once the application is finished 
using them unless the system is rebooted. 



The Reserved Memory Solution 
The Open VMS reserved memory registry was created 
to provide contiguous physical memory for the pur­
poses of further improving the performance of VLM 
applications. The reserved memory registry allows the 
system manager to specify multiple memory reserva­
tions based on the needs of various VLM applications. 

The reserved memory registry has the ability to 
reserve a preallocated set of PFNs. This allows a set of 
contiguous pages to be preallocated with the appro­
priate alignment to allow an Alpha granularity hint 
region to be created with the pages. It can also reserve 
physical memory that is not preallocated. Effectively, 
the application creating such a reservation can allocate 
the pages as required. The reservation ensures that the 
system is tuned to exclude these pages. 

The reserved memory registry can specify a reserva­
tion consisting of prezeroed PFNs. It can also specify 
that a reservation account for any associated page 
tables. The reservation system allows the system man­
ager to free a reservation when the corresponding 
consumer no longer needs that physical memory. 

The memory reserved by the reserved memory reg­
istry is communicated to Open VMS system tuning 
facilities such that the deduction in fluid memory is 
noted when computing system parameters that rely on 
the amount of physical memory in the system. 

SYSMAN User Interface The Open VMS Alpha 
SYSMAN utility supports the RESERVED_MEMORY 
command for manipulating entries in the reserved 
memory registry. A unique character string is specified 
as the entry's handle when the entry is added, modi­
fied, or removed. A size in megabytes is specified for 
each entry added. 

Each reserved memory registry entry can have the 
following options: preallocated PFNs (ALLOC), zeroed 
PFNs, and an allotment for page tables. VLM applica­
tions enter their unique requirements for reserved 
memory. For memory-resident global sections, zeroed 
PFNs and page tables are usually specified. 

Reserving Memory during System Start-up To ensure 
that the contiguous pages can be allocated and that 
run-time physical memory allocation routines can be 
used, reserved memory allocations occur soon after 
the operating system's physical memory data struc­
tures have been initialized. 

The reserved memory registry data file is read to 
begin the reservation process. Information about each 
entry is stored in a data structure. Multiple entries 
result in multiple structures being linked together in a 
descending-order linked list. The list is intentionally 
ordered in this manner, so that the largest reservations 
are honored first and contiguous memory is not frag­
mented with smaller requests. 

For entries with the ALLOC characteristic, an 
attempt is made to locate pages that will satisfy the 
largest granularity hint region that fits within the 
request. For example, reservation requests that are 
larger than 4 MB result in the first page allocated to be 
aligned to meet the requirements of a 512-page gran­
ularity hint region. 

The system's fluid page counter is reduced to 
account for the amount of reserved memory specified 
in each entry. This counter tracks the number of phys­
ical pages that can be reclaimed from processes or the 
system through paging and swapping. Another system­
defined value, minimum fluid page count, is calculated 
during system initialization and represents the 
absolute minimum number of fluid pages the system 
needs to function. Deductions from the fluid page 
count are always checked against the minimum fluid 
page count to prevent the system from becoming 
starved for pages. 

RunningAUTOGEN, the Open VMS system tuning 
utility, after modifying the reserved memory registry 
allows for proper initialization of the fluid page 
counter, the minimum fluid page count, and other sys­
tem parameters, thereby accommodating the change 
in reserved memory. AUTOGEN considers entries in 
the reserved memory registry before selecting values 
for system parameters that are based on the system's 
memory size. Failing to retune the system can lead to 
unbootable system configurations as well as poorly 
tuned systems. 

Page Tables Characteristic The page table reserved 
memory registry characteristic specifies that the 
reserved memory allotment for a particular entry 
should include enough pages for its page table 
requirements. The reserved memory registry reserves 
enough memory to account for lower-level page table 
pages, although the overall design can accommodate 
allotments for page tables at any level. 

The page table characteristic can be omitted if 
shared page tables are not desired for a particular 
memory-resident global section or if the reserved 
memory will be used for another purpose. For exam­
ple, a privileged application such as a driver could call 
the kernel-mode reserved memory registry routines 
directly to use its reservation from the registry. In this 
case, page tables are already provided by the operating 
system since the reserved pages will be mapped in 
shared system address space. 

Using Reserved Memory Entries are used and 
returned to the reserved memory registry using a set 
of kernel-mode routines. These routines can be called 
by applications running in kernel mode such as the 
system service routines that create memory-resident 
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global sections. For an application to create a memory­
resident global section and use reserved memory, the 
global section name must exactly match the name of 
the reserved memory registry entry. 

After the system service routine has obtained the 
reserved memory for the memory-resident global sec­
tion, it calls a reserved memory registry routine again 
for the associated shared page table global section. If 
page tables were not specified for the entry, the system 
service routine does not create a shared page table 
global section. 

A side benefit of using the ALLOC option for the 
memory-resident global section is that the shared page 
tables can be mapped into page table space using gran­
ularity hint regions as well. 

Returning Reserved Memory The memory used by 
a memory-resident global section and its associated 
shared page table global section is returned to the 
reserved memory registry (by calling a kernel-mode 
routine) when the global section is deleted. Reserved 
memory is only returned when a memory-resident 
global section has no more outstanding references. 
Preallocated pages are not returned to the system's 
free page list. 

Freeing Reserved Memory Preallocated reserved mem­
ory that is unused or partially used can be freed to the 
system's free page list and added to the system's fluid 
page count. Reserved fluid memory is returned to the 
system's fluid page count only. 

Once an entry's reserved memory has been freed, 
subsequent attempts to use reserved memory with the 
same name may be able to use only the FLUID option, 
because a preallocated set of pages is no longer set 
aside for the memory-resident global section. (If the 
system's fluid page count is large enough to accom­
modate the request, it will be honored.) 

The ability to free unused or partially used reserved 
memory registry entries adds flexibility to the manage­
ment of the system. If applications need more mem­
ory, the registry can still be run with the FLUID 
option until the system can be rebooted with a larger 
amount of reserved memory. A pool of reserved mem­
ory can be freed at system start-up so that multiple 
applications can use memory-resident global sections 
to a limit specified by the system manager in the 
reserved memory registry. 

Reserved Memory Registry and Other Applications 
Other Open VMS system components and applications 
may also be able to take advantage of the reserved 
memory registry. 

Applications that relied upon modifications to the 
PHYSICAL_MEMORY system parameter as a means 
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of gaining exclusive access to physical memory can 
enter kernel mode and call the reserved memory reg­
istry kernel-mode routines directly as an alternative. 
Once a contiguous range of PFNs is obtained, the 
application can map the pages as before. 

Using and returning reserved memory registry 
entries requires kernel-mode access. This is not viewed 
as a problem because applications using the former 
method ( of modifying the PHYSICAL_MEMORY 
system parameter) were already privileged. Using the 
reserved memory registry solves the problems associ­
ated with the previous approach and requires few code 
changes. 

Performance Results 

In a paper describing the 64-bit option for the Oracle7 
Relational Database System, 1 the author underscores 
the benefits realized on a VLM system running the 
DIGITAL UNIX operating system. The test results 
described in that paper highlight the benefits of being 
able to cache large amounts of data instead ofresort­
ing to disk I/0. Although the Open VMS design team 
was not able to execute similar kinds of product tests, 
we expected to realize similar performance improve­
ments for the following reasons: 

• More of a VLM application's hot data is kept resi­
dent instead of paging between memory and sec­
ondary storage. 

• Application start-up and shut-down times are sig­
nificantly reduced since the page table structures 
for the large shared memory object are also shared. 
The result is that many fewer page tables need to be 
managed and manipulated per process. 

• Reducing the amount of PTE manipulations results 
in reduced lock contention when hundreds of 
processes map the large shared memory object. 

As an alternative to product testing, the design team 
devised experiments that simulate the simultaneous 
start-up of many database server processes. The exper­
iments were specifically designed to measure the 
scaling effects of a VLM system during application 
start-up, not during steady-state operation. 

We performed two basic tests. In the first, we used a 
7.5-GB, memory-resident global section to measure 
the time required for an increasing number of server 
processes to start up. All server processes mapped to 
the same memory-resident global section using shared 
page tables. The results shown in Figure 8 indicate 
that the system easily accommodated 300 processes. 
Higher numbers of processes run simultaneously 
caused increasingly large amounts of system stress due 
to the paging of other process data. 
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Figure 8 
Server Start-up Time versus Process Count 

In another test, we used 300 processes to measure 
the time required to map a memory-resident global 
section with and without shared page tables. In this 
test, the size of global section was varied. Note that the 
average time required to start up the server processes 
rises at nearly a constant rate when not using shared 
page tables. When the global section sizes were 5 GB 
and greater, the side effect of paging activity caused 
the start-up times to rise more sharply as shown in 
Figure 9. 

The same was not true when using shared page 
tables. The time required to map the increasing sec­
tion sizes remained constant at just under three sec­
onds. The same experiment on an AlphaServer 8400 
system with 28 GB of memory showed identical con­
stant start-up times as the size of the memory-resident 
global section was increased to 27 GB. 
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Server Start-up Time on an 8-GB System 

Conclusion 

The Open VMS Alpha VLM support available in ver­
sion 7.1 is a natural extension to the 64-bit virtual 
addressing support included in version 7.0. The 64-bit 
virtual addressing support removed the 4-GB virtual 
address space limit and allowed applications to make 
the most of the address space provided by Alpha sys­
tems. The VLM support enables database products or 
other applications that make significant demands on 
physical memory to make the most of large memory 
systems by allowing large caches to remain memory 
resident. The programming support provided as part 
of the VLM enhancements enables applications to take 
advantage of both 64-bit virtual addressing and very 
large memories in a modular fashion consistent with 
the Open VMS shared memory model. This combina­
tion enables applications to realize the full power of 
Alpha VLM systems. 

The Oracle? Relational Database Management 
System for OpenVMS Alpha was modified by Oracle 
Corporation to exploit the VLM support described in 
this paper. The combination of memory-resident 
global sections, shared page tables, and the reserved 
memory registry has not only improved application 
start-up and run-time performance, but it has also 
simplified the management of Open VMS Alpha VLM 
systems. 
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PowerStorm 4DT: A High­
performance Graphics 
Software Architecture 

The PowerStorm 4DT series of graphics devices 
established DIGITAL as the OpenGL performance 
leader for mid-range workstations, both on the 
DIGITAL UNIX and the Windows NT operating 
systems. Achieving this level of success required 
combining the speed of the Alpha microprocessor 
with the development of an advanced graphics 
subsystem architecture focused on exceptional 
software performance. The PowerStorm 4DT 
series of graphics adapters uses a modified 
direct-rendering technology and the Alpha CPU 
to perform geometry and lighting calculations. 
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The PowerStorm 4D40T, 4D50T, and 4D60T mid­
range graphics adapters from DIGITAL have exceeded 
the performance of all OpenGL graphics devices cost­
ing as much as $25,000. In addition, these products 
achieved twice the price/performance ratio of com­
peting systems at the time they were announced. 

The PowerStorm 4DT series of mid-range graphics 
devices was developed in 1996 to replace the com­
pany's ZLX series. In its search for a vendor to replace 
the graphics hardware, DIGITAL found Intergraph 
Systems Corporation. This company had been design­
ing three-dimensional (3-D) graphics boards for a 
few years and was then on its second-generation 
chip design. The schedule, cost, and performance of 
Intergraph's new design matched our project's target 
goals. Intergraph was building software for the 
Windows NT operating system on its Intel processor­
based workstations, but was not doing any work for 
the UNIX operating system or the Alpha platform. 

The goals of the PowerStorm 4DT project were to 
develop a mid-range graphics product powered by the 
Alpha microprocessor that would lead the industry in 
performance and price/performance. 

This paper describes the competitive environment 
in the graphics industry at the conception of the 
PowerStorm 4DT project. It discusses our design deci­
sions concerning the graphics subsystem architecture 
and performance strategy. The paper concludes with a 
performance summary and comparison in the industry. 

Competitive Analysis 

Overall performance of today's mid-range workstations 
is markedly better than that of just two years ago. This 
improvement is largely due to the dramatic increases in 
CPU speeds, both in the number of instructions exe­
cuted per clock cycle and the number of clock cycles per 
second. Without trivializing the efforts of the CPU 
architects, such year-over-year increases in CPU perfor­
mance have become the trend of the last decade, espe­
cially with the Alpha microprocessor. 
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More astounding is the central role that the graphics 
component of the workstation is playing in defining 
the overall performance of the workstation. We are in 
the age of visual computing. Whether or not an appli­
cation requires 3-D graphics, even the most primitive 
applications often rely on a graphical user interface 
(GUI). As such, the graphical components of today's 
system-level benchmarks now carry significant weight. 

More importantly, a prospective buyer often looks 
at results from standard graphics benchmarks as a gen­
eral indication of a machine's overall performance. In 
the computer-aided design/ computer-aided manu -
facturing (CAD/CAM) market, a customer typically 
buys a workstation to run a set of applications that has 
a large 3-D component. Performance is measured by 
how fast a workstation can create and manipulate 3-D 
objects. For the most part, this performance is deter­
mined wholly by the graphics subsystem. The hard­
ware components of the graphics subsystem, however, 
vary from vendor to vendor and may or may not 
include the CPU. 

Performance Metrics 
Simply stated, the primary goal of the PowerStorm 
4DT graphics device series was to provide the fastest 
mid-range OpenGL graphics performance while offer­
ing the best price/performance ratio. OpenGL is the 
industry-standard 3-D graphics application program­
ming interface (API) and associated library that pro­
vides a platform-independent interface for rendering 
3-D graphics. 1 

Quantifying performance can be an elusive goal. 
Product managers in our Workstation Graphics Group 
chose two metrics to compare the performance of the 
PowerStorm 4DT adapter to our competitors' prod­
ucts. The first metric was performance on the industry­
standard OpenGL Viewperf benchmark, Conceptual 
Design and Rendering Software (CDRS).2 This bench­
mark was chosen for its universal acceptance in the 
CAD /CAM and process control markets. When buyers 
compare graphics performance of two systems running 
OpenGL, the Viewperf scores are among the first 
measurements they seek. The second measurement 
was performance on the Pro/ENGINEER application 
from Parametric Technology Corporation (PTC). 

The CDRS benchmark, as shown in Figure 1, was 
established by the OpenGL Performance Characteri­
zation ( OPC) organization as one of several Viewperf 
viewsets. It emulates the variety of operations a user 
typically executes when running a CAD/CAM applica­
tion. Specifically, this benchmark uses a series of tests 
that rotate a 3-D model on the screen in a variety of 
modes, including wireframe vectors, smooth-shaded 
facets, texturing, and transparency. Performance is 
measured by how many frames per second can be 
generated. Higher frame rates equate to faster and 
smoother rotations of the model. Each test carries a 
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Figure 1 
CDRS ViewperfBenchmark ofOpenGL Performance 

weight determined to roughly correspond to how 
important that operation is in a real-world CAD /CAM 
package. The test results are geometrically averaged to 
produce a composite score. This single number is a 
representation of the graphics performance of any 
given system. 

Although standard benchmarks are good perfor­
mance indicators, they cannot substitute for actual 
performance on an application. To ensure that the 
PowerStorm 4DT adapter realized exceptional real­
world performance, the second metric chosen was the 
CAD/CAM industry's market share leader, the Pro/ 
ENGINEER application. PTC provides the industry 
with a set of playback files called trail files. As shown in 
Figure 2, each file contains a recording of a session in 
which a user has created and rotated a 3-D part. The 
recordings typically have large wireframe and smooth­
shading components and little or no texture mapping. 
Performance is measured by how quickly a system can 
play back a trail file. The CDRS benchmark stresses 
only the graphics subsystem, but the Pro/ENGINEER 
trail file stresses the CPU and the memory subsystem 
as well. 

Graphics Hardware Standards 
In 1996, Silicon Graphics Inc. (SGI) captured the 
mid-range graphics workstation market with its 
Indigo2 Maximum IMPACT graphics subsystem pow­
ered by the MIPS RlOOOO microprocessor. DIGITAL, 
Sun Microsystems, and International Business Machines 
(IBM) Corporation had yet to produce a product with 
the performance SGI offered; instead, they competed 
in the low to lower mid-range graphics arena. 



Figure 2 
Screen Capture from the Pro/ENGINEER Trail File Used to Stress the PowerStorm 4DT Series 

Hewlett-Packard was notably absent from either 
bracket due to its lack of a mid-range workstation with 
OpenGL graphics capability. Mid-range workstations 
can be loosely classified as costing from $15,000 to 
$40,000. Graphics performance in this price range dif­
fers, sometimes dramatically, from vendor to vendor. 

Considering only raw graphics hardware perfor­
mance, a vendor had to offer a certain level of perfor­
mance to be competitive with SGI. By 1996 standards, 
a competitive device needed to be capable of achieving 
the following: 

• 1 million Gouraud-shaded, 25-pixel, Z-buffered 
triangles per second 

• 2 million flat-shaded, antialiased, 10-pixel vectors 
per second 

• Trilinear, mipmapped, texture fill rates of 30 mega-
pixels per second 

• 24-bit deep color buffer 

• 4-bit overlay buffer 

• 4-MB dedicated or unified texture memory 

• Dedicated hardware support for double buffering 
and Z-buffering 

• Screen resolution ofl,280 by 1,024 pixels at 72 hertz 

In 1996, the PowerStorm 4D60T, the most 
advanced graphics adapter in the new series, was capa -
ble of the following: 

• 1.1 million Gouraud-shaded, 25- to SO-pixel, 
Z-buffered triangles per second 

• 2.5 million flat-shaded, antialiased, 10-pixel vectors 
per second 

• Trilinear, mipmapped, texture fill rates of greater 
than 30 megapixels per second 

• 32-bit deep color buffer 

• 8-bit overlay buffer 

• 0- to 64-MB dedicated texture memory 

• Dedicated hardware support for double buffering 
( including overlay planes) and Z-buffering 

• Screen resolution up to 1,600 by 1,200 pixels at 76 
hertz 
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It is important to understand that these are hard­
ware maximums. The interesting work is not in 
achieving these rates under the best of conditions, but 
in achieving these rates under most conditions. To 
reiterate, building hardware that can theoretically per­
form well and building a system that performs well in 
benchmark applications are two distinctly different 
goals. The latter requires the former, but the former in 
no way guarantees the latter. 

Different viewpoints on the best way to provide the 
highest level of performance have divided the industry 
into several camps. Workstation vendors must decide 
which approach best exploits the competitive advan­
tages of their systems. In the mid-range workstation 
market, our graphics philosophy is decidedly different 
from that of our competitors. For the most part, 
DIGITAL is alone in its choice of a CPU-based, direct­
rendering graphics architecture. 

In the next section, we discuss the various graphics 
design architectures in the industry, focusing on the 
design of the PowerStorm series and comparing it 
with SGI's approach. 

Graphics Subsystem Architectures 

The two essential choices for graphics subsystem design 
are deciding between indirect and direct rendering and 
choosing whether the CPU or an application-specific 
integrated circuit (ASIC) performs the geometry and 
lighting calculations. In this section, we discuss the 
advantages and disadvantages of both rendering 
schemes and calculation devices and explore designers' 
decisions for graphics subsystem architectures. 

By order of occurrence, 3-D graphics can be divided 
into three stages: ( 1) transferal of OpenGL API calls to 
the rendering library, (2) geometry and lighting, and 
( 3) rasterization. In the next section, we compare 
direct and indirect image rendering. 

Direct Ver.sus Indirect Rendering 
Before the popularization of the Windows NT operat­
ing system and the personal computer, almost all 
graphics workstations used the X Window System or 
a closely related derivative. The typical X Window 
System implementation is a standard client-server 
model. 3 An application that draws to the screen 
requests the X server to manage the graphics hardware 
on its behal£ 

The graphics API, either Xlib for two-dimensional 
(2-D ) applications or OpenGL for 3-D, was the func­
tional breaking point. Traditionally, client applications 
would make graphics API calls to do drawing or 
another graphics-related operation. These calls would 
be encoded and buffered on the client side. At some 
point, either explicitly by the client or implicitly by the 
API library, the encoded and buffered requests would 
be flushed to the X server. These commands would 
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then be sent to the X server over a transport such as 
the Transmission Control Protocol/Internet Protocol 
(TCP /IP), a local UNIX domain socket, or local 
shared memory. 

When the requests arrived at the X server, it would 
decode and execute them in order. Many requests 
would then require the generation of commands to be 
sent to the hardware. This client-server model was 
named indirect rendering because of the indirect way 
in which clients interacted with the graphics hardware. 

Direct rendering is a newer method often employed 
in the design of high-end graphics systems. 4•5 In this 
scheme, the client OpenGL library is responsible for all 
or most 3-D rendering. Instead of sending commands 
to the X server, the client itself processes the com­
mands. The client also generates hardware command 
buffers and often communicates directly with the 
graphics hardware. In this rendering scheme, the X 
server's role is greatly diminished for 3-D OpenGL 
requests but remains the same for 2-D Xlib requests. 

The designers chose to support direct rendering for 
the PowerStorm 4DT adapter. Direct rendering offers 
considerably better performance than indirect render­
ing. Note, however, direct rendering does not pre­
clude indirect rendering. All devices that support 
direct rendering under the X Window System also 
support indirect rendering. 

In the following subsections, we discuss the advan -
tages and disadvantages of direct and indirect render­
ing. We also explain the impetus for making the 
PowerStorm 4DT adapter the first graphics device 
from DIGITAL capable of direct rendering. 

Indirect Rendering One advantage of indirect ren­
dering that should never be underestimated is its proven 
track record. This technology is widely accepted and 
understood. It offers network transparency, which 
means a client and server need not reside on the same 
machine. A client can redirect its graphics to any 
machine running an X server as long as the two 
machines are connected on a TCP /IP network. This 
model worked well until faster CPUs and graphics 
devices were developed. The protocol encode, copy, 
and decode overhead associated with sending requests 
to the server became a bottleneck. 

The increased use of display lists provided an inter­
mediate solution to this problem. Display lists are a 
group of OpenGL commands that can be sent to the X 
server once and executed multiple times by referenc­
ing the display list ID instead of sending all the data 
each time. Display lists dramatically reduced commu­
nication overhead and returned graphics to the point 
at which communication to the X server was no longer 
the bottleneck. 

Unfortunately, display lists had significant disadvan­
tages. Once defined, they could not be modified. To 
achieve performance using indirect rendering, almost 



all OpenGL commands had to be collected into dis­
play lists. This caused resource problems because 
display lists could be quite large and had to be stored 
in the X server until explicitly deleted by the client. 
Probably the greatest disadvantage was that display 
lists were generally awkward for application programs 
to use. Application programmers prefer the more 
straightforward method of immediate-mode pro­
gramming by which commands are called individually. 
For these reasons, indirect rendering proved to be 
insufficient, even with the advent of display lists. 

Direct Rendering The PowerStorm 4DT project 
team was committed to designing a product with lead­
ership performance for both the display-list-mode and 
immediate-mode rendering. The designers realized 
early that they would have to adopt direct rendering to 
address the performance problems with immediate­
mode indirect rendering. 

As mentioned earlier, the philosophy behind classi­
cal direct rendering is that each client handles all 
OpenGL processing, creates a buffer of hardware 
commands for the device, and then sends the com­
mands to the device without any X server interaction. 
This model has several drawbacks. First, access to the 
graphics hardware is difficult to synchronize between 
clients and the X server. Second, windows and their 
properties such as position and size have to be main­
tained by the clients, which also requires a complex 
synchronization design. SGI used this model for its 
IMPACT series of graphics devices. 

The PowerStorm 4DT designers took a more con­
servative approach, based largely on the same model. 
One fundamental difference is that each client gener­
ates hardware command buffers in shared memory. 
The client then sends requests to the X server telling it 
where to locate the hardware commands. The X server 
sets up the hardware to deal with window position and 
size and then initiates a direct memory access (DMA) of 
the hardware command buffer to the graphics device. 
Essentially, the X server becomes an arbitrator of hard­
ware buffers. This approach worked quite well, because 
the X server was the logical place for synchronization to 
occur and it already maintained window properties. We 
were able to have all the performance benefits of classi­
cal direct rendering without the pitfalls. 

One implication of direct rendering is that the client 
and the server have to be on the same physical machine. 
When first evaluating direct rendering, designers were 
curious to determine how often our customers used 
this configuration; that is, did most users perform their 
work and display their graphics on the same computer? 
Our surveys showed that more than 95 percent of 
users did display their graphics locally. The remaining 
5 percent rarely cared about performance. Today, this 
may seem obvious; two years ago, it could not be 
assumed. 

Direct rendering offered a huge performance 
improvement to nearly all our customers. The perfor­
mance gains were two to four times the performance 
ofindirect rendering. 

Direct-rendering 2-D Most graphics device imple­
mentations use direct rendering only for OpenGL, 
because indirect rendering of immediate-mode 
OpenGL is protocol rich. As mentioned previously, 
the transferal of this protocol to the X server can be 
quite expensive. One interesting aspect of our design 
is its support for direct rendering of 2-D Xlib calls. 

Other graphics vendors consider 2-D performance 
important only for 2-D benchmarks. These bench­
marks, which largely stress the graphics hardware's 
ability to draw 2-D primitives quickly, can generate a 
lot of work for the hardware with relatively few 
requests. Unlike 3-D, these requests do not need 
much geometry processing before they can be sent to 
the hardware. This means that very little protocol is 
needed to saturate the hardware. As long as the proto­
col generation does not produce a bottleneck, indirect 
rendering performs as well as direct rendering. In 
addition, given that OpenGL benchmarks like CDRS 
have almost no 2-D component, it seems reasonable 
to conclude that indirect-rendered 2-D should suffice. 

Benchmarks often are not sufficiently representative 
of real applications, especially when they isolate 2-D 
and 3-D operations. CAD /CAM applications typically 
have a substantial 2-D GUI, which interacts closely 
with the 3-D components of the application. A bench­
mark that exercises both 2-D and 3-D by emulating a 
user session on an application will provide results that 
more accurately reflect the performance witnessed by 
an end user. These benchmarks simply measure how 
long it takes to complete a session, so both 3-D and 
2-D performance impact the overall score. 

Our research showed that with a highly optimized 
OpenGL implementation, in many cases it was no 
longer the 3-D components that slowed down a 
benchmark, but the 2-D components. Further exam­
ination revealed that it was the same protocol bottle­
neck evident with indirect-rendered OpenGL. 
Applications were generating relatively small drawing 
operations with many drawing attribute changes 
intermixed, such as draw line, change color, draw 
line, change color, and so forth. This type of request 
stream tends to generate tremendous amounts of 
protocol, unlike 2-D benchmarks that rarely change 
drawing attributes. 

Accordingly, 2-D direct rendering presented itself as 
the logical solution. With the direct-rendering infra­
structure and design already in place, developers sim­
ply needed to extend it for 2-D/Xlib. This required 
the development of two additional libraries: the 
Vectored X library and the Direct X library ( unrelated 
to Microsoft's DirectXAPI). 
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The Vectored X library replaced the preexisting Xlib. 
It allows devices that support direct rendering to vector, 
or redirect, Xlib function calls to direct-rendering rou­
tines instead of generating the X protocol and sending it 
to the X server. If a graphics device does not support 
direct rendering, it defaults to the generic protocol­
generating routines. It is important to understand that 
this is a device-independent library responsible only for 
vectoring Xlib calls to the appropriate library. 

The Direct X library, on the other hand, is a device­
dependent library. It contains all the vectored functions 
that the Vectored X library calls when the device sup­
ports direct rendering. This library operates in much 
the same way as the direct-rendering OpenGL library. 
It processes the requests and places graphics hardware 
commands in a shared memory buffer. The X server 
later sends the buffer to the graphics device by OMA. 

The entire functionality of the X library is not imple­
mented through direct rendering for several reasons. In 
many cases, a shared resource resides in the server ( e.g., 
the X server performs all pixmap rendering). In other 
cases, the hardware is not directly addressable by the 
client ( e.g., the X server handles all frame buffer reads). 
Often the client does not have access to all window 
information that the server maintains ( e.g., the X server 
handles all window-to-window copies). Fortunately, 
these operations are either not frequently used, not 
expected to be fast, or easily saturate the hardware. 

Further details of the Vectored X library and Direct 
X library are beyond the scope of this paper. The con­
cept of direct-rendered 2-D, however, is sound . It has 
helped DIGITAL outperform other vendors on many 
application benchmarks that were largely focused on 
OpenGL but had significant 2-D components. Our 
2-D direct-rendering technology has also enhanced 
2-D performance and response time for the many 
thousands of exclusively 2-D applications for the 
X Window System. 

Geometry and Lighting 
The geometry and lighting phase can be performed by 
the host CPU or by a specialized, high-speed ASIC, 
which is typically located on the graphics device. 
Regardless of where these calculations take place, the 
general idea is that the user's vertices are transformed 
and lit, then fed to the rasterizer. Since the rasterizer is 
on the graphics device, choosing the host to do the 
geometry and lighting implies that the transformed 
and lit vertices are then sent across the bus to the ras­
terizer. The use of a specialized ASIC implies that the 
user's vertices are sent across the bus, transformed and 
lit by the custom ASIC, and then fed directly to the 
rasterizer. The information transferred across the bus 
is obviously different, but in terms of amount of data 
per vertex, it is approximately the same. Therefore, 
bus bandwidth does not become a deciding factor for 
either design. 
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Host CPU Geometry and Lighting Traditionally, 
DIGITAL has chosen the host CPU to perform the 
geometry and lighting calculations. The PowerStorm 
project designers chose this approach because of the 
Alpha microprocessor's exceptional floating-point 
speed, and because almost all 3-D calculations involve 
floating-point values. At the time this project was con­
ceived, the only general-purpose, widely available 
processor capable of feeding more than 1 million 
transformed and lit vertices per second to the hard­
ware was the Alpha CPU. An additional benefit of 
having the Alpha CPU do the work was an overall cost 
reduction of the graphics device. Custom ASICs are 
expensive to develop and manufacture. 

Another important and related advantage is that our 
software becomes proportionally faster as clock speeds 
rise on available Alpha microprocessors. This results 
in a near linear performance increase without any 
additional engineering cost. For example, using the 
same software, a 500-megahertz (MHz) Alpha micro­
processor is able to produce 25 percent more vertices 
per second than a 400-MHz Alpha microprocessor. 
Because of this, developers can write optimized Alpha 
code once and reuse it for successive generations of 
Alpha CPUs, reaping performance improvements with 
virtually no further invested effort. 

It is obvious that rendering can proceed no faster 
than vertices can be generated. If the OpenGL library 
can transform and light only 750,000 vertices per sec­
ond, and the graphics device can rasterize 1 million, 
the effective rendering rate will be 750,000. In this 
example, the OpenGL geometry and lighting software 
stages are the bottleneck. However, if the numbers 
were reversed, and the hardware could only rasterize 
750,000 vertices while the OpenGL software provided 
1 million, the rasterization hardware would become 
the bottleneck. 

Thus far, we have discussed two potential bottle­
necks: the OpenGL implementation itself and the ras­
terization hardware. The third and potentially most 
damaging bottleneck may be the client's ability to feed 
vertices to the OpenGL library. It should be clear that 
this is the top level of vertex processing. The OpenGL 
library can render no faster than the rate at which the 
client application feeds it vertices. Consequently, the 
rasterizer can render primitives no faster than the 
OpenGL library can produce them. Thus, a bottleneck 
in generating vertices for the OpenGL library will slow 
the entire pipeline. Ideally, we would like each level to 
be able to produce at least as many vertices as the 
lower levels can consume. 

Clearly, the performance of the application, in terms 
of handing vertices to the OpenGL library, is a func­
tion of CPU speed. This is only an issue for applica­
tions that have large computation overhead before 
rendering. Currently, almost all graphics benchmarks 
have little or no computation overhead in getting ver-



rices to the OpenGL library. Most attributes are pre­
computed, since they are trying to measure only the 
graphics performance and throughput. For the most 
part, this holds true for the traditional CAD /CAM 
packages. However, some emerging scientific visual­
ization applications as well as some high-end CAD 
applications require significant compute cycles to gen­
erate the vertices sent to the OpenGL library. For 
these applications, only the DIGITAL Alpha CPU­
based workstations can produce the vertices fast 
enough for interactive rates. 

There are some potential disadvantages to this 
design. Namely, the CPU is responsible for both the 
application's and the graphics library's computations. If 
the application and the OpenGL implementation must 
contend for compute cycles, overall performance will 
suffer. Analysis of applications revealed that typical 3-D 
and 2-D graphics applications do internal calculations 
followed by rendering. Only under rare circumstances 
do the two processes mix with a substantial ratio. If the 
applications should start mixing their own processing 
needs with those of the OpenGL library, the notion of 
host-based geometry would need to be revisited. 

Another potential disadvantage is the rate at which 
Alpha CPU performance increases versus the rate at 
which the rasterizer chip's performance increases. The 
emerging generation of graphics devices is capable of 
rasterizing more than 4 million triangles per second. It 
is unknown whether future generations of the Alpha 
CPU will be able to feed the faster graphics hardware. 

ASIC-based Geometry and Lighting Performing geom­
etry and lighting calculations with a custom ASIC on the 
graphics device is often referred to as OpenGL in hard­
ware because most of the OpenGL pipeline resides in the 
ASIC. The OpenGL library is limited to handing the API 
calls to the hardware. SGI has adopted the ASIC-based 
approach for many generations of workstations and 
graphics devices. In this section, we discuss why this 
method works for them and its potential shortcomings. 

SGI workstations use either the R4400 or the RlOOOO 
CPU developed by MIPS Technologies. Although these 
CPUs have good integer performance, their tloating­
point performance cannot generate the number of ver­
tices that the Alpha CPU can. As a consequence, SGI has 
to use the custom-graphics ASIC approach. One advan­
tage to the custom ASIC is the decoupling of graphics 
from the CPU. Since each can operate asynchronously, 
the application has full use of the CPU. 

Typically, custom geometry ASICs, also known 
as geometry engines, perform better than a general­
purpose CPU for several reasons. First, the custom 
ASIC must perform only a well-understood and lim­
ited set of calculations. This allows the ASIC designers 
to optimize their chip for these specific calculations, 
releasing them from the burden and complexity of 
general-purpose CPU design. 

Second, the graphics engine and the rasterizer can 
be tightly coupled; in fact, they can be located on the 
same chip. This allows for better pipelining and 
reduced communication latencies between the two 
components. Even if the geometry engine and raster­
izer are located on different chips, which is not at all 
uncommon, a much stronger coupling exists between 
the geometry engine and the rasterizer than does 
between the host CPU and rasterizer. 

Third, geometry engines can yield high perfor­
mance when executing certain display lists. The use of 
a display list allows an object to be quickly re-rendered 
from a different view by changing the orientation of 
the viewer and reexecuting the stored geometry. If the 
display list can fit within the geometry engine's cache, 
it can be executed locally without having to resend the 
display list across the bus for each execution. This 
helps alleviate the transportation overhead in getting 
the display list data over the bus to the graphics device. 
It is unclear how often this really happens since rasteri­
zation is typically the bottleneck. If the display list is 
filled with many small area primitives, however, its use 
can result in noticeable performance gains. Geometry 
engines often have a limited amount of cache. If an 
application's display list exceeds the amount of cache 
memory, performance degrades significantly, often to 
below the performance attainable without a geometry 
accelerator. Our research shows that display list sizes 
used by applications increase every year; therefore, 
cache size must increase at the same rate to maintain 
display list performance advantages. 

The primary disadvantage of using custom AS I Cs to 
perform the geometry and lighting calculations is the 
expense associated with their design and manufacture. 
In addition, a certain risk is involved with their devel­
opment: hardware bugs can seriously impact a prod­
uct's viability. Fixing the bugs causes the schedule to 
slip and the cost to rise. Hardware bugs discovered by 
customers can be devastating. With host-based geom­
etry, a software fix in the OpenGL library can easily be 
incorporated and distributed to customers. 

A sometimes unrecognized disadvantage of dedi­
cated geometry engines is that they are bound to fixed 
clock rates, with little room for scalability. Although 
this is true of most CPU designs, CPU vendors can jus­
tify the engineering effort required to move to a faster 
technology, because of competitive pressures and the 
larger volume of host CPU chips. 

Rasterization 
During the rasterization phase, primitives are shaded, 
blended, textured, and Z-buffered. In the early years 
of raster-based computer graphics, rasterization was 
done using software. As computer graphics became 
more prevalent, graphics performance became an 
issue. Because rasterization is highly computational 
and requires many accesses to frame buffer memory, 

Digital Technical Journal Vol. 9 No. 4 1997 55 



it quickly became the performance bottleneck. 
Specialized hardware was needed to accelerate the 
rasterization part of graphics. Forrunately, hardware 
acceleration of rasterization is well understood and is 
now the de facto standard. Today, nearly every graph­
ics device has rasterization hardware. Even low-priced 
commodity products have advanced raster capabilities 
such as texture mapping and antialiasing. 

In the next section, we relate our strategy for 
obtaining optimal graphics software performance 
from an Alpha processor-based system. 

Performance Strategy 

The goals of the PowerStorm 4DT program were 
largely oriented toward performance. Our strategy 
consisted of having a generic code path and then tun­
ing performance where necessary using Alpha assem­
bly and integrated C code. 

Performance Architecture 
The designers optimized the software performance 
of the PowerStorm 4DT series within the framework 
of a flexible performance architecture. This architec­
ture provided complete functionality throughout the 
performance-tuning process, as well as the flexibility 
to enhance the performance of selected, performance­
sensitive code paths. 

In this context, code paths refer to the vertex­
handling routines that conduct each vertex through 
the geometry, lighting, and output stages. Whereas 
most OpenGL API calls simply modify state condi­
tions, these vertex routines perform the majority of 
computation. This makes them the most likely choices 
for optimization. 

The Generic Path A solid, all-purpose code base 
written in C and named the generic path offers full 
coverage of all OpenGL code paths. The generic path 
incurs a significant performance penalty because its 
universal capabilities require that it test for and handle 
every possible combination of state conditions. In fact, 
under certain conditions, the generic path is incapable 
of driving the hardware at greater than 33 percent of 
its maximum rendering rate. The generic path assumes 
responsibility for the rare circumstances that are not 
deemed performance-sensitive and thus not worthy 
of optimization. It also acts as a safety net when high­
performance paths realize mid-stride that they are not 
equipped to handle new, unanticipated conditions. 

Multicompiled Speed of Light (SOL) Paths High ­
performance SOL paths provide greatly increased per­
formance where such performance is necessary. Under 
prescribed conditions, SOL paths replace the generic 
path, yielding equivalent functionality with perfor­
mance many times that of the generic path. SOL paths 

56 Digital Technical Journal Vol. 9 No. 4 1997 

were written for the combinations of state conditions 
exercised most frequently by the target applications 
and benchmarks. 

The developers responsible for performance tuning 
designed two classes of SOL paths. First, they gener­
ated a large number of SOL paths by compiling a C 
code template multiple times. Whereas the generic 
path is composed of several routines, each correspond­
ing to a single stage of the pipeline, a multicompiled 
SOL path integrates these stages into a monolithic 
routine. Each compilation turns on and off a different 
subset of state conditions, resulting in integrated paths 
for every combination of the available conditions. This 
multicompilation of integrated SOL paths yields the 
following benefits: 

• The C compiler is allowed a broader overview of 
the code and can more wisely schedule instructions. 
In contrast, the generic path is composed of several 
individual stages. These relatively short routines do 
not provide the C compiler with enough space or 
enough scope to make informed and effective, 
instruction-ordering decisions. Multicompiling the 
various stages into a series of monolithic, integrated 
routines relieves each of these problems. 

• The multicompilation assumes a fixed set of condi­
tions for each generated path. This eliminates the 
need for run-time testing of these conditions dur­
ing each execution of the path. Instead, such test­
ing is necessary only when state conditions change. 
Validation, as this testing is called, determines 
which new path to employ, based on the new state 
conditions. With the great number and complexity 
of state conditions influencing this decision, valida­
tion can be an expensive process. Performing vali­
dation only in response to state changes, rather 
than for every vertex, results in significant perfor­
mance gains. 

• The SOL path coverage at least doubles every time 
that support for a new state condition is added to 
the template. Each new condition increases the 
number of combinations of conditions being multi­
compiled into SOL paths by a factor of two or 
more. An adverse side effect of this strategy is that 
the compile time and resulting library size will 
increase at the same rate as the SOL path coverage. 

Assembly Language SOL Paths Hand-coded Alpha 
assembly language paths constitute the other class of 
high-performance SOL paths. These paths, designed 
specifically for extremely performance-sensitive condi­
tions, require much more time and attention to pro­
duce. Taking advantage of the many features of the 
Alpha microprocessor transforms assembly language 
coding from a science into an art form.6 The Alpha 
assembly coders kept the following issues foremost in 
their minds: 



• The 21164 and subsequent Alpha microprocessors 
are capable of quad-issuing instructions, which 
means that as many as four instructions can be initi­
ated during each cycle. The combination of instruc­
tions that may be issued, however, depends on the 
computational pipelines and other resources 
employed by each instruction. Coders must care­
fully order instructions to gain the maximum bene­
fit from the multiple-issue capability. 

• As a consequence of the above restrictions, inte­
ger and floating-point operations must be sched­
uled in parallel. With few exceptions, only two 
floating-point and two integer instructions can 
be issued per cycle. Efficiency in this case requires 
not only local instruction-order tweaking but also 
global changes at the algorithmic level. Integer 
and floating-point operations must be balanced 
throughout each assembly routine. If a particular 
computation can be easily performed using either 
integer math or floating-point math, the choice is 
made according to which pipeline has more free 
cycles to use. 

• Register supply is another factor that affects the 
design of an assembly language routine. Although 
the Alpha microprocessor has a generous number 
ofregisters (32 integer and 32 floating-point), they 
are still considered a scarce resource. The coder 
must organize the routine such that some calcula­
tions complete early, freeing registers for reuse by 
subsequent calculations. 

• The crucial performance aspect of assembly coding 
is transporting the data where and when it is 
needed. The latency of loading data from main 
memory or even from cache into a register can eas­
ily become any routine's bottleneck. To minimize 
such latencies, load instructions must be issued well 
in advance of a register's use; otherwise, the 
pipeline will stall until the data is available. In an 
ideal architecture with an infinite quantity of regis­
ters, all loads could be performed well in advance. 
Unfortunately, due to the scarce amount of free 
registers, the number of cycles available between 
loading a register and its use is frequently limited. 

Each of these assembly language programming con­
siderations requires intense attention but yields 
unmatched performance. 

Performance Tuning 
After reviewing benchmark comparisons and recom­
mendations from independent software vendors, we 
determined which areas required performance improve­
ment. We approached performance tuning from two 
directions: either by increasing SOL path coverage or 
improving the existing SOL code. 

Increasing SOL path coverage was the more straight­
forward but the more time-consuming approach. If an 
SOL path did not exist for a specific condition, a new 
one would have to be written. Adding a new option to 
the multicompilation template required a significant 
effort in some cases. Implementing a new assembly 
language SOL path always required significant effort. 

Improving the performance of an existing SOL 
path required an iterative process of profiling and 
recoding. We employed the DIGITAL Continuous 
Profiling Infrastructure (DCPI) tools to analyze and 
profile the performance of our code.7 DCPI indicated 
where bottlenecks occurred and whether they were 
due to data cache misses, instruction slotting, or 
branch misprediction. This information provided the 
basis for obtaining the maximum performance from 
every line of code. 

Development of 3-D Graphics on Windows NT 

At the start of the PowerStorm 4DT project, the 
Windows NT operating system was an emerging tech­
nology. The DIGITAL UNIX platform held the larger 
workstation market share, while Windows NT 
accounted for only a small percentage of customers. 
For that reason, designers targeted performance for 
applications running on DIGITAL UNIX and devel­
oped 3-D code entirely under that operating system. 

Nevertheless, we recognized the potential gains of 
developing 3-D graphics for the Windows NT system. 
One of the company's goals was to be among the first 
vendors to provide accelerated OpenGL hardware and 
software for Windows NT. 

With a concerted effort and a few compromises, the 
team developed the PowerStorm 4DT into the fastest 
OpenGL device for Windows NT, a title that was held 
for more than 18 months. To achieve this capability, 
the designers made the following key decisions: 

• To write code that was portable between the 
DIGITAL UNIX and Windows NT systems. 

• To dedicate two people to the integration of the 
DIGITAL UNIX-based code into the Wmdows NT 
environment. Most OpenGL code was operating­
system independent, but supporting infrastructure 
needed to be developed for Windows NT. 

• To use Intergraph's preexisting 2-D code and to 
avoid writing our own. Intergraph provided us with 
a stable 2-D code base for Windows NT. This code 
base had room for optimization, but further opti­
mization of the 3-D code took precedence. 

• To ship the graphics drivers for DIGITAL UNIX 
first, and the graphics drivers for Windows NT 
three months later. In this way, we allowed the 
DIGITAL UNIX development phase to advance 
unimpeded by the efforts to port Wmdows NT. 
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Results and Conclusion 

In August of 1996, the PowerStorm 4D60T graphics 
adapter was best in its price category with a CDRS per­
formance number of 49.01 using a 500-MHz Alpha 
processor. It yielded a new price/ performance record 
of $321 per frame per second. At the same time, SGI 
attained a CDRS number of only 48.63 on a system 
costing nearly three times as much. 

Figure 3 shows the relative performance of the 
PowerStorm 4D60T for four of the major Viewperf 
benchmarks. The viewsets are based on the following 
applications: CDRS, a computer-aided industrial design 
package from PTC; Data Explorer (DX), a scientific 
visualization package from IBM; DesignReview (DRV), 
a model review package from Intergraph; Advanced 
Visualizer, a 3-D animation system from Alias/ 
Wavefront (AWadvs ). 

Figure 3 
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The PowerStorm 4D60T mid-range graphics adapter 
easily outperformed the Indigo2 High IMPACT system 
from SGI by a wide margin and even surpassed SGI's 
more expensive graphics card, the Indigo2 Maxi­
mum IMPACT, by a factor of more than 2:1 in price/ 
performance on these benchmarks. Figure 4 shows 
that the PowerStorm 4D60T was the performance 
leader in three of the four benchmarks. SGI has yet to 
produce a graphics product in this price range that 
outperforms the PowerStorm 4D60T. 
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DART: Fast Application­
level Networking via 
Data-copy Avoidance 

The goal of DART is to effectively deliver high­

bandwidth performance to the application, 

without a change to the operating system call 

semantics. The DART project was started soon 

after the first DART switch was completed, and 

also soon after line-rate communication over 

DART was achieved. In looking forward to giga­

bit class networks as the next hurdle to conquer, 

we foresaw a need for an integrated hardware­

software project that addressed fundamental 

memory bandwidth bottleneck issues through 

a system-level perspective. 

© 1997 IEEE. Reprinted, with permission, from IEEE Network, 
July/August 1997, pages 28-38. 

I 
RobertJ. Walsh 

The Ethernet supported large 100-node networks in 
1976.1 By 1985, 10 Mb/s Ethernet had been available 
for a while, even for PCs. However, high-performance 
hardware and software lagged, due to system bottle­
necks above the physical layer. The premier implemen­
tations for UNIX were achieving only 800 kb /s ( 8 % of 
10 Mb/s) in benchmark scenarios on common system 
platforms of the day. 2 

The deployment oflOO Mb/s fiber distributed data 
interface (FDDI) provided an order of magnitude 
bandwidth increase in the link speed around 1987. 
However, the end system could not saturate the link 
on generally available machines and operating systems 
until 1993,3 when Transmission Control Protocol 
(TCP) improvements and a CPU capable of 400 mil­
lion operations per second became available.' Once 
again, high-performance hardware and software 
lagged the potential provided by the physical layer. 

The current technological approach is switching. 
Gigabit-class links and adapters, such as 622 Mb/s 
asynchronous transfer mode (ATM), are becoming 
available. Since ATM links are dedicated point-to­
point connections, the use of 622 Mb/sin switch-to­
switch links and at the periphery implies that one 
ought to be able to move data at gigabit rates. 

Switched capacity promises a lot to servers; how­
ever, mainstream systems are not currently capable of 
effectively using the bandwidth. The DART project 
attempts to avoid the Ethernet and FDDI scenarios 
where end-system performance lags physical-layer 
potential. 

One of the early goals was to go beyond simple 
benchmark scenarios where line rate communication 
connects a phony bit source to a phony bit sink, with 
the CPU saturated. The context for the work was to 
connect two applications at high speed, leaving CPU 

'The TCP improvements included a small architectural update, 
the window scaling extension, to abstractly support the advertise­
ment of more than 64 kbytes of receive buffering. The rest of the 
improvements derived from implementation efforts to increase 
the actual buffering allocated to advertised TCP windows, and to 
improve the segmentation of the TCP byte stream into packets. 
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resources available to execute the applications. In the 
past, the CPU had been saturated in Ethernet and 
FDDI quests for line rate communication. 

Layering 

The motivation for DART arises from the specific lay­
ering and abstraction used in BSD-derived UNIX sys­
tems, but the context is sufficiently general that the 
problem and solution have wide applicability. Since 
various layers within system software will be refer­
enced repeatedly, we introduce them using Figure 1. 

The application generates and consumes data. It 
tells the operating system which data to communicate 
when, by using read and write system calls. 

The socket layer moves data between the operating 
system and the application. It also synchronizes the 
application with the networking protocols based on 
data and buffer availability. 

The transport protocol layer provides a connection 
to the remote peer. In the case of TCP, the connection 
is a reliable byte stream. TCP takes on the responsibil­
ity of retransmitting lost or corrupted data, and of 
ignoring reception of retransmitted data that was pre­
viously received. 

The network protocol layer provides an abstract 
address and path to the remote host. It hides the vari­
ous hardware-specific addresses used by the various 
media in existence. In the case of IP, fragmentation 
allows messages to traverse media which have different 
frame sizes. 

A conventional driver layer moves data between the 
network and the system. It uses buffers and data struc­
tures whose representation percolates throughout all 
the operating system networking layers. 

The DART Concept 

DART increases network throughput and decreases 
system overheads, while preserving current system call 
semantics. The core approach is data copy avoidance, 
to better utilize memory bandwidth. 

APPLICATION 

SOCKET 

TRANSPORT PROTOCOL 
OPERATING (TCP, UDP) 
SYSTEM 

NElWORK PROTOCOL 
(IP) 

DRIVER 

Figure 1 
Software Layering 
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Memory bandwidth is a scarce resource that must 
not be squandered. In DIGITAL's transition from 
MIPS processor systems to Alpha processor systems, 
CPU performance increased more rapidly than main 
memory bandwidth. It took approximately 340 µs to 
move 4500 bytes on the MIPS-based DECstation 
5000/200, and approximately 200 µs on the Alpha­
based DEC 3000/500. In the same time, the fixed 
per-packet costs were reduced by a factor of three or 
more. (General trends are also stated in Reference 4.) 

One breakdown of networking costs is reported in 
Reference 5. The variable per-byte costs reported 
there are all associated with memory bandwidth, 
which is improving slowly. The fixed per-packet costs 
in the driver, protocol, and operating system overhead 
are all generally associated with the CPU, which is 
improving rapidly. Thus, we focus on the per-byte 
memory bandwidth issues as those most needing 
architectural improvement. 

A traditional system follows the networking subsys­
tem model implemented within the BSD releases of 
UNIX, shown in Figure 2. An application uses the 
CPU to create data ( 1 ), the socket portion of the sys­
tem call interface copies the data into operating system 
buffers (2 and 3), the network transport protocol 
checksums the data for error detection purposes ( 4), 
and the device driver uses programmed input/output 
(I/0) or direct memory access (DMA) to move the 
data to the network (5). Graphs showing the domi­
nant costs of checksumming and kernel buffer copies 
are presented in Reference 6. 

These five memory operations are a profligate waste 
of memory bandwidth. A system with a 300 Mbyte/s 
memory system would achieve at most 300*8/5 = 

480 Mb/s I/0 rates. The system would be saturated. 
The DART model is shown in Figure 3. The DART 

model is that data is created (1) and sent (2). Two 
memory operations make efficient use of the memory 
bandwidth. 

Figure 2 
BSD Copy-based Architecture 

Figure 3 
DART Zero-copy Architecture 



Squandering of memory bandwidth is avoided. A 
system with a 300-Mbyte/s memory system would 
encounter the larger bound of300*8/2 = 1200 Mb/s 
for I/0 rates. Resources are available for the applica­
tion even when running at line rate.b 

To support the DART concept, we need a system 
perspective that integrates the hardware and software 
changes implied by the DART model. Hardware is 
responsible for checksumming instead of software. 
Hardware is solely responsible for data movement, 
instead of redundant actions by both hardware and 
software. These hardware changes are bounded and 
generic. 

Operating system software retains the application 
interface and general coding of the BSD UNIX imple­
mentation. Extensive changes are unnecessary, since 
the focus is the core lines that represent data move­
ment consumption of memory bandwidth. Extensive 
changes are also undesirable, since there is a large base 
of software written to the current properties of the 
BSD networking subsystem. 

The DART Hardware 

The first implementation of the DART concept is a 
high-performance 622-Mb/s ATM network adapter 
for the PCI bus called DART. DART's design reflects 
an awareness of the interactions of the components of 
the system in which it is placed. The PCI bus, main 
memory, cache, and system software can all be used 
efficiently. 

Store-and-Forward Buffering and DMA 
DART is an adapter that connects a gigabit-class net­
work to a gigabit-class I/0 bus, and is appropriate for 
systems with gigabit-class memory systems. DART is 
focused on the server market where a slight increase in 
adapter cost can be acceptable if the system perfor­
mance is significantly improved, since main memory 
and other costs dominate the cost of the DART 
adapter. 

DART alleviates main memory bottlenecks through 
a store-and-forward design, as shown in Figure 4. 
Traditional networking software subsystems and appli­
cations perform at least five memory operations to cre­
ate, copy, checksum, and communicate data. DART's 
exposed buffering allows data to be created and com­
municated with just two main memory operations. 

i.rhe 1200-Mb/s figure includes the cost of having the application 
write the data to memory. Some memory bandwidth might be 
consumed to fill the CPU's cache in order to execute the applica­
tion and operating system. In this scenario, if non-network band­
width is greater than 300*8 - 2*1000 - 400 Mb/ s, data 
production would be the bottleneck and the network would 
run at less than line rate. This is beneficial; the bottleneck has 
been moved to the application. 

The adapter memory is a resource that can be better 
utilized by exposing it to the operating system, and 
better performance results as well. This is similar to the 
exposure of the CPU-internal mechanism in the CISC­
RISC (complex to reduced instruction set) transition. 

DART contains a number of features to make the 
store-and-forward design effective. DART's bus mas­
ter and receiver summarize network transport proto­
col checksums for software. DART's bus master 
provides byte-level scatter-gather data movement to 
support communication out of application buffers, 
not just operating system buffers. DART provides 
packet headers for software to parse so that software 
can direct the bus master to place received data in the 
application's buffers when the application desires, 
without operating system copy overhead. 

Buffering Design An ATM segmentation and reassem­
bly (SAR) chip accesses virtual circuit state for each 
cell, and operates on 48-byte cell payloads. The pay­
load naturally corresponds to a burst-mode operation, 
leading to the use of synchronous dynamic DRAM 
(SDRAM) to buffer cells. The circuit state is generally 
smaller and randomly accessed, leading to the use of 
static RAM (SRAM) for control information. Dividing 
the data storage architecture into two parts allows the 
interface designs to be tailored to the characteristics of 
the data type in question. 

The DART prototype uses 16 Mbytes of SDRAM 
for the data memory. The prototype uses 1 Mbyte of 
SRAM for the control memory. The SDRAM supports 
hardware-generated transmissions, aggregation of 
data for efficient PCI and host memory interactions~ 
and buffering for received data until the application 
indicates the proper destination for it. The SRAM con­
tains the SAR intermediate state; with a large number 
of virtual circuits and ATM's interleaving of packet 
contents, there is too much state to be recorded on­
chip at this time. 

Packet Summarization for Software The receiver parses 
the cells for the various packets which are interleaved 
on the network connection, and reassembles the cells 
into packets. Once all the cells composing a packet 
have been received, a packet descriptor is prepended 
to the packet. The descriptor contains length, circuit 
number, checksum, and all other information that the 
driver may need to parse and process the packet. 

Upon packet reassembly, a hardware-initiated DMA 
operation moves software-configured amounts of 
descriptor and packet contents to host memory. When 

<some adapters segment ( or reassemble) from host memory, 
leading to 48-byte payload transactions with host memory. 
Transaction size should be an integral multiple of the cache 
block size, and should be aligned, in order to avoid wasting 
system bandwidth. 

Digital Technical Journal Vol. 9 No. 4 1997 63 



CONTROL 
MEMORY 

CONTROL 
MEMORY 
INTERFACE 

BUS MASTER 
AND BUS 
SLAVE 

DATA 
MEMORY 
INTERFACE DATA 

MEMORY 

TRANSMIT 

Figure 4 
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properly configured, the hardware provides the net­
work and transport headers, allowing software to 
determine where to place the packet data. Software 
data copies are avoided by allowing software to initiate 
a DMA operation to move the data to its final application­
desired location, rather than to some expedient, but 
inefficient, operating system buffer. 

Receive Buffering DART's store-and-forward receive 
buffers are divided into two classes. The per-circuit 
class guarantees each circuit forward progress. Each 
circuit is individually allocated some buffers in which 
to store cells. No other circuit can prevent data from 
passing through such buffers. The shared class is pref­
erentially used, and avoids resource fragmentation 
problems. Any circuit can consume a shared buffer for 
an incoming cell. 

Since software specifies when and where to store 
packet data, adapter buffers are recycled when soft­
ware decides to do so, and not independently by hard­
ware. Part of a packet may be stored in application 
buffers at one time, and other parts of the same packet 
may be stored in application buffers at later times. 
Hardware cannot assume a one-to-one correspon­
dence between receive DMA and complete packet 
consumption. 

Flow control occurs in the socket layer based on 
transmit buffer availability, in the transport layer based 
on remote receive buffer availability, in the driver 
based on adapter resource availability, and in the ATM 
layer based on cell buffer availability within the net­
work. Credit-based flow-control protocols for ATM 
are based on the source of a cell stream on a link 
decreasing a counter (quota) when a cell is sent, and 
increasing a counter when a credit is received.7 The 
decrement represents buffer consumption at the next 
hop. The credit advertises buffer availability to the 
source; the next hop has forwarded a cell and thus 
freed a buff er~ 

dForwarding the cell is required for (per-cirruit) buffers of which 
the transmitter on the link was made aware during link initialization. 
The receiver on the link can generate credits immediately for (shared) 
buffers hidden from the transmitter during link initialization. 
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With FLOWmaster, the credit is conveyed across the 
link to the source of the cell stream by overlaying the 
virtual path identifier (VPI) field with the circuit to 
credit. This is a nonstandard optional use of the ATM 
cell header. Quantum Flow Control is a credit-based 
flow-control protocol for ATM that batches the credits 
into cells instead of overlaying the VPI field. 

Since credit-based flow-control is based on buffer 
availability, credits advertising free buffers can poten­
tially be held up by software actions. The shared class 
allows immediate credit advertisement, and best 
enables line rate communication. The per-circuit class 
involves software packet processing in the credit 
advertisement latency. To advertise a credit for a cir­
cuit whose per-circuit quota is exhausted, either the 
circuit must recycle an adapter-buffered packet, or any 
circuit must recycle a shared-class, adapter-buffered 
packet. 

A minimal memory that constantly ran out of per­
circuit buffers and flow-controlled the source would 
exhibit poor performance. DART uses a large data 
memory. Advertising (shared) buffers via credits keeps 
the data flowing through the overall network and sys­
tems with high performance. 

Transmit Buffering Software performs all transmit 
buffer management. Software creates a free buffer list 
ofits own design, allocates buffers from the list to hold 
packet data, and recycles buffers after observing packet 
completion events. Software makes the trade-off 
between large efficient buffers which may be incom­
pletely filled, and small buffers which waste less stor­
age but incur increased allocation, free, DMA 
specification, and transmit description overheads. 

Peer-to-Peer VO 
DART avoids system resource consumption in server 
designs by supporting peer-to-peer I/0. A traditional 
server would consume PCI bus and main memory 
bandwidth twice by using main memory as the store­
and-forward resource between two I/0 devices, as 
shown in Figure 5. The PCI bus is consumed during 
steps 2 and 5. The main memory is consumed during 
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steps 3 and 4. On some systems, 1/0 operations com­
pete for cache cycles during steps 3 and 4, whether 
the cache is external to or internal to the CPU. Such 
resource consumption can cause the CPU to stall even 
though the CPU will never examine such data. 

DART allows a single PCI bus transaction to move 
the data, as shown in Figure 6. This also avoids any 
main memory bandwidth consumption when a bridge 
isolates the PCI 1/0 bus from the main system bus. 
The cache is not consumed with nuisance coherence 
loads for data the CPU will never examine, and the 
CPU does not have to contend with 1/0 for cache or 
main memory cycles. 

For peer-to-peer 1/0 over DART, the CPU is only 
involved in initiating packet transmission. This is a rel­
atively small burden, since only a little bit of control 
information needs to be computed and communi­
cated to the adapter. 

To enable efficient peer-to-peer 1/0, DART 
includes a bus slave as well as a bus master. Tbe bus 
slave makes the internal resources of the adapter visi­
ble on the PC! bus through DART's PCI configuration 
space base address registers. Therefore, on the PCI 
bus, the data memory looks like a linear contiguous 
region of memory, just as main memory does. The bus 
slave supports both read and write operations for these 
typically internal resources. 

PCIBUS 

Figure 6 
DART Server Architecture 
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DART provides efficient handling of small packets. 
Typically, describing a number of small packets for 
transmission is onerous for software, limiting the peak 
packet rate. DART's transmitter can automatically 
subdivide a large amount of data into small packets, 
eliminating a lot of per-packet overhead. This feature 
is appropriate for a video server, whose software can­
not possibly fill the network pipe ifit must operate on 
8-cell packets. 

PC/ Interface 
DART supports both 64- and 32-bit variants of the 
PCI bus. The network interface and DART memories 
provide prodigious bandwidth. To fully take advan­
tage of them, a 64-bit PCI bus is recommended, but 
DART will also operate on a 32-bit PCI bus. 

Bus Reads and Writes The DART architecture sup­
ports memory write-and-invalidate hints to the bridge 
between the system bus and the PCI 1/0 bus. Such a 
hint informs the bridge that the 1/0 device is only 
writing complete cache blocks. There is no need for 
read-modify-write operations on main memory cache 
blocks in such circumstances. 

Write operations within a system are generally 
buffered. A path from the origin of the write to the 
final destination can be viewed as a sequence of seg­
ments. As data flows through each segment, each 
recipient accepts data with the promise of completing 
the operation, allowing each source to free resources 
and proceed to new operations. Thus, write paths are 
generally not performance-limiting as long as there is 
sufficient buffering to accept burst operations. In the 
DART context, the bridge between the system bus and 
the PCI 1/0 bus accepts DART's writes and provides 
buffering for high throughput. 

However, read operations are more problematic. 
When memory locations are shared between CPUs, 
caches may or may not be kept coherent by hardware. 
Here, the memory locations are shared between the CPU 
and 1/0 device, and there is no coherence support. Each 
DART read suffers a round-trip time through the bridge 
to access the main memory. DART addresses this latency 
through large read transactions ( up to 512 bytes). 

As an example, consider a simplified 64-bit bus 
where 540 Mb/s of data are written in 64-byte bursts, 
reads suffer 15 stall cycles until the data starts to 
stream, and writes require a stall cycle for the target 
to recognize its address. Address and data are time­
multiplexed at 33 MHz. Then writes consume 540 * 
(1 + 1 + 8)/ 8 = 675 Mb/s of bus bandwidth. Reads 
have 33 * 8 * 8 - 675 = 1437 Mb/s of bus band­
width into which they must fit. Thus, the minimum 
burst length L required is 540 * ( 1 + 15 + L) = Ls 1437. 
The burst must be at least 9 cycles, 72 bytes, in the 
ideal case. DART's large read burst size compensates 
for overheads like large read latencies. 
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Importance of Bus Slave Interface The bus master inter­
face is appropriate for software-generated transmis­
sions. A packet created by an application in main 
memory can be moved via DMA to the network. 

The bus slave interface is appropriate for hardware­
generated transmissions. Another 1/0 device which is 
designed to always be bus master, like a disk interface, 
can move data directly to the DART without interme­
diate staging in a memory. Peer-to-peer 1/0, however, 
was a by-product of other concerns. 

Data transfer within TCP is based on a stream of 
large data packets flowing in one direction, and a 
stream of small acknowledgments flowing in the 
opposite direction. Traffic analysis studies often find a 
mix of smaller and larger packets. One of the early 
concerns for the DART project was to make transport 
protocol generation of acknowledgments inexpensive 
by avoiding DMA. A small packet, constructed entirely 
by the CPU anyway, could be moved to the I/0 
device instead ofto main memory. This is fundamen­
tally a short sequence of write operations that could 
easily be buffered, allowing the CPU to proceed in par­
allel on other work. 

DMA from an application buffer to a device inter­
face is generally specified to hardware by stating the 
physical addresses of the application buffer in main 
memory. DMA requires a guarantee that the data is at 
the specified locations. If the virtual memory system 
were to migrate the data to disk and recycle the physi­
cal memory for some other use, the parallel DMA 
activity would move the wrong data. Therefore, DMA 
operations are surrounded by page lock and unlock 
calls to the virtual memory system, to inform it that 
certain memory locations should not be migrated. 

Additional concerns that led to incorporation of the 
bus slave interface were related to the cost of page 
locking, and the cost of acquiring and releasing DMA 
resources ( e.g., in the bridge). An acknowledgment 
might be constructed in nonpaged kernel memory, 
but a small application packet would likely be con -
structed in application memory subject to paging. 
Even if page locks were cached for temporal locality, it 
might be cheaper to simply move the data via pro­
grammed I/0. 

The break-even point between DMA and pro­
grammed 1/0 is system-dependent, but can be mea­
sured at boot time in order to learn an appropriate 
threshold to use for such a decision. Demands on the 
main memory system from its various clients will 
change over time, and a single measurement is only 
optimal for the sample's conditions. The suggestion 
here is to enable a quick judgment in the software. The 
intent is to make large gains and avoid egregious per­
formance errors. We suspect that fine-tuning the deci­
sion is less important, and requires the collection of 
excessive information during the normal operation of 
the system~ 
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Interrupt Strategy As noted above, on-chip access 
rates for the CPU increase more quickly than off-chip 
access rates. Interrupt processing and context switching 
are fundamentally off-chip actions; new register values 
must be loaded into the CPU, and the cache must be 
primed with data. Thus, the general system trend is that 
interrupt processing and context switching improve 
more slowly than raw processing performance. 

DART provides a programmable interrupt holdoff 
mechanism. By delaying interrupts, events can be 
batched to reduce various system overheads. If the 
batching mechanism were not present, an interrupt per 
packet would swamp system software at gigabit rates. 

Since the interrupt delay interval is programmable, 
software may use adaptive algorithms to decrease 
interrupt latency if the system is idle, or to increase the 
amount of batching if the system is busy. The delay 
timer starts decrementing as soon as it is written. 
Typically, the timer will be written at the end of the 
interrupt service routine. 

Interrupts can be divided into two classes by 
software. Each class has its own delay interval, in 
case software assigns distinct importance or latency 
requirements to the classes. 

The Dart Software 

DART provides increased performance with the same 
system calls, and with the existing system call seman­
tics. The only change is to the underlying implementa­
tion of the existing system call semantics. 

Unmodified existing applications can consume giga -
bit network bandwidth. The application can assist the 
system software by using large contiguous data buffers, 
but it is not required. System software can specify byte­
level scatter/gather operations to the DART adapter in 
order to access arbitrary application buffers. 

Changes to the system software are confined to a 
few locations above the driver layer, and are generic. 
Successive high-bandwidth adapters for other media 
can be supported by just writing drivers; no changes 
will be needed above the driver layer. The shared set of 
upper-layer software changes are only needed to take 
maximum advantage of a DART-style adapter; a tradi­
tional copy-based implementation is supported by the 
hardware. 

'Given the parallel nature of the environment ( other I/0, cache 
operations, and multiprocessor CPUs), a software system could 
only estimate non-DART memory loads. Queued DMA operations 
may start later than expected, or finish before their completion has 
been noticed. CPU cache activity is dependent on the program 
executing at that moment; fine-tuning is problematic. The focus of 
DART has been the large gains, like avoiding copies, or allowing 
either DMA or programmed IjO to be used. The focus has been 
on the structure of the system. 



We developed a prototype UNIX driver to test the 
upper-layer changes, and executed a modified kernel 
against a user-level behavioral model of a DART-style 
adapter. The code was subjected to constant back­
ground testing on a workstation relied on for daily use. 
The prototype driver supports buffer descriptors refer­
encing either kernel buffers or adapter buffers. The 
implementation effort to support kernel-buffered 
packets was minimal, and enables multiple protocol 
families to be layered above the driver. 

The software changes modify the existing upper­
level software, rather than bypassing it via a collapsed 
socket, transport, network, and driver implementa­
tion. The current UNIX networking subsystem pro­
vides a rich set of features that needs to be completely 
supported for backward compatibility. 

Transmit Overview 
A comparison of traditional transmission with DART 
transmission is shown in Table 1. For a traditional 
adapter, the system call layer copies application data to 
operating system buffers. With a DART adapter, the 
data is copied to the adapter. Uiomove is the copy 
function typically used within UNIX. The DART 
mechanism is to use an indirect function call through a 
pointer, rather than a direct function call to an address 
specified by the compiler's linker. High-performance 
copy functions are associated with the device driver. 
The driver's copy function is free to use DMA or pro­
grammed 1/0, depending on the length of the copy. 

For a traditional adapter, software wastes machine 
resources computing checksums. With a DART 
adapter, the checksum is computed by hardware as the 
data flows into the adapter. The adapter can patch the 
checksum into the packet header. The adapter can also 
move checksum summaries back to host memory so 
that they are available for retransmission algorithms. 

For a traditional adapter, the driver instigates addi­
tional memory references to copy the data to the 
adapter for transmission. With a DART adapter, the 
data is already on the adapter, ready to be sent! Much 
of the data copy avoidance work is throughput-related. 
In this instance, we also create the potential for a 
latency advantage for the DART model, since the data 
copy overlapped work in the system call, transport, net­
work, and driver layers of the operating system. 

Table 1 
Transmit Overview 

Traditional 

Uiomove user buffer to kernel buffer 

Receive Overview 
In many ways, the receive path for networking is usu -
ally considered more complicated than the transmit 
path, since the various demultiplexing and lookup 
steps are based on fields that historically have been 
considered too large to use simple table indexing oper­
ations. Also, the receive path requires a rendezvous 
between the transport protocol and the application ( to 
unblock the application process upon data arrival). So 
it should come as a pleasant surprise that the DART­
style changes for packet reception can be as simple and 
localized as two conditionals in the socket layer and 
one in the network transport layer. 

Table 2 is a comparison of traditional receive pro­
cessing with DART receive processing. It is almost 
identical to the packet transmission comparison. The 
distinction is which portion of the DART adapter 
computes the checksum on behalf of the software 
( receiver instead of D MA engine). 

Interrupts 
Transmit completion interrupts do not need to be 
eagerly processed. Software can piggyback processing 
to reclaim transmit buffers upon depletion of transmit 
buffer resources, upon unrelated packet reception 
events ( e.g., User Datagram Protocol, UDP), and 
upon related packet reception events ( e.g., TCP 
acknowledgment). The transmit completion events 
can be masked, or the hardware interrupt holdoff 
mechanism can be used to give them a longer latency. 

Receive interrupts are batched to reduce overheads. 
Short packets are fully contained in the initial packet 
summary which would be deposited in a kernel buffer. 
Adapter buffers for short packets can be recycled 
immediately by system software. Long packets are not 
fully contained in the initial packet summary provided 
software for parsing and dispatch. The summary is 
noticed during one interrupt, and scatter/gather 1/0 
completion into application buffers is noticed during 
another interrupt if performed asynchronously. 

The side-effect of the decision to create a store-and­
forward adapter is that a received packet is related to 
two interrupts. The intent is not to burden a system 
and cause multiple interrupts per packet. The distinc­
tion between relation and causality is important. 

When the system is under load, there is a steady 
stream of packets, and thus a steady stream of batched 

DART 

System call layer 

Protocol layer 
Driver layer 

For all buffers for all bytes, update checksum 
Programmed 1/0 or DMA 

*Uiomove user buffer to adapter buffer 
For all buffers, update checksum 

Data is already on the adapter! 
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Table 2 
Receive Overview 

Traditional DART 

Programmed 1/0 or DMA Data stays on adapter! Driver layer 

Protocol layer For all buffers for all bytes, update checksum Use checksum computed by receiver 
hardware as packet was reassembled 

System call layer Uiomove kernel buffer to user buffer 

interrupts. If 3 Mbytes were transferred using a burst 
of 1-kbyte packets, there would be 3000 packets. 
Batching 20 packets/interrupt, there would be 150 
interrupts to report packet arrivals. The first interrupt 
is just for packet arrival events, to allow header parsing. 
The intent is for the next 149 interrupts to report 20 
new arrivals and the DMA completion for 20 previous 
arrivals. A final interrupt would take care of the final 
DMA requests. In this case, the additional interrupt 
load for a DART adapter is minor: one interrupt for 
3000 packets. The interrupt load is not doubled ( even 
if one chooses to move received data asynchronously). 

Store-and-forward latency is incurred because of 
the memory write and read on the adapter ( to store 
data from the network and to later move it to the 
application's buffers). DART adapter memory oper­
ates at a high rate, over 4 Gb/s, to minimize this. Due 
to the intervening software decision concerning where 
to place DART data for large packets, the data may be 
placed at its initial location in host memory later than 
for a traditional adapter which fills kernel buffers. 
However, store-and-forward reduces main memory 
bandwidth consumption, and quickly places the data 
at its final location within the application buffers in 
host memory. The correct metric is latency to data 
availability to the application, not data latency to first 
reaching the system bus. 

CSR Operations 

Control and status registers ( CSRs) are used within 
hardware implementations to allow software to con­
trol the action of hardware, and for hardware to pre­
sent information to software. For example, a CSR can 
inform a device of the device's address on a bus. In this 
case, the CSR's definition is generic in the context of 
the bus definition. Alternatively, a CSR can be used to 
initialize a state machine within the hardware imple­
mentation. In that case, the CSR's definition is specific 
to that version of the device. 

CSR reads are very expensive. Generally, a single CSR 
read is required for DART interrupt processing, and 
that CSR is placed in the PCI clock domain of DART in 
order to avoid operation retries on the PCI bus. 

Most packet processing information is written to 
host memory by the adapter for quick and easy CPU 
access. For example, packet summaries are placed in 
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Uiomove adapter buffer to user buffer 

one or more arrays in host memory, and software can 
use an ownership bit in each array element to termi­
nate processing of such an array. 

CSR writes are buffered; nevertheless, they can be 
minimized. The packet summaries in host memory are 
managed with a single-producer, single-consumer 
model. When the consumer and producer indices into 
an array are equal, the array is empty. When hardware's 
producer index is greater, there are entries to be 
processed by software. (Redundant information in 
array element ownership bits means that software does 
not actually need to read the DART adapter to perform 
the producer-consumer comparison. ) When the hard­
ware's producer index reaches the software's consumer 
index minus one, the array is fully utilized. When soft­
ware has processed a number of packet summaries, the 
hardware can be informed that they can be recycled by 
a single write of the consumer index to the adapter. 

The DMA engine processes a list of "copy this from 
here to there" commands. By supporting a list of 
operations instead of a single operation, software can 
quickly queue an operation and move along to its next 
action without a lot of overhead. The copy commands 
reside in an array within host memory, with a software­
specified base and a software-specified length. 

DMA commands also follow the producer-consumer 
model. However, since instructions are only read by 
DART, there are no ownership-bit optimizations. To 
compensate for this, software can allocate a large array 
and cache a pessimistic value for the hardware's con­
sumer index in order to avoid CSR reads. Alternatively, 
the DMA engine could periodically be given instruc­
tions to DMA such information to host memory. 

A typical DART interrupt involves one CSR read and 
three CSR writes, yielding an efficient interface. One 
read determines interrupt cause. One write informs the 
DMA engine of new copy commands for newly received 
data. Another write informs the DMA engine that the 
CPU processed a number of the packet summaries 
DART placed in main memory. A third write initializes 
the interrupt delay register to batch future events. 

Occasionally, an interrupt also involves an extra CSR 
read. The read discovers a large number of commands 
processed by the DMA engine, allowing software to 
recycle entries in the command queue and thereby 
issue more commands. 



Driver 
The driver classifies received packets, and decides 
whether to continue to use adapter buffers for them, 
or to copy the data into kernel buffers. For the proto­
type, adapter-buffered packets are: 

• Long enough to contain maximal-length IP and 
transport protocol headers. 

• Version 4 IP packets (buffering assumptions perco­
late throughout the layers of the system, so a proto­
col family must be updated and tested to support 
adapter-buffered packets). 

• TCP or UDP protocol packets. Other protocols lay­
ered over IP do not use adapter buffers, to make the 
scope of the effort manageable by handling just the 
common case. 

The operating system uses a single mbuf to describe 
a single set of contiguous bytes in a buffer which may 
be within or external to the mbuf structure. Mbufs can 
be placed in lists to form packets from a number of 
noncontiguous buffers. 

Received adapter-buffered packets are two mbufs 
long. The first m buf contains the initial contents of the 
packet DMAed into memory by the adapter, that is the 
protocol headers and summary information from the 
adapter. 

The second mbuf refers to the packet in adapter 
memory. For ATM, the received packet is stored in a 
linked list of buffers on the adapter. Programmed 1/0 
access to the buffers requires software to traverse the 
links, but this would not be done in practice since the 
CPU read path to the 1/0 device is unbuffered and 
high-latency. The DART DMA hardware would be 
used, and it would traverse the links as-needed. The 
DMA hardware allows the software to pretend the 
packet is contiguous. 

Fields of the second mbuf are used in specific ways. 
The length of the second mbuf does not contain the 
initial portion of the packet copied into the first mbuf, 
even though the adapter memory buffers the entire 
packet. The initial portion is replicated, but only the 
copy local to the CPU is accessed. The pointers of the 
second mbuf point to bogus virtual addresses, even 
though the adapter looks like an extension of main 
memory. This speeds software debugging by trapping 
inefficient accesses to the adapter. Adjusting the 
length and pointer fields is still allowed in order to 
drop data from the front or back of the mbuf. The 
m_ext fields record the location and amount of 
adapter buffering used to hold the packet. They also 
point to a driver-specific buffer reclamation routine. 

For TCP, or for UDP packets with nonzero check­
sums, the driver makes incremental modifications to 
the DART receive hardware's checksum. The hard­
ware computes the l 's complement checksum over all 
the cell payloads except for the final ATM trailer bytes. 

As a result, the driver modifies the hardware checksum 
to account for: 

• Contributions made by IP options 

• Construction of the pseudo-header which is not 
transmitted on the network 

• The transport layer checksum, which was zero 
when the checksum was computed but may be 
nonzero on the network 

To transmit a packet, the transport and network lay­
ers operate on protocol headers in main memory. The 
driver moves the headers to the adapter as part of 
transmitting a packet whose encapsulated data is in 
adapter buffers. 

The ifnet structure is the interface between the pro­
tocol layers and the driver. It contains, for example, 
fields expressing the maximum packet size on the 
directly connected network, the network-layer address 
of the interface, and function pointers used to enter 
the driver. 

We add an ( •if_ uiomove)() field to be associated 
with buffers as described below. It represents a driver 
entry to copy data to or from the adapter. We also add 
an (•if_ xmtbufalloc)() field to be used within the 
mbuf allocation loop of the transmit portion of the 
socket layer. This allows the socket layer to give prece­
dence to allocating (large) adapter buffers over main 
memory buffers. 

The driver always retains some transmit adapter 
buffers for its own use. When the system is busy, there 
will be TCP packets consuming adapter buffers. The 
packets are associated with the socket send queue. 
There will also be packets on the interface send queue, 
which may or may not use adapter buffers. If the first 
item on the interface queue uses just kernel buffers, 
then the driver must have reserved adapter buffers in 
order to complete the transmission and avoid transmit 
deadlock. At least one packet of adapter buffering 
must be reserved for the driver output routine. 

UDP 
UDP motivates many of the changes without getting 
involved in the complexity of retransmission and relia­
bility. Many of these changes are generic to UDP and 
TCP: augmenting the buffer and interface descrip­
tions, discovering the availability of efficient buffers 
for a connection, and allocating and filling the efficient 
buffers. 

One portion of the mbuf is the strnct pktbdr, which 
is used only in the first mbuf of a packet. It summarizes 
interesting information about the packet, like its total 
length. 

We add a protoco/Sum field to the pkthdr of the 
mbuf so that the driver can communicate the received 
transport-layer checksum to the upper layers. The 
transport-layer checksum is not ignored, as it would 
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be if checksums were negotiated away or cavalierly 
disregarded. The checksum is verified by the trans­
port layer as usual, but without accessing all the bytes 
of the packet. The protocolSum field is valid if an 
M_PROTDCOL_SUM bit is set in the mbuf m_flags field. 

Another portion of the mbuf is the strnct m_ext, 
which is used to describe data buffers external to the 
mbuf structure. We add an (•uiomove_f )() field so 
that the driver can communicate a buffer- or driver­
specific copy routine to the socket layer. Socket layer 
usage of the standard pre-existing uiomove routine 
assumes that the received data is in the address space 
and should be moved by CPU byte-copying. The indi­
rection allows the data to be moved by programmed 
1/0 or DMA. The uiomove_f field is valid if an 
M_UIOMOVE bit is set in the mbuf m_flags field. 
Parameters to the uiomove_f function are an mbuf, an 
offset into the packet at which to start copying bytes, a 
number of bytes to copy, and the standard uio struc­
ture that describes where the application wants the 
data. 

The UDP input routine performs protocol process­
ing on received UDP packets. Before the pseudo­
header is constructed for checksum verification, the 
M_PROTOCOL_SUM bit is tested in order to skip 
CPU-based checksumming. 

if Cm->m_flags & M_PROTOCOL_SUM) { 
NETIO_COUNTCrch_hw_sum); 
assert(m->m_f lags & M_PKTHDR); 
if Cui->ui_sum != m->m_pkthdr.protocoLSum) { 

NETIO_COUNT(rch_hw_sum_bad); 
goto badsum; 

} 

goto ok; 
} 

Error processing can be based on packets reformat­
ted into kernel buffers. The UDP output routine per­
forms protocol processing on transmitted UDP 
packets. 

Checksum overhead avoidance is similar to the receive 
path; but instead of testing the M_PROTOCOL_SUM 
bit, the mbuf checksum field is assumed to be valid for 
all transmit mbufs referencing adapter buffers ( they 
have the M_UIOMOVE bit set). We assume that no 
adapter which saves the operating system the effort of 
data copying would forget to save the operating sys­
tem the effort of checksumming. It does not make 
sense to eliminate some, but not all, of the per-byte 
overhead operations. 

For UDP transmission, software recycles (adapter) 
buffering after the packet has been transmitted. 

Changes like checksum avoidance are based on 
adding a conditional to the existing code paths. For a 
DART adapter, the test and branch penalty are small 
relative to the gain. For large external buffers, there 
are one or two M_PROTOCOL_ SUM tests per 
packet, depending on packet length and buffer size. 
This could be viewed as a constant-time overhead. 
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The gain is avoiding the linear-time access of each byte 
within each packet. 

For a traditional adapter, the test and branch repre­
sent overhead for each packet. The cost of the added 
conditionals occurs in the context of a large code base 
between the system call interface and the driver, and 
that networking code provides a rich feature set 
through the use of conditionals. If the added condi­
tionals are viewed as significant, consider the approach 
of generating two binary files from a single source 
module. To avoid penalizing systems populated solely 
with traditional adapters, operating system software 
configuration procedures can choose not to incorpo­
rate the DART-conditionalized version of the code. A 
DART adapter installed at a later date would still oper­
ate under such a software configuration, but would not 
reach its peak performance until the software is recon­
figured to use the DART-conditionalized version. 

TCP 
The TCP input routine performs protocol processing 
on received TCP packets. Before the pseudo-header is 
constructed for checksum verification, the M_PRO­
TOCOL_SUM bit is tested in order to skip CPU-based 
checksumming. The only differences with the UDP 
input processing change are the names of the TCP 
header structure and TCP header checksum field. 

All the adapter resources represented by the second 
mbuf of a received packet are consumed until the final 
reference to the packet is freed. If large packets are 
exchanged and the application is doing small reads, 
not until the final read is any storage reclaimed. This 
space consumption is represented on the socket 
receive queue, and therefore affects the advertised 
TCP window. 

The TCP output routine performs protocol pro­
cessing on transmitted TCP packets. The checksum 
overhead avoidance is similar to that done for UDP. 
Checksum computations for transport-layer retrans­
missions are simplified by the association of checksum 
contributions with mbufs, rather than an association 
of checksums with packets. The association with 
buffers instead of packets also simplifies handling of 
packets using a mix of kernel and adapter buffers. 

For TCP transmission, software recycles (adapter) 
buffering after the packet has been acknowledged by 
the remote end of the connection. Between transmis­
sion and acknowledgment, the data is held on the 
socket's send queue. Previously, the socket code 
copied data from one mbuf into another whenever 
both mbufs' contents fit into one, trading increased 
CPU load for space efficiency. For DART adapters, the 
copy decision is cut short. 

We add a bytesSummed field to the mbuf so that 
when a packet is transmitted or retransmitted by the 
transport layer, code can double-check that all the data 
the checksum is supposed to cover is still present in the 



buffer. For example, a TCP acknowledgment of part of 
an original packet generally leads to the sender delet­
ing its copy of the acknowledged data retransmitting 
the rest. The software implementation handles the 
generality of acknowledgments which are not com­
plete transmit mbufs, the unit covered by the 
protocolSum field. A retransmission must not send a 
packet with an improper transport-layer checksum, 
even ifit means using an algorithm linear in the num­
ber of bytes remaining in the buffer to recompute the 
checksum. 

The transmitter's socket layer buffers data in seg­
ments convenient for both the network-layer protocol 
and the driver. Checksum contributions remembered 
for retransmission are recorded at a similar level of 
granularity. The transmitter is liberal in what the 
receiver can acknowledge; the receiver's implementa­
tion affects efficiency, but not correctness. 

Socket Data Movement 
The copy from the network buffers to the application 
data space occurs in the soreceive routine, which uses 
information left in the mbuf by the device driver. The 
call( s) to uiomove become conditionalized as follows: 

if Cm->m_flags & M_UIOMOVE) { 
assert(m->m_flags & M_EXT); 
error= C*m->m_ext.uiomove_f)Cm, moff, Len, uio); 

} else 
error= uiomoveCmtodCm, caddr_t) + moff, Len, uio); 

The reverse copy in sosend is similar. 
The standard uiomove function makes the opti­

mistic assumption that the addresses of user buffers 
provided by the application are valid. If addresses are 
not valid, a trap occurs and situation-specific code is 
called. 

To support drivers that use programmed I/0 
movements with the application's buffer, an additional 
code point is added to the error processing so that an 
EFAULT error is returned to the application. 

Note that the changes are generic, and can be used 
with existing devices. The uiomove_f function can per­
form both copies to kernel buffers and protocol check­
summing for transmission over traditional adapters. 

In the transmit portion of the socket layer, the appli­
cation data is moved to kernel buffers or to adapter 
buffers by sosend. In order to take advantage of DART 
adapters, sosend needs to know: 

• That the protocol layers between the socket and 
driver support DART-style buffering 

• That the driver supports DART-style buffering 

In general, formatting data efficiently for transmis­
sion can require knowing the amount of headers that 
will be prepended by the various layers below the 
socket layer, so device alignment restrictions can be 
met. Due to protocol options and to the variety of 

media in existence, the amount prepended may vary 
from socket to socket. Given a socket, we introduced a 
function that computes: 

• A function pointer for allocating adapter-based 
buffers 

• A function pointer for moving data from user 
buffers to adapter buffers 

• The number of bytes required to prepend all headers 

To simplify the prototype implementation effort, 
the function disallows the use of adapter buffers for IP 
multicast packets. 

When allocating adapter buffers, sosend uses the 
if_xmtbufalloc entry to allocate adapter buffers. Each 
time it does so, it passes a maximum number of bytes 
of buffering that attempts to allocate a buffer for the 
entire ( remaining portion of the) packet. The driver 
indicates the actual amount of buffering allocated; 
sosend loops until all the necessary buffering is allo­
cated. The driver may decline to allocate an adapter 
buffer if the requested amount of buffering is small. At 
that time the driver can best decide if CPU-based byte 
copying from user buffers to kernel buffers, and also 
copying kernel buffers to the adapter, is preferable to 
programmed I/0 or DMA from user buffers. 

Once an adapter buffer allocation fails, no further 
allocations are attempted within a segment that will be 
passed to the lower layers. This ensures that drivers will 
see, at worst, an (internal) mbuf containing headers, 
one or many adapter buffers containing data, and 
potentially one or many kernel buffers containing the 
rest of the packet. This simplifies the driver, and 
ensures that alignment restrictions are met without 
shuffling data around on the adapter. It also simplifies 
transport-layer checksum computation algorithms. 

There is an unusual boundary case in which a long 
segment of transmit data may not immediately be 
copied to adapter buffers, even though the driver 
would prefer to do so. If the driver has many free 
transmit adapter buffers when the socket code starts to 
prepare a segment, it may not have any free buffers 
when the segment nears completion. This is because 
the socket layer runs at a lower interrupt priority level 
than the device driver, and buffers are allocated indi­
vidually. A device interrupt can lead to servicing the 
device output queue, consuming adapter buffers in 
order to transmit traditional kernel-buffered packets. 
Rather than block and wait for transmit adapter buffer 
availability, the prototype software uses kernel buffers. 

Both the socket and network protocol (TCP) layers 
contain segmentation algorithms. In the socket layer, 
the segmentation process is confused with the ( cluster 
mbuf) buffer choice decision procedure. As part of 
eliminating that confusion, we introduce an if_buflen 
field to the ifnet structure. 
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If the socket layer creates segments longer than the 
device frame size, excess work occurs in the lower lay­
ers (e.g., TCP segmentation or IP fragmentation). If 
the socket layer creates segments shorter than the 
device frame size, the system foregoes large packet 
efficiencies. A large 8-kbyte write that leads to eight 1-
kbyte duster mbufs being individually processed by 
the lower layers might benefit from overlapped 1/0 of 
the first segment with computation of the last, but the 
CPU would be wasted for a benefit that is only rele­
vant when a large number of such poorly chosen seg­
ments are constructed. Such a write could go out as a 
single packet over an ATM network. 

Socket Buffering and Flow Control 
A number of papers have commented on the require­
ment for a reasonable amount of socket buffering to 
enable applications to "fill the pipe" with a "band­
width times delay" amount of data. 1 Delay includes 
the link distance, device interrupt latency, software 
processing, and 1/0 queuing delays. It also includes 
interrupt delays that aggregate events for efficient soft­
ware processing. 

The requirement for sufficient socket buffering is a 
lesson learned over and over again. Traditional solu­
tions include marginal increases in systemwide 
defaults, and application modification to request more 
buffering than the default. Facilities like rsh imply that 
anything can become a network application, unbe­
knownst to the application author; so changes to 
applications are a poor solution. Also, applications are 
insulated from the network by the network protocol 
and socket abstractions; no application should need to 
know the buffering requirements for high throughput 
for the media du jour. 

We introduce an (•if sockbuj)() entry that allows 
the driver to increase socket buffering. When local 
network-layer addresses are bound to socket connec­
tions, an interface is associated with the connection, and 
the driver is allowed to adjust the socket buffer quota. 

For TCP server connections, the server may not be 
restricting incoming connections to a particular inter­
face. Overriding the default buffering value must be 
done on the socket created when the incoming SYN 
arrives, not on the placeholder server socket. The 
buffer allocation needs to be determined as soon as 
possible, because the initial SYN packet also triggers 
the determination of the proper window scaling value. 

UDP does not queue packets on the socket send 
queue. Although calls to if_sockbuf from the socket 
layer are independent of the protocol, the buffer quota 
only affects the maximum UDP packet size sent, not 
the number of UDP packets that can be in flight at the 
same time. The socket is not charged for UDP packets 
queued on the driver output queue or UDP packets in 
the hardware transmit queues. 
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The adapter buffer resources are distinct from main 
memory mbuf and duster resources. The socket data 
structure and support routines support consumption 
and quota numbers for adapter buffering that are dis­
tinct from the current main memory consumption 
and quota numbers. For example, a connection re­
directed from a DART adapter to a traditional adapter 
is quickly flow-controlled in the socket layer as a result. 
The large adapter buffer allocation does not enable it 
to hog main memory buffers and adversely affect 
other connections. 

IP 
The prototype software contains conditionals to 
enable or disable the use of adapter buffers for mes­
sages undergoing IP fragmentation. This only affects 
UDP, since the socket layer segments appropriately for 
the TCP and driver layers. Software computes the 
amount of header space for the first fragment, and also 
the amount of header space for the following frag­
ments (which will not contain transport protocol 
headers). This information is used during the socket 
layer's movement of application data to kernel or 
adapter buffers. UDP and IP receive the segments as a 
single message; the IP fragmentation code uses the 
fragment boundaries precomputed in the socket layer. 

IP reassembly ofreceived adapter-buffered packets 
was implemented in the prototype code to keep up 
with a transmitter using adapter buffers for IP frag­
mentation. The driver adjusts the hardware-computed 
checksum to ignore the contribution to the hardware 
sum caused by the successive IP. fragment headers, 
which are not presented to the transport layer. 

Resource Exhaustion 
The hardware provides a scalable data memory. The 
memory holds received data until the application 
accepts it, and transmits data until the acknowledg­
ment arrives. The prototype provides 16 Mbytes, 
which was considered a significant quantity after 
examining network subsystem buffering at centralized 
servers for several large "campus" sites. 

When adapter memory is scarce, it should be allo­
cated to connections whose current data flows are 
high-bandwidth flows. Low-bandwidth connections, 
connections blocked by a closed remote window, and 
connections over extremely loss-prone paths will not 
be significantly impacted by the copying overhead 
associated with the use of kernel buffers. 

Data Relocation 
Reformatting data from adapter buffers to kernel 
buffers allows existing code to be ignorant of adapter­
buffered data. Socket-based TCP communication can 
use adapter buffers for high throughput, and other 



protocol environments can simultaneously use the 
familiar kernel buffers. DART support can be phased 
in by protecting legacy code with a conditional reloca­
tion call before entering or queuing data to the legacy 
code. Cache fill operations should be targeted to main 
memory, not adapter memory, for best performance in 
legacy code. 

Relocation is also appropriate for error handling 
and other rarely executed code paths. For example, 
a multi-homed host may lose TCP connectivity 
through the first-hop router associated with a DART 
link, and be forced to send packets over another link. 
The new communication path could use any network 
interface, DART or otherwise. The software needs 
to be able to handle the scenario where the new 
adapter, or some system resource, has a constraint 
preventing it from transmitting packets located in 
DART memory. 

We selected a lazy evaluation solution which 
assumes that data sent over an old route will be deliv­
ered and acknowledged. An eager solution would 
incur a large burst of data relocation when the new 
route takes precedence, with the disadvantages that 
the work would be wasted for data which is acknowl­
edged, and the burst of activity consumes resources 
and incurs increased latency for other activities. 

For TCP connections marked as using adapter 
buffers, a driver entry through (*if_ pktok)() allows 
the driver to comment on each outgoing packet. This 
implies that the driver also comments on TCP retrans­
mission packets. The driver has a chance to double­
check constraints and trigger data relocation, if 
necessary. Drivers not supporting if_pktok always trig­
ger data relocation, and also lead to unmarking the 
TCP connection. 

Comparison to Other Methods 
Traditional adapters contain minimal onboard mem­
ory and hide their buffering from the CPU. Unable to 
manage a traditional adapter's buffers, a copy of data 
must be kept in host memory until it is acknowledged 
in case it needs to be retransmitted. 

We felt copy-on-write approaches to using a tradi­
tional adapter would be inadequate due to book­
keeping overheads experienced by other projects. 
Also, the application may commonly reuse the same 
application buffer before the transport protocol 
semantics allow. For an unmodified application, this 
would lead to blocking the application, or incurring 
both copy-on-write and data copy overheads. All 
applications are network-based when one considers 
networked file systems and pipes to remote program 
invocations; architectures that require applications to 
be recoded to interact with page mapping schemes 
( e.g., 8

) are inadequate. Another objection is that 
copy-on-write focuses on packet transmission, ignor­
ing packet reception. 

When a write is performed by an application using 
DART, the application blocks only long enough to 
buffer the data, as for a traditional adapter. The copy 
of the application's data on DART enables retransmis­
sion for reliable communication. The application is 
free to immediately dirty its write buffer, and no per­
formance impact is associated with that action. 

Van Jacobson's WITLES paper design uses the CPU 
to copy data to and from the adapter via programmed 
I/0.9 Reading the adapter is an expensive operation, and 
in practice would provide worse receive performance 
than even a traditional adapter. The Medusa design is a 
WITLES variant that uses programmed I/0 transmis­
sion and addresses the receive penalty with system block­
move resources for reception.10 The Afterburner design 
used the same approach, achieving 200 Mb/s.• The 
WITLES approach keeps the packet in adapter memory 
until it is copied to the application buffer. 

To minimize resource consumption, the checksum 
and copy loop are combined. This means that the TCP 
acknowledgment is deferred until the application con­
sumes the data, which might be much later than nec­
essary. Applications read data at a rate of their own 
choosing. Care must be taken that this deferral does 
not lead to TCP messages to the data source that cause 
unnecessary data retransmission. 

Unlike WITLES, DART supports DMA to and from 
the adapter. Software can use DMA where appropriate, 
intelligently balancing the costs of programmed I/0 
andDMA. 

Since DART provides the IP checksum with the 
packet, the TCP acknowledgment can be sent as soon 
as the packet is reassembled and reported to the CPU. 
The acknowledgment contents and transmission time 
are traditional BSD UNIX; it states that the data has 
been received, and the offered window reflects buffer 
consumption until the application receives the data at 
its leisure. 

Adapters have been built that offload protocol pro­
cessing.1 However, the cost of TCP processing is low, 
and such an architecture introduces message-passing 
overheads that counterbalance the offloaded protocol 
processing efficiencies. CPU execution rates are scal­
ing well. The issue to address is the main memory 
bandwidth bottleneck. Also, it is expensive and diffi­
cult to create, maintain, and augment the firmware for 
such an adapter. The firmware is tied to a single 
adapter, and replicates work done within the operating 
system that can be shared by a number of adapters. 

DART provides assist via checksumming methods. 
It does not attempt to offload network- or protocol­
layer processing. 

Performance 

The simulation environment used to debug and test 
the chip design was also used to extract performance 
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information. The chip model used to fabricate the part 
is connected to a PCI bus simulation, some generic 
bus master devices, and some generic bus slave 
devices. The simulation environment is connected to 
and controlled by a TCL-based environment. 

Within the TCL environment, the hardware design­
ers wrote a device driver. With this driver, DART 
copied packets from host memory, looped packets on 
an external interface, reported packet summaries, and 
copied packets into host memory. Both 64- and 32-bit 
PCI buses were exercised. Target read latency of host 
memory was incorporated into the simulation ( the 
data presented in Figure 7 is based on a 16-cycle 
latency). Credit-based flow-control operations were 
enabled since they consume additional control mem­
ory bandwidth, and therefore represent worst-case­
scenario operation, Similarly, a large number of virtual 
circuits were used to loop data, to prevent the use of 
on-chip, cached circuit state. 

Because the TCL driver was written by hardware 
designers, and they were focused on designing and 
testing the chip, performance numbers extracted from 
their work suffer from a lot of CSR accesses. A real 
driver would reduce the CSR operations and have 
increased batching of interrupts and other actions. 

CSR reads are costly, since they involve a round-trip 
time within the chip which crosses clock boundaries, 
in addition to the round-trip time between the CPU 
and the pins on the device. Crossing clock boundaries 
means that there are internal first-in first-out (FIFO) 
delays involved to deal with synchronization and 
meta-stability issues. To meet PCI latency specifica­
tions, the bus master is told to retry such operations, 
freeing the PCI bus for other use during the internal 
round-trip time. CSR writes are efficient, since they 
are buffered throughout the levels of the system. 

The dip in Figure 7 is near the 512-byte burst size 
used to read from host memory. Packet transmissions 
no longer fit in a single DMA burst, and incur the extra 
cost of an additional short fetch. This incurs additional 
overhead cycles to place the address on the bus and for 
the target to start to respond with the first bytes. 

For each simulation we extract numerous detailed 
statistics. Table 3 contains a few for 32-cell packets 
(1536 bytes) on a 32-bit PCI bus. These particular fig­
ures are for the TCL driver, and include time intervals 
to initialize the adapter, to transmit before the first 
packets are received, and to receive after the last packet 
was transmitted. 

DART 4 OR MORE VC, BIDIRECTIONAL, 
FLOW-CONTROLLED PERFORMANCE 

Figure 7 
DART Performance 
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Table 3 
Examples of Additional Statistics 

Control memory idle 
Data memory idle 
PCI busy (frame or irdy asserted) 
PCI transferring data (irdy and trdy asserted) 
CSR operations share of bus operations 

Future Work 

79% 
48% 
75% 
60% 
41% 

Due to the large amount of onboard buffering, we do 
not expect DART to encounter resource exhaustion 
issues. However, some work will be appropriate to 
determine the best solution should buffering require­
ments exceed the electrical capabilities of the high­
speed SAR-SDRAM interface. Is it efficient to move 
unacknowledged data off the adapter so that new 
transmit data can be moved from user space to the 
adapter in the socket layer? Is it efficient to block in the 
socket layer, waiting for adapter buffers to be freed by 
a future, or arrived but unprocessed, acknowledg­
ment? Is it efficient to use conventional kernel buffers 
to transmit when the space allocated to DART-style 
transmissions is exhausted? 

DART structures the system software so that the 
operating system does not examine the application's 
data, which should be private to the application any­
way. This separation of control operations ( on head­
ers) from data operations (primarily movement) is a 
common theme in embedded system design for 
bridges and routers. DART provides a generic struc­
ture that enables high-performance networking in a 
variety of systems. 

With features like peer-to-peer 1/0, one can con­
ceive of a system with multiple gigabit links, where the 
bottlenecks have shifted from the system software to 
the application or service. We think DART-style 
adapters will enable and accomplish the delivery of 
high-bandwidth service to the application. 
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